From e4695064e57783d72a64b44325d0a59963d8258a Mon Sep 17 00:00:00 2001 From: Andre Anjos <andre.dos.anjos@gmail.com> Date: Thu, 2 Apr 2020 20:46:14 +0200 Subject: [PATCH] [engine] Set logger on module level --- bob/ip/binseg/engine/inferencer.py | 6 ++++-- bob/ip/binseg/engine/predicter.py | 5 +++-- bob/ip/binseg/engine/ssltrainer.py | 5 +++-- bob/ip/binseg/engine/trainer.py | 15 ++++++++------- 4 files changed, 18 insertions(+), 13 deletions(-) diff --git a/bob/ip/binseg/engine/inferencer.py b/bob/ip/binseg/engine/inferencer.py index f09b39b0..4eae75ce 100644 --- a/bob/ip/binseg/engine/inferencer.py +++ b/bob/ip/binseg/engine/inferencer.py @@ -2,7 +2,6 @@ # -*- coding: utf-8 -*- import os -import logging import time import datetime import numpy as np @@ -17,6 +16,9 @@ from bob.ip.binseg.utils.metric import base_metrics from bob.ip.binseg.utils.plot import precision_recall_f1iso_confintval from bob.ip.binseg.utils.summary import summary +import logging +logger = logging.getLogger(__name__) + def batch_metrics(predictions, ground_truths, names, output_folder, logger): """ @@ -165,7 +167,7 @@ def do_inference(model, data_loader, device, output_folder=None): device to use ``'cpu'`` or ``'cuda'`` output_folder : str """ - logger = logging.getLogger("bob.ip.binseg.engine.inference") + logger.info("Start evaluation") logger.info("Output folder: {}, Device: {}".format(output_folder, device)) results_subfolder = os.path.join(output_folder, "results") diff --git a/bob/ip/binseg/engine/predicter.py b/bob/ip/binseg/engine/predicter.py index 764af86d..3aabffcc 100644 --- a/bob/ip/binseg/engine/predicter.py +++ b/bob/ip/binseg/engine/predicter.py @@ -2,7 +2,6 @@ # -*- coding: utf-8 -*- import os -import logging import time import datetime import numpy as np @@ -12,6 +11,9 @@ from tqdm import tqdm from bob.ip.binseg.engine.inferencer import save_probability_images from bob.ip.binseg.engine.inferencer import save_hdf +import logging +logger = logging.getLogger(__name__) + def do_predict(model, data_loader, device, output_folder=None): @@ -27,7 +29,6 @@ def do_predict(model, data_loader, device, output_folder=None): device to use ``'cpu'`` or ``'cuda'`` output_folder : str """ - logger = logging.getLogger("bob.ip.binseg.engine.inference") logger.info("Start evaluation") logger.info("Output folder: {}, Device: {}".format(output_folder, device)) results_subfolder = os.path.join(output_folder, "results") diff --git a/bob/ip/binseg/engine/ssltrainer.py b/bob/ip/binseg/engine/ssltrainer.py index 46083544..02ad551c 100644 --- a/bob/ip/binseg/engine/ssltrainer.py +++ b/bob/ip/binseg/engine/ssltrainer.py @@ -2,7 +2,6 @@ # -*- coding: utf-8 -*- import os -import logging import time import datetime import torch @@ -13,6 +12,9 @@ import numpy as np from bob.ip.binseg.utils.metric import SmoothedValue from bob.ip.binseg.utils.plot import loss_curve +import logging +logger = logging.getLogger(__name__) + def sharpen(x, T): temp = x ** (1 / T) @@ -204,7 +206,6 @@ def do_ssltrain( rampup epochs """ - logger = logging.getLogger("bob.ip.binseg.engine.trainer") logger.info("Start training") start_epoch = arguments["epoch"] max_epoch = arguments["max_epoch"] diff --git a/bob/ip/binseg/engine/trainer.py b/bob/ip/binseg/engine/trainer.py index 2b35528e..a5eb759c 100644 --- a/bob/ip/binseg/engine/trainer.py +++ b/bob/ip/binseg/engine/trainer.py @@ -2,7 +2,6 @@ # -*- coding: utf-8 -*- import os -import logging import time import datetime import torch @@ -12,6 +11,9 @@ from tqdm import tqdm from bob.ip.binseg.utils.metric import SmoothedValue from bob.ip.binseg.utils.plot import loss_curve +import logging +logger = logging.getLogger(__name__) + def do_train( model, @@ -25,12 +27,12 @@ def do_train( arguments, output_folder, ): - """ + """ Train model and save to disk. - + Parameters ---------- - model : :py:class:`torch.nn.Module` + model : :py:class:`torch.nn.Module` Network (e.g. DRIU, HED, UNet) data_loader : :py:class:`torch.utils.data.DataLoader` optimizer : :py:mod:`torch.optim` @@ -42,14 +44,13 @@ def do_train( checkpointer checkpoint_period : int save a checkpoint every n epochs - device : str + device : str device to use ``'cpu'`` or ``'cuda'`` arguments : dict start end end epochs - output_folder : str + output_folder : str output path """ - logger = logging.getLogger("bob.ip.binseg.engine.trainer") logger.info("Start training") start_epoch = arguments["epoch"] max_epoch = arguments["max_epoch"] -- GitLab