From da283be63e5810c1a8b32f464bcff9cc28af3bf6 Mon Sep 17 00:00:00 2001 From: Tim Laibacher <tim.laibacher@idiap.ch> Date: Tue, 10 Sep 2019 10:50:56 +0200 Subject: [PATCH] Add bibtex and additional material --- README.rst | 18 ++++++++++++++ doc/covdresults.rst | 59 +++++++++++++++++++++++++-------------------- doc/index.rst | 19 +++++++++++++++ 3 files changed, 70 insertions(+), 26 deletions(-) diff --git a/README.rst b/README.rst index 95e9e7f7..d846e596 100644 --- a/README.rst +++ b/README.rst @@ -30,6 +30,24 @@ package, run:: $ conda install bob.ip.binseg +Citation +-------- +Please use the below BibTeX reference to cite this work:: + + @ARTICLE{laibacher_anjos_2019, + author = {{Laibacher}, Tim and {Anjos}, Andr{\'e}}, + title = "{On the Evaluation and Real-World Usage Scenarios of Deep Vessel Segmentation for Funduscopy}", + journal = {arXiv e-prints}, + keywords = {Computer Science - Computer Vision and Pattern Recognition}, + year = "2019", + month = "Sep", + url = {https://arxiv.org/abs/1909.03856}, + eid = {arXiv:1909.03856}, + pages = {arXiv:1909.03856}, + archivePrefix = {arXiv}, + eprint = {1909.03856}} + + Contact ------- diff --git a/doc/covdresults.rst b/doc/covdresults.rst index 95f7d7fe..bf2305f4 100644 --- a/doc/covdresults.rst +++ b/doc/covdresults.rst @@ -6,38 +6,45 @@ COVD- and COVD-SLL Results ========================== +In addition to the M2U-Net architecture, we also evaluated the larger DRIU network and a variation of it +that contains batch normalization (DRIU BN) on COVD- and COVD-SSL. Perhaps surprisingly, for the +majority of combinations, the performance of the DRIU variants are roughly equal or worse than the M2U-Net. +We anticipate that one reason for this could be overparameterization of large VGG16 models +that are pretrained on ImageNet. + F1 Scores =========== -F1 score together with standard deviation across test images. - -+---------------------------------------------------------+---------------------------------------------+-----------------------------------------------+---------------------------------------------------+ -| F1 score | :ref:`bob.ip.binseg.configs.models.driu` | :ref:`bob.ip.binseg.configs.models.driubn` | :ref:`bob.ip.binseg.configs.models.m2unet` | -+---------------------------------------------------------+---------------------------------------------+-----------------------------------------------+---------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-drive` | 0.788 (0.018) | 0.797 (0.019) | `0.789 (0.018) <m2unet_covd-drive.pth>`_ | -+---------------------------------------------------------+---------------------------------------------+-----------------------------------------------+---------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-drive_ssl` | 0.785 (0.018) | 0.783 (0.019) | `0.791 (0.014) <m2unet_covd-drive_ssl.pth>`_ | -+---------------------------------------------------------+---------------------------------------------+-----------------------------------------------+---------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-stare` | 0.778 (0.117) | 0.778 (0.122) | `0.812 (0.046) <m2unet_covd-stare.pth>`_ | -+---------------------------------------------------------+---------------------------------------------+-----------------------------------------------+---------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-stare_ssl` | 0.788 (0.102) | 0.811 (0.074) | `0.820 (0.044) <m2unet_covd-stare_ssl.pth>`_ | -+---------------------------------------------------------+---------------------------------------------+-----------------------------------------------+---------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-chasedb1` | 0.796 (0.027) | 0.791 (0.025) | `0.788 (0.024) <m2unet_covd-chasedb1.pth>`_ | -+---------------------------------------------------------+---------------------------------------------+-----------------------------------------------+---------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-chasedb1_ssl` | 0.796 (0.024) | 0.798 (0.025) | `0.799 (0.026) <m2unet_covd-chasedb1_ssl.pth>`_ | -+---------------------------------------------------------+---------------------------------------------+-----------------------------------------------+---------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-hrf` | 0.799 (0.044) | 0.800 (0.045) | `0.802 (0.045) <m2unet_covd-hrf.pth>`_ | -+---------------------------------------------------------+---------------------------------------------+-----------------------------------------------+---------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-hrf_ssl` | 0.799 (0.044) | 0.784 (0.048) | `0.797 (0.044) <m2unet_covd-hrf_ssl.pth>`_ | -+---------------------------------------------------------+---------------------------------------------+-----------------------------------------------+---------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-iostar` | 0.791 (0.021) | 0.777 (0.032) | `0.793 (0.015) <m2unet_covd-iostar.pth>`_ | -+---------------------------------------------------------+---------------------------------------------+-----------------------------------------------+---------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-iostar_ssl` | 0.797 (0.017) | 0.811 (0.074) | `0.785 (0.018) <m2unet_covd-iostar_ssl.pth>`_ | -+---------------------------------------------------------+---------------------------------------------+-----------------------------------------------+---------------------------------------------------+ +Comparison of F1-micro-scores (std) of DRIU and M2U-Net on COVD- and COVD-SSL. +Standard deviation across test-images in brackets. + ++---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ +| F1 score | :ref:`bob.ip.binseg.configs.models.driu`/:ref:`bob.ip.binseg.configs.models.driussl` | :ref:`bob.ip.binseg.configs.models.driubn`/:ref:`bob.ip.binseg.configs.models.driubnssl` | :ref:`bob.ip.binseg.configs.models.m2unet`/:ref:`bob.ip.binseg.configs.models.m2unetssl` | ++---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ +| :ref:`bob.ip.binseg.configs.datasets.covd-drive` | 0.788 (0.018) | 0.797 (0.019) | `0.789 (0.018) <m2unet_covd-drive.pth>`_ | ++---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ +| :ref:`bob.ip.binseg.configs.datasets.covd-drive_ssl` | 0.785 (0.018) | 0.783 (0.019) | `0.791 (0.014) <m2unet_covd-drive_ssl.pth>`_ | ++---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ +| :ref:`bob.ip.binseg.configs.datasets.covd-stare` | 0.778 (0.117) | 0.778 (0.122) | `0.812 (0.046) <m2unet_covd-stare.pth>`_ | ++---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ +| :ref:`bob.ip.binseg.configs.datasets.covd-stare_ssl` | 0.788 (0.102) | 0.811 (0.074) | `0.820 (0.044) <m2unet_covd-stare_ssl.pth>`_ | ++---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ +| :ref:`bob.ip.binseg.configs.datasets.covd-chasedb1` | 0.796 (0.027) | 0.791 (0.025) | `0.788 (0.024) <m2unet_covd-chasedb1.pth>`_ | ++---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ +| :ref:`bob.ip.binseg.configs.datasets.covd-chasedb1_ssl` | 0.796 (0.024) | 0.798 (0.025) | `0.799 (0.026) <m2unet_covd-chasedb1_ssl.pth>`_ | ++---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ +| :ref:`bob.ip.binseg.configs.datasets.covd-hrf` | 0.799 (0.044) | 0.800 (0.045) | `0.802 (0.045) <m2unet_covd-hrf.pth>`_ | ++---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ +| :ref:`bob.ip.binseg.configs.datasets.covd-hrf_ssl` | 0.799 (0.044) | 0.784 (0.048) | `0.797 (0.044) <m2unet_covd-hrf_ssl.pth>`_ | ++---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ +| :ref:`bob.ip.binseg.configs.datasets.covd-iostar` | 0.791 (0.021) | 0.777 (0.032) | `0.793 (0.015) <m2unet_covd-iostar.pth>`_ | ++---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ +| :ref:`bob.ip.binseg.configs.datasets.covd-iostar_ssl` | 0.797 (0.017) | 0.811 (0.074) | `0.785 (0.018) <m2unet_covd-iostar_ssl.pth>`_ | ++---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ M2U-Net Precision vs. Recall Curves =================================== - +Precision vs. recall curves for each evaluated dataset. Note that here the F1-score is calculated on a macro level (see paper for more details). .. figure:: img/pr_CHASEDB1.png diff --git a/doc/index.rst b/doc/index.rst index 013e46c2..82034646 100644 --- a/doc/index.rst +++ b/doc/index.rst @@ -9,6 +9,25 @@ Package to benchmark and evaluate a range of neural network architectures for binary segmentation tasks on 2D Eye Fundus Images (2DFI). It is build using PyTorch. +Please use the below BibTeX reference to cite this work:: + + @ARTICLE{laibacher_anjos_2019, + author = {{Laibacher}, Tim and {Anjos}, Andr{\'e}}, + title = "{On the Evaluation and Real-World Usage Scenarios of Deep Vessel Segmentation for Funduscopy}", + journal = {arXiv e-prints}, + keywords = {Computer Science - Computer Vision and Pattern Recognition}, + year = "2019", + month = "Sep", + url = {https://arxiv.org/abs/1909.03856}, + eid = {arXiv:1909.03856}, + pages = {arXiv:1909.03856}, + archivePrefix = {arXiv}, + eprint = {1909.03856}} + +Additional Material +=================== + +The additional material referred to in the paper can be found under :ref:`bob.ip.binseg.covdresults` Users Guide =========== -- GitLab