From cd1f64fd3b36f7fc5b5d102588b620ba614bf158 Mon Sep 17 00:00:00 2001 From: Andre Anjos <andre.dos.anjos@gmail.com> Date: Mon, 27 Apr 2020 21:08:17 +0200 Subject: [PATCH] [script.experiment] Call analyze --- bob/ip/binseg/script/experiment.py | 166 ++++++----------------------- 1 file changed, 30 insertions(+), 136 deletions(-) diff --git a/bob/ip/binseg/script/experiment.py b/bob/ip/binseg/script/experiment.py index eb454235..db17008c 100644 --- a/bob/ip/binseg/script/experiment.py +++ b/bob/ip/binseg/script/experiment.py @@ -2,6 +2,7 @@ # coding=utf-8 import os +import shutil import click @@ -11,54 +12,22 @@ from bob.extension.scripts.click_helper import ( ResourceOption, ) +from .binseg import save_sh_command + import logging logger = logging.getLogger(__name__) -def _save_sh_command(destfile): - """Records command-line to reproduce this experiment""" - - import sys - import time - import pkg_resources - - dirname = os.path.dirname(destfile) - - if not os.path.exists(dirname): - os.makedirs(dirname) - - logger.info(f"Writing command-line for reproduction at '{destfile}'...") - - with open(destfile, "wt") as f: - f.write("#!/usr/bin/env sh\n") - f.write(f"# date: {time.asctime()}\n") - version = pkg_resources.require("bob.ip.binseg")[0].version - f.write(f"# version: {version} (bob.ip.binseg)\n") - f.write(f"# platform: {sys.platform}\n") - f.write("\n") - args = [] - for k in sys.argv: - if " " in k: - args.append(f'"{k}"') - else: - args.append(k) - if os.environ.get("CONDA_DEFAULT_ENV") is not None: - f.write(f"#conda activate {os.environ['CONDA_DEFAULT_ENV']}\n") - f.write(f"#cd {os.path.realpath(os.curdir)}\n") - f.write(" ".join(args) + "\n") - os.chmod(destfile, 0o755) - - @click.command( entry_point_group="bob.ip.binseg.config", cls=ConfigCommand, epilog="""Examples: \b - 1. Trains a M2U-Net model (VGG-16 backbone) with DRIVE (vessel segmentation), - on the CPU, for only two epochs, then runs inference and evaluation on - results from its test set: + 1. Trains an M2U-Net model (VGG-16 backbone) with DRIVE (vessel + segmentation), on the CPU, for only two epochs, then runs inference and + evaluation on stock datasets, report performance as a table and a figure: $ bob binseg experiment -vv m2unet drive --epochs=2 @@ -263,8 +232,8 @@ def experiment( """Runs a complete experiment, from training, to prediction and evaluation This script is just a wrapper around the individual scripts for training, - running prediction and evaluating FCN models. It organises the output in a - preset way: + running prediction, evaluating and comparing FCN model performance. It + organises the output in a preset way: .. code-block:: text @@ -279,6 +248,8 @@ def experiment( └── second-annotator/ #if set, store overlayed images for the #second annotator here └── analysis / #the outputs of the analysis of both train/test sets + #includes second-annotator "metrics" as well, if + # configured Training is performed for a configurable number of epochs, and generates at least a final_model.pth. It may also generate a number of intermediate @@ -300,12 +271,16 @@ def experiment( N.B.2: The threshold used for calculating the F1-score on the test set, or overlay analysis (false positives, negatives and true positives overprinted - on the original image) will be automatically calculated from a - ``validation`` set, if one is provided, otherwise, from the ``train`` set. - If none of those is provided, a fixed threshold value at 0.5 will be used. + on the original image) also follows the logic above. """ - _save_sh_command(os.path.join(output_folder, "command.sh")) + command_sh = os.path.join(output_folder, "command.sh") + if os.path.exists(command_sh): + backup = command_sh + '~' + if os.path.exists(backup): + os.unlink(backup) + shutil.move(command_sh, backup) + save_sh_command(command_sh) ## Training logger.info("Started training") @@ -335,100 +310,19 @@ def experiment( ) logger.info("Ended training") - ## Prediction - logger.info("Started prediction") - - from .predict import predict + from .analyze import analyze model_file = os.path.join(train_output_folder, "model_final.pth") - predictions_folder = os.path.join(output_folder, "predictions") - overlayed_folder = ( - os.path.join(output_folder, "overlayed", "predictions") - if overlayed - else None - ) - - ctx.invoke( - predict, - output_folder=predictions_folder, - model=model, - dataset=dataset, - batch_size=batch_size, - device=device, - weight=model_file, - overlayed=overlayed_folder, - verbose=verbose, - ) - logger.info("Ended prediction") - - ## Evaluation - logger.info("Started evaluation") - - from .evaluate import evaluate - - overlayed_folder = ( - os.path.join(output_folder, "overlayed", "analysis") - if overlayed - else None - ) - - # choosing the overlayed_threshold - if "validation" in dataset: - threshold = "validation" - elif "train" in dataset: - threshold = "train" - else: - threshold = 0.5 - logger.info(f"Setting --threshold={threshold}...") - - analysis_folder = os.path.join(output_folder, "analysis") - ctx.invoke( - evaluate, - output_folder=analysis_folder, - predictions_folder=predictions_folder, - dataset=dataset, - second_annotator=second_annotator, - overlayed=overlayed_folder, - threshold=threshold, - verbose=verbose, - ) - - logger.info("Ended evaluation") - - ## Comparison - logger.info("Started comparison") - - # compare performances on the various sets - from .compare import compare - - systems = [] - for k, v in dataset.items(): - if k.startswith("_"): - logger.info(f"Skipping dataset '{k}' (not to be compared)") - continue - systems += [k, os.path.join(analysis_folder, k, "metrics.csv")] - if second_annotator is not None: - for k, v in second_annotator.items(): - if k.startswith("_"): - logger.info(f"Skipping dataset '{k}' (not to be compared)") - continue - systems += [ - f"{k} (2nd. annot.)", - os.path.join( - analysis_folder, k, "metrics-second-annotator.csv" - ), - ] - - output_figure = os.path.join(output_folder, "comparison.pdf") - output_table = os.path.join(output_folder, "comparison.rst") ctx.invoke( - compare, - label_path=systems, - output_figure=output_figure, - output_table=output_table, - threshold=threshold, - verbose=verbose, - ) - - logger.info("Ended comparison, and the experiment - bye.") + analyze, + model=model, + output_folder=output_folder, + batch_size=batch_size, + dataset=dataset, + second_annotator=second_annotator, + device=device, + overlayed=overlayed, + weight=model_file, + verbose=verbose, + ) -- GitLab