From c95a0e994c71bc26b3cd069c1b32598eff386f42 Mon Sep 17 00:00:00 2001
From: Andre Anjos <andre.dos.anjos@gmail.com>
Date: Sat, 21 Mar 2020 21:41:22 +0100
Subject: [PATCH] [doc] Better tables with list-table directive; Fix all
 warnings

---
 doc/acknowledgements.rst |  40 ++-----
 doc/api.rst              |   2 +
 doc/benchmarkresults.rst |  71 ++++++++----
 doc/configs.rst          | 235 ---------------------------------------
 doc/covdresults.rst      |  97 ++++++++++------
 doc/datasets.rst         | 164 ++++++++++++++++++++++-----
 doc/evaluation.rst       |  10 +-
 doc/index.rst            |   1 -
 doc/links.rst            |   1 +
 doc/references.rst       |  14 +++
 10 files changed, 283 insertions(+), 352 deletions(-)
 delete mode 100644 doc/configs.rst

diff --git a/doc/acknowledgements.rst b/doc/acknowledgements.rst
index d273b8bf..9783907f 100644
--- a/doc/acknowledgements.rst
+++ b/doc/acknowledgements.rst
@@ -1,39 +1,17 @@
 .. -*- coding: utf-8 -*-
+
 .. _bob.ip.binseg.acknowledgements:
 
-================
-Acknowledgements
-================
+==================
+ Acknowledgements
+==================
 
 This packages utilizes code from the following packages:
 
-* The model-checkpointer is based on the Checkpointer in maskrcnn_benchmark by::
-
-    @misc{massa2018mrcnn,
-    author = {Massa, Francisco and Girshick, Ross},
-    title = {{maskrcnn-benchmark: Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch}},
-    year = {2018},
-    howpublished = {\url{https://github.com/facebookresearch/maskrcnn-benchmark}},
-    note = {Accessed: 2019.05.01}
-    }
-
-* The AdaBound optimizer code by::
-
-    @inproceedings{Luo2019AdaBound,
-     author = {Luo, Liangchen and Xiong, Yuanhao and Liu, Yan and Sun, Xu},
-     title = {Adaptive Gradient Methods with Dynamic Bound of Learning Rate},
-     booktitle = {Proceedings of the 7th International Conference on Learning Representations},
-     month = {May},
-     year = {2019},
-     address = {New Orleans, Louisiana}
-    }
+* The model-checkpointer is based on the implementation in
+  `maskrcnn-benchmark`_ by [MASSA-2018]_
+* The AdaBound optimizer code was sourced from [LUO-2019]_
+* The MobileNetV2 backbone is based on [LIN-2018]_
 
-* The MobileNetV2 backbone is based on an implementation by::
 
-    @misc{tonylins,
-    author = {Ji Lin},
-    title = {pytorch-mobilenet-v2},
-    year = {2018}
-    howpublished = {\url{https://github.com/tonylins/pytorch-mobilenet-v2}},
-    note = {Accessed: 2019.05.01}
-    }
+.. include:: links.rst
diff --git a/doc/api.rst b/doc/api.rst
index a79deca5..5e836692 100644
--- a/doc/api.rst
+++ b/doc/api.rst
@@ -116,6 +116,8 @@ Models
    bob.ip.binseg.configs.models.unet
 
 
+.. _bob.ip.binseg.configs.datasets:
+
 Datasets
 ========
 
diff --git a/doc/benchmarkresults.rst b/doc/benchmarkresults.rst
index 2f391611..becbf3b3 100644
--- a/doc/benchmarkresults.rst
+++ b/doc/benchmarkresults.rst
@@ -1,30 +1,59 @@
 .. -*- coding: utf-8 -*-
-.. _bob.ip.binseg.benchmarkresults:
 
+.. _bob.ip.binseg.benchmarkresults:
 
-==================
-Benchmark Results
-==================
+===================
+ Benchmark Results
+===================
 
-F1 Scores
-===========
+F1 Scores (micro-level)
+-----------------------
 
-* Benchmark results for models: DRIU, HED, M2UNet and U-Net.
-* Models are trained and tested on the same dataset using the train-test split as indicated in :ref:`bob.ip.binseg.datasets`
+* Benchmark results for models: DRIU, HED, M2U-Net and U-Net.
+* Models are trained and tested on the same dataset using the
+  train-test split as indicated in :ref:`bob.ip.binseg.configs.datasets` (i.e.,
+  these are *intra*-datasets tests)
 * Standard-deviations across all test images are indicated in brakets
-
-+--------------------------------------------+------------------------------------------------+---------------------------------------------+-------------------------------------------+----------------------------------------------+---------------------------------------------+
-| F1 (std)                                   | :ref:`bob.ip.binseg.configs.datasets.chasedb1` | :ref:`bob.ip.binseg.configs.datasets.drive` | :ref:`bob.ip.binseg.configs.datasets.hrf` | :ref:`bob.ip.binseg.configs.datasets.iostar` | :ref:`bob.ip.binseg.configs.datasets.stare` |
-+--------------------------------------------+------------------------------------------------+---------------------------------------------+-------------------------------------------+----------------------------------------------+---------------------------------------------+
-| :ref:`bob.ip.binseg.configs.models.driu`   | `0.810 (0.021) <driu_chasedb1.pth_>`_          | `0.820 (0.014) <driu_drive.pth_>`_          | `0.783 (0.055) <driu_hrf.pth_>`_          | `0.825 (0.020) <driu_iostar.pth_>`_          | `0.827 (0.037) <driu_stare.pth_>`_          |
-+--------------------------------------------+------------------------------------------------+---------------------------------------------+-------------------------------------------+----------------------------------------------+---------------------------------------------+
-| :ref:`bob.ip.binseg.configs.models.hed`    | 0.810 (0.022)                                  | 0.817 (0.013)                               | 0.783 (0.058)                             | 0.825 (0.020)                                | 0.823 (0.037)                               |
-+--------------------------------------------+------------------------------------------------+---------------------------------------------+-------------------------------------------+----------------------------------------------+---------------------------------------------+
-| :ref:`bob.ip.binseg.configs.models.m2unet` | `0.802 (0.019) <m2unet_chasedb1.pth_>`_        | `0.803 (0.014) <m2unet_drive.pth_>`_        | `0.780 (0.057) <m2unet_hrf.pth_>`_        | `0.817 (0.020) <m2unet_iostar.pth_>`_        | `0.815 (0.041) <m2unet_stare.pth_>`_        |
-+--------------------------------------------+------------------------------------------------+---------------------------------------------+-------------------------------------------+----------------------------------------------+---------------------------------------------+
-| :ref:`bob.ip.binseg.configs.models.unet`   | 0.812 (0.020)                                  | 0.822 (0.015)                               | 0.788 (0.051)                             | 0.818 (0.019)                                | 0.829 (0.042)                               |
-+--------------------------------------------+------------------------------------------------+---------------------------------------------+-------------------------------------------+----------------------------------------------+---------------------------------------------+
-
+* Database and Model links (table top row and left column) are linked to the
+  originating configuration files used to obtain these results.
+* For some results, the actual deep neural network models are provided (by
+  clicking on the associated F1 Score).
+* Check `our paper`_ for details on the calculation of the F1 Score and standard
+  deviations.
+
+.. list-table::
+   :header-rows: 1
+
+   * - F1 (std)
+     - :py:mod:`DRIU <bob.ip.binseg.configs.models.driu>`
+     - :py:mod:`HED <bob.ip.binseg.configs.models.hed>`
+     - :py:mod:`M2U-Net <bob.ip.binseg.configs.models.m2unet>`
+     - :py:mod:`U-Net <bob.ip.binseg.configs.models.unet>`
+   * - :py:mod:`CHASE-DB1 <bob.ip.binseg.configs.datasets.chasedb1>`
+     - `0.810 (0.021) <driu_chasedb1.pth_>`_
+     - 0.810 (0.022)
+     - `0.802 (0.019) <m2unet_chasedb1.pth_>`_
+     - 0.812 (0.020)
+   * - :py:mod:`DRIVE <bob.ip.binseg.configs.datasets.drive>`
+     - `0.820 (0.014) <driu_drive.pth_>`_
+     - 0.817 (0.013)
+     - `0.803 (0.014) <m2unet_drive.pth_>`_
+     - 0.822 (0.015)
+   * - :py:mod:`HRF <bob.ip.binseg.configs.datasets.hrf1168>`
+     - `0.783 (0.055) <driu_hrf.pth_>`_
+     - 0.783 (0.058)
+     - `0.780 (0.057) <m2unet_hrf.pth_>`_
+     - 0.788 (0.051)
+   * - :py:mod:`IOSTAR (vessel) <bob.ip.binseg.configs.datasets.iostarvessel>`
+     - `0.825 (0.020) <driu_iostar.pth_>`_
+     - 0.825 (0.020)
+     - `0.817 (0.020) <m2unet_iostar.pth_>`_
+     - 0.818 (0.019)
+   * - :py:mod:`STARE <bob.ip.binseg.configs.datasets.stare>`
+     - `0.827 (0.037) <driu_stare.pth_>`_
+     - 0.823 (0.037)
+     - `0.815 (0.041) <m2unet_stare.pth_>`_
+     - 0.829 (0.042)
 
 
 .. include:: links.rst
diff --git a/doc/configs.rst b/doc/configs.rst
deleted file mode 100644
index 93e09612..00000000
--- a/doc/configs.rst
+++ /dev/null
@@ -1,235 +0,0 @@
-.. -*- coding: utf-8 -*-
-.. _bob.ip.binseg.configs:
-
-===============
-Configs
-===============
-
-Dataset Configs
-===============
-
-We provide variants for the training and test sets of each supported database,
-as well as versions for COVD- (COmbined training sets of all publicly available
-Vessel Dataset without target dataset) and SSL (Semi-supervised Learning), as
-explained in our report.
-
-.. _bob.ip.binseg.configs.datasets.imagefolder:
-
-ImageFolder
------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/imagefolder.py
-
-
-.. _bob.ip.binseg.configs.datasets.imagefoldertest:
-
-ImageFolderTest
----------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/imagefoldertest.py
-
-
-.. _bob.ip.binseg.configs.datasets.imagefolderinference:
-
-ImageFolderInference
---------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/imagefolderinference.py
-
-
-.. _bob.ip.binseg.configs.datasets.chasedb1:
-
-CHASEDB1
---------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/chasedb1.py
-
-
-.. _bob.ip.binseg.configs.datasets.chasedb1test:
-
-CHASEDB1TEST
-------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/chasedb1test.py
-
-
-.. _bob.ip.binseg.configs.datasets.covd-drive:
-
-COVD-DRIVE
-----------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/starechasedb1iostarhrf544.py
-
-
-.. _bob.ip.binseg.configs.datasets.covd-drive_ssl:
-
-COVD-DRIVE_SSL
---------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/starechasedb1iostarhrf544ssldrive.py
-
-
-.. _bob.ip.binseg.configs.datasets.covd-stare:
-
-COVD-STARE
-----------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivechasedb1iostarhrf608.py
-
-
-.. _bob.ip.binseg.configs.datasets.covd-stare_ssl:
-
-COVD-STARE_SSL
---------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivechasedb1iostarhrf608sslstare.py
-
-
-.. _bob.ip.binseg.configs.datasets.covd-iostar:
-
-COVD-IOSTARVESSEL
------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivestarechasedb1hrf1024.py
-
-
-.. _bob.ip.binseg.configs.datasets.covd-iostar_ssl:
-
-COVD-IOSTARVESSEL_SSL
----------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivestarechasedb1hrf1024ssliostar.py
-
-
-.. _bob.ip.binseg.configs.datasets.covd-hrf:
-
-COVD-HRF
---------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivestarechasedb1iostar1168.py
-
-
-.. _bob.ip.binseg.configs.datasets.covd-hrf_ssl:
-
-COVD-HRF_SSL
-------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivestarechasedb1iostar1168sslhrf.py
-
-
-.. _bob.ip.binseg.configs.datasets.covd-chasedb1:
-
-COVD-CHASEDB1
--------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivestareiostarhrf960.py
-
-
-.. _bob.ip.binseg.configs.datasets.covd-chasedb1_ssl:
-
-COVD-CHASEDB1_SSL
------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivestareiostarhrf960.py
-
-
-.. _bob.ip.binseg.configs.datasets.drive:
-
-DRIVE
------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drive.py
-
-
-.. _bob.ip.binseg.configs.datasets.drivetest:
-
-DRIVETEST
----------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivetest.py
-
-
-.. _bob.ip.binseg.configs.datasets.hrf:
-
-HRF
----
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/hrf1168.py
-
-
-.. _bob.ip.binseg.configs.datasets.hrftest:
-
-HRFTEST
--------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/hrftest.py
-
-
-.. _bob.ip.binseg.configs.datasets.iostar:
-
-IOSTARVESSEL
-------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/iostarvessel.py
-
-
-.. _bob.ip.binseg.configs.datasets.iostarvesseltest:
-
-IOSTARVESSELTEST
-----------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/iostarvesseltest.py
-
-
-.. _bob.ip.binseg.configs.datasets.stare:
-
-STARE
------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/stare.py
-
-
-.. _bob.ip.binseg.configs.datasets.staretest:
-
-STARETEST
----------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/staretest.py
-
-
-
-Model Configs
-==============
-
-
-.. _bob.ip.binseg.configs.models.driu:
-
-DRIU
-----
-.. literalinclude:: ../bob/ip/binseg/configs/models/driu.py
-
-
-.. _bob.ip.binseg.configs.models.driubn:
-
-DRIUBN
-------
-.. literalinclude:: ../bob/ip/binseg/configs/models/driubn.py
-
-
-.. _bob.ip.binseg.configs.models.hed:
-
-HED
----
-.. literalinclude:: ../bob/ip/binseg/configs/models/hed.py
-
-
-.. _bob.ip.binseg.configs.models.m2unet:
-
-M2UNet
-------
-.. literalinclude:: ../bob/ip/binseg/configs/models/m2unet.py
-
-
-.. _bob.ip.binseg.configs.models.unet:
-
-UNet
-----
-.. literalinclude:: ../bob/ip/binseg/configs/models/unet.py
-
-
-.. _bob.ip.binseg.configs.models.driussl:
-
-DRIUSSL
--------
-.. literalinclude:: ../bob/ip/binseg/configs/models/driussl.py
-
-
-.. _bob.ip.binseg.configs.models.driubnssl:
-
-DRIUBNSSL
----------
-.. literalinclude:: ../bob/ip/binseg/configs/models/driubnssl.py
-
-
-.. _bob.ip.binseg.configs.models.m2unetssl:
-
-M2UNetSSL
----------
-.. literalinclude:: ../bob/ip/binseg/configs/models/m2unetssl.py
diff --git a/doc/covdresults.rst b/doc/covdresults.rst
index 4eb4c120..73aa7270 100644
--- a/doc/covdresults.rst
+++ b/doc/covdresults.rst
@@ -7,44 +7,73 @@
 ============================
 
 In addition to the M2U-Net architecture, we also evaluated the larger DRIU
-network and a variation of it that contains batch normalization (DRIU BN) on
-COVD- and COVD-SSL. Perhaps surprisingly, for the majority of combinations, the
-performance of the DRIU variants are roughly equal or worse than the M2U-Net.
-We anticipate that one reason for this could be overparameterization of large
-VGG16 models that are pretrained on ImageNet.
+network and a variation of it that contains batch normalization (DRIU+BN) on
+COVD- (Combined Vessel Dataset from all training data minus target test set)
+and COVD-SSL (COVD- and Semi-Supervised Learning). Perhaps surprisingly, for
+the majority of combinations, the performance of the DRIU variants are roughly
+equal or worse to the ones obtained with the much smaller M2U-Net.  We
+anticipate that one reason for this could be overparameterization of large
+VGG-16 models that are pretrained on ImageNet.
+
 
 F1 Scores
-=========
-
-Comparison of F1-micro-scores (std) of DRIU and M2U-Net on COVD- and COVD-SSL.
-Standard deviation across test-images in brackets.
-
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| F1 score                                                | :ref:`bob.ip.binseg.configs.models.driu`/:ref:`bob.ip.binseg.configs.models.driussl` | :ref:`bob.ip.binseg.configs.models.driubn`/:ref:`bob.ip.binseg.configs.models.driubnssl` | :ref:`bob.ip.binseg.configs.models.m2unet`/:ref:`bob.ip.binseg.configs.models.m2unetssl` |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-drive`        | 0.788 (0.018)                                                                        | 0.797 (0.019)                                                                            | `0.789 (0.018) <m2unet_covd-drive.pth>`_                                                 |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-drive_ssl`    | 0.785 (0.018)                                                                        | 0.783 (0.019)                                                                            | `0.791 (0.014) <m2unet_covd-drive_ssl.pth>`_                                             |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-stare`        | 0.778 (0.117)                                                                        | 0.778 (0.122)                                                                            | `0.812 (0.046) <m2unet_covd-stare.pth>`_                                                 |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-stare_ssl`    | 0.788 (0.102)                                                                        | 0.811 (0.074)                                                                            | `0.820 (0.044) <m2unet_covd-stare_ssl.pth>`_                                             |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-chasedb1`     | 0.796 (0.027)                                                                        | 0.791 (0.025)                                                                            | `0.788 (0.024) <m2unet_covd-chasedb1.pth>`_                                              |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-chasedb1_ssl` | 0.796 (0.024)                                                                        | 0.798 (0.025)                                                                            | `0.799 (0.026) <m2unet_covd-chasedb1_ssl.pth>`_                                          |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-hrf`          | 0.799 (0.044)                                                                        | 0.800 (0.045)                                                                            | `0.802 (0.045) <m2unet_covd-hrf.pth>`_                                                   |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-hrf_ssl`      | 0.799 (0.044)                                                                        | 0.784 (0.048)                                                                            | `0.797 (0.044) <m2unet_covd-hrf_ssl.pth>`_                                               |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-iostar`       | 0.791 (0.021)                                                                        | 0.777 (0.032)                                                                            | `0.793 (0.015) <m2unet_covd-iostar.pth>`_                                                |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-iostar_ssl`   | 0.797 (0.017)                                                                        | 0.811 (0.074)                                                                            | `0.785 (0.018) <m2unet_covd-iostar_ssl.pth>`_                                            |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
+---------
+
+Comparison of F1 Scores (micro-level and standard deviation) of DRIU and
+M2U-Net on COVD- and COVD-SSL.  Standard deviation across test-images in
+brackets.
+
+.. list-table::
+   :header-rows: 1
+
+   * - F1 score
+     - :py:mod:`DRIU <bob.ip.binseg.configs.models.driu>`/:py:mod:`DRIU@SSL <bob.ip.binseg.configs.models.driussl>`
+     - :py:mod:`DRIU+BN <bob.ip.binseg.configs.models.driubn>`/:py:mod:`DRIU+BN@SSL <bob.ip.binseg.configs.models.driubnssl>`
+     - :py:mod:`M2U-Net <bob.ip.binseg.configs.models.m2unet>`/:py:mod:`M2U-Net@SSL <bob.ip.binseg.configs.models.m2unetssl>`
+   * - :py:mod:`DRIVE (COVD-) <bob.ip.binseg.configs.datasets.starechasedb1iostarhrf544>`
+     - 0.788 (0.018)
+     - 0.797 (0.019)
+     - `0.789 (0.018) <m2unet_covd-drive.pth>`_
+   * - :py:mod:`DRIVE (SSL, COVD-) <bob.ip.binseg.configs.datasets.starechasedb1iostarhrf544ssldrive>`
+     - 0.785 (0.018)
+     - 0.783 (0.019)
+     - `0.791 (0.014) <m2unet_covd-drive_ssl.pth>`_
+   * - :py:mod:`STARE (COVD-) <bob.ip.binseg.configs.datasets.drivechasedb1iostarhrf608>`
+     - 0.778 (0.117)
+     - 0.778 (0.122)
+     - `0.812 (0.046) <m2unet_covd-stare.pth>`_
+   * - :py:mod:`STARE (SSL, COVD-) <bob.ip.binseg.configs.datasets.drivechasedb1iostarhrf608sslstare>`
+     - 0.788 (0.102)
+     - 0.811 (0.074)
+     - `0.820 (0.044) <m2unet_covd-stare_ssl.pth>`_
+   * - :py:mod:`CHASE-DB1 (COVD-) <bob.ip.binseg.configs.datasets.drivestareiostarhrf960>`
+     - 0.796 (0.027)
+     - 0.791 (0.025)
+     - `0.788 (0.024) <m2unet_covd-chasedb1.pth>`_
+   * - :py:mod:`CHASE-DB1 (SSL, COVD-) <bob.ip.binseg.configs.datasets.drivestareiostarhrf960sslchase>`
+     - 0.796 (0.024)
+     - 0.798 (0.025)
+     - `0.799 (0.026) <m2unet_covd-chasedb1_ssl.pth>`_
+   * - :py:mod:`HRF (COVD-) <bob.ip.binseg.configs.datasets.drivestarechasedb1iostar1168>`
+     - 0.799 (0.044)
+     - 0.800 (0.045)
+     - `0.802 (0.045) <m2unet_covd-hrf.pth>`_
+   * - :py:mod:`HRF (SSL, COVD-) <bob.ip.binseg.configs.datasets.drivestarechasedb1iostar1168sslhrf>`
+     - 0.799 (0.044)
+     - 0.784 (0.048)
+     - `0.797 (0.044) <m2unet_covd-hrf_ssl.pth>`_
+   * - :py:mod:`IOSTAR (vessel, COVD-) <bob.ip.binseg.configs.datasets.drivestarechasedb1hrf1024>`
+     - 0.791 (0.021)
+     - 0.777 (0.032)
+     - `0.793 (0.015) <m2unet_covd-iostar.pth>`_
+   * - :py:mod:`IOSTAR (vessel, SSL, COVD-) <bob.ip.binseg.configs.datasets.drivestarechasedb1hrf1024ssliostar>`
+     - 0.797 (0.017)
+     - 0.811 (0.074)
+     - `0.785 (0.018) <m2unet_covd-iostar_ssl.pth>`_
+
 
 M2U-Net Precision vs. Recall Curves
-===================================
+-----------------------------------
 
 Precision vs. recall curves for each evaluated dataset.  Note that here the
 F1-score is calculated on a macro level (see paper for more details).
diff --git a/doc/datasets.rst b/doc/datasets.rst
index dece6057..bd77ab1f 100644
--- a/doc/datasets.rst
+++ b/doc/datasets.rst
@@ -12,29 +12,141 @@ can be downloaded.  We include the reference of the data split protocols used
 to generate iterators for training and testing.
 
 
-+-----------------+--------------------+-----------------------+-------------+---------+------+--------+-----+-----+--------------------+-------+------+
-|   Dataset       |   Reference        | ``bob.db`` package    |    H x W    | Samples | Mask | Vessel | OD  | Cup | Split Reference    | Train | Test |
-+-----------------+--------------------+-----------------------+-------------+---------+------+--------+-----+-----+--------------------+-------+------+
-| DRIVE_          | [DRIVE-2004]_      | ``bob.db.drive``      | 584 x 565   | 40      | x    | x      |     |     | [DRIVE-2004]_      | 20    | 20   |
-+-----------------+--------------------+-----------------------+-------------+---------+------+--------+-----+-----+--------------------+-------+------+
-| STARE_          | [STARE-2000]_      | ``bob.db.stare``      | 605 x 700   | 20      |      | x      |     |     | [MANINIS-2016]_    | 10    | 10   |
-+-----------------+--------------------+-----------------------+-------------+---------+------+--------+-----+-----+--------------------+-------+------+
-| CHASE-DB1_      | [CHASEDB1-2012]_   | ``bob.db.chasedb``    | 960 x 999   | 28      |      | x      |     |     | [CHASEDB1-2012]_   | 8     | 20   |
-+-----------------+--------------------+-----------------------+-------------+---------+------+--------+-----+-----+--------------------+-------+------+
-| HRF_            | [HRF-2013]_        | ``bob.db.hrf``        | 2336 x 3504 | 45      | x    | x      |     |     | [ORLANDO-2017]_    | 15    | 30   |
-+-----------------+--------------------+-----------------------+-------------+---------+------+--------+-----+-----+--------------------+-------+------+
-| IOSTAR_         | [IOSTAR-2016]_     | ``bob.db.iostar``     | 1024 x 1024 | 30      | x    | x      | x   |     | [MEYER-2017]_      | 20    | 10   |
-+-----------------+--------------------+-----------------------+-------------+---------+------+--------+-----+-----+--------------------+-------+------+
-| DRIONS-DB_      | [DRIONSDB-2008]_   | ``bob.db.drionsdb``   | 400 x 600   | 110     |      |        | x   |     | [MANINIS-2016]_    | 60    | 50   |
-+-----------------+--------------------+-----------------------+-------------+---------+------+--------+-----+-----+--------------------+-------+------+
-| `RIM-ONE r3`_   | [RIMONER3-2015]_   | ``bob.db.rimoner3``   | 1424 x 1072 | 159     |      |        | x   | x   | [MANINIS-2016]_    | 99    | 60   |
-+-----------------+-------------------+------------------------+-------------+---------+------+--------+-----+-----+--------------------+-------+------+
-| Drishti-GS1_    | [DRISHTIGS1-2014]_ | ``bob.db.drishtigs1`` | varying     | 101     |      |        | x   | x   | [DRISHTIGS1-2014]_ | 50    | 51   |
-+-----------------+--------------------+-----------------------+-------------+---------+------+--------+-----+-----+--------------------+-------+------+
-| REFUGE_ (train) | [REFUGE-2018]_     | ``bob.db.refuge``     | 2056 x 2124 | 400     |      |        | x   | x   | [REFUGE-2018]_     | 400   |      |
-+-----------------+--------------------+-----------------------+-------------+---------+------+--------+-----+-----+--------------------+-------+------+
-| REFUGE_ (val)   | [REFUGE-2018]_     | ``bob.db.refuge``     | 1634 x 1634 | 400     |      |        | x   | x   | [REFUGE-2018]_     |       | 400  |
-+-----------------+--------------------+-----------------------+-------------+---------+------+--------+-----+-----+--------------------+-------+------+
+.. list-table::
+   :header-rows: 1
+
+   * - Dataset
+     - Reference
+     - ``bob.db`` package
+     - H x W
+     - Samples
+     - Mask
+     - Vessel
+     - OD
+     - Cup
+     - Split Reference
+     - Train
+     - Test
+   * - DRIVE_
+     - [DRIVE-2004]_
+     - ``bob.db.drive``
+     - 584 x 565
+     - 40
+     - x
+     - x
+     -
+     -
+     - [DRIVE-2004]_
+     - 20
+     - 20
+   * - STARE_
+     - [STARE-2000]_
+     - ``bob.db.stare``
+     - 605 x 700
+     - 20
+     -
+     - x
+     -
+     -
+     - [MANINIS-2016]_
+     - 10
+     - 10
+   * - CHASE-DB1_
+     - [CHASEDB1-2012]_
+     - ``bob.db.chasedb``
+     - 960 x 999
+     - 28
+     -
+     - x
+     -
+     -
+     - [CHASEDB1-2012]_
+     - 8
+     - 20
+   * - HRF_
+     - [HRF-2013]_
+     - ``bob.db.hrf``
+     - 2336 x 3504
+     - 45
+     - x
+     - x
+     -
+     -
+     - [ORLANDO-2017]_
+     - 15
+     - 30
+   * - IOSTAR_
+     - [IOSTAR-2016]_
+     - ``bob.db.iostar``
+     - 1024 x 1024
+     - 30
+     - x
+     - x
+     - x
+     -
+     - [MEYER-2017]_
+     - 20
+     - 10
+   * - DRIONS-DB_
+     - [DRIONSDB-2008]_
+     - ``bob.db.drionsdb``
+     - 400 x 600
+     - 110
+     -
+     -
+     - x
+     -
+     - [MANINIS-2016]_
+     - 60
+     - 50
+   * - `RIM-ONE r3`_
+     - [RIMONER3-2015]_
+     - ``bob.db.rimoner3``
+     - 1424 x 1072
+     - 159
+     -
+     -
+     - x
+     - x
+     - [MANINIS-2016]_
+     - 99
+     - 60
+   * - Drishti-GS1_
+     - [DRISHTIGS1-2014]_
+     - ``bob.db.drishtigs1``
+     - varying
+     - 101
+     -
+     -
+     - x
+     - x
+     - [DRISHTIGS1-2014]_
+     - 50
+     - 51
+   * - REFUGE_ (train)
+     - [REFUGE-2018]_
+     - ``bob.db.refuge``
+     - 2056 x 2124
+     - 400
+     -
+     -
+     - x
+     - x
+     - [REFUGE-2018]_
+     - 400
+     -
+   * - REFUGE_ (val)
+     - [REFUGE-2018]_
+     - ``bob.db.refuge``
+     - 1634 x 1634
+     - 400
+     -
+     -
+     - x
+     - x
+     - [REFUGE-2018]_
+     -
+     - 400
 
 
 Folder-based Dataset
@@ -55,7 +167,7 @@ be read via PIL are supported.  Additionally, we also support HDF5 binary
 files.
 
 For training, a new dataset configuration needs to be created. You can copy the
-template :ref:`bob.ip.binseg.configs.datasets.imagefolder` and amend it
+template :py:mod:`bob.ip.binseg.configs.datasets.imagefolder` and amend it
 accordingly, e.g. to point to the the full path of the dataset and if necessary
 any preprocessing steps such as resizing, cropping, padding etc.
 
@@ -66,8 +178,8 @@ Training can then be started with, e.g.:
    bob binseg train M2UNet /path/to/myimagefolderconfig.py -b 4 -d cuda -o /my/output/path -vv
 
 Similary for testing, a test dataset config needs to be created. You can copy
-the template :ref:`bob.ip.binseg.configs.datasets.imagefoldertest` and amend it
-accordingly.
+the template :py:mod:`bob.ip.binseg.configs.datasets.imagefoldertest` and amend
+it accordingly.
 
 Testing can then be started with, e.g.:
 
diff --git a/doc/evaluation.rst b/doc/evaluation.rst
index 2fb923a0..feceb673 100644
--- a/doc/evaluation.rst
+++ b/doc/evaluation.rst
@@ -33,10 +33,10 @@ The inference run generates the following output files:
 .. code-block:: bash
 
     .
-    ├── images  # the predicted probabilities as grayscale images in .png format 
+    ├── images  # the predicted probabilities as grayscale images in .png format
     ├── hdf5    # the predicted probabilties in hdf5 format
-    ├── last_checkpoint  # text file that keeps track of the last checkpoint 
-    ├── M2UNet_trainlog.csv # training log 
+    ├── last_checkpoint  # text file that keeps track of the last checkpoint
+    ├── M2UNet_trainlog.csv # training log
     ├── M2UNet_trainlog.pdf # training log plot
     ├── model_*.pth # model checkpoints
     └── results
@@ -49,7 +49,9 @@ The inference run generates the following output files:
 Inference Only Mode
 ====================
 
-If you wish to run inference only on a folder containing images, use the ``predict`` function in combination with a :ref:`bob.ip.binseg.configs.datasets.imagefolderinference` config. E.g.:
+If you wish to run inference only on a folder containing images, use the
+``predict`` function in combination with a
+:py:mod:`bob.ip.binseg.configs.datasets.imagefolderinference` config. E.g.:
 
 .. code-block:: bash
 
diff --git a/doc/index.rst b/doc/index.rst
index 2dfa532d..04c2d851 100644
--- a/doc/index.rst
+++ b/doc/index.rst
@@ -47,7 +47,6 @@ Users Guide
    evaluation
    benchmarkresults
    covdresults
-   configs
    plotting
    visualization
    acknowledgements
diff --git a/doc/links.rst b/doc/links.rst
index 5b9a2390..ab294a1e 100644
--- a/doc/links.rst
+++ b/doc/links.rst
@@ -7,6 +7,7 @@
 .. _installation: https://www.idiap.ch/software/bob/install
 .. _mailing list: https://www.idiap.ch/software/bob/discuss
 .. _pytorch: https://pytorch.org
+.. _our paper: https://arxiv.org/abs/1909.03856
 
 .. Raw data websites
 .. _drive: https://www.isi.uu.nl/Research/Databases/DRIVE/
diff --git a/doc/references.rst b/doc/references.rst
index d7b4f8d5..97ad5358 100644
--- a/doc/references.rst
+++ b/doc/references.rst
@@ -75,3 +75,17 @@
 .. [HE-2015] *S. Xie and Z. Tu*, **Holistically-Nested Edge Detection**, 2015
    IEEE International Conference on Computer Vision (ICCV), Santiago, 2015, pp.
    1395-1403. https://doi.org/10.1109/ICCV.2015.164
+
+.. [LUO-2019] *L. Luo, Y. Xiong, Y. Liu, and X. Sun*, **Adaptive Gradient
+   Methods with Dynamic Bound of Learning Rate**, Proceedings of the 7th
+   International Conference on Learning Representations (ICLR), Feb. 2019.
+   https://arxiv.org/abs/1902.09843v1
+
+.. [MASSA-2018] *F. Massa and R. Girshick*, **maskrcnn-benchmark: Fast, modular
+   reference implementation of Instance Segmentation and Object Detection
+   algorithms in PyTorch**. 2018.  Last accessed: 21.03.2020.
+   https://github.com/facebookresearch/maskrcnn-benchmark
+
+.. [LIN-2018] *J. Lin*, **pytorch-mobilenet-v2: A PyTorch implementation of
+   MobileNetV2**, 2018.  Last accessed: 21.03.2020.
+   https://github.com/tonylins/pytorch-mobilenet-v2
-- 
GitLab