diff --git a/bob/ip/binseg/modeling/backbones/mobilenetv2.py b/bob/ip/binseg/modeling/backbones/mobilenetv2.py index 2f4b88519a961115c06b096330a213800b3bcb70..9e6cd245a00bc5a95fef118acc26b87f136e437b 100644 --- a/bob/ip/binseg/modeling/backbones/mobilenetv2.py +++ b/bob/ip/binseg/modeling/backbones/mobilenetv2.py @@ -83,7 +83,7 @@ class MobileNetV2(torch.nn.Module): self.m2u = m2u block = InvertedResidual input_channel = 32 - last_channel = 1280 + #last_channel = 1280 interverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], diff --git a/bob/ip/binseg/modeling/losses.py b/bob/ip/binseg/modeling/losses.py index e2aa27b892d84ce6a3762ca998d27ce2391395ff..2f435c14cbaa3d33453a6c3b4c6d82a6d0588821 100644 --- a/bob/ip/binseg/modeling/losses.py +++ b/bob/ip/binseg/modeling/losses.py @@ -239,7 +239,7 @@ class HEDSoftJaccardBCELogitsLoss(_Loss): loss = self.alpha * bceloss + (1 - self.alpha) * (1 - softjaccard) loss_over_all_inputs.append(loss.unsqueeze(0)) final_loss = torch.cat(loss_over_all_inputs).mean() - return loss + return final_loss class MixJacLoss(_Loss): diff --git a/bob/ip/binseg/utils/evaluate.py b/bob/ip/binseg/utils/evaluate.py index 5015e5b35eb7b7a883894c82edfdc27b7e552591..11cb4c51af922350ab9c9038278897b834cabb01 100644 --- a/bob/ip/binseg/utils/evaluate.py +++ b/bob/ip/binseg/utils/evaluate.py @@ -124,10 +124,8 @@ def do_eval( # Collect overall metrics metrics = [] - num_images = len(data_loader) for samples in tqdm(data_loader): names = samples[0] - images = samples[1] ground_truths = samples[2] if prediction_extension is None: diff --git a/bob/ip/binseg/utils/plot.py b/bob/ip/binseg/utils/plot.py index ba85ba3dd1679a257a033055ae46a2a3d0ac18b1..caf75c65d74faabbe50fc56d6cfcb53bc90fca7d 100644 --- a/bob/ip/binseg/utils/plot.py +++ b/bob/ip/binseg/utils/plot.py @@ -354,7 +354,6 @@ def plot_overview(outputfolders, title): re_ups = [] re_lows = [] names = [] - params = [] for folder in outputfolders: # metrics metrics_path = os.path.join(folder, "results/Metrics.csv")