From a2c1b973f7f4bb20bd043c127b03b29e97a65222 Mon Sep 17 00:00:00 2001 From: Andre Anjos <andre.anjos@idiap.ch> Date: Wed, 27 May 2020 18:00:15 +0200 Subject: [PATCH] [models.driu_od] Fix copy-n-paste error on backbone layer selection --- bob/ip/binseg/models/driu_od.py | 10 +++++++--- 1 file changed, 7 insertions(+), 3 deletions(-) diff --git a/bob/ip/binseg/models/driu_od.py b/bob/ip/binseg/models/driu_od.py index e45755af..5ba6a7e2 100644 --- a/bob/ip/binseg/models/driu_od.py +++ b/bob/ip/binseg/models/driu_od.py @@ -24,7 +24,9 @@ class DRIUOD(torch.nn.Module): def __init__(self, in_channels_list=None): super(DRIUOD, self).__init__() - in_upsample2, in_upsample_4, in_upsample_8, in_upsample_16 = in_channels_list + in_upsample2, in_upsample_4, in_upsample_8, in_upsample_16 = ( + in_channels_list + ) self.upsample2 = UpsampleCropBlock(in_upsample2, 16, 4, 2, 0) # Upsample layers @@ -83,14 +85,16 @@ def driu_od(pretrained_backbone=True, progress=True): """ backbone = vgg16_for_segmentation( - pretrained=pretrained_backbone, progress=progress, - return_features=[3, 8, 14, 22], + pretrained=pretrained_backbone, + progress=progress, + return_features=[8, 14, 22, 29], ) head = DRIUOD([128, 256, 512, 512]) order = [("backbone", backbone), ("head", head)] if pretrained_backbone: from .normalizer import TorchVisionNormalizer + order = [("normalizer", TorchVisionNormalizer())] + order model = torch.nn.Sequential(OrderedDict(order)) -- GitLab