diff --git a/.gitignore b/.gitignore
index fcc2be3d0eb5cbef10d057c51da065a6f947ddfd..fbdcee4cc0c8d8c8736864b4d8065d5d3aec2467 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,4 +1,3 @@
-### Bob defaults ###
 *~
 *.swp
 *.pyc
@@ -18,26 +17,15 @@ dist
 build
 *.egg
 src/
+doc/api
 record.txt
 core
 output_temp
 output
 *.DS_Store
-
-
-### JupyterNotebook ###
 *.ipynb
 .ipynb_checkpoints
 */.ipynb_checkpoints/*
-
-
-### VisualStudioCode ###
-.vscode/*
-.vscode/settings.json
-.vscode/tasks.json
-.vscode/launch.json
-.vscode/extensions.json
-
-### VisualStudioCode Patch ###
-# Ignore all local history of files
-.history
\ No newline at end of file
+submitted.sql3
+./logs/
+.coverage
diff --git a/MANIFEST.in b/MANIFEST.in
index 946a661e098c89b0b5b505c5b22594f474fd8b9a..70f6ad2ea295cdf025eab2310e578179315433f1 100644
--- a/MANIFEST.in
+++ b/MANIFEST.in
@@ -1,2 +1,3 @@
 include README.rst buildout.cfg COPYING version.txt requirements.txt
-recursive-include doc *.rst *.png *.ico *.txt
+recursive-include doc *.sh *.rst *.png *.pdf *.ico *.txt
+recursive-include bob *.json *.png *.csv *.jpg
diff --git a/README.rst b/README.rst
index 9ce05003a7e41e5e0b9b9e8116745884305e1da6..bb0badec1ef9f6f3fb29e033c37ca0288c9f4afb 100644
--- a/README.rst
+++ b/README.rst
@@ -4,10 +4,10 @@
    :target: https://www.idiap.ch/software/bob/docs/bob/bob.ip.binseg/stable/index.html
 .. image:: https://img.shields.io/badge/docs-latest-orange.svg
    :target: https://www.idiap.ch/software/bob/docs/bob/bob.ip.binseg/master/index.html
-.. image:: https://gitlab.idiap.ch/bob/bob.ip.binseg/badges/master/build.svg
+.. image:: https://gitlab.idiap.ch/bob/bob.ip.binseg/badges/master/pipeline.svg
    :target: https://gitlab.idiap.ch/bob/bob.ip.binseg/commits/master
 .. image:: https://gitlab.idiap.ch/bob/bob.ip.binseg/badges/master/coverage.svg
-   :target: https://gitlab.idiap.ch/bob/bob.ip.binseg/commits/master
+   :target: https://www.idiap.ch/software/bob/docs/bob/bob.ip.binseg/master/coverage/index.html
 .. image:: https://img.shields.io/badge/gitlab-project-0000c0.svg
    :target: https://gitlab.idiap.ch/bob/bob.ip.binseg
 .. image:: https://img.shields.io/pypi/v/bob.ip.binseg.svg
@@ -38,7 +38,7 @@ If you use this software package in a publication, we would appreciate if you
 could cite our work::
 
    @misc{laibacher_anjos_2019,
-      title         = {On the Evaluation and Real-World Usage Scenarios of Deep Vessel Segmentation for Funduscopy},
+      title         = {On the Evaluation and Real-World Usage Scenarios of Deep Vessel Segmentation for Retinography},
       author        = {Tim Laibacher and Andr\'e Anjos},
       year          = {2019},
       eprint        = {1909.03856},
diff --git a/bob/__init__.py b/bob/__init__.py
index 2ab1e28b150f0549def9963e9e87de3fdd6b2579..edbb4090fca046b19d22d3982711084621bff3be 100644
--- a/bob/__init__.py
+++ b/bob/__init__.py
@@ -1,3 +1,4 @@
 # see https://docs.python.org/3/library/pkgutil.html
 from pkgutil import extend_path
+
 __path__ = extend_path(__path__, __name__)
diff --git a/bob/ip/__init__.py b/bob/ip/__init__.py
index 2ca5e07cb73f0bdddcb863ef497955964087e301..edbb4090fca046b19d22d3982711084621bff3be 100644
--- a/bob/ip/__init__.py
+++ b/bob/ip/__init__.py
@@ -1,3 +1,4 @@
 # see https://docs.python.org/3/library/pkgutil.html
 from pkgutil import extend_path
-__path__ = extend_path(__path__, __name__)
\ No newline at end of file
+
+__path__ = extend_path(__path__, __name__)
diff --git a/bob/ip/binseg/__init__.py b/bob/ip/binseg/__init__.py
index 8e48dba233d1b4e018d5dc08d3eb18aacc86138e..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644
--- a/bob/ip/binseg/__init__.py
+++ b/bob/ip/binseg/__init__.py
@@ -1,17 +0,0 @@
-# gets sphinx autodoc done right - don't remove it
-def __appropriate__(*args):
-  """Says object was actually declared here, an not on the import module.
-
-  Parameters:
-
-    *args: An iterable of objects to modify
-
-  Resolves `Sphinx referencing issues
-  <https://github.com/sphinx-doc/sphinx/issues/3048>`
-  """
-
-  for obj in args: obj.__module__ = __name__
-
-__appropriate__()
-
-__all__ = [_ for _ in dir() if not _.startswith('_')]
diff --git a/bob/ip/binseg/configs/__init__.py b/bob/ip/binseg/configs/__init__.py
index 2ca5e07cb73f0bdddcb863ef497955964087e301..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644
--- a/bob/ip/binseg/configs/__init__.py
+++ b/bob/ip/binseg/configs/__init__.py
@@ -1,3 +0,0 @@
-# see https://docs.python.org/3/library/pkgutil.html
-from pkgutil import extend_path
-__path__ = extend_path(__path__, __name__)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/__init__.py b/bob/ip/binseg/configs/datasets/__init__.py
index 2ca5e07cb73f0bdddcb863ef497955964087e301..cd6d9b34db1ac30aff072a947465a016d413b37f 100644
--- a/bob/ip/binseg/configs/datasets/__init__.py
+++ b/bob/ip/binseg/configs/datasets/__init__.py
@@ -1,3 +1,176 @@
-# see https://docs.python.org/3/library/pkgutil.html
-from pkgutil import extend_path
-__path__ = extend_path(__path__, __name__)
\ No newline at end of file
+#!/usr/bin/env python
+# coding=utf-8
+
+"""Standard configurations for dataset setup"""
+
+
+from ...data.transforms import (
+    RandomRotation as _rotation,
+    RandomHorizontalFlip as _hflip,
+    RandomVerticalFlip as _vflip,
+    ColorJitter as _jitter,
+)
+
+
+RANDOM_ROTATION = [_rotation()]
+"""Shared data augmentation based on random rotation only"""
+
+
+RANDOM_FLIP_JITTER = [_hflip(), _vflip(), _jitter()]
+"""Shared data augmentation transforms without random rotation"""
+
+
+def make_subset(l, transforms, prefixes=[], suffixes=[]):
+    """Creates a new data set, applying transforms
+
+    .. note::
+
+       This is a convenience function for our own dataset definitions inside
+       this module, guaranteeting homogenity between dataset definitions
+       provided in this package.  It assumes certain strategies for data
+       augmentation that may not be translatable to other applications.
+
+
+    Parameters
+    ----------
+
+    l : list
+        List of delayed samples
+
+    transforms : list
+        A list of transforms that needs to be applied to all samples in the set
+
+    prefixes : list
+        A list of data augmentation operations that needs to be applied
+        **before** the transforms above
+
+    suffixes : list
+        A list of data augmentation operations that needs to be applied
+        **after** the transforms above
+
+
+    Returns
+    -------
+
+    subset : :py:class:`bob.ip.binseg.data.utils.SampleListDataset`
+        A pre-formatted dataset that can be fed to one of our engines
+
+    """
+
+    from ...data.utils import SampleListDataset as wrapper
+
+    return wrapper(l, prefixes + transforms + suffixes)
+
+
+def make_trainset(l, transforms, rotation_before=False):
+    """Creates a new training set, **with data augmentation**
+
+    Typically, the transforms are chained to a default set of data augmentation
+    operations (random rotation, horizontal and vertical flips, and color
+    jitter), but flag allows prefixing the rotation specially (useful for some
+    COVD training sets).
+
+    .. note::
+
+       This is a convenience function for our own dataset definitions inside
+       this module, guaranteeting homogenity between dataset definitions
+       provided in this package.  It assumes certain strategies for data
+       augmentation that may not be translatable to other applications.
+
+
+    Parameters
+    ----------
+
+    l : list
+        List of delayed samples
+
+    transforms : list
+        A list of transforms that needs to be applied to all samples in the set
+
+
+    Returns
+    -------
+
+    subset : :py:class:`bob.ip.binseg.data.utils.SampleListDataset`
+        A pre-formatted dataset that can be fed to one of our engines
+
+    """
+
+    if rotation_before:
+        return make_subset(
+            l,
+            transforms=transforms,
+            prefixes=RANDOM_ROTATION,
+            suffixes=RANDOM_FLIP_JITTER,
+        )
+
+    return make_subset(
+        l,
+        transforms=transforms,
+        suffixes=(RANDOM_ROTATION + RANDOM_FLIP_JITTER),
+    )
+
+
+def make_dataset(subsets, transforms):
+    """Creates a new configuration dataset from dictionary and transforms
+
+    This function takes as input a dictionary as those that can be returned by
+    :py:meth:`bob.ip.binseg.data.dataset.JSONDataset.subsets`,  or
+    :py:meth:`bob.ip.binseg.data.dataset.CSVDataset.subsets`, mapping protocol
+    names (such as ``train``, ``dev`` and ``test``) to
+    :py:class:`bob.ip.binseg.data.sample.DelayedSample` lists, and a set of
+    transforms, and returns a dictionary applying
+    :py:class:`bob.ip.binseg.data.utils.SampleListDataset` to these
+    lists, and our standard data augmentation if a ``train`` set exists.
+
+    For example, if ``subsets`` is composed of two sets named ``train`` and
+    ``test``, this function will yield a dictionary with the following entries:
+
+    * ``__train__``: Wraps the ``train`` subset, includes data augmentation
+      (note: datasets with names starting with ``_`` (underscore) are excluded
+      from prediction and evaluation by default, as they contain data
+      augmentation transformations.)
+    * ``train``: Wraps the ``train`` subset, **without** data augmentation
+    * ``train``: Wraps the ``test`` subset, **without** data augmentation
+
+    .. note::
+
+       This is a convenience function for our own dataset definitions inside
+       this module, guaranteeting homogenity between dataset definitions
+       provided in this package.  It assumes certain strategies for data
+       augmentation that may not be translatable to other applications.
+
+
+    Parameters
+    ----------
+
+    subsets : dict
+        A dictionary that contains the delayed sample lists for a number of
+        named lists.  If one of the keys is ``train``, our standard dataset
+        augmentation transforms are appended to the definition of that subset.
+        All other subsets remain un-augmented.
+
+    transforms : list
+        A list of transforms that needs to be applied to all samples in the set
+
+
+    Returns
+    -------
+
+    dataset : dict
+        A pre-formatted dataset that can be fed to one of our engines. It maps
+        string names to
+        :py:class:`bob.ip.binseg.data.utils.SampleListDataset`'s.
+
+    """
+
+    retval = {}
+
+    for key in subsets.keys():
+        retval[key] = make_subset(subsets[key], transforms=transforms)
+        if key == "train":
+            retval["__train__"] = make_trainset(
+                subsets[key], transforms=transforms, rotation_before=False
+            )
+
+    return retval
diff --git a/bob/ip/binseg/configs/datasets/amdrive.py b/bob/ip/binseg/configs/datasets/amdrive.py
deleted file mode 100644
index 6f7cc3101d158f71c7ea47f32382ce369de0552b..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/amdrive.py
+++ /dev/null
@@ -1,78 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-from bob.db.drive import Database as DRIVE
-from bob.db.stare import Database as STARE
-from bob.db.chasedb1 import Database as CHASEDB1
-from bob.db.iostar import Database as IOSTAR
-from bob.db.hrf import Database as HRF
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-import torch
-
-# Target size: 544x544 (DRIVE)
-
-defaulttransforms = [RandomHFlip()
-                    ,RandomVFlip()
-                    ,RandomRotation()
-                    ,ColorJitter()
-                    ,ToTensor()]
-
-
-
-# CHASE_DB1 
-transforms_chase = Compose([      
-                        Resize(544)
-                        ,Crop(0,12,544,544)
-                        ,*defaulttransforms
-                    ])
-
-# bob.db.dataset init
-bobdb_chase = CHASEDB1(protocol = 'default')
-
-# PyTorch dataset
-torch_chase = BinSegDataset(bobdb_chase, split='train', transform=transforms_chase)
-
-
-# IOSTAR VESSEL
-transforms_iostar = Compose([  
-                        Resize(544)
-                        ,*defaulttransforms
-                    ])
-
-# bob.db.dataset init
-bobdb_iostar = IOSTAR(protocol='default_vessel')
-
-# PyTorch dataset
-torch_iostar = BinSegDataset(bobdb_iostar, split='train', transform=transforms_iostar)
-
-# STARE
-transforms = Compose([  
-                        Resize(471)
-                        ,Pad((0,37,0,36))
-                        ,*defaulttransforms
-                    ])
-
-# bob.db.dataset init
-bobdb_stare = STARE(protocol = 'default')
-
-# PyTorch dataset
-torch_stare = BinSegDataset(bobdb_stare, split='train', transform=transforms)
-
-
-# HRF
-transforms_hrf = Compose([  
-                        Resize((363))
-                        ,Pad((0,90,0,91))
-                        ,*defaulttransforms
-                    ])
-
-# bob.db.dataset init
-bobdb_hrf = HRF(protocol = 'default')
-
-# PyTorch dataset
-torch_hrf = BinSegDataset(bobdb_hrf, split='train', transform=transforms_hrf)
-
-
-
-# Merge
-dataset = torch.utils.data.ConcatDataset([torch_stare, torch_chase, torch_iostar, torch_hrf])
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/amdrivetest.py b/bob/ip/binseg/configs/datasets/amdrivetest.py
deleted file mode 100644
index 026ac236e7e9f48f5f41b6685d01369606c47321..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/amdrivetest.py
+++ /dev/null
@@ -1,73 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-from bob.db.drive import Database as DRIVE
-from bob.db.stare import Database as STARE
-from bob.db.chasedb1 import Database as CHASEDB1
-from bob.db.iostar import Database as IOSTAR
-from bob.db.hrf import Database as HRF
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-import torch
-
-# Target size: 544x544 (DRIVE)
-
-defaulttransforms = [ToTensor()]
-
-
-# CHASE_DB1 
-transforms_chase = Compose([      
-                        Resize(544)
-                        ,Crop(0,12,544,544)
-                        ,*defaulttransforms
-                    ])
-
-# bob.db.dataset init
-bobdb_chase = CHASEDB1(protocol = 'default')
-
-# PyTorch dataset
-torch_chase = BinSegDataset(bobdb_chase, split='test', transform=transforms_chase)
-
-
-# IOSTAR VESSEL
-transforms_iostar = Compose([  
-                        Resize(544)
-                        ,*defaulttransforms
-                    ])
-
-# bob.db.dataset init
-bobdb_iostar = IOSTAR(protocol='default_vessel')
-
-# PyTorch dataset
-torch_iostar = BinSegDataset(bobdb_iostar, split='test', transform=transforms_iostar)
-
-# STARE
-transforms = Compose([  
-                        Resize(471)
-                        ,Pad((0,37,0,36))
-                        ,*defaulttransforms
-                    ])
-
-# bob.db.dataset init
-bobdb_stare = STARE(protocol = 'default')
-
-# PyTorch dataset
-torch_stare = BinSegDataset(bobdb_stare, split='test', transform=transforms)
-
-
-# HRF
-transforms_hrf = Compose([  
-                        Resize((363))
-                        ,Pad((0,90,0,91))
-                        ,*defaulttransforms
-                    ])
-
-# bob.db.dataset init
-bobdb_hrf = HRF(protocol = 'default')
-
-# PyTorch dataset
-torch_hrf = BinSegDataset(bobdb_hrf, split='test', transform=transforms_hrf)
-
-
-
-# Merge
-dataset = torch.utils.data.ConcatDataset([torch_stare, torch_chase, torch_iostar, torch_hrf])
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/chasedb1.py b/bob/ip/binseg/configs/datasets/chasedb1.py
deleted file mode 100644
index 7fa0dc096aa55a8ab19665af45c9f2e1f8368a0c..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/chasedb1.py
+++ /dev/null
@@ -1,23 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.chasedb1 import Database as CHASEDB1
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Crop(0,18,960,960)
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = CHASEDB1(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/chasedb1/__init__.py b/bob/ip/binseg/configs/datasets/chasedb1/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..00e2c80e7a5d79bd2bda1fa0c1c21097bf11ed3a
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/chasedb1/__init__.py
@@ -0,0 +1,10 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+def _maker(protocol):
+
+    from ....data.transforms import Crop
+    from ....data.chasedb1 import dataset as raw
+    from .. import make_dataset as mk
+    return mk(raw.subsets(protocol), [Crop(0, 18, 960, 960)])
+
diff --git a/bob/ip/binseg/configs/datasets/chasedb1/covd.py b/bob/ip/binseg/configs/datasets/chasedb1/covd.py
new file mode 100644
index 0000000000000000000000000000000000000000..ed8c37aff14036c88fc5949820efb733e802e4ae
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/chasedb1/covd.py
@@ -0,0 +1,57 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""COVD-CHASEDB1 for Vessel Segmentation
+
+* Configuration resolution (height x width): 960 x 960
+
+The dataset available in this file is composed of DRIVE, STARE, IOSTAR
+vessel and HRF (with annotated samples).
+
+For details on those datasets, consult:
+
+* See :py:mod:`bob.ip.binseg.data.drive`
+* See :py:mod:`bob.ip.binseg.data.stare`
+* See :py:mod:`bob.ip.binseg.data.iostar`
+* See :py:mod:`bob.ip.binseg.data.hrf`
+"""
+
+from bob.ip.binseg.data.transforms import CenterCrop, Pad, Resize
+from bob.ip.binseg.configs.datasets import make_trainset as _maker
+
+from bob.ip.binseg.data.drive import dataset as _raw_drive
+
+_drive = _maker(
+    _raw_drive.subsets("default")["train"],
+    [CenterCrop((544, 544)), Resize(960)],
+    rotation_before=True,
+)
+
+from bob.ip.binseg.data.stare import dataset as _raw_stare
+
+# n.b.: not the best fit, but what was there for Tim's work
+_stare = _maker(
+    _raw_stare.subsets("ah")["train"],
+    [Pad((0, 32, 0, 32)), Resize(960), CenterCrop(960)],
+    rotation_before=True,
+)
+
+from bob.ip.binseg.data.hrf import dataset as _raw_hrf
+
+_hrf = _maker(
+    _raw_hrf.subsets("default")["train"], [Pad((0, 584, 0, 584)), Resize(960)],
+)
+
+from bob.ip.binseg.data.iostar import dataset as _raw_iostar
+
+# n.b.: not the best fit, but what was there for Tim's work
+_iostar = _maker(_raw_iostar.subsets("vessel")["train"], [Resize(960)])
+
+from torch.utils.data import ConcatDataset
+from bob.ip.binseg.configs.datasets.chasedb1.first_annotator import (
+    dataset as _baseline,
+)
+
+# copy dictionary and replace only the augmented train dataset
+dataset = dict(**_baseline)
+dataset["__train__"] = ConcatDataset([_drive, _stare, _hrf, _iostar])
diff --git a/bob/ip/binseg/configs/datasets/chasedb1/first_annotator.py b/bob/ip/binseg/configs/datasets/chasedb1/first_annotator.py
new file mode 100644
index 0000000000000000000000000000000000000000..07c5684212db6a510a32b246c73a0d7bbe0f8c70
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/chasedb1/first_annotator.py
@@ -0,0 +1,14 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""CHASE-DB1 dataset for Vessel Segmentation (first-annotator protocol)
+
+* Split reference: [CHASEDB1-2012]_
+* Configuration resolution: 960 x 960 (after hand-specified crop)
+* See :py:mod:`bob.ip.binseg.data.chasedb1` for dataset details
+* This dataset offers a second-annotator comparison
+"""
+
+from bob.ip.binseg.configs.datasets.chasedb1 import _maker
+dataset = _maker("first-annotator")
+second_annotator = _maker("second-annotator")
diff --git a/bob/ip/binseg/configs/datasets/chasedb1/mtest.py b/bob/ip/binseg/configs/datasets/chasedb1/mtest.py
new file mode 100644
index 0000000000000000000000000000000000000000..0860d97209d2dcc4ceef736d9f962ddd5dea4776
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/chasedb1/mtest.py
@@ -0,0 +1,21 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""CHASE-DB1 cross-evaluation dataset with matched resolution
+
+* Configuration resolution (height x width): 960 x 960
+"""
+
+from bob.ip.binseg.data.transforms import CenterCrop, Pad, Resize
+from bob.ip.binseg.configs.datasets.chasedb1.xtest import dataset as _xt
+
+dataset = {
+    "train": _xt["train"],
+    "test": _xt["test"],
+    "drive": _xt["drive"].copy([CenterCrop((544, 544)), Resize(960)]),
+    "stare": _xt["stare"].copy(
+        [Pad((0, 32, 0, 32)), Resize(960), CenterCrop(960)]
+    ),
+    "hrf": _xt["hrf"].copy([Pad((0, 584, 0, 584)), Resize(960)]),
+    "iostar": _xt["iostar"].copy([Resize(960)]),
+}
diff --git a/bob/ip/binseg/configs/datasets/chasedb1/second_annotator.py b/bob/ip/binseg/configs/datasets/chasedb1/second_annotator.py
new file mode 100644
index 0000000000000000000000000000000000000000..87a98310bbbe2c6784a0d4d525d58a6126543e2c
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/chasedb1/second_annotator.py
@@ -0,0 +1,14 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""CHASE-DB1 dataset for Vessel Segmentation (second-annotator protocol)
+
+* Split reference: [CHASEDB1-2012]_
+* Configuration resolution: 960 x 960 (after hand-specified crop)
+* See :py:mod:`bob.ip.binseg.data.chasedb1` for dataset details
+* This dataset offers a second-annotator comparison (using "first-annotator")
+"""
+
+from bob.ip.binseg.configs.datasets.chasedb1 import _maker
+dataset = _maker("second-annotator")
+second_annotator = _maker("first-annotator")
diff --git a/bob/ip/binseg/configs/datasets/chasedb1/ssl.py b/bob/ip/binseg/configs/datasets/chasedb1/ssl.py
new file mode 100644
index 0000000000000000000000000000000000000000..8bd97ddad2e8a468ec78d20c99b79240deec4f11
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/chasedb1/ssl.py
@@ -0,0 +1,30 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""COVD-CHASE-DB1 + SSL for Vessel Segmentation
+
+* Configuration resolution: 960 x 960
+
+The dataset available in this file is composed of DRIVE, STARE, IOSTAR vessel
+and HRF (with annotated samples) and CHASE-DB1's "first-annotator" training set
+without labels, for training, and CHASE-DB1's "first-annotator" test set, for
+evaluation.
+
+For details on datasets, consult:
+
+* :py:mod:`bob.ip.binseg.data.stare`
+* :py:mod:`bob.ip.binseg.data.drive`
+* :py:mod:`bob.ip.binseg.data.chasedb1`
+* :py:mod:`bob.ip.binseg.data.iostar`
+* :py:mod:`bob.ip.binseg.data.hrf`
+"""
+
+from bob.ip.binseg.configs.datasets.chasedb1.covd import dataset as _covd
+from bob.ip.binseg.configs.datasets.chasedb1.first_annotator import (
+    dataset as _baseline,
+)
+from bob.ip.binseg.data.utils import SSLDataset
+
+# copy dictionary and replace only the augmented train dataset
+dataset = dict(**_covd)
+dataset["__train__"] = SSLDataset(_covd["__train__"], _baseline["__train__"])
diff --git a/bob/ip/binseg/configs/datasets/chasedb1/xtest.py b/bob/ip/binseg/configs/datasets/chasedb1/xtest.py
new file mode 100644
index 0000000000000000000000000000000000000000..cade7b85c1a4f600fd1edcc8558e326c6a4c8d10
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/chasedb1/xtest.py
@@ -0,0 +1,22 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""CHASE-DB1 cross-evaluation dataset
+"""
+
+from bob.ip.binseg.configs.datasets.drive.default import dataset as _drive
+from bob.ip.binseg.configs.datasets.stare.ah import dataset as _stare
+from bob.ip.binseg.configs.datasets.chasedb1.first_annotator import (
+    dataset as _chase,
+)
+from bob.ip.binseg.configs.datasets.hrf.default import dataset as _hrf
+from bob.ip.binseg.configs.datasets.iostar.vessel import dataset as _iostar
+
+dataset = {
+        "train": _chase["train"],
+        "test": _chase["test"],
+        "drive": _drive["test"],
+        "stare": _stare["test"],
+        "hrf": _hrf["test"],
+        "iostar": _iostar["test"],
+        }
diff --git a/bob/ip/binseg/configs/datasets/chasedb11024.py b/bob/ip/binseg/configs/datasets/chasedb11024.py
deleted file mode 100644
index 028f10fb443cd4f1c9c728203f13641cc67b95ad..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/chasedb11024.py
+++ /dev/null
@@ -1,24 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.chasedb1 import Database as CHASEDB1
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        RandomRotation()
-                        ,Crop(0,18,960,960)
-                        ,Resize(1024)
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = CHASEDB1(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/chasedb11168.py b/bob/ip/binseg/configs/datasets/chasedb11168.py
deleted file mode 100644
index d221ea4879c4e7378e0f9ad6bcce2cd5a77bf04c..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/chasedb11168.py
+++ /dev/null
@@ -1,24 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.chasedb1 import Database as CHASEDB1
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        RandomRotation()
-                        ,Crop(140,18,680,960)
-                        ,Resize(1168)
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = CHASEDB1(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/chasedb1544.py b/bob/ip/binseg/configs/datasets/chasedb1544.py
deleted file mode 100644
index 9632d53996d343deecd0e021fb2140153df9edc0..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/chasedb1544.py
+++ /dev/null
@@ -1,24 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.chasedb1 import Database as CHASEDB1
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Resize(544)
-                        ,Crop(0,12,544,544)
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = CHASEDB1(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/chasedb1608.py b/bob/ip/binseg/configs/datasets/chasedb1608.py
deleted file mode 100644
index 9a475cae5d7fb5be49a28ae6e479dd3fe41760ed..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/chasedb1608.py
+++ /dev/null
@@ -1,24 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.chasedb1 import Database as CHASEDB1
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        RandomRotation()
-                        ,CenterCrop((829,960))                    
-                        ,Resize(608)
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = CHASEDB1(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/chasedb1test.py b/bob/ip/binseg/configs/datasets/chasedb1test.py
deleted file mode 100644
index 4b267b0f022030d512197f89401f74e3373df3cb..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/chasedb1test.py
+++ /dev/null
@@ -1,19 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.chasedb1 import Database as CHASEDB1
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Crop(0,18,960,960)
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = CHASEDB1(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='test', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/csv.py b/bob/ip/binseg/configs/datasets/csv.py
new file mode 100644
index 0000000000000000000000000000000000000000..3b62ec89e4f373d811e674a5e471f79e24cd9ced
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/csv.py
@@ -0,0 +1,131 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""Example CSV-based custom filelist dataset
+
+In case you have your own dataset that is organized on your filesystem (or
+elsewhere), this configuration shows an example setup so you can feed such data
+(potentially including any ground-truth you may have) to train, predict or
+evaluate one of the available network models.
+
+You must write CSV based file (e.g. using comma as separator) that describes
+the data (and ground-truth) locations for each sample on your dataset.  So, for
+example, if you have a file structure like this:
+
+.. code-block:: text
+
+   ├── images
+       ├── image_1.png
+       ├── ...
+       └── image_n.png
+   └── ground-truth
+       ├── gt_1.png
+       ├── ...
+       └── gt_n.png
+
+Then create one or more files, each containing a subset of your dataset:
+
+.. code-block:: text
+
+   images/image_1.png,ground-truth/gt_1.png
+   ...,...
+   images/image_n.png,ground-truth/gt_n.png
+
+To create a subset without ground-truth (e.g., for prediction purposes), then
+omit the second column on the CSV file.
+
+Use the path leading to the CSV file and carefully read the comments in this
+configuration.  **Copy it locally to make changes**:
+
+.. code-block:: sh
+
+   $ bob binseg config copy csv-dataset-example mydataset.py
+   # edit mydataset.py as explained here, follow the comments
+
+Finally, the only object this file needs to provide is one named ``dataset``,
+and it should contain a dictionary mapping a name, such as ``train``, ``dev``,
+or ``test``, to objects of type :py:class:`torch.utils.data.Dataset`.  As you
+will see in this example, we provide boilerplate code to do so.
+
+More information:
+
+* :py:class:`bob.ip.binseg.data.dataset.CSVDataset` for operational details.
+* :py:class:`bob.ip.binseg.data.dataset.JSONDataset` for an alternative for
+  multi-protocol datasets (all of our supported raw datasets are implemented
+  using this)
+* :py:func:`bob.ip.binseg.configs.datasets.make_dataset` for extra
+  information on the sample list to pytorch connector.
+
+"""
+
+import os
+
+# First, define how to access and load the raw data. Our package provides some
+# stock loaders we use for other datasets. You may have a look at the
+# documentation of that module for details.
+from bob.ip.binseg.data.loader import (
+    load_pil_rgb,
+    load_pil_1,
+)
+
+from bob.ip.binseg.data.sample import Sample
+
+# How we use the loaders - "sample" is a dictionary where keys are defined
+# below and map to the columns of the CSV files you input.  This one is
+# configured to load images and labels using PIL.
+def _loader(context, sample):
+    # "context" is ignored in this case - database is homogeneous
+    # it is a dictionary that passes e.g., the name of the subset
+    # being loaded, so you can take contextual decisions on the loading
+
+    # Using the path leading to the various data files stored in disk allows
+    # the CSV file to contain only relative paths and is, therefore, more
+    # compact.  Of course, you can make those paths absolute and then simplify
+    # it here.
+    root_path = "/path/where/raw/files/sit"
+
+    data=load_pil_rgb(os.path.join(root_path, sample["data"]))
+    label=load_pil_1(os.path.join(root_path, sample["label"]))
+
+    # You may also return DelayedSample to avoid data loading to take place
+    # as the sample object itself is created.  Take a look at our own datasets
+    # for examples.
+    return Sample(
+            key=os.path.splitext(sample["data"])[0],
+            data=dict(data=data, label=label),
+            )
+
+
+# This is just a class that puts everything together: the CSV file, how to load
+# each sample defined in the dataset, and names for the various columns of the
+# CSV file.  Once created, this object can be called to generate sample lists.
+from bob.ip.binseg.data.dataset import CSVDataset
+
+_raw_dataset = CSVDataset(
+    # path to the CSV file(s) - you may add as many subsets as you want:
+    # * "__train__" is used for training a model (stock data augmentation is
+    #    applied via our "make_dataset()" connector)
+    # * anything else can be used for prediction and/or evaluation (if labels
+    #   are also provided in such a set).  Data augmentation is NOT applied
+    #   using our "make_dataset()" connector.
+    subsets={
+        "__train__": "<path/to/train.csv>",  #applies data augmentation
+        "train": "<path/to/train.csv>",  #no data augmentation, evaluate it
+        "test": "<path/to/test.csv>",  #no data augmentation, evaluate it
+        },
+    fieldnames=("data", "label"),  # these are the column names
+    loader=_loader,
+)
+
+# Finally, we build a connector to passes our dataset to the pytorch framework
+# so we can, for example, train and evaluate a pytorch model.  The connector
+# only converts the sample lists into a standard tuple (data[, label[, mask]])
+# that is expected by our engines, after applying the (optional)
+# transformations you define.
+
+# Add/tune your (optional) transforms below - these are just examples
+# compatible with a model that requires image inputs of 544 x 544 pixels.
+from bob.ip.binseg.data.transforms import CenterCrop
+from bob.ip.binseg.configs.datasets import make_dataset as _maker
+
+#dataset = _maker(_raw_dataset.subsets(), [CenterCrop((544, 544))])
diff --git a/bob/ip/binseg/configs/datasets/drionsdb.py b/bob/ip/binseg/configs/datasets/drionsdb.py
deleted file mode 100644
index cd33c1d246755f11c217d7cbf7fcdab35b2144e6..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/drionsdb.py
+++ /dev/null
@@ -1,23 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.drionsdb import Database as DRIONS
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Pad((4,8,4,8))
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = DRIONS(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/drionsdb/__init__.py b/bob/ip/binseg/configs/datasets/drionsdb/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..99c66bb8d094cc1d8276d428c845577a09ed3d01
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/drionsdb/__init__.py
@@ -0,0 +1,9 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+def _maker(protocol):
+
+    from ....data.transforms import Pad
+    from ....data.drionsdb import dataset as raw
+    from .. import make_dataset as mk
+    return mk(raw.subsets(protocol), [Pad((4, 8, 4, 8))])
diff --git a/bob/ip/binseg/configs/datasets/drionsdb/expert1.py b/bob/ip/binseg/configs/datasets/drionsdb/expert1.py
new file mode 100644
index 0000000000000000000000000000000000000000..29749dbc709444c7f4eab7e1fb027b5fecbdc5b3
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/drionsdb/expert1.py
@@ -0,0 +1,12 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""DRIONS-DB for Optic Disc Segmentation (expert #1 annotations)
+
+* Configuration resolution: 416 x 608 (after padding)
+* Split reference: [MANINIS-2016]_
+* See :py:mod:`bob.ip.binseg.data.drionsdb` for dataset details
+"""
+
+from bob.ip.binseg.configs.datasets.drionsdb import _maker
+dataset = _maker("expert1")
diff --git a/bob/ip/binseg/configs/datasets/drionsdb/expert2.py b/bob/ip/binseg/configs/datasets/drionsdb/expert2.py
new file mode 100644
index 0000000000000000000000000000000000000000..3e89970fd91341e5be273726024ce541edaae3a3
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/drionsdb/expert2.py
@@ -0,0 +1,12 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""DRIONS-DB for Optic Disc Segmentation (expert #2 annotations)
+
+* Configuration resolution: 416 x 608 (after padding)
+* Split reference: [MANINIS-2016]_
+* See :py:mod:`bob.ip.binseg.data.drionsdb` for dataset details
+"""
+
+from bob.ip.binseg.configs.datasets.drionsdb import _maker
+dataset = _maker("expert2")
diff --git a/bob/ip/binseg/configs/datasets/drionsdbtest.py b/bob/ip/binseg/configs/datasets/drionsdbtest.py
deleted file mode 100644
index b65100a6c21eaa0a48f2ff2c33e05e7a17c8825c..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/drionsdbtest.py
+++ /dev/null
@@ -1,19 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.drionsdb import Database as DRIONS
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Pad((4,8,4,8))
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = DRIONS(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='test', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/drishtigs1/__init__.py b/bob/ip/binseg/configs/datasets/drishtigs1/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..df8f16b9ddcb4cc6a505fcba1db1b322fbda6eed
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/drishtigs1/__init__.py
@@ -0,0 +1,9 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+def _maker(protocol):
+
+    from ....data.transforms import CenterCrop as ccrop
+    from ....data.drishtigs1 import dataset as raw
+    from .. import make_dataset as mk
+    return mk(raw.subsets(protocol), [ccrop((1760, 2048))])
diff --git a/bob/ip/binseg/configs/datasets/drishtigs1/cup_all.py b/bob/ip/binseg/configs/datasets/drishtigs1/cup_all.py
new file mode 100644
index 0000000000000000000000000000000000000000..3f648f825754cab99bbaaf4f3ba661bd0d92f07c
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/drishtigs1/cup_all.py
@@ -0,0 +1,12 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""DRISHTI-GS1 dataset for Cup Segmentation (agreed by all annotators)
+
+* Configuration resolution: 1760 x 2048 (after center cropping)
+* Reference (includes split): [DRISHTIGS1-2014]_
+* See :py:mod:`bob.ip.binseg.data.drishtigs1` for dataset details
+"""
+
+from bob.ip.binseg.configs.datasets.drishtigs1 import _maker
+dataset = _maker("optic-cup-all")
diff --git a/bob/ip/binseg/configs/datasets/drishtigs1/cup_any.py b/bob/ip/binseg/configs/datasets/drishtigs1/cup_any.py
new file mode 100644
index 0000000000000000000000000000000000000000..75471c20810b951a108f6abc58567d3fa5b5db70
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/drishtigs1/cup_any.py
@@ -0,0 +1,12 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""DRISHTI-GS1 dataset for Cup Segmentation (agreed by any annotator)
+
+* Configuration resolution: 1760 x 2048 (after center cropping)
+* Reference (includes split): [DRISHTIGS1-2014]_
+* See :py:mod:`bob.ip.binseg.data.drishtigs1` for dataset details
+"""
+
+from bob.ip.binseg.configs.datasets.drishtigs1 import _maker
+dataset = _maker("optic-cup-any")
diff --git a/bob/ip/binseg/configs/datasets/drishtigs1/disc_all.py b/bob/ip/binseg/configs/datasets/drishtigs1/disc_all.py
new file mode 100644
index 0000000000000000000000000000000000000000..fcbe21b1fa73b418bb559f001a02d1b4f4e31873
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/drishtigs1/disc_all.py
@@ -0,0 +1,12 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""DRISHTI-GS1 dataset for Optic Disc Segmentation (agreed by all annotators)
+
+* Configuration resolution: 1760 x 2048 (after center cropping)
+* Reference (includes split): [DRISHTIGS1-2014]_
+* See :py:mod:`bob.ip.binseg.data.drishtigs1` for dataset details
+"""
+
+from bob.ip.binseg.configs.datasets.drishtigs1 import _maker
+dataset = _maker("optic-disc-all")
diff --git a/bob/ip/binseg/configs/datasets/drishtigs1/disc_any.py b/bob/ip/binseg/configs/datasets/drishtigs1/disc_any.py
new file mode 100644
index 0000000000000000000000000000000000000000..51cd3d6ad308f6c8ada7f706728ed9c6dd8a616d
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/drishtigs1/disc_any.py
@@ -0,0 +1,12 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""DRISHTI-GS1 dataset for Optic Disc Segmentation (agreed by any annotator)
+
+* Configuration resolution: 1760 x 2048 (after center cropping)
+* Reference (includes split): [DRISHTIGS1-2014]_
+* See :py:mod:`bob.ip.binseg.data.drishtigs1` for dataset details
+"""
+
+from bob.ip.binseg.configs.datasets.drishtigs1 import _maker
+dataset = _maker("optic-disc-any")
diff --git a/bob/ip/binseg/configs/datasets/dristhigs1cup.py b/bob/ip/binseg/configs/datasets/dristhigs1cup.py
deleted file mode 100644
index f7a69dadcb4010198025e7d4d44fac8aa1b06918..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/dristhigs1cup.py
+++ /dev/null
@@ -1,23 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.drishtigs1 import Database as DRISHTI
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        CenterCrop((1760,2048))
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = DRISHTI(protocol = 'default_cup')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/dristhigs1cuptest.py b/bob/ip/binseg/configs/datasets/dristhigs1cuptest.py
deleted file mode 100644
index 5c2b634e1ba402ed8af801ad7203d6585ecb6b96..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/dristhigs1cuptest.py
+++ /dev/null
@@ -1,18 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-from bob.db.drishtigs1 import Database as DRISHTI
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        CenterCrop((1760,2048))
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = DRISHTI(protocol = 'default_cup')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='test', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/dristhigs1od.py b/bob/ip/binseg/configs/datasets/dristhigs1od.py
deleted file mode 100644
index 0bd483c1a03b00e15bd90a32b8ec369b766605ae..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/dristhigs1od.py
+++ /dev/null
@@ -1,23 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.drishtigs1 import Database as DRISHTI
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        CenterCrop((1760,2048))
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = DRISHTI(protocol = 'default_od')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/dristhigs1odtest.py b/bob/ip/binseg/configs/datasets/dristhigs1odtest.py
deleted file mode 100644
index ab1edd6546dac52dd235369b0126e973e2b8611a..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/dristhigs1odtest.py
+++ /dev/null
@@ -1,19 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.drishtigs1 import Database as DRISHTI
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        CenterCrop((1760,2048))
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = DRISHTI(protocol = 'default_od')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='test', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/drive.py b/bob/ip/binseg/configs/datasets/drive.py
deleted file mode 100644
index 5b6fa356b6f944f6e7e29e1f44b3dda3ec80d9a8..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/drive.py
+++ /dev/null
@@ -1,23 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.drive import Database as DRIVE
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        CenterCrop((544,544))
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = DRIVE(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/drive/__init__.py b/bob/ip/binseg/configs/datasets/drive/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..fa407a8065cbc39a93d7f0c0490fe83581871d36
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/drive/__init__.py
@@ -0,0 +1,9 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+def _maker(protocol):
+
+    from ....data.transforms import CenterCrop as ccrop
+    from ....data.drive import dataset as raw
+    from .. import make_dataset as mk
+    return mk(raw.subsets(protocol), [ccrop((544, 544))])
diff --git a/bob/ip/binseg/configs/datasets/drive/covd.py b/bob/ip/binseg/configs/datasets/drive/covd.py
new file mode 100644
index 0000000000000000000000000000000000000000..494ca9a9960d82fb3508d6a31238ef7810b58e60
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/drive/covd.py
@@ -0,0 +1,52 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""COVD-DRIVE for Vessel Segmentation
+
+* Configuration resolution: 544 x 544
+
+The dataset available in this file is composed of STARE, CHASE-DB1, IOSTAR
+vessel and HRF (with annotated samples).
+
+For details on those datasets, consult:
+
+* See :py:mod:`bob.ip.binseg.data.stare`
+* See :py:mod:`bob.ip.binseg.data.chasedb1`
+* See :py:mod:`bob.ip.binseg.data.iostar`
+* See :py:mod:`bob.ip.binseg.data.hrf`
+"""
+
+from bob.ip.binseg.data.transforms import Resize, Pad, Crop
+from bob.ip.binseg.configs.datasets import make_trainset as _maker
+
+from bob.ip.binseg.data.stare import dataset as _raw_stare
+
+_stare = _maker(
+    _raw_stare.subsets("ah")["train"],
+    [Resize(471), Pad((0, 37, 0, 36))],
+    rotation_before=True,
+)
+
+from bob.ip.binseg.data.chasedb1 import dataset as _raw_chase
+
+_chase = _maker(
+    _raw_chase.subsets("first-annotator")["train"],
+    [Resize(544), Crop(0, 12, 544, 544)],
+)
+
+from bob.ip.binseg.data.iostar import dataset as _raw_iostar
+
+_iostar = _maker(_raw_iostar.subsets("vessel")["train"], [Resize(544)],)
+
+from bob.ip.binseg.data.hrf import dataset as _raw_hrf
+
+_hrf = _maker(
+    _raw_hrf.subsets("default")["train"], [Resize((363)), Pad((0, 90, 0, 91))],
+)
+
+from torch.utils.data import ConcatDataset
+from bob.ip.binseg.configs.datasets.drive.default import dataset as _baseline
+
+# copy dictionary and replace only the augmented train dataset
+dataset = dict(**_baseline)
+dataset["__train__"] = ConcatDataset([_stare, _chase, _iostar, _hrf])
diff --git a/bob/ip/binseg/configs/datasets/drive/default.py b/bob/ip/binseg/configs/datasets/drive/default.py
new file mode 100644
index 0000000000000000000000000000000000000000..2331734969206068bdfb32926c495662cb5d08e7
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/drive/default.py
@@ -0,0 +1,14 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""DRIVE dataset for Vessel Segmentation (default protocol)
+
+* Split reference: [DRIVE-2004]_
+* This configuration resolution: 544 x 544 (center-crop)
+* See :py:mod:`bob.ip.binseg.data.drive` for dataset details
+* This dataset offers a second-annotator comparison for the test set only
+"""
+
+from bob.ip.binseg.configs.datasets.drive import _maker
+dataset = _maker("default")
+second_annotator = _maker("second-annotator")
diff --git a/bob/ip/binseg/configs/datasets/drive/mtest.py b/bob/ip/binseg/configs/datasets/drive/mtest.py
new file mode 100644
index 0000000000000000000000000000000000000000..201e7b898cf87bda98640f3081e659450226331c
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/drive/mtest.py
@@ -0,0 +1,19 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""DRIVE cross-evaluation dataset with matched resolution
+
+* Configuration resolution: 544 x 544
+"""
+
+from bob.ip.binseg.data.transforms import Resize, Pad, Crop
+from bob.ip.binseg.configs.datasets.drive.xtest import dataset as _xt
+
+dataset = {
+        "train": _xt["train"],
+        "test": _xt["test"],
+        "stare": _xt["stare"].copy([Resize(471), Pad((0, 37, 0, 36))]),
+        "chasedb1": _xt["chasedb1"].copy([Resize(544), Crop(0, 12, 544, 544)]),
+        "hrf": _xt["hrf"].copy([Resize((363)), Pad((0, 90, 0, 91))]),
+        "iostar": _xt["iostar"].copy([Resize(544)]),
+        }
diff --git a/bob/ip/binseg/configs/datasets/drive/second_annotator.py b/bob/ip/binseg/configs/datasets/drive/second_annotator.py
new file mode 100644
index 0000000000000000000000000000000000000000..5637bbc1005846683ed9848baf6654def0f86d5d
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/drive/second_annotator.py
@@ -0,0 +1,13 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""DRIVE dataset for Vessel Segmentation (second annotation: test only)
+
+* Split reference: [DRIVE-2004]_
+* This configuration resolution: 544 x 544 (center-crop)
+* See :py:mod:`bob.ip.binseg.data.drive` for dataset details
+* There are **NO training samples** on this configuration
+"""
+
+from bob.ip.binseg.configs.datasets.drive import _maker
+dataset = _maker("second-annotator")
diff --git a/bob/ip/binseg/configs/datasets/drive/ssl.py b/bob/ip/binseg/configs/datasets/drive/ssl.py
new file mode 100644
index 0000000000000000000000000000000000000000..23af544342f1a48a8e83f87d9041d638f58ed6cf
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/drive/ssl.py
@@ -0,0 +1,27 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""COVD-DRIVE + SSL for Vessel Segmentation
+
+* Configuration resolution: 544 x 544
+
+The dataset available in this file is composed of STARE, CHASE-DB1, IOSTAR
+vessel and HRF (with annotated samples) and DRIVE "default" training set
+without labels, for training, and DRIVE's "default" test set, for evaluation.
+
+For details on datasets, consult:
+
+* :py:mod:`bob.ip.binseg.data.stare`
+* :py:mod:`bob.ip.binseg.data.drive`
+* :py:mod:`bob.ip.binseg.data.chasedb1`
+* :py:mod:`bob.ip.binseg.data.iostar`
+* :py:mod:`bob.ip.binseg.data.hrf`
+"""
+
+from bob.ip.binseg.configs.datasets.drive.covd import dataset as _covd
+from bob.ip.binseg.configs.datasets.drive.default import dataset as _baseline
+from bob.ip.binseg.data.utils import SSLDataset
+
+# copy dictionary and replace only the augmented train dataset
+dataset = dict(**_covd)
+dataset["__train__"] = SSLDataset(_covd["__train__"], _baseline["__train__"])
diff --git a/bob/ip/binseg/configs/datasets/drive/xtest.py b/bob/ip/binseg/configs/datasets/drive/xtest.py
new file mode 100644
index 0000000000000000000000000000000000000000..188606b2ce50482feed9624bd40cc625ac8c38b2
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/drive/xtest.py
@@ -0,0 +1,22 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""DRIVE cross-evaluation dataset
+"""
+
+from bob.ip.binseg.configs.datasets.drive.default import dataset as _drive
+from bob.ip.binseg.configs.datasets.stare.ah import dataset as _stare
+from bob.ip.binseg.configs.datasets.chasedb1.first_annotator import (
+    dataset as _chase,
+)
+from bob.ip.binseg.configs.datasets.hrf.default import dataset as _hrf
+from bob.ip.binseg.configs.datasets.iostar.vessel import dataset as _iostar
+
+dataset = {
+        "train": _drive["train"],
+        "test": _drive["test"],
+        "stare": _stare["test"],
+        "chasedb1": _chase["test"],
+        "hrf": _hrf["test"],
+        "iostar": _iostar["test"],
+        }
diff --git a/bob/ip/binseg/configs/datasets/drive1024.py b/bob/ip/binseg/configs/datasets/drive1024.py
deleted file mode 100644
index dae199f50dc59c194a5ada24ff8e99f9aa4fd642..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/drive1024.py
+++ /dev/null
@@ -1,24 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.drive import Database as DRIVE
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        RandomRotation()
-                        ,CenterCrop((540,540))
-                        ,Resize(1024)
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = DRIVE(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/drive1024test.py b/bob/ip/binseg/configs/datasets/drive1024test.py
deleted file mode 100644
index 9e9cb3e935a63ddb45bb0bba85c56c173de6912d..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/drive1024test.py
+++ /dev/null
@@ -1,20 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.drive import Database as DRIVE
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        CenterCrop((540,540))
-                        ,Resize(1024)
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = DRIVE(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='test', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/drive1168.py b/bob/ip/binseg/configs/datasets/drive1168.py
deleted file mode 100644
index 3f0f0537e1ba67d7beb3d77af492ba8f9fc539a2..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/drive1168.py
+++ /dev/null
@@ -1,25 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.drive import Database as DRIVE
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        RandomRotation()
-                        ,Crop(75,10,416,544)
-                        ,Pad((21,0,22,0))
-                        ,Resize(1168)
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = DRIVE(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/drive608.py b/bob/ip/binseg/configs/datasets/drive608.py
deleted file mode 100644
index 65bc5e6521dcdd3bbbf66ea77a741c6270dcdd58..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/drive608.py
+++ /dev/null
@@ -1,25 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.drive import Database as DRIVE
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        RandomRotation()
-                        ,CenterCrop((470,544))
-                        ,Pad((10,9,10,8))
-                        ,Resize(608)
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = DRIVE(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/drive960.py b/bob/ip/binseg/configs/datasets/drive960.py
deleted file mode 100644
index ab3ac5a9d03916dce4bbb162f51455a5bb05bcba..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/drive960.py
+++ /dev/null
@@ -1,24 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.drive import Database as DRIVE
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        RandomRotation()
-                        ,CenterCrop((544,544))
-                        ,Resize(960)
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = DRIVE(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/drivechasedb1iostarhrf608.py b/bob/ip/binseg/configs/datasets/drivechasedb1iostarhrf608.py
deleted file mode 100644
index 5ab57b8ad4e34d700e4667138b6111f19b4a488a..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/drivechasedb1iostarhrf608.py
+++ /dev/null
@@ -1,10 +0,0 @@
-from bob.ip.binseg.configs.datasets.drive608 import dataset as drive
-from bob.ip.binseg.configs.datasets.chasedb1608 import dataset as chase
-from bob.ip.binseg.configs.datasets.iostarvessel608 import dataset as iostar
-from bob.ip.binseg.configs.datasets.hrf608 import dataset as hrf
-import torch
-
-#### Config ####
-
-# PyTorch dataset
-dataset = torch.utils.data.ConcatDataset([drive,chase,iostar,hrf])
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/drivechasedb1iostarhrf608sslstare.py b/bob/ip/binseg/configs/datasets/drivechasedb1iostarhrf608sslstare.py
deleted file mode 100644
index 928452f4209d4526e66028457a3ababcd04fda8b..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/drivechasedb1iostarhrf608sslstare.py
+++ /dev/null
@@ -1,34 +0,0 @@
-from bob.ip.binseg.configs.datasets.drive608 import dataset as drive
-from bob.ip.binseg.configs.datasets.chasedb1608 import dataset as chase
-from bob.ip.binseg.configs.datasets.iostarvessel608 import dataset as iostar
-from bob.ip.binseg.configs.datasets.hrf608 import dataset as hrf
-from bob.db.stare import Database as STARE
-from bob.ip.binseg.data.transforms import *
-import torch
-from bob.ip.binseg.data.binsegdataset import BinSegDataset, SSLBinSegDataset, UnLabeledBinSegDataset
-
-
-#### Config ####
-
-# PyTorch dataset
-labeled_dataset = torch.utils.data.ConcatDataset([drive,chase,iostar,hrf])
-
-#### Unlabeled STARE TRAIN ####
-unlabeled_transforms = Compose([  
-                        Pad((2,1,2,2))
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-starebobdb = STARE(protocol = 'default')
-
-# PyTorch dataset
-unlabeled_dataset = UnLabeledBinSegDataset(starebobdb, split='train', transform=unlabeled_transforms)
-
-# SSL Dataset
-
-dataset = SSLBinSegDataset(labeled_dataset, unlabeled_dataset)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/drivestarechasedb11168.py b/bob/ip/binseg/configs/datasets/drivestarechasedb11168.py
deleted file mode 100644
index 0e36eff7195de38bd2122a0bb75942a210fba1db..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/drivestarechasedb11168.py
+++ /dev/null
@@ -1,9 +0,0 @@
-from bob.ip.binseg.configs.datasets.drive1168 import dataset as drive
-from bob.ip.binseg.configs.datasets.stare1168 import dataset as stare
-from bob.ip.binseg.configs.datasets.chasedb11168 import dataset as chase
-import torch
-
-#### Config ####
-
-# PyTorch dataset
-dataset = torch.utils.data.ConcatDataset([drive,stare,chase])
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/drivestarechasedb1hrf1024.py b/bob/ip/binseg/configs/datasets/drivestarechasedb1hrf1024.py
deleted file mode 100644
index 74628abe77801ef572cd3ad2ff379e9af9287506..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/drivestarechasedb1hrf1024.py
+++ /dev/null
@@ -1,10 +0,0 @@
-from bob.ip.binseg.configs.datasets.drive1024 import dataset as drive
-from bob.ip.binseg.configs.datasets.stare1024 import dataset as stare
-from bob.ip.binseg.configs.datasets.hrf1024 import dataset as hrf
-from bob.ip.binseg.configs.datasets.chasedb11024 import dataset as chase
-import torch
-
-#### Config ####
-
-# PyTorch dataset
-dataset = torch.utils.data.ConcatDataset([drive,stare,hrf,chase])
diff --git a/bob/ip/binseg/configs/datasets/drivestarechasedb1hrf1024ssliostar.py b/bob/ip/binseg/configs/datasets/drivestarechasedb1hrf1024ssliostar.py
deleted file mode 100644
index dd9016b7c076b08cc99e875d4f5cc9dcdd3babd0..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/drivestarechasedb1hrf1024ssliostar.py
+++ /dev/null
@@ -1,33 +0,0 @@
-from bob.ip.binseg.configs.datasets.drive1024 import dataset as drive
-from bob.ip.binseg.configs.datasets.stare1024 import dataset as stare
-from bob.ip.binseg.configs.datasets.hrf1024 import dataset as hrf
-from bob.ip.binseg.configs.datasets.chasedb11024 import dataset as chasedb
-from bob.db.iostar import Database as IOSTAR
-from bob.ip.binseg.data.transforms import *
-import torch
-from bob.ip.binseg.data.binsegdataset import BinSegDataset, SSLBinSegDataset, UnLabeledBinSegDataset
-
-
-#### Config ####
-
-# PyTorch dataset
-labeled_dataset = torch.utils.data.ConcatDataset([drive,stare,hrf,chasedb])
-
-#### Unlabeled IOSTAR Train ####
-unlabeled_transforms = Compose([  
-                        RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-iostarbobdb = IOSTAR(protocol='default_vessel')
-
-# PyTorch dataset
-unlabeled_dataset = UnLabeledBinSegDataset(iostarbobdb, split='train', transform=unlabeled_transforms)
-
-# SSL Dataset
-
-dataset = SSLBinSegDataset(labeled_dataset, unlabeled_dataset)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/drivestarechasedb1iostar1168.py b/bob/ip/binseg/configs/datasets/drivestarechasedb1iostar1168.py
deleted file mode 100644
index 62e2972d3526fd5ff138a5ea99f0855849beda12..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/drivestarechasedb1iostar1168.py
+++ /dev/null
@@ -1,10 +0,0 @@
-from bob.ip.binseg.configs.datasets.drive1168 import dataset as drive
-from bob.ip.binseg.configs.datasets.stare1168 import dataset as stare
-from bob.ip.binseg.configs.datasets.chasedb11168 import dataset as chase
-from bob.ip.binseg.configs.datasets.iostarvessel1168 import dataset as iostar
-import torch
-
-#### Config ####
-
-# PyTorch dataset
-dataset = torch.utils.data.ConcatDataset([drive,stare,chase,iostar])
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/drivestarechasedb1iostar1168sslhrf.py b/bob/ip/binseg/configs/datasets/drivestarechasedb1iostar1168sslhrf.py
deleted file mode 100644
index 01705e15d8752b628ed6b150cf095db08ca4eed6..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/drivestarechasedb1iostar1168sslhrf.py
+++ /dev/null
@@ -1,35 +0,0 @@
-from bob.ip.binseg.configs.datasets.drive1168 import dataset as drive
-from bob.ip.binseg.configs.datasets.stare1168 import dataset as stare
-from bob.ip.binseg.configs.datasets.chasedb11168 import dataset as chasedb
-from bob.ip.binseg.configs.datasets.iostarvessel1168 import dataset as iostar
-from bob.db.hrf import Database as HRF
-from bob.ip.binseg.data.transforms import *
-import torch
-from bob.ip.binseg.data.binsegdataset import BinSegDataset, SSLBinSegDataset, UnLabeledBinSegDataset
-
-
-#### Config ####
-
-# PyTorch dataset
-labeled_dataset = torch.utils.data.ConcatDataset([drive,stare,iostar,chasedb])
-
-#### Unlabeled HRF TRAIN ####
-unlabeled_transforms = Compose([  
-                        RandomRotation()
-                        ,Crop(0,108,2336,3296)
-                        ,Resize((1168))
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-hrfbobdb = HRF(protocol='default')
-
-# PyTorch dataset
-unlabeled_dataset = UnLabeledBinSegDataset(hrfbobdb, split='train', transform=unlabeled_transforms)
-
-# SSL Dataset
-
-dataset = SSLBinSegDataset(labeled_dataset, unlabeled_dataset)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/drivestareiostarhrf960.py b/bob/ip/binseg/configs/datasets/drivestareiostarhrf960.py
deleted file mode 100644
index 9343cf22c62a0cf9ad02d767b24ca576b00fd4d1..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/drivestareiostarhrf960.py
+++ /dev/null
@@ -1,10 +0,0 @@
-from bob.ip.binseg.configs.datasets.drive960 import dataset as drive
-from bob.ip.binseg.configs.datasets.stare960 import dataset as stare
-from bob.ip.binseg.configs.datasets.hrf960 import dataset as hrf
-from bob.ip.binseg.configs.datasets.iostarvessel960 import dataset as iostar
-import torch
-
-#### Config ####
-
-# PyTorch dataset
-dataset = torch.utils.data.ConcatDataset([drive,stare,hrf,iostar])
diff --git a/bob/ip/binseg/configs/datasets/drivestareiostarhrf960sslchase.py b/bob/ip/binseg/configs/datasets/drivestareiostarhrf960sslchase.py
deleted file mode 100644
index a7bd4576766259e83ec633bfac15b4dc46f0da9d..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/drivestareiostarhrf960sslchase.py
+++ /dev/null
@@ -1,35 +0,0 @@
-from bob.ip.binseg.configs.datasets.drive960 import dataset as drive
-from bob.ip.binseg.configs.datasets.stare960 import dataset as stare
-from bob.ip.binseg.configs.datasets.hrf960 import dataset as hrf
-from bob.ip.binseg.configs.datasets.iostarvessel960 import dataset as iostar
-from bob.db.chasedb1 import Database as CHASE
-from bob.db.hrf import Database as HRF
-from bob.ip.binseg.data.transforms import *
-import torch
-from bob.ip.binseg.data.binsegdataset import BinSegDataset, SSLBinSegDataset, UnLabeledBinSegDataset
-
-
-#### Config ####
-
-# PyTorch dataset
-labeled_dataset = torch.utils.data.ConcatDataset([drive,stare,hrf,iostar])
-
-#### Unlabeled CHASE TRAIN ####
-unlabeled_transforms = Compose([  
-                        Crop(0,18,960,960)
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-chasebobdb = CHASE(protocol = 'default')
-
-# PyTorch dataset
-unlabeled_dataset = UnLabeledBinSegDataset(chasebobdb, split='train', transform=unlabeled_transforms)
-
-# SSL Dataset
-
-dataset = SSLBinSegDataset(labeled_dataset, unlabeled_dataset)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/drivetest.py b/bob/ip/binseg/configs/datasets/drivetest.py
deleted file mode 100644
index 230598dce92a39276e05dd4b4f842643428546b4..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/drivetest.py
+++ /dev/null
@@ -1,19 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.drive import Database as DRIVE
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        CenterCrop((544,544))
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = DRIVE(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='test', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/hrf.py b/bob/ip/binseg/configs/datasets/hrf.py
deleted file mode 100644
index cb008f7da1736ef66085ddfb4de0335695c28779..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/hrf.py
+++ /dev/null
@@ -1,23 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.hrf import Database as HRF
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Crop(0,108,2336,3296)
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = HRF(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/hrf/__init__.py b/bob/ip/binseg/configs/datasets/hrf/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..b3efe1b8d85cb357fc5abb5dfb4ce0e4498e54b5
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/hrf/__init__.py
@@ -0,0 +1,16 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+def _maker_1168(protocol):
+
+    from ....data.transforms import Crop, Resize
+    from ....data.hrf import dataset as raw
+    from .. import make_dataset as mk
+    return mk(raw.subsets(protocol), [Crop(0, 108, 2336, 3296), Resize(1168)])
+
+def _maker(protocol):
+
+    from ....data.transforms import Crop
+    from ....data.hrf import dataset as raw
+    from .. import make_dataset as mk
+    return mk(raw.subsets(protocol), [Crop(0, 108, 2336, 3296)])
diff --git a/bob/ip/binseg/configs/datasets/hrf/covd.py b/bob/ip/binseg/configs/datasets/hrf/covd.py
new file mode 100644
index 0000000000000000000000000000000000000000..792a005b6c08fee3b0dbab1cea07e1379c7cf056
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/hrf/covd.py
@@ -0,0 +1,59 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""COVD-HRF for Vessel Segmentation
+
+* Configuration resolution: 1168 x 1648
+
+The dataset available in this file is composed of DRIVE STARE, CHASE-DB1, and
+IOSTAR vessel (with annotated samples).
+
+For details on those datasets, consult:
+
+* See :py:mod:`bob.ip.binseg.data.drive`
+* See :py:mod:`bob.ip.binseg.data.stare`
+* See :py:mod:`bob.ip.binseg.data.chasedb1`
+* See :py:mod:`bob.ip.binseg.data.iostar`
+"""
+
+from bob.ip.binseg.data.transforms import Crop, Pad, Resize
+from bob.ip.binseg.configs.datasets import make_trainset as _maker
+
+from bob.ip.binseg.data.drive import dataset as _raw_drive
+
+_drive = _maker(
+    _raw_drive.subsets("default")["train"],
+    [Crop(75, 10, 416, 544), Pad((21, 0, 22, 0)), Resize(1168)],
+    rotation_before=True,
+)
+
+from bob.ip.binseg.data.stare import dataset as _raw_stare
+
+_stare = _maker(
+    _raw_stare.subsets("ah")["train"],
+    [Crop(50, 0, 500, 705), Resize(1168), Pad((1, 0, 1, 0))],
+    rotation_before=True,
+)
+
+from bob.ip.binseg.data.chasedb1 import dataset as _raw_chase
+
+_chase = _maker(
+    _raw_chase.subsets("first-annotator")["train"],
+    [Crop(140, 18, 680, 960), Resize(1168)],
+    rotation_before=True,
+)
+
+from bob.ip.binseg.data.iostar import dataset as _raw_iostar
+
+_iostar = _maker(
+    _raw_iostar.subsets("vessel")["train"],
+    [Crop(144, 0, 768, 1024), Pad((30, 0, 30, 0)), Resize(1168)],
+    rotation_before=True,
+)
+
+from torch.utils.data import ConcatDataset
+from bob.ip.binseg.configs.datasets.hrf.default import dataset as _baseline
+
+# copy dictionary and replace only the augmented train dataset
+dataset = dict(**_baseline)
+dataset["__train__"] = ConcatDataset([_drive, _stare, _chase, _iostar])
diff --git a/bob/ip/binseg/configs/datasets/hrf/default.py b/bob/ip/binseg/configs/datasets/hrf/default.py
new file mode 100644
index 0000000000000000000000000000000000000000..9089e7451039644337df43e7261204d9cd79acf5
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/hrf/default.py
@@ -0,0 +1,12 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""HRF dataset for Vessel Segmentation (default protocol)
+
+* Split reference: [ORLANDO-2017]_
+* Configuration resolution: 1168 x 1648 (about half full HRF resolution)
+* See :py:mod:`bob.ip.binseg.data.hrf` for dataset details
+"""
+
+from bob.ip.binseg.configs.datasets.hrf import _maker_1168
+dataset = _maker_1168("default")
diff --git a/bob/ip/binseg/configs/datasets/hrf/default_fullres.py b/bob/ip/binseg/configs/datasets/hrf/default_fullres.py
new file mode 100644
index 0000000000000000000000000000000000000000..8d482510300b47068982def03e916d8fb1f6356f
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/hrf/default_fullres.py
@@ -0,0 +1,12 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""HRF dataset for Vessel Segmentation (default protocol)
+
+* Split reference: [ORLANDO-2017]_
+* Configuration resolution: 2336 x 3296 (full dataset resolution)
+* See :py:mod:`bob.ip.binseg.data.hrf` for dataset details
+"""
+
+from bob.ip.binseg.configs.datasets.hrf import _maker
+dataset = _maker("default")
diff --git a/bob/ip/binseg/configs/datasets/hrf/mtest.py b/bob/ip/binseg/configs/datasets/hrf/mtest.py
new file mode 100644
index 0000000000000000000000000000000000000000..b5f8f646f4000ddcd89405e379899f45ec5c56b8
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/hrf/mtest.py
@@ -0,0 +1,25 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""HRF cross-evaluation dataset with matched resolution
+
+* Configuration resolution: 1168 x 1648
+"""
+
+from bob.ip.binseg.data.transforms import Crop, Pad, Resize
+from bob.ip.binseg.configs.datasets.hrf.xtest import dataset as _xt
+
+dataset = {
+    "train": _xt["train"],
+    "test": _xt["test"],
+    "drive": _xt["drive"].copy(
+        [Crop(75, 10, 416, 544), Pad((21, 0, 22, 0)), Resize(1168)]
+    ),
+    "stare": _xt["stare"].copy(
+        [Crop(50, 0, 500, 705), Resize(1168), Pad((1, 0, 1, 0))]
+    ),
+    "chasedb1": _xt["chasedb1"].copy([Crop(140, 18, 680, 960), Resize(1168)]),
+    "iostar": _xt["iostar"].copy(
+        [Crop(144, 0, 768, 1024), Pad((30, 0, 30, 0)), Resize(1168)]
+    ),
+}
diff --git a/bob/ip/binseg/configs/datasets/hrf/ssl.py b/bob/ip/binseg/configs/datasets/hrf/ssl.py
new file mode 100644
index 0000000000000000000000000000000000000000..7f6f369e2510bb39acee083c2caa3ffa74855fa6
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/hrf/ssl.py
@@ -0,0 +1,27 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""COVD-HRF + SSL for Vessel Segmentation
+
+* Configuration resolution: 1168 x 1648
+
+The dataset available in this file is composed of DRIVE STARE, CHASE-DB1, and
+IOSTAR vessel (with annotated samples), and HRF "default" training set, without
+labels, for training, and HRF's "default" test set, for evaluation.
+
+For details on datasets, consult:
+
+* :py:mod:`bob.ip.binseg.data.stare`
+* :py:mod:`bob.ip.binseg.data.drive`
+* :py:mod:`bob.ip.binseg.data.chasedb1`
+* :py:mod:`bob.ip.binseg.data.iostar`
+* :py:mod:`bob.ip.binseg.data.hrf`
+"""
+
+from bob.ip.binseg.configs.datasets.hrf.covd import dataset as _covd
+from bob.ip.binseg.configs.datasets.hrf.default import dataset as _baseline
+from bob.ip.binseg.data.utils import SSLDataset
+
+# copy dictionary and replace only the augmented train dataset
+dataset = dict(**_covd)
+dataset["__train__"] = SSLDataset(_covd["__train__"], _baseline["__train__"])
diff --git a/bob/ip/binseg/configs/datasets/hrf/xtest.py b/bob/ip/binseg/configs/datasets/hrf/xtest.py
new file mode 100644
index 0000000000000000000000000000000000000000..6f96074fb9709f38d4ce89296e242e065520676f
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/hrf/xtest.py
@@ -0,0 +1,22 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""HRF cross-evaluation dataset
+"""
+
+from bob.ip.binseg.configs.datasets.drive.default import dataset as _drive
+from bob.ip.binseg.configs.datasets.stare.ah import dataset as _stare
+from bob.ip.binseg.configs.datasets.chasedb1.first_annotator import (
+    dataset as _chase,
+)
+from bob.ip.binseg.configs.datasets.hrf.default import dataset as _hrf
+from bob.ip.binseg.configs.datasets.iostar.vessel import dataset as _iostar
+
+dataset = {
+        "train": _hrf["train"],
+        "test": _hrf["test"],
+        "drive": _drive["test"],
+        "stare": _stare["test"],
+        "chasedb1": _chase["test"],
+        "iostar": _iostar["test"],
+        }
diff --git a/bob/ip/binseg/configs/datasets/hrf1024.py b/bob/ip/binseg/configs/datasets/hrf1024.py
deleted file mode 100644
index 48168445f5689b95a1f55ffda0633d2acdbb619a..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/hrf1024.py
+++ /dev/null
@@ -1,24 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.hrf import Database as HRF
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Pad((0,584,0,584))                    
-                        ,Resize((1024))
-                        ,RandomRotation()
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = HRF(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
diff --git a/bob/ip/binseg/configs/datasets/hrf1168.py b/bob/ip/binseg/configs/datasets/hrf1168.py
deleted file mode 100644
index 4d0c4d9eb3097a3c918a24bd2621bb3284f41215..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/hrf1168.py
+++ /dev/null
@@ -1,24 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.hrf import Database as HRF
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Crop(0,108,2336,3296)
-                        ,Resize((1168))
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = HRF(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/hrf1168test.py b/bob/ip/binseg/configs/datasets/hrf1168test.py
deleted file mode 100644
index 86014b75bd7ea428a5f48f85776189d6eeccb619..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/hrf1168test.py
+++ /dev/null
@@ -1,20 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.hrf import Database as HRF
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Crop(0,108,2336,3296)
-                        ,Resize((1168))
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = HRF(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='test', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/hrf544.py b/bob/ip/binseg/configs/datasets/hrf544.py
deleted file mode 100644
index 0e2cc05152aa20e4c75ffcb464cd8fd90f89e7bd..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/hrf544.py
+++ /dev/null
@@ -1,24 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.hrf import Database as HRF
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Resize((363))
-                        ,Pad((0,90,0,91))
-                        ,RandomRotation()
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = HRF(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
diff --git a/bob/ip/binseg/configs/datasets/hrf544test.py b/bob/ip/binseg/configs/datasets/hrf544test.py
deleted file mode 100644
index 86da428b8f6bd0220d0b311b53ddcba098177a70..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/hrf544test.py
+++ /dev/null
@@ -1,20 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.hrf import Database as HRF
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Resize((363))
-                        ,Pad((0,90,0,91))
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = HRF(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='test', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/hrf608.py b/bob/ip/binseg/configs/datasets/hrf608.py
deleted file mode 100644
index b26e772a0793d043af6e59f18caab5943805d929..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/hrf608.py
+++ /dev/null
@@ -1,24 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.hrf import Database as HRF
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Pad((0,345,0,345))
-                        ,Resize(608)
-                        ,RandomRotation()
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = HRF(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
diff --git a/bob/ip/binseg/configs/datasets/hrf960.py b/bob/ip/binseg/configs/datasets/hrf960.py
deleted file mode 100644
index dd43cf00b68e8a66e8e0ec362ec519bf3488358e..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/hrf960.py
+++ /dev/null
@@ -1,24 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.hrf import Database as HRF
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Pad((0,584,0,584))                    
-                        ,Resize((960))
-                        ,RandomRotation()
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = HRF(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
diff --git a/bob/ip/binseg/configs/datasets/hrftest.py b/bob/ip/binseg/configs/datasets/hrftest.py
deleted file mode 100644
index 45f952728f8e5ff4e335c8ea6a6d79762c166b8e..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/hrftest.py
+++ /dev/null
@@ -1,19 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.hrf import Database as HRF
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Crop(0,108,2336,3296)
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = HRF(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='test', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/imagefolder.py b/bob/ip/binseg/configs/datasets/imagefolder.py
deleted file mode 100644
index efcf2879a27973e01badf328a71efa265c9fa7f7..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/imagefolder.py
+++ /dev/null
@@ -1,21 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.imagefolder import ImageFolder
-
-#### Config ####
-
-# add your transforms below
-transforms = Compose([  
-                        CenterCrop((544,544))
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# PyTorch dataset
-path = '/path/to/dataset'
-dataset = ImageFolder(path,transform=transforms)
diff --git a/bob/ip/binseg/configs/datasets/imagefolderinference.py b/bob/ip/binseg/configs/datasets/imagefolderinference.py
deleted file mode 100644
index 634566b9c0f8c899474494651044f138e610f724..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/imagefolderinference.py
+++ /dev/null
@@ -1,18 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.imagefolderinference import ImageFolderInference
-
-#### Config ####
-
-# add your transforms below
-transforms = Compose([
-                        ToRGB(),
-                        CenterCrop((544,544))
-                        ,ToTensor()
-                    ])
-
-# PyTorch dataset
-path = '/path/to/folder/containing/images'
-dataset = ImageFolderInference(path,transform=transforms)
diff --git a/bob/ip/binseg/configs/datasets/imagefoldertest.py b/bob/ip/binseg/configs/datasets/imagefoldertest.py
deleted file mode 100644
index 15d9b0383163cee1f3b102783ceb3b50defe5459..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/imagefoldertest.py
+++ /dev/null
@@ -1,17 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.imagefolder import ImageFolder
-
-#### Config ####
-
-# add your transforms below
-transforms = Compose([  
-                        CenterCrop((544,544))
-                        ,ToTensor()
-                    ])
-
-# PyTorch dataset
-path = '/path/to/testdataset'
-dataset = ImageFolder(path,transform=transforms)
diff --git a/bob/ip/binseg/configs/datasets/iostar/__init__.py b/bob/ip/binseg/configs/datasets/iostar/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..fb28f5d47aac2d3905a946fc31c4b1d8cb5ea7d6
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/iostar/__init__.py
@@ -0,0 +1,9 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+def _maker(protocol):
+
+    from ....data.iostar import dataset as raw
+    from .. import make_dataset as mk
+    return mk(raw.subsets(protocol), [])
+
diff --git a/bob/ip/binseg/configs/datasets/iostar/covd.py b/bob/ip/binseg/configs/datasets/iostar/covd.py
new file mode 100644
index 0000000000000000000000000000000000000000..e2f054feaa64222cce354265969f9e7937638be0
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/iostar/covd.py
@@ -0,0 +1,57 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""COVD-IOSTAR for Vessel Segmentation
+
+* Configuration resolution: 1024 x 1024
+
+The dataset available in this file is composed of DRIVE, STARE, CHASE-DB1, and
+HRF (with annotated samples).
+
+For details on those datasets, consult:
+
+* See :py:mod:`bob.ip.binseg.data.drive`
+* See :py:mod:`bob.ip.binseg.data.stare`
+* See :py:mod:`bob.ip.binseg.data.chasedb1`
+* See :py:mod:`bob.ip.binseg.data.hrf`
+"""
+
+from bob.ip.binseg.data.transforms import CenterCrop, Crop, Pad, Resize
+from bob.ip.binseg.configs.datasets import make_trainset as _maker
+
+from bob.ip.binseg.data.drive import dataset as _raw_drive
+
+_drive = _maker(
+    _raw_drive.subsets("default")["train"],
+    [CenterCrop((540, 540)), Resize(1024)],
+    rotation_before=True,
+)
+
+from bob.ip.binseg.data.stare import dataset as _raw_stare
+
+_stare = _maker(
+    _raw_stare.subsets("ah")["train"],
+    [Pad((0, 32, 0, 32)), Resize(1024), CenterCrop(1024)],
+    rotation_before=True,
+)
+
+from bob.ip.binseg.data.hrf import dataset as _raw_hrf
+
+_hrf = _maker(
+    _raw_hrf.subsets("default")["train"], [Pad((0, 584, 0, 584)), Resize(1024)],
+)
+
+from bob.ip.binseg.data.chasedb1 import dataset as _raw_chase
+
+_chase = _maker(
+    _raw_chase.subsets("first-annotator")["train"],
+    [Crop(0, 18, 960, 960), Resize(1024)],
+    rotation_before=True,
+)
+
+from torch.utils.data import ConcatDataset
+from bob.ip.binseg.configs.datasets.iostar.vessel import dataset as _baseline
+
+# copy dictionary and replace only the augmented train dataset
+dataset = dict(**_baseline)
+dataset["__train__"] = ConcatDataset([_drive, _stare, _hrf, _chase])
diff --git a/bob/ip/binseg/configs/datasets/iostar/optic_disc.py b/bob/ip/binseg/configs/datasets/iostar/optic_disc.py
new file mode 100644
index 0000000000000000000000000000000000000000..4cbea6aa4994889e642c259ae4e89baad7deb4bd
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/iostar/optic_disc.py
@@ -0,0 +1,12 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""IOSTAR dataset for Optic Disc Segmentation (default protocol)
+
+* Split reference: [MEYER-2017]_
+* Configuration resolution: 1024 x 1024 (original resolution)
+* See :py:mod:`bob.ip.binseg.data.iostar` for dataset details
+"""
+
+from bob.ip.binseg.configs.datasets.iostar import _maker
+dataset = _maker("optic-disc")
diff --git a/bob/ip/binseg/configs/datasets/iostar/ssl.py b/bob/ip/binseg/configs/datasets/iostar/ssl.py
new file mode 100644
index 0000000000000000000000000000000000000000..2635552ee87704cd8c370c56a22431f5faa6b151
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/iostar/ssl.py
@@ -0,0 +1,27 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""COVD-IOSTAR + SSL for Vessel Segmentation
+
+* Configuration resolution: 1024 x 1024
+
+The dataset available in this file is composed of DRIVE STARE, HRF, and
+CHASE-DB1 (with annotated samples), and IOSTAR "vessel" training set, without
+labels, for training, and IOSTAR's "vessel" test set, for evaluation.
+
+For details on datasets, consult:
+
+* :py:mod:`bob.ip.binseg.data.stare`
+* :py:mod:`bob.ip.binseg.data.drive`
+* :py:mod:`bob.ip.binseg.data.hrf`
+* :py:mod:`bob.ip.binseg.data.chasedb1`
+* :py:mod:`bob.ip.binseg.data.iostar`
+"""
+
+from bob.ip.binseg.configs.datasets.iostar.covd import dataset as _covd
+from bob.ip.binseg.configs.datasets.iostar.vessel import dataset as _baseline
+from bob.ip.binseg.data.utils import SSLDataset
+
+# copy dictionary and replace only the augmented train dataset
+dataset = dict(**_covd)
+dataset["__train__"] = SSLDataset(_covd["__train__"], _baseline["__train__"])
diff --git a/bob/ip/binseg/configs/datasets/iostar/vessel.py b/bob/ip/binseg/configs/datasets/iostar/vessel.py
new file mode 100644
index 0000000000000000000000000000000000000000..a561c74e8fd920a43ec4398966acd73922f3cc76
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/iostar/vessel.py
@@ -0,0 +1,12 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""IOSTAR dataset for Vessel Segmentation (default protocol)
+
+* Split reference: [MEYER-2017]_
+* Configuration resolution: 1024 x 1024 (original resolution)
+* See :py:mod:`bob.ip.binseg.data.iostar` for dataset details
+"""
+
+from bob.ip.binseg.configs.datasets.iostar import _maker
+dataset = _maker("vessel")
diff --git a/bob/ip/binseg/configs/datasets/iostar/vessel_mtest.py b/bob/ip/binseg/configs/datasets/iostar/vessel_mtest.py
new file mode 100644
index 0000000000000000000000000000000000000000..c89cf204442060247639277b82a8e77affd05295
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/iostar/vessel_mtest.py
@@ -0,0 +1,21 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""IOSTAR vessel cross-evaluation dataset with matched resolution
+
+* Configuration resolution: 1024 x 1024
+"""
+
+from bob.ip.binseg.data.transforms import CenterCrop, Crop, Pad, Resize
+from bob.ip.binseg.configs.datasets.iostar.vessel_xtest import dataset as _xt
+
+dataset = {
+    "train": _xt["train"],
+    "test": _xt["test"],
+    "drive": _xt["drive"].copy([CenterCrop((540, 540)), Resize(1024)]),
+    "stare": _xt["stare"].copy(
+        [Pad((0, 32, 0, 32)), Resize(1024), CenterCrop(1024)]
+    ),
+    "chasedb1": _xt["chasedb1"].copy([Crop(0, 18, 960, 960), Resize(1024)]),
+    "hrf": _xt["hrf"].copy([Pad((0, 584, 0, 584)), Resize(1024)]),
+}
diff --git a/bob/ip/binseg/configs/datasets/iostar/vessel_xtest.py b/bob/ip/binseg/configs/datasets/iostar/vessel_xtest.py
new file mode 100644
index 0000000000000000000000000000000000000000..0d6272751ee4dc916c6e46f0b55209e1263f4190
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/iostar/vessel_xtest.py
@@ -0,0 +1,22 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""IOSTAR vessel cross-evaluation dataset
+"""
+
+from bob.ip.binseg.configs.datasets.drive.default import dataset as _drive
+from bob.ip.binseg.configs.datasets.stare.ah import dataset as _stare
+from bob.ip.binseg.configs.datasets.chasedb1.first_annotator import (
+    dataset as _chase,
+)
+from bob.ip.binseg.configs.datasets.hrf.default import dataset as _hrf
+from bob.ip.binseg.configs.datasets.iostar.vessel import dataset as _iostar
+
+dataset = {
+        "train": _iostar["train"],
+        "test": _iostar["test"],
+        "drive": _drive["test"],
+        "stare": _stare["test"],
+        "chasedb1": _chase["test"],
+        "hrf": _hrf["test"],
+        }
diff --git a/bob/ip/binseg/configs/datasets/iostarod.py b/bob/ip/binseg/configs/datasets/iostarod.py
deleted file mode 100644
index 334df2a4ba402f879a436ce0ee3bcc07ca4ff49f..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/iostarod.py
+++ /dev/null
@@ -1,22 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.iostar import Database as IOSTAR
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = IOSTAR(protocol='default_od')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/iostarodtest.py b/bob/ip/binseg/configs/datasets/iostarodtest.py
deleted file mode 100644
index ba06450781bc03c765504e98fa715a4b15b1e774..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/iostarodtest.py
+++ /dev/null
@@ -1,18 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.iostar import Database as IOSTAR
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = IOSTAR(protocol='default_od')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='test', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/iostarvessel.py b/bob/ip/binseg/configs/datasets/iostarvessel.py
deleted file mode 100644
index ded01bb45820f9402fce9a5c6dc15c14908220eb..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/iostarvessel.py
+++ /dev/null
@@ -1,22 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.iostar import Database as IOSTAR
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = IOSTAR(protocol='default_vessel')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/iostarvessel1168.py b/bob/ip/binseg/configs/datasets/iostarvessel1168.py
deleted file mode 100644
index 5da5ed1e912065ca4ea2a81e4bd0f8b4e8d5475d..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/iostarvessel1168.py
+++ /dev/null
@@ -1,25 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.iostar import Database as IOSTAR
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        RandomRotation()
-                        ,Crop(144,0,768,1024)
-                        ,Pad((30,0,30,0))
-                        ,Resize(1168)
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = IOSTAR(protocol='default_vessel')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/iostarvessel544.py b/bob/ip/binseg/configs/datasets/iostarvessel544.py
deleted file mode 100644
index aa03abe2feb64a084fb76e6f60c69afc7499961f..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/iostarvessel544.py
+++ /dev/null
@@ -1,23 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.iostar import Database as IOSTAR
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Resize(544)
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = IOSTAR(protocol='default_vessel')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/iostarvessel544test.py b/bob/ip/binseg/configs/datasets/iostarvessel544test.py
deleted file mode 100644
index e3ccd854079e57c642669aa33f403d4ba28d4700..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/iostarvessel544test.py
+++ /dev/null
@@ -1,19 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.iostar import Database as IOSTAR
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Resize(544)
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = IOSTAR(protocol='default_vessel')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='test', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/iostarvessel608.py b/bob/ip/binseg/configs/datasets/iostarvessel608.py
deleted file mode 100644
index 7fce4507cd090555a2e0bac7f575dfd9d9f85c3d..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/iostarvessel608.py
+++ /dev/null
@@ -1,24 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.iostar import Database as IOSTAR
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Pad((81,0,81,0))
-                        ,Resize(608)
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = IOSTAR(protocol='default_vessel')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/iostarvessel960.py b/bob/ip/binseg/configs/datasets/iostarvessel960.py
deleted file mode 100644
index 32feec853882cbdcadc9fea91de4a1d61e168cc0..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/iostarvessel960.py
+++ /dev/null
@@ -1,23 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.iostar import Database as IOSTAR
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Resize(960)
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = IOSTAR(protocol='default_vessel')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/iostarvesseltest.py b/bob/ip/binseg/configs/datasets/iostarvesseltest.py
deleted file mode 100644
index d8fe13718be5c4517c69683696965cbbe5a9abdf..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/iostarvesseltest.py
+++ /dev/null
@@ -1,18 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.iostar import Database as IOSTAR
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = IOSTAR(protocol='default_vessel')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='test', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/refuge/__init__.py b/bob/ip/binseg/configs/datasets/refuge/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..24166450112b511f1847f65b275ddcfec8814437
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/refuge/__init__.py
@@ -0,0 +1,15 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+def _maker(protocol):
+
+    from ....data.transforms import Pad, Resize, CenterCrop
+    from ....data.refuge import dataset as raw
+    from .. import make_dataset as mk
+    # due to different sizes, we need to make the dataset twice
+    train = mk(raw.subsets(protocol), [Resize(1539), Pad((21, 46, 22, 47))])
+    # we'll keep "dev" and "test" from the next one
+    retval = mk(raw.subsets(protocol), [CenterCrop(1632)])
+    # and we keep the "train" set with the right transforms
+    retval["train"] = train["train"]
+    return retval
diff --git a/bob/ip/binseg/configs/datasets/refuge/cup.py b/bob/ip/binseg/configs/datasets/refuge/cup.py
new file mode 100644
index 0000000000000000000000000000000000000000..0f8aef4fba1bb710ed42fc921a653491e9ce604d
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/refuge/cup.py
@@ -0,0 +1,12 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""REFUGE dataset for Optic Cup Segmentation (default protocol)
+
+* Configuration resolution: 1632 x 1632 (after resizing and padding)
+* Reference (including split): [REFUGE-2018]_
+* See :py:mod:`bob.ip.binseg.data.refuge` for dataset details
+"""
+
+from bob.ip.binseg.configs.datasets.refuge import _maker
+dataset = _maker("optic-cup")
diff --git a/bob/ip/binseg/configs/datasets/refuge/disc.py b/bob/ip/binseg/configs/datasets/refuge/disc.py
new file mode 100644
index 0000000000000000000000000000000000000000..73aa1f9276f965913343d37ae178e9c62a3344af
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/refuge/disc.py
@@ -0,0 +1,12 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""REFUGE dataset for Optic Disc Segmentation (default protocol)
+
+* Configuration resolution: 1632 x 1632 (after resizing and padding)
+* Reference (including split): [REFUGE-2018]_
+* See :py:mod:`bob.ip.binseg.data.refuge` for dataset details
+"""
+
+from bob.ip.binseg.configs.datasets.refuge import _maker
+dataset = _maker("optic-disc")
diff --git a/bob/ip/binseg/configs/datasets/refugecup.py b/bob/ip/binseg/configs/datasets/refugecup.py
deleted file mode 100644
index 9efac5293295bc0f0eb2a03a78ebacdb4e1615c2..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/refugecup.py
+++ /dev/null
@@ -1,24 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.refuge import Database as REFUGE
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Resize((1539))
-                        ,Pad((21,46,22,47))
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = REFUGE(protocol = 'default_cup')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/refugecuptest.py b/bob/ip/binseg/configs/datasets/refugecuptest.py
deleted file mode 100644
index 8ff916e30cc60e24e505ccb6c0b3455e97d7a9a9..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/refugecuptest.py
+++ /dev/null
@@ -1,19 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.refuge import Database as REFUGE
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        CenterCrop(1632)
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = REFUGE(protocol = 'default_cup')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='test', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/refugeod.py b/bob/ip/binseg/configs/datasets/refugeod.py
deleted file mode 100644
index 5faaf05a9edcd7fcb4c3353dd6f9a17478233038..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/refugeod.py
+++ /dev/null
@@ -1,24 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.refuge import Database as REFUGE
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Resize((1539))
-                        ,Pad((21,46,22,47))
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = REFUGE(protocol = 'default_od')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/refugeodtest.py b/bob/ip/binseg/configs/datasets/refugeodtest.py
deleted file mode 100644
index 30085a2f5450eefb12300b27677a15bf27baa8d8..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/refugeodtest.py
+++ /dev/null
@@ -1,19 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.refuge import Database as REFUGE
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        CenterCrop(1632)
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = REFUGE(protocol = 'default_od')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='test', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/rimoner3/__init__.py b/bob/ip/binseg/configs/datasets/rimoner3/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..3b9a9b941ba616e817c54f9500a761a0933db1e6
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/rimoner3/__init__.py
@@ -0,0 +1,9 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+def _maker(protocol):
+
+    from ....data.transforms import Pad
+    from ....data.rimoner3 import dataset as raw
+    from .. import make_dataset as mk
+    return mk(raw.subsets(protocol), [Pad((8, 8, 8, 8))])
diff --git a/bob/ip/binseg/configs/datasets/rimoner3/cup_exp1.py b/bob/ip/binseg/configs/datasets/rimoner3/cup_exp1.py
new file mode 100644
index 0000000000000000000000000000000000000000..4d9075cac2bc1c925230281685ac4774e3f37e72
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/rimoner3/cup_exp1.py
@@ -0,0 +1,12 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""RIM-ONE r3 for Optic Cup Segmentation (expert #1 annotations)
+
+* Configuration resolution: 1440 x 1088 (after padding)
+* Split reference: [MANINIS-2016]_
+* See :py:mod:`bob.ip.binseg.data.rimoner3` for dataset details
+"""
+
+from bob.ip.binseg.configs.datasets.rimoner3 import _maker
+dataset = _maker("optic-cup-exp1")
diff --git a/bob/ip/binseg/configs/datasets/rimoner3/cup_exp2.py b/bob/ip/binseg/configs/datasets/rimoner3/cup_exp2.py
new file mode 100644
index 0000000000000000000000000000000000000000..aea08c7e26269ccc110f5ee5579ca8776e4fa25e
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/rimoner3/cup_exp2.py
@@ -0,0 +1,12 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""RIM-ONE r3 for Optic Cup Segmentation (expert #2 annotations)
+
+* Configuration resolution: 1440 x 1088 (after padding)
+* Split reference: [MANINIS-2016]_
+* See :py:mod:`bob.ip.binseg.data.rimoner3` for dataset details
+"""
+
+from bob.ip.binseg.configs.datasets.rimoner3 import _maker
+dataset = _maker("optic-cup-exp2")
diff --git a/bob/ip/binseg/configs/datasets/rimoner3/disc_exp1.py b/bob/ip/binseg/configs/datasets/rimoner3/disc_exp1.py
new file mode 100644
index 0000000000000000000000000000000000000000..ab5dfc08cc6b11b443680f67053c5aea160b9c26
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/rimoner3/disc_exp1.py
@@ -0,0 +1,12 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""RIM-ONE r3 for Optic Disc Segmentation (expert #1 annotations)
+
+* Configuration resolution: 1440 x 1088 (after padding)
+* Split reference: [MANINIS-2016]_
+* See :py:mod:`bob.ip.binseg.data.rimoner3` for dataset details
+"""
+
+from bob.ip.binseg.configs.datasets.rimoner3 import _maker
+dataset = _maker("optic-disc-exp1")
diff --git a/bob/ip/binseg/configs/datasets/rimoner3/disc_exp2.py b/bob/ip/binseg/configs/datasets/rimoner3/disc_exp2.py
new file mode 100644
index 0000000000000000000000000000000000000000..6ee258d8cff7fb4aa2b6294bd5627f81889c27d9
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/rimoner3/disc_exp2.py
@@ -0,0 +1,12 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""RIM-ONE r3 for Optic Disc Segmentation (expert #2 annotations)
+
+* Configuration resolution: 1440 x 1088 (after padding)
+* Split reference: [MANINIS-2016]_
+* See :py:mod:`bob.ip.binseg.data.rimoner3` for dataset details
+"""
+
+from bob.ip.binseg.configs.datasets.rimoner3 import _maker
+dataset = _maker("optic-disc-exp2")
diff --git a/bob/ip/binseg/configs/datasets/rimoner3cup.py b/bob/ip/binseg/configs/datasets/rimoner3cup.py
deleted file mode 100644
index 47b62ba0c521d4f4209fb6026c7aae184228fdb2..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/rimoner3cup.py
+++ /dev/null
@@ -1,23 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.rimoner3 import Database as RIMONER3
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Pad((8,8,8,8))
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = RIMONER3(protocol = 'default_cup')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/rimoner3cuptest.py b/bob/ip/binseg/configs/datasets/rimoner3cuptest.py
deleted file mode 100644
index 9f227be81289e12f4cfc8e63b1a76cbc1251c614..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/rimoner3cuptest.py
+++ /dev/null
@@ -1,19 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.rimoner3 import Database as RIMONER3
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Pad((8,8,8,8))
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = RIMONER3(protocol = 'default_cup')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='test', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/rimoner3od.py b/bob/ip/binseg/configs/datasets/rimoner3od.py
deleted file mode 100644
index 4905bec3cb663faed12cd85edc099f7987834657..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/rimoner3od.py
+++ /dev/null
@@ -1,23 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.rimoner3 import Database as RIMONER3
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Pad((8,8,8,8))
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = RIMONER3(protocol = 'default_od')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/rimoner3odtest.py b/bob/ip/binseg/configs/datasets/rimoner3odtest.py
deleted file mode 100644
index 390f20d795323082c3aca3f6f0a2c81a5b144ba1..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/rimoner3odtest.py
+++ /dev/null
@@ -1,19 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.rimoner3 import Database as RIMONER3
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Pad((8,8,8,8))
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = RIMONER3(protocol = 'default_od')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='test', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/stare.py b/bob/ip/binseg/configs/datasets/stare.py
deleted file mode 100644
index f2c784a9ab7a75c82c11ffc5dbb32d6390fb93be..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/stare.py
+++ /dev/null
@@ -1,23 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.stare import Database as STARE
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Pad((2,1,2,2))
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = STARE(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/stare/__init__.py b/bob/ip/binseg/configs/datasets/stare/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..82d1e14a7813b52dffa558924c861a42bab92760
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/stare/__init__.py
@@ -0,0 +1,10 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+def _maker(protocol, raw=None):
+
+    from ....data.transforms import Pad
+    from ....data.stare import dataset as _raw
+    raw = raw or _raw  #allows user to recreate dataset for testing purposes
+    from .. import make_dataset as mk
+    return mk(raw.subsets(protocol), [Pad((2, 1, 2, 2))])
diff --git a/bob/ip/binseg/configs/datasets/stare/ah.py b/bob/ip/binseg/configs/datasets/stare/ah.py
new file mode 100644
index 0000000000000000000000000000000000000000..6b7cec73b37fb19f15f3ea6b94dc61a1a58b06fb
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/stare/ah.py
@@ -0,0 +1,14 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""STARE dataset for Vessel Segmentation (annotator AH)
+
+* Configuration resolution: 704 x 608 (after padding)
+* Split reference: [MANINIS-2016]_
+* See :py:mod:`bob.ip.binseg.data.stare` for dataset details
+* This dataset offers a second-annotator comparison (using protocol "vk")
+"""
+
+from bob.ip.binseg.configs.datasets.stare import _maker
+dataset = _maker("ah")
+second_annotator = _maker("vk")
diff --git a/bob/ip/binseg/configs/datasets/stare/covd.py b/bob/ip/binseg/configs/datasets/stare/covd.py
new file mode 100644
index 0000000000000000000000000000000000000000..0abbf93441a7f70036073841786ac06b61ca6528
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/stare/covd.py
@@ -0,0 +1,57 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""COVD-STARE for Vessel Segmentation
+
+* Configuration resolution: 704 x 608
+
+The dataset available in this file is composed of DRIVE, CHASE-DB1, IOSTAR
+vessel and HRF (with annotated samples).
+
+For details on those datasets, consult:
+
+* See :py:mod:`bob.ip.binseg.data.drive`
+* See :py:mod:`bob.ip.binseg.data.chasedb1`
+* See :py:mod:`bob.ip.binseg.data.iostar`
+* See :py:mod:`bob.ip.binseg.data.hrf`
+"""
+
+from bob.ip.binseg.data.transforms import CenterCrop, Pad, Resize
+from bob.ip.binseg.configs.datasets import make_trainset as _maker
+
+from bob.ip.binseg.data.drive import dataset as _raw_drive
+
+_drive = _maker(
+    _raw_drive.subsets("default")["train"],
+    [CenterCrop((470, 544)), Pad((10, 9, 10, 8)), Resize(608)],
+    rotation_before=True,
+)
+
+from bob.ip.binseg.data.chasedb1 import dataset as _raw_chase
+
+_chase = _maker(
+    _raw_chase.subsets("first-annotator")["train"],
+    [CenterCrop((829, 960)), Resize(608)],
+    rotation_before=True,
+)
+
+from bob.ip.binseg.data.iostar import dataset as _raw_iostar
+
+_iostar = _maker(
+    _raw_iostar.subsets("vessel")["train"],
+    # n.b.: not the best fit, but what was there for Tim's work
+    [Pad((81, 0, 81, 0)), Resize(608)],
+)
+
+from bob.ip.binseg.data.hrf import dataset as _raw_hrf
+
+_hrf = _maker(
+    _raw_hrf.subsets("default")["train"], [Pad((0, 345, 0, 345)), Resize(608)],
+)
+
+from torch.utils.data import ConcatDataset
+from bob.ip.binseg.configs.datasets.stare.ah import dataset as _baseline
+
+# copy dictionary and replace only the augmented train dataset
+dataset = dict(**_baseline)
+dataset["__train__"] = ConcatDataset([_drive, _chase, _iostar, _hrf])
diff --git a/bob/ip/binseg/configs/datasets/stare/mtest.py b/bob/ip/binseg/configs/datasets/stare/mtest.py
new file mode 100644
index 0000000000000000000000000000000000000000..4485ff815404e09e306aa47c7f8c1f560b877227
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/stare/mtest.py
@@ -0,0 +1,21 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""STARE cross-evaluation dataset with matched resolution
+
+* Configuration resolution: 704 x 608
+"""
+
+from bob.ip.binseg.data.transforms import CenterCrop, Pad, Resize
+from bob.ip.binseg.configs.datasets.stare.xtest import dataset as _xt
+
+dataset = {
+    "train": _xt["train"],
+    "test": _xt["test"],
+    "drive": _xt["drive"].copy(
+        [CenterCrop((470, 544)), Pad((10, 9, 10, 8)), Resize(608)]
+    ),
+    "chasedb1": _xt["chasedb1"].copy([CenterCrop((829, 960)), Resize(608)]),
+    "hrf": _xt["hrf"].copy([Pad((0, 345, 0, 345)), Resize(608)]),
+    "iostar": _xt["iostar"].copy([Pad((81, 0, 81, 0)), Resize(608)]),
+}
diff --git a/bob/ip/binseg/configs/datasets/stare/ssl.py b/bob/ip/binseg/configs/datasets/stare/ssl.py
new file mode 100644
index 0000000000000000000000000000000000000000..10440efd9bb35db7b499c860772c272b01bcc1f6
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/stare/ssl.py
@@ -0,0 +1,27 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""COVD-STARE + SSL (training set) for Vessel Segmentation
+
+* Configuration resolution: 704 x 608
+
+The dataset available in this file is composed of DRIVE, CHASE-DB1, IOSTAR
+vessel and HRF (with annotated samples) and STARE's "ah" training set, without
+labels, for training, and STARE's "ah" test set, for evaluation.
+
+For details on datasets, consult:
+
+* :py:mod:`bob.ip.binseg.data.stare`
+* :py:mod:`bob.ip.binseg.data.drive`
+* :py:mod:`bob.ip.binseg.data.chasedb1`
+* :py:mod:`bob.ip.binseg.data.iostar`
+* :py:mod:`bob.ip.binseg.data.hrf`
+"""
+
+from bob.ip.binseg.configs.datasets.stare.covd import dataset as _covd
+from bob.ip.binseg.configs.datasets.stare.ah import dataset as _baseline
+from bob.ip.binseg.data.utils import SSLDataset
+
+# copy dictionary and replace only the augmented train dataset
+dataset = dict(**_covd)
+dataset["__train__"] = SSLDataset(_covd["__train__"], _baseline["__train__"])
diff --git a/bob/ip/binseg/configs/datasets/stare/vk.py b/bob/ip/binseg/configs/datasets/stare/vk.py
new file mode 100644
index 0000000000000000000000000000000000000000..0ae41c87553b013e0de8ad4d8601c80a80be96e2
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/stare/vk.py
@@ -0,0 +1,14 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""STARE dataset for Vessel Segmentation (annotator VK)
+
+* Configuration resolution: 704 x 608 (after padding)
+* Split reference: [MANINIS-2016]_
+* See :py:mod:`bob.ip.binseg.data.stare` for dataset details
+* This dataset offers a second-annotator comparison (using protocol "ah")
+"""
+
+from bob.ip.binseg.configs.datasets.stare import _maker
+dataset = _maker("vk")
+second_annotator = _maker("ah")
diff --git a/bob/ip/binseg/configs/datasets/stare/xtest.py b/bob/ip/binseg/configs/datasets/stare/xtest.py
new file mode 100644
index 0000000000000000000000000000000000000000..dcd773e872ac3eaeb49b2737e0e6d78c18578d55
--- /dev/null
+++ b/bob/ip/binseg/configs/datasets/stare/xtest.py
@@ -0,0 +1,22 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""STARE cross-evaluation dataset
+"""
+
+from bob.ip.binseg.configs.datasets.drive.default import dataset as _drive
+from bob.ip.binseg.configs.datasets.stare.ah import dataset as _stare
+from bob.ip.binseg.configs.datasets.chasedb1.first_annotator import (
+    dataset as _chase,
+)
+from bob.ip.binseg.configs.datasets.hrf.default import dataset as _hrf
+from bob.ip.binseg.configs.datasets.iostar.vessel import dataset as _iostar
+
+dataset = {
+        "train": _stare["train"],
+        "test": _stare["test"],
+        "drive": _drive["test"],
+        "chasedb1": _chase["test"],
+        "hrf": _hrf["test"],
+        "iostar": _iostar["test"],
+        }
diff --git a/bob/ip/binseg/configs/datasets/stare1024.py b/bob/ip/binseg/configs/datasets/stare1024.py
deleted file mode 100644
index 8f6df507b16aeffb485bc448c57cf8b21f47bda1..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/stare1024.py
+++ /dev/null
@@ -1,25 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.stare import Database as STARE
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        RandomRotation()
-                        ,Pad((0,32,0,32))
-                        ,Resize(1024)
-                        ,CenterCrop(1024)
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = STARE(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/stare1168.py b/bob/ip/binseg/configs/datasets/stare1168.py
deleted file mode 100644
index 77e934bf6b6f387105df08519932822bcb11cf09..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/stare1168.py
+++ /dev/null
@@ -1,25 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.stare import Database as STARE
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        RandomRotation()
-                        ,Crop(50,0,500,705)
-                        ,Resize(1168)
-                        ,Pad((1,0,1,0))
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = STARE(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/stare544.py b/bob/ip/binseg/configs/datasets/stare544.py
deleted file mode 100644
index f03fcefbe6fef80ef1e6a7ec97d2b6c1df221024..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/stare544.py
+++ /dev/null
@@ -1,23 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.stare import Database as STARE
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  RandomRotation()
-                        ,Resize(471)
-                        ,Pad((0,37,0,36))
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = STARE(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/stare960.py b/bob/ip/binseg/configs/datasets/stare960.py
deleted file mode 100644
index 0d1ed7883cb746f469534ad2a29f491501e7566e..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/stare960.py
+++ /dev/null
@@ -1,25 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.stare import Database as STARE
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        RandomRotation()
-                        ,Pad((0,32,0,32))
-                        ,Resize(960)
-                        ,CenterCrop(960)
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = STARE(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='train', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/starechasedb1iostarhrf544.py b/bob/ip/binseg/configs/datasets/starechasedb1iostarhrf544.py
deleted file mode 100644
index 72349b3bd6370c0b996edf90e96403df54ec27af..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/starechasedb1iostarhrf544.py
+++ /dev/null
@@ -1,10 +0,0 @@
-from bob.ip.binseg.configs.datasets.stare544 import dataset as stare
-from bob.ip.binseg.configs.datasets.chasedb1544 import dataset as chase
-from bob.ip.binseg.configs.datasets.iostarvessel544 import dataset as iostar
-from bob.ip.binseg.configs.datasets.hrf544 import dataset as hrf
-import torch
-
-#### Config ####
-
-# PyTorch dataset
-dataset = torch.utils.data.ConcatDataset([stare,chase,hrf,iostar])
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/starechasedb1iostarhrf544ssldrive.py b/bob/ip/binseg/configs/datasets/starechasedb1iostarhrf544ssldrive.py
deleted file mode 100644
index 3a5e3008f73cea8d1163030783d70736fad6ef9f..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/starechasedb1iostarhrf544ssldrive.py
+++ /dev/null
@@ -1,34 +0,0 @@
-from bob.ip.binseg.configs.datasets.stare544 import dataset as stare
-from bob.ip.binseg.configs.datasets.chasedb1544 import dataset as chase
-from bob.ip.binseg.configs.datasets.iostarvessel544 import dataset as iostar
-from bob.ip.binseg.configs.datasets.hrf544 import dataset as hrf
-from bob.db.drive import Database as DRIVE
-from bob.ip.binseg.data.transforms import *
-import torch
-from bob.ip.binseg.data.binsegdataset import BinSegDataset, SSLBinSegDataset, UnLabeledBinSegDataset
-
-
-#### Config ####
-
-# PyTorch dataset
-labeled_dataset = torch.utils.data.ConcatDataset([stare,chase,iostar,hrf])
-
-#### Unlabeled STARE TRAIN ####
-unlabeled_transforms = Compose([  
-                        CenterCrop((544,544))
-                        ,RandomHFlip()
-                        ,RandomVFlip()
-                        ,RandomRotation()
-                        ,ColorJitter()
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-drivebobdb = DRIVE(protocol = 'default')
-
-# PyTorch dataset
-unlabeled_dataset = UnLabeledBinSegDataset(drivebobdb, split='train', transform=unlabeled_transforms)
-
-# SSL Dataset
-
-dataset = SSLBinSegDataset(labeled_dataset, unlabeled_dataset)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/datasets/staretest.py b/bob/ip/binseg/configs/datasets/staretest.py
deleted file mode 100644
index aab80b9bea6339bff87c5cc12d7375ce6216bc60..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/datasets/staretest.py
+++ /dev/null
@@ -1,19 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from bob.db.stare import Database as STARE
-from bob.ip.binseg.data.transforms import *
-from bob.ip.binseg.data.binsegdataset import BinSegDataset
-
-#### Config ####
-
-transforms = Compose([  
-                        Pad((2,1,2,2))
-                        ,ToTensor()
-                    ])
-
-# bob.db.dataset init
-bobdb = STARE(protocol = 'default')
-
-# PyTorch dataset
-dataset = BinSegDataset(bobdb, split='test', transform=transforms)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/models/__init__.py b/bob/ip/binseg/configs/models/__init__.py
index 2ca5e07cb73f0bdddcb863ef497955964087e301..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644
--- a/bob/ip/binseg/configs/models/__init__.py
+++ b/bob/ip/binseg/configs/models/__init__.py
@@ -1,3 +0,0 @@
-# see https://docs.python.org/3/library/pkgutil.html
-from pkgutil import extend_path
-__path__ = extend_path(__path__, __name__)
\ No newline at end of file
diff --git a/bob/ip/binseg/configs/models/driu.py b/bob/ip/binseg/configs/models/driu.py
index 0e8fa1328167de67c1ca55f27791e9b2eefd6efd..cdc9cb89fa3618615dbe46bba61d25f76245fd47 100644
--- a/bob/ip/binseg/configs/models/driu.py
+++ b/bob/ip/binseg/configs/models/driu.py
@@ -1,10 +1,17 @@
 #!/usr/bin/env python
-# -*- coding: utf-8 -*-
+# coding=utf-8
+
+"""DRIU Network for Vessel Segmentation
+
+Deep Retinal Image Understanding (DRIU), a unified framework of retinal image
+analysis that provides both retinal vessel and optic disc segmentation using
+deep Convolutional Neural Networks (CNNs).
+
+Reference: [MANINIS-2016]_
+"""
 
 from torch.optim.lr_scheduler import MultiStepLR
 from bob.ip.binseg.modeling.driu import build_driu
-import torch.optim as optim
-from torch.nn import BCEWithLogitsLoss
 from bob.ip.binseg.utils.model_zoo import modelurls
 from bob.ip.binseg.modeling.losses import SoftJaccardBCELogitsLoss
 from bob.ip.binseg.engine.adabound import AdaBound
@@ -22,17 +29,22 @@ amsbound = False
 scheduler_milestones = [900]
 scheduler_gamma = 0.1
 
-# model
 model = build_driu()
 
-# pretrained backbone
-pretrained_backbone = modelurls['vgg16']
+pretrained_backbone = modelurls["vgg16"]
 
-# optimizer
-optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma,
-                 eps=eps, weight_decay=weight_decay, amsbound=amsbound) 
-# criterion
+optimizer = AdaBound(
+    model.parameters(),
+    lr=lr,
+    betas=betas,
+    final_lr=final_lr,
+    gamma=gamma,
+    eps=eps,
+    weight_decay=weight_decay,
+    amsbound=amsbound,
+)
 criterion = SoftJaccardBCELogitsLoss(alpha=0.7)
 
-# scheduler
-scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma)
+scheduler = MultiStepLR(
+    optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma
+)
diff --git a/bob/ip/binseg/configs/models/driu_bn.py b/bob/ip/binseg/configs/models/driu_bn.py
new file mode 100644
index 0000000000000000000000000000000000000000..4e3a4b3c9121b9db5ba64805da2c24d56febbf9c
--- /dev/null
+++ b/bob/ip/binseg/configs/models/driu_bn.py
@@ -0,0 +1,56 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+"""DRIU Network for Vessel Segmentation with Batch Normalization
+
+Deep Retinal Image Understanding (DRIU), a unified framework of retinal image
+analysis that provides both retinal vessel and optic disc segmentation using
+deep Convolutional Neural Networks (CNNs).  This implementation includes batch
+normalization as a regularization mechanism.
+
+Reference: [MANINIS-2016]_
+"""
+
+from torch.optim.lr_scheduler import MultiStepLR
+from bob.ip.binseg.modeling.driubn import build_driu
+from bob.ip.binseg.utils.model_zoo import modelurls
+from bob.ip.binseg.modeling.losses import SoftJaccardBCELogitsLoss
+from bob.ip.binseg.engine.adabound import AdaBound
+
+##### Config #####
+lr = 0.001
+betas = (0.9, 0.999)
+eps = 1e-08
+weight_decay = 0
+final_lr = 0.1
+gamma = 1e-3
+eps = 1e-8
+amsbound = False
+
+scheduler_milestones = [900]
+scheduler_gamma = 0.1
+
+# model
+model = build_driu()
+
+# pretrained backbone
+pretrained_backbone = modelurls["vgg16_bn"]
+
+# optimizer
+optimizer = AdaBound(
+    model.parameters(),
+    lr=lr,
+    betas=betas,
+    final_lr=final_lr,
+    gamma=gamma,
+    eps=eps,
+    weight_decay=weight_decay,
+    amsbound=amsbound,
+)
+# criterion
+criterion = SoftJaccardBCELogitsLoss(alpha=0.7)
+
+# scheduler
+scheduler = MultiStepLR(
+    optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma
+)
diff --git a/bob/ip/binseg/configs/models/driu_bn_ssl.py b/bob/ip/binseg/configs/models/driu_bn_ssl.py
new file mode 100644
index 0000000000000000000000000000000000000000..a73d4ebe051001d53c3599850c18f4f7084b5ad2
--- /dev/null
+++ b/bob/ip/binseg/configs/models/driu_bn_ssl.py
@@ -0,0 +1,59 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+"""DRIU Network for Vessel Segmentation using SSL and Batch Normalization
+
+Deep Retinal Image Understanding (DRIU), a unified framework of retinal image
+analysis that provides both retinal vessel and optic disc segmentation using
+deep Convolutional Neural Networks (CNNs).  This version of our model includes
+a loss that is suitable for Semi-Supervised Learning (SSL).  This version also
+includes batch normalization as a regularization mechanism.
+
+Reference: [MANINIS-2016]_
+"""
+
+from torch.optim.lr_scheduler import MultiStepLR
+from bob.ip.binseg.modeling.driubn import build_driu
+from bob.ip.binseg.utils.model_zoo import modelurls
+from bob.ip.binseg.modeling.losses import MixJacLoss
+from bob.ip.binseg.engine.adabound import AdaBound
+
+##### Config #####
+lr = 0.001
+betas = (0.9, 0.999)
+eps = 1e-08
+weight_decay = 0
+final_lr = 0.1
+gamma = 1e-3
+eps = 1e-8
+amsbound = False
+
+scheduler_milestones = [900]
+scheduler_gamma = 0.1
+
+# model
+model = build_driu()
+
+# pretrained backbone
+pretrained_backbone = modelurls["vgg16_bn"]
+
+# optimizer
+optimizer = AdaBound(
+    model.parameters(),
+    lr=lr,
+    betas=betas,
+    final_lr=final_lr,
+    gamma=gamma,
+    eps=eps,
+    weight_decay=weight_decay,
+    amsbound=amsbound,
+)
+
+# criterion
+criterion = MixJacLoss(lambda_u=0.05, jacalpha=0.7)
+ssl = True
+
+# scheduler
+scheduler = MultiStepLR(
+    optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma
+)
diff --git a/bob/ip/binseg/configs/models/driuod.py b/bob/ip/binseg/configs/models/driu_od.py
similarity index 52%
rename from bob/ip/binseg/configs/models/driuod.py
rename to bob/ip/binseg/configs/models/driu_od.py
index 7ad9bb836760b19c021f05d43ea9886685ce3257..9535c89ab5195b0d3f93971f16ad8cd9d336aab7 100644
--- a/bob/ip/binseg/configs/models/driuod.py
+++ b/bob/ip/binseg/configs/models/driu_od.py
@@ -1,10 +1,17 @@
 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
 
+"""DRIU Network for Optic Disc Segmentation
+
+Deep Retinal Image Understanding (DRIU), a unified framework of retinal image
+analysis that provides both retinal vessel and optic disc segmentation using
+deep Convolutional Neural Networks (CNNs).
+
+Reference: [MANINIS-2016]_
+"""
+
 from torch.optim.lr_scheduler import MultiStepLR
 from bob.ip.binseg.modeling.driuod import build_driuod
-import torch.optim as optim
-from torch.nn import BCEWithLogitsLoss
 from bob.ip.binseg.utils.model_zoo import modelurls
 from bob.ip.binseg.modeling.losses import SoftJaccardBCELogitsLoss
 from bob.ip.binseg.engine.adabound import AdaBound
@@ -26,13 +33,23 @@ scheduler_gamma = 0.1
 model = build_driuod()
 
 # pretrained backbone
-pretrained_backbone = modelurls['vgg16']
+pretrained_backbone = modelurls["vgg16"]
 
 # optimizer
-optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma,
-                 eps=eps, weight_decay=weight_decay, amsbound=amsbound) 
+optimizer = AdaBound(
+    model.parameters(),
+    lr=lr,
+    betas=betas,
+    final_lr=final_lr,
+    gamma=gamma,
+    eps=eps,
+    weight_decay=weight_decay,
+    amsbound=amsbound,
+)
 # criterion
 criterion = SoftJaccardBCELogitsLoss(alpha=0.7)
 
 # scheduler
-scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma)
+scheduler = MultiStepLR(
+    optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma
+)
diff --git a/bob/ip/binseg/configs/models/driu_ssl.py b/bob/ip/binseg/configs/models/driu_ssl.py
new file mode 100644
index 0000000000000000000000000000000000000000..45194f6d8a98b89f176c5aa6a7b1aa8832775eb5
--- /dev/null
+++ b/bob/ip/binseg/configs/models/driu_ssl.py
@@ -0,0 +1,58 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+"""DRIU Network for Vessel Segmentation using SSL
+
+Deep Retinal Image Understanding (DRIU), a unified framework of retinal image
+analysis that provides both retinal vessel and optic disc segmentation using
+deep Convolutional Neural Networks (CNNs).  This version of our model includes
+a loss that is suitable for Semi-Supervised Learning (SSL).
+
+Reference: [MANINIS-2016]_
+"""
+
+from torch.optim.lr_scheduler import MultiStepLR
+from bob.ip.binseg.modeling.driu import build_driu
+from bob.ip.binseg.utils.model_zoo import modelurls
+from bob.ip.binseg.modeling.losses import MixJacLoss
+from bob.ip.binseg.engine.adabound import AdaBound
+
+##### Config #####
+lr = 0.001
+betas = (0.9, 0.999)
+eps = 1e-08
+weight_decay = 0
+final_lr = 0.1
+gamma = 1e-3
+eps = 1e-8
+amsbound = False
+
+scheduler_milestones = [900]
+scheduler_gamma = 0.1
+
+# model
+model = build_driu()
+
+# pretrained backbone
+pretrained_backbone = modelurls["vgg16"]
+
+# optimizer
+optimizer = AdaBound(
+    model.parameters(),
+    lr=lr,
+    betas=betas,
+    final_lr=final_lr,
+    gamma=gamma,
+    eps=eps,
+    weight_decay=weight_decay,
+    amsbound=amsbound,
+)
+
+# criterion
+criterion = MixJacLoss(lambda_u=0.05, jacalpha=0.7)
+ssl = True
+
+# scheduler
+scheduler = MultiStepLR(
+    optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma
+)
diff --git a/bob/ip/binseg/configs/models/driubn.py b/bob/ip/binseg/configs/models/driubn.py
deleted file mode 100644
index 0b95501d0a61053fd74b64976f6a761255944ece..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/models/driubn.py
+++ /dev/null
@@ -1,38 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from torch.optim.lr_scheduler import MultiStepLR
-from bob.ip.binseg.modeling.driubn import build_driu
-import torch.optim as optim
-from torch.nn import BCEWithLogitsLoss
-from bob.ip.binseg.utils.model_zoo import modelurls
-from bob.ip.binseg.modeling.losses import SoftJaccardBCELogitsLoss
-from bob.ip.binseg.engine.adabound import AdaBound
-
-##### Config #####
-lr = 0.001
-betas = (0.9, 0.999)
-eps = 1e-08
-weight_decay = 0
-final_lr = 0.1
-gamma = 1e-3
-eps = 1e-8
-amsbound = False
-
-scheduler_milestones = [900]
-scheduler_gamma = 0.1
-
-# model
-model = build_driu()
-
-# pretrained backbone
-pretrained_backbone = modelurls['vgg16_bn']
-
-# optimizer
-optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma,
-                 eps=eps, weight_decay=weight_decay, amsbound=amsbound) 
-# criterion
-criterion = SoftJaccardBCELogitsLoss(alpha=0.7)
-
-# scheduler
-scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma)
diff --git a/bob/ip/binseg/configs/models/driubnssl.py b/bob/ip/binseg/configs/models/driubnssl.py
deleted file mode 100644
index 52b3a2b35272b99d5f47bae8f23d47da15990135..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/models/driubnssl.py
+++ /dev/null
@@ -1,39 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from torch.optim.lr_scheduler import MultiStepLR
-from bob.ip.binseg.modeling.driubn import build_driu
-import torch.optim as optim
-from torch.nn import BCEWithLogitsLoss
-from bob.ip.binseg.utils.model_zoo import modelurls
-from bob.ip.binseg.modeling.losses import MixJacLoss
-from bob.ip.binseg.engine.adabound import AdaBound
-
-##### Config #####
-lr = 0.001
-betas = (0.9, 0.999)
-eps = 1e-08
-weight_decay = 0
-final_lr = 0.1
-gamma = 1e-3
-eps = 1e-8
-amsbound = False
-
-scheduler_milestones = [900]
-scheduler_gamma = 0.1
-
-# model
-model = build_driu()
-
-# pretrained backbone
-pretrained_backbone = modelurls['vgg16_bn']
-
-# optimizer
-optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma,
-                 eps=eps, weight_decay=weight_decay, amsbound=amsbound) 
-
-# criterion
-criterion = MixJacLoss(lambda_u=0.05, jacalpha=0.7)
-
-# scheduler
-scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma)
diff --git a/bob/ip/binseg/configs/models/driussl.py b/bob/ip/binseg/configs/models/driussl.py
deleted file mode 100644
index 39afd4a03f956b24aeeb078c297fb026cdc369b5..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/models/driussl.py
+++ /dev/null
@@ -1,39 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from torch.optim.lr_scheduler import MultiStepLR
-from bob.ip.binseg.modeling.driu import build_driu
-import torch.optim as optim
-from torch.nn import BCEWithLogitsLoss
-from bob.ip.binseg.utils.model_zoo import modelurls
-from bob.ip.binseg.modeling.losses import MixJacLoss
-from bob.ip.binseg.engine.adabound import AdaBound
-
-##### Config #####
-lr = 0.001
-betas = (0.9, 0.999)
-eps = 1e-08
-weight_decay = 0
-final_lr = 0.1
-gamma = 1e-3
-eps = 1e-8
-amsbound = False
-
-scheduler_milestones = [900]
-scheduler_gamma = 0.1
-
-# model
-model = build_driu()
-
-# pretrained backbone
-pretrained_backbone = modelurls['vgg16']
-
-# optimizer
-optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma,
-                 eps=eps, weight_decay=weight_decay, amsbound=amsbound) 
-
-# criterion
-criterion = MixJacLoss(lambda_u=0.05, jacalpha=0.7)
-
-# scheduler
-scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma)
diff --git a/bob/ip/binseg/configs/models/hed.py b/bob/ip/binseg/configs/models/hed.py
index eeb0e599e89c967247975456016dc35facdf805c..6a9d7e82f211b2bd6357ad1cc19095765695af66 100644
--- a/bob/ip/binseg/configs/models/hed.py
+++ b/bob/ip/binseg/configs/models/hed.py
@@ -1,9 +1,19 @@
 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
 
+
+"""HED Network for Vessel Segmentation
+
+Holistically-nested edge detection (HED), turns pixel-wise edge classification
+into image-to-image prediction by means of a deep learning model that leverages
+fully convolutional neural networks and deeply-supervised nets.
+
+Reference: [XIE-2015]_
+"""
+
+
 from torch.optim.lr_scheduler import MultiStepLR
 from bob.ip.binseg.modeling.hed import build_hed
-import torch.optim as optim
 from bob.ip.binseg.modeling.losses import HEDSoftJaccardBCELogitsLoss
 from bob.ip.binseg.utils.model_zoo import modelurls
 from bob.ip.binseg.engine.adabound import AdaBound
@@ -27,13 +37,23 @@ scheduler_gamma = 0.1
 model = build_hed()
 
 # pretrained backbone
-pretrained_backbone = modelurls['vgg16']
+pretrained_backbone = modelurls["vgg16"]
 
 # optimizer
-optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma,
-                 eps=eps, weight_decay=weight_decay, amsbound=amsbound) 
+optimizer = AdaBound(
+    model.parameters(),
+    lr=lr,
+    betas=betas,
+    final_lr=final_lr,
+    gamma=gamma,
+    eps=eps,
+    weight_decay=weight_decay,
+    amsbound=amsbound,
+)
 # criterion
 criterion = HEDSoftJaccardBCELogitsLoss(alpha=0.7)
 
 # scheduler
-scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma)
+scheduler = MultiStepLR(
+    optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma
+)
diff --git a/bob/ip/binseg/configs/models/m2unet.py b/bob/ip/binseg/configs/models/m2unet.py
index b15a277966200c97b47a201ff086c7002b9655aa..2edc0372b5b34c59e5feb9baf8b63b97f547441d 100644
--- a/bob/ip/binseg/configs/models/m2unet.py
+++ b/bob/ip/binseg/configs/models/m2unet.py
@@ -1,10 +1,21 @@
 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
 
+"""MobileNetV2 U-Net Model for Vessel Segmentation
+
+The MobileNetV2 architecture is based on an inverted residual structure where
+the input and output of the residual block are thin bottleneck layers opposite
+to traditional residual models which use expanded representations in the input
+an MobileNetV2 uses lightweight depthwise convolutions to filter features in
+the intermediate expansion layer.  This model implements a MobileNetV2 U-Net
+model, henceforth named M2U-Net, combining the strenghts of U-Net for medical
+segmentation applications and the speed of MobileNetV2 networks.
+
+References: [SANDLER-2018]_, [RONNEBERGER-2015]_
+"""
+
 from torch.optim.lr_scheduler import MultiStepLR
 from bob.ip.binseg.modeling.m2u import build_m2unet
-import torch.optim as optim
-from torch.nn import BCEWithLogitsLoss
 from bob.ip.binseg.utils.model_zoo import modelurls
 from bob.ip.binseg.modeling.losses import SoftJaccardBCELogitsLoss
 from bob.ip.binseg.engine.adabound import AdaBound
@@ -26,14 +37,24 @@ scheduler_gamma = 0.1
 model = build_m2unet()
 
 # pretrained backbone
-pretrained_backbone = modelurls['mobilenetv2']
+pretrained_backbone = modelurls["mobilenetv2"]
 
 # optimizer
-optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma,
-                 eps=eps, weight_decay=weight_decay, amsbound=amsbound) 
-    
+optimizer = AdaBound(
+    model.parameters(),
+    lr=lr,
+    betas=betas,
+    final_lr=final_lr,
+    gamma=gamma,
+    eps=eps,
+    weight_decay=weight_decay,
+    amsbound=amsbound,
+)
+
 # criterion
 criterion = SoftJaccardBCELogitsLoss(alpha=0.7)
 
 # scheduler
-scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma)
+scheduler = MultiStepLR(
+    optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma
+)
diff --git a/bob/ip/binseg/configs/models/m2unet_ssl.py b/bob/ip/binseg/configs/models/m2unet_ssl.py
new file mode 100644
index 0000000000000000000000000000000000000000..9a456d86efd9c8efbc5a623fbd6f0a75a16ecf9d
--- /dev/null
+++ b/bob/ip/binseg/configs/models/m2unet_ssl.py
@@ -0,0 +1,64 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+
+"""MobileNetV2 U-Net Model for Vessel Segmentation using SSL
+
+The MobileNetV2 architecture is based on an inverted residual structure where
+the input and output of the residual block are thin bottleneck layers opposite
+to traditional residual models which use expanded representations in the input
+an MobileNetV2 uses lightweight depthwise convolutions to filter features in
+the intermediate expansion layer.  This model implements a MobileNetV2 U-Net
+model, henceforth named M2U-Net, combining the strenghts of U-Net for medical
+segmentation applications and the speed of MobileNetV2 networks.  This version
+of our model includes a loss that is suitable for Semi-Supervised Learning
+(SSL).
+
+References: [SANDLER-2018]_, [RONNEBERGER-2015]_
+"""
+
+from torch.optim.lr_scheduler import MultiStepLR
+from bob.ip.binseg.modeling.m2u import build_m2unet
+from bob.ip.binseg.utils.model_zoo import modelurls
+from bob.ip.binseg.modeling.losses import MixJacLoss
+from bob.ip.binseg.engine.adabound import AdaBound
+
+##### Config #####
+lr = 0.001
+betas = (0.9, 0.999)
+eps = 1e-08
+weight_decay = 0
+final_lr = 0.1
+gamma = 1e-3
+eps = 1e-8
+amsbound = False
+
+scheduler_milestones = [900]
+scheduler_gamma = 0.1
+
+# model
+model = build_m2unet()
+
+# pretrained backbone
+pretrained_backbone = modelurls["mobilenetv2"]
+
+# optimizer
+optimizer = AdaBound(
+    model.parameters(),
+    lr=lr,
+    betas=betas,
+    final_lr=final_lr,
+    gamma=gamma,
+    eps=eps,
+    weight_decay=weight_decay,
+    amsbound=amsbound,
+)
+
+# criterion
+criterion = MixJacLoss(lambda_u=0.05, jacalpha=0.7)
+ssl = True
+
+# scheduler
+scheduler = MultiStepLR(
+    optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma
+)
diff --git a/bob/ip/binseg/configs/models/m2unetssl.py b/bob/ip/binseg/configs/models/m2unetssl.py
deleted file mode 100644
index 3497cea26b03c44b682cfd3beb167afce3015e43..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/configs/models/m2unetssl.py
+++ /dev/null
@@ -1,39 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-from torch.optim.lr_scheduler import MultiStepLR
-from bob.ip.binseg.modeling.m2u import build_m2unet
-import torch.optim as optim
-from torch.nn import BCEWithLogitsLoss
-from bob.ip.binseg.utils.model_zoo import modelurls
-from bob.ip.binseg.modeling.losses import MixJacLoss
-from bob.ip.binseg.engine.adabound import AdaBound
-
-##### Config #####
-lr = 0.001
-betas = (0.9, 0.999)
-eps = 1e-08
-weight_decay = 0
-final_lr = 0.1
-gamma = 1e-3
-eps = 1e-8
-amsbound = False
-
-scheduler_milestones = [900]
-scheduler_gamma = 0.1
-
-# model
-model = build_m2unet()
-
-# pretrained backbone
-pretrained_backbone = modelurls['mobilenetv2']
-
-# optimizer
-optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma,
-                 eps=eps, weight_decay=weight_decay, amsbound=amsbound) 
-    
-# criterion
-criterion = MixJacLoss(lambda_u=0.05, jacalpha=0.7)
-
-# scheduler
-scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma)
diff --git a/bob/ip/binseg/configs/models/resunet.py b/bob/ip/binseg/configs/models/resunet.py
index a1db473cc7f87b6847f57cc1200326d42cb8ab86..ff7e26e599294b7f52da4bb25a71f5d08205c128 100644
--- a/bob/ip/binseg/configs/models/resunet.py
+++ b/bob/ip/binseg/configs/models/resunet.py
@@ -1,10 +1,21 @@
 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
 
+"""Residual U-Net for Vessel Segmentation
+
+A semantic segmentation neural network which combines the strengths of residual
+learning and U-Net is proposed for road area extraction.  The network is built
+with residual units and has similar architecture to that of U-Net. The benefits
+of this model is two-fold: first, residual units ease training of deep
+networks. Second, the rich skip connections within the network could facilitate
+information propagation, allowing us to design networks with fewer parameters
+however better performance.
+
+Reference: [ZHANG-2017]_
+"""
+
 from torch.optim.lr_scheduler import MultiStepLR
 from bob.ip.binseg.modeling.resunet import build_res50unet
-import torch.optim as optim
-from torch.nn import BCEWithLogitsLoss
 from bob.ip.binseg.utils.model_zoo import modelurls
 from bob.ip.binseg.modeling.losses import SoftJaccardBCELogitsLoss
 from bob.ip.binseg.engine.adabound import AdaBound
@@ -26,14 +37,24 @@ scheduler_gamma = 0.1
 model = build_res50unet()
 
 # pretrained backbone
-pretrained_backbone = modelurls['resnet50']
+pretrained_backbone = modelurls["resnet50"]
 
 # optimizer
-optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma,
-                 eps=eps, weight_decay=weight_decay, amsbound=amsbound) 
-    
+optimizer = AdaBound(
+    model.parameters(),
+    lr=lr,
+    betas=betas,
+    final_lr=final_lr,
+    gamma=gamma,
+    eps=eps,
+    weight_decay=weight_decay,
+    amsbound=amsbound,
+)
+
 # criterion
 criterion = SoftJaccardBCELogitsLoss(alpha=0.7)
 
 # scheduler
-scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma)
+scheduler = MultiStepLR(
+    optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma
+)
diff --git a/bob/ip/binseg/configs/models/unet.py b/bob/ip/binseg/configs/models/unet.py
index 8182c7fa089c77221b4434e272ae6e0d394b3912..ee1eddb71417c96feb8a2897b9e0079271bdf83e 100644
--- a/bob/ip/binseg/configs/models/unet.py
+++ b/bob/ip/binseg/configs/models/unet.py
@@ -1,10 +1,19 @@
 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
 
+"""U-Net for Vessel Segmentation
+
+U-Net is a convolutional neural network that was developed for biomedical image
+segmentation at the Computer Science Department of the University of Freiburg,
+Germany.  The network is based on the fully convolutional network (FCN) and its
+architecture was modified and extended to work with fewer training images and
+to yield more precise segmentations.
+
+Reference: [RONNEBERGER-2015]_
+"""
+
 from torch.optim.lr_scheduler import MultiStepLR
 from bob.ip.binseg.modeling.unet import build_unet
-import torch.optim as optim
-from torch.nn import BCEWithLogitsLoss
 from bob.ip.binseg.utils.model_zoo import modelurls
 from bob.ip.binseg.modeling.losses import SoftJaccardBCELogitsLoss
 from bob.ip.binseg.engine.adabound import AdaBound
@@ -26,14 +35,24 @@ scheduler_gamma = 0.1
 model = build_unet()
 
 # pretrained backbone
-pretrained_backbone = modelurls['vgg16']
+pretrained_backbone = modelurls["vgg16"]
 
 # optimizer
-optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma,
-                 eps=eps, weight_decay=weight_decay, amsbound=amsbound) 
-    
+optimizer = AdaBound(
+    model.parameters(),
+    lr=lr,
+    betas=betas,
+    final_lr=final_lr,
+    gamma=gamma,
+    eps=eps,
+    weight_decay=weight_decay,
+    amsbound=amsbound,
+)
+
 # criterion
 criterion = SoftJaccardBCELogitsLoss(alpha=0.7)
 
 # scheduler
-scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma)
+scheduler = MultiStepLR(
+    optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma
+)
diff --git a/bob/ip/binseg/data/__init__.py b/bob/ip/binseg/data/__init__.py
index d776f7534f77d642a336adab27172f4096e3b023..93e77e17a122a8d228fe4844a78f81f085973b00 100644
--- a/bob/ip/binseg/data/__init__.py
+++ b/bob/ip/binseg/data/__init__.py
@@ -1,4 +1 @@
-# see https://docs.python.org/3/library/pkgutil.html
-from pkgutil import extend_path
-__path__ = extend_path(__path__, __name__)
-from .binsegdataset import BinSegDataset
\ No newline at end of file
+"""Data manipulation and raw dataset definitions"""
diff --git a/bob/ip/binseg/data/binsegdataset.py b/bob/ip/binseg/data/binsegdataset.py
deleted file mode 100644
index 2917203c7b530bee796431e0dbe5e7af1f85a2b9..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/data/binsegdataset.py
+++ /dev/null
@@ -1,163 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-from torch.utils.data import Dataset
-import random
-
-class BinSegDataset(Dataset):
-    """PyTorch dataset wrapper around bob.db binary segmentation datasets. 
-    A transform object can be passed that will be applied to the image, ground truth and mask (if present). 
-    It supports indexing such that dataset[i] can be used to get ith sample.
-    
-    Parameters
-    ---------- 
-    bobdb : :py:mod:`bob.db.base`
-        Binary segmentation bob database (e.g. bob.db.drive) 
-    split : str 
-        ``'train'`` or ``'test'``. Defaults to ``'train'``
-    transform : :py:mod:`bob.ip.binseg.data.transforms`, optional
-        A transform or composition of transfroms. Defaults to ``None``.
-    mask : bool
-        whether dataset contains masks or not
-    """
-    def __init__(self, bobdb, split = 'train', transform = None,index_to = None):
-        if index_to:
-            self.database = bobdb.samples(split)[:index_to]
-        else:
-            self.database = bobdb.samples(split)
-        self.transform = transform
-        self.split = split
-    
-    @property
-    def mask(self):
-        # check if first sample contains a mask
-        return hasattr(self.database[0], 'mask')
-
-    def __len__(self):
-        """
-        Returns
-        -------
-        int
-            size of the dataset
-        """
-        return len(self.database)
-    
-    def __getitem__(self,index):
-        """
-        Parameters
-        ----------
-        index : int
-        
-        Returns
-        -------
-        list
-            dataitem [img_name, img, gt]
-        """
-        img = self.database[index].img.pil_image()
-        gt = self.database[index].gt.pil_image()
-        img_name = self.database[index].img.basename
-        sample = [img, gt]
-        
-        if self.transform :
-            sample = self.transform(*sample)
-        
-        sample.insert(0,img_name)
-        
-        return sample
-
-
-class SSLBinSegDataset(Dataset):
-    """PyTorch dataset wrapper around bob.db binary segmentation datasets. 
-    A transform object can be passed that will be applied to the image, ground truth and mask (if present). 
-    It supports indexing such that dataset[i] can be used to get ith sample.
-    
-    Parameters
-    ---------- 
-    labeled_dataset : :py:class:`torch.utils.data.Dataset`
-        BinSegDataset with labeled samples
-    unlabeled_dataset : :py:class:`torch.utils.data.Dataset`
-        UnLabeledBinSegDataset with unlabeled data
-    """
-    def __init__(self, labeled_dataset, unlabeled_dataset):
-        self.labeled_dataset = labeled_dataset
-        self.unlabeled_dataset = unlabeled_dataset
-    
-
-    def __len__(self):
-        """
-        Returns
-        -------
-        int
-            size of the dataset
-        """
-        return len(self.labeled_dataset)
-    
-    def __getitem__(self,index):
-        """
-        Parameters
-        ----------
-        index : int
-        
-        Returns
-        -------
-        list
-            dataitem [img_name, img, gt, unlabeled_img_name, unlabeled_img]
-        """
-        sample = self.labeled_dataset[index]
-        unlabeled_img_name, unlabeled_img = self.unlabeled_dataset[0]
-        sample.extend([unlabeled_img_name, unlabeled_img])
-        return sample
-
-
-class UnLabeledBinSegDataset(Dataset):
-    # TODO: if switch to handle case were not a bob.db object but a path to a directory is used
-    """PyTorch dataset wrapper around bob.db binary segmentation datasets. 
-    A transform object can be passed that will be applied to the image, ground truth and mask (if present). 
-    It supports indexing such that dataset[i] can be used to get ith sample.
-    
-    Parameters
-    ---------- 
-    dv : :py:mod:`bob.db.base` or str
-        Binary segmentation bob database (e.g. bob.db.drive) or path to folder containing unlabeled images
-    split : str 
-        ``'train'`` or ``'test'``. Defaults to ``'train'``
-    transform : :py:mod:`bob.ip.binseg.data.transforms`, optional
-        A transform or composition of transfroms. Defaults to ``None``.
-    """
-    def __init__(self, db, split = 'train', transform = None,index_from= None):
-        if index_from:
-            self.database = db.samples(split)[index_from:]
-        else:
-            self.database = db.samples(split)
-        self.transform = transform
-        self.split = split   
-
-    def __len__(self):
-        """
-        Returns
-        -------
-        int
-            size of the dataset
-        """
-        return len(self.database)
-    
-    def __getitem__(self,index):
-        """
-        Parameters
-        ----------
-        index : int
-        
-        Returns
-        -------
-        list
-            dataitem [img_name, img]
-        """
-        random.shuffle(self.database)
-        img = self.database[index].img.pil_image()
-        img_name = self.database[index].img.basename
-        sample = [img]
-        if self.transform :
-            sample = self.transform(img)
-        
-        sample.insert(0,img_name)
-        
-        return sample
\ No newline at end of file
diff --git a/bob/ip/binseg/data/chasedb1/__init__.py b/bob/ip/binseg/data/chasedb1/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..08a59459c8c137c89d1a64787c85cc72ddaf31d1
--- /dev/null
+++ b/bob/ip/binseg/data/chasedb1/__init__.py
@@ -0,0 +1,68 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""CHASE-DB1 dataset for Vessel Segmentation
+
+The CHASE_DB1 is a retinal vessel reference dataset acquired from multiethnic
+school children. This database is a part of the Child Heart and Health Study in
+England (CHASE), a cardiovascular health survey in 200 primary schools in
+London, Birmingham, and Leicester. The ocular imaging was carried out in
+46 schools and demonstrated associations between retinal vessel tortuosity and
+early risk factors for cardiovascular disease in over 1000 British primary
+school children of different ethnic origin. The retinal images of both of the
+eyes of each child were recorded with a hand-held Nidek NM-200-D fundus camera.
+The images were captured at 30 degrees FOV camera. The dataset of images are
+characterized by having nonuniform back-ground illumination, poor contrast of
+blood vessels as compared with the background and wider arteriolars that have a
+bright strip running down the centre known as the central vessel reflex.
+
+* Reference: [CHASEDB1-2012]_
+* Original resolution (height x width): 960 x 999
+* Split reference: [CHASEDB1-2012]_
+* Protocol ``first-annotator``:
+
+  * Training samples: 8 (including labels from annotator "1stHO")
+  * Test samples: 20 (including labels from annotator "1stHO")
+
+* Protocol ``second-annotator``:
+
+  * Training samples: 8 (including labels from annotator "2ndHO")
+  * Test samples: 20 (including labels from annotator "2ndHO")
+
+"""
+
+import os
+import pkg_resources
+
+import bob.extension
+
+from ..dataset import JSONDataset
+from ..loader import load_pil_rgb, load_pil_1, make_delayed
+
+_protocols = [
+    pkg_resources.resource_filename(__name__, "first-annotator.json"),
+    pkg_resources.resource_filename(__name__, "second-annotator.json"),
+]
+
+_root_path = bob.extension.rc.get(
+    "bob.ip.binseg.chasedb1.datadir", os.path.realpath(os.curdir)
+)
+
+
+def _raw_data_loader(sample):
+    return dict(
+        data=load_pil_rgb(os.path.join(_root_path, sample["data"])),
+        label=load_pil_1(os.path.join(_root_path, sample["label"])),
+    )
+
+
+def _loader(context, sample):
+    # "context" is ignored in this case - database is homogeneous
+    # we returned delayed samples to avoid loading all images at once
+    return make_delayed(sample, _raw_data_loader)
+
+
+dataset = JSONDataset(
+    protocols=_protocols, fieldnames=("data", "label"), loader=_loader
+)
+"""CHASE-DB1 dataset object"""
diff --git a/bob/ip/binseg/data/chasedb1/first-annotator.json b/bob/ip/binseg/data/chasedb1/first-annotator.json
new file mode 100644
index 0000000000000000000000000000000000000000..e7e6761b6ec86022518152a88724d754a7231802
--- /dev/null
+++ b/bob/ip/binseg/data/chasedb1/first-annotator.json
@@ -0,0 +1,118 @@
+{
+ "train": [
+  [
+   "Image_11L.jpg",
+   "Image_11L_1stHO.png"
+  ],
+  [
+   "Image_11R.jpg",
+   "Image_11R_1stHO.png"
+  ],
+  [
+   "Image_12L.jpg",
+   "Image_12L_1stHO.png"
+  ],
+  [
+   "Image_12R.jpg",
+   "Image_12R_1stHO.png"
+  ],
+  [
+   "Image_13L.jpg",
+   "Image_13L_1stHO.png"
+  ],
+  [
+   "Image_13R.jpg",
+   "Image_13R_1stHO.png"
+  ],
+  [
+   "Image_14L.jpg",
+   "Image_14L_1stHO.png"
+  ],
+  [
+   "Image_14R.jpg",
+   "Image_14R_1stHO.png"
+  ]
+ ],
+ "test": [
+  [
+   "Image_01L.jpg",
+   "Image_01L_1stHO.png"
+  ],
+  [
+   "Image_01R.jpg",
+   "Image_01R_1stHO.png"
+  ],
+  [
+   "Image_02L.jpg",
+   "Image_02L_1stHO.png"
+  ],
+  [
+   "Image_02R.jpg",
+   "Image_02R_1stHO.png"
+  ],
+  [
+   "Image_03L.jpg",
+   "Image_03L_1stHO.png"
+  ],
+  [
+   "Image_03R.jpg",
+   "Image_03R_1stHO.png"
+  ],
+  [
+   "Image_04L.jpg",
+   "Image_04L_1stHO.png"
+  ],
+  [
+   "Image_04R.jpg",
+   "Image_04R_1stHO.png"
+  ],
+  [
+   "Image_05L.jpg",
+   "Image_05L_1stHO.png"
+  ],
+  [
+   "Image_05R.jpg",
+   "Image_05R_1stHO.png"
+  ],
+  [
+   "Image_06L.jpg",
+   "Image_06L_1stHO.png"
+  ],
+  [
+   "Image_06R.jpg",
+   "Image_06R_1stHO.png"
+  ],
+  [
+   "Image_07L.jpg",
+   "Image_07L_1stHO.png"
+  ],
+  [
+   "Image_07R.jpg",
+   "Image_07R_1stHO.png"
+  ],
+  [
+   "Image_08L.jpg",
+   "Image_08L_1stHO.png"
+  ],
+  [
+   "Image_08R.jpg",
+   "Image_08R_1stHO.png"
+  ],
+  [
+   "Image_09L.jpg",
+   "Image_09L_1stHO.png"
+  ],
+  [
+   "Image_09R.jpg",
+   "Image_09R_1stHO.png"
+  ],
+  [
+   "Image_10L.jpg",
+   "Image_10L_1stHO.png"
+  ],
+  [
+   "Image_10R.jpg",
+   "Image_10R_1stHO.png"
+  ]
+ ]
+}
\ No newline at end of file
diff --git a/bob/ip/binseg/data/chasedb1/second-annotator.json b/bob/ip/binseg/data/chasedb1/second-annotator.json
new file mode 100644
index 0000000000000000000000000000000000000000..9e26e371fa1df5095c73109cef019f1c95e8b2a5
--- /dev/null
+++ b/bob/ip/binseg/data/chasedb1/second-annotator.json
@@ -0,0 +1,118 @@
+{
+ "train": [
+  [
+   "Image_11L.jpg",
+   "Image_11L_2ndHO.png"
+  ],
+  [
+   "Image_11R.jpg",
+   "Image_11R_2ndHO.png"
+  ],
+  [
+   "Image_12L.jpg",
+   "Image_12L_2ndHO.png"
+  ],
+  [
+   "Image_12R.jpg",
+   "Image_12R_2ndHO.png"
+  ],
+  [
+   "Image_13L.jpg",
+   "Image_13L_2ndHO.png"
+  ],
+  [
+   "Image_13R.jpg",
+   "Image_13R_2ndHO.png"
+  ],
+  [
+   "Image_14L.jpg",
+   "Image_14L_2ndHO.png"
+  ],
+  [
+   "Image_14R.jpg",
+   "Image_14R_2ndHO.png"
+  ]
+ ],
+ "test": [
+  [
+   "Image_01L.jpg",
+   "Image_01L_2ndHO.png"
+  ],
+  [
+   "Image_01R.jpg",
+   "Image_01R_2ndHO.png"
+  ],
+  [
+   "Image_02L.jpg",
+   "Image_02L_2ndHO.png"
+  ],
+  [
+   "Image_02R.jpg",
+   "Image_02R_2ndHO.png"
+  ],
+  [
+   "Image_03L.jpg",
+   "Image_03L_2ndHO.png"
+  ],
+  [
+   "Image_03R.jpg",
+   "Image_03R_2ndHO.png"
+  ],
+  [
+   "Image_04L.jpg",
+   "Image_04L_2ndHO.png"
+  ],
+  [
+   "Image_04R.jpg",
+   "Image_04R_2ndHO.png"
+  ],
+  [
+   "Image_05L.jpg",
+   "Image_05L_2ndHO.png"
+  ],
+  [
+   "Image_05R.jpg",
+   "Image_05R_2ndHO.png"
+  ],
+  [
+   "Image_06L.jpg",
+   "Image_06L_2ndHO.png"
+  ],
+  [
+   "Image_06R.jpg",
+   "Image_06R_2ndHO.png"
+  ],
+  [
+   "Image_07L.jpg",
+   "Image_07L_2ndHO.png"
+  ],
+  [
+   "Image_07R.jpg",
+   "Image_07R_2ndHO.png"
+  ],
+  [
+   "Image_08L.jpg",
+   "Image_08L_2ndHO.png"
+  ],
+  [
+   "Image_08R.jpg",
+   "Image_08R_2ndHO.png"
+  ],
+  [
+   "Image_09L.jpg",
+   "Image_09L_2ndHO.png"
+  ],
+  [
+   "Image_09R.jpg",
+   "Image_09R_2ndHO.png"
+  ],
+  [
+   "Image_10L.jpg",
+   "Image_10L_2ndHO.png"
+  ],
+  [
+   "Image_10R.jpg",
+   "Image_10R_2ndHO.png"
+  ]
+ ]
+}
diff --git a/bob/ip/binseg/data/dataset.py b/bob/ip/binseg/data/dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..dd6cb14069237e2935de2814c21102888c6a55e3
--- /dev/null
+++ b/bob/ip/binseg/data/dataset.py
@@ -0,0 +1,323 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+import os
+import csv
+import copy
+import json
+import pathlib
+
+import logging
+
+logger = logging.getLogger(__name__)
+
+
+class JSONDataset:
+    """
+    Generic multi-protocol/subset filelist dataset that yields samples
+
+    To create a new dataset, you need to provide one or more JSON formatted
+    filelists (one per protocol) with the following contents:
+
+    .. code-block:: json
+
+       {
+           "subset1": [
+               [
+                   "value1",
+                   "value2",
+                   "value3"
+               ],
+               [
+                   "value4",
+                   "value5",
+                   "value6"
+               ]
+           ],
+           "subset2": [
+           ]
+       }
+
+    Your dataset many contain any number of subsets, but all sample entries
+    must contain the same number of fields.
+
+
+    Parameters
+    ----------
+
+    protocols : list, dict
+        Paths to one or more JSON formatted files containing the various
+        protocols to be recognized by this dataset, or a dictionary, mapping
+        protocol names to paths (or opened file objects) of CSV files.
+        Internally, we save a dictionary where keys default to the basename of
+        paths (list input).
+
+    fieldnames : list, tuple
+        An iterable over the field names (strings) to assign to each entry in
+        the JSON file.  It should have as many items as fields in each entry of
+        the JSON file.
+
+    loader : object
+        A function that receives as input, a context dictionary (with at least
+        a "protocol" and "subset" keys indicating which protocol and subset are
+        being served), and a dictionary with ``{fieldname: value}`` entries,
+        and returns an object with at least 2 attributes:
+
+        * ``key``: which must be a unique string for every sample across
+          subsets in a protocol, and
+        * ``data``: which contains the data associated witht this sample
+
+    """
+
+    def __init__(self, protocols, fieldnames, loader):
+
+        if isinstance(protocols, dict):
+            self._protocols = protocols
+        else:
+            self._protocols = dict(
+                (os.path.splitext(os.path.basename(k))[0], k) for k in protocols
+            )
+        self.fieldnames = fieldnames
+        self._loader = loader
+
+    def check(self, limit=0):
+        """For each protocol, check if all data can be correctly accessed
+
+        This function assumes each sample has a ``data`` and a ``key``
+        attribute.  The ``key`` attribute should be a string, or representable
+        as such.
+
+
+        Parameters
+        ----------
+
+        limit : int
+            Maximum number of samples to check (in each protocol/subset
+            combination) in this dataset.  If set to zero, then check
+            everything.
+
+
+        Returns
+        -------
+
+        errors : int
+            Number of errors found
+
+        """
+
+        logger.info(f"Checking dataset...")
+        errors = 0
+        for proto in self._protocols:
+            logger.info(f"Checking protocol '{proto}'...")
+            for name, samples in self.subsets(proto).items():
+                logger.info(f"Checking subset '{name}'...")
+                if limit:
+                    logger.info(f"Checking at most first '{limit}' samples...")
+                    samples = samples[:limit]
+                for pos, sample in enumerate(samples):
+                    try:
+                        sample.data  # may trigger data loading
+                        logger.info(f"{sample.key}: OK")
+                    except Exception as e:
+                        logger.error(
+                            f"Found error loading entry {pos} in subset {name} "
+                            f"of protocol {proto} from file "
+                            f"'{self._protocols[proto]}': {e}"
+                            )
+                        errors += 1
+                    except Exception as e:
+                        logger.error(f"{sample.key}: {e}")
+                        errors += 1
+        return errors
+
+    def subsets(self, protocol):
+        """Returns all subsets in a protocol
+
+        This method will load JSON information for a given protocol and return
+        all subsets of the given protocol after converting each entry through
+        the loader function.
+
+        Parameters
+        ----------
+
+        protocol : str
+            Name of the protocol data to load
+
+
+        Returns
+        -------
+
+        subsets : dict
+            A dictionary mapping subset names to lists of objects (respecting
+            the ``key``, ``data`` interface).
+
+        """
+
+        fileobj = self._protocols[protocol]
+        if isinstance(fileobj, (str, bytes, pathlib.Path)):
+            with open(self._protocols[protocol], "r") as f:
+                data = json.load(f)
+        else:
+            data = json.load(f)
+            fileobj.seek(0)
+
+        retval = {}
+        for subset, samples in data.items():
+            retval[subset] = [
+                self._loader(
+                    dict(protocol=protocol, subset=subset, order=n),
+                    dict(zip(self.fieldnames, k))
+                )
+                for n, k in enumerate(samples)
+            ]
+
+        return retval
+
+
+class CSVDataset:
+    """
+    Generic multi-subset filelist dataset that yields samples
+
+    To create a new dataset, you only need to provide a CSV formatted filelist
+    using any separator (e.g. comma, space, semi-colon) with the following
+    information:
+
+    .. code-block:: text
+
+       value1,value2,value3
+       value4,value5,value6
+       ...
+
+    Notice that all rows must have the same number of entries.
+
+    Parameters
+    ----------
+
+    subsets : list, dict
+        Paths to one or more CSV formatted files containing the various subsets
+        to be recognized by this dataset, or a dictionary, mapping subset names
+        to paths (or opened file objects) of CSV files.  Internally, we save a
+        dictionary where keys default to the basename of paths (list input).
+
+    fieldnames : list, tuple
+        An iterable over the field names (strings) to assign to each column in
+        the CSV file.  It should have as many items as fields in each row of
+        the CSV file(s).
+
+    loader : object
+        A function that receives as input, a context dictionary (with, at
+        least, a "subset" key indicating which subset is being served), and a
+        dictionary with ``{key: path}`` entries, and returns a dictionary with
+        the loaded data.
+
+    """
+
+    def __init__(self, subsets, fieldnames, loader):
+
+        if isinstance(subsets, dict):
+            self._subsets = subsets
+        else:
+            self._subsets = dict(
+                (os.path.splitext(os.path.basename(k))[0], k) for k in subsets
+            )
+        self.fieldnames = fieldnames
+        self._loader = loader
+
+    def check(self, limit=0):
+        """For each subset, check if all data can be correctly accessed
+
+        This function assumes each sample has a ``data`` and a ``key``
+        attribute.  The ``key`` attribute should be a string, or representable
+        as such.
+
+
+        Parameters
+        ----------
+
+        limit : int
+            Maximum number of samples to check (in each protocol/subset
+            combination) in this dataset.  If set to zero, then check
+            everything.
+
+
+        Returns
+        -------
+
+        errors : int
+            Number of errors found
+
+        """
+
+        logger.info(f"Checking dataset...")
+        errors = 0
+        for name in self._subsets.keys():
+            logger.info(f"Checking subset '{name}'...")
+            samples = self.samples(name)
+            if limit:
+                logger.info(f"Checking at most first '{limit}' samples...")
+                samples = samples[:limit]
+            for pos, sample in enumerate(samples):
+                try:
+                    sample.data  # may trigger data loading
+                    logger.info(f"{sample.key}: OK")
+                except Exception as e:
+                    logger.error(
+                        f"Found error loading entry {pos} in subset {name} "
+                        f"from file '{self._subsets[name]}': {e}"
+                        )
+                    errors += 1
+        return errors
+
+    def subsets(self):
+        """Returns all available subsets at once
+
+        Returns
+        -------
+
+        subsets : dict
+            A dictionary mapping subset names to lists of objects (respecting
+            the ``key``, ``data`` interface).
+
+        """
+
+        return dict((k, self.samples(k)) for k in self._subsets.keys())
+
+    def samples(self, subset):
+        """Returns all samples in a subset
+
+        This method will load CSV information for a given subset and return
+        all samples of the given subset after passing each entry through the
+        loading function.
+
+
+        Parameters
+        ----------
+
+        subset : str
+            Name of the subset data to load
+
+
+        Returns
+        -------
+
+        subset : list
+            A lists of objects (respecting the ``key``, ``data`` interface).
+
+        """
+
+        fileobj = self._subsets[subset]
+        if isinstance(fileobj, (str, bytes, pathlib.Path)):
+            with open(self._subsets[subset], newline="") as f:
+                cf = csv.reader(f)
+                samples = [k for k in cf]
+        else:
+            cf = csv.reader(fileobj)
+            samples = [k for k in cf]
+            fileobj.seek(0)
+
+        return [
+            self._loader(
+                dict(subset=subset, order=n), dict(zip(self.fieldnames, k))
+            )
+            for n, k in enumerate(samples)
+        ]
diff --git a/bob/ip/binseg/data/drionsdb/__init__.py b/bob/ip/binseg/data/drionsdb/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..92e345e3a21ec2309aa23c8f6c42e72bb4b1b4ee
--- /dev/null
+++ b/bob/ip/binseg/data/drionsdb/__init__.py
@@ -0,0 +1,90 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""DRIONS-DB (training set) for Optic Disc Segmentation
+
+The dataset originates from data collected from 55 patients with glaucoma
+(23.1%) and eye hypertension (76.9%), and random selected from an eye fundus
+image base belonging to the Ophthalmology Service at Miguel Servet Hospital,
+Saragossa (Spain).  It contains 110 eye fundus images with a resolution of 600
+x 400. Two sets of ground-truth optic disc annotations are available. The first
+set is commonly used for training and testing. The second set acts as a "human"
+baseline.
+
+* Reference: [DRIONSDB-2008]_
+* Original resolution (height x width): 400 x 600
+* Configuration resolution: 416 x 608 (after padding)
+* Split reference: [MANINIS-2016]_
+* Protocols ``expert1`` (baseline) and ``expert2`` (human comparison):
+
+    * Training samples: 60
+    * Test samples: 50
+"""
+
+import os
+import csv
+import pkg_resources
+
+import PIL.Image
+import PIL.ImageDraw
+
+import bob.extension
+
+from ..dataset import JSONDataset
+from ..loader import load_pil_rgb, make_delayed
+
+_protocols = [
+    pkg_resources.resource_filename(__name__, "expert1.json"),
+    pkg_resources.resource_filename(__name__, "expert2.json"),
+]
+
+_root_path = bob.extension.rc.get(
+    "bob.ip.binseg.drionsdb.datadir", os.path.realpath(os.curdir)
+)
+
+
+def _txt_to_pil_1(fname, size):
+    """Converts DRIONS-DB annotations to image format"""
+    with open(fname, "r") as f:
+        rows = csv.reader(f, delimiter=",", quoting=csv.QUOTE_NONNUMERIC)
+        data = list(map(tuple, rows))
+
+    retval = PIL.Image.new("1", size)
+    draw = PIL.ImageDraw.ImageDraw(retval)
+    draw.polygon(data, fill="white")
+    del draw
+    return retval
+
+
+def _pad_right(img):
+    """Pads image on the right by one pixel, respects mode"""
+    retval = PIL.Image.new(img.mode, (img.size[0] + 1, img.size[1]), "black")
+    retval.paste(img, (0, 0) + img.size)  # top-left pasting
+    return retval
+
+
+def _raw_data_loader(sample):
+    data = load_pil_rgb(os.path.join(_root_path, sample["data"]))
+    label = _txt_to_pil_1(os.path.join(_root_path, sample["label"]), data.size)
+    return dict(data=data, label=label,)
+
+
+def _sample_101_loader(sample):
+    # pads the image on the right side to account for a difference in
+    # resolution to other images in the dataset
+    retval = _raw_data_loader(sample)
+    retval["data"] = _pad_right(retval["data"])
+    retval["label"] = _pad_right(retval["label"])
+    return retval
+
+
+def _loader(context, sample):
+    if sample["data"].endswith("_101.jpg"):
+        return make_delayed(sample, _sample_101_loader)
+    return make_delayed(sample, _raw_data_loader)
+
+
+dataset = JSONDataset(
+    protocols=_protocols, fieldnames=("data", "label"), loader=_loader
+)
+"""DRIONSDB dataset object"""
diff --git a/bob/ip/binseg/data/drionsdb/expert1.json b/bob/ip/binseg/data/drionsdb/expert1.json
new file mode 100644
index 0000000000000000000000000000000000000000..7486980a2cfc8974d6547ca49ead7b912a08653f
--- /dev/null
+++ b/bob/ip/binseg/data/drionsdb/expert1.json
@@ -0,0 +1,446 @@
+{
+ "train": [
+  [
+   "images/image_001.jpg",
+   "experts_anotation/anotExpert1_001.txt"
+  ],
+  [
+   "images/image_002.jpg",
+   "experts_anotation/anotExpert1_002.txt"
+  ],
+  [
+   "images/image_003.jpg",
+   "experts_anotation/anotExpert1_003.txt"
+  ],
+  [
+   "images/image_004.jpg",
+   "experts_anotation/anotExpert1_004.txt"
+  ],
+  [
+   "images/image_005.jpg",
+   "experts_anotation/anotExpert1_005.txt"
+  ],
+  [
+   "images/image_006.jpg",
+   "experts_anotation/anotExpert1_006.txt"
+  ],
+  [
+   "images/image_007.jpg",
+   "experts_anotation/anotExpert1_007.txt"
+  ],
+  [
+   "images/image_008.jpg",
+   "experts_anotation/anotExpert1_008.txt"
+  ],
+  [
+   "images/image_009.jpg",
+   "experts_anotation/anotExpert1_009.txt"
+  ],
+  [
+   "images/image_010.jpg",
+   "experts_anotation/anotExpert1_010.txt"
+  ],
+  [
+   "images/image_011.jpg",
+   "experts_anotation/anotExpert1_011.txt"
+  ],
+  [
+   "images/image_012.jpg",
+   "experts_anotation/anotExpert1_012.txt"
+  ],
+  [
+   "images/image_013.jpg",
+   "experts_anotation/anotExpert1_013.txt"
+  ],
+  [
+   "images/image_014.jpg",
+   "experts_anotation/anotExpert1_014.txt"
+  ],
+  [
+   "images/image_015.jpg",
+   "experts_anotation/anotExpert1_015.txt"
+  ],
+  [
+   "images/image_016.jpg",
+   "experts_anotation/anotExpert1_016.txt"
+  ],
+  [
+   "images/image_017.jpg",
+   "experts_anotation/anotExpert1_017.txt"
+  ],
+  [
+   "images/image_018.jpg",
+   "experts_anotation/anotExpert1_018.txt"
+  ],
+  [
+   "images/image_019.jpg",
+   "experts_anotation/anotExpert1_019.txt"
+  ],
+  [
+   "images/image_020.jpg",
+   "experts_anotation/anotExpert1_020.txt"
+  ],
+  [
+   "images/image_021.jpg",
+   "experts_anotation/anotExpert1_021.txt"
+  ],
+  [
+   "images/image_022.jpg",
+   "experts_anotation/anotExpert1_022.txt"
+  ],
+  [
+   "images/image_023.jpg",
+   "experts_anotation/anotExpert1_023.txt"
+  ],
+  [
+   "images/image_024.jpg",
+   "experts_anotation/anotExpert1_024.txt"
+  ],
+  [
+   "images/image_025.jpg",
+   "experts_anotation/anotExpert1_025.txt"
+  ],
+  [
+   "images/image_026.jpg",
+   "experts_anotation/anotExpert1_026.txt"
+  ],
+  [
+   "images/image_027.jpg",
+   "experts_anotation/anotExpert1_027.txt"
+  ],
+  [
+   "images/image_028.jpg",
+   "experts_anotation/anotExpert1_028.txt"
+  ],
+  [
+   "images/image_029.jpg",
+   "experts_anotation/anotExpert1_029.txt"
+  ],
+  [
+   "images/image_030.jpg",
+   "experts_anotation/anotExpert1_030.txt"
+  ],
+  [
+   "images/image_031.jpg",
+   "experts_anotation/anotExpert1_031.txt"
+  ],
+  [
+   "images/image_032.jpg",
+   "experts_anotation/anotExpert1_032.txt"
+  ],
+  [
+   "images/image_033.jpg",
+   "experts_anotation/anotExpert1_033.txt"
+  ],
+  [
+   "images/image_034.jpg",
+   "experts_anotation/anotExpert1_034.txt"
+  ],
+  [
+   "images/image_035.jpg",
+   "experts_anotation/anotExpert1_035.txt"
+  ],
+  [
+   "images/image_036.jpg",
+   "experts_anotation/anotExpert1_036.txt"
+  ],
+  [
+   "images/image_037.jpg",
+   "experts_anotation/anotExpert1_037.txt"
+  ],
+  [
+   "images/image_038.jpg",
+   "experts_anotation/anotExpert1_038.txt"
+  ],
+  [
+   "images/image_039.jpg",
+   "experts_anotation/anotExpert1_039.txt"
+  ],
+  [
+   "images/image_040.jpg",
+   "experts_anotation/anotExpert1_040.txt"
+  ],
+  [
+   "images/image_041.jpg",
+   "experts_anotation/anotExpert1_041.txt"
+  ],
+  [
+   "images/image_042.jpg",
+   "experts_anotation/anotExpert1_042.txt"
+  ],
+  [
+   "images/image_043.jpg",
+   "experts_anotation/anotExpert1_043.txt"
+  ],
+  [
+   "images/image_044.jpg",
+   "experts_anotation/anotExpert1_044.txt"
+  ],
+  [
+   "images/image_045.jpg",
+   "experts_anotation/anotExpert1_045.txt"
+  ],
+  [
+   "images/image_046.jpg",
+   "experts_anotation/anotExpert1_046.txt"
+  ],
+  [
+   "images/image_047.jpg",
+   "experts_anotation/anotExpert1_047.txt"
+  ],
+  [
+   "images/image_048.jpg",
+   "experts_anotation/anotExpert1_048.txt"
+  ],
+  [
+   "images/image_049.jpg",
+   "experts_anotation/anotExpert1_049.txt"
+  ],
+  [
+   "images/image_050.jpg",
+   "experts_anotation/anotExpert1_050.txt"
+  ],
+  [
+   "images/image_051.jpg",
+   "experts_anotation/anotExpert1_051.txt"
+  ],
+  [
+   "images/image_052.jpg",
+   "experts_anotation/anotExpert1_052.txt"
+  ],
+  [
+   "images/image_053.jpg",
+   "experts_anotation/anotExpert1_053.txt"
+  ],
+  [
+   "images/image_054.jpg",
+   "experts_anotation/anotExpert1_054.txt"
+  ],
+  [
+   "images/image_055.jpg",
+   "experts_anotation/anotExpert1_055.txt"
+  ],
+  [
+   "images/image_056.jpg",
+   "experts_anotation/anotExpert1_056.txt"
+  ],
+  [
+   "images/image_057.jpg",
+   "experts_anotation/anotExpert1_057.txt"
+  ],
+  [
+   "images/image_058.jpg",
+   "experts_anotation/anotExpert1_058.txt"
+  ],
+  [
+   "images/image_059.jpg",
+   "experts_anotation/anotExpert1_059.txt"
+  ],
+  [
+   "images/image_060.jpg",
+   "experts_anotation/anotExpert1_060.txt"
+  ]
+ ],
+ "test": [
+  [
+   "images/image_061.jpg",
+   "experts_anotation/anotExpert1_061.txt"
+  ],
+  [
+   "images/image_062.jpg",
+   "experts_anotation/anotExpert1_062.txt"
+  ],
+  [
+   "images/image_063.jpg",
+   "experts_anotation/anotExpert1_063.txt"
+  ],
+  [
+   "images/image_064.jpg",
+   "experts_anotation/anotExpert1_064.txt"
+  ],
+  [
+   "images/image_065.jpg",
+   "experts_anotation/anotExpert1_065.txt"
+  ],
+  [
+   "images/image_066.jpg",
+   "experts_anotation/anotExpert1_066.txt"
+  ],
+  [
+   "images/image_067.jpg",
+   "experts_anotation/anotExpert1_067.txt"
+  ],
+  [
+   "images/image_068.jpg",
+   "experts_anotation/anotExpert1_068.txt"
+  ],
+  [
+   "images/image_069.jpg",
+   "experts_anotation/anotExpert1_069.txt"
+  ],
+  [
+   "images/image_070.jpg",
+   "experts_anotation/anotExpert1_070.txt"
+  ],
+  [
+   "images/image_071.jpg",
+   "experts_anotation/anotExpert1_071.txt"
+  ],
+  [
+   "images/image_072.jpg",
+   "experts_anotation/anotExpert1_072.txt"
+  ],
+  [
+   "images/image_073.jpg",
+   "experts_anotation/anotExpert1_073.txt"
+  ],
+  [
+   "images/image_074.jpg",
+   "experts_anotation/anotExpert1_074.txt"
+  ],
+  [
+   "images/image_075.jpg",
+   "experts_anotation/anotExpert1_075.txt"
+  ],
+  [
+   "images/image_076.jpg",
+   "experts_anotation/anotExpert1_076.txt"
+  ],
+  [
+   "images/image_077.jpg",
+   "experts_anotation/anotExpert1_077.txt"
+  ],
+  [
+   "images/image_078.jpg",
+   "experts_anotation/anotExpert1_078.txt"
+  ],
+  [
+   "images/image_079.jpg",
+   "experts_anotation/anotExpert1_079.txt"
+  ],
+  [
+   "images/image_080.jpg",
+   "experts_anotation/anotExpert1_080.txt"
+  ],
+  [
+   "images/image_081.jpg",
+   "experts_anotation/anotExpert1_081.txt"
+  ],
+  [
+   "images/image_082.jpg",
+   "experts_anotation/anotExpert1_082.txt"
+  ],
+  [
+   "images/image_083.jpg",
+   "experts_anotation/anotExpert1_083.txt"
+  ],
+  [
+   "images/image_084.jpg",
+   "experts_anotation/anotExpert1_084.txt"
+  ],
+  [
+   "images/image_085.jpg",
+   "experts_anotation/anotExpert1_085.txt"
+  ],
+  [
+   "images/image_086.jpg",
+   "experts_anotation/anotExpert1_086.txt"
+  ],
+  [
+   "images/image_087.jpg",
+   "experts_anotation/anotExpert1_087.txt"
+  ],
+  [
+   "images/image_088.jpg",
+   "experts_anotation/anotExpert1_088.txt"
+  ],
+  [
+   "images/image_089.jpg",
+   "experts_anotation/anotExpert1_089.txt"
+  ],
+  [
+   "images/image_090.jpg",
+   "experts_anotation/anotExpert1_090.txt"
+  ],
+  [
+   "images/image_091.jpg",
+   "experts_anotation/anotExpert1_091.txt"
+  ],
+  [
+   "images/image_092.jpg",
+   "experts_anotation/anotExpert1_092.txt"
+  ],
+  [
+   "images/image_093.jpg",
+   "experts_anotation/anotExpert1_093.txt"
+  ],
+  [
+   "images/image_094.jpg",
+   "experts_anotation/anotExpert1_094.txt"
+  ],
+  [
+   "images/image_095.jpg",
+   "experts_anotation/anotExpert1_095.txt"
+  ],
+  [
+   "images/image_096.jpg",
+   "experts_anotation/anotExpert1_096.txt"
+  ],
+  [
+   "images/image_097.jpg",
+   "experts_anotation/anotExpert1_097.txt"
+  ],
+  [
+   "images/image_098.jpg",
+   "experts_anotation/anotExpert1_098.txt"
+  ],
+  [
+   "images/image_099.jpg",
+   "experts_anotation/anotExpert1_099.txt"
+  ],
+  [
+   "images/image_100.jpg",
+   "experts_anotation/anotExpert1_100.txt"
+  ],
+  [
+   "images/image_101.jpg",
+   "experts_anotation/anotExpert1_101.txt"
+  ],
+  [
+   "images/image_102.jpg",
+   "experts_anotation/anotExpert1_102.txt"
+  ],
+  [
+   "images/image_103.jpg",
+   "experts_anotation/anotExpert1_103.txt"
+  ],
+  [
+   "images/image_104.jpg",
+   "experts_anotation/anotExpert1_104.txt"
+  ],
+  [
+   "images/image_105.jpg",
+   "experts_anotation/anotExpert1_105.txt"
+  ],
+  [
+   "images/image_106.jpg",
+   "experts_anotation/anotExpert1_106.txt"
+  ],
+  [
+   "images/image_107.jpg",
+   "experts_anotation/anotExpert1_107.txt"
+  ],
+  [
+   "images/image_108.jpg",
+   "experts_anotation/anotExpert1_108.txt"
+  ],
+  [
+   "images/image_109.jpg",
+   "experts_anotation/anotExpert1_109.txt"
+  ],
+  [
+   "images/image_110.jpg",
+   "experts_anotation/anotExpert1_110.txt"
+  ]
+ ]
+}
\ No newline at end of file
diff --git a/bob/ip/binseg/data/drionsdb/expert2.json b/bob/ip/binseg/data/drionsdb/expert2.json
new file mode 100644
index 0000000000000000000000000000000000000000..1f3860ce0c2a822f5db5a65c1c4effd3ef8087f5
--- /dev/null
+++ b/bob/ip/binseg/data/drionsdb/expert2.json
@@ -0,0 +1,446 @@
+{
+ "train": [
+  [
+   "images/image_001.jpg",
+   "experts_anotation/anotExpert2_001.txt"
+  ],
+  [
+   "images/image_002.jpg",
+   "experts_anotation/anotExpert2_002.txt"
+  ],
+  [
+   "images/image_003.jpg",
+   "experts_anotation/anotExpert2_003.txt"
+  ],
+  [
+   "images/image_004.jpg",
+   "experts_anotation/anotExpert2_004.txt"
+  ],
+  [
+   "images/image_005.jpg",
+   "experts_anotation/anotExpert2_005.txt"
+  ],
+  [
+   "images/image_006.jpg",
+   "experts_anotation/anotExpert2_006.txt"
+  ],
+  [
+   "images/image_007.jpg",
+   "experts_anotation/anotExpert2_007.txt"
+  ],
+  [
+   "images/image_008.jpg",
+   "experts_anotation/anotExpert2_008.txt"
+  ],
+  [
+   "images/image_009.jpg",
+   "experts_anotation/anotExpert2_009.txt"
+  ],
+  [
+   "images/image_010.jpg",
+   "experts_anotation/anotExpert2_010.txt"
+  ],
+  [
+   "images/image_011.jpg",
+   "experts_anotation/anotExpert2_011.txt"
+  ],
+  [
+   "images/image_012.jpg",
+   "experts_anotation/anotExpert2_012.txt"
+  ],
+  [
+   "images/image_013.jpg",
+   "experts_anotation/anotExpert2_013.txt"
+  ],
+  [
+   "images/image_014.jpg",
+   "experts_anotation/anotExpert2_014.txt"
+  ],
+  [
+   "images/image_015.jpg",
+   "experts_anotation/anotExpert2_015.txt"
+  ],
+  [
+   "images/image_016.jpg",
+   "experts_anotation/anotExpert2_016.txt"
+  ],
+  [
+   "images/image_017.jpg",
+   "experts_anotation/anotExpert2_017.txt"
+  ],
+  [
+   "images/image_018.jpg",
+   "experts_anotation/anotExpert2_018.txt"
+  ],
+  [
+   "images/image_019.jpg",
+   "experts_anotation/anotExpert2_019.txt"
+  ],
+  [
+   "images/image_020.jpg",
+   "experts_anotation/anotExpert2_020.txt"
+  ],
+  [
+   "images/image_021.jpg",
+   "experts_anotation/anotExpert2_021.txt"
+  ],
+  [
+   "images/image_022.jpg",
+   "experts_anotation/anotExpert2_022.txt"
+  ],
+  [
+   "images/image_023.jpg",
+   "experts_anotation/anotExpert2_023.txt"
+  ],
+  [
+   "images/image_024.jpg",
+   "experts_anotation/anotExpert2_024.txt"
+  ],
+  [
+   "images/image_025.jpg",
+   "experts_anotation/anotExpert2_025.txt"
+  ],
+  [
+   "images/image_026.jpg",
+   "experts_anotation/anotExpert2_026.txt"
+  ],
+  [
+   "images/image_027.jpg",
+   "experts_anotation/anotExpert2_027.txt"
+  ],
+  [
+   "images/image_028.jpg",
+   "experts_anotation/anotExpert2_028.txt"
+  ],
+  [
+   "images/image_029.jpg",
+   "experts_anotation/anotExpert2_029.txt"
+  ],
+  [
+   "images/image_030.jpg",
+   "experts_anotation/anotExpert2_030.txt"
+  ],
+  [
+   "images/image_031.jpg",
+   "experts_anotation/anotExpert2_031.txt"
+  ],
+  [
+   "images/image_032.jpg",
+   "experts_anotation/anotExpert2_032.txt"
+  ],
+  [
+   "images/image_033.jpg",
+   "experts_anotation/anotExpert2_033.txt"
+  ],
+  [
+   "images/image_034.jpg",
+   "experts_anotation/anotExpert2_034.txt"
+  ],
+  [
+   "images/image_035.jpg",
+   "experts_anotation/anotExpert2_035.txt"
+  ],
+  [
+   "images/image_036.jpg",
+   "experts_anotation/anotExpert2_036.txt"
+  ],
+  [
+   "images/image_037.jpg",
+   "experts_anotation/anotExpert2_037.txt"
+  ],
+  [
+   "images/image_038.jpg",
+   "experts_anotation/anotExpert2_038.txt"
+  ],
+  [
+   "images/image_039.jpg",
+   "experts_anotation/anotExpert2_039.txt"
+  ],
+  [
+   "images/image_040.jpg",
+   "experts_anotation/anotExpert2_040.txt"
+  ],
+  [
+   "images/image_041.jpg",
+   "experts_anotation/anotExpert2_041.txt"
+  ],
+  [
+   "images/image_042.jpg",
+   "experts_anotation/anotExpert2_042.txt"
+  ],
+  [
+   "images/image_043.jpg",
+   "experts_anotation/anotExpert2_043.txt"
+  ],
+  [
+   "images/image_044.jpg",
+   "experts_anotation/anotExpert2_044.txt"
+  ],
+  [
+   "images/image_045.jpg",
+   "experts_anotation/anotExpert2_045.txt"
+  ],
+  [
+   "images/image_046.jpg",
+   "experts_anotation/anotExpert2_046.txt"
+  ],
+  [
+   "images/image_047.jpg",
+   "experts_anotation/anotExpert2_047.txt"
+  ],
+  [
+   "images/image_048.jpg",
+   "experts_anotation/anotExpert2_048.txt"
+  ],
+  [
+   "images/image_049.jpg",
+   "experts_anotation/anotExpert2_049.txt"
+  ],
+  [
+   "images/image_050.jpg",
+   "experts_anotation/anotExpert2_050.txt"
+  ],
+  [
+   "images/image_051.jpg",
+   "experts_anotation/anotExpert2_051.txt"
+  ],
+  [
+   "images/image_052.jpg",
+   "experts_anotation/anotExpert2_052.txt"
+  ],
+  [
+   "images/image_053.jpg",
+   "experts_anotation/anotExpert2_053.txt"
+  ],
+  [
+   "images/image_054.jpg",
+   "experts_anotation/anotExpert2_054.txt"
+  ],
+  [
+   "images/image_055.jpg",
+   "experts_anotation/anotExpert2_055.txt"
+  ],
+  [
+   "images/image_056.jpg",
+   "experts_anotation/anotExpert2_056.txt"
+  ],
+  [
+   "images/image_057.jpg",
+   "experts_anotation/anotExpert2_057.txt"
+  ],
+  [
+   "images/image_058.jpg",
+   "experts_anotation/anotExpert2_058.txt"
+  ],
+  [
+   "images/image_059.jpg",
+   "experts_anotation/anotExpert2_059.txt"
+  ],
+  [
+   "images/image_060.jpg",
+   "experts_anotation/anotExpert2_060.txt"
+  ]
+ ],
+ "test": [
+  [
+   "images/image_061.jpg",
+   "experts_anotation/anotExpert2_061.txt"
+  ],
+  [
+   "images/image_062.jpg",
+   "experts_anotation/anotExpert2_062.txt"
+  ],
+  [
+   "images/image_063.jpg",
+   "experts_anotation/anotExpert2_063.txt"
+  ],
+  [
+   "images/image_064.jpg",
+   "experts_anotation/anotExpert2_064.txt"
+  ],
+  [
+   "images/image_065.jpg",
+   "experts_anotation/anotExpert2_065.txt"
+  ],
+  [
+   "images/image_066.jpg",
+   "experts_anotation/anotExpert2_066.txt"
+  ],
+  [
+   "images/image_067.jpg",
+   "experts_anotation/anotExpert2_067.txt"
+  ],
+  [
+   "images/image_068.jpg",
+   "experts_anotation/anotExpert2_068.txt"
+  ],
+  [
+   "images/image_069.jpg",
+   "experts_anotation/anotExpert2_069.txt"
+  ],
+  [
+   "images/image_070.jpg",
+   "experts_anotation/anotExpert2_070.txt"
+  ],
+  [
+   "images/image_071.jpg",
+   "experts_anotation/anotExpert2_071.txt"
+  ],
+  [
+   "images/image_072.jpg",
+   "experts_anotation/anotExpert2_072.txt"
+  ],
+  [
+   "images/image_073.jpg",
+   "experts_anotation/anotExpert2_073.txt"
+  ],
+  [
+   "images/image_074.jpg",
+   "experts_anotation/anotExpert2_074.txt"
+  ],
+  [
+   "images/image_075.jpg",
+   "experts_anotation/anotExpert2_075.txt"
+  ],
+  [
+   "images/image_076.jpg",
+   "experts_anotation/anotExpert2_076.txt"
+  ],
+  [
+   "images/image_077.jpg",
+   "experts_anotation/anotExpert2_077.txt"
+  ],
+  [
+   "images/image_078.jpg",
+   "experts_anotation/anotExpert2_078.txt"
+  ],
+  [
+   "images/image_079.jpg",
+   "experts_anotation/anotExpert2_079.txt"
+  ],
+  [
+   "images/image_080.jpg",
+   "experts_anotation/anotExpert2_080.txt"
+  ],
+  [
+   "images/image_081.jpg",
+   "experts_anotation/anotExpert2_081.txt"
+  ],
+  [
+   "images/image_082.jpg",
+   "experts_anotation/anotExpert2_082.txt"
+  ],
+  [
+   "images/image_083.jpg",
+   "experts_anotation/anotExpert2_083.txt"
+  ],
+  [
+   "images/image_084.jpg",
+   "experts_anotation/anotExpert2_084.txt"
+  ],
+  [
+   "images/image_085.jpg",
+   "experts_anotation/anotExpert2_085.txt"
+  ],
+  [
+   "images/image_086.jpg",
+   "experts_anotation/anotExpert2_086.txt"
+  ],
+  [
+   "images/image_087.jpg",
+   "experts_anotation/anotExpert2_087.txt"
+  ],
+  [
+   "images/image_088.jpg",
+   "experts_anotation/anotExpert2_088.txt"
+  ],
+  [
+   "images/image_089.jpg",
+   "experts_anotation/anotExpert2_089.txt"
+  ],
+  [
+   "images/image_090.jpg",
+   "experts_anotation/anotExpert2_090.txt"
+  ],
+  [
+   "images/image_091.jpg",
+   "experts_anotation/anotExpert2_091.txt"
+  ],
+  [
+   "images/image_092.jpg",
+   "experts_anotation/anotExpert2_092.txt"
+  ],
+  [
+   "images/image_093.jpg",
+   "experts_anotation/anotExpert2_093.txt"
+  ],
+  [
+   "images/image_094.jpg",
+   "experts_anotation/anotExpert2_094.txt"
+  ],
+  [
+   "images/image_095.jpg",
+   "experts_anotation/anotExpert2_095.txt"
+  ],
+  [
+   "images/image_096.jpg",
+   "experts_anotation/anotExpert2_096.txt"
+  ],
+  [
+   "images/image_097.jpg",
+   "experts_anotation/anotExpert2_097.txt"
+  ],
+  [
+   "images/image_098.jpg",
+   "experts_anotation/anotExpert2_098.txt"
+  ],
+  [
+   "images/image_099.jpg",
+   "experts_anotation/anotExpert2_099.txt"
+  ],
+  [
+   "images/image_100.jpg",
+   "experts_anotation/anotExpert2_100.txt"
+  ],
+  [
+   "images/image_101.jpg",
+   "experts_anotation/anotExpert2_101.txt"
+  ],
+  [
+   "images/image_102.jpg",
+   "experts_anotation/anotExpert2_102.txt"
+  ],
+  [
+   "images/image_103.jpg",
+   "experts_anotation/anotExpert2_103.txt"
+  ],
+  [
+   "images/image_104.jpg",
+   "experts_anotation/anotExpert2_104.txt"
+  ],
+  [
+   "images/image_105.jpg",
+   "experts_anotation/anotExpert2_105.txt"
+  ],
+  [
+   "images/image_106.jpg",
+   "experts_anotation/anotExpert2_106.txt"
+  ],
+  [
+   "images/image_107.jpg",
+   "experts_anotation/anotExpert2_107.txt"
+  ],
+  [
+   "images/image_108.jpg",
+   "experts_anotation/anotExpert2_108.txt"
+  ],
+  [
+   "images/image_109.jpg",
+   "experts_anotation/anotExpert2_109.txt"
+  ],
+  [
+   "images/image_110.jpg",
+   "experts_anotation/anotExpert2_110.txt"
+  ]
+ ]
+}
diff --git a/bob/ip/binseg/data/drishtigs1/__init__.py b/bob/ip/binseg/data/drishtigs1/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..c4ec018ec819f3221b7c0e3c6278cd11341cda4f
--- /dev/null
+++ b/bob/ip/binseg/data/drishtigs1/__init__.py
@@ -0,0 +1,89 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""Drishti-GS1 for Optic Disc and Cup Segmentation
+
+Drishti-GS is a dataset meant for validation of segmenting OD, cup and
+detecting notching.  The images in the Drishti-GS dataset have been collected
+and annotated by Aravind Eye hospital, Madurai, India. This dataset is of a
+single population as all subjects whose eye images are part of this dataset are
+Indians.
+
+The dataset is divided into two: a training set and a testing set of images.
+Training images (50) are provided with groundtruths for OD and Cup segmentation
+and notching information.
+
+* Reference (including train/test split): [DRISHTIGS1-2014]_
+* Original resolution (height x width): varying (min: 1749 x 2045, max: 1845 x
+  2468)
+* Configuration resolution: 1760 x 2048 (after center cropping)
+* Protocols ``optic-disc`` and ``optic-cup``:
+  * Training: 50
+  * Test: 51
+"""
+
+import os
+import pkg_resources
+
+import bob.extension
+
+from ..dataset import JSONDataset
+from ..loader import load_pil_rgb, make_delayed
+
+_protocols = {
+    "optic-disc-all": pkg_resources.resource_filename(
+        __name__, "optic-disc.json"
+    ),
+    "optic-cup-all": pkg_resources.resource_filename(
+        __name__, "optic-cup.json"
+    ),
+    "optic-disc-any": pkg_resources.resource_filename(
+        __name__, "optic-disc.json"
+    ),
+    "optic-cup-any": pkg_resources.resource_filename(
+        __name__, "optic-cup.json"
+    ),
+}
+
+_root_path = bob.extension.rc.get(
+    "bob.ip.binseg.drishtigs1.datadir", os.path.realpath(os.curdir)
+)
+
+
+def _raw_data_loader_all(sample):
+    retval = dict(
+        data=load_pil_rgb(os.path.join(_root_path, sample["data"])),
+        label=load_pil_rgb(os.path.join(_root_path, sample["label"])).convert(
+            "L"
+        ),
+    )
+    retval["label"] = retval["label"].point(lambda p: p > 254, mode="1")
+    return retval
+
+
+def _raw_data_loader_any(sample):
+    retval = dict(
+        data=load_pil_rgb(os.path.join(_root_path, sample["data"])),
+        label=load_pil_rgb(os.path.join(_root_path, sample["label"])).convert(
+            "L"
+        ),
+    )
+    retval["label"] = retval["label"].point(lambda p: p > 0, mode="1")
+    return retval
+
+
+def _loader(context, sample):
+    # Drishti-GS provides softmaps of multiple annotators
+    # we threshold to get gt where all/any of the annotators overlap
+    if context["protocol"].endswith("-all"):
+        return make_delayed(sample, _raw_data_loader_all)
+    elif context["protocol"].endswith("-any"):
+        return make_delayed(sample, _raw_data_loader_any)
+    else:
+        raise RuntimeError(f"Unknown protocol {context['protocol']}")
+
+
+dataset = JSONDataset(
+    protocols=_protocols, fieldnames=("data", "label"), loader=_loader
+)
+"""Drishti-GS1 dataset object"""
diff --git a/bob/ip/binseg/data/drishtigs1/optic-cup.json b/bob/ip/binseg/data/drishtigs1/optic-cup.json
new file mode 100644
index 0000000000000000000000000000000000000000..e543e5b60b7a09b0da7f6136a1d452039c308550
--- /dev/null
+++ b/bob/ip/binseg/data/drishtigs1/optic-cup.json
@@ -0,0 +1,410 @@
+{
+ "train": [
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_002.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_002/SoftMap/drishtiGS_002_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_004.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_004/SoftMap/drishtiGS_004_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_008.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_008/SoftMap/drishtiGS_008_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_010.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_010/SoftMap/drishtiGS_010_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_012.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_012/SoftMap/drishtiGS_012_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_015.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_015/SoftMap/drishtiGS_015_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_016.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_016/SoftMap/drishtiGS_016_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_017.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_017/SoftMap/drishtiGS_017_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_018.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_018/SoftMap/drishtiGS_018_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_022.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_022/SoftMap/drishtiGS_022_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_024.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_024/SoftMap/drishtiGS_024_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_026.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_026/SoftMap/drishtiGS_026_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_031.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_031/SoftMap/drishtiGS_031_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_032.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_032/SoftMap/drishtiGS_032_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_033.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_033/SoftMap/drishtiGS_033_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_035.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_035/SoftMap/drishtiGS_035_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_036.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_036/SoftMap/drishtiGS_036_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_037.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_037/SoftMap/drishtiGS_037_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_038.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_038/SoftMap/drishtiGS_038_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_040.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_040/SoftMap/drishtiGS_040_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_041.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_041/SoftMap/drishtiGS_041_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_042.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_042/SoftMap/drishtiGS_042_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_044.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_044/SoftMap/drishtiGS_044_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_045.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_045/SoftMap/drishtiGS_045_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_046.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_046/SoftMap/drishtiGS_046_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_047.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_047/SoftMap/drishtiGS_047_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_049.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_049/SoftMap/drishtiGS_049_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_051.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_051/SoftMap/drishtiGS_051_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_057.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_057/SoftMap/drishtiGS_057_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_058.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_058/SoftMap/drishtiGS_058_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_060.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_060/SoftMap/drishtiGS_060_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_061.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_061/SoftMap/drishtiGS_061_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_062.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_062/SoftMap/drishtiGS_062_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_063.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_063/SoftMap/drishtiGS_063_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_064.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_064/SoftMap/drishtiGS_064_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_066.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_066/SoftMap/drishtiGS_066_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_068.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_068/SoftMap/drishtiGS_068_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_069.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_069/SoftMap/drishtiGS_069_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_075.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_075/SoftMap/drishtiGS_075_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_076.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_076/SoftMap/drishtiGS_076_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_080.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_080/SoftMap/drishtiGS_080_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_081.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_081/SoftMap/drishtiGS_081_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_084.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_084/SoftMap/drishtiGS_084_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_088.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_088/SoftMap/drishtiGS_088_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_089.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_089/SoftMap/drishtiGS_089_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_090.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_090/SoftMap/drishtiGS_090_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_092.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_092/SoftMap/drishtiGS_092_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_094.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_094/SoftMap/drishtiGS_094_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_098.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_098/SoftMap/drishtiGS_098_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_101.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_101/SoftMap/drishtiGS_101_cupsegSoftmap.png"
+  ]
+ ],
+ "test": [
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_001.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_001/SoftMap/drishtiGS_001_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_003.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_003/SoftMap/drishtiGS_003_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_005.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_005/SoftMap/drishtiGS_005_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_006.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_006/SoftMap/drishtiGS_006_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_007.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_007/SoftMap/drishtiGS_007_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_009.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_009/SoftMap/drishtiGS_009_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_011.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_011/SoftMap/drishtiGS_011_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_013.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_013/SoftMap/drishtiGS_013_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_014.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_014/SoftMap/drishtiGS_014_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_019.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_019/SoftMap/drishtiGS_019_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_020.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_020/SoftMap/drishtiGS_020_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_021.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_021/SoftMap/drishtiGS_021_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_023.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_023/SoftMap/drishtiGS_023_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_025.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_025/SoftMap/drishtiGS_025_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_027.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_027/SoftMap/drishtiGS_027_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_028.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_028/SoftMap/drishtiGS_028_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_029.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_029/SoftMap/drishtiGS_029_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_030.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_030/SoftMap/drishtiGS_030_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_034.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_034/SoftMap/drishtiGS_034_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_039.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_039/SoftMap/drishtiGS_039_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_043.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_043/SoftMap/drishtiGS_043_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_048.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_048/SoftMap/drishtiGS_048_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_050.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_050/SoftMap/drishtiGS_050_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_052.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_052/SoftMap/drishtiGS_052_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_053.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_053/SoftMap/drishtiGS_053_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_054.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_054/SoftMap/drishtiGS_054_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_055.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_055/SoftMap/drishtiGS_055_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_056.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_056/SoftMap/drishtiGS_056_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_059.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_059/SoftMap/drishtiGS_059_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_065.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_065/SoftMap/drishtiGS_065_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_067.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_067/SoftMap/drishtiGS_067_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_070.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_070/SoftMap/drishtiGS_070_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_071.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_071/SoftMap/drishtiGS_071_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_072.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_072/SoftMap/drishtiGS_072_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_073.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_073/SoftMap/drishtiGS_073_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_074.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_074/SoftMap/drishtiGS_074_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_077.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_077/SoftMap/drishtiGS_077_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_078.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_078/SoftMap/drishtiGS_078_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_079.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_079/SoftMap/drishtiGS_079_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_082.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_082/SoftMap/drishtiGS_082_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_083.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_083/SoftMap/drishtiGS_083_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_085.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_085/SoftMap/drishtiGS_085_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_086.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_086/SoftMap/drishtiGS_086_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_087.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_087/SoftMap/drishtiGS_087_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_091.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_091/SoftMap/drishtiGS_091_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_093.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_093/SoftMap/drishtiGS_093_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_095.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_095/SoftMap/drishtiGS_095_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_096.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_096/SoftMap/drishtiGS_096_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_097.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_097/SoftMap/drishtiGS_097_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_099.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_099/SoftMap/drishtiGS_099_cupsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_100.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_100/SoftMap/drishtiGS_100_cupsegSoftmap.png"
+  ]
+ ]
+}
\ No newline at end of file
diff --git a/bob/ip/binseg/data/drishtigs1/optic-disc.json b/bob/ip/binseg/data/drishtigs1/optic-disc.json
new file mode 100644
index 0000000000000000000000000000000000000000..250e839833d03fd54efd62fdda942677c0844081
--- /dev/null
+++ b/bob/ip/binseg/data/drishtigs1/optic-disc.json
@@ -0,0 +1,410 @@
+{
+ "train": [
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_002.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_002/SoftMap/drishtiGS_002_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_004.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_004/SoftMap/drishtiGS_004_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_008.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_008/SoftMap/drishtiGS_008_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_010.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_010/SoftMap/drishtiGS_010_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_012.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_012/SoftMap/drishtiGS_012_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_015.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_015/SoftMap/drishtiGS_015_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_016.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_016/SoftMap/drishtiGS_016_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_017.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_017/SoftMap/drishtiGS_017_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_018.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_018/SoftMap/drishtiGS_018_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_022.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_022/SoftMap/drishtiGS_022_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_024.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_024/SoftMap/drishtiGS_024_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_026.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_026/SoftMap/drishtiGS_026_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_031.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_031/SoftMap/drishtiGS_031_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_032.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_032/SoftMap/drishtiGS_032_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_033.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_033/SoftMap/drishtiGS_033_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_035.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_035/SoftMap/drishtiGS_035_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_036.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_036/SoftMap/drishtiGS_036_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_037.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_037/SoftMap/drishtiGS_037_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_038.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_038/SoftMap/drishtiGS_038_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_040.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_040/SoftMap/drishtiGS_040_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_041.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_041/SoftMap/drishtiGS_041_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_042.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_042/SoftMap/drishtiGS_042_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_044.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_044/SoftMap/drishtiGS_044_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_045.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_045/SoftMap/drishtiGS_045_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_046.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_046/SoftMap/drishtiGS_046_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_047.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_047/SoftMap/drishtiGS_047_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_049.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_049/SoftMap/drishtiGS_049_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_051.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_051/SoftMap/drishtiGS_051_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_057.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_057/SoftMap/drishtiGS_057_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_058.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_058/SoftMap/drishtiGS_058_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_060.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_060/SoftMap/drishtiGS_060_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_061.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_061/SoftMap/drishtiGS_061_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_062.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_062/SoftMap/drishtiGS_062_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_063.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_063/SoftMap/drishtiGS_063_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_064.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_064/SoftMap/drishtiGS_064_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_066.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_066/SoftMap/drishtiGS_066_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_068.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_068/SoftMap/drishtiGS_068_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_069.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_069/SoftMap/drishtiGS_069_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_075.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_075/SoftMap/drishtiGS_075_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_076.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_076/SoftMap/drishtiGS_076_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_080.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_080/SoftMap/drishtiGS_080_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_081.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_081/SoftMap/drishtiGS_081_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_084.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_084/SoftMap/drishtiGS_084_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_088.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_088/SoftMap/drishtiGS_088_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_089.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_089/SoftMap/drishtiGS_089_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_090.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_090/SoftMap/drishtiGS_090_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_092.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_092/SoftMap/drishtiGS_092_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_094.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_094/SoftMap/drishtiGS_094_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_098.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_098/SoftMap/drishtiGS_098_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Training/Images/drishtiGS_101.png",
+   "Drishti-GS1_files/Training/GT/drishtiGS_101/SoftMap/drishtiGS_101_ODsegSoftmap.png"
+  ]
+ ],
+ "test": [
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_001.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_001/SoftMap/drishtiGS_001_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_003.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_003/SoftMap/drishtiGS_003_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_005.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_005/SoftMap/drishtiGS_005_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_006.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_006/SoftMap/drishtiGS_006_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_007.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_007/SoftMap/drishtiGS_007_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_009.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_009/SoftMap/drishtiGS_009_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_011.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_011/SoftMap/drishtiGS_011_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_013.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_013/SoftMap/drishtiGS_013_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_014.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_014/SoftMap/drishtiGS_014_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_019.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_019/SoftMap/drishtiGS_019_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_020.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_020/SoftMap/drishtiGS_020_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_021.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_021/SoftMap/drishtiGS_021_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_023.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_023/SoftMap/drishtiGS_023_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_025.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_025/SoftMap/drishtiGS_025_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_027.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_027/SoftMap/drishtiGS_027_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_028.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_028/SoftMap/drishtiGS_028_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_029.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_029/SoftMap/drishtiGS_029_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_030.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_030/SoftMap/drishtiGS_030_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_034.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_034/SoftMap/drishtiGS_034_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_039.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_039/SoftMap/drishtiGS_039_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_043.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_043/SoftMap/drishtiGS_043_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_048.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_048/SoftMap/drishtiGS_048_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_050.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_050/SoftMap/drishtiGS_050_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_052.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_052/SoftMap/drishtiGS_052_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_053.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_053/SoftMap/drishtiGS_053_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_054.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_054/SoftMap/drishtiGS_054_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_055.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_055/SoftMap/drishtiGS_055_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_056.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_056/SoftMap/drishtiGS_056_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_059.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_059/SoftMap/drishtiGS_059_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_065.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_065/SoftMap/drishtiGS_065_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_067.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_067/SoftMap/drishtiGS_067_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_070.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_070/SoftMap/drishtiGS_070_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_071.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_071/SoftMap/drishtiGS_071_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_072.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_072/SoftMap/drishtiGS_072_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_073.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_073/SoftMap/drishtiGS_073_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_074.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_074/SoftMap/drishtiGS_074_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_077.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_077/SoftMap/drishtiGS_077_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_078.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_078/SoftMap/drishtiGS_078_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_079.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_079/SoftMap/drishtiGS_079_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_082.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_082/SoftMap/drishtiGS_082_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_083.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_083/SoftMap/drishtiGS_083_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_085.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_085/SoftMap/drishtiGS_085_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_086.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_086/SoftMap/drishtiGS_086_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_087.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_087/SoftMap/drishtiGS_087_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_091.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_091/SoftMap/drishtiGS_091_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_093.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_093/SoftMap/drishtiGS_093_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_095.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_095/SoftMap/drishtiGS_095_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_096.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_096/SoftMap/drishtiGS_096_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_097.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_097/SoftMap/drishtiGS_097_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_099.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_099/SoftMap/drishtiGS_099_ODsegSoftmap.png"
+  ],
+  [
+   "Drishti-GS1_files/Test/Images/drishtiGS_100.png",
+   "Drishti-GS1_files/Test/Test_GT/drishtiGS_100/SoftMap/drishtiGS_100_ODsegSoftmap.png"
+  ]
+ ]
+}
\ No newline at end of file
diff --git a/bob/ip/binseg/data/drive/__init__.py b/bob/ip/binseg/data/drive/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..59e6f44f38c98b587cd73f8891c014c077d6fa1d
--- /dev/null
+++ b/bob/ip/binseg/data/drive/__init__.py
@@ -0,0 +1,60 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""DRIVE dataset for Vessel Segmentation
+
+The DRIVE database has been established to enable comparative studies on
+segmentation of blood vessels in retinal images.
+
+* Reference: [DRIVE-2004]_
+* Original resolution (height x width): 584 x 565
+* Split reference: [DRIVE-2004]_
+* Protocol ``default``:
+
+  * Training samples: 20 (including labels and masks)
+  * Test samples: 20 (including labels from annotator 1 and masks)
+
+* Protocol ``second-annotator``:
+
+  * Test samples: 20 (including labels from annotator 2 and masks)
+
+"""
+
+import os
+import pkg_resources
+
+import bob.extension
+
+from ..dataset import JSONDataset
+from ..loader import load_pil_rgb, load_pil_1, make_delayed
+
+_protocols = [
+    pkg_resources.resource_filename(__name__, "default.json"),
+    pkg_resources.resource_filename(__name__, "second-annotator.json"),
+]
+
+_root_path = bob.extension.rc.get(
+    "bob.ip.binseg.drive.datadir", os.path.realpath(os.curdir)
+)
+
+
+def _raw_data_loader(sample):
+    return dict(
+        data=load_pil_rgb(os.path.join(_root_path, sample["data"])),
+        label=load_pil_1(os.path.join(_root_path, sample["label"])),
+        mask=load_pil_1(os.path.join(_root_path, sample["mask"])),
+    )
+
+
+def _loader(context, sample):
+    # "context" is ignored in this case - database is homogeneous
+    # we returned delayed samples to avoid loading all images at once
+    return make_delayed(sample, _raw_data_loader)
+
+
+dataset = JSONDataset(
+    protocols=_protocols,
+    fieldnames=("data", "label", "mask"),
+    loader=_loader,
+)
+"""DRIVE dataset object"""
diff --git a/bob/ip/binseg/data/drive/default.json b/bob/ip/binseg/data/drive/default.json
new file mode 100644
index 0000000000000000000000000000000000000000..6707e6edd93546915d7f9960f8ba85d3449a8d6f
--- /dev/null
+++ b/bob/ip/binseg/data/drive/default.json
@@ -0,0 +1,206 @@
+{
+ "train": [
+  [
+   "training/images/21_training.tif",
+   "training/1st_manual/21_manual1.gif",
+   "training/mask/21_training_mask.gif"
+  ],
+  [
+   "training/images/22_training.tif",
+   "training/1st_manual/22_manual1.gif",
+   "training/mask/22_training_mask.gif"
+  ],
+  [
+   "training/images/23_training.tif",
+   "training/1st_manual/23_manual1.gif",
+   "training/mask/23_training_mask.gif"
+  ],
+  [
+   "training/images/24_training.tif",
+   "training/1st_manual/24_manual1.gif",
+   "training/mask/24_training_mask.gif"
+  ],
+  [
+   "training/images/25_training.tif",
+   "training/1st_manual/25_manual1.gif",
+   "training/mask/25_training_mask.gif"
+  ],
+  [
+   "training/images/26_training.tif",
+   "training/1st_manual/26_manual1.gif",
+   "training/mask/26_training_mask.gif"
+  ],
+  [
+   "training/images/27_training.tif",
+   "training/1st_manual/27_manual1.gif",
+   "training/mask/27_training_mask.gif"
+  ],
+  [
+   "training/images/28_training.tif",
+   "training/1st_manual/28_manual1.gif",
+   "training/mask/28_training_mask.gif"
+  ],
+  [
+   "training/images/29_training.tif",
+   "training/1st_manual/29_manual1.gif",
+   "training/mask/29_training_mask.gif"
+  ],
+  [
+   "training/images/30_training.tif",
+   "training/1st_manual/30_manual1.gif",
+   "training/mask/30_training_mask.gif"
+  ],
+  [
+   "training/images/31_training.tif",
+   "training/1st_manual/31_manual1.gif",
+   "training/mask/31_training_mask.gif"
+  ],
+  [
+   "training/images/32_training.tif",
+   "training/1st_manual/32_manual1.gif",
+   "training/mask/32_training_mask.gif"
+  ],
+  [
+   "training/images/33_training.tif",
+   "training/1st_manual/33_manual1.gif",
+   "training/mask/33_training_mask.gif"
+  ],
+  [
+   "training/images/34_training.tif",
+   "training/1st_manual/34_manual1.gif",
+   "training/mask/34_training_mask.gif"
+  ],
+  [
+   "training/images/35_training.tif",
+   "training/1st_manual/35_manual1.gif",
+   "training/mask/35_training_mask.gif"
+  ],
+  [
+   "training/images/36_training.tif",
+   "training/1st_manual/36_manual1.gif",
+   "training/mask/36_training_mask.gif"
+  ],
+  [
+   "training/images/37_training.tif",
+   "training/1st_manual/37_manual1.gif",
+   "training/mask/37_training_mask.gif"
+  ],
+  [
+   "training/images/38_training.tif",
+   "training/1st_manual/38_manual1.gif",
+   "training/mask/38_training_mask.gif"
+  ],
+  [
+   "training/images/39_training.tif",
+   "training/1st_manual/39_manual1.gif",
+   "training/mask/39_training_mask.gif"
+  ],
+  [
+   "training/images/40_training.tif",
+   "training/1st_manual/40_manual1.gif",
+   "training/mask/40_training_mask.gif"
+  ]
+ ],
+ "test": [
+  [
+   "test/images/01_test.tif",
+   "test/1st_manual/01_manual1.gif",
+   "test/mask/01_test_mask.gif"
+  ],
+  [
+   "test/images/02_test.tif",
+   "test/1st_manual/02_manual1.gif",
+   "test/mask/02_test_mask.gif"
+  ],
+  [
+   "test/images/03_test.tif",
+   "test/1st_manual/03_manual1.gif",
+   "test/mask/03_test_mask.gif"
+  ],
+  [
+   "test/images/04_test.tif",
+   "test/1st_manual/04_manual1.gif",
+   "test/mask/04_test_mask.gif"
+  ],
+  [
+   "test/images/05_test.tif",
+   "test/1st_manual/05_manual1.gif",
+   "test/mask/05_test_mask.gif"
+  ],
+  [
+   "test/images/06_test.tif",
+   "test/1st_manual/06_manual1.gif",
+   "test/mask/06_test_mask.gif"
+  ],
+  [
+   "test/images/07_test.tif",
+   "test/1st_manual/07_manual1.gif",
+   "test/mask/07_test_mask.gif"
+  ],
+  [
+   "test/images/08_test.tif",
+   "test/1st_manual/08_manual1.gif",
+   "test/mask/08_test_mask.gif"
+  ],
+  [
+   "test/images/09_test.tif",
+   "test/1st_manual/09_manual1.gif",
+   "test/mask/09_test_mask.gif"
+  ],
+  [
+   "test/images/10_test.tif",
+   "test/1st_manual/10_manual1.gif",
+   "test/mask/10_test_mask.gif"
+  ],
+  [
+   "test/images/11_test.tif",
+   "test/1st_manual/11_manual1.gif",
+   "test/mask/11_test_mask.gif"
+  ],
+  [
+   "test/images/12_test.tif",
+   "test/1st_manual/12_manual1.gif",
+   "test/mask/12_test_mask.gif"
+  ],
+  [
+   "test/images/13_test.tif",
+   "test/1st_manual/13_manual1.gif",
+   "test/mask/13_test_mask.gif"
+  ],
+  [
+   "test/images/14_test.tif",
+   "test/1st_manual/14_manual1.gif",
+   "test/mask/14_test_mask.gif"
+  ],
+  [
+   "test/images/15_test.tif",
+   "test/1st_manual/15_manual1.gif",
+   "test/mask/15_test_mask.gif"
+  ],
+  [
+   "test/images/16_test.tif",
+   "test/1st_manual/16_manual1.gif",
+   "test/mask/16_test_mask.gif"
+  ],
+  [
+   "test/images/17_test.tif",
+   "test/1st_manual/17_manual1.gif",
+   "test/mask/17_test_mask.gif"
+  ],
+  [
+   "test/images/18_test.tif",
+   "test/1st_manual/18_manual1.gif",
+   "test/mask/18_test_mask.gif"
+  ],
+  [
+   "test/images/19_test.tif",
+   "test/1st_manual/19_manual1.gif",
+   "test/mask/19_test_mask.gif"
+  ],
+  [
+   "test/images/20_test.tif",
+   "test/1st_manual/20_manual1.gif",
+   "test/mask/20_test_mask.gif"
+  ]
+ ]
+}
diff --git a/bob/ip/binseg/data/drive/second-annotator.json b/bob/ip/binseg/data/drive/second-annotator.json
new file mode 100644
index 0000000000000000000000000000000000000000..fee520debd55220ccfd82145df4c70e39b1fc6b5
--- /dev/null
+++ b/bob/ip/binseg/data/drive/second-annotator.json
@@ -0,0 +1,104 @@
+{
+ "test": [
+  [
+   "test/images/01_test.tif",
+   "test/2nd_manual/01_manual2.gif",
+   "test/mask/01_test_mask.gif"
+  ],
+  [
+   "test/images/02_test.tif",
+   "test/2nd_manual/02_manual2.gif",
+   "test/mask/02_test_mask.gif"
+  ],
+  [
+   "test/images/03_test.tif",
+   "test/2nd_manual/03_manual2.gif",
+   "test/mask/03_test_mask.gif"
+  ],
+  [
+   "test/images/04_test.tif",
+   "test/2nd_manual/04_manual2.gif",
+   "test/mask/04_test_mask.gif"
+  ],
+  [
+   "test/images/05_test.tif",
+   "test/2nd_manual/05_manual2.gif",
+   "test/mask/05_test_mask.gif"
+  ],
+  [
+   "test/images/06_test.tif",
+   "test/2nd_manual/06_manual2.gif",
+   "test/mask/06_test_mask.gif"
+  ],
+  [
+   "test/images/07_test.tif",
+   "test/2nd_manual/07_manual2.gif",
+   "test/mask/07_test_mask.gif"
+  ],
+  [
+   "test/images/08_test.tif",
+   "test/2nd_manual/08_manual2.gif",
+   "test/mask/08_test_mask.gif"
+  ],
+  [
+   "test/images/09_test.tif",
+   "test/2nd_manual/09_manual2.gif",
+   "test/mask/09_test_mask.gif"
+  ],
+  [
+   "test/images/10_test.tif",
+   "test/2nd_manual/10_manual2.gif",
+   "test/mask/10_test_mask.gif"
+  ],
+  [
+   "test/images/11_test.tif",
+   "test/2nd_manual/11_manual2.gif",
+   "test/mask/11_test_mask.gif"
+  ],
+  [
+   "test/images/12_test.tif",
+   "test/2nd_manual/12_manual2.gif",
+   "test/mask/12_test_mask.gif"
+  ],
+  [
+   "test/images/13_test.tif",
+   "test/2nd_manual/13_manual2.gif",
+   "test/mask/13_test_mask.gif"
+  ],
+  [
+   "test/images/14_test.tif",
+   "test/2nd_manual/14_manual2.gif",
+   "test/mask/14_test_mask.gif"
+  ],
+  [
+   "test/images/15_test.tif",
+   "test/2nd_manual/15_manual2.gif",
+   "test/mask/15_test_mask.gif"
+  ],
+  [
+   "test/images/16_test.tif",
+   "test/2nd_manual/16_manual2.gif",
+   "test/mask/16_test_mask.gif"
+  ],
+  [
+   "test/images/17_test.tif",
+   "test/2nd_manual/17_manual2.gif",
+   "test/mask/17_test_mask.gif"
+  ],
+  [
+   "test/images/18_test.tif",
+   "test/2nd_manual/18_manual2.gif",
+   "test/mask/18_test_mask.gif"
+  ],
+  [
+   "test/images/19_test.tif",
+   "test/2nd_manual/19_manual2.gif",
+   "test/mask/19_test_mask.gif"
+  ],
+  [
+   "test/images/20_test.tif",
+   "test/2nd_manual/20_manual2.gif",
+   "test/mask/20_test_mask.gif"
+  ]
+ ]
+}
diff --git a/bob/ip/binseg/data/hrf/__init__.py b/bob/ip/binseg/data/hrf/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..dd9f8da453f3863fb20b2d1e3af58cdde958e68f
--- /dev/null
+++ b/bob/ip/binseg/data/hrf/__init__.py
@@ -0,0 +1,56 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""HRF dataset for Vessel Segmentation
+
+The database includes 15 images of each healthy, diabetic retinopathy (DR), and
+glaucomatous eyes.  It contains a total  of 45 eye fundus images with a
+resolution of 3304 x 2336. One set of ground-truth vessel annotations is
+available.
+
+* Reference: [HRF-2013]_
+* Original resolution (height x width): 2336 x 3504
+* Configuration resolution: 1168 x 1648 (after specific cropping and rescaling)
+* Split reference: [ORLANDO-2017]_
+* Protocol ``default``:
+
+  * Training samples: 15 (including labels)
+  * Test samples: 30 (including labels)
+
+"""
+
+import os
+import pkg_resources
+
+import bob.extension
+
+from ..dataset import JSONDataset
+from ..loader import load_pil_rgb, load_pil_1, make_delayed
+
+_protocols = [
+    pkg_resources.resource_filename(__name__, "default.json"),
+]
+
+_root_path = bob.extension.rc.get(
+    "bob.ip.binseg.hrf.datadir", os.path.realpath(os.curdir)
+)
+
+
+def _raw_data_loader(sample):
+    return dict(
+        data=load_pil_rgb(os.path.join(_root_path, sample["data"])),
+        label=load_pil_1(os.path.join(_root_path, sample["label"])),
+        mask=load_pil_1(os.path.join(_root_path, sample["mask"])),
+    )
+
+
+def _loader(context, sample):
+    # "context" is ignored in this case - database is homogeneous
+    # we returned delayed samples to avoid loading all images at once
+    return make_delayed(sample, _raw_data_loader)
+
+
+dataset = JSONDataset(
+    protocols=_protocols, fieldnames=("data", "label", "mask"), loader=_loader,
+)
+"""HRF dataset object"""
diff --git a/bob/ip/binseg/data/hrf/default.json b/bob/ip/binseg/data/hrf/default.json
new file mode 100644
index 0000000000000000000000000000000000000000..87f29ad575e071c2abae8118c6b99c3d19dc24b8
--- /dev/null
+++ b/bob/ip/binseg/data/hrf/default.json
@@ -0,0 +1,231 @@
+{
+ "train": [
+  [
+   "images/01_dr.JPG",
+   "manual1/01_dr.tif",
+   "mask/01_dr_mask.tif"
+  ],
+  [
+   "images/02_dr.JPG",
+   "manual1/02_dr.tif",
+   "mask/02_dr_mask.tif"
+  ],
+  [
+   "images/03_dr.JPG",
+   "manual1/03_dr.tif",
+   "mask/03_dr_mask.tif"
+  ],
+  [
+   "images/04_dr.JPG",
+   "manual1/04_dr.tif",
+   "mask/04_dr_mask.tif"
+  ],
+  [
+   "images/05_dr.JPG",
+   "manual1/05_dr.tif",
+   "mask/05_dr_mask.tif"
+  ],
+  [
+   "images/01_g.jpg",
+   "manual1/01_g.tif",
+   "mask/01_g_mask.tif"
+  ],
+  [
+   "images/02_g.jpg",
+   "manual1/02_g.tif",
+   "mask/02_g_mask.tif"
+  ],
+  [
+   "images/03_g.jpg",
+   "manual1/03_g.tif",
+   "mask/03_g_mask.tif"
+  ],
+  [
+   "images/04_g.jpg",
+   "manual1/04_g.tif",
+   "mask/04_g_mask.tif"
+  ],
+  [
+   "images/05_g.jpg",
+   "manual1/05_g.tif",
+   "mask/05_g_mask.tif"
+  ],
+  [
+   "images/01_h.jpg",
+   "manual1/01_h.tif",
+   "mask/01_h_mask.tif"
+  ],
+  [
+   "images/02_h.jpg",
+   "manual1/02_h.tif",
+   "mask/02_h_mask.tif"
+  ],
+  [
+   "images/03_h.jpg",
+   "manual1/03_h.tif",
+   "mask/03_h_mask.tif"
+  ],
+  [
+   "images/04_h.jpg",
+   "manual1/04_h.tif",
+   "mask/04_h_mask.tif"
+  ],
+  [
+   "images/05_h.jpg",
+   "manual1/05_h.tif",
+   "mask/05_h_mask.tif"
+  ]
+ ],
+ "test": [
+  [
+   "images/06_dr.JPG",
+   "manual1/06_dr.tif",
+   "mask/06_dr_mask.tif"
+  ],
+  [
+   "images/07_dr.JPG",
+   "manual1/07_dr.tif",
+   "mask/07_dr_mask.tif"
+  ],
+  [
+   "images/08_dr.JPG",
+   "manual1/08_dr.tif",
+   "mask/08_dr_mask.tif"
+  ],
+  [
+   "images/09_dr.JPG",
+   "manual1/09_dr.tif",
+   "mask/09_dr_mask.tif"
+  ],
+  [
+   "images/10_dr.JPG",
+   "manual1/10_dr.tif",
+   "mask/10_dr_mask.tif"
+  ],
+  [
+   "images/11_dr.JPG",
+   "manual1/11_dr.tif",
+   "mask/11_dr_mask.tif"
+  ],
+  [
+   "images/12_dr.JPG",
+   "manual1/12_dr.tif",
+   "mask/12_dr_mask.tif"
+  ],
+  [
+   "images/13_dr.JPG",
+   "manual1/13_dr.tif",
+   "mask/13_dr_mask.tif"
+  ],
+  [
+   "images/14_dr.JPG",
+   "manual1/14_dr.tif",
+   "mask/14_dr_mask.tif"
+  ],
+  [
+   "images/15_dr.JPG",
+   "manual1/15_dr.tif",
+   "mask/15_dr_mask.tif"
+  ],
+  [
+   "images/06_g.jpg",
+   "manual1/06_g.tif",
+   "mask/06_g_mask.tif"
+  ],
+  [
+   "images/07_g.jpg",
+   "manual1/07_g.tif",
+   "mask/07_g_mask.tif"
+  ],
+  [
+   "images/08_g.jpg",
+   "manual1/08_g.tif",
+   "mask/08_g_mask.tif"
+  ],
+  [
+   "images/09_g.jpg",
+   "manual1/09_g.tif",
+   "mask/09_g_mask.tif"
+  ],
+  [
+   "images/10_g.jpg",
+   "manual1/10_g.tif",
+   "mask/10_g_mask.tif"
+  ],
+  [
+   "images/11_g.jpg",
+   "manual1/11_g.tif",
+   "mask/11_g_mask.tif"
+  ],
+  [
+   "images/12_g.jpg",
+   "manual1/12_g.tif",
+   "mask/12_g_mask.tif"
+  ],
+  [
+   "images/13_g.jpg",
+   "manual1/13_g.tif",
+   "mask/13_g_mask.tif"
+  ],
+  [
+   "images/14_g.jpg",
+   "manual1/14_g.tif",
+   "mask/14_g_mask.tif"
+  ],
+  [
+   "images/15_g.jpg",
+   "manual1/15_g.tif",
+   "mask/15_g_mask.tif"
+  ],
+  [
+   "images/06_h.jpg",
+   "manual1/06_h.tif",
+   "mask/06_h_mask.tif"
+  ],
+  [
+   "images/07_h.jpg",
+   "manual1/07_h.tif",
+   "mask/07_h_mask.tif"
+  ],
+  [
+   "images/08_h.jpg",
+   "manual1/08_h.tif",
+   "mask/08_h_mask.tif"
+  ],
+  [
+   "images/09_h.jpg",
+   "manual1/09_h.tif",
+   "mask/09_h_mask.tif"
+  ],
+  [
+   "images/10_h.jpg",
+   "manual1/10_h.tif",
+   "mask/10_h_mask.tif"
+  ],
+  [
+   "images/11_h.jpg",
+   "manual1/11_h.tif",
+   "mask/11_h_mask.tif"
+  ],
+  [
+   "images/12_h.jpg",
+   "manual1/12_h.tif",
+   "mask/12_h_mask.tif"
+  ],
+  [
+   "images/13_h.jpg",
+   "manual1/13_h.tif",
+   "mask/13_h_mask.tif"
+  ],
+  [
+   "images/14_h.jpg",
+   "manual1/14_h.tif",
+   "mask/14_h_mask.tif"
+  ],
+  [
+   "images/15_h.jpg",
+   "manual1/15_h.tif",
+   "mask/15_h_mask.tif"
+  ]
+ ]
+}
\ No newline at end of file
diff --git a/bob/ip/binseg/data/imagefolder.py b/bob/ip/binseg/data/imagefolder.py
deleted file mode 100644
index 7ec9dd9dbd558b8a1b405076946dca0919df5990..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/data/imagefolder.py
+++ /dev/null
@@ -1,79 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-from torch.utils.data import Dataset
-from pathlib import Path
-import numpy as np
-from PIL import Image
-import torch
-import torchvision.transforms.functional as VF
-import bob.io.base
-
-def get_file_lists(data_path):
-    data_path = Path(data_path)
-    
-    image_path = data_path.joinpath('images')
-    image_file_names = np.array(sorted(list(image_path.glob('*'))))
-
-    gt_path = data_path.joinpath('gt')
-    gt_file_names = np.array(sorted(list(gt_path.glob('*'))))
-    return image_file_names, gt_file_names
-
-class ImageFolder(Dataset):
-    """
-    Generic ImageFolder dataset, that contains two folders:
-
-    * ``images`` (vessel images)
-    * ``gt`` (ground-truth labels)
-    
-    
-    Parameters
-    ----------
-    path : str
-        full path to root of dataset
-    
-    """
-    def __init__(self, path, transform = None):
-        self.transform = transform
-        self.img_file_list, self.gt_file_list = get_file_lists(path)
-
-    def __len__(self):
-        """
-        Returns
-        -------
-        int
-            size of the dataset
-        """
-        return len(self.img_file_list)
-    
-    def __getitem__(self,index):
-        """
-        Parameters
-        ----------
-        index : int
-        
-        Returns
-        -------
-        list
-            dataitem [img_name, img, gt, mask]
-        """
-        img_path = self.img_file_list[index]
-        img_name = img_path.name
-        img = Image.open(img_path).convert(mode='RGB')
-    
-        gt_path = self.gt_file_list[index]
-        if gt_path.suffix == '.hdf5':
-            gt = bob.io.base.load(str(gt_path)).astype('float32')
-            # not elegant but since transforms require PIL images we do this hacky workaround here
-            gt = torch.from_numpy(gt)
-            gt = VF.to_pil_image(gt).convert(mode='1', dither=None)
-        else:
-            gt = Image.open(gt_path).convert(mode='1', dither=None)
-        
-        sample = [img, gt]
-        
-        if self.transform :
-            sample = self.transform(*sample)
-        
-        sample.insert(0,img_name)
-        
-        return sample
diff --git a/bob/ip/binseg/data/imagefolderinference.py b/bob/ip/binseg/data/imagefolderinference.py
deleted file mode 100644
index c4218755f099e5455e474b67fcaa004f99f46ca4..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/data/imagefolderinference.py
+++ /dev/null
@@ -1,82 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-from torch.utils.data import Dataset
-from pathlib import Path
-import numpy as np
-from PIL import Image
-import torch
-import torchvision.transforms.functional as VF
-import bob.io.base
-
-def get_file_lists(data_path, glob):
-    """
-    Recursively retrieves file lists from a given path, matching a given glob
-
-    This function will use :py:meth:`pathlib.Path.rglob`, together with the
-    provided glob pattern to search for anything the desired filename.
-    """
-
-    data_path = Path(data_path)
-    image_file_names = np.array(sorted(list(data_path.rglob(glob))))
-    return image_file_names
-
-class ImageFolderInference(Dataset):
-    """
-    Generic ImageFolder containing images for inference
-
-    Notice that this implementation, contrary to its sister
-    :py:class:`.ImageFolder`, does not *automatically*
-    convert the input image to RGB, before passing it to the transforms, so it
-    is possible to accomodate a wider range of input types (e.g. 16-bit PNG
-    images).
-
-    Parameters
-    ----------
-    path : str
-        full path to root of dataset
-
-    glob : str
-        glob that can be used to filter-down files to be loaded on the provided
-        path
-
-    transform : list
-        List of transformations to apply to every input sample
-
-    """
-    def __init__(self, path, glob='*', transform = None):
-        self.transform = transform
-        self.path = path
-        self.img_file_list = get_file_lists(path, glob)
-
-    def __len__(self):
-        """
-        Returns
-        -------
-        int
-            size of the dataset
-        """
-        return len(self.img_file_list)
-
-    def __getitem__(self,index):
-        """
-        Parameters
-        ----------
-        index : int
-
-        Returns
-        -------
-        list
-            dataitem [img_name, img]
-        """
-        img_path = self.img_file_list[index]
-        img_name = img_path.relative_to(self.path).as_posix()
-        img = Image.open(img_path)
-
-        sample = [img]
-
-        if self.transform :
-            sample = self.transform(*sample)
-
-        sample.insert(0,img_name)
-
-        return sample
diff --git a/bob/ip/binseg/data/iostar/__init__.py b/bob/ip/binseg/data/iostar/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e5b762d9d714837f25d60062cc08b3c9be2a1e7d
--- /dev/null
+++ b/bob/ip/binseg/data/iostar/__init__.py
@@ -0,0 +1,76 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""IOSTAR (training set) for Vessel and Optic-Disc Segmentation
+
+The IOSTAR vessel segmentation dataset includes 30 images with a resolution of
+1024 × 1024 pixels. All the vessels in this dataset are annotated by a group of
+experts working in the field of retinal image analysis. Additionally the
+dataset includes annotations for the optic disc and the artery/vein ratio.
+
+* Reference: [IOSTAR-2016]_
+* Original resolution (height x width): 1024 x 1024
+* Split reference: [MEYER-2017]_
+* Protocol ``vessel``:
+
+  * Training samples: 20 (including labels and masks)
+  * Test samples: 10 (including labels and masks)
+
+* Protocol ``optic-disc``:
+
+  * Training samples: 20 (including labels and masks)
+  * Test samples: 10 (including labels and masks)
+"""
+
+import os
+import pkg_resources
+
+import bob.extension
+
+from ..dataset import JSONDataset
+from ..loader import load_pil_rgb, load_pil_1, make_delayed
+from ..utils import invert_mode1_image, subtract_mode1_images
+
+_protocols = [
+    pkg_resources.resource_filename(__name__, "vessel.json"),
+    pkg_resources.resource_filename(__name__, "optic-disc.json"),
+]
+
+_root_path = bob.extension.rc.get(
+    "bob.ip.binseg.iostar.datadir", os.path.realpath(os.curdir)
+)
+
+
+def _vessel_loader(sample):
+    return dict(
+        data=load_pil_rgb(os.path.join(_root_path, sample["data"])),
+        label=load_pil_1(os.path.join(_root_path, sample["label"])),
+        mask=load_pil_1(os.path.join(_root_path, sample["mask"])),
+    )
+
+
+def _disc_loader(sample):
+    # For optic-disc analysis, the label provided by IOSTAR raw data is the
+    # "inverted" (negative) label, and does not consider the mask region, which
+    # must be subtracted.  We do this special manipulation here.
+    data = load_pil_rgb(os.path.join(_root_path, sample["data"]))
+    label = load_pil_1(os.path.join(_root_path, sample["label"]))
+    mask = load_pil_1(os.path.join(_root_path, sample["mask"]))
+    label = subtract_mode1_images(
+        invert_mode1_image(label), invert_mode1_image(mask)
+    )
+    return dict(data=data, label=label, mask=mask)
+
+
+def _loader(context, sample):
+    if context["protocol"] == "optic-disc":
+        return make_delayed(sample, _disc_loader)
+    elif context["protocol"] == "vessel":
+        return make_delayed(sample, _vessel_loader)
+    raise RuntimeError(f"Unknown protocol {context['protocol']}")
+
+
+dataset = JSONDataset(
+    protocols=_protocols, fieldnames=("data", "label", "mask"), loader=_loader,
+)
+"""IOSTAR dataset object"""
diff --git a/bob/ip/binseg/data/iostar/optic-disc.json b/bob/ip/binseg/data/iostar/optic-disc.json
new file mode 100644
index 0000000000000000000000000000000000000000..7f583b6d8d9fbdde805a4a359857a89a428d84c7
--- /dev/null
+++ b/bob/ip/binseg/data/iostar/optic-disc.json
@@ -0,0 +1,156 @@
+{
+ "train": [
+  [
+   "image/STAR 01_OSC.jpg",
+   "mask_OD/STAR 01_OSC_ODMask.tif",
+   "mask/STAR 01_OSC_Mask.tif"
+  ],
+  [
+   "image/STAR 02_ODC.jpg",
+   "mask_OD/STAR 02_ODC_ODMask.tif",
+   "mask/STAR 02_ODC_Mask.tif"
+  ],
+  [
+   "image/STAR 03_OSN.jpg",
+   "mask_OD/STAR 03_OSN_ODMask.tif",
+   "mask/STAR 03_OSN_Mask.tif"
+  ],
+  [
+   "image/STAR 05_ODC.jpg",
+   "mask_OD/STAR 05_ODC_ODMask.tif",
+   "mask/STAR 05_ODC_Mask.tif"
+  ],
+  [
+   "image/STAR 06_ODN.jpg",
+   "mask_OD/STAR 06_ODN_ODMask.tif",
+   "mask/STAR 06_ODN_Mask.tif"
+  ],
+  [
+   "image/STAR 08_OSN.jpg",
+   "mask_OD/STAR 08_OSN_ODMask.tif",
+   "mask/STAR 08_OSN_Mask.tif"
+  ],
+  [
+   "image/STAR 09_OSN.jpg",
+   "mask_OD/STAR 09_OSN_ODMask.tif",
+   "mask/STAR 09_OSN_Mask.tif"
+  ],
+  [
+   "image/STAR 10_OSN.jpg",
+   "mask_OD/STAR 10_OSN_ODMask.tif",
+   "mask/STAR 10_OSN_Mask.tif"
+  ],
+  [
+   "image/STAR 13_OSN.jpg",
+   "mask_OD/STAR 13_OSN_ODMask.tif",
+   "mask/STAR 13_OSN_Mask.tif"
+  ],
+  [
+   "image/STAR 15_OSN.jpg",
+   "mask_OD/STAR 15_OSN_ODMask.tif",
+   "mask/STAR 15_OSN_Mask.tif"
+  ],
+  [
+   "image/STAR 16_OSN.jpg",
+   "mask_OD/STAR 16_OSN_ODMask.tif",
+   "mask/STAR 16_OSN_Mask.tif"
+  ],
+  [
+   "image/STAR 17_ODN.jpg",
+   "mask_OD/STAR 17_ODN_ODMask.tif",
+   "mask/STAR 17_ODN_Mask.tif"
+  ],
+  [
+   "image/STAR 20_ODC.jpg",
+   "mask_OD/STAR 20_ODC_ODMask.tif",
+   "mask/STAR 20_ODC_Mask.tif"
+  ],
+  [
+   "image/STAR 21_OSC.jpg",
+   "mask_OD/STAR 21_OSC_ODMask.tif",
+   "mask/STAR 21_OSC_Mask.tif"
+  ],
+  [
+   "image/STAR 24_OSC.jpg",
+   "mask_OD/STAR 24_OSC_ODMask.tif",
+   "mask/STAR 24_OSC_Mask.tif"
+  ],
+  [
+   "image/STAR 26_ODC.jpg",
+   "mask_OD/STAR 26_ODC_ODMask.tif",
+   "mask/STAR 26_ODC_Mask.tif"
+  ],
+  [
+   "image/STAR 28_ODN.jpg",
+   "mask_OD/STAR 28_ODN_ODMask.tif",
+   "mask/STAR 28_ODN_Mask.tif"
+  ],
+  [
+   "image/STAR 30_ODC.jpg",
+   "mask_OD/STAR 30_ODC_ODMask.tif",
+   "mask/STAR 30_ODC_Mask.tif"
+  ],
+  [
+   "image/STAR 31_ODN.jpg",
+   "mask_OD/STAR 31_ODN_ODMask.tif",
+   "mask/STAR 31_ODN_Mask.tif"
+  ],
+  [
+   "image/STAR 32_ODC.jpg",
+   "mask_OD/STAR 32_ODC_ODMask.tif",
+   "mask/STAR 32_ODC_Mask.tif"
+  ]
+ ],
+ "test": [
+  [
+   "image/STAR 34_ODC.jpg",
+   "mask_OD/STAR 34_ODC_ODMask.tif",
+   "mask/STAR 34_ODC_Mask.tif"
+  ],
+  [
+   "image/STAR 36_OSC.jpg",
+   "mask_OD/STAR 36_OSC_ODMask.tif",
+   "mask/STAR 36_OSC_Mask.tif"
+  ],
+  [
+   "image/STAR 37_ODN.jpg",
+   "mask_OD/STAR 37_ODN_ODMask.tif",
+   "mask/STAR 37_ODN_Mask.tif"
+  ],
+  [
+   "image/STAR 38_ODC.jpg",
+   "mask_OD/STAR 38_ODC_ODMask.tif",
+   "mask/STAR 38_ODC_Mask.tif"
+  ],
+  [
+   "image/STAR 39_ODC.jpg",
+   "mask_OD/STAR 39_ODC_ODMask.tif",
+   "mask/STAR 39_ODC_Mask.tif"
+  ],
+  [
+   "image/STAR 40_OSC.jpg",
+   "mask_OD/STAR 40_OSC_ODMask.tif",
+   "mask/STAR 40_OSC_Mask.tif"
+  ],
+  [
+   "image/STAR 43_OSC.jpg",
+   "mask_OD/STAR 43_OSC_ODMask.tif",
+   "mask/STAR 43_OSC_Mask.tif"
+  ],
+  [
+   "image/STAR 44_OSN.jpg",
+   "mask_OD/STAR 44_OSN_ODMask.tif",
+   "mask/STAR 44_OSN_Mask.tif"
+  ],
+  [
+   "image/STAR 45_ODC.jpg",
+   "mask_OD/STAR 45_ODC_ODMask.tif",
+   "mask/STAR 45_ODC_Mask.tif"
+  ],
+  [
+   "image/STAR 48_OSN.jpg",
+   "mask_OD/STAR 48_OSN_ODMask.tif",
+   "mask/STAR 48_OSN_Mask.tif"
+  ]
+ ]
+}
\ No newline at end of file
diff --git a/bob/ip/binseg/data/iostar/vessel.json b/bob/ip/binseg/data/iostar/vessel.json
new file mode 100644
index 0000000000000000000000000000000000000000..7500058bc3cf5229da3c6148a2738a66b8e29e8f
--- /dev/null
+++ b/bob/ip/binseg/data/iostar/vessel.json
@@ -0,0 +1,156 @@
+{
+ "train": [
+  [
+   "image/STAR 01_OSC.jpg",
+   "GT/STAR 01_OSC_GT.tif",
+   "mask/STAR 01_OSC_Mask.tif"
+  ],
+  [
+   "image/STAR 02_ODC.jpg",
+   "GT/STAR 02_ODC_GT.tif",
+   "mask/STAR 02_ODC_Mask.tif"
+  ],
+  [
+   "image/STAR 03_OSN.jpg",
+   "GT/STAR 03_OSN_GT.tif",
+   "mask/STAR 03_OSN_Mask.tif"
+  ],
+  [
+   "image/STAR 05_ODC.jpg",
+   "GT/STAR 05_ODC_GT.tif",
+   "mask/STAR 05_ODC_Mask.tif"
+  ],
+  [
+   "image/STAR 06_ODN.jpg",
+   "GT/STAR 06_ODN_GT.tif",
+   "mask/STAR 06_ODN_Mask.tif"
+  ],
+  [
+   "image/STAR 08_OSN.jpg",
+   "GT/STAR 08_OSN_GT.tif",
+   "mask/STAR 08_OSN_Mask.tif"
+  ],
+  [
+   "image/STAR 09_OSN.jpg",
+   "GT/STAR 09_OSN_GT.tif",
+   "mask/STAR 09_OSN_Mask.tif"
+  ],
+  [
+   "image/STAR 10_OSN.jpg",
+   "GT/STAR 10_OSN_GT.tif",
+   "mask/STAR 10_OSN_Mask.tif"
+  ],
+  [
+   "image/STAR 13_OSN.jpg",
+   "GT/STAR 13_OSN_GT.tif",
+   "mask/STAR 13_OSN_Mask.tif"
+  ],
+  [
+   "image/STAR 15_OSN.jpg",
+   "GT/STAR 15_OSN_GT.tif",
+   "mask/STAR 15_OSN_Mask.tif"
+  ],
+  [
+   "image/STAR 16_OSN.jpg",
+   "GT/STAR 16_OSN_GT.tif",
+   "mask/STAR 16_OSN_Mask.tif"
+  ],
+  [
+   "image/STAR 17_ODN.jpg",
+   "GT/STAR 17_ODN_GT.tif",
+   "mask/STAR 17_ODN_Mask.tif"
+  ],
+  [
+   "image/STAR 20_ODC.jpg",
+   "GT/STAR 20_ODC_GT.tif",
+   "mask/STAR 20_ODC_Mask.tif"
+  ],
+  [
+   "image/STAR 21_OSC.jpg",
+   "GT/STAR 21_OSC_GT.tif",
+   "mask/STAR 21_OSC_Mask.tif"
+  ],
+  [
+   "image/STAR 24_OSC.jpg",
+   "GT/STAR 24_OSC_GT.tif",
+   "mask/STAR 24_OSC_Mask.tif"
+  ],
+  [
+   "image/STAR 26_ODC.jpg",
+   "GT/STAR 26_ODC_GT.tif",
+   "mask/STAR 26_ODC_Mask.tif"
+  ],
+  [
+   "image/STAR 28_ODN.jpg",
+   "GT/STAR 28_ODN_GT.tif",
+   "mask/STAR 28_ODN_Mask.tif"
+  ],
+  [
+   "image/STAR 30_ODC.jpg",
+   "GT/STAR 30_ODC_GT.tif",
+   "mask/STAR 30_ODC_Mask.tif"
+  ],
+  [
+   "image/STAR 31_ODN.jpg",
+   "GT/STAR 31_ODN_GT.tif",
+   "mask/STAR 31_ODN_Mask.tif"
+  ],
+  [
+   "image/STAR 32_ODC.jpg",
+   "GT/STAR 32_ODC_GT.tif",
+   "mask/STAR 32_ODC_Mask.tif"
+  ]
+ ],
+ "test": [
+  [
+   "image/STAR 34_ODC.jpg",
+   "GT/STAR 34_ODC_GT.tif",
+   "mask/STAR 34_ODC_Mask.tif"
+  ],
+  [
+   "image/STAR 36_OSC.jpg",
+   "GT/STAR 36_OSC_GT.tif",
+   "mask/STAR 36_OSC_Mask.tif"
+  ],
+  [
+   "image/STAR 37_ODN.jpg",
+   "GT/STAR 37_ODN_GT.tif",
+   "mask/STAR 37_ODN_Mask.tif"
+  ],
+  [
+   "image/STAR 38_ODC.jpg",
+   "GT/STAR 38_ODC_GT.tif",
+   "mask/STAR 38_ODC_Mask.tif"
+  ],
+  [
+   "image/STAR 39_ODC.jpg",
+   "GT/STAR 39_ODC_GT.tif",
+   "mask/STAR 39_ODC_Mask.tif"
+  ],
+  [
+   "image/STAR 40_OSC.jpg",
+   "GT/STAR 40_OSC_GT.tif",
+   "mask/STAR 40_OSC_Mask.tif"
+  ],
+  [
+   "image/STAR 43_OSC.jpg",
+   "GT/STAR 43_OSC_GT.tif",
+   "mask/STAR 43_OSC_Mask.tif"
+  ],
+  [
+   "image/STAR 44_OSN.jpg",
+   "GT/STAR 44_OSN_GT.tif",
+   "mask/STAR 44_OSN_Mask.tif"
+  ],
+  [
+   "image/STAR 45_ODC.jpg",
+   "GT/STAR 45_ODC_GT.tif",
+   "mask/STAR 45_ODC_Mask.tif"
+  ],
+  [
+   "image/STAR 48_OSN.jpg",
+   "GT/STAR 48_OSN_GT.tif",
+   "mask/STAR 48_OSN_Mask.tif"
+  ]
+ ]
+}
\ No newline at end of file
diff --git a/bob/ip/binseg/data/loader.py b/bob/ip/binseg/data/loader.py
new file mode 100644
index 0000000000000000000000000000000000000000..aa2adc416065fb65e25a4b10c5b364758442e8b7
--- /dev/null
+++ b/bob/ip/binseg/data/loader.py
@@ -0,0 +1,89 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+
+"""Data loading code"""
+
+
+import os
+import functools
+
+import PIL.Image
+
+from .sample import DelayedSample
+
+
+def load_pil_rgb(path):
+    """Loads a sample data
+
+    Parameters
+    ----------
+
+    path : str
+        The full path leading to the image to be loaded
+
+
+    Returns
+    -------
+
+    image : PIL.Image.Image
+        A PIL image in RGB mode
+
+    """
+
+    return PIL.Image.open(path).convert("RGB")
+
+
+def load_pil_1(path):
+    """Loads a sample binary label or mask
+
+    Parameters
+    ----------
+
+    path : str
+        The full path leading to the image to be loaded
+
+
+    Returns
+    -------
+
+    image : PIL.Image.Image
+        A PIL image in mode "1"
+
+    """
+
+    return PIL.Image.open(path).convert(mode="1", dither=None)
+
+
+def make_delayed(sample, loader, key=None):
+    """Returns a delayed-loading Sample object
+
+    Parameters
+    ----------
+
+    sample : dict
+        A dictionary that maps field names to sample data values (e.g. paths)
+
+    loader : object
+        A function that inputs ``sample`` dictionaries and returns the loaded
+        data.
+
+    key : str
+        A unique key identifier for this sample.  If not provided, assumes
+        ``sample`` is a dictionary with a ``data`` entry and uses its path as
+        key.
+
+
+    Returns
+    -------
+
+    sample : bob.ip.binseg.data.sample.DelayedSample
+        In which ``key`` is as provided and ``data`` can be accessed to trigger
+        sample loading.
+
+    """
+
+    return DelayedSample(
+            functools.partial(loader, sample),
+            key=key or os.path.splitext(sample["data"])[0],
+            )
diff --git a/bob/ip/binseg/data/refuge/__init__.py b/bob/ip/binseg/data/refuge/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..addcfca9f368bafb68efd0a97a4232f88a5a9d8e
--- /dev/null
+++ b/bob/ip/binseg/data/refuge/__init__.py
@@ -0,0 +1,103 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""REFUGE for Optic Disc and Cup Segmentation
+
+The dataset consists of 1200 color fundus photographs, created for a MICCAI
+challenge. The goal of the challenge is to evaluate and compare automated
+algorithms for glaucoma detection and optic disc/cup segmentation on a common
+dataset of retinal fundus images.
+
+* Reference (including train/dev/test split): [REFUGE-2018]_
+* Protocols ``optic-disc`` and ``cup``:
+
+  * Training samples:
+
+    * 400
+    * includes optic-disc and cup labels
+    * includes label: glaucomatous and non-glaucomatous
+    * original resolution: 2056 x 2124
+
+  * Validation samples:
+
+    * 400
+    * includes optic-disc and cup labels
+    * original resolution: 1634 x 1634
+
+  * Test samples:
+
+    * 400
+    * includes optic-disc and cup labels
+    * includes label: glaucomatous and non-glaucomatous
+    * original resolution:
+"""
+
+import os
+import pkg_resources
+
+import bob.extension
+
+from ..dataset import JSONDataset
+from ..loader import load_pil_rgb, make_delayed
+
+_protocols = {
+    "optic-disc": pkg_resources.resource_filename(__name__, "default.json"),
+    "optic-cup": pkg_resources.resource_filename(__name__, "default.json"),
+}
+
+_root_path = bob.extension.rc.get(
+    "bob.ip.binseg.refuge.datadir", os.path.realpath(os.curdir)
+)
+
+
+def _disc_loader(sample):
+    retval = dict(
+        data=load_pil_rgb(os.path.join(_root_path, sample["data"])),
+        label=load_pil_rgb(os.path.join(_root_path, sample["label"])),
+        glaucoma=sample["glaucoma"],
+    )
+    retval["label"] = retval["label"].convert("L")
+    retval["label"] = retval["label"].point(lambda p: p <= 150, mode="1")
+    return retval
+
+
+def _cup_loader(sample):
+    retval = dict(
+        data=load_pil_rgb(os.path.join(_root_path, sample["data"])),
+        label=load_pil_rgb(os.path.join(_root_path, sample["label"])),
+        glaucoma=sample["glaucoma"],
+    )
+    retval["label"] = retval["label"].convert("L")
+    retval["label"] = retval["label"].point(lambda p: p <= 100, mode="1")
+    return retval
+
+
+def _loader(context, sample):
+
+    sample["glaucoma"] = False
+    if context["subset"] == "train":
+        # adds binary metadata for glaucoma/non-glaucoma patients
+        sample["glaucoma"] = os.path.basename(sample["label"]).startswith("g")
+    elif context["subset"] == "test":
+        sample["glaucoma"] = (sample["label"].split(os.sep)[-2] == "G")
+    elif context["subset"] == "validation":
+        pass
+    else:
+        raise RuntimeError(f"Unknown subset {context['subset']}")
+
+    # optic disc is drawn with gray == 128 and includes the cup, drawn with
+    # black == 0.  The rest is white == 255.
+    if context["protocol"] == "optic-disc":
+        return make_delayed(sample, _disc_loader)
+    elif context["protocol"] == "optic-cup":
+        return make_delayed(sample, _cup_loader)
+    else:
+        raise RuntimeError(f"Unknown protocol {context['protocol']}")
+
+
+dataset = JSONDataset(
+    protocols=_protocols,
+    fieldnames=("data", "label"),
+    loader=_loader,
+)
+"""REFUGE dataset object"""
diff --git a/bob/ip/binseg/data/refuge/default.json b/bob/ip/binseg/data/refuge/default.json
new file mode 100644
index 0000000000000000000000000000000000000000..cde130a04f5c7240698cdf3382142f0ccacb527e
--- /dev/null
+++ b/bob/ip/binseg/data/refuge/default.json
@@ -0,0 +1,4808 @@
+{
+    "train": [
+        [
+            "Training400/Glaucoma/g0001.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0001.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0002.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0002.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0003.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0003.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0004.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0004.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0005.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0005.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0006.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0006.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0007.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0007.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0008.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0008.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0009.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0009.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0010.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0010.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0011.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0011.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0012.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0012.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0013.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0013.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0014.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0014.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0015.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0015.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0016.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0016.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0017.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0017.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0018.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0018.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0019.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0019.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0020.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0020.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0021.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0021.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0022.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0022.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0023.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0023.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0024.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0024.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0025.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0025.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0026.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0026.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0027.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0027.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0028.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0028.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0029.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0029.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0030.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0030.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0031.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0031.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0032.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0032.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0033.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0033.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0034.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0034.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0035.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0035.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0036.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0036.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0037.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0037.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0038.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0038.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0039.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0039.bmp"
+        ],
+        [
+            "Training400/Glaucoma/g0040.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0040.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0001.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0001.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0002.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0002.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0003.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0003.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0004.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0004.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0005.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0005.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0006.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0006.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0007.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0007.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0008.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0008.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0009.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0009.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0010.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0010.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0011.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0011.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0012.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0012.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0013.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0013.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0014.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0014.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0015.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0015.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0016.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0016.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0017.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0017.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0018.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0018.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0019.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0019.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0020.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0020.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0021.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0021.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0022.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0022.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0023.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0023.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0024.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0024.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0025.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0025.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0026.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0026.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0027.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0027.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0028.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0028.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0029.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0029.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0030.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0030.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0031.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0031.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0032.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0032.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0033.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0033.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0034.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0034.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0035.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0035.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0036.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0036.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0037.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0037.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0038.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0038.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0039.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0039.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0040.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0040.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0041.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0041.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0042.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0042.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0043.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0043.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0044.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0044.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0045.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0045.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0046.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0046.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0047.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0047.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0048.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0048.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0049.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0049.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0050.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0050.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0051.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0051.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0052.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0052.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0053.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0053.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0054.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0054.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0055.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0055.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0056.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0056.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0057.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0057.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0058.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0058.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0059.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0059.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0060.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0060.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0061.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0061.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0062.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0062.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0063.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0063.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0064.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0064.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0065.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0065.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0066.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0066.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0067.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0067.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0068.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0068.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0069.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0069.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0070.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0070.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0071.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0071.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0072.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0072.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0073.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0073.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0074.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0074.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0075.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0075.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0076.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0076.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0077.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0077.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0078.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0078.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0079.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0079.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0080.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0080.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0081.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0081.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0082.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0082.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0083.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0083.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0084.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0084.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0085.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0085.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0086.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0086.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0087.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0087.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0088.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0088.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0089.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0089.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0090.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0090.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0091.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0091.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0092.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0092.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0093.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0093.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0094.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0094.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0095.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0095.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0096.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0096.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0097.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0097.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0098.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0098.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0099.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0099.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0100.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0100.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0101.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0101.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0102.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0102.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0103.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0103.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0104.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0104.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0105.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0105.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0106.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0106.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0107.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0107.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0108.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0108.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0109.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0109.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0110.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0110.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0111.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0111.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0112.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0112.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0113.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0113.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0114.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0114.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0115.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0115.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0116.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0116.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0117.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0117.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0118.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0118.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0119.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0119.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0120.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0120.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0121.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0121.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0122.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0122.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0123.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0123.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0124.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0124.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0125.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0125.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0126.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0126.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0127.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0127.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0128.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0128.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0129.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0129.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0130.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0130.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0131.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0131.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0132.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0132.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0133.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0133.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0134.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0134.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0135.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0135.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0136.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0136.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0137.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0137.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0138.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0138.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0139.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0139.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0140.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0140.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0141.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0141.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0142.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0142.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0143.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0143.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0144.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0144.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0145.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0145.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0146.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0146.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0147.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0147.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0148.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0148.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0149.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0149.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0150.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0150.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0151.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0151.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0152.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0152.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0153.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0153.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0154.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0154.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0155.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0155.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0156.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0156.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0157.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0157.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0158.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0158.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0159.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0159.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0160.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0160.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0161.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0161.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0162.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0162.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0163.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0163.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0164.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0164.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0165.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0165.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0166.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0166.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0167.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0167.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0168.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0168.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0169.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0169.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0170.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0170.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0171.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0171.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0172.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0172.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0173.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0173.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0174.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0174.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0175.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0175.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0176.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0176.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0177.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0177.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0178.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0178.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0179.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0179.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0180.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0180.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0181.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0181.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0182.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0182.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0183.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0183.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0184.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0184.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0185.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0185.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0186.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0186.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0187.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0187.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0188.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0188.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0189.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0189.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0190.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0190.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0191.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0191.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0192.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0192.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0193.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0193.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0194.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0194.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0195.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0195.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0196.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0196.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0197.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0197.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0198.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0198.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0199.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0199.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0200.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0200.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0201.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0201.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0202.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0202.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0203.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0203.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0204.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0204.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0205.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0205.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0206.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0206.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0207.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0207.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0208.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0208.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0209.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0209.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0210.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0210.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0211.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0211.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0212.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0212.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0213.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0213.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0214.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0214.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0215.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0215.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0216.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0216.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0217.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0217.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0218.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0218.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0219.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0219.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0220.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0220.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0221.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0221.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0222.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0222.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0223.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0223.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0224.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0224.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0225.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0225.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0226.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0226.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0227.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0227.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0228.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0228.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0229.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0229.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0230.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0230.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0231.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0231.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0232.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0232.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0233.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0233.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0234.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0234.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0235.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0235.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0236.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0236.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0237.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0237.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0238.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0238.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0239.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0239.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0240.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0240.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0241.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0241.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0242.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0242.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0243.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0243.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0244.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0244.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0245.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0245.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0246.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0246.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0247.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0247.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0248.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0248.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0249.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0249.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0250.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0250.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0251.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0251.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0252.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0252.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0253.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0253.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0254.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0254.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0255.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0255.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0256.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0256.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0257.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0257.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0258.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0258.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0259.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0259.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0260.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0260.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0261.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0261.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0262.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0262.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0263.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0263.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0264.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0264.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0265.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0265.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0266.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0266.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0267.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0267.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0268.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0268.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0269.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0269.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0270.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0270.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0271.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0271.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0272.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0272.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0273.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0273.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0274.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0274.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0275.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0275.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0276.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0276.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0277.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0277.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0278.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0278.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0279.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0279.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0280.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0280.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0281.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0281.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0282.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0282.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0283.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0283.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0284.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0284.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0285.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0285.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0286.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0286.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0287.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0287.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0288.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0288.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0289.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0289.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0290.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0290.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0291.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0291.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0292.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0292.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0293.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0293.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0294.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0294.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0295.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0295.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0296.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0296.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0297.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0297.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0298.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0298.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0299.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0299.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0300.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0300.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0301.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0301.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0302.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0302.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0303.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0303.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0304.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0304.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0305.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0305.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0306.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0306.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0307.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0307.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0308.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0308.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0309.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0309.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0310.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0310.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0311.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0311.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0312.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0312.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0313.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0313.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0314.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0314.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0315.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0315.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0316.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0316.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0317.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0317.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0318.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0318.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0319.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0319.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0320.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0320.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0321.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0321.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0322.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0322.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0323.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0323.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0324.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0324.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0325.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0325.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0326.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0326.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0327.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0327.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0328.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0328.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0329.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0329.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0330.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0330.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0331.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0331.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0332.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0332.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0333.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0333.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0334.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0334.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0335.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0335.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0336.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0336.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0337.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0337.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0338.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0338.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0339.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0339.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0340.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0340.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0341.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0341.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0342.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0342.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0343.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0343.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0344.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0344.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0345.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0345.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0346.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0346.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0347.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0347.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0348.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0348.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0349.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0349.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0350.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0350.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0351.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0351.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0352.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0352.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0353.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0353.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0354.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0354.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0355.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0355.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0356.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0356.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0357.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0357.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0358.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0358.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0359.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0359.bmp"
+        ],
+        [
+            "Training400/Non-Glaucoma/n0360.jpg",
+            "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0360.bmp"
+        ]
+    ],
+    "validation": [
+        [
+            "REFUGE-Validation400/V0001.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0001.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0002.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0002.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0003.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0003.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0004.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0004.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0005.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0005.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0006.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0006.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0007.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0007.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0008.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0008.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0009.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0009.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0010.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0010.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0011.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0011.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0012.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0012.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0013.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0013.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0014.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0014.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0015.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0015.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0016.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0016.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0017.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0017.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0018.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0018.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0019.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0019.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0020.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0020.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0021.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0021.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0022.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0022.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0023.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0023.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0024.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0024.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0025.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0025.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0026.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0026.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0027.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0027.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0028.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0028.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0029.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0029.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0030.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0030.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0031.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0031.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0032.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0032.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0033.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0033.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0034.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0034.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0035.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0035.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0036.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0036.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0037.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0037.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0038.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0038.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0039.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0039.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0040.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0040.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0041.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0041.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0042.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0042.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0043.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0043.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0044.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0044.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0045.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0045.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0046.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0046.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0047.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0047.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0048.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0048.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0049.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0049.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0050.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0050.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0051.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0051.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0052.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0052.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0053.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0053.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0054.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0054.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0055.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0055.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0056.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0056.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0057.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0057.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0058.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0058.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0059.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0059.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0060.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0060.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0061.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0061.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0062.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0062.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0063.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0063.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0064.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0064.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0065.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0065.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0066.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0066.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0067.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0067.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0068.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0068.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0069.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0069.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0070.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0070.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0071.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0071.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0072.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0072.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0073.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0073.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0074.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0074.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0075.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0075.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0076.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0076.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0077.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0077.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0078.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0078.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0079.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0079.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0080.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0080.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0081.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0081.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0082.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0082.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0083.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0083.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0084.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0084.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0085.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0085.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0086.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0086.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0087.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0087.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0088.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0088.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0089.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0089.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0090.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0090.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0091.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0091.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0092.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0092.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0093.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0093.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0094.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0094.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0095.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0095.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0096.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0096.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0097.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0097.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0098.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0098.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0099.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0099.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0100.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0100.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0101.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0101.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0102.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0102.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0103.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0103.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0104.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0104.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0105.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0105.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0106.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0106.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0107.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0107.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0108.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0108.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0109.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0109.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0110.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0110.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0111.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0111.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0112.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0112.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0113.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0113.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0114.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0114.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0115.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0115.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0116.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0116.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0117.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0117.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0118.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0118.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0119.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0119.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0120.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0120.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0121.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0121.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0122.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0122.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0123.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0123.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0124.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0124.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0125.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0125.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0126.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0126.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0127.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0127.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0128.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0128.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0129.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0129.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0130.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0130.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0131.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0131.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0132.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0132.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0133.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0133.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0134.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0134.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0135.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0135.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0136.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0136.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0137.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0137.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0138.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0138.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0139.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0139.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0140.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0140.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0141.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0141.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0142.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0142.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0143.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0143.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0144.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0144.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0145.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0145.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0146.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0146.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0147.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0147.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0148.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0148.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0149.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0149.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0150.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0150.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0151.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0151.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0152.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0152.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0153.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0153.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0154.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0154.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0155.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0155.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0156.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0156.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0157.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0157.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0158.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0158.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0159.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0159.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0160.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0160.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0161.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0161.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0162.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0162.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0163.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0163.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0164.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0164.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0165.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0165.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0166.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0166.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0167.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0167.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0168.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0168.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0169.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0169.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0170.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0170.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0171.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0171.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0172.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0172.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0173.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0173.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0174.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0174.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0175.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0175.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0176.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0176.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0177.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0177.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0178.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0178.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0179.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0179.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0180.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0180.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0181.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0181.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0182.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0182.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0183.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0183.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0184.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0184.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0185.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0185.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0186.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0186.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0187.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0187.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0188.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0188.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0189.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0189.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0190.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0190.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0191.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0191.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0192.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0192.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0193.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0193.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0194.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0194.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0195.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0195.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0196.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0196.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0197.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0197.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0198.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0198.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0199.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0199.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0200.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0200.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0201.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0201.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0202.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0202.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0203.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0203.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0204.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0204.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0205.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0205.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0206.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0206.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0207.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0207.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0208.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0208.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0209.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0209.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0210.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0210.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0211.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0211.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0212.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0212.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0213.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0213.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0214.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0214.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0215.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0215.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0216.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0216.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0217.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0217.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0218.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0218.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0219.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0219.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0220.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0220.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0221.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0221.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0222.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0222.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0223.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0223.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0224.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0224.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0225.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0225.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0226.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0226.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0227.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0227.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0228.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0228.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0229.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0229.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0230.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0230.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0231.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0231.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0232.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0232.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0233.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0233.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0234.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0234.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0235.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0235.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0236.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0236.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0237.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0237.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0238.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0238.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0239.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0239.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0240.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0240.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0241.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0241.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0242.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0242.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0243.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0243.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0244.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0244.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0245.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0245.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0246.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0246.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0247.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0247.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0248.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0248.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0249.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0249.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0250.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0250.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0251.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0251.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0252.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0252.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0253.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0253.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0254.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0254.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0255.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0255.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0256.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0256.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0257.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0257.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0258.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0258.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0259.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0259.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0260.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0260.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0261.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0261.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0262.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0262.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0263.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0263.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0264.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0264.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0265.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0265.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0266.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0266.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0267.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0267.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0268.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0268.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0269.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0269.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0270.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0270.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0271.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0271.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0272.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0272.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0273.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0273.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0274.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0274.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0275.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0275.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0276.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0276.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0277.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0277.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0278.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0278.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0279.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0279.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0280.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0280.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0281.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0281.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0282.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0282.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0283.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0283.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0284.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0284.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0285.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0285.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0286.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0286.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0287.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0287.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0288.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0288.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0289.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0289.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0290.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0290.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0291.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0291.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0292.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0292.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0293.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0293.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0294.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0294.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0295.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0295.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0296.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0296.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0297.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0297.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0298.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0298.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0299.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0299.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0300.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0300.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0301.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0301.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0302.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0302.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0303.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0303.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0304.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0304.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0305.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0305.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0306.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0306.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0307.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0307.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0308.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0308.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0309.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0309.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0310.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0310.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0311.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0311.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0312.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0312.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0313.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0313.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0314.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0314.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0315.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0315.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0316.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0316.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0317.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0317.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0318.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0318.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0319.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0319.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0320.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0320.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0321.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0321.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0322.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0322.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0323.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0323.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0324.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0324.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0325.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0325.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0326.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0326.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0327.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0327.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0328.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0328.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0329.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0329.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0330.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0330.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0331.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0331.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0332.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0332.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0333.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0333.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0334.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0334.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0335.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0335.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0336.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0336.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0337.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0337.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0338.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0338.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0339.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0339.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0340.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0340.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0341.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0341.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0342.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0342.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0343.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0343.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0344.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0344.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0345.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0345.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0346.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0346.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0347.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0347.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0348.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0348.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0349.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0349.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0350.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0350.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0351.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0351.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0352.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0352.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0353.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0353.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0354.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0354.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0355.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0355.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0356.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0356.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0357.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0357.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0358.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0358.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0359.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0359.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0360.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0360.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0361.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0361.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0362.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0362.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0363.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0363.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0364.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0364.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0365.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0365.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0366.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0366.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0367.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0367.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0368.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0368.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0369.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0369.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0370.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0370.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0371.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0371.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0372.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0372.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0373.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0373.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0374.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0374.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0375.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0375.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0376.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0376.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0377.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0377.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0378.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0378.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0379.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0379.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0380.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0380.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0381.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0381.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0382.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0382.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0383.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0383.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0384.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0384.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0385.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0385.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0386.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0386.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0387.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0387.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0388.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0388.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0389.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0389.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0390.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0390.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0391.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0391.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0392.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0392.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0393.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0393.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0394.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0394.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0395.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0395.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0396.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0396.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0397.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0397.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0398.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0398.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0399.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0399.bmp"
+        ],
+        [
+            "REFUGE-Validation400/V0400.jpg",
+            "REFUGE-Validation400-GT/Disc_Cup_Masks/V0400.bmp"
+        ]
+    ],
+    "test": [
+        [
+            "Test400/T0001.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0001.bmp"
+        ],
+        [
+            "Test400/T0002.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0002.bmp"
+        ],
+        [
+            "Test400/T0003.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0003.bmp"
+        ],
+        [
+            "Test400/T0004.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0004.bmp"
+        ],
+        [
+            "Test400/T0005.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0005.bmp"
+        ],
+        [
+            "Test400/T0006.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0006.bmp"
+        ],
+        [
+            "Test400/T0007.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0007.bmp"
+        ],
+        [
+            "Test400/T0008.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0008.bmp"
+        ],
+        [
+            "Test400/T0009.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0009.bmp"
+        ],
+        [
+            "Test400/T0010.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0010.bmp"
+        ],
+        [
+            "Test400/T0011.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0011.bmp"
+        ],
+        [
+            "Test400/T0012.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0012.bmp"
+        ],
+        [
+            "Test400/T0013.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0013.bmp"
+        ],
+        [
+            "Test400/T0014.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0014.bmp"
+        ],
+        [
+            "Test400/T0015.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0015.bmp"
+        ],
+        [
+            "Test400/T0016.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0016.bmp"
+        ],
+        [
+            "Test400/T0017.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0017.bmp"
+        ],
+        [
+            "Test400/T0018.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0018.bmp"
+        ],
+        [
+            "Test400/T0019.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0019.bmp"
+        ],
+        [
+            "Test400/T0020.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0020.bmp"
+        ],
+        [
+            "Test400/T0021.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0021.bmp"
+        ],
+        [
+            "Test400/T0022.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0022.bmp"
+        ],
+        [
+            "Test400/T0023.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0023.bmp"
+        ],
+        [
+            "Test400/T0024.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0024.bmp"
+        ],
+        [
+            "Test400/T0025.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0025.bmp"
+        ],
+        [
+            "Test400/T0026.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0026.bmp"
+        ],
+        [
+            "Test400/T0027.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0027.bmp"
+        ],
+        [
+            "Test400/T0028.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0028.bmp"
+        ],
+        [
+            "Test400/T0029.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0029.bmp"
+        ],
+        [
+            "Test400/T0030.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0030.bmp"
+        ],
+        [
+            "Test400/T0031.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0031.bmp"
+        ],
+        [
+            "Test400/T0032.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0032.bmp"
+        ],
+        [
+            "Test400/T0033.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0033.bmp"
+        ],
+        [
+            "Test400/T0034.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0034.bmp"
+        ],
+        [
+            "Test400/T0035.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0035.bmp"
+        ],
+        [
+            "Test400/T0036.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0036.bmp"
+        ],
+        [
+            "Test400/T0037.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0037.bmp"
+        ],
+        [
+            "Test400/T0038.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0038.bmp"
+        ],
+        [
+            "Test400/T0039.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0039.bmp"
+        ],
+        [
+            "Test400/T0040.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0040.bmp"
+        ],
+        [
+            "Test400/T0041.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0041.bmp"
+        ],
+        [
+            "Test400/T0042.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0042.bmp"
+        ],
+        [
+            "Test400/T0043.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0043.bmp"
+        ],
+        [
+            "Test400/T0044.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0044.bmp"
+        ],
+        [
+            "Test400/T0045.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0045.bmp"
+        ],
+        [
+            "Test400/T0046.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0046.bmp"
+        ],
+        [
+            "Test400/T0047.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0047.bmp"
+        ],
+        [
+            "Test400/T0048.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0048.bmp"
+        ],
+        [
+            "Test400/T0049.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0049.bmp"
+        ],
+        [
+            "Test400/T0050.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0050.bmp"
+        ],
+        [
+            "Test400/T0051.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0051.bmp"
+        ],
+        [
+            "Test400/T0052.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0052.bmp"
+        ],
+        [
+            "Test400/T0053.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0053.bmp"
+        ],
+        [
+            "Test400/T0054.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0054.bmp"
+        ],
+        [
+            "Test400/T0055.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0055.bmp"
+        ],
+        [
+            "Test400/T0056.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0056.bmp"
+        ],
+        [
+            "Test400/T0057.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0057.bmp"
+        ],
+        [
+            "Test400/T0058.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0058.bmp"
+        ],
+        [
+            "Test400/T0059.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0059.bmp"
+        ],
+        [
+            "Test400/T0060.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0060.bmp"
+        ],
+        [
+            "Test400/T0061.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0061.bmp"
+        ],
+        [
+            "Test400/T0062.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0062.bmp"
+        ],
+        [
+            "Test400/T0063.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0063.bmp"
+        ],
+        [
+            "Test400/T0064.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0064.bmp"
+        ],
+        [
+            "Test400/T0065.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0065.bmp"
+        ],
+        [
+            "Test400/T0066.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0066.bmp"
+        ],
+        [
+            "Test400/T0067.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0067.bmp"
+        ],
+        [
+            "Test400/T0068.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0068.bmp"
+        ],
+        [
+            "Test400/T0069.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0069.bmp"
+        ],
+        [
+            "Test400/T0070.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0070.bmp"
+        ],
+        [
+            "Test400/T0071.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0071.bmp"
+        ],
+        [
+            "Test400/T0072.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0072.bmp"
+        ],
+        [
+            "Test400/T0073.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0073.bmp"
+        ],
+        [
+            "Test400/T0074.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0074.bmp"
+        ],
+        [
+            "Test400/T0075.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0075.bmp"
+        ],
+        [
+            "Test400/T0076.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0076.bmp"
+        ],
+        [
+            "Test400/T0077.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0077.bmp"
+        ],
+        [
+            "Test400/T0078.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0078.bmp"
+        ],
+        [
+            "Test400/T0079.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0079.bmp"
+        ],
+        [
+            "Test400/T0080.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0080.bmp"
+        ],
+        [
+            "Test400/T0081.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0081.bmp"
+        ],
+        [
+            "Test400/T0082.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0082.bmp"
+        ],
+        [
+            "Test400/T0083.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0083.bmp"
+        ],
+        [
+            "Test400/T0084.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0084.bmp"
+        ],
+        [
+            "Test400/T0085.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0085.bmp"
+        ],
+        [
+            "Test400/T0086.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0086.bmp"
+        ],
+        [
+            "Test400/T0087.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0087.bmp"
+        ],
+        [
+            "Test400/T0088.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0088.bmp"
+        ],
+        [
+            "Test400/T0089.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0089.bmp"
+        ],
+        [
+            "Test400/T0090.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0090.bmp"
+        ],
+        [
+            "Test400/T0091.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0091.bmp"
+        ],
+        [
+            "Test400/T0092.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0092.bmp"
+        ],
+        [
+            "Test400/T0093.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0093.bmp"
+        ],
+        [
+            "Test400/T0094.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0094.bmp"
+        ],
+        [
+            "Test400/T0095.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0095.bmp"
+        ],
+        [
+            "Test400/T0096.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0096.bmp"
+        ],
+        [
+            "Test400/T0097.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0097.bmp"
+        ],
+        [
+            "Test400/T0098.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0098.bmp"
+        ],
+        [
+            "Test400/T0099.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0099.bmp"
+        ],
+        [
+            "Test400/T0100.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0100.bmp"
+        ],
+        [
+            "Test400/T0101.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0101.bmp"
+        ],
+        [
+            "Test400/T0102.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0102.bmp"
+        ],
+        [
+            "Test400/T0103.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0103.bmp"
+        ],
+        [
+            "Test400/T0104.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0104.bmp"
+        ],
+        [
+            "Test400/T0105.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0105.bmp"
+        ],
+        [
+            "Test400/T0106.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0106.bmp"
+        ],
+        [
+            "Test400/T0107.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0107.bmp"
+        ],
+        [
+            "Test400/T0108.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0108.bmp"
+        ],
+        [
+            "Test400/T0109.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0109.bmp"
+        ],
+        [
+            "Test400/T0110.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0110.bmp"
+        ],
+        [
+            "Test400/T0111.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0111.bmp"
+        ],
+        [
+            "Test400/T0112.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0112.bmp"
+        ],
+        [
+            "Test400/T0113.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0113.bmp"
+        ],
+        [
+            "Test400/T0114.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0114.bmp"
+        ],
+        [
+            "Test400/T0115.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0115.bmp"
+        ],
+        [
+            "Test400/T0116.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0116.bmp"
+        ],
+        [
+            "Test400/T0117.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0117.bmp"
+        ],
+        [
+            "Test400/T0118.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0118.bmp"
+        ],
+        [
+            "Test400/T0119.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0119.bmp"
+        ],
+        [
+            "Test400/T0120.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0120.bmp"
+        ],
+        [
+            "Test400/T0121.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0121.bmp"
+        ],
+        [
+            "Test400/T0122.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0122.bmp"
+        ],
+        [
+            "Test400/T0123.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0123.bmp"
+        ],
+        [
+            "Test400/T0124.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0124.bmp"
+        ],
+        [
+            "Test400/T0125.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0125.bmp"
+        ],
+        [
+            "Test400/T0126.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0126.bmp"
+        ],
+        [
+            "Test400/T0127.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0127.bmp"
+        ],
+        [
+            "Test400/T0128.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0128.bmp"
+        ],
+        [
+            "Test400/T0129.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0129.bmp"
+        ],
+        [
+            "Test400/T0130.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0130.bmp"
+        ],
+        [
+            "Test400/T0131.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0131.bmp"
+        ],
+        [
+            "Test400/T0132.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0132.bmp"
+        ],
+        [
+            "Test400/T0133.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0133.bmp"
+        ],
+        [
+            "Test400/T0134.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0134.bmp"
+        ],
+        [
+            "Test400/T0135.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0135.bmp"
+        ],
+        [
+            "Test400/T0136.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0136.bmp"
+        ],
+        [
+            "Test400/T0137.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0137.bmp"
+        ],
+        [
+            "Test400/T0138.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0138.bmp"
+        ],
+        [
+            "Test400/T0139.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0139.bmp"
+        ],
+        [
+            "Test400/T0140.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0140.bmp"
+        ],
+        [
+            "Test400/T0141.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0141.bmp"
+        ],
+        [
+            "Test400/T0142.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0142.bmp"
+        ],
+        [
+            "Test400/T0143.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0143.bmp"
+        ],
+        [
+            "Test400/T0144.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0144.bmp"
+        ],
+        [
+            "Test400/T0145.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0145.bmp"
+        ],
+        [
+            "Test400/T0146.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0146.bmp"
+        ],
+        [
+            "Test400/T0147.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0147.bmp"
+        ],
+        [
+            "Test400/T0148.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0148.bmp"
+        ],
+        [
+            "Test400/T0149.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0149.bmp"
+        ],
+        [
+            "Test400/T0150.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0150.bmp"
+        ],
+        [
+            "Test400/T0151.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0151.bmp"
+        ],
+        [
+            "Test400/T0152.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0152.bmp"
+        ],
+        [
+            "Test400/T0153.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0153.bmp"
+        ],
+        [
+            "Test400/T0154.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0154.bmp"
+        ],
+        [
+            "Test400/T0155.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0155.bmp"
+        ],
+        [
+            "Test400/T0156.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0156.bmp"
+        ],
+        [
+            "Test400/T0157.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0157.bmp"
+        ],
+        [
+            "Test400/T0158.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0158.bmp"
+        ],
+        [
+            "Test400/T0159.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0159.bmp"
+        ],
+        [
+            "Test400/T0160.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0160.bmp"
+        ],
+        [
+            "Test400/T0161.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0161.bmp"
+        ],
+        [
+            "Test400/T0162.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0162.bmp"
+        ],
+        [
+            "Test400/T0163.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0163.bmp"
+        ],
+        [
+            "Test400/T0164.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0164.bmp"
+        ],
+        [
+            "Test400/T0165.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0165.bmp"
+        ],
+        [
+            "Test400/T0166.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0166.bmp"
+        ],
+        [
+            "Test400/T0167.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0167.bmp"
+        ],
+        [
+            "Test400/T0168.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0168.bmp"
+        ],
+        [
+            "Test400/T0169.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0169.bmp"
+        ],
+        [
+            "Test400/T0170.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0170.bmp"
+        ],
+        [
+            "Test400/T0171.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0171.bmp"
+        ],
+        [
+            "Test400/T0172.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0172.bmp"
+        ],
+        [
+            "Test400/T0173.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0173.bmp"
+        ],
+        [
+            "Test400/T0174.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0174.bmp"
+        ],
+        [
+            "Test400/T0175.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0175.bmp"
+        ],
+        [
+            "Test400/T0176.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0176.bmp"
+        ],
+        [
+            "Test400/T0177.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0177.bmp"
+        ],
+        [
+            "Test400/T0178.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0178.bmp"
+        ],
+        [
+            "Test400/T0179.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0179.bmp"
+        ],
+        [
+            "Test400/T0180.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0180.bmp"
+        ],
+        [
+            "Test400/T0181.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0181.bmp"
+        ],
+        [
+            "Test400/T0182.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0182.bmp"
+        ],
+        [
+            "Test400/T0183.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0183.bmp"
+        ],
+        [
+            "Test400/T0184.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0184.bmp"
+        ],
+        [
+            "Test400/T0185.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0185.bmp"
+        ],
+        [
+            "Test400/T0186.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0186.bmp"
+        ],
+        [
+            "Test400/T0187.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0187.bmp"
+        ],
+        [
+            "Test400/T0188.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0188.bmp"
+        ],
+        [
+            "Test400/T0189.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0189.bmp"
+        ],
+        [
+            "Test400/T0190.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0190.bmp"
+        ],
+        [
+            "Test400/T0191.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0191.bmp"
+        ],
+        [
+            "Test400/T0192.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0192.bmp"
+        ],
+        [
+            "Test400/T0193.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0193.bmp"
+        ],
+        [
+            "Test400/T0194.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0194.bmp"
+        ],
+        [
+            "Test400/T0195.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0195.bmp"
+        ],
+        [
+            "Test400/T0196.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0196.bmp"
+        ],
+        [
+            "Test400/T0197.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0197.bmp"
+        ],
+        [
+            "Test400/T0198.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0198.bmp"
+        ],
+        [
+            "Test400/T0199.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0199.bmp"
+        ],
+        [
+            "Test400/T0200.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0200.bmp"
+        ],
+        [
+            "Test400/T0201.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0201.bmp"
+        ],
+        [
+            "Test400/T0202.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0202.bmp"
+        ],
+        [
+            "Test400/T0203.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0203.bmp"
+        ],
+        [
+            "Test400/T0204.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0204.bmp"
+        ],
+        [
+            "Test400/T0205.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0205.bmp"
+        ],
+        [
+            "Test400/T0206.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0206.bmp"
+        ],
+        [
+            "Test400/T0207.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0207.bmp"
+        ],
+        [
+            "Test400/T0208.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0208.bmp"
+        ],
+        [
+            "Test400/T0209.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0209.bmp"
+        ],
+        [
+            "Test400/T0210.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0210.bmp"
+        ],
+        [
+            "Test400/T0211.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0211.bmp"
+        ],
+        [
+            "Test400/T0212.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0212.bmp"
+        ],
+        [
+            "Test400/T0213.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0213.bmp"
+        ],
+        [
+            "Test400/T0214.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0214.bmp"
+        ],
+        [
+            "Test400/T0215.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0215.bmp"
+        ],
+        [
+            "Test400/T0216.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0216.bmp"
+        ],
+        [
+            "Test400/T0217.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0217.bmp"
+        ],
+        [
+            "Test400/T0218.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0218.bmp"
+        ],
+        [
+            "Test400/T0219.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0219.bmp"
+        ],
+        [
+            "Test400/T0220.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0220.bmp"
+        ],
+        [
+            "Test400/T0221.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0221.bmp"
+        ],
+        [
+            "Test400/T0222.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0222.bmp"
+        ],
+        [
+            "Test400/T0223.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0223.bmp"
+        ],
+        [
+            "Test400/T0224.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0224.bmp"
+        ],
+        [
+            "Test400/T0225.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0225.bmp"
+        ],
+        [
+            "Test400/T0226.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0226.bmp"
+        ],
+        [
+            "Test400/T0227.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0227.bmp"
+        ],
+        [
+            "Test400/T0228.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0228.bmp"
+        ],
+        [
+            "Test400/T0229.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0229.bmp"
+        ],
+        [
+            "Test400/T0230.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0230.bmp"
+        ],
+        [
+            "Test400/T0231.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0231.bmp"
+        ],
+        [
+            "Test400/T0232.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0232.bmp"
+        ],
+        [
+            "Test400/T0233.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0233.bmp"
+        ],
+        [
+            "Test400/T0234.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0234.bmp"
+        ],
+        [
+            "Test400/T0235.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0235.bmp"
+        ],
+        [
+            "Test400/T0236.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0236.bmp"
+        ],
+        [
+            "Test400/T0237.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0237.bmp"
+        ],
+        [
+            "Test400/T0238.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0238.bmp"
+        ],
+        [
+            "Test400/T0239.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0239.bmp"
+        ],
+        [
+            "Test400/T0240.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0240.bmp"
+        ],
+        [
+            "Test400/T0241.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0241.bmp"
+        ],
+        [
+            "Test400/T0242.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0242.bmp"
+        ],
+        [
+            "Test400/T0243.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0243.bmp"
+        ],
+        [
+            "Test400/T0244.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0244.bmp"
+        ],
+        [
+            "Test400/T0245.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0245.bmp"
+        ],
+        [
+            "Test400/T0246.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0246.bmp"
+        ],
+        [
+            "Test400/T0247.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0247.bmp"
+        ],
+        [
+            "Test400/T0248.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0248.bmp"
+        ],
+        [
+            "Test400/T0249.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0249.bmp"
+        ],
+        [
+            "Test400/T0250.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0250.bmp"
+        ],
+        [
+            "Test400/T0251.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0251.bmp"
+        ],
+        [
+            "Test400/T0252.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0252.bmp"
+        ],
+        [
+            "Test400/T0253.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0253.bmp"
+        ],
+        [
+            "Test400/T0254.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0254.bmp"
+        ],
+        [
+            "Test400/T0255.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0255.bmp"
+        ],
+        [
+            "Test400/T0256.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0256.bmp"
+        ],
+        [
+            "Test400/T0257.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0257.bmp"
+        ],
+        [
+            "Test400/T0258.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0258.bmp"
+        ],
+        [
+            "Test400/T0259.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0259.bmp"
+        ],
+        [
+            "Test400/T0260.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0260.bmp"
+        ],
+        [
+            "Test400/T0261.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0261.bmp"
+        ],
+        [
+            "Test400/T0262.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0262.bmp"
+        ],
+        [
+            "Test400/T0263.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0263.bmp"
+        ],
+        [
+            "Test400/T0264.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0264.bmp"
+        ],
+        [
+            "Test400/T0265.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0265.bmp"
+        ],
+        [
+            "Test400/T0266.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0266.bmp"
+        ],
+        [
+            "Test400/T0267.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0267.bmp"
+        ],
+        [
+            "Test400/T0268.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0268.bmp"
+        ],
+        [
+            "Test400/T0269.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0269.bmp"
+        ],
+        [
+            "Test400/T0270.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0270.bmp"
+        ],
+        [
+            "Test400/T0271.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0271.bmp"
+        ],
+        [
+            "Test400/T0272.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0272.bmp"
+        ],
+        [
+            "Test400/T0273.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0273.bmp"
+        ],
+        [
+            "Test400/T0274.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0274.bmp"
+        ],
+        [
+            "Test400/T0275.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0275.bmp"
+        ],
+        [
+            "Test400/T0276.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0276.bmp"
+        ],
+        [
+            "Test400/T0277.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0277.bmp"
+        ],
+        [
+            "Test400/T0278.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0278.bmp"
+        ],
+        [
+            "Test400/T0279.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0279.bmp"
+        ],
+        [
+            "Test400/T0280.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0280.bmp"
+        ],
+        [
+            "Test400/T0281.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0281.bmp"
+        ],
+        [
+            "Test400/T0282.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0282.bmp"
+        ],
+        [
+            "Test400/T0283.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0283.bmp"
+        ],
+        [
+            "Test400/T0284.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0284.bmp"
+        ],
+        [
+            "Test400/T0285.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0285.bmp"
+        ],
+        [
+            "Test400/T0286.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0286.bmp"
+        ],
+        [
+            "Test400/T0287.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0287.bmp"
+        ],
+        [
+            "Test400/T0288.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0288.bmp"
+        ],
+        [
+            "Test400/T0289.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0289.bmp"
+        ],
+        [
+            "Test400/T0290.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0290.bmp"
+        ],
+        [
+            "Test400/T0291.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0291.bmp"
+        ],
+        [
+            "Test400/T0292.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0292.bmp"
+        ],
+        [
+            "Test400/T0293.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0293.bmp"
+        ],
+        [
+            "Test400/T0294.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0294.bmp"
+        ],
+        [
+            "Test400/T0295.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0295.bmp"
+        ],
+        [
+            "Test400/T0296.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0296.bmp"
+        ],
+        [
+            "Test400/T0297.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0297.bmp"
+        ],
+        [
+            "Test400/T0298.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0298.bmp"
+        ],
+        [
+            "Test400/T0299.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0299.bmp"
+        ],
+        [
+            "Test400/T0300.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0300.bmp"
+        ],
+        [
+            "Test400/T0301.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0301.bmp"
+        ],
+        [
+            "Test400/T0302.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0302.bmp"
+        ],
+        [
+            "Test400/T0303.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0303.bmp"
+        ],
+        [
+            "Test400/T0304.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0304.bmp"
+        ],
+        [
+            "Test400/T0305.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0305.bmp"
+        ],
+        [
+            "Test400/T0306.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0306.bmp"
+        ],
+        [
+            "Test400/T0307.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0307.bmp"
+        ],
+        [
+            "Test400/T0308.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0308.bmp"
+        ],
+        [
+            "Test400/T0309.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0309.bmp"
+        ],
+        [
+            "Test400/T0310.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0310.bmp"
+        ],
+        [
+            "Test400/T0311.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0311.bmp"
+        ],
+        [
+            "Test400/T0312.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0312.bmp"
+        ],
+        [
+            "Test400/T0313.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0313.bmp"
+        ],
+        [
+            "Test400/T0314.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0314.bmp"
+        ],
+        [
+            "Test400/T0315.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0315.bmp"
+        ],
+        [
+            "Test400/T0316.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0316.bmp"
+        ],
+        [
+            "Test400/T0317.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0317.bmp"
+        ],
+        [
+            "Test400/T0318.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0318.bmp"
+        ],
+        [
+            "Test400/T0319.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0319.bmp"
+        ],
+        [
+            "Test400/T0320.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0320.bmp"
+        ],
+        [
+            "Test400/T0321.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0321.bmp"
+        ],
+        [
+            "Test400/T0322.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0322.bmp"
+        ],
+        [
+            "Test400/T0323.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0323.bmp"
+        ],
+        [
+            "Test400/T0324.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0324.bmp"
+        ],
+        [
+            "Test400/T0325.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0325.bmp"
+        ],
+        [
+            "Test400/T0326.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0326.bmp"
+        ],
+        [
+            "Test400/T0327.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0327.bmp"
+        ],
+        [
+            "Test400/T0328.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0328.bmp"
+        ],
+        [
+            "Test400/T0329.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0329.bmp"
+        ],
+        [
+            "Test400/T0330.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0330.bmp"
+        ],
+        [
+            "Test400/T0331.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0331.bmp"
+        ],
+        [
+            "Test400/T0332.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0332.bmp"
+        ],
+        [
+            "Test400/T0333.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0333.bmp"
+        ],
+        [
+            "Test400/T0334.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0334.bmp"
+        ],
+        [
+            "Test400/T0335.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0335.bmp"
+        ],
+        [
+            "Test400/T0336.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0336.bmp"
+        ],
+        [
+            "Test400/T0337.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0337.bmp"
+        ],
+        [
+            "Test400/T0338.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0338.bmp"
+        ],
+        [
+            "Test400/T0339.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0339.bmp"
+        ],
+        [
+            "Test400/T0340.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0340.bmp"
+        ],
+        [
+            "Test400/T0341.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0341.bmp"
+        ],
+        [
+            "Test400/T0342.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0342.bmp"
+        ],
+        [
+            "Test400/T0343.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0343.bmp"
+        ],
+        [
+            "Test400/T0344.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0344.bmp"
+        ],
+        [
+            "Test400/T0345.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0345.bmp"
+        ],
+        [
+            "Test400/T0346.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0346.bmp"
+        ],
+        [
+            "Test400/T0347.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0347.bmp"
+        ],
+        [
+            "Test400/T0348.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0348.bmp"
+        ],
+        [
+            "Test400/T0349.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0349.bmp"
+        ],
+        [
+            "Test400/T0350.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0350.bmp"
+        ],
+        [
+            "Test400/T0351.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0351.bmp"
+        ],
+        [
+            "Test400/T0352.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0352.bmp"
+        ],
+        [
+            "Test400/T0353.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0353.bmp"
+        ],
+        [
+            "Test400/T0354.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0354.bmp"
+        ],
+        [
+            "Test400/T0355.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0355.bmp"
+        ],
+        [
+            "Test400/T0356.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0356.bmp"
+        ],
+        [
+            "Test400/T0357.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0357.bmp"
+        ],
+        [
+            "Test400/T0358.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0358.bmp"
+        ],
+        [
+            "Test400/T0359.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0359.bmp"
+        ],
+        [
+            "Test400/T0360.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0360.bmp"
+        ],
+        [
+            "Test400/T0361.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0361.bmp"
+        ],
+        [
+            "Test400/T0362.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0362.bmp"
+        ],
+        [
+            "Test400/T0363.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0363.bmp"
+        ],
+        [
+            "Test400/T0364.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0364.bmp"
+        ],
+        [
+            "Test400/T0365.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0365.bmp"
+        ],
+        [
+            "Test400/T0366.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0366.bmp"
+        ],
+        [
+            "Test400/T0367.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0367.bmp"
+        ],
+        [
+            "Test400/T0368.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0368.bmp"
+        ],
+        [
+            "Test400/T0369.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0369.bmp"
+        ],
+        [
+            "Test400/T0370.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0370.bmp"
+        ],
+        [
+            "Test400/T0371.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0371.bmp"
+        ],
+        [
+            "Test400/T0372.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0372.bmp"
+        ],
+        [
+            "Test400/T0373.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0373.bmp"
+        ],
+        [
+            "Test400/T0374.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0374.bmp"
+        ],
+        [
+            "Test400/T0375.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0375.bmp"
+        ],
+        [
+            "Test400/T0376.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0376.bmp"
+        ],
+        [
+            "Test400/T0377.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0377.bmp"
+        ],
+        [
+            "Test400/T0378.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0378.bmp"
+        ],
+        [
+            "Test400/T0379.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0379.bmp"
+        ],
+        [
+            "Test400/T0380.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0380.bmp"
+        ],
+        [
+            "Test400/T0381.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0381.bmp"
+        ],
+        [
+            "Test400/T0382.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0382.bmp"
+        ],
+        [
+            "Test400/T0383.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0383.bmp"
+        ],
+        [
+            "Test400/T0384.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0384.bmp"
+        ],
+        [
+            "Test400/T0385.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0385.bmp"
+        ],
+        [
+            "Test400/T0386.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0386.bmp"
+        ],
+        [
+            "Test400/T0387.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0387.bmp"
+        ],
+        [
+            "Test400/T0388.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0388.bmp"
+        ],
+        [
+            "Test400/T0389.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0389.bmp"
+        ],
+        [
+            "Test400/T0390.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0390.bmp"
+        ],
+        [
+            "Test400/T0391.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0391.bmp"
+        ],
+        [
+            "Test400/T0392.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0392.bmp"
+        ],
+        [
+            "Test400/T0393.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0393.bmp"
+        ],
+        [
+            "Test400/T0394.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0394.bmp"
+        ],
+        [
+            "Test400/T0395.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0395.bmp"
+        ],
+        [
+            "Test400/T0396.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0396.bmp"
+        ],
+        [
+            "Test400/T0397.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/G/T0397.bmp"
+        ],
+        [
+            "Test400/T0398.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0398.bmp"
+        ],
+        [
+            "Test400/T0399.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0399.bmp"
+        ],
+        [
+            "Test400/T0400.jpg",
+            "REFUGE-Test-GT/Disc_Cup_Masks/N/T0400.bmp"
+        ]
+    ]
+}
diff --git a/bob/ip/binseg/data/rimoner3/__init__.py b/bob/ip/binseg/data/rimoner3/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..5e3eca89794709c4cce482b3c2d16565014b8dc1
--- /dev/null
+++ b/bob/ip/binseg/data/rimoner3/__init__.py
@@ -0,0 +1,69 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""RIM-ONE r3 (training set) for Cup Segmentation
+
+The dataset contains 159 stereo eye fundus images with a resolution of 2144 x
+1424. The right part of the stereo image is disregarded. Two sets of
+ground-truths for optic disc and optic cup are available. The first set is
+commonly used for training and testing. The second set acts as a “human”
+baseline.  A third set, composed of annotation averages may also be used for
+training and evaluation purposes.
+
+* Reference: [RIMONER3-2015]_
+* Original resolution (height x width): 1424 x 1072
+* Split reference: [MANINIS-2016]_
+* Protocols ``optic-disc-exp1``, ``optic-cup-exp1``, ``optic-disc-exp2``,
+  ``optic-cup-exp2``, ``optic-disc-avg`` and ``optic-cup-avg``:
+
+  * Training: 99
+  * Test: 60
+"""
+
+import os
+import pkg_resources
+
+import bob.extension
+
+from ..dataset import JSONDataset
+from ..loader import load_pil_rgb, load_pil_1, make_delayed
+
+_protocols = [
+    pkg_resources.resource_filename(__name__, "optic-disc-exp1.json"),
+    pkg_resources.resource_filename(__name__, "optic-cup-exp1.json"),
+    pkg_resources.resource_filename(__name__, "optic-disc-exp2.json"),
+    pkg_resources.resource_filename(__name__, "optic-cup-exp2.json"),
+    pkg_resources.resource_filename(__name__, "optic-disc-avg.json"),
+    pkg_resources.resource_filename(__name__, "optic-cup-avg.json"),
+]
+
+_root_path = bob.extension.rc.get(
+    "bob.ip.binseg.rimoner3.datadir", os.path.realpath(os.curdir)
+)
+
+
+def _raw_data_loader(sample):
+    # RIM-ONE r3 provides stereo images - we clip them here to get only the
+    # left part of the image, which is also annotated
+    return dict(
+        data=load_pil_rgb(os.path.join(_root_path, sample["data"])).crop(
+            (0, 0, 1072, 1424)
+        ),
+        label=load_pil_1(os.path.join(_root_path, sample["label"])).crop(
+            (0, 0, 1072, 1424)
+        ),
+    )
+
+
+def _loader(context, sample):
+    # "context" is ignored in this case - database is homogeneous
+    # we returned delayed samples to avoid loading all images at once
+    return make_delayed(sample, _raw_data_loader)
+
+
+dataset = JSONDataset(
+    protocols=_protocols,
+    fieldnames=("data", "label"),
+    loader=_loader,
+)
+"""RIM-ONE r3 dataset object"""
diff --git a/bob/ip/binseg/data/rimoner3/optic-cup-avg.json b/bob/ip/binseg/data/rimoner3/optic-cup-avg.json
new file mode 100644
index 0000000000000000000000000000000000000000..d464222e32e8f1da24898a0c8a7308564c9d0a7f
--- /dev/null
+++ b/bob/ip/binseg/data/rimoner3/optic-cup-avg.json
@@ -0,0 +1,642 @@
+{
+ "train": [
+  [
+   "Healthy/Stereo Images/N-10-R.jpg",
+   "Healthy/Average_masks/N-10-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-11-L.jpg",
+   "Healthy/Average_masks/N-11-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-12-R.jpg",
+   "Healthy/Average_masks/N-12-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-13-L.jpg",
+   "Healthy/Average_masks/N-13-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-14-R.jpg",
+   "Healthy/Average_masks/N-14-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-16-R.jpg",
+   "Healthy/Average_masks/N-16-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-24-R.jpg",
+   "Healthy/Average_masks/N-24-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-25-L.jpg",
+   "Healthy/Average_masks/N-25-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-26-R.jpg",
+   "Healthy/Average_masks/N-26-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-27-L.jpg",
+   "Healthy/Average_masks/N-27-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-52-R.jpg",
+   "Healthy/Average_masks/N-52-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-53-L.jpg",
+   "Healthy/Average_masks/N-53-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-54-R.jpg",
+   "Healthy/Average_masks/N-54-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-55-L.jpg",
+   "Healthy/Average_masks/N-55-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-56-R.jpg",
+   "Healthy/Average_masks/N-56-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-58-R.jpg",
+   "Healthy/Average_masks/N-58-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-59-L.jpg",
+   "Healthy/Average_masks/N-59-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-5-L.jpg",
+   "Healthy/Average_masks/N-5-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-61-L.jpg",
+   "Healthy/Average_masks/N-61-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-62-R.jpg",
+   "Healthy/Average_masks/N-62-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-63-L.jpg",
+   "Healthy/Average_masks/N-63-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-64-R.jpg",
+   "Healthy/Average_masks/N-64-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-65-L.jpg",
+   "Healthy/Average_masks/N-65-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-66-R.jpg",
+   "Healthy/Average_masks/N-66-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-67-L.jpg",
+   "Healthy/Average_masks/N-67-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-68-R.jpg",
+   "Healthy/Average_masks/N-68-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-69-L.jpg",
+   "Healthy/Average_masks/N-69-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-6-R.jpg",
+   "Healthy/Average_masks/N-6-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-70-R.jpg",
+   "Healthy/Average_masks/N-70-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-71-L.jpg",
+   "Healthy/Average_masks/N-71-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-72-R.jpg",
+   "Healthy/Average_masks/N-72-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-73-R.jpg",
+   "Healthy/Average_masks/N-73-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-74-L.jpg",
+   "Healthy/Average_masks/N-74-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-75-R.jpg",
+   "Healthy/Average_masks/N-75-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-76-R.jpg",
+   "Healthy/Average_masks/N-76-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-79-L.jpg",
+   "Healthy/Average_masks/N-79-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-7-L.jpg",
+   "Healthy/Average_masks/N-7-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-80-R.jpg",
+   "Healthy/Average_masks/N-80-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-81-L.jpg",
+   "Healthy/Average_masks/N-81-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-82-R.jpg",
+   "Healthy/Average_masks/N-82-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-83-L.jpg",
+   "Healthy/Average_masks/N-83-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-84-R.jpg",
+   "Healthy/Average_masks/N-84-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-85-L.jpg",
+   "Healthy/Average_masks/N-85-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-86-R.jpg",
+   "Healthy/Average_masks/N-86-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-87-L.jpg",
+   "Healthy/Average_masks/N-87-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-88-R.jpg",
+   "Healthy/Average_masks/N-88-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-8-L.jpg",
+   "Healthy/Average_masks/N-8-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-90-R.jpg",
+   "Healthy/Average_masks/N-90-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-91-L.jpg",
+   "Healthy/Average_masks/N-91-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-92-R.jpg",
+   "Healthy/Average_masks/N-92-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-9-L.jpg",
+   "Healthy/Average_masks/N-9-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-10-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-10-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-11-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-11-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-12-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-12-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-13-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-13-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-14-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-14-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-15-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-15-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-16-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-16-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-17-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-17-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-18-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-18-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-19-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-19-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-1-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-1-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-20-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-20-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-21-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-21-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-32-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-32-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-33-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-33-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-34-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-34-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-35-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-35-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-36-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-36-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-37-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-37-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-38-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-38-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-39-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-39-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-3-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-3-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-4-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-4-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-5-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-5-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-6-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-6-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-7-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-7-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-8-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-8-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-9-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-9-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-10-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-10-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-11-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-11-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-12-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-12-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-13-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-13-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-14-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-14-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-15-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-15-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-16-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-16-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-17-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-17-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-18-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-18-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-19-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-19-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-1-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-1-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-20-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-20-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-21-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-21-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-22-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-22-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-23-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-23-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-24-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-24-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-25-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-25-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-26-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-26-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-27-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-27-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-28-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-28-R-Cup-Avg.png"
+  ]
+ ],
+ "test": [
+  [
+   "Glaucoma and suspects/Stereo Images/G-22-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-22-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-23-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-23-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-24-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-24-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-25-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-25-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-26-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-26-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-27-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-27-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-28-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-28-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-29-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-29-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-2-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-2-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-30-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-30-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-31-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-31-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-17-L.jpg",
+   "Healthy/Average_masks/N-17-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-18-R.jpg",
+   "Healthy/Average_masks/N-18-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-1-L.jpg",
+   "Healthy/Average_masks/N-1-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-20-R.jpg",
+   "Healthy/Average_masks/N-20-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-21-L.jpg",
+   "Healthy/Average_masks/N-21-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-22-R.jpg",
+   "Healthy/Average_masks/N-22-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-23-L.jpg",
+   "Healthy/Average_masks/N-23-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-28-R.jpg",
+   "Healthy/Average_masks/N-28-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-29-L.jpg",
+   "Healthy/Average_masks/N-29-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-2-R.jpg",
+   "Healthy/Average_masks/N-2-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-30-R.jpg",
+   "Healthy/Average_masks/N-30-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-31-L.jpg",
+   "Healthy/Average_masks/N-31-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-32-R.jpg",
+   "Healthy/Average_masks/N-32-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-33-L.jpg",
+   "Healthy/Average_masks/N-33-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-34-R.jpg",
+   "Healthy/Average_masks/N-34-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-35-L.jpg",
+   "Healthy/Average_masks/N-35-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-36-R.jpg",
+   "Healthy/Average_masks/N-36-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-37-L.jpg",
+   "Healthy/Average_masks/N-37-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-38-R.jpg",
+   "Healthy/Average_masks/N-38-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-39-L.jpg",
+   "Healthy/Average_masks/N-39-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-3-L.jpg",
+   "Healthy/Average_masks/N-3-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-40-R.jpg",
+   "Healthy/Average_masks/N-40-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-41-L.jpg",
+   "Healthy/Average_masks/N-41-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-42-R.jpg",
+   "Healthy/Average_masks/N-42-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-43-L.jpg",
+   "Healthy/Average_masks/N-43-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-44-R.jpg",
+   "Healthy/Average_masks/N-44-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-46-R.jpg",
+   "Healthy/Average_masks/N-46-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-47-L.jpg",
+   "Healthy/Average_masks/N-47-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-48-R.jpg",
+   "Healthy/Average_masks/N-48-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-49-L.jpg",
+   "Healthy/Average_masks/N-49-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-4-R.jpg",
+   "Healthy/Average_masks/N-4-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-50-R.jpg",
+   "Healthy/Average_masks/N-50-R-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-51-L.jpg",
+   "Healthy/Average_masks/N-51-L-Cup-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-78-R.jpg",
+   "Healthy/Average_masks/N-78-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-29-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-29-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-2-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-2-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-30-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-30-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-31-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-31-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-32-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-32-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-33-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-33-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-34-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-34-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-35-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-35-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-3-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-3-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-4-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-4-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-5-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-5-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-6-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-6-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-7-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-7-L-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-8-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-8-R-Cup-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-9-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-9-L-Cup-Avg.png"
+  ]
+ ]
+}
diff --git a/bob/ip/binseg/data/rimoner3/optic-cup-exp1.json b/bob/ip/binseg/data/rimoner3/optic-cup-exp1.json
new file mode 100644
index 0000000000000000000000000000000000000000..39b14f46763852e652ab5345969a45919fd06f84
--- /dev/null
+++ b/bob/ip/binseg/data/rimoner3/optic-cup-exp1.json
@@ -0,0 +1,642 @@
+{
+ "train": [
+  [
+   "Healthy/Stereo Images/N-10-R.jpg",
+   "Healthy/Expert1_masks/N-10-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-11-L.jpg",
+   "Healthy/Expert1_masks/N-11-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-12-R.jpg",
+   "Healthy/Expert1_masks/N-12-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-13-L.jpg",
+   "Healthy/Expert1_masks/N-13-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-14-R.jpg",
+   "Healthy/Expert1_masks/N-14-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-16-R.jpg",
+   "Healthy/Expert1_masks/N-16-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-24-R.jpg",
+   "Healthy/Expert1_masks/N-24-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-25-L.jpg",
+   "Healthy/Expert1_masks/N-25-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-26-R.jpg",
+   "Healthy/Expert1_masks/N-26-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-27-L.jpg",
+   "Healthy/Expert1_masks/N-27-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-52-R.jpg",
+   "Healthy/Expert1_masks/N-52-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-53-L.jpg",
+   "Healthy/Expert1_masks/N-53-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-54-R.jpg",
+   "Healthy/Expert1_masks/N-54-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-55-L.jpg",
+   "Healthy/Expert1_masks/N-55-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-56-R.jpg",
+   "Healthy/Expert1_masks/N-56-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-58-R.jpg",
+   "Healthy/Expert1_masks/N-58-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-59-L.jpg",
+   "Healthy/Expert1_masks/N-59-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-5-L.jpg",
+   "Healthy/Expert1_masks/N-5-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-61-L.jpg",
+   "Healthy/Expert1_masks/N-61-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-62-R.jpg",
+   "Healthy/Expert1_masks/N-62-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-63-L.jpg",
+   "Healthy/Expert1_masks/N-63-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-64-R.jpg",
+   "Healthy/Expert1_masks/N-64-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-65-L.jpg",
+   "Healthy/Expert1_masks/N-65-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-66-R.jpg",
+   "Healthy/Expert1_masks/N-66-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-67-L.jpg",
+   "Healthy/Expert1_masks/N-67-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-68-R.jpg",
+   "Healthy/Expert1_masks/N-68-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-69-L.jpg",
+   "Healthy/Expert1_masks/N-69-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-6-R.jpg",
+   "Healthy/Expert1_masks/N-6-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-70-R.jpg",
+   "Healthy/Expert1_masks/N-70-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-71-L.jpg",
+   "Healthy/Expert1_masks/N-71-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-72-R.jpg",
+   "Healthy/Expert1_masks/N-72-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-73-R.jpg",
+   "Healthy/Expert1_masks/N-73-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-74-L.jpg",
+   "Healthy/Expert1_masks/N-74-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-75-R.jpg",
+   "Healthy/Expert1_masks/N-75-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-76-R.jpg",
+   "Healthy/Expert1_masks/N-76-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-79-L.jpg",
+   "Healthy/Expert1_masks/N-79-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-7-L.jpg",
+   "Healthy/Expert1_masks/N-7-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-80-R.jpg",
+   "Healthy/Expert1_masks/N-80-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-81-L.jpg",
+   "Healthy/Expert1_masks/N-81-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-82-R.jpg",
+   "Healthy/Expert1_masks/N-82-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-83-L.jpg",
+   "Healthy/Expert1_masks/N-83-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-84-R.jpg",
+   "Healthy/Expert1_masks/N-84-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-85-L.jpg",
+   "Healthy/Expert1_masks/N-85-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-86-R.jpg",
+   "Healthy/Expert1_masks/N-86-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-87-L.jpg",
+   "Healthy/Expert1_masks/N-87-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-88-R.jpg",
+   "Healthy/Expert1_masks/N-88-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-8-L.jpg",
+   "Healthy/Expert1_masks/N-8-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-90-R.jpg",
+   "Healthy/Expert1_masks/N-90-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-91-L.jpg",
+   "Healthy/Expert1_masks/N-91-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-92-R.jpg",
+   "Healthy/Expert1_masks/N-92-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-9-L.jpg",
+   "Healthy/Expert1_masks/N-9-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-10-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-10-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-11-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-11-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-12-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-12-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-13-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-13-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-14-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-14-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-15-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-15-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-16-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-16-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-17-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-17-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-18-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-18-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-19-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-19-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-1-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-1-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-20-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-20-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-21-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-21-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-32-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-32-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-33-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-33-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-34-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-34-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-35-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-35-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-36-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-36-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-37-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-37-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-38-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-38-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-39-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-39-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-3-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-3-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-4-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-4-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-5-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-5-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-6-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-6-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-7-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-7-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-8-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-8-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-9-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-9-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-10-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-10-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-11-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-11-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-12-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-12-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-13-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-13-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-14-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-14-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-15-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-15-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-16-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-16-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-17-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-17-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-18-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-18-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-19-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-19-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-1-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-1-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-20-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-20-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-21-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-21-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-22-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-22-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-23-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-23-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-24-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-24-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-25-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-25-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-26-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-26-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-27-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-27-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-28-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-28-R-1-Cup-exp1.png"
+  ]
+ ],
+ "test": [
+  [
+   "Glaucoma and suspects/Stereo Images/G-22-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-22-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-23-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-23-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-24-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-24-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-25-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-25-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-26-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-26-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-27-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-27-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-28-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-28-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-29-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-29-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-2-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-2-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-30-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-30-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-31-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-31-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-17-L.jpg",
+   "Healthy/Expert1_masks/N-17-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-18-R.jpg",
+   "Healthy/Expert1_masks/N-18-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-1-L.jpg",
+   "Healthy/Expert1_masks/N-1-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-20-R.jpg",
+   "Healthy/Expert1_masks/N-20-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-21-L.jpg",
+   "Healthy/Expert1_masks/N-21-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-22-R.jpg",
+   "Healthy/Expert1_masks/N-22-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-23-L.jpg",
+   "Healthy/Expert1_masks/N-23-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-28-R.jpg",
+   "Healthy/Expert1_masks/N-28-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-29-L.jpg",
+   "Healthy/Expert1_masks/N-29-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-2-R.jpg",
+   "Healthy/Expert1_masks/N-2-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-30-R.jpg",
+   "Healthy/Expert1_masks/N-30-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-31-L.jpg",
+   "Healthy/Expert1_masks/N-31-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-32-R.jpg",
+   "Healthy/Expert1_masks/N-32-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-33-L.jpg",
+   "Healthy/Expert1_masks/N-33-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-34-R.jpg",
+   "Healthy/Expert1_masks/N-34-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-35-L.jpg",
+   "Healthy/Expert1_masks/N-35-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-36-R.jpg",
+   "Healthy/Expert1_masks/N-36-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-37-L.jpg",
+   "Healthy/Expert1_masks/N-37-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-38-R.jpg",
+   "Healthy/Expert1_masks/N-38-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-39-L.jpg",
+   "Healthy/Expert1_masks/N-39-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-3-L.jpg",
+   "Healthy/Expert1_masks/N-3-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-40-R.jpg",
+   "Healthy/Expert1_masks/N-40-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-41-L.jpg",
+   "Healthy/Expert1_masks/N-41-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-42-R.jpg",
+   "Healthy/Expert1_masks/N-42-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-43-L.jpg",
+   "Healthy/Expert1_masks/N-43-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-44-R.jpg",
+   "Healthy/Expert1_masks/N-44-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-46-R.jpg",
+   "Healthy/Expert1_masks/N-46-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-47-L.jpg",
+   "Healthy/Expert1_masks/N-47-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-48-R.jpg",
+   "Healthy/Expert1_masks/N-48-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-49-L.jpg",
+   "Healthy/Expert1_masks/N-49-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-4-R.jpg",
+   "Healthy/Expert1_masks/N-4-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-50-R.jpg",
+   "Healthy/Expert1_masks/N-50-R-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-51-L.jpg",
+   "Healthy/Expert1_masks/N-51-L-1-Cup-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-78-R.jpg",
+   "Healthy/Expert1_masks/N-78-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-29-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-29-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-2-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-2-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-30-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-30-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-31-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-31-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-32-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-32-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-33-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-33-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-34-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-34-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-35-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-35-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-3-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-3-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-4-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-4-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-5-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-5-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-6-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-6-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-7-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-7-L-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-8-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-8-R-1-Cup-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-9-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-9-L-1-Cup-exp1.png"
+  ]
+ ]
+}
\ No newline at end of file
diff --git a/bob/ip/binseg/data/rimoner3/optic-cup-exp2.json b/bob/ip/binseg/data/rimoner3/optic-cup-exp2.json
new file mode 100644
index 0000000000000000000000000000000000000000..32b9850155d9a3d895d2f41214dff0402b8d542c
--- /dev/null
+++ b/bob/ip/binseg/data/rimoner3/optic-cup-exp2.json
@@ -0,0 +1,642 @@
+{
+ "train": [
+  [
+   "Healthy/Stereo Images/N-10-R.jpg",
+   "Healthy/Expert2_masks/N-10-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-11-L.jpg",
+   "Healthy/Expert2_masks/N-11-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-12-R.jpg",
+   "Healthy/Expert2_masks/N-12-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-13-L.jpg",
+   "Healthy/Expert2_masks/N-13-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-14-R.jpg",
+   "Healthy/Expert2_masks/N-14-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-16-R.jpg",
+   "Healthy/Expert2_masks/N-16-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-24-R.jpg",
+   "Healthy/Expert2_masks/N-24-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-25-L.jpg",
+   "Healthy/Expert2_masks/N-25-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-26-R.jpg",
+   "Healthy/Expert2_masks/N-26-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-27-L.jpg",
+   "Healthy/Expert2_masks/N-27-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-52-R.jpg",
+   "Healthy/Expert2_masks/N-52-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-53-L.jpg",
+   "Healthy/Expert2_masks/N-53-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-54-R.jpg",
+   "Healthy/Expert2_masks/N-54-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-55-L.jpg",
+   "Healthy/Expert2_masks/N-55-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-56-R.jpg",
+   "Healthy/Expert2_masks/N-56-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-58-R.jpg",
+   "Healthy/Expert2_masks/N-58-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-59-L.jpg",
+   "Healthy/Expert2_masks/N-59-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-5-L.jpg",
+   "Healthy/Expert2_masks/N-5-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-61-L.jpg",
+   "Healthy/Expert2_masks/N-61-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-62-R.jpg",
+   "Healthy/Expert2_masks/N-62-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-63-L.jpg",
+   "Healthy/Expert2_masks/N-63-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-64-R.jpg",
+   "Healthy/Expert2_masks/N-64-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-65-L.jpg",
+   "Healthy/Expert2_masks/N-65-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-66-R.jpg",
+   "Healthy/Expert2_masks/N-66-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-67-L.jpg",
+   "Healthy/Expert2_masks/N-67-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-68-R.jpg",
+   "Healthy/Expert2_masks/N-68-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-69-L.jpg",
+   "Healthy/Expert2_masks/N-69-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-6-R.jpg",
+   "Healthy/Expert2_masks/N-6-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-70-R.jpg",
+   "Healthy/Expert2_masks/N-70-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-71-L.jpg",
+   "Healthy/Expert2_masks/N-71-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-72-R.jpg",
+   "Healthy/Expert2_masks/N-72-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-73-R.jpg",
+   "Healthy/Expert2_masks/N-73-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-74-L.jpg",
+   "Healthy/Expert2_masks/N-74-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-75-R.jpg",
+   "Healthy/Expert2_masks/N-75-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-76-R.jpg",
+   "Healthy/Expert2_masks/N-76-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-79-L.jpg",
+   "Healthy/Expert2_masks/N-79-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-7-L.jpg",
+   "Healthy/Expert2_masks/N-7-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-80-R.jpg",
+   "Healthy/Expert2_masks/N-80-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-81-L.jpg",
+   "Healthy/Expert2_masks/N-81-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-82-R.jpg",
+   "Healthy/Expert2_masks/N-82-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-83-L.jpg",
+   "Healthy/Expert2_masks/N-83-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-84-R.jpg",
+   "Healthy/Expert2_masks/N-84-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-85-L.jpg",
+   "Healthy/Expert2_masks/N-85-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-86-R.jpg",
+   "Healthy/Expert2_masks/N-86-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-87-L.jpg",
+   "Healthy/Expert2_masks/N-87-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-88-R.jpg",
+   "Healthy/Expert2_masks/N-88-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-8-L.jpg",
+   "Healthy/Expert2_masks/N-8-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-90-R.jpg",
+   "Healthy/Expert2_masks/N-90-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-91-L.jpg",
+   "Healthy/Expert2_masks/N-91-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-92-R.jpg",
+   "Healthy/Expert2_masks/N-92-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-9-L.jpg",
+   "Healthy/Expert2_masks/N-9-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-10-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-10-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-11-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-11-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-12-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-12-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-13-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-13-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-14-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-14-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-15-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-15-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-16-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-16-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-17-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-17-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-18-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-18-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-19-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-19-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-1-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-1-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-20-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-20-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-21-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-21-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-32-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-32-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-33-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-33-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-34-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-34-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-35-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-35-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-36-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-36-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-37-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-37-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-38-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-38-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-39-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-39-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-3-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-3-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-4-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-4-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-5-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-5-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-6-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-6-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-7-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-7-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-8-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-8-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-9-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-9-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-10-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-10-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-11-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-11-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-12-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-12-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-13-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-13-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-14-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-14-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-15-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-15-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-16-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-16-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-17-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-17-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-18-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-18-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-19-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-19-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-1-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-1-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-20-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-20-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-21-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-21-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-22-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-22-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-23-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-23-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-24-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-24-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-25-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-25-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-26-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-26-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-27-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-27-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-28-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-28-R-1-Cup-exp2.png"
+  ]
+ ],
+ "test": [
+  [
+   "Glaucoma and suspects/Stereo Images/G-22-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-22-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-23-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-23-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-24-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-24-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-25-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-25-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-26-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-26-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-27-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-27-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-28-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-28-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-29-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-29-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-2-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-2-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-30-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-30-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-31-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-31-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-17-L.jpg",
+   "Healthy/Expert2_masks/N-17-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-18-R.jpg",
+   "Healthy/Expert2_masks/N-18-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-1-L.jpg",
+   "Healthy/Expert2_masks/N-1-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-20-R.jpg",
+   "Healthy/Expert2_masks/N-20-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-21-L.jpg",
+   "Healthy/Expert2_masks/N-21-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-22-R.jpg",
+   "Healthy/Expert2_masks/N-22-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-23-L.jpg",
+   "Healthy/Expert2_masks/N-23-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-28-R.jpg",
+   "Healthy/Expert2_masks/N-28-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-29-L.jpg",
+   "Healthy/Expert2_masks/N-29-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-2-R.jpg",
+   "Healthy/Expert2_masks/N-2-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-30-R.jpg",
+   "Healthy/Expert2_masks/N-30-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-31-L.jpg",
+   "Healthy/Expert2_masks/N-31-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-32-R.jpg",
+   "Healthy/Expert2_masks/N-32-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-33-L.jpg",
+   "Healthy/Expert2_masks/N-33-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-34-R.jpg",
+   "Healthy/Expert2_masks/N-34-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-35-L.jpg",
+   "Healthy/Expert2_masks/N-35-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-36-R.jpg",
+   "Healthy/Expert2_masks/N-36-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-37-L.jpg",
+   "Healthy/Expert2_masks/N-37-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-38-R.jpg",
+   "Healthy/Expert2_masks/N-38-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-39-L.jpg",
+   "Healthy/Expert2_masks/N-39-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-3-L.jpg",
+   "Healthy/Expert2_masks/N-3-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-40-R.jpg",
+   "Healthy/Expert2_masks/N-40-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-41-L.jpg",
+   "Healthy/Expert2_masks/N-41-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-42-R.jpg",
+   "Healthy/Expert2_masks/N-42-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-43-L.jpg",
+   "Healthy/Expert2_masks/N-43-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-44-R.jpg",
+   "Healthy/Expert2_masks/N-44-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-46-R.jpg",
+   "Healthy/Expert2_masks/N-46-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-47-L.jpg",
+   "Healthy/Expert2_masks/N-47-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-48-R.jpg",
+   "Healthy/Expert2_masks/N-48-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-49-L.jpg",
+   "Healthy/Expert2_masks/N-49-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-4-R.jpg",
+   "Healthy/Expert2_masks/N-4-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-50-R.jpg",
+   "Healthy/Expert2_masks/N-50-R-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-51-L.jpg",
+   "Healthy/Expert2_masks/N-51-L-1-Cup-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-78-R.jpg",
+   "Healthy/Expert2_masks/N-78-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-29-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-29-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-2-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-2-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-30-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-30-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-31-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-31-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-32-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-32-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-33-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-33-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-34-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-34-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-35-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-35-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-3-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-3-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-4-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-4-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-5-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-5-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-6-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-6-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-7-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-7-L-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-8-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-8-R-1-Cup-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-9-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-9-L-1-Cup-exp2.png"
+  ]
+ ]
+}
diff --git a/bob/ip/binseg/data/rimoner3/optic-disc-avg.json b/bob/ip/binseg/data/rimoner3/optic-disc-avg.json
new file mode 100644
index 0000000000000000000000000000000000000000..987d06c04a3b47148734af7003fdfa86101a34ad
--- /dev/null
+++ b/bob/ip/binseg/data/rimoner3/optic-disc-avg.json
@@ -0,0 +1,642 @@
+{
+ "train": [
+  [
+   "Healthy/Stereo Images/N-10-R.jpg",
+   "Healthy/Average_masks/N-10-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-11-L.jpg",
+   "Healthy/Average_masks/N-11-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-12-R.jpg",
+   "Healthy/Average_masks/N-12-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-13-L.jpg",
+   "Healthy/Average_masks/N-13-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-14-R.jpg",
+   "Healthy/Average_masks/N-14-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-16-R.jpg",
+   "Healthy/Average_masks/N-16-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-24-R.jpg",
+   "Healthy/Average_masks/N-24-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-25-L.jpg",
+   "Healthy/Average_masks/N-25-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-26-R.jpg",
+   "Healthy/Average_masks/N-26-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-27-L.jpg",
+   "Healthy/Average_masks/N-27-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-52-R.jpg",
+   "Healthy/Average_masks/N-52-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-53-L.jpg",
+   "Healthy/Average_masks/N-53-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-54-R.jpg",
+   "Healthy/Average_masks/N-54-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-55-L.jpg",
+   "Healthy/Average_masks/N-55-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-56-R.jpg",
+   "Healthy/Average_masks/N-56-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-58-R.jpg",
+   "Healthy/Average_masks/N-58-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-59-L.jpg",
+   "Healthy/Average_masks/N-59-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-5-L.jpg",
+   "Healthy/Average_masks/N-5-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-61-L.jpg",
+   "Healthy/Average_masks/N-61-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-62-R.jpg",
+   "Healthy/Average_masks/N-62-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-63-L.jpg",
+   "Healthy/Average_masks/N-63-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-64-R.jpg",
+   "Healthy/Average_masks/N-64-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-65-L.jpg",
+   "Healthy/Average_masks/N-65-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-66-R.jpg",
+   "Healthy/Average_masks/N-66-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-67-L.jpg",
+   "Healthy/Average_masks/N-67-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-68-R.jpg",
+   "Healthy/Average_masks/N-68-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-69-L.jpg",
+   "Healthy/Average_masks/N-69-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-6-R.jpg",
+   "Healthy/Average_masks/N-6-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-70-R.jpg",
+   "Healthy/Average_masks/N-70-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-71-L.jpg",
+   "Healthy/Average_masks/N-71-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-72-R.jpg",
+   "Healthy/Average_masks/N-72-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-73-R.jpg",
+   "Healthy/Average_masks/N-73-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-74-L.jpg",
+   "Healthy/Average_masks/N-74-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-75-R.jpg",
+   "Healthy/Average_masks/N-75-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-76-R.jpg",
+   "Healthy/Average_masks/N-76-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-79-L.jpg",
+   "Healthy/Average_masks/N-79-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-7-L.jpg",
+   "Healthy/Average_masks/N-7-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-80-R.jpg",
+   "Healthy/Average_masks/N-80-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-81-L.jpg",
+   "Healthy/Average_masks/N-81-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-82-R.jpg",
+   "Healthy/Average_masks/N-82-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-83-L.jpg",
+   "Healthy/Average_masks/N-83-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-84-R.jpg",
+   "Healthy/Average_masks/N-84-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-85-L.jpg",
+   "Healthy/Average_masks/N-85-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-86-R.jpg",
+   "Healthy/Average_masks/N-86-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-87-L.jpg",
+   "Healthy/Average_masks/N-87-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-88-R.jpg",
+   "Healthy/Average_masks/N-88-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-8-L.jpg",
+   "Healthy/Average_masks/N-8-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-90-R.jpg",
+   "Healthy/Average_masks/N-90-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-91-L.jpg",
+   "Healthy/Average_masks/N-91-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-92-R.jpg",
+   "Healthy/Average_masks/N-92-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-9-L.jpg",
+   "Healthy/Average_masks/N-9-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-10-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-10-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-11-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-11-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-12-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-12-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-13-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-13-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-14-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-14-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-15-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-15-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-16-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-16-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-17-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-17-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-18-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-18-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-19-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-19-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-1-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-1-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-20-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-20-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-21-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-21-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-32-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-32-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-33-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-33-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-34-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-34-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-35-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-35-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-36-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-36-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-37-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-37-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-38-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-38-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-39-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-39-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-3-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-3-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-4-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-4-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-5-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-5-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-6-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-6-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-7-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-7-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-8-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-8-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-9-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-9-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-10-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-10-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-11-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-11-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-12-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-12-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-13-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-13-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-14-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-14-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-15-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-15-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-16-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-16-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-17-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-17-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-18-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-18-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-19-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-19-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-1-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-1-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-20-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-20-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-21-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-21-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-22-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-22-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-23-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-23-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-24-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-24-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-25-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-25-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-26-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-26-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-27-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-27-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-28-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-28-R-Disc-Avg.png"
+  ]
+ ],
+ "test": [
+  [
+   "Glaucoma and suspects/Stereo Images/G-22-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-22-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-23-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-23-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-24-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-24-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-25-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-25-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-26-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-26-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-27-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-27-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-28-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-28-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-29-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-29-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-2-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-2-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-30-L.jpg",
+   "Glaucoma and suspects/Average_masks/G-30-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-31-R.jpg",
+   "Glaucoma and suspects/Average_masks/G-31-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-17-L.jpg",
+   "Healthy/Average_masks/N-17-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-18-R.jpg",
+   "Healthy/Average_masks/N-18-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-1-L.jpg",
+   "Healthy/Average_masks/N-1-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-20-R.jpg",
+   "Healthy/Average_masks/N-20-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-21-L.jpg",
+   "Healthy/Average_masks/N-21-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-22-R.jpg",
+   "Healthy/Average_masks/N-22-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-23-L.jpg",
+   "Healthy/Average_masks/N-23-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-28-R.jpg",
+   "Healthy/Average_masks/N-28-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-29-L.jpg",
+   "Healthy/Average_masks/N-29-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-2-R.jpg",
+   "Healthy/Average_masks/N-2-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-30-R.jpg",
+   "Healthy/Average_masks/N-30-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-31-L.jpg",
+   "Healthy/Average_masks/N-31-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-32-R.jpg",
+   "Healthy/Average_masks/N-32-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-33-L.jpg",
+   "Healthy/Average_masks/N-33-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-34-R.jpg",
+   "Healthy/Average_masks/N-34-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-35-L.jpg",
+   "Healthy/Average_masks/N-35-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-36-R.jpg",
+   "Healthy/Average_masks/N-36-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-37-L.jpg",
+   "Healthy/Average_masks/N-37-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-38-R.jpg",
+   "Healthy/Average_masks/N-38-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-39-L.jpg",
+   "Healthy/Average_masks/N-39-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-3-L.jpg",
+   "Healthy/Average_masks/N-3-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-40-R.jpg",
+   "Healthy/Average_masks/N-40-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-41-L.jpg",
+   "Healthy/Average_masks/N-41-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-42-R.jpg",
+   "Healthy/Average_masks/N-42-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-43-L.jpg",
+   "Healthy/Average_masks/N-43-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-44-R.jpg",
+   "Healthy/Average_masks/N-44-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-46-R.jpg",
+   "Healthy/Average_masks/N-46-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-47-L.jpg",
+   "Healthy/Average_masks/N-47-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-48-R.jpg",
+   "Healthy/Average_masks/N-48-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-49-L.jpg",
+   "Healthy/Average_masks/N-49-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-4-R.jpg",
+   "Healthy/Average_masks/N-4-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-50-R.jpg",
+   "Healthy/Average_masks/N-50-R-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-51-L.jpg",
+   "Healthy/Average_masks/N-51-L-Disc-Avg.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-78-R.jpg",
+   "Healthy/Average_masks/N-78-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-29-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-29-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-2-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-2-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-30-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-30-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-31-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-31-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-32-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-32-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-33-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-33-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-34-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-34-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-35-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-35-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-3-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-3-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-4-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-4-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-5-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-5-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-6-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-6-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-7-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-7-L-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-8-R.jpg",
+   "Glaucoma and suspects/Average_masks/S-8-R-Disc-Avg.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-9-L.jpg",
+   "Glaucoma and suspects/Average_masks/S-9-L-Disc-Avg.png"
+  ]
+ ]
+}
diff --git a/bob/ip/binseg/data/rimoner3/optic-disc-exp1.json b/bob/ip/binseg/data/rimoner3/optic-disc-exp1.json
new file mode 100644
index 0000000000000000000000000000000000000000..c5a8654ca0f28ae34fe615e98925641c868afe1c
--- /dev/null
+++ b/bob/ip/binseg/data/rimoner3/optic-disc-exp1.json
@@ -0,0 +1,642 @@
+{
+ "train": [
+  [
+   "Healthy/Stereo Images/N-10-R.jpg",
+   "Healthy/Expert1_masks/N-10-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-11-L.jpg",
+   "Healthy/Expert1_masks/N-11-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-12-R.jpg",
+   "Healthy/Expert1_masks/N-12-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-13-L.jpg",
+   "Healthy/Expert1_masks/N-13-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-14-R.jpg",
+   "Healthy/Expert1_masks/N-14-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-16-R.jpg",
+   "Healthy/Expert1_masks/N-16-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-24-R.jpg",
+   "Healthy/Expert1_masks/N-24-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-25-L.jpg",
+   "Healthy/Expert1_masks/N-25-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-26-R.jpg",
+   "Healthy/Expert1_masks/N-26-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-27-L.jpg",
+   "Healthy/Expert1_masks/N-27-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-52-R.jpg",
+   "Healthy/Expert1_masks/N-52-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-53-L.jpg",
+   "Healthy/Expert1_masks/N-53-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-54-R.jpg",
+   "Healthy/Expert1_masks/N-54-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-55-L.jpg",
+   "Healthy/Expert1_masks/N-55-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-56-R.jpg",
+   "Healthy/Expert1_masks/N-56-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-58-R.jpg",
+   "Healthy/Expert1_masks/N-58-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-59-L.jpg",
+   "Healthy/Expert1_masks/N-59-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-5-L.jpg",
+   "Healthy/Expert1_masks/N-5-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-61-L.jpg",
+   "Healthy/Expert1_masks/N-61-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-62-R.jpg",
+   "Healthy/Expert1_masks/N-62-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-63-L.jpg",
+   "Healthy/Expert1_masks/N-63-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-64-R.jpg",
+   "Healthy/Expert1_masks/N-64-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-65-L.jpg",
+   "Healthy/Expert1_masks/N-65-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-66-R.jpg",
+   "Healthy/Expert1_masks/N-66-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-67-L.jpg",
+   "Healthy/Expert1_masks/N-67-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-68-R.jpg",
+   "Healthy/Expert1_masks/N-68-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-69-L.jpg",
+   "Healthy/Expert1_masks/N-69-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-6-R.jpg",
+   "Healthy/Expert1_masks/N-6-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-70-R.jpg",
+   "Healthy/Expert1_masks/N-70-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-71-L.jpg",
+   "Healthy/Expert1_masks/N-71-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-72-R.jpg",
+   "Healthy/Expert1_masks/N-72-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-73-R.jpg",
+   "Healthy/Expert1_masks/N-73-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-74-L.jpg",
+   "Healthy/Expert1_masks/N-74-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-75-R.jpg",
+   "Healthy/Expert1_masks/N-75-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-76-R.jpg",
+   "Healthy/Expert1_masks/N-76-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-79-L.jpg",
+   "Healthy/Expert1_masks/N-79-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-7-L.jpg",
+   "Healthy/Expert1_masks/N-7-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-80-R.jpg",
+   "Healthy/Expert1_masks/N-80-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-81-L.jpg",
+   "Healthy/Expert1_masks/N-81-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-82-R.jpg",
+   "Healthy/Expert1_masks/N-82-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-83-L.jpg",
+   "Healthy/Expert1_masks/N-83-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-84-R.jpg",
+   "Healthy/Expert1_masks/N-84-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-85-L.jpg",
+   "Healthy/Expert1_masks/N-85-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-86-R.jpg",
+   "Healthy/Expert1_masks/N-86-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-87-L.jpg",
+   "Healthy/Expert1_masks/N-87-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-88-R.jpg",
+   "Healthy/Expert1_masks/N-88-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-8-L.jpg",
+   "Healthy/Expert1_masks/N-8-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-90-R.jpg",
+   "Healthy/Expert1_masks/N-90-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-91-L.jpg",
+   "Healthy/Expert1_masks/N-91-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-92-R.jpg",
+   "Healthy/Expert1_masks/N-92-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-9-L.jpg",
+   "Healthy/Expert1_masks/N-9-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-10-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-10-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-11-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-11-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-12-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-12-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-13-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-13-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-14-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-14-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-15-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-15-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-16-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-16-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-17-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-17-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-18-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-18-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-19-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-19-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-1-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-1-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-20-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-20-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-21-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-21-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-32-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-32-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-33-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-33-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-34-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-34-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-35-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-35-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-36-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-36-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-37-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-37-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-38-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-38-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-39-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-39-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-3-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-3-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-4-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-4-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-5-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-5-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-6-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-6-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-7-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-7-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-8-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-8-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-9-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-9-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-10-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-10-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-11-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-11-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-12-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-12-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-13-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-13-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-14-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-14-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-15-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-15-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-16-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-16-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-17-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-17-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-18-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-18-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-19-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-19-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-1-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-1-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-20-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-20-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-21-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-21-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-22-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-22-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-23-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-23-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-24-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-24-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-25-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-25-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-26-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-26-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-27-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-27-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-28-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-28-R-1-Disc-exp1.png"
+  ]
+ ],
+ "test": [
+  [
+   "Glaucoma and suspects/Stereo Images/G-22-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-22-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-23-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-23-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-24-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-24-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-25-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-25-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-26-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-26-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-27-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-27-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-28-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-28-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-29-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-29-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-2-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-2-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-30-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-30-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-31-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/G-31-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-17-L.jpg",
+   "Healthy/Expert1_masks/N-17-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-18-R.jpg",
+   "Healthy/Expert1_masks/N-18-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-1-L.jpg",
+   "Healthy/Expert1_masks/N-1-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-20-R.jpg",
+   "Healthy/Expert1_masks/N-20-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-21-L.jpg",
+   "Healthy/Expert1_masks/N-21-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-22-R.jpg",
+   "Healthy/Expert1_masks/N-22-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-23-L.jpg",
+   "Healthy/Expert1_masks/N-23-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-28-R.jpg",
+   "Healthy/Expert1_masks/N-28-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-29-L.jpg",
+   "Healthy/Expert1_masks/N-29-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-2-R.jpg",
+   "Healthy/Expert1_masks/N-2-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-30-R.jpg",
+   "Healthy/Expert1_masks/N-30-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-31-L.jpg",
+   "Healthy/Expert1_masks/N-31-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-32-R.jpg",
+   "Healthy/Expert1_masks/N-32-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-33-L.jpg",
+   "Healthy/Expert1_masks/N-33-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-34-R.jpg",
+   "Healthy/Expert1_masks/N-34-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-35-L.jpg",
+   "Healthy/Expert1_masks/N-35-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-36-R.jpg",
+   "Healthy/Expert1_masks/N-36-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-37-L.jpg",
+   "Healthy/Expert1_masks/N-37-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-38-R.jpg",
+   "Healthy/Expert1_masks/N-38-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-39-L.jpg",
+   "Healthy/Expert1_masks/N-39-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-3-L.jpg",
+   "Healthy/Expert1_masks/N-3-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-40-R.jpg",
+   "Healthy/Expert1_masks/N-40-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-41-L.jpg",
+   "Healthy/Expert1_masks/N-41-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-42-R.jpg",
+   "Healthy/Expert1_masks/N-42-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-43-L.jpg",
+   "Healthy/Expert1_masks/N-43-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-44-R.jpg",
+   "Healthy/Expert1_masks/N-44-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-46-R.jpg",
+   "Healthy/Expert1_masks/N-46-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-47-L.jpg",
+   "Healthy/Expert1_masks/N-47-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-48-R.jpg",
+   "Healthy/Expert1_masks/N-48-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-49-L.jpg",
+   "Healthy/Expert1_masks/N-49-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-4-R.jpg",
+   "Healthy/Expert1_masks/N-4-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-50-R.jpg",
+   "Healthy/Expert1_masks/N-50-R-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-51-L.jpg",
+   "Healthy/Expert1_masks/N-51-L-1-Disc-exp1.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-78-R.jpg",
+   "Healthy/Expert1_masks/N-78-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-29-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-29-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-2-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-2-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-30-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-30-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-31-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-31-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-32-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-32-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-33-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-33-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-34-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-34-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-35-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-35-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-3-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-3-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-4-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-4-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-5-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-5-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-6-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-6-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-7-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-7-L-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-8-R.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-8-R-1-Disc-exp1.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-9-L.jpg",
+   "Glaucoma and suspects/Expert1_masks/S-9-L-1-Disc-exp1.png"
+  ]
+ ]
+}
\ No newline at end of file
diff --git a/bob/ip/binseg/data/rimoner3/optic-disc-exp2.json b/bob/ip/binseg/data/rimoner3/optic-disc-exp2.json
new file mode 100644
index 0000000000000000000000000000000000000000..3a94781e740e06cdc47cdd1a0e07070ef9d7eb5b
--- /dev/null
+++ b/bob/ip/binseg/data/rimoner3/optic-disc-exp2.json
@@ -0,0 +1,642 @@
+{
+ "train": [
+  [
+   "Healthy/Stereo Images/N-10-R.jpg",
+   "Healthy/Expert2_masks/N-10-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-11-L.jpg",
+   "Healthy/Expert2_masks/N-11-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-12-R.jpg",
+   "Healthy/Expert2_masks/N-12-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-13-L.jpg",
+   "Healthy/Expert2_masks/N-13-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-14-R.jpg",
+   "Healthy/Expert2_masks/N-14-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-16-R.jpg",
+   "Healthy/Expert2_masks/N-16-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-24-R.jpg",
+   "Healthy/Expert2_masks/N-24-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-25-L.jpg",
+   "Healthy/Expert2_masks/N-25-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-26-R.jpg",
+   "Healthy/Expert2_masks/N-26-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-27-L.jpg",
+   "Healthy/Expert2_masks/N-27-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-52-R.jpg",
+   "Healthy/Expert2_masks/N-52-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-53-L.jpg",
+   "Healthy/Expert2_masks/N-53-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-54-R.jpg",
+   "Healthy/Expert2_masks/N-54-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-55-L.jpg",
+   "Healthy/Expert2_masks/N-55-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-56-R.jpg",
+   "Healthy/Expert2_masks/N-56-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-58-R.jpg",
+   "Healthy/Expert2_masks/N-58-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-59-L.jpg",
+   "Healthy/Expert2_masks/N-59-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-5-L.jpg",
+   "Healthy/Expert2_masks/N-5-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-61-L.jpg",
+   "Healthy/Expert2_masks/N-61-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-62-R.jpg",
+   "Healthy/Expert2_masks/N-62-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-63-L.jpg",
+   "Healthy/Expert2_masks/N-63-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-64-R.jpg",
+   "Healthy/Expert2_masks/N-64-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-65-L.jpg",
+   "Healthy/Expert2_masks/N-65-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-66-R.jpg",
+   "Healthy/Expert2_masks/N-66-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-67-L.jpg",
+   "Healthy/Expert2_masks/N-67-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-68-R.jpg",
+   "Healthy/Expert2_masks/N-68-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-69-L.jpg",
+   "Healthy/Expert2_masks/N-69-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-6-R.jpg",
+   "Healthy/Expert2_masks/N-6-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-70-R.jpg",
+   "Healthy/Expert2_masks/N-70-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-71-L.jpg",
+   "Healthy/Expert2_masks/N-71-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-72-R.jpg",
+   "Healthy/Expert2_masks/N-72-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-73-R.jpg",
+   "Healthy/Expert2_masks/N-73-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-74-L.jpg",
+   "Healthy/Expert2_masks/N-74-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-75-R.jpg",
+   "Healthy/Expert2_masks/N-75-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-76-R.jpg",
+   "Healthy/Expert2_masks/N-76-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-79-L.jpg",
+   "Healthy/Expert2_masks/N-79-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-7-L.jpg",
+   "Healthy/Expert2_masks/N-7-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-80-R.jpg",
+   "Healthy/Expert2_masks/N-80-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-81-L.jpg",
+   "Healthy/Expert2_masks/N-81-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-82-R.jpg",
+   "Healthy/Expert2_masks/N-82-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-83-L.jpg",
+   "Healthy/Expert2_masks/N-83-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-84-R.jpg",
+   "Healthy/Expert2_masks/N-84-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-85-L.jpg",
+   "Healthy/Expert2_masks/N-85-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-86-R.jpg",
+   "Healthy/Expert2_masks/N-86-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-87-L.jpg",
+   "Healthy/Expert2_masks/N-87-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-88-R.jpg",
+   "Healthy/Expert2_masks/N-88-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-8-L.jpg",
+   "Healthy/Expert2_masks/N-8-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-90-R.jpg",
+   "Healthy/Expert2_masks/N-90-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-91-L.jpg",
+   "Healthy/Expert2_masks/N-91-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-92-R.jpg",
+   "Healthy/Expert2_masks/N-92-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-9-L.jpg",
+   "Healthy/Expert2_masks/N-9-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-10-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-10-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-11-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-11-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-12-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-12-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-13-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-13-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-14-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-14-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-15-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-15-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-16-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-16-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-17-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-17-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-18-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-18-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-19-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-19-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-1-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-1-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-20-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-20-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-21-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-21-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-32-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-32-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-33-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-33-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-34-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-34-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-35-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-35-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-36-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-36-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-37-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-37-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-38-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-38-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-39-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-39-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-3-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-3-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-4-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-4-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-5-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-5-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-6-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-6-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-7-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-7-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-8-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-8-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-9-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-9-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-10-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-10-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-11-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-11-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-12-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-12-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-13-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-13-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-14-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-14-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-15-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-15-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-16-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-16-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-17-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-17-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-18-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-18-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-19-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-19-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-1-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-1-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-20-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-20-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-21-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-21-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-22-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-22-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-23-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-23-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-24-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-24-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-25-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-25-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-26-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-26-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-27-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-27-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-28-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-28-R-1-Disc-exp2.png"
+  ]
+ ],
+ "test": [
+  [
+   "Glaucoma and suspects/Stereo Images/G-22-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-22-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-23-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-23-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-24-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-24-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-25-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-25-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-26-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-26-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-27-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-27-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-28-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-28-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-29-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-29-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-2-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-2-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-30-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-30-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/G-31-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/G-31-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-17-L.jpg",
+   "Healthy/Expert2_masks/N-17-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-18-R.jpg",
+   "Healthy/Expert2_masks/N-18-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-1-L.jpg",
+   "Healthy/Expert2_masks/N-1-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-20-R.jpg",
+   "Healthy/Expert2_masks/N-20-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-21-L.jpg",
+   "Healthy/Expert2_masks/N-21-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-22-R.jpg",
+   "Healthy/Expert2_masks/N-22-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-23-L.jpg",
+   "Healthy/Expert2_masks/N-23-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-28-R.jpg",
+   "Healthy/Expert2_masks/N-28-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-29-L.jpg",
+   "Healthy/Expert2_masks/N-29-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-2-R.jpg",
+   "Healthy/Expert2_masks/N-2-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-30-R.jpg",
+   "Healthy/Expert2_masks/N-30-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-31-L.jpg",
+   "Healthy/Expert2_masks/N-31-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-32-R.jpg",
+   "Healthy/Expert2_masks/N-32-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-33-L.jpg",
+   "Healthy/Expert2_masks/N-33-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-34-R.jpg",
+   "Healthy/Expert2_masks/N-34-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-35-L.jpg",
+   "Healthy/Expert2_masks/N-35-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-36-R.jpg",
+   "Healthy/Expert2_masks/N-36-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-37-L.jpg",
+   "Healthy/Expert2_masks/N-37-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-38-R.jpg",
+   "Healthy/Expert2_masks/N-38-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-39-L.jpg",
+   "Healthy/Expert2_masks/N-39-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-3-L.jpg",
+   "Healthy/Expert2_masks/N-3-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-40-R.jpg",
+   "Healthy/Expert2_masks/N-40-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-41-L.jpg",
+   "Healthy/Expert2_masks/N-41-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-42-R.jpg",
+   "Healthy/Expert2_masks/N-42-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-43-L.jpg",
+   "Healthy/Expert2_masks/N-43-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-44-R.jpg",
+   "Healthy/Expert2_masks/N-44-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-46-R.jpg",
+   "Healthy/Expert2_masks/N-46-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-47-L.jpg",
+   "Healthy/Expert2_masks/N-47-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-48-R.jpg",
+   "Healthy/Expert2_masks/N-48-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-49-L.jpg",
+   "Healthy/Expert2_masks/N-49-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-4-R.jpg",
+   "Healthy/Expert2_masks/N-4-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-50-R.jpg",
+   "Healthy/Expert2_masks/N-50-R-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-51-L.jpg",
+   "Healthy/Expert2_masks/N-51-L-1-Disc-exp2.png"
+  ],
+  [
+   "Healthy/Stereo Images/N-78-R.jpg",
+   "Healthy/Expert2_masks/N-78-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-29-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-29-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-2-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-2-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-30-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-30-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-31-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-31-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-32-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-32-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-33-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-33-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-34-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-34-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-35-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-35-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-3-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-3-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-4-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-4-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-5-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-5-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-6-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-6-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-7-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-7-L-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-8-R.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-8-R-1-Disc-exp2.png"
+  ],
+  [
+   "Glaucoma and suspects/Stereo Images/S-9-L.jpg",
+   "Glaucoma and suspects/Expert2_masks/S-9-L-1-Disc-exp2.png"
+  ]
+ ]
+}
diff --git a/bob/ip/binseg/data/sample.py b/bob/ip/binseg/data/sample.py
new file mode 100644
index 0000000000000000000000000000000000000000..2d85bf35b4d548d0ea25aeda194dc1bc33bb8a2f
--- /dev/null
+++ b/bob/ip/binseg/data/sample.py
@@ -0,0 +1,110 @@
+from collections.abc import MutableSequence
+
+"""Base definition of sample
+
+.. todo::
+
+   Copied from bob/bob.pipelines **TEMPORARILY**!  Remove this and use the
+   package directly!
+
+"""
+
+
+def _copy_attributes(s, d):
+    """Copies attributes from a dictionary to self
+    """
+    s.__dict__.update(
+        dict([k, v] for k, v in d.items() if k not in ("data", "load", "samples"))
+    )
+
+
+class DelayedSample:
+    """Representation of sample that can be loaded via a callable
+
+    The optional ``**kwargs`` argument allows you to attach more attributes to
+    this sample instance.
+
+
+    Parameters
+    ----------
+
+        load : object
+            A python function that can be called parameterlessly, to load the
+            sample in question from whatever medium
+
+        parent : :py:class:`DelayedSample`, :py:class:`Sample`, None
+            If passed, consider this as a parent of this sample, to copy
+            information
+
+        kwargs : dict
+            Further attributes of this sample, to be stored and eventually
+            transmitted to transformed versions of the sample
+
+    """
+
+    def __init__(self, load, parent=None, **kwargs):
+        self.load = load
+        if parent is not None:
+            _copy_attributes(self, parent.__dict__)
+        _copy_attributes(self, kwargs)
+
+    @property
+    def data(self):
+        """Loads the data from the disk file"""
+        return self.load()
+
+
+class Sample:
+    """Representation of sample that is sufficient for the blocks in this module
+
+    Each sample must have the following attributes:
+
+        * attribute ``data``: Contains the data for this sample
+
+
+    Parameters
+    ----------
+
+        data : object
+            Object representing the data to initialize this sample with.
+
+        parent : object
+            A parent object from which to inherit all other attributes (except
+            ``data``)
+
+    """
+
+    def __init__(self, data, parent=None, **kwargs):
+        self.data = data
+        if parent is not None:
+            _copy_attributes(self, parent.__dict__)
+        _copy_attributes(self, kwargs)
+
+
+
+class SampleSet(MutableSequence):
+    """A set of samples with extra attributes
+    https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
+    """
+
+    def __init__(self, samples, parent=None, **kwargs):
+        self.samples = samples
+        if parent is not None:
+            _copy_attributes(self, parent.__dict__)
+        _copy_attributes(self, kwargs)
+
+    def __len__(self):
+        return len(self.samples)
+
+    def __getitem__(self, item):
+        return self.samples.__getitem__(item)
+
+    def __setitem__(self, key, item):
+        return self.samples.__setitem__(key, item)
+
+    def __delitem__(self, item):
+        return self.samples.__delitem__(item)
+
+    def insert(self, index, item):
+        # if not item in self.samples:
+        self.samples.insert(index, item)
diff --git a/bob/ip/binseg/data/stare/__init__.py b/bob/ip/binseg/data/stare/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..753c98feb92884f4f3ad11de3cc781a99d1bdb9e
--- /dev/null
+++ b/bob/ip/binseg/data/stare/__init__.py
@@ -0,0 +1,73 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""STARE dataset for Vessel Segmentation
+
+A subset of the original STARE dataset contains 20 annotated eye fundus images
+with a resolution of 700 x 605 (width x height). Two sets of ground-truth
+vessel annotations are available. The first set by Adam Hoover ("ah") is
+commonly used for training and testing. The second set by Valentina Kouznetsova
+("vk") is typically used as a “human” baseline.
+
+* Reference: [STARE-2000]_
+* Original resolution (width x height): 700 x 605
+* Split reference: [MANINIS-2016]_
+* Protocol ``ah`` (default baseline):
+
+  * Training samples: 10 (including labels from annotator "ah")
+  * Test samples: 10 (including labels from annotator "ah")
+
+* Protocol ``vk`` (normally used as human comparison):
+
+  * Training samples: 10 (including labels from annotator "vk")
+  * Test samples: 10 (including labels from annotator "vk")
+
+"""
+
+import os
+import pkg_resources
+
+import bob.extension
+
+from ..dataset import JSONDataset
+from ..loader import load_pil_rgb, load_pil_1, make_delayed
+
+_protocols = [
+    pkg_resources.resource_filename(__name__, "ah.json"),
+    pkg_resources.resource_filename(__name__, "vk.json"),
+]
+
+_fieldnames = ("data", "label")
+
+_root_path = bob.extension.rc.get(
+    "bob.ip.binseg.stare.datadir", os.path.realpath(os.curdir)
+)
+
+
+def _make_loader(root_path):
+    #hack to get testing on the CI working fine for this dataset
+
+    def _raw_data_loader(sample):
+        return dict(
+            data=load_pil_rgb(os.path.join(root_path, sample["data"])),
+            label=load_pil_1(os.path.join(root_path, sample["label"])),
+        )
+
+    def _loader(context, sample):
+        # "context" is ignored in this case - database is homogeneous
+        # we returned delayed samples to avoid loading all images at once
+        return make_delayed(sample, _raw_data_loader)
+
+    return _loader
+
+
+def _make_dataset(root_path):
+
+    return JSONDataset(
+        protocols=_protocols,
+        fieldnames=_fieldnames,
+        loader=_make_loader(root_path),
+    )
+
+dataset = _make_dataset(_root_path)
+"""STARE dataset object"""
diff --git a/bob/ip/binseg/data/stare/ah.json b/bob/ip/binseg/data/stare/ah.json
new file mode 100644
index 0000000000000000000000000000000000000000..38a965944c32d96bfe7e54bf7ca94eaf0a19dcc8
--- /dev/null
+++ b/bob/ip/binseg/data/stare/ah.json
@@ -0,0 +1,86 @@
+{
+ "train": [
+  [
+   "stare-images/im0001.ppm",
+   "labels-ah/im0001.ah.ppm"
+  ],
+  [
+   "stare-images/im0002.ppm",
+   "labels-ah/im0002.ah.ppm"
+  ],
+  [
+   "stare-images/im0003.ppm",
+   "labels-ah/im0003.ah.ppm"
+  ],
+  [
+   "stare-images/im0004.ppm",
+   "labels-ah/im0004.ah.ppm"
+  ],
+  [
+   "stare-images/im0005.ppm",
+   "labels-ah/im0005.ah.ppm"
+  ],
+  [
+   "stare-images/im0044.ppm",
+   "labels-ah/im0044.ah.ppm"
+  ],
+  [
+   "stare-images/im0077.ppm",
+   "labels-ah/im0077.ah.ppm"
+  ],
+  [
+   "stare-images/im0081.ppm",
+   "labels-ah/im0081.ah.ppm"
+  ],
+  [
+   "stare-images/im0082.ppm",
+   "labels-ah/im0082.ah.ppm"
+  ],
+  [
+   "stare-images/im0139.ppm",
+   "labels-ah/im0139.ah.ppm"
+  ]
+ ],
+ "test": [
+  [
+   "stare-images/im0162.ppm",
+   "labels-ah/im0162.ah.ppm"
+  ],
+  [
+   "stare-images/im0163.ppm",
+   "labels-ah/im0163.ah.ppm"
+  ],
+  [
+   "stare-images/im0235.ppm",
+   "labels-ah/im0235.ah.ppm"
+  ],
+  [
+   "stare-images/im0236.ppm",
+   "labels-ah/im0236.ah.ppm"
+  ],
+  [
+   "stare-images/im0239.ppm",
+   "labels-ah/im0239.ah.ppm"
+  ],
+  [
+   "stare-images/im0240.ppm",
+   "labels-ah/im0240.ah.ppm"
+  ],
+  [
+   "stare-images/im0255.ppm",
+   "labels-ah/im0255.ah.ppm"
+  ],
+  [
+   "stare-images/im0291.ppm",
+   "labels-ah/im0291.ah.ppm"
+  ],
+  [
+   "stare-images/im0319.ppm",
+   "labels-ah/im0319.ah.ppm"
+  ],
+  [
+   "stare-images/im0324.ppm",
+   "labels-ah/im0324.ah.ppm"
+  ]
+ ]
+}
diff --git a/bob/ip/binseg/data/stare/vk.json b/bob/ip/binseg/data/stare/vk.json
new file mode 100644
index 0000000000000000000000000000000000000000..2d9d4e464a13de83ca164b4d02e99e7704e0857b
--- /dev/null
+++ b/bob/ip/binseg/data/stare/vk.json
@@ -0,0 +1,86 @@
+{
+ "train": [
+  [
+   "stare-images/im0001.ppm",
+   "labels-vk/im0001.vk.ppm"
+  ],
+  [
+   "stare-images/im0002.ppm",
+   "labels-vk/im0002.vk.ppm"
+  ],
+  [
+   "stare-images/im0003.ppm",
+   "labels-vk/im0003.vk.ppm"
+  ],
+  [
+   "stare-images/im0004.ppm",
+   "labels-vk/im0004.vk.ppm"
+  ],
+  [
+   "stare-images/im0005.ppm",
+   "labels-vk/im0005.vk.ppm"
+  ],
+  [
+   "stare-images/im0044.ppm",
+   "labels-vk/im0044.vk.ppm"
+  ],
+  [
+   "stare-images/im0077.ppm",
+   "labels-vk/im0077.vk.ppm"
+  ],
+  [
+   "stare-images/im0081.ppm",
+   "labels-vk/im0081.vk.ppm"
+  ],
+  [
+   "stare-images/im0082.ppm",
+   "labels-vk/im0082.vk.ppm"
+  ],
+  [
+   "stare-images/im0139.ppm",
+   "labels-vk/im0139.vk.ppm"
+  ]
+ ],
+ "test": [
+  [
+   "stare-images/im0162.ppm",
+   "labels-vk/im0162.vk.ppm"
+  ],
+  [
+   "stare-images/im0163.ppm",
+   "labels-vk/im0163.vk.ppm"
+  ],
+  [
+   "stare-images/im0235.ppm",
+   "labels-vk/im0235.vk.ppm"
+  ],
+  [
+   "stare-images/im0236.ppm",
+   "labels-vk/im0236.vk.ppm"
+  ],
+  [
+   "stare-images/im0239.ppm",
+   "labels-vk/im0239.vk.ppm"
+  ],
+  [
+   "stare-images/im0240.ppm",
+   "labels-vk/im0240.vk.ppm"
+  ],
+  [
+   "stare-images/im0255.ppm",
+   "labels-vk/im0255.vk.ppm"
+  ],
+  [
+   "stare-images/im0291.ppm",
+   "labels-vk/im0291.vk.ppm"
+  ],
+  [
+   "stare-images/im0319.ppm",
+   "labels-vk/im0319.vk.ppm"
+  ],
+  [
+   "stare-images/im0324.ppm",
+   "labels-vk/im0324.vk.ppm"
+  ]
+ ]
+}
diff --git a/bob/ip/binseg/data/transforms.py b/bob/ip/binseg/data/transforms.py
index b97fe7959ba95e571462d6f6d9d2ddade9fad226..bea81bcd9dbf7ba998795f96c35ccae3b7c1b417 100644
--- a/bob/ip/binseg/data/transforms.py
+++ b/bob/ip/binseg/data/transforms.py
@@ -1,76 +1,57 @@
 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
 
-import torchvision.transforms.functional as VF
+"""Image transformations for our pipelines
+
+Differences between methods here and those from
+:py:mod:`torchvision.transforms` is that these support multiple simultaneous
+image inputs, which are required to feed segmentation networks (e.g. image and
+labels or masks).  We also take care of data augmentations, in which random
+flipping and rotation needs to be applied across all input images, but color
+jittering, for example, only on the input image.
+"""
+
 import random
-import PIL
-from PIL import Image
-from torchvision.transforms.transforms import Lambda
-from torchvision.transforms.transforms import Compose as TorchVisionCompose
-import math
-from math import floor
-import warnings
-import collections
-import bob.core
-
-_pil_interpolation_to_str = {
-    Image.NEAREST: 'PIL.Image.NEAREST',
-    Image.BILINEAR: 'PIL.Image.BILINEAR',
-    Image.BICUBIC: 'PIL.Image.BICUBIC',
-    Image.LANCZOS: 'PIL.Image.LANCZOS',
-    Image.HAMMING: 'PIL.Image.HAMMING',
-    Image.BOX: 'PIL.Image.BOX',
-}
-Iterable = collections.abc.Iterable
-
-# Compose
-
-class Compose:
-    """Composes several transforms.
 
-    Attributes
-    ----------
-    transforms : list
-        list of transforms to compose.
-    """
+import numpy
+import PIL.Image
+import torchvision.transforms
+import torchvision.transforms.functional
+
 
-    def __init__(self, transforms):
-        self.transforms = transforms
+class TupleMixin:
+    """Adds support to work with tuples of objects to torchvision transforms"""
 
     def __call__(self, *args):
-        for t in self.transforms:
-            args = t(*args)
-        return args
+        return [super(TupleMixin, self).__call__(k) for k in args]
 
-    def __repr__(self):
-        format_string = self.__class__.__name__ + '('
-        for t in self.transforms:
-            format_string += '\n'
-            format_string += '    {0}'.format(t)
-        format_string += '\n)'
-        return format_string
 
-# Preprocessing
+class CenterCrop(TupleMixin, torchvision.transforms.CenterCrop):
+    pass
 
-class CenterCrop:
-    """
-    Crop at the center.
 
-    Attributes
-    ----------
-    size : int
-        target size
-    """
-    def __init__(self, size):
-        self.size = size
+class Pad(TupleMixin, torchvision.transforms.Pad):
+    pass
+
+
+class Resize(TupleMixin, torchvision.transforms.Resize):
+    pass
+
+
+class ToTensor(TupleMixin, torchvision.transforms.ToTensor):
+    pass
 
+
+class Compose(torchvision.transforms.Compose):
     def __call__(self, *args):
-        return [VF.center_crop(img, self.size) for img in args]
+        for t in self.transforms:
+            args = t(*args)
+        return args
 
 
-class Crop:
+class SingleCrop:
     """
-    Crop at the given coordinates.
+    Crops one image at the given coordinates.
 
     Attributes
     ----------
@@ -83,304 +64,205 @@ class Crop:
     w : int
         width of the cropped image.
     """
+
     def __init__(self, i, j, h, w):
         self.i = i
         self.j = j
         self.h = h
         self.w = w
 
-    def __call__(self, *args):
-        return [img.crop((self.j, self.i, self.j + self.w, self.i + self.h)) for img in args]
+    def __call__(self, img):
+        return img.crop((self.j, self.i, self.j + self.w, self.i + self.h))
 
-class Pad:
+
+class Crop(TupleMixin, SingleCrop):
     """
-    Constant padding
+    Crops multiple images at the given coordinates.
 
     Attributes
     ----------
-    padding : int or tuple
-        padding on each border. If a single int is provided this is used to pad all borders.
-        If tuple of length 2 is provided this is the padding on left/right and top/bottom respectively.
-        If a tuple of length 4 is provided this is the padding for the left, top, right and bottom borders respectively.
-
-    fill : int
-        pixel fill value for constant fill. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
-        This value is only used when the padding_mode is constant
+    i : int
+        upper pixel coordinate.
+    j : int
+        left pixel coordinate.
+    h : int
+        height of the cropped image.
+    w : int
+        width of the cropped image.
     """
-    def __init__(self, padding, fill=0):
-        self.padding = padding
-        self.fill = fill
 
-    def __call__(self, *args):
-        return [VF.pad(img, self.padding, self.fill, padding_mode='constant') for img in args]
+    pass
+
 
-class AutoLevel16to8:
+class SingleAutoLevel16to8:
     """Converts a 16-bit image to 8-bit representation using "auto-level"
 
+    This transform assumes that the input image is gray-scaled.
+
+    To auto-level, we calculate the maximum and the minimum of the image, and
+    consider such a range should be mapped to the [0,255] range of the
+    destination image.
+
+    """
+
+    def __call__(self, img):
+        imin, imax = img.getextrema()
+        irange = imax - imin
+        return PIL.Image.fromarray(
+            numpy.round(
+                255.0 * (numpy.array(img).astype(float) - imin) / irange
+            ).astype("uint8"),
+        ).convert("L")
+
+
+class AutoLevel16to8(TupleMixin, SingleAutoLevel16to8):
+    """Converts multiple 16-bit images to 8-bit representations using "auto-level"
+
     This transform assumes that the input images are gray-scaled.
 
     To auto-level, we calculate the maximum and the minimum of the image, and
     consider such a range should be mapped to the [0,255] range of the
     destination image.
     """
-    def _process_one(self, img):
-        return Image.fromarray(bob.core.convert(img, 'uint8', (0,255),
-            img.getextrema()))
 
-    def __call__(self, *args):
-        return [self._process_one(img) for img in args]
+    pass
+
 
-class ToRGB:
+class SingleToRGB:
     """Converts from any input format to RGB, using an ADAPTIVE conversion.
 
     This transform takes the input image and converts it to RGB using
-    py:method:`Image.Image.convert`, with `mode='RGB'` and using all other
+    py:method:`PIL.Image.Image.convert`, with `mode='RGB'` and using all other
     defaults.  This may be aggressive if applied to 16-bit images without
     further considerations.
     """
-    def __call__(self, *args):
-        return [img.convert(mode="RGB") for img in args]
 
-class ToTensor:
-    """Converts :py:class:`PIL.Image.Image` to :py:class:`torch.Tensor` """
-    def __call__(self, *args):
-        return [VF.to_tensor(img) for img in args]
+    def __call__(self, img):
+        return img.convert(mode="RGB")
 
 
-# Augmentations
+class ToRGB(TupleMixin, SingleToRGB):
+    """Converts from any input format to RGB, using an ADAPTIVE conversion.
 
-class RandomHFlip:
+    This transform takes the input image and converts it to RGB using
+    py:method:`PIL.Image.Image.convert`, with `mode='RGB'` and using all other
+    defaults.  This may be aggressive if applied to 16-bit images without
+    further considerations.
     """
-    Flips horizontally
 
-    Attributes
-    ----------
-    prob : float
-        probability at which imgage is flipped. Defaults to ``0.5``
-    """
-    def __init__(self, prob = 0.5):
-        self.prob = prob
+    pass
 
-    def __call__(self, *args):
-        if random.random() < self.prob:
-            return [VF.hflip(img) for img in args]
 
+class RandomHorizontalFlip(torchvision.transforms.RandomHorizontalFlip):
+    """Randomly flips all input images horizontally"""
+
+    def __call__(self, *args):
+        if random.random() < self.p:
+            return [
+                torchvision.transforms.functional.hflip(img) for img in args
+            ]
         else:
             return args
 
 
-class RandomVFlip:
-    """
-    Flips vertically
-
-    Attributes
-    ----------
-    prob : float
-        probability at which imgage is flipped. Defaults to ``0.5``
-    """
-    def __init__(self, prob = 0.5):
-        self.prob = prob
+class RandomVerticalFlip(torchvision.transforms.RandomVerticalFlip):
+    """Randomly flips all input images vertically"""
 
     def __call__(self, *args):
-        if random.random() < self.prob:
-            return [VF.vflip(img) for img in args]
-
+        if random.random() < self.p:
+            return [
+                torchvision.transforms.functional.vflip(img) for img in args
+            ]
         else:
             return args
 
 
-class RandomRotation:
-    """
-    Rotates by degree
-
-    Attributes
-    ----------
-    degree_range : tuple
-        range of degrees in which image and ground truth are rotated. Defaults to ``(-15, +15)``
-    prob : float
-        probability at which imgage is rotated. Defaults to ``0.5``
-    """
-    def __init__(self, degree_range = (-15, +15), prob = 0.5):
-        self.prob = prob
-        self.degree_range = degree_range
+class RandomRotation(torchvision.transforms.RandomRotation):
+    """Randomly rotates all input images by the same amount
 
-    def __call__(self, *args):
-        if random.random() < self.prob:
-            degree = random.randint(*self.degree_range)
-            return [VF.rotate(img, degree, resample = Image.BILINEAR) for img in args]
-        else:
-            return args
+    Unlike the current torchvision implementation, we also accept a probability
+    for applying the rotation.
 
-class ColorJitter(object):
-    """
-    Randomly change the brightness, contrast, saturation and hue
 
-    Attributes
+    Parameters
     ----------
-    brightness : float
-        how much to jitter brightness. brightness_factor
-        is chosen uniformly from ``[max(0, 1 - brightness), 1 + brightness]``.
-    contrast : float
-        how much to jitter contrast. contrast_factor
-        is chosen uniformly from ``[max(0, 1 - contrast), 1 + contrast]``.
-    saturation : float
-        how much to jitter saturation. saturation_factor
-        is chosen uniformly from ``[max(0, 1 - saturation), 1 + saturation]``.
-    hue : float
-        how much to jitter hue. hue_factor is chosen uniformly from
-        ``[-hue, hue]``. Should be >=0 and <= 0.5
-    prob : float
-        probability at which the operation is applied
-    """
-    def __init__(self, brightness=0.3, contrast=0.3, saturation=0.02, hue=0.02, prob=0.5):
-        self.brightness = brightness
-        self.contrast = contrast
-        self.saturation = saturation
-        self.hue = hue
-        self.prob = prob
-
-    @staticmethod
-    def get_params(brightness, contrast, saturation, hue):
-        transforms = []
-        if brightness > 0:
-            brightness_factor = random.uniform(max(0, 1 - brightness), 1 + brightness)
-            transforms.append(Lambda(lambda img: VF.adjust_brightness(img, brightness_factor)))
 
-        if contrast > 0:
-            contrast_factor = random.uniform(max(0, 1 - contrast), 1 + contrast)
-            transforms.append(Lambda(lambda img: VF.adjust_contrast(img, contrast_factor)))
+    p : :py:class:`float`, Optional
+        probability at which the operation is applied
 
-        if saturation > 0:
-            saturation_factor = random.uniform(max(0, 1 - saturation), 1 + saturation)
-            transforms.append(Lambda(lambda img: VF.adjust_saturation(img, saturation_factor)))
+    **kwargs : dict
+        passed to parent.  Notice that, if not set, we use the following
+        defaults here for the underlying transform from torchvision:
 
-        if hue > 0:
-            hue_factor = random.uniform(-hue, hue)
-            transforms.append(Lambda(lambda img: VF.adjust_hue(img, hue_factor)))
+        * ``degrees``: 15
+        * ``resample``: ``PIL.Image.BILINEAR``
 
-        random.shuffle(transforms)
-        transform = TorchVisionCompose(transforms)
+    """
 
-        return transform
+    def __init__(self, p=0.5, **kwargs):
+        kwargs.setdefault("degrees", 15)
+        kwargs.setdefault("resample", PIL.Image.BILINEAR)
+        super(RandomRotation, self).__init__(**kwargs)
+        self.p = p
 
     def __call__(self, *args):
-        if random.random() < self.prob:
-            transform = self.get_params(self.brightness, self.contrast,
-                                        self.saturation, self.hue)
-            trans_img = transform(args[0])
-            return [trans_img, *args[1:]]
+        # applies **the same** rotation to all inputs (data and ground-truth)
+        if random.random() < self.p:
+            angle = self.get_params(self.degrees)
+            return [
+                torchvision.transforms.functional.rotate(
+                    img, angle, self.resample, self.expand, self.center
+                )
+                for img in args
+            ]
         else:
             return args
 
+    def __repr__(self):
+        retval = super(RandomRotation, self).__repr__()
+        return retval.replace("(", f"(p={self.p},", 1)
 
-class RandomResizedCrop:
-    """Crop to random size and aspect ratio.
-    A crop of random size of the original size and a random aspect ratio of
-    the original aspect ratio is made. This crop is finally resized to
-    given size. This is popularly used to train the Inception networks.
 
-    Attributes
-    ----------
-    size : int
-        expected output size of each edge
-    scale : tuple
-        range of size of the origin size cropped. Defaults to ``(0.08, 1.0)``
-    ratio : tuple
-        range of aspect ratio of the origin aspect ratio cropped. Defaults to ``(3. / 4., 4. / 3.)``
-    interpolation :
-        Defaults to ``PIL.Image.BILINEAR``
-    prob : float
-        probability at which the operation is applied. Defaults to ``0.5``
-    """
+class ColorJitter(torchvision.transforms.ColorJitter):
+    """Randomly applies a color jitter transformation on the **first** image
 
-    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR, prob = 0.5):
-        if isinstance(size, tuple):
-            self.size = size
-        else:
-            self.size = (size, size)
-        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
-            warnings.warn("range should be of kind (min, max)")
-
-        self.interpolation = interpolation
-        self.scale = scale
-        self.ratio = ratio
-        self.prob = prob
-
-    @staticmethod
-    def get_params(img, scale, ratio):
-        area = img.size[0] * img.size[1]
-
-        for attempt in range(10):
-            target_area = random.uniform(*scale) * area
-            log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
-            aspect_ratio = math.exp(random.uniform(*log_ratio))
-
-            w = int(round(math.sqrt(target_area * aspect_ratio)))
-            h = int(round(math.sqrt(target_area / aspect_ratio)))
-
-            if w <= img.size[0] and h <= img.size[1]:
-                i = random.randint(0, img.size[1] - h)
-                j = random.randint(0, img.size[0] - w)
-                return i, j, h, w
-
-        # Fallback to central crop
-        in_ratio = img.size[0] / img.size[1]
-        if (in_ratio < min(ratio)):
-            w = img.size[0]
-            h = w / min(ratio)
-        elif (in_ratio > max(ratio)):
-            h = img.size[1]
-            w = h * max(ratio)
-        else:  # whole image
-            w = img.size[0]
-            h = img.size[1]
-        i = (img.size[1] - h) // 2
-        j = (img.size[0] - w) // 2
-        return i, j, h, w
+    Notice this transform extension, unlike others in this module, only affects
+    the first image passed as input argument.  Unlike the current torchvision
+    implementation, we also accept a probability for applying the jitter.
 
-    def __call__(self, *args):
-        if random.random() < self.prob:
-            imgs = []
-            for img in args:
-                i, j, h, w = self.get_params(img, self.scale, self.ratio)
-                img = VF.resized_crop(img, i, j, h, w, self.size, self.interpolation)
-                imgs.append(img)
-            return imgs
-        else:
-            return args
 
-    def __repr__(self):
-        interpolate_str = _pil_interpolation_to_str[self.interpolation]
-        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
-        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
-        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
-        format_string += ', interpolation={0})'.format(interpolate_str)
-        return format_string
+    Parameters
+    ----------
 
+    p : :py:class:`float`, Optional
+        probability at which the operation is applied
 
-class Resize:
-    """Resize to given size.
+    **kwargs : dict
+        passed to parent.  Notice that, if not set, we use the following
+        defaults here for the underlying transform from torchvision:
+
+        * ``brightness``: 0.3
+        * ``contrast``: 0.3
+        * ``saturation``: 0.02
+        * ``hue``: 0.02
 
-    Attributes
-    ----------
-    size : tuple or int
-        Desired output size. If size is a sequence like
-        (h, w), output size will be matched to this. If size is an int,
-        smaller edge of the image will be matched to this number.
-        i.e, if height > width, then image will be rescaled to
-        (size * height / width, size)
-    interpolation : int
-        Desired interpolation. Default is``PIL.Image.BILINEAR``
     """
 
-    def __init__(self, size, interpolation=Image.BILINEAR):
-        assert isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)
-        self.size = size
-        self.interpolation = interpolation
+    def __init__(self, p=0.5, **kwargs):
+        kwargs.setdefault("brightness", 0.3)
+        kwargs.setdefault("contrast", 0.3)
+        kwargs.setdefault("saturation", 0.02)
+        kwargs.setdefault("hue", 0.02)
+        super(ColorJitter, self).__init__(**kwargs)
+        self.p = p
 
     def __call__(self, *args):
-        return [VF.resize(img, self.size, self.interpolation) for img in args]
+        if random.random() < self.p:
+            # applies color jitter only to the input image not ground-truth
+            return [super(ColorJitter, self).__call__(args[0]), *args[1:]]
+        else:
+            return args
 
     def __repr__(self):
-        interpolate_str = _pil_interpolation_to_str[self.interpolation]
-        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
+        retval = super(ColorJitter, self).__repr__()
+        return retval.replace("(", f"(p={self.p},", 1)
diff --git a/bob/ip/binseg/data/utils.py b/bob/ip/binseg/data/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..2d1439a63e774d7270e76ca9b1fd3f030d6aec72
--- /dev/null
+++ b/bob/ip/binseg/data/utils.py
@@ -0,0 +1,288 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+
+"""Common utilities"""
+
+import contextlib
+
+import PIL.Image
+import PIL.ImageOps
+import PIL.ImageChops
+
+import torch
+import torch.utils.data
+
+from .transforms import Compose, ToTensor
+
+
+def invert_mode1_image(img):
+    """Inverts a binary PIL image (mode == ``"1"``)"""
+
+    return PIL.ImageOps.invert(img.convert("RGB")).convert(
+        mode="1", dither=None
+    )
+
+
+def subtract_mode1_images(img1, img2):
+    """Returns a new image that represents ``img1 - img2``"""
+
+    return PIL.ImageChops.subtract(img1, img2)
+
+
+def overlayed_image(
+    img,
+    label,
+    mask=None,
+    label_color=(0, 255, 0),
+    mask_color=(0, 0, 255),
+    alpha=0.4,
+):
+    """Creates an image showing existing labels and masko
+
+    This function creates a new representation of the input image ``img``
+    overlaying a green mask for labelled objects, and a red mask for parts of
+    the image that should be ignored (negative mask).  By looking at this
+    representation, it shall be possible to verify if the dataset/loader is
+    yielding images correctly.
+
+
+    Parameters
+    ----------
+
+    img : PIL.Image.Image
+        An RGB PIL image that represents the original image for analysis
+
+    label : PIL.Image.Image
+        A PIL image in any mode that represents the labelled elements in the
+        image.  In case of images in mode "L" or "1", white pixels represent
+        the labelled object.  Black-er pixels represent background.
+
+    mask : py:class:`PIL.Image.Image`, Optional
+        A PIL image in mode "1" that represents the mask for the image.  White
+        pixels indicate where content should be used, black pixels, content to
+        be ignored.
+
+    label_color : py:class:`tuple`, Optional
+        A tuple with three integer entries indicating the RGB color to be used
+        for labels.  Only used if ``label.mode`` is "1" or "L".
+
+    mask_color : py:class:`tuple`, Optional
+        A tuple with three integer entries indicating the RGB color to be used
+        for the mask-negative (black parts in the original mask).
+
+    alpha : py:class:`float`, Optional
+        A float that indicates how much of blending should be performed between
+        the label, mask and the original image.
+
+
+    Returns
+    -------
+
+    image : PIL.Image.Image
+        A new image overlaying the original image, object labels (in green) and
+        what is to be considered parts to be **masked-out** (i.e. a
+        representation of a negative of the mask).
+
+    """
+
+    # creates a representation of labels, in RGB format, with the right color
+    if label.mode in ("1", "L"):
+        label_colored = PIL.ImageOps.colorize(
+            label.convert("L"), (0, 0, 0), label_color
+        )
+    else:
+        # user has already passed an RGB version of the labels, just compose
+        label_colored = label
+
+    # blend image and label together - first blend to get vessels drawn with a
+    # slight "label_color" tone on top, then composite with original image, to
+    # avoid loosing brightness.
+    retval = PIL.Image.blend(img, label_colored, alpha)
+    if label.mode == "1":
+        composite_mask = invert_mode1_image(label)
+    else:
+        composite_mask = PIL.ImageOps.invert(label.convert("L"))
+    retval = PIL.Image.composite(img, retval, composite_mask)
+
+    # creates a representation of the mask negative with the right color
+    if mask is not None:
+        antimask_colored = PIL.ImageOps.colorize(
+            mask.convert("L"), mask_color, (0, 0, 0)
+        )
+        tmp = PIL.Image.blend(retval, antimask_colored, alpha)
+        retval = PIL.Image.composite(retval, tmp, mask)
+
+    return retval
+
+
+class SampleListDataset(torch.utils.data.Dataset):
+    """PyTorch dataset wrapper around Sample lists
+
+    A transform object can be passed that will be applied to the image, ground
+    truth and mask (if present).
+
+    It supports indexing such that dataset[i] can be used to get ith sample.
+
+
+    Attributes
+    ----------
+
+    transforms : list
+        An accessor to the list of transforms to be applied (excluding the last
+        transform, which is fixed).  Notice that, after setting, a last transform
+        (:py:class:`bob.ip.binseg.data.transforms.ToTensor`) is always applied
+        - you do not need to add that.
+
+
+    Parameters
+    ----------
+
+    samples : list
+        A list of :py:class:`bob.ip.binseg.data.sample.Sample` objects
+
+    transforms : :py:class:`list`, Optional
+        a list of transformations to be applied to **both** image and
+        ground-truth data.  Notice a last transform
+        (:py:class:`bob.ip.binseg.data.transforms.ToTensor`) is always applied
+        - you do not need to add that.
+
+    """
+
+    def __init__(self, samples, transforms=[]):
+
+        self._samples = samples
+        self.transforms = transforms
+
+    @property
+    def transforms(self):
+        return self._transforms.transforms[:-1]
+
+    @transforms.setter
+    def transforms(self, l):
+        self._transforms = Compose(l + [ToTensor()])
+
+    def copy(self, transforms=None):
+        """Returns a deep copy of itself, optionally resetting transforms
+
+        Parameters
+        ----------
+
+        transforms : :py:class:`list`, Optional
+            An optional list of transforms to set in the copy.  If not
+            specified, use ``self.transforms``.
+        """
+
+        return SampleListDataset(self._samples, transforms or self.transforms)
+
+    def __len__(self):
+        """
+
+        Returns
+        -------
+
+        size : int
+            size of the dataset
+
+        """
+        return len(self._samples)
+
+    def __getitem__(self, key):
+        """
+
+        Parameters
+        ----------
+
+        key : int, slice
+
+        Returns
+        -------
+
+        sample : list
+            The sample data: ``[key, image[, gt[, mask]]]``
+
+        """
+
+        if isinstance(key, slice):
+            return [self[k] for k in range(*key.indices(len(self)))]
+        else:  # we try it as an int
+            item = self._samples[key]
+            data = item.data  # triggers data loading
+
+            retval = [data["data"]]
+            if "label" in data:
+                retval.append(data["label"])
+            if "mask" in data:
+                retval.append(data["mask"])
+
+            if self._transforms:
+                retval = self._transforms(*retval)
+
+            return [item.key] + retval
+
+
+class SSLDataset(torch.utils.data.Dataset):
+    """PyTorch dataset wrapper around labelled and unlabelled sample lists
+
+    Yields elements of the form:
+
+    .. code-block:: text
+
+       [key, image, ground-truth, [mask,] unlabelled-key, unlabelled-image]
+
+    The size of the dataset is the same as the labelled dataset.
+
+    Indexing works by selecting the right element on the labelled dataset, and
+    randomly picking another one from the unlabelled dataset
+
+    Parameters
+    ----------
+
+    labelled : :py:class:`torch.utils.data.Dataset`
+        Labelled dataset (**must** have "mask" and "label" entries for every
+        sample)
+
+    unlabelled : :py:class:`torch.utils.data.Dataset`
+        Unlabelled dataset (**may** have "mask" and "label" entries for every
+        sample, but are ignored)
+
+    """
+
+    def __init__(self, labelled, unlabelled):
+        self.labelled = labelled
+        self.unlabelled = unlabelled
+
+    def __len__(self):
+        """
+
+        Returns
+        -------
+
+        size : int
+            size of the dataset
+
+        """
+
+        return len(self.labelled)
+
+    def __getitem__(self, index):
+        """
+
+        Parameters
+        ----------
+        index : int
+            The index for the element to pick
+
+        Returns
+        -------
+
+        sample : list
+            The sample data: ``[key, image, gt, [mask, ]unlab-key, unlab-image]``
+
+        """
+
+        retval = self.labelled[index]
+        # gets one an unlabelled sample randomly to follow the labelled sample
+        unlab = self.unlabelled[torch.randint(len(self.unlabelled), ())]
+        # only interested in key and data
+        return retval + unlab[:2]
diff --git a/bob/ip/binseg/engine/__init__.py b/bob/ip/binseg/engine/__init__.py
index 2ca5e07cb73f0bdddcb863ef497955964087e301..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644
--- a/bob/ip/binseg/engine/__init__.py
+++ b/bob/ip/binseg/engine/__init__.py
@@ -1,3 +0,0 @@
-# see https://docs.python.org/3/library/pkgutil.html
-from pkgutil import extend_path
-__path__ = extend_path(__path__, __name__)
\ No newline at end of file
diff --git a/bob/ip/binseg/engine/adabound.py b/bob/ip/binseg/engine/adabound.py
index e220db5809f96d482d93059f4ee2f2bae1aec8bd..683bd76f4cf11412780bc5b78a2fa6d687707534 100644
--- a/bob/ip/binseg/engine/adabound.py
+++ b/bob/ip/binseg/engine/adabound.py
@@ -1,46 +1,70 @@
 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
 
-""" 
-https://github.com/Luolc/AdaBound/blob/master/adabound/adabound.py
-
-@inproceedings{Luo2019AdaBound,
-  author = {Luo, Liangchen and Xiong, Yuanhao and Liu, Yan and Sun, Xu},
-  title = {Adaptive Gradient Methods with Dynamic Bound of Learning Rate},
-  booktitle = {Proceedings of the 7th International Conference on Learning Representations},
-  month = {May},
-  year = {2019},
-  address = {New Orleans, Louisiana}
-}
 """
+Implementation of the `AdaBound optimizer
+<https://github.com/Luolc/AdaBound/blob/master/adabound/adabound.py>`::
+
+    @inproceedings{Luo2019AdaBound,
+      author = {Luo, Liangchen and Xiong, Yuanhao and Liu, Yan and Sun, Xu},
+      title = {Adaptive Gradient Methods with Dynamic Bound of Learning Rate},
+      booktitle = {Proceedings of the 7th International Conference on Learning Representations},
+      month = {May},
+      year = {2019},
+      address = {New Orleans, Louisiana}
+    }
+
+"""
+
 import math
 import torch
-from torch.optim import Optimizer
+import torch.optim
 
 
-class AdaBound(Optimizer):
-    """Implements AdaBound algorithm.
-    It has been proposed in `Adaptive Gradient Methods with Dynamic Bound of Learning Rate`_.
-    
+class AdaBound(torch.optim.Optimizer):
+    """Implements the AdaBound algorithm.
+
     Parameters
     ----------
-    params (iterable): iterable of parameters to optimize or dicts defining
-        parameter groups
-    lr (float, optional): Adam learning rate (default: 1e-3)
-    betas (Tuple[float, float], optional): coefficients used for computing
-        running averages of gradient and its square (default: (0.9, 0.999))
-    final_lr (float, optional): final (SGD) learning rate (default: 0.1)
-    gamma (float, optional): convergence speed of the bound functions (default: 1e-3)
-    eps (float, optional): term added to the denominator to improve
-        numerical stability (default: 1e-8)
-    weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
-    amsbound (boolean, optional): whether to use the AMSBound variant of this algorithm
-    .. Adaptive Gradient Methods with Dynamic Bound of Learning Rate:
-        https://openreview.net/forum?id=Bkg3g2R9FX
+
+    params : list
+        Iterable of parameters to optimize or dicts defining parameter groups
+
+    lr : :obj:`float`, optional
+        Adam learning rate
+
+    betas : :obj:`tuple`, optional
+        Coefficients (as a 2-tuple of floats) used for computing running
+        averages of gradient and its square
+
+    final_lr : :obj:`float`, optional
+        Final (SGD) learning rate
+
+    gamma : :obj:`float`, optional
+        Convergence speed of the bound functions
+
+    eps : :obj:`float`, optional
+        Term added to the denominator to improve numerical stability
+
+    weight_decay : :obj:`float`, optional
+        Weight decay (L2 penalty)
+
+    amsbound : :obj:`bool`, optional
+        Whether to use the AMSBound variant of this algorithm
+
     """
 
-    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), final_lr=0.1, gamma=1e-3,
-                 eps=1e-8, weight_decay=0, amsbound=False):
+    def __init__(
+        self,
+        params,
+        lr=1e-3,
+        betas=(0.9, 0.999),
+        final_lr=0.1,
+        gamma=1e-3,
+        eps=1e-8,
+        weight_decay=0,
+        amsbound=False,
+    ):
         if not 0.0 <= lr:
             raise ValueError("Invalid learning rate: {}".format(lr))
         if not 0.0 <= eps:
@@ -53,60 +77,71 @@ class AdaBound(Optimizer):
             raise ValueError("Invalid final learning rate: {}".format(final_lr))
         if not 0.0 <= gamma < 1.0:
             raise ValueError("Invalid gamma parameter: {}".format(gamma))
-        defaults = dict(lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, eps=eps,
-                        weight_decay=weight_decay, amsbound=amsbound)
+        defaults = dict(
+            lr=lr,
+            betas=betas,
+            final_lr=final_lr,
+            gamma=gamma,
+            eps=eps,
+            weight_decay=weight_decay,
+            amsbound=amsbound,
+        )
         super(AdaBound, self).__init__(params, defaults)
 
-        self.base_lrs = list(map(lambda group: group['lr'], self.param_groups))
+        self.base_lrs = list(map(lambda group: group["lr"], self.param_groups))
 
     def __setstate__(self, state):
         super(AdaBound, self).__setstate__(state)
         for group in self.param_groups:
-            group.setdefault('amsbound', False)
+            group.setdefault("amsbound", False)
 
     def step(self, closure=None):
         """Performs a single optimization step.
-        
+
         Parameters
         ----------
-        closure (callable, optional): A closure that reevaluates the model and returns the loss.
+
+        closure : :obj:`callable`, optional
+            A closure that reevaluates the model and returns the loss.
+
         """
         loss = None
         if closure is not None:
             loss = closure()
 
         for group, base_lr in zip(self.param_groups, self.base_lrs):
-            for p in group['params']:
+            for p in group["params"]:
                 if p.grad is None:
                     continue
                 grad = p.grad.data
                 if grad.is_sparse:
                     raise RuntimeError(
-                        'Adam does not support sparse gradients, please consider SparseAdam instead')
-                amsbound = group['amsbound']
+                        "Adam does not support sparse gradients, please consider SparseAdam instead"
+                    )
+                amsbound = group["amsbound"]
 
                 state = self.state[p]
 
                 # State initialization
                 if len(state) == 0:
-                    state['step'] = 0
+                    state["step"] = 0
                     # Exponential moving average of gradient values
-                    state['exp_avg'] = torch.zeros_like(p.data)
+                    state["exp_avg"] = torch.zeros_like(p.data)
                     # Exponential moving average of squared gradient values
-                    state['exp_avg_sq'] = torch.zeros_like(p.data)
+                    state["exp_avg_sq"] = torch.zeros_like(p.data)
                     if amsbound:
                         # Maintains max of all exp. moving avg. of sq. grad. values
-                        state['max_exp_avg_sq'] = torch.zeros_like(p.data)
+                        state["max_exp_avg_sq"] = torch.zeros_like(p.data)
 
-                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
+                exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
                 if amsbound:
-                    max_exp_avg_sq = state['max_exp_avg_sq']
-                beta1, beta2 = group['betas']
+                    max_exp_avg_sq = state["max_exp_avg_sq"]
+                beta1, beta2 = group["betas"]
 
-                state['step'] += 1
+                state["step"] += 1
 
-                if group['weight_decay'] != 0:
-                    grad = grad.add(group['weight_decay'], p.data)
+                if group["weight_decay"] != 0:
+                    grad = grad.add(group["weight_decay"], p.data)
 
                 # Decay the first and second moment running average coefficient
                 exp_avg.mul_(beta1).add_(1 - beta1, grad)
@@ -115,19 +150,19 @@ class AdaBound(Optimizer):
                     # Maintains the maximum of all 2nd moment running avg. till now
                     torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
                     # Use the max. for normalizing running avg. of gradient
-                    denom = max_exp_avg_sq.sqrt().add_(group['eps'])
+                    denom = max_exp_avg_sq.sqrt().add_(group["eps"])
                 else:
-                    denom = exp_avg_sq.sqrt().add_(group['eps'])
+                    denom = exp_avg_sq.sqrt().add_(group["eps"])
 
-                bias_correction1 = 1 - beta1 ** state['step']
-                bias_correction2 = 1 - beta2 ** state['step']
-                step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
+                bias_correction1 = 1 - beta1 ** state["step"]
+                bias_correction2 = 1 - beta2 ** state["step"]
+                step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1
 
                 # Applies bounds on actual learning rate
                 # lr_scheduler cannot affect final_lr, this is a workaround to apply lr decay
-                final_lr = group['final_lr'] * group['lr'] / base_lr
-                lower_bound = final_lr * (1 - 1 / (group['gamma'] * state['step'] + 1))
-                upper_bound = final_lr * (1 + 1 / (group['gamma'] * state['step']))
+                final_lr = group["final_lr"] * group["lr"] / base_lr
+                lower_bound = final_lr * (1 - 1 / (group["gamma"] * state["step"] + 1))
+                upper_bound = final_lr * (1 + 1 / (group["gamma"] * state["step"]))
                 step_size = torch.full_like(denom, step_size)
                 step_size.div_(denom).clamp_(lower_bound, upper_bound).mul_(exp_avg)
 
@@ -135,29 +170,53 @@ class AdaBound(Optimizer):
 
         return loss
 
-class AdaBoundW(Optimizer):
-    """Implements AdaBound algorithm with Decoupled Weight Decay (arxiv.org/abs/1711.05101)
-    It has been proposed in `Adaptive Gradient Methods with Dynamic Bound of Learning Rate`_.
-    
+
+class AdaBoundW(torch.optim.Optimizer):
+    """Implements AdaBound algorithm with Decoupled Weight Decay
+    (See https://arxiv.org/abs/1711.05101)
+
     Parameters
     ----------
-    params (iterable): iterable of parameters to optimize or dicts defining
-        parameter groups
-    lr (float, optional): Adam learning rate (default: 1e-3)
-    betas (Tuple[float, float], optional): coefficients used for computing
-        running averages of gradient and its square (default: (0.9, 0.999))
-    final_lr (float, optional): final (SGD) learning rate (default: 0.1)
-    gamma (float, optional): convergence speed of the bound functions (default: 1e-3)
-    eps (float, optional): term added to the denominator to improve
-        numerical stability (default: 1e-8)
-    weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
-    amsbound (boolean, optional): whether to use the AMSBound variant of this algorithm
-    .. Adaptive Gradient Methods with Dynamic Bound of Learning Rate:
-        https://openreview.net/forum?id=Bkg3g2R9FX
+
+    params : list
+        Iterable of parameters to optimize or dicts defining parameter groups
+
+    lr : :obj:`float`, optional
+        Adam learning rate
+
+    betas : :obj:`tuple`, optional
+        Coefficients (as a 2-tuple of floats) used for computing running
+        averages of gradient and its square
+
+    final_lr : :obj:`float`, optional
+        Final (SGD) learning rate
+
+    gamma : :obj:`float`, optional
+        Convergence speed of the bound functions
+
+    eps : :obj:`float`, optional
+        Term added to the denominator to improve numerical stability
+
+    weight_decay : :obj:`float`, optional
+        Weight decay (L2 penalty)
+
+    amsbound : :obj:`bool`, optional
+        Whether to use the AMSBound variant of this algorithm
+
     """
 
-    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), final_lr=0.1, gamma=1e-3,
-                 eps=1e-8, weight_decay=0, amsbound=False):
+    def __init__(
+        self,
+        params,
+        lr=1e-3,
+        betas=(0.9, 0.999),
+        final_lr=0.1,
+        gamma=1e-3,
+        eps=1e-8,
+        weight_decay=0,
+        amsbound=False,
+    ):
+
         if not 0.0 <= lr:
             raise ValueError("Invalid learning rate: {}".format(lr))
         if not 0.0 <= eps:
@@ -170,57 +229,69 @@ class AdaBoundW(Optimizer):
             raise ValueError("Invalid final learning rate: {}".format(final_lr))
         if not 0.0 <= gamma < 1.0:
             raise ValueError("Invalid gamma parameter: {}".format(gamma))
-        defaults = dict(lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, eps=eps,
-                        weight_decay=weight_decay, amsbound=amsbound)
+        defaults = dict(
+            lr=lr,
+            betas=betas,
+            final_lr=final_lr,
+            gamma=gamma,
+            eps=eps,
+            weight_decay=weight_decay,
+            amsbound=amsbound,
+        )
         super(AdaBoundW, self).__init__(params, defaults)
 
-        self.base_lrs = list(map(lambda group: group['lr'], self.param_groups))
+        self.base_lrs = list(map(lambda group: group["lr"], self.param_groups))
 
     def __setstate__(self, state):
         super(AdaBoundW, self).__setstate__(state)
         for group in self.param_groups:
-            group.setdefault('amsbound', False)
+            group.setdefault("amsbound", False)
 
     def step(self, closure=None):
         """Performs a single optimization step.
-        
+
         Parameters
         ----------
-        closure (callable, optional): A closure that reevaluates the model and returns the loss.
+
+        closure : :obj:`callable`, optional
+            A closure that reevaluates the model and returns the loss.
+
         """
+
         loss = None
         if closure is not None:
             loss = closure()
 
         for group, base_lr in zip(self.param_groups, self.base_lrs):
-            for p in group['params']:
+            for p in group["params"]:
                 if p.grad is None:
                     continue
                 grad = p.grad.data
                 if grad.is_sparse:
                     raise RuntimeError(
-                        'Adam does not support sparse gradients, please consider SparseAdam instead')
-                amsbound = group['amsbound']
+                        "Adam does not support sparse gradients, please consider SparseAdam instead"
+                    )
+                amsbound = group["amsbound"]
 
                 state = self.state[p]
 
                 # State initialization
                 if len(state) == 0:
-                    state['step'] = 0
+                    state["step"] = 0
                     # Exponential moving average of gradient values
-                    state['exp_avg'] = torch.zeros_like(p.data)
+                    state["exp_avg"] = torch.zeros_like(p.data)
                     # Exponential moving average of squared gradient values
-                    state['exp_avg_sq'] = torch.zeros_like(p.data)
+                    state["exp_avg_sq"] = torch.zeros_like(p.data)
                     if amsbound:
                         # Maintains max of all exp. moving avg. of sq. grad. values
-                        state['max_exp_avg_sq'] = torch.zeros_like(p.data)
+                        state["max_exp_avg_sq"] = torch.zeros_like(p.data)
 
-                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
+                exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
                 if amsbound:
-                    max_exp_avg_sq = state['max_exp_avg_sq']
-                beta1, beta2 = group['betas']
+                    max_exp_avg_sq = state["max_exp_avg_sq"]
+                beta1, beta2 = group["betas"]
 
-                state['step'] += 1
+                state["step"] += 1
 
                 # Decay the first and second moment running average coefficient
                 exp_avg.mul_(beta1).add_(1 - beta1, grad)
@@ -229,27 +300,28 @@ class AdaBoundW(Optimizer):
                     # Maintains the maximum of all 2nd moment running avg. till now
                     torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
                     # Use the max. for normalizing running avg. of gradient
-                    denom = max_exp_avg_sq.sqrt().add_(group['eps'])
+                    denom = max_exp_avg_sq.sqrt().add_(group["eps"])
                 else:
-                    denom = exp_avg_sq.sqrt().add_(group['eps'])
+                    denom = exp_avg_sq.sqrt().add_(group["eps"])
 
-                bias_correction1 = 1 - beta1 ** state['step']
-                bias_correction2 = 1 - beta2 ** state['step']
-                step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
+                bias_correction1 = 1 - beta1 ** state["step"]
+                bias_correction2 = 1 - beta2 ** state["step"]
+                step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1
 
                 # Applies bounds on actual learning rate
-                # lr_scheduler cannot affect final_lr, this is a workaround to apply lr decay
-                final_lr = group['final_lr'] * group['lr'] / base_lr
-                lower_bound = final_lr * (1 - 1 / (group['gamma'] * state['step'] + 1))
-                upper_bound = final_lr * (1 + 1 / (group['gamma'] * state['step']))
+                # lr_scheduler cannot affect final_lr, this is a workaround to
+                # apply lr decay
+                final_lr = group["final_lr"] * group["lr"] / base_lr
+                lower_bound = final_lr * (1 - 1 / (group["gamma"] * state["step"] + 1))
+                upper_bound = final_lr * (1 + 1 / (group["gamma"] * state["step"]))
                 step_size = torch.full_like(denom, step_size)
                 step_size.div_(denom).clamp_(lower_bound, upper_bound).mul_(exp_avg)
 
-                if group['weight_decay'] != 0:
-                    decayed_weights = torch.mul(p.data, group['weight_decay'])
+                if group["weight_decay"] != 0:
+                    decayed_weights = torch.mul(p.data, group["weight_decay"])
                     p.data.add_(-step_size)
                     p.data.sub_(decayed_weights)
                 else:
                     p.data.add_(-step_size)
 
-        return loss
\ No newline at end of file
+        return loss
diff --git a/bob/ip/binseg/engine/evaluator.py b/bob/ip/binseg/engine/evaluator.py
new file mode 100644
index 0000000000000000000000000000000000000000..07a7c86f8874dd0af50763d578a91b0a6b8a9f27
--- /dev/null
+++ b/bob/ip/binseg/engine/evaluator.py
@@ -0,0 +1,437 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+"""Defines functionality for the evaluation of predictions"""
+
+import os
+
+import PIL
+import numpy
+import pandas
+from tqdm import tqdm
+
+import torch
+import torchvision.transforms.functional as VF
+
+import h5py
+
+from ..utils.metric import base_metrics
+
+import logging
+
+logger = logging.getLogger(__name__)
+
+
+def _posneg(pred, gt, threshold):
+    """Calculates true and false positives and negatives"""
+
+    gt = gt.byte()  # byte tensor
+
+    # threshold
+    binary_pred = torch.gt(pred, threshold).byte()
+
+    # equals and not-equals
+    equals = torch.eq(binary_pred, gt).type(torch.uint8)  # tensor
+    notequals = torch.ne(binary_pred, gt).type(torch.uint8)  # tensor
+
+    # true positives
+    tp_tensor = gt * binary_pred
+
+    # false positives
+    fp_tensor = torch.eq((binary_pred + tp_tensor), 1)
+
+    # true negatives
+    tn_tensor = equals - tp_tensor
+
+    # false negatives
+    fn_tensor = notequals - fp_tensor.type(torch.uint8)
+
+    return tp_tensor, fp_tensor, tn_tensor, fn_tensor
+
+
+def _sample_metrics(pred, gt, bins):
+    """
+    Calculates metrics on one single sample and saves it to disk
+
+
+    Parameters
+    ----------
+
+    pred : torch.Tensor
+        pixel-wise predictions
+
+    gt : torch.Tensor
+        ground-truth (annotations)
+
+    bins : int
+        number of bins to use for threshold analysis.  The step size is
+        calculated from this by dividing ``1.0/bins``.
+
+
+    Returns
+    -------
+
+    metrics : pandas.DataFrame
+
+        A pandas dataframe with the following columns:
+
+        * threshold: float
+        * precision: float
+        * recall: float
+        * specificity: float
+        * accuracy: float
+        * jaccard: float
+        * f1_score: float
+
+    """
+
+    step_size = 1.0 / bins
+    data = []
+
+    for index, threshold in enumerate(numpy.arange(0.0, 1.0, step_size)):
+
+        tp_tensor, fp_tensor, tn_tensor, fn_tensor = _posneg(
+            pred, gt, threshold
+        )
+
+        # calc metrics from scalars
+        tp_count = torch.sum(tp_tensor).item()
+        fp_count = torch.sum(fp_tensor).item()
+        tn_count = torch.sum(tn_tensor).item()
+        fn_count = torch.sum(fn_tensor).item()
+        (
+            precision,
+            recall,
+            specificity,
+            accuracy,
+            jaccard,
+            f1_score,
+        ) = base_metrics(tp_count, fp_count, tn_count, fn_count)
+
+        data.append(
+            [
+                index,
+                threshold,
+                precision,
+                recall,
+                specificity,
+                accuracy,
+                jaccard,
+                f1_score,
+            ]
+        )
+
+    return pandas.DataFrame(
+        data,
+        columns=(
+            "index",
+            "threshold",
+            "precision",
+            "recall",
+            "specificity",
+            "accuracy",
+            "jaccard",
+            "f1_score",
+        ),
+    )
+
+
+def _sample_analysis(
+    img,
+    pred,
+    gt,
+    threshold,
+    tp_color=(0, 255, 0),  # (128,128,128) Gray
+    fp_color=(0, 0, 255),  # (70, 240, 240) Cyan
+    fn_color=(255, 0, 0),  # (245, 130, 48) Orange
+    overlay=True,
+):
+    """Visualizes true positives, false positives and false negatives
+
+
+    Parameters
+    ----------
+
+    img : torch.Tensor
+        original image
+
+    pred : torch.Tensor
+        pixel-wise predictions
+
+    gt : torch.Tensor
+        ground-truth (annotations)
+
+    threshold : float
+        The threshold to be used while analyzing this image's probability map
+
+    tp_color : tuple
+        RGB value for true positives
+
+    fp_color : tuple
+        RGB value for false positives
+
+    fn_color : tuple
+        RGB value for false negatives
+
+    overlay : :py:class:`bool`, Optional
+        If set to ``True`` (which is the default), then overlay annotations on
+        top of the image.  Otherwise, represent data on a black canvas.
+
+
+    Returns
+    -------
+
+    figure : PIL.Image.Image
+
+        A PIL image that contains the overlayed analysis of true-positives
+        (TP), false-positives (FP) and false negatives (FN).
+
+    """
+
+    tp_tensor, fp_tensor, tn_tensor, fn_tensor = _posneg(pred, gt, threshold)
+
+    # change to PIL representation
+    tp_pil = VF.to_pil_image(tp_tensor.float())
+    tp_pil_colored = PIL.ImageOps.colorize(tp_pil, (0, 0, 0), tp_color)
+
+    fp_pil = VF.to_pil_image(fp_tensor.float())
+    fp_pil_colored = PIL.ImageOps.colorize(fp_pil, (0, 0, 0), fp_color)
+
+    fn_pil = VF.to_pil_image(fn_tensor.float())
+    fn_pil_colored = PIL.ImageOps.colorize(fn_pil, (0, 0, 0), fn_color)
+
+    tp_pil_colored.paste(fp_pil_colored, mask=fp_pil)
+    tp_pil_colored.paste(fn_pil_colored, mask=fn_pil)
+
+    if overlay:
+        img = VF.to_pil_image(img)  # PIL Image
+        # using blend here, to fade original image being overlayed, or
+        # its brightness may obfuscate colors from the vessel map
+        tp_pil_colored = PIL.Image.blend(img, tp_pil_colored, 0.5)
+
+    return tp_pil_colored
+
+
+def run(
+    dataset,
+    name,
+    predictions_folder,
+    output_folder=None,
+    overlayed_folder=None,
+    threshold=None,
+):
+    """
+    Runs inference and calculates metrics
+
+
+    Parameters
+    ---------
+
+    dataset : py:class:`torch.utils.data.Dataset`
+        a dataset to iterate on
+
+    name : str
+        the local name of this dataset (e.g. ``train``, or ``test``), to be
+        used when saving metrics files.
+
+    predictions_folder : str
+        folder where predictions for the dataset images has been previously
+        stored
+
+    output_folder : :py:class:`str`, Optional
+        folder where to store results.  If not provided, then do not store any
+        analysis (useful for quickly calculating overlay thresholds)
+
+    overlayed_folder : :py:class:`str`, Optional
+        if not ``None``, then it should be the name of a folder where to store
+        overlayed versions of the images and ground-truths
+
+    threshold : :py:class:`float`, Optional
+        if ``overlayed_folder``, then this should be threshold (floating point)
+        to apply to prediction maps to decide on positives and negatives for
+        overlaying analysis (graphical output).  This number should come from
+        the training set or a separate validation set.  Using a test set value
+        may bias your analysis.  This number is also used to print the a priori
+        F1-score on the evaluated set.
+
+
+    Returns
+    -------
+
+    threshold : float
+        Threshold to achieve the highest possible F1-score for this dataset
+
+    """
+
+    # Collect overall metrics
+    bins = 100  # number of thresholds to analyse for
+    data = {}
+
+    for sample in tqdm(dataset):
+        stem = sample[0]
+        image = sample[1]
+        gt = sample[2]
+        pred_fullpath = os.path.join(predictions_folder, stem + ".hdf5")
+        with h5py.File(pred_fullpath, "r") as f:
+            pred = f["array"][:]
+        pred = torch.from_numpy(pred)
+        if stem in data:
+            raise RuntimeError(
+                f"{stem} entry already exists in data. Cannot overwrite."
+            )
+        data[stem] = _sample_metrics(pred, gt, bins)
+
+        if overlayed_folder is not None:
+            overlay_image = _sample_analysis(
+                image, pred, gt, threshold=threshold, overlay=True
+            )
+            fullpath = os.path.join(overlayed_folder, f"{stem}.png")
+            tqdm.write(f"Saving {fullpath}...")
+            os.makedirs(os.path.dirname(fullpath), exist_ok=True)
+            overlay_image.save(fullpath)
+
+    # Merges all dataframes together
+    df_metrics = pandas.concat(data.values())
+
+    # Report and Averages
+    avg_metrics = df_metrics.groupby("index").mean()
+    std_metrics = df_metrics.groupby("index").std()
+
+    # Uncomment below for F1-score calculation based on average precision and
+    # metrics instead of F1-scores of individual images. This method is in line
+    # with Maninis et. al. (2016)
+    #
+    # avg_metrics["f1_score"] = \
+    #         (2* avg_metrics["precision"]*avg_metrics["recall"])/ \
+    #         (avg_metrics["precision"]+avg_metrics["recall"])
+
+    avg_metrics["std_pr"] = std_metrics["precision"]
+    avg_metrics["pr_upper"] = avg_metrics["precision"] + std_metrics["precision"]
+    avg_metrics["pr_lower"] = avg_metrics["precision"] - std_metrics["precision"]
+    avg_metrics["std_re"] = std_metrics["recall"]
+    avg_metrics["re_upper"] = avg_metrics["recall"] + std_metrics["recall"]
+    avg_metrics["re_lower"] = avg_metrics["recall"] - std_metrics["recall"]
+    avg_metrics["std_f1"] = std_metrics["f1_score"]
+
+    maxf1 = avg_metrics["f1_score"].max()
+    maxf1_index = avg_metrics["f1_score"].idxmax()
+    maxf1_threshold = avg_metrics["threshold"][maxf1_index]
+
+    logger.info(
+        f"Maximum F1-score of {maxf1:.5f}, achieved at "
+        f"threshold {maxf1_threshold:.3f} (chosen *a posteriori*)"
+    )
+
+    if threshold is not None:
+
+        # get the closest possible threshold we have
+        index = int(round(bins * threshold))
+        f1_a_priori = avg_metrics["f1_score"][index]
+        actual_threshold = avg_metrics["threshold"][index]
+
+        logger.info(
+            f"F1-score of {f1_a_priori:.5f}, at threshold "
+            f"{actual_threshold:.3f} (chosen *a priori*)"
+        )
+
+    if output_folder is not None:
+        logger.info(f"Output folder: {output_folder}")
+        os.makedirs(output_folder, exist_ok=True)
+        metrics_path = os.path.join(output_folder, f"{name}.csv")
+        logger.info(
+            f"Saving averages over all input images at {metrics_path}..."
+        )
+        avg_metrics.to_csv(metrics_path)
+
+    return maxf1_threshold
+
+
+def compare_annotators(baseline, other, name, output_folder,
+        overlayed_folder=None):
+    """
+    Compares annotations on the **same** dataset
+
+
+    Parameters
+    ---------
+
+    baseline : py:class:`torch.utils.data.Dataset`
+        a dataset to iterate on, containing the baseline annotations
+
+    other : py:class:`torch.utils.data.Dataset`
+        a second dataset, with the same samples as ``baseline``, but annotated
+        by a different annotator than in the first dataset.
+
+    name : str
+        the local name of this dataset (e.g. ``train-second-annotator``, or
+        ``test-second-annotator``), to be used when saving metrics files.
+
+    output_folder : str
+        folder where to store results
+
+    overlayed_folder : :py:class:`str`, Optional
+        if not ``None``, then it should be the name of a folder where to store
+        overlayed versions of the images and ground-truths
+
+    """
+
+    logger.info(f"Output folder: {output_folder}")
+    os.makedirs(output_folder, exist_ok=True)
+
+    # Collect overall metrics
+    data = {}
+
+    for baseline_sample, other_sample in tqdm(
+        list(zip(baseline, other)), desc="samples", leave=False, disable=None,
+    ):
+        stem = baseline_sample[0]
+        image = baseline_sample[1]
+        gt = baseline_sample[2]
+        pred = other_sample[2]  # works as a prediction
+        if stem in data:
+            raise RuntimeError(
+                f"{stem} entry already exists in data. " f"Cannot overwrite."
+            )
+        data[stem] = _sample_metrics(pred, gt, 2)
+
+        if overlayed_folder is not None:
+            overlay_image = _sample_analysis(
+                image, pred, gt, threshold=0.5, overlay=True
+            )
+            fullpath = os.path.join(overlayed_folder, "second-annotator",
+                    f"{stem}.png")
+            tqdm.write(f"Saving {fullpath}...")
+            os.makedirs(os.path.dirname(fullpath), exist_ok=True)
+            overlay_image.save(fullpath)
+
+    # Merges all dataframes together
+    df_metrics = pandas.concat(data.values())
+    df_metrics.drop(0, inplace=True)
+
+    # Report and Averages
+    avg_metrics = df_metrics.groupby("index").mean()
+    std_metrics = df_metrics.groupby("index").std()
+
+    # Uncomment below for F1-score calculation based on average precision and
+    # {name} instead of F1-scores of individual images. This method is in line
+    # with Maninis et. al. (2016)
+    #
+    # avg_metrics["f1_score"] = \
+    #         (2* avg_metrics["precision"]*avg_metrics["recall"])/ \
+    #         (avg_metrics["precision"]+avg_metrics["recall"])
+
+    avg_metrics["std_pr"] = std_metrics["precision"]
+    avg_metrics["pr_upper"] = avg_metrics["precision"] + std_metrics["precision"]
+    avg_metrics["pr_lower"] = avg_metrics["precision"] - std_metrics["precision"]
+    avg_metrics["std_re"] = std_metrics["recall"]
+    avg_metrics["re_upper"] = avg_metrics["recall"] + std_metrics["recall"]
+    avg_metrics["re_lower"] = avg_metrics["recall"] - std_metrics["recall"]
+    avg_metrics["std_f1"] = std_metrics["f1_score"]
+
+    metrics_path = os.path.join(output_folder, "second-annotator", f"{name}.csv")
+    os.makedirs(os.path.dirname(metrics_path), exist_ok=True)
+    logger.info(f"Saving averages over all input images at {metrics_path}...")
+    avg_metrics.to_csv(metrics_path)
+
+    maxf1 = avg_metrics["f1_score"].max()
+    logger.info(f"F1-score of {maxf1:.5f} (second annotator; threshold=0.5)")
diff --git a/bob/ip/binseg/engine/inferencer.py b/bob/ip/binseg/engine/inferencer.py
deleted file mode 100644
index e76153c045fc69cabffa1e5ea7d70efacbd510a6..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/engine/inferencer.py
+++ /dev/null
@@ -1,280 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-import os
-import logging
-import time
-import datetime
-import numpy as np
-import torch
-import pandas as pd
-import torchvision.transforms.functional as VF
-from tqdm import tqdm
-
-import bob.io.base
-
-from bob.ip.binseg.utils.metric import SmoothedValue, base_metrics
-from bob.ip.binseg.utils.plot import precision_recall_f1iso_confintval
-from bob.ip.binseg.utils.summary import summary
-
-
-
-def batch_metrics(predictions, ground_truths, names, output_folder, logger):
-    """
-    Calculates metrics on the batch and saves it to disc
-
-    Parameters
-    ----------
-    predictions : :py:class:`torch.Tensor`
-        tensor with pixel-wise probabilities
-    ground_truths : :py:class:`torch.Tensor`
-        tensor with binary ground-truth
-    names : list
-        list of file names
-    output_folder : str
-        output path
-    logger : :py:class:`logging.Logger`
-        python logger
-
-    Returns
-    -------
-    list
-        list containing batch metrics: ``[name, threshold, precision, recall, specificity, accuracy, jaccard, f1_score]``
-    """
-    step_size = 0.01
-    batch_metrics = []
-
-    for j in range(predictions.size()[0]):
-        # ground truth byte
-        gts = ground_truths[j].byte()
-
-        file_name = "{}.csv".format(names[j])
-        logger.info("saving {}".format(file_name))
-
-        with open (os.path.join(output_folder,file_name), "w+") as outfile:
-
-            outfile.write("threshold, precision, recall, specificity, accuracy, jaccard, f1_score\n")
-
-            for threshold in np.arange(0.0,1.0,step_size):
-                # threshold
-                binary_pred = torch.gt(predictions[j], threshold).byte()
-
-                # equals and not-equals
-                equals = torch.eq(binary_pred, gts).type(torch.uint8) # tensor
-                notequals = torch.ne(binary_pred, gts).type(torch.uint8) # tensor
-
-                # true positives
-                tp_tensor = (gts * binary_pred ) # tensor
-                tp_count = torch.sum(tp_tensor).item() # scalar
-
-                # false positives
-                fp_tensor = torch.eq((binary_pred + tp_tensor), 1)
-                fp_count = torch.sum(fp_tensor).item()
-
-                # true negatives
-                tn_tensor = equals - tp_tensor
-                tn_count = torch.sum(tn_tensor).item()
-
-                # false negatives
-                fn_tensor = notequals - fp_tensor.type(torch.uint8)
-                fn_count = torch.sum(fn_tensor).item()
-
-                # calc metrics
-                metrics = base_metrics(tp_count, fp_count, tn_count, fn_count)
-
-                # write to disk
-                outfile.write("{:.2f},{:.5f},{:.5f},{:.5f},{:.5f},{:.5f},{:.5f} \n".format(threshold, *metrics))
-
-                batch_metrics.append([names[j],threshold, *metrics ])
-
-
-    return batch_metrics
-
-
-def save_probability_images(predictions, names, output_folder, logger):
-    """
-    Saves probability maps as image in the same format as the test image
-
-    Parameters
-    ----------
-    predictions : :py:class:`torch.Tensor`
-        tensor with pixel-wise probabilities
-    names : list
-        list of file names
-    output_folder : str
-        output path
-    logger : :py:class:`logging.Logger`
-        python logger
-    """
-    images_subfolder = os.path.join(output_folder,'images')
-    for j in range(predictions.size()[0]):
-        img = VF.to_pil_image(predictions.cpu().data[j])
-        filename = '{}.png'.format(names[j].split(".")[0])
-        fullpath = os.path.join(images_subfolder, filename)
-        logger.info("saving {}".format(fullpath))
-        fulldir = os.path.dirname(fullpath)
-        if not os.path.exists(fulldir): os.makedirs(fulldir)
-        img.save(fullpath)
-
-def save_hdf(predictions, names, output_folder, logger):
-    """
-    Saves probability maps as image in the same format as the test image
-
-    Parameters
-    ----------
-    predictions : :py:class:`torch.Tensor`
-        tensor with pixel-wise probabilities
-    names : list
-        list of file names
-    output_folder : str
-        output path
-    logger : :py:class:`logging.Logger`
-        python logger
-    """
-    hdf5_subfolder = os.path.join(output_folder,'hdf5')
-    if not os.path.exists(hdf5_subfolder): os.makedirs(hdf5_subfolder)
-    for j in range(predictions.size()[0]):
-        img = predictions.cpu().data[j].squeeze(0).numpy()
-        filename = '{}.hdf5'.format(names[j].split(".")[0])
-        fullpath = os.path.join(hdf5_subfolder, filename)
-        logger.info("saving {}".format(filename))
-        fulldir = os.path.dirname(fullpath)
-        if not os.path.exists(fulldir): os.makedirs(fulldir)
-        bob.io.base.save(img, fullpath)
-
-def do_inference(
-    model,
-    data_loader,
-    device,
-    output_folder = None
-):
-
-    """
-    Run inference and calculate metrics
-
-    Parameters
-    ---------
-    model : :py:class:`torch.nn.Module`
-        neural network model (e.g. DRIU, HED, UNet)
-    data_loader : py:class:`torch.torch.utils.data.DataLoader`
-    device : str
-        device to use ``'cpu'`` or ``'cuda'``
-    output_folder : str
-    """
-    logger = logging.getLogger("bob.ip.binseg.engine.inference")
-    logger.info("Start evaluation")
-    logger.info("Output folder: {}, Device: {}".format(output_folder, device))
-    results_subfolder = os.path.join(output_folder,'results')
-    os.makedirs(results_subfolder,exist_ok=True)
-
-    model.eval().to(device)
-    # Sigmoid for probabilities
-    sigmoid = torch.nn.Sigmoid()
-
-    # Setup timers
-    start_total_time = time.time()
-    times = []
-
-    # Collect overall metrics
-    metrics = []
-
-    for samples in tqdm(data_loader):
-        names = samples[0]
-        images = samples[1].to(device)
-        ground_truths = samples[2].to(device)
-        with torch.no_grad():
-            start_time = time.perf_counter()
-
-            outputs = model(images)
-
-            # necessary check for hed architecture that uses several outputs
-            # for loss calculation instead of just the last concatfuse block
-            if isinstance(outputs,list):
-                outputs = outputs[-1]
-
-            probabilities = sigmoid(outputs)
-
-            batch_time = time.perf_counter() - start_time
-            times.append(batch_time)
-            logger.info("Batch time: {:.5f} s".format(batch_time))
-
-            b_metrics = batch_metrics(probabilities, ground_truths, names,results_subfolder, logger)
-            metrics.extend(b_metrics)
-
-            # Create probability images
-            save_probability_images(probabilities, names, output_folder, logger)
-            # save hdf5
-            save_hdf(probabilities, names, output_folder, logger)
-
-    # DataFrame
-    df_metrics = pd.DataFrame(metrics,columns= \
-                           ["name",
-                            "threshold",
-                            "precision",
-                            "recall",
-                            "specificity",
-                            "accuracy",
-                            "jaccard",
-                            "f1_score"])
-
-    # Report and Averages
-    metrics_file = "Metrics.csv".format(model.name)
-    metrics_path = os.path.join(results_subfolder, metrics_file)
-    logger.info("Saving average over all input images: {}".format(metrics_file))
-
-    avg_metrics = df_metrics.groupby('threshold').mean()
-    std_metrics = df_metrics.groupby('threshold').std()
-
-    # Uncomment below for F1-score calculation based on average precision and metrics instead of
-    # F1-scores of individual images. This method is in line with Maninis et. al. (2016)
-    #avg_metrics["f1_score"] =  (2* avg_metrics["precision"]*avg_metrics["recall"])/ \
-    #    (avg_metrics["precision"]+avg_metrics["recall"])
-
-    avg_metrics["std_pr"] = std_metrics["precision"]
-    avg_metrics["pr_upper"] = avg_metrics['precision'] + avg_metrics["std_pr"]
-    avg_metrics["pr_lower"] = avg_metrics['precision'] - avg_metrics["std_pr"]
-    avg_metrics["std_re"] = std_metrics["recall"]
-    avg_metrics["re_upper"] = avg_metrics['recall'] + avg_metrics["std_re"]
-    avg_metrics["re_lower"] = avg_metrics['recall'] - avg_metrics["std_re"]
-    avg_metrics["std_f1"] = std_metrics["f1_score"]
-
-    avg_metrics.to_csv(metrics_path)
-    maxf1 = avg_metrics['f1_score'].max()
-    optimal_f1_threshold = avg_metrics['f1_score'].idxmax()
-
-    logger.info("Highest F1-score of {:.5f}, achieved at threshold {}".format(maxf1, optimal_f1_threshold))
-
-    # Plotting
-    np_avg_metrics = avg_metrics.to_numpy().T
-    fig_name = "precision_recall.pdf"
-    logger.info("saving {}".format(fig_name))
-    fig = precision_recall_f1iso_confintval([np_avg_metrics[0]],[np_avg_metrics[1]],[np_avg_metrics[7]],[np_avg_metrics[8]],[np_avg_metrics[10]],[np_avg_metrics[11]], [model.name,None], title=output_folder)
-    fig_filename = os.path.join(results_subfolder, fig_name)
-    fig.savefig(fig_filename)
-
-    # Report times
-    total_inference_time = str(datetime.timedelta(seconds=int(sum(times))))
-    average_batch_inference_time = np.mean(times)
-    total_evalution_time = str(datetime.timedelta(seconds=int(time.time() - start_total_time )))
-
-    logger.info("Average batch inference time: {:.5f}s".format(average_batch_inference_time))
-
-    times_file = "Times.txt"
-    logger.info("saving {}".format(times_file))
-
-    with open (os.path.join(results_subfolder,times_file), "w+") as outfile:
-        date = datetime.datetime.now()
-        outfile.write("Date: {} \n".format(date.strftime("%Y-%m-%d %H:%M:%S")))
-        outfile.write("Total evaluation run-time: {} \n".format(total_evalution_time))
-        outfile.write("Average batch inference time: {} \n".format(average_batch_inference_time))
-        outfile.write("Total inference time: {} \n".format(total_inference_time))
-
-    # Save model summary
-    summary_file = 'ModelSummary.txt'
-    logger.info("saving {}".format(summary_file))
-
-    with open (os.path.join(results_subfolder,summary_file), "w+") as outfile:
-        summary(model,outfile)
-
-
-
diff --git a/bob/ip/binseg/engine/predicter.py b/bob/ip/binseg/engine/predicter.py
deleted file mode 100644
index ebd09ac5e84d4f9a81a20f72c3919f42071fb73d..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/engine/predicter.py
+++ /dev/null
@@ -1,93 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-import os
-import logging
-import time
-import datetime
-import numpy as np
-import torch
-import torchvision.transforms.functional as VF
-from tqdm import tqdm
-
-from bob.ip.binseg.utils.summary import summary
-from bob.ip.binseg.engine.inferencer import save_probability_images
-from bob.ip.binseg.engine.inferencer import save_hdf
-
-
-def do_predict(
-    model,
-    data_loader,
-    device,
-    output_folder = None
-):
-
-    """
-    Run inference and calculate metrics
-
-    Parameters
-    ---------
-    model : :py:class:`torch.nn.Module`
-        neural network model (e.g. DRIU, HED, UNet)
-    data_loader : py:class:`torch.torch.utils.data.DataLoader`
-    device : str
-        device to use ``'cpu'`` or ``'cuda'``
-    output_folder : str
-    """
-    logger = logging.getLogger("bob.ip.binseg.engine.inference")
-    logger.info("Start evaluation")
-    logger.info("Output folder: {}, Device: {}".format(output_folder, device))
-    results_subfolder = os.path.join(output_folder,'results')
-    os.makedirs(results_subfolder,exist_ok=True)
-
-    model.eval().to(device)
-    # Sigmoid for probabilities
-    sigmoid = torch.nn.Sigmoid()
-
-    # Setup timers
-    start_total_time = time.time()
-    times = []
-
-    for samples in tqdm(data_loader):
-        names = samples[0]
-        images = samples[1].to(device)
-        with torch.no_grad():
-            start_time = time.perf_counter()
-
-            outputs = model(images)
-
-            # necessary check for hed architecture that uses several outputs
-            # for loss calculation instead of just the last concatfuse block
-            if isinstance(outputs,list):
-                outputs = outputs[-1]
-
-            probabilities = sigmoid(outputs)
-
-            batch_time = time.perf_counter() - start_time
-            times.append(batch_time)
-            logger.info("Batch time: {:.5f} s".format(batch_time))
-
-            # Create probability images
-            save_probability_images(probabilities, names, output_folder, logger)
-            # Save hdf5
-            save_hdf(probabilities, names, output_folder, logger)
-
-
-    # Report times
-    total_inference_time = str(datetime.timedelta(seconds=int(sum(times))))
-    average_batch_inference_time = np.mean(times)
-    total_evalution_time = str(datetime.timedelta(seconds=int(time.time() - start_total_time )))
-
-    logger.info("Average batch inference time: {:.5f}s".format(average_batch_inference_time))
-
-    times_file = "Times.txt"
-    logger.info("saving {}".format(times_file))
-
-    with open (os.path.join(results_subfolder,times_file), "w+") as outfile:
-        date = datetime.datetime.now()
-        outfile.write("Date: {} \n".format(date.strftime("%Y-%m-%d %H:%M:%S")))
-        outfile.write("Total evaluation run-time: {} \n".format(total_evalution_time))
-        outfile.write("Average batch inference time: {} \n".format(average_batch_inference_time))
-        outfile.write("Total inference time: {} \n".format(total_inference_time))
-
-
diff --git a/bob/ip/binseg/engine/predictor.py b/bob/ip/binseg/engine/predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..4e4640f05b82bef935fd6a70db03c82ba9e1e98f
--- /dev/null
+++ b/bob/ip/binseg/engine/predictor.py
@@ -0,0 +1,173 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+import os
+import time
+import datetime
+
+import PIL
+import numpy
+from tqdm import tqdm
+
+import torch
+import torchvision.transforms.functional as VF
+
+import h5py
+
+from ..data.utils import overlayed_image
+
+import logging
+logger = logging.getLogger(__name__)
+
+
+def _save_hdf5(stem, prob, output_folder):
+    """
+    Saves prediction maps as image in the same format as the test image
+
+
+    Parameters
+    ----------
+    stem : str
+        the name of the file without extension on the original dataset
+
+    prob : PIL.Image.Image
+        Monochrome Image with prediction maps
+
+    output_folder : str
+        path where to store predictions
+
+    """
+
+    fullpath = os.path.join(output_folder, f"{stem}.hdf5")
+    tqdm.write(f"Saving {fullpath}...")
+    os.makedirs(os.path.dirname(fullpath), exist_ok=True)
+    with h5py.File(fullpath, 'w') as f:
+        data = prob.cpu().squeeze(0).numpy()
+        f.create_dataset("array", data=data, compression="gzip",
+                compression_opts=9)
+
+def _save_image(stem, extension, data, output_folder):
+    """Saves a PIL image into a file
+
+    Parameters
+    ----------
+
+    stem : str
+        the name of the file without extension on the original dataset
+
+    extension : str
+        an extension for the file to be saved (e.g. ``.png``)
+
+    data : PIL.Image.Image
+        RGB image with the original image, preloaded
+
+    output_folder : str
+        path where to store results
+
+    """
+
+    fullpath = os.path.join(output_folder, stem + extension)
+    tqdm.write(f"Saving {fullpath}...")
+    os.makedirs(os.path.dirname(fullpath), exist_ok=True)
+    data.save(fullpath)
+
+
+def _save_overlayed_png(stem, image, prob, output_folder):
+    """Overlays prediction predictions vessel tree with original test image
+
+
+    Parameters
+    ----------
+
+    stem : str
+        the name of the file without extension on the original dataset
+
+    image : torch.Tensor
+        Tensor with RGB input image
+
+    prob : torch.Tensor
+        Tensor with 1-D prediction map
+
+    output_folder : str
+        path where to store results
+
+    """
+
+    image = VF.to_pil_image(image)
+    prob = VF.to_pil_image(prob.cpu())
+    _save_image(stem, '.png', overlayed_image(image, prob), output_folder)
+
+
+def run(model, data_loader, device, output_folder, overlayed_folder):
+    """
+    Runs inference on input data, outputs HDF5 files with predictions
+
+    Parameters
+    ---------
+    model : :py:class:`torch.nn.Module`
+        neural network model (e.g. driu, hed, unet)
+
+    data_loader : py:class:`torch.torch.utils.data.DataLoader`
+
+    device : str
+        device to use ``cpu`` or ``cuda:0``
+
+    output_folder : str
+        folder where to store output prediction maps (HDF5 files) and model
+        summary
+
+    overlayed_folder : str
+        folder where to store output images (PNG files)
+
+    """
+
+    logger.info(f"Output folder: {output_folder}")
+    os.makedirs(output_folder, exist_ok=True)
+
+    logger.info(f"Device: {device}")
+    model.eval().to(device)
+    # Sigmoid for predictions
+    sigmoid = torch.nn.Sigmoid()
+
+    # Setup timers
+    start_total_time = time.time()
+    times = []
+    len_samples = []
+
+    for samples in tqdm(
+            data_loader, desc="batches", leave=False, disable=None,
+            ):
+
+        names = samples[0]
+        images = samples[1].to(device)
+
+        with torch.no_grad():
+
+            start_time = time.perf_counter()
+            outputs = model(images)
+
+            # necessary check for HED architecture that uses several outputs
+            # for loss calculation instead of just the last concatfuse block
+            if isinstance(outputs, list):
+                outputs = outputs[-1]
+
+            predictions = sigmoid(outputs)
+
+            batch_time = time.perf_counter() - start_time
+            times.append(batch_time)
+            len_samples.append(len(images))
+
+            for stem, img, prob in zip(names, images, predictions):
+                _save_hdf5(stem, prob, output_folder)
+                if overlayed_folder is not None:
+                    _save_overlayed_png(stem, img, prob, overlayed_folder)
+
+    # report operational summary
+    total_time = datetime.timedelta(seconds=int(time.time() - start_total_time))
+    logger.info(f"Total time: {total_time}")
+
+    average_batch_time = numpy.mean(times)
+    logger.info(f"Average batch time: {average_batch_time:g}s")
+
+    average_image_time = numpy.sum(numpy.array(times) * len_samples) / float(sum(len_samples))
+    logger.info(f"Average image time: {average_image_time:g}s")
diff --git a/bob/ip/binseg/engine/ssltrainer.py b/bob/ip/binseg/engine/ssltrainer.py
index 382431176fc33e4bf98e3cc38d4440c6f532c30d..2448782cc6b1b00965a4974af13f58e36a0dd0fc 100644
--- a/bob/ip/binseg/engine/ssltrainer.py
+++ b/bob/ip/binseg/engine/ssltrainer.py
@@ -1,126 +1,166 @@
 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
 
-import os 
-import logging
+import os
+import csv
 import time
 import datetime
+import distutils.version
+
+import numpy
+import pandas
 import torch
-import pandas as pd
 from tqdm import tqdm
-import numpy as np
 
 from bob.ip.binseg.utils.metric import SmoothedValue
 from bob.ip.binseg.utils.plot import loss_curve
 
+import logging
+logger = logging.getLogger(__name__)
+
+PYTORCH_GE_110 = (distutils.version.StrictVersion(torch.__version__) >= "1.1.0")
+
+
 def sharpen(x, T):
-    temp = x**(1/T)
+    temp = x ** (1 / T)
     return temp / temp.sum(dim=1, keepdim=True)
 
-def mix_up(alpha, input, target, unlabeled_input, unlabled_target):
+
+def mix_up(alpha, input, target, unlabelled_input, unlabled_target):
     """Applies mix up as described in [MIXMATCH_19].
-    
+
     Parameters
     ----------
     alpha : float
+
     input : :py:class:`torch.Tensor`
+
     target : :py:class:`torch.Tensor`
-    unlabeled_input : :py:class:`torch.Tensor`
+
+    unlabelled_input : :py:class:`torch.Tensor`
+
     unlabled_target : :py:class:`torch.Tensor`
-    
+
+
     Returns
     -------
+
     list
+
     """
-    # TODO: 
+    # TODO:
     with torch.no_grad():
-        l = np.random.beta(alpha, alpha) # Eq (8)
-        l = max(l, 1 - l) # Eq (9)
+        l = numpy.random.beta(alpha, alpha)  # Eq (8)
+        l = max(l, 1 - l)  # Eq (9)
         # Shuffle and concat. Alg. 1 Line: 12
-        w_inputs = torch.cat([input,unlabeled_input],0)
-        w_targets = torch.cat([target,unlabled_target],0)
-        idx = torch.randperm(w_inputs.size(0)) # get random index 
-        
-        # Apply MixUp to labeled data and entries from W. Alg. 1 Line: 13
-        input_mixedup = l * input + (1 - l) * w_inputs[idx[len(input):]] 
-        target_mixedup = l * target + (1 - l) * w_targets[idx[len(target):]]
-        
-        # Apply MixUp to unlabeled data and entries from W. Alg. 1 Line: 14
-        unlabeled_input_mixedup = l * unlabeled_input + (1 - l) * w_inputs[idx[:len(unlabeled_input)]]
-        unlabled_target_mixedup =  l * unlabled_target + (1 - l) * w_targets[idx[:len(unlabled_target)]]
-        return input_mixedup, target_mixedup, unlabeled_input_mixedup, unlabled_target_mixedup
+        w_inputs = torch.cat([input, unlabelled_input], 0)
+        w_targets = torch.cat([target, unlabled_target], 0)
+        idx = torch.randperm(w_inputs.size(0))  # get random index
+
+        # Apply MixUp to labelled data and entries from W. Alg. 1 Line: 13
+        input_mixedup = l * input + (1 - l) * w_inputs[idx[len(input) :]]
+        target_mixedup = l * target + (1 - l) * w_targets[idx[len(target) :]]
+
+        # Apply MixUp to unlabelled data and entries from W. Alg. 1 Line: 14
+        unlabelled_input_mixedup = (
+            l * unlabelled_input + (1 - l) * w_inputs[idx[: len(unlabelled_input)]]
+        )
+        unlabled_target_mixedup = (
+            l * unlabled_target + (1 - l) * w_targets[idx[: len(unlabled_target)]]
+        )
+        return (
+            input_mixedup,
+            target_mixedup,
+            unlabelled_input_mixedup,
+            unlabled_target_mixedup,
+        )
 
 
 def square_rampup(current, rampup_length=16):
     """slowly ramp-up ``lambda_u``
-    
+
     Parameters
     ----------
+
     current : int
         current epoch
-    rampup_length : int, optional
+
+    rampup_length : :obj:`int`, optional
         how long to ramp up, by default 16
-    
+
     Returns
     -------
-    float
+
+    factor : float
         ramp up factor
     """
+
     if rampup_length == 0:
         return 1.0
     else:
-        current = np.clip((current/ float(rampup_length))**2, 0.0, 1.0)
+        current = numpy.clip((current / float(rampup_length)) ** 2, 0.0, 1.0)
     return float(current)
 
+
 def linear_rampup(current, rampup_length=16):
     """slowly ramp-up ``lambda_u``
-    
+
     Parameters
     ----------
     current : int
         current epoch
-    rampup_length : int, optional
+
+    rampup_length : :obj:`int`, optional
         how long to ramp up, by default 16
-    
+
     Returns
     -------
-    float
+
+    factor: float
         ramp up factor
+
     """
     if rampup_length == 0:
         return 1.0
     else:
-        current = np.clip(current / rampup_length, 0.0, 1.0)
+        current = numpy.clip(current / rampup_length, 0.0, 1.0)
     return float(current)
 
-def guess_labels(unlabeled_images, model):
+
+def guess_labels(unlabelled_images, model):
     """
     Calculate the average predictions by 2 augmentations: horizontal and vertical flips
+
     Parameters
     ----------
-    unlabeled_images : :py:class:`torch.Tensor`
-        shape: ``[n,c,h,w]``
+
+    unlabelled_images : :py:class:`torch.Tensor`
+        ``[n,c,h,w]``
+
     target : :py:class:`torch.Tensor`
-    
+
     Returns
     -------
-    :py:class:`torch.Tensor`
-        shape: ``[n,c,h,w]``.
+
+    shape : :py:class:`torch.Tensor`
+        ``[n,c,h,w]``
+
     """
     with torch.no_grad():
-        guess1 = torch.sigmoid(model(unlabeled_images)).unsqueeze(0)
+        guess1 = torch.sigmoid(model(unlabelled_images)).unsqueeze(0)
         # Horizontal flip and unsqueeze to work with batches (increase flip dimension by 1)
-        hflip = torch.sigmoid(model(unlabeled_images.flip(2))).unsqueeze(0)
-        guess2  = hflip.flip(3)
+        hflip = torch.sigmoid(model(unlabelled_images.flip(2))).unsqueeze(0)
+        guess2 = hflip.flip(3)
         # Vertical flip and unsqueeze to work with batches (increase flip dimension by 1)
-        vflip = torch.sigmoid(model(unlabeled_images.flip(3))).unsqueeze(0)
+        vflip = torch.sigmoid(model(unlabelled_images.flip(3))).unsqueeze(0)
         guess3 = vflip.flip(4)
         # Concat
-        concat = torch.cat([guess1,guess2,guess3],0)
-        avg_guess = torch.mean(concat,0)
+        concat = torch.cat([guess1, guess2, guess3], 0)
+        avg_guess = torch.mean(concat, 0)
         return avg_guess
 
-def do_ssltrain(
+
+def run(
     model,
     data_loader,
     optimizer,
@@ -131,41 +171,79 @@ def do_ssltrain(
     device,
     arguments,
     output_folder,
-    rampup_length
+    rampup_length,
 ):
-    """ 
-    Train model and save to disk.
-    
+    """
+    Fits an FCN model using semi-supervised learning and saves it to disk.
+
     Parameters
     ----------
-    model : :py:class:`torch.nn.Module` 
-        Network (e.g. DRIU, HED, UNet)
+
+    model : :py:class:`torch.nn.Module`
+        Network (e.g. driu, hed, unet)
+
     data_loader : :py:class:`torch.utils.data.DataLoader`
+
     optimizer : :py:mod:`torch.optim`
+
     criterion : :py:class:`torch.nn.modules.loss._Loss`
         loss function
+
     scheduler : :py:mod:`torch.optim`
         learning rate scheduler
+
     checkpointer : :py:class:`bob.ip.binseg.utils.checkpointer.DetectronCheckpointer`
         checkpointer
+
     checkpoint_period : int
-        save a checkpoint every n epochs
-    device : str  
-        device to use ``'cpu'`` or ``'cuda'``
+        save a checkpoint every ``n`` epochs.  If set to ``0`` (zero), then do
+        not save intermediary checkpoints
+
+    device : str
+        device to use ``'cpu'`` or ``cuda:0``
+
     arguments : dict
-        start end end epochs
-    output_folder : str 
+        start and end epochs
+
+    output_folder : str
         output path
-    rampup_Length : int
+
+    rampup_length : int
         rampup epochs
+
     """
-    logger = logging.getLogger("bob.ip.binseg.engine.trainer")
-    logger.info("Start training")
+
     start_epoch = arguments["epoch"]
     max_epoch = arguments["max_epoch"]
 
-    # Logg to file
-    with open (os.path.join(output_folder,"{}_trainlog.csv".format(model.name)), "a+",1) as outfile:
+    if not os.path.exists(output_folder):
+        logger.debug(f"Creating output directory '{output_folder}'...")
+        os.makedirs(output_folder)
+
+    # Log to file
+    logfile_name = os.path.join(output_folder, "trainlog.csv")
+
+    if arguments["epoch"] == 0 and os.path.exists(logfile_name):
+        logger.info(f"Truncating {logfile_name} - training is restarting...")
+        os.unlink(logfile_name)
+
+    logfile_fields = (
+        "epoch",
+        "total-time",
+        "eta",
+        "average-loss",
+        "median-loss",
+        "median-labelled-loss",
+        "median-unlabelled-loss",
+        "learning-rate",
+        "gpu-memory-megabytes",
+    )
+    with open(logfile_name, "a+", newline="") as logfile:
+        logwriter = csv.DictWriter(logfile, fieldnames=logfile_fields)
+
+        if arguments["epoch"] == 0:
+            logwriter.writeheader()
+
         for state in optimizer.state.values():
             for k, v in state.items():
                 if isinstance(v, torch.Tensor):
@@ -174,102 +252,97 @@ def do_ssltrain(
         model.train().to(device)
         # Total training timer
         start_training_time = time.time()
+
         for epoch in range(start_epoch, max_epoch):
-            scheduler.step()
+            if not PYTORCH_GE_110: scheduler.step()
             losses = SmoothedValue(len(data_loader))
-            labeled_loss = SmoothedValue(len(data_loader))
-            unlabeled_loss = SmoothedValue(len(data_loader))
+            labelled_loss = SmoothedValue(len(data_loader))
+            unlabelled_loss = SmoothedValue(len(data_loader))
             epoch = epoch + 1
             arguments["epoch"] = epoch
-            
+
             # Epoch time
             start_epoch_time = time.time()
 
-            for samples in tqdm(data_loader):
-                # labeled
+            for samples in tqdm(data_loader, desc="batches", leave=False,
+                    disable=None,):
+
+                # data forwarding on the existing network
+
+                # labelled
                 images = samples[1].to(device)
                 ground_truths = samples[2].to(device)
-                unlabeled_images = samples[4].to(device)
-                # labeled outputs
+                unlabelled_images = samples[4].to(device)
+                # labelled outputs
                 outputs = model(images)
-                unlabeled_outputs = model(unlabeled_images)
-                # guessed unlabeled outputs
-                unlabeled_ground_truths = guess_labels(unlabeled_images, model)
-                #unlabeled_ground_truths = sharpen(unlabeled_ground_truths,0.5)
-                #images, ground_truths, unlabeled_images, unlabeled_ground_truths = mix_up(0.75, images, ground_truths, unlabeled_images, unlabeled_ground_truths)
-                ramp_up_factor = square_rampup(epoch,rampup_length=rampup_length)
-
-                loss, ll, ul = criterion(outputs, ground_truths, unlabeled_outputs, unlabeled_ground_truths, ramp_up_factor)
+                unlabelled_outputs = model(unlabelled_images)
+                # guessed unlabelled outputs
+                unlabelled_ground_truths = guess_labels(unlabelled_images, model)
+                # unlabelled_ground_truths = sharpen(unlabelled_ground_truths,0.5)
+                # images, ground_truths, unlabelled_images, unlabelled_ground_truths = mix_up(0.75, images, ground_truths, unlabelled_images, unlabelled_ground_truths)
+
+                # loss evaluation and learning (backward step)
+                ramp_up_factor = square_rampup(epoch, rampup_length=rampup_length)
+
+                loss, ll, ul = criterion(
+                    outputs,
+                    ground_truths,
+                    unlabelled_outputs,
+                    unlabelled_ground_truths,
+                    ramp_up_factor,
+                )
                 optimizer.zero_grad()
                 loss.backward()
                 optimizer.step()
                 losses.update(loss)
-                labeled_loss.update(ll)
-                unlabeled_loss.update(ul)
-                logger.debug("batch loss: {}".format(loss.item()))
+                labelled_loss.update(ll)
+                unlabelled_loss.update(ul)
+                logger.debug(f"batch loss: {loss.item()}")
+
+            if PYTORCH_GE_110: scheduler.step()
 
-            if epoch % checkpoint_period == 0:
-                checkpointer.save("model_{:03d}".format(epoch), **arguments)
+            if checkpoint_period and (epoch % checkpoint_period == 0):
+                checkpointer.save(f"model_{epoch:03d}", **arguments)
 
-            if epoch == max_epoch:
+            if epoch >= max_epoch:
                 checkpointer.save("model_final", **arguments)
 
+            # computes ETA (estimated time-of-arrival; end of training) taking
+            # into consideration previous epoch performance
             epoch_time = time.time() - start_epoch_time
-
-
             eta_seconds = epoch_time * (max_epoch - epoch)
-            eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
-
-            outfile.write(("{epoch}, "
-                        "{avg_loss:.6f}, "
-                        "{median_loss:.6f}, "
-                        "{median_labeled_loss},"
-                        "{median_unlabeled_loss},"
-                        "{lr:.6f}, "
-                        "{memory:.0f}"
-                        "\n"
-                        ).format(
-                    eta=eta_string,
-                    epoch=epoch,
-                    avg_loss=losses.avg,
-                    median_loss=losses.median,
-                    median_labeled_loss = labeled_loss.median,
-                    median_unlabeled_loss = unlabeled_loss.median,
-                    lr=optimizer.param_groups[0]["lr"],
-                    memory = (torch.cuda.max_memory_allocated() / 1024.0 / 1024.0) if torch.cuda.is_available() else .0,
-                    )
-                )  
-            logger.info(("eta: {eta}, " 
-                        "epoch: {epoch}, "
-                        "avg. loss: {avg_loss:.6f}, "
-                        "median loss: {median_loss:.6f}, "
-                        "labeled loss: {median_labeled_loss}, "
-                        "unlabeled loss: {median_unlabeled_loss}, "
-                        "lr: {lr:.6f}, "
-                        "max mem: {memory:.0f}"
-                        ).format(
-                    eta=eta_string,
-                    epoch=epoch,
-                    avg_loss=losses.avg,
-                    median_loss=losses.median,
-                    median_labeled_loss = labeled_loss.median,
-                    median_unlabeled_loss = unlabeled_loss.median,
-                    lr=optimizer.param_groups[0]["lr"],
-                    memory = (torch.cuda.max_memory_allocated() / 1024.0 / 1024.0) if torch.cuda.is_available() else .0
-                    )
-                )
+            current_time = time.time() - start_training_time
 
+            logdata = (
+                ("epoch", f"{epoch}"),
+                (
+                    "total-time",
+                    f"{datetime.timedelta(seconds=int(current_time))}",
+                ),
+                ("eta", f"{datetime.timedelta(seconds=int(eta_seconds))}"),
+                ("average-loss", f"{losses.avg:.6f}"),
+                ("median-loss", f"{losses.median:.6f}"),
+                ("median-labelled-loss", f"{labelled_loss.median:.6f}"),
+                ("median-unlabelled-loss", f"{unlabelled_loss.median:.6f}"),
+                ("learning-rate", f"{optimizer.param_groups[0]['lr']:.6f}"),
+                (
+                    "gpu-memory-megabytes",
+                    f"{torch.cuda.max_memory_allocated()/(1024.0*1024.0)}"
+                    if torch.cuda.is_available()
+                    else "0.0",
+                ),
+            )
+            logwriter.writerow(dict(k for k in logdata))
+            logger.info("|".join([f"{k}: {v}" for (k, v) in logdata]))
 
         total_training_time = time.time() - start_training_time
-        total_time_str = str(datetime.timedelta(seconds=total_training_time))
         logger.info(
-            "Total training time: {} ({:.4f} s / epoch)".format(
-                total_time_str, total_training_time / (max_epoch)
-            ))
-        
-    log_plot_file = os.path.join(output_folder,"{}_trainlog.pdf".format(model.name))
-    logdf = pd.read_csv(os.path.join(output_folder,"{}_trainlog.csv".format(model.name)),header=None, names=["avg. loss", "median loss", "labeled loss", "unlabeled loss", "lr","max memory"])
-    fig = loss_curve(logdf,output_folder)
-    logger.info("saving {}".format(log_plot_file))
-    fig.savefig(log_plot_file)
-  
\ No newline at end of file
+            f"Total training time: {datetime.timedelta(seconds=total_training_time)} ({(total_training_time/max_epoch):.4f}s in average per epoch)"
+        )
+
+    # plots a version of the CSV trainlog into a PDF
+    logdf = pandas.read_csv(logfile_name, header=0, names=logfile_fields)
+    fig = loss_curve(logdf)
+    figurefile_name = os.path.join(output_folder, "trainlog.pdf")
+    logger.info(f"Saving {figurefile_name}")
+    fig.savefig(figurefile_name)
diff --git a/bob/ip/binseg/engine/trainer.py b/bob/ip/binseg/engine/trainer.py
index e083ec852491e82d2abee84421e1f14d20966a2a..d5591526fc149248f950e69694443335c85728a0 100644
--- a/bob/ip/binseg/engine/trainer.py
+++ b/bob/ip/binseg/engine/trainer.py
@@ -1,19 +1,28 @@
 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
 
-import os 
-import logging
+import os
+import csv
 import time
+import shutil
 import datetime
+import distutils.version
+
 import torch
-import pandas as pd
 from tqdm import tqdm
 
-from bob.ip.binseg.utils.metric import SmoothedValue
-from bob.ip.binseg.utils.plot import loss_curve
+from ..utils.metric import SmoothedValue
+from ..utils.summary import summary
+from ..utils.resources import cpu_constants, gpu_constants, cpu_log, gpu_log
+
+import logging
+
+logger = logging.getLogger(__name__)
+
+PYTORCH_GE_110 = distutils.version.StrictVersion(torch.__version__) >= "1.1.0"
 
 
-def do_train(
+def run(
     model,
     data_loader,
     optimizer,
@@ -23,40 +32,111 @@ def do_train(
     checkpoint_period,
     device,
     arguments,
-    output_folder
+    output_folder,
 ):
-    """ 
-    Train model and save to disk.
-    
+    """
+    Fits an FCN model using supervised learning and save it to disk.
+
+    This method supports periodic checkpointing and the output of a
+    CSV-formatted log with the evolution of some figures during training.
+
+
     Parameters
     ----------
-    model : :py:class:`torch.nn.Module` 
+
+    model : :py:class:`torch.nn.Module`
         Network (e.g. DRIU, HED, UNet)
+
     data_loader : :py:class:`torch.utils.data.DataLoader`
+
     optimizer : :py:mod:`torch.optim`
+
     criterion : :py:class:`torch.nn.modules.loss._Loss`
         loss function
+
     scheduler : :py:mod:`torch.optim`
         learning rate scheduler
+
     checkpointer : :py:class:`bob.ip.binseg.utils.checkpointer.DetectronCheckpointer`
-        checkpointer
+        checkpointer implementation
+
     checkpoint_period : int
-        save a checkpoint every n epochs
-    device : str  
-        device to use ``'cpu'`` or ``'cuda'``
+        save a checkpoint every ``n`` epochs.  If set to ``0`` (zero), then do
+        not save intermediary checkpoints
+
+    device : str
+        device to use ``'cpu'`` or ``cuda:0``
+
     arguments : dict
-        start end end epochs
-    output_folder : str 
+        start and end epochs
+
+    output_folder : str
         output path
     """
-    logger = logging.getLogger("bob.ip.binseg.engine.trainer")
-    logger.info("Start training")
+
     start_epoch = arguments["epoch"]
     max_epoch = arguments["max_epoch"]
 
-    # Logg to file
-    with open (os.path.join(output_folder,"{}_trainlog.csv".format(model.name)), "a+") as outfile:
-        
+    if device != "cpu":
+        # asserts we do have a GPU
+        assert bool(gpu_constants()), (
+            f"Device set to '{device}', but cannot "
+            f"find a GPU (maybe nvidia-smi is not installed?)"
+        )
+
+    os.makedirs(output_folder, exist_ok=True)
+
+    # Save model summary
+    summary_path = os.path.join(output_folder, "model_summary.txt")
+    logger.info(f"Saving model summary at {summary_path}...")
+    with open(summary_path, "wt") as f:
+        r, n = summary(model)
+        logger.info(f"Model has {n} parameters...")
+        f.write(r)
+
+    # write static information to a CSV file
+    static_logfile_name = os.path.join(output_folder, "constants.csv")
+    if os.path.exists(static_logfile_name):
+        backup = static_logfile_name + "~"
+        if os.path.exists(backup):
+            os.unlink(backup)
+        shutil.move(static_logfile_name, backup)
+    with open(static_logfile_name, "w", newline="") as f:
+        logdata = cpu_constants()
+        if device != "cpu":
+            logdata += gpu_constants()
+        logdata += (("model_size", n),)
+        logwriter = csv.DictWriter(f, fieldnames=[k[0] for k in logdata])
+        logwriter.writeheader()
+        logwriter.writerow(dict(k for k in logdata))
+
+    # Log continous information to (another) file
+    logfile_name = os.path.join(output_folder, "trainlog.csv")
+
+    if arguments["epoch"] == 0 and os.path.exists(logfile_name):
+        backup = logfile_name + "~"
+        if os.path.exists(backup):
+            os.unlink(backup)
+        shutil.move(logfile_name, backup)
+
+    logfile_fields = (
+        "epoch",
+        "total_time",
+        "eta",
+        "average_loss",
+        "median_loss",
+        "learning_rate",
+    )
+    logfile_fields += tuple([k[0] for k in cpu_log()])
+    if device != "cpu":
+        logfile_fields += tuple([k[0] for k in gpu_log()])
+
+    with open(logfile_name, "a+", newline="") as logfile:
+        logwriter = csv.DictWriter(logfile, fieldnames=logfile_fields)
+
+        if arguments["epoch"] == 0:
+            logwriter.writeheader()
+
         model.train().to(device)
         for state in optimizer.state.values():
             for k, v in state.items():
@@ -65,86 +145,78 @@ def do_train(
         # Total training timer
         start_training_time = time.time()
 
-        for epoch in range(start_epoch, max_epoch):
-            scheduler.step()
+        for epoch in tqdm(
+            range(start_epoch, max_epoch),
+            desc="epoch",
+            leave=False,
+            disable=None,
+        ):
+            if not PYTORCH_GE_110:
+                scheduler.step()
             losses = SmoothedValue(len(data_loader))
             epoch = epoch + 1
             arguments["epoch"] = epoch
-            
+
             # Epoch time
             start_epoch_time = time.time()
 
-            for samples in tqdm(data_loader):
+            # progress bar only on interactive jobs
+            for samples in tqdm(
+                data_loader, desc="batch", leave=False, disable=None
+            ):
 
+                # data forwarding on the existing network
                 images = samples[1].to(device)
                 ground_truths = samples[2].to(device)
                 masks = None
                 if len(samples) == 4:
                     masks = samples[-1].to(device)
-                
+
                 outputs = model(images)
-                
+
+                # loss evaluation and learning (backward step)
                 loss = criterion(outputs, ground_truths, masks)
                 optimizer.zero_grad()
                 loss.backward()
                 optimizer.step()
 
                 losses.update(loss)
-                logger.debug("batch loss: {}".format(loss.item()))
+                logger.debug(f"batch loss: {loss.item()}")
+
+            if PYTORCH_GE_110:
+                scheduler.step()
 
-            if epoch % checkpoint_period == 0:
-                checkpointer.save("model_{:03d}".format(epoch), **arguments)
+            if checkpoint_period and (epoch % checkpoint_period == 0):
+                checkpointer.save(f"model_{epoch:03d}", **arguments)
 
-            if epoch == max_epoch:
+            if epoch >= max_epoch:
                 checkpointer.save("model_final", **arguments)
 
+            # computes ETA (estimated time-of-arrival; end of training) taking
+            # into consideration previous epoch performance
             epoch_time = time.time() - start_epoch_time
-
-
             eta_seconds = epoch_time * (max_epoch - epoch)
-            eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
-
-            outfile.write(("{epoch}, "
-                        "{avg_loss:.6f}, "
-                        "{median_loss:.6f}, "
-                        "{lr:.6f}, "
-                        "{memory:.0f}"
-                        "\n"
-                        ).format(
-                    eta=eta_string,
-                    epoch=epoch,
-                    avg_loss=losses.avg,
-                    median_loss=losses.median,
-                    lr=optimizer.param_groups[0]["lr"],
-                    memory = (torch.cuda.max_memory_allocated() / 1024.0 / 1024.0) if torch.cuda.is_available() else .0,
-                    )
-                )  
-            logger.info(("eta: {eta}, " 
-                        "epoch: {epoch}, "
-                        "avg. loss: {avg_loss:.6f}, "
-                        "median loss: {median_loss:.6f}, "
-                        "lr: {lr:.6f}, "
-                        "max mem: {memory:.0f}"
-                        ).format(
-                    eta=eta_string,
-                    epoch=epoch,
-                    avg_loss=losses.avg,
-                    median_loss=losses.median,
-                    lr=optimizer.param_groups[0]["lr"],
-                    memory = (torch.cuda.max_memory_allocated() / 1024.0 / 1024.0) if torch.cuda.is_available() else .0
-                    )
-                )
-
+            current_time = time.time() - start_training_time
+
+            logdata = (
+                ("epoch", f"{epoch}"),
+                (
+                    "total_time",
+                    f"{datetime.timedelta(seconds=int(current_time))}",
+                ),
+                ("eta", f"{datetime.timedelta(seconds=int(eta_seconds))}"),
+                ("average_loss", f"{losses.avg:.6f}"),
+                ("median_loss", f"{losses.median:.6f}"),
+                ("learning_rate", f"{optimizer.param_groups[0]['lr']:.6f}"),
+            ) + cpu_log()
+            if device != 'cpu':
+                logdata += gpu_log()
+
+            logwriter.writerow(dict(k for k in logdata))
+            logfile.flush()
+            tqdm.write("|".join([f"{k}: {v}" for (k, v) in logdata[:4]]))
 
         total_training_time = time.time() - start_training_time
-        total_time_str = str(datetime.timedelta(seconds=total_training_time))
         logger.info(
-            "Total training time: {} ({:.4f} s / epoch)".format(
-                total_time_str, total_training_time / (max_epoch)
-            ))
-        
-    log_plot_file = os.path.join(output_folder,"{}_trainlog.pdf".format(model.name))
-    logdf = pd.read_csv(os.path.join(output_folder,"{}_trainlog.csv".format(model.name)),header=None, names=["avg. loss", "median loss","lr","max memory"])
-    fig = loss_curve(logdf,output_folder)
-    logger.info("saving {}".format(log_plot_file))
-    fig.savefig(log_plot_file)
+            f"Total training time: {datetime.timedelta(seconds=total_training_time)} ({(total_training_time/max_epoch):.4f}s in average per epoch)"
+        )
diff --git a/bob/ip/binseg/modeling/__init__.py b/bob/ip/binseg/modeling/__init__.py
index 2ca5e07cb73f0bdddcb863ef497955964087e301..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644
--- a/bob/ip/binseg/modeling/__init__.py
+++ b/bob/ip/binseg/modeling/__init__.py
@@ -1,3 +0,0 @@
-# see https://docs.python.org/3/library/pkgutil.html
-from pkgutil import extend_path
-__path__ = extend_path(__path__, __name__)
\ No newline at end of file
diff --git a/bob/ip/binseg/modeling/backbones/__init__.py b/bob/ip/binseg/modeling/backbones/__init__.py
index 2ca5e07cb73f0bdddcb863ef497955964087e301..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644
--- a/bob/ip/binseg/modeling/backbones/__init__.py
+++ b/bob/ip/binseg/modeling/backbones/__init__.py
@@ -1,3 +0,0 @@
-# see https://docs.python.org/3/library/pkgutil.html
-from pkgutil import extend_path
-__path__ = extend_path(__path__, __name__)
\ No newline at end of file
diff --git a/bob/ip/binseg/modeling/backbones/mobilenetv2.py b/bob/ip/binseg/modeling/backbones/mobilenetv2.py
index 9f1ae8f5a10ee04835efc7c40b9746f335505b31..9e6cd245a00bc5a95fef118acc26b87f136e437b 100644
--- a/bob/ip/binseg/modeling/backbones/mobilenetv2.py
+++ b/bob/ip/binseg/modeling/backbones/mobilenetv2.py
@@ -1,30 +1,30 @@
 #!/usr/bin/env python
 # vim: set fileencoding=utf-8 :
 
-# Adopted from https://github.com/tonylins/pytorch-mobilenet-v2/ by @tonylins 
+# Adopted from https://github.com/tonylins/pytorch-mobilenet-v2/ by @tonylins
 # Ji Lin under Apache License 2.0
 
-import torch.nn as nn
+import torch.nn
 import math
 
 
 def conv_bn(inp, oup, stride):
-    return nn.Sequential(
-        nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
-        nn.BatchNorm2d(oup),
-        nn.ReLU6(inplace=True)
+    return torch.nn.Sequential(
+        torch.nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
+        torch.nn.BatchNorm2d(oup),
+        torch.nn.ReLU6(inplace=True),
     )
 
 
 def conv_1x1_bn(inp, oup):
-    return nn.Sequential(
-        nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
-        nn.BatchNorm2d(oup),
-        nn.ReLU6(inplace=True)
+    return torch.nn.Sequential(
+        torch.nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
+        torch.nn.BatchNorm2d(oup),
+        torch.nn.ReLU6(inplace=True),
     )
 
 
-class InvertedResidual(nn.Module):
+class InvertedResidual(torch.nn.Module):
     def __init__(self, inp, oup, stride, expand_ratio):
         super(InvertedResidual, self).__init__()
         self.stride = stride
@@ -34,28 +34,32 @@ class InvertedResidual(nn.Module):
         self.use_res_connect = self.stride == 1 and inp == oup
 
         if expand_ratio == 1:
-            self.conv = nn.Sequential(
+            self.conv = torch.nn.Sequential(
                 # dw
-                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
-                nn.BatchNorm2d(hidden_dim),
-                nn.ReLU6(inplace=True),
+                torch.nn.Conv2d(
+                    hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False
+                ),
+                torch.nn.BatchNorm2d(hidden_dim),
+                torch.nn.ReLU6(inplace=True),
                 # pw-linear
-                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
-                nn.BatchNorm2d(oup),
+                torch.nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
+                torch.nn.BatchNorm2d(oup),
             )
         else:
-            self.conv = nn.Sequential(
+            self.conv = torch.nn.Sequential(
                 # pw
-                nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
-                nn.BatchNorm2d(hidden_dim),
-                nn.ReLU6(inplace=True),
+                torch.nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
+                torch.nn.BatchNorm2d(hidden_dim),
+                torch.nn.ReLU6(inplace=True),
                 # dw
-                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
-                nn.BatchNorm2d(hidden_dim),
-                nn.ReLU6(inplace=True),
+                torch.nn.Conv2d(
+                    hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False
+                ),
+                torch.nn.BatchNorm2d(hidden_dim),
+                torch.nn.ReLU6(inplace=True),
                 # pw-linear
-                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
-                nn.BatchNorm2d(oup),
+                torch.nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
+                torch.nn.BatchNorm2d(oup),
             )
 
     def forward(self, x):
@@ -65,14 +69,21 @@ class InvertedResidual(nn.Module):
             return self.conv(x)
 
 
-class MobileNetV2(nn.Module):
-    def __init__(self, n_class=1000, input_size=224, width_mult=1., return_features = None, m2u=True):
+class MobileNetV2(torch.nn.Module):
+    def __init__(
+        self,
+        n_class=1000,
+        input_size=224,
+        width_mult=1.0,
+        return_features=None,
+        m2u=True,
+    ):
         super(MobileNetV2, self).__init__()
-        self.return_features = return_features 
-        self.m2u = m2u 
+        self.return_features = return_features
+        self.m2u = m2u
         block = InvertedResidual
         input_channel = 32
-        last_channel = 1280
+        #last_channel = 1280
         interverted_residual_setting = [
             # t, c, n, s
             [1, 16, 1, 1],
@@ -80,34 +91,38 @@ class MobileNetV2(nn.Module):
             [6, 32, 3, 2],
             [6, 64, 4, 2],
             [6, 96, 3, 1],
-            #[6, 160, 3, 2],
-            #[6, 320, 1, 1],
+            # [6, 160, 3, 2],
+            # [6, 320, 1, 1],
         ]
 
         # building first layer
         assert input_size % 32 == 0
         input_channel = int(input_channel * width_mult)
-        #self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel
+        # self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel
         self.features = [conv_bn(3, input_channel, 2)]
         # building inverted residual blocks
         for t, c, n, s in interverted_residual_setting:
             output_channel = int(c * width_mult)
             for i in range(n):
                 if i == 0:
-                    self.features.append(block(input_channel, output_channel, s, expand_ratio=t))
+                    self.features.append(
+                        block(input_channel, output_channel, s, expand_ratio=t)
+                    )
                 else:
-                    self.features.append(block(input_channel, output_channel, 1, expand_ratio=t))
+                    self.features.append(
+                        block(input_channel, output_channel, 1, expand_ratio=t)
+                    )
                 input_channel = output_channel
         # building last several layers
-        #self.features.append(conv_1x1_bn(input_channel, self.last_channel))
-        # make it nn.Sequential
-        self.features = nn.Sequential(*self.features)
+        # self.features.append(conv_1x1_bn(input_channel, self.last_channel))
+        # make it torch.nn.Sequential
+        self.features = torch.nn.Sequential(*self.features)
 
         # building classifier
-        #self.classifier = nn.Sequential(
-        #    nn.Dropout(0.2),
-        #    nn.Linear(self.last_channel, n_class),
-        #)
+        # self.classifier = torch.nn.Sequential(
+        #    torch.nn.Dropout(0.2),
+        #    torch.nn.Linear(self.last_channel, n_class),
+        # )
 
         self._initialize_weights()
 
@@ -117,7 +132,7 @@ class MobileNetV2(nn.Module):
         outputs.append(x.shape[2:4])
         if self.m2u:
             outputs.append(x)
-        for index,m in enumerate(self.features):
+        for index, m in enumerate(self.features):
             x = m(x)
             # extract layers
             if index in self.return_features:
@@ -126,15 +141,15 @@ class MobileNetV2(nn.Module):
 
     def _initialize_weights(self):
         for m in self.modules():
-            if isinstance(m, nn.Conv2d):
+            if isinstance(m, torch.nn.Conv2d):
                 n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
-                m.weight.data.normal_(0, math.sqrt(2. / n))
+                m.weight.data.normal_(0, math.sqrt(2.0 / n))
                 if m.bias is not None:
                     m.bias.data.zero_()
-            elif isinstance(m, nn.BatchNorm2d):
+            elif isinstance(m, torch.nn.BatchNorm2d):
                 m.weight.data.fill_(1)
                 m.bias.data.zero_()
-            elif isinstance(m, nn.Linear):
+            elif isinstance(m, torch.nn.Linear):
                 n = m.weight.size(1)
                 m.weight.data.normal_(0, 0.01)
-                m.bias.data.zero_()
\ No newline at end of file
+                m.bias.data.zero_()
diff --git a/bob/ip/binseg/modeling/backbones/resnet.py b/bob/ip/binseg/modeling/backbones/resnet.py
index 5881652e571c94cd0aff20082a90986feffa96db..445c4ba715cb756a0c90ad688d493e6e0d3f2535 100644
--- a/bob/ip/binseg/modeling/backbones/resnet.py
+++ b/bob/ip/binseg/modeling/backbones/resnet.py
@@ -1,28 +1,25 @@
-# Adapted from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py 
+# Adapted from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
 # resnet50_trained_on_SIN_and_IN_then_finetuned_on_IN : https://github.com/rgeirhos/texture-vs-shap
 
 import torch.nn as nn
 import torch.utils.model_zoo as model_zoo
 
 
-__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
-           'resnet152']
-
-
 model_urls = {
-    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
-    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
-    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
-    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
-    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
-    'resnet50_trained_on_SIN_and_IN_then_finetuned_on_IN': 'https://bitbucket.org/robert_geirhos/texture-vs-shape-pretrained-models/raw/60b770e128fffcbd8562a3ab3546c1a735432d03/resnet50_finetune_60_epochs_lr_decay_after_30_start_resnet50_train_45_epochs_combined_IN_SF-ca06340c.pth.tar',
+    "resnet18": "https://download.pytorch.org/models/resnet18-5c106cde.pth",
+    "resnet34": "https://download.pytorch.org/models/resnet34-333f7ec4.pth",
+    "resnet50": "https://download.pytorch.org/models/resnet50-19c8e357.pth",
+    "resnet101": "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth",
+    "resnet152": "https://download.pytorch.org/models/resnet152-b121ed2d.pth",
+    "resnet50_trained_on_SIN_and_IN_then_finetuned_on_IN": "https://bitbucket.org/robert_geirhos/texture-vs-shape-pretrained-models/raw/60b770e128fffcbd8562a3ab3546c1a735432d03/resnet50_finetune_60_epochs_lr_decay_after_30_start_resnet50_train_45_epochs_combined_IN_SF-ca06340c.pth.tar",
 }
 
 
 def conv3x3(in_planes, out_planes, stride=1):
     """3x3 convolution with padding"""
-    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
-                     padding=1, bias=False)
+    return nn.Conv2d(
+        in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False,
+    )
 
 
 def conv1x1(in_planes, out_planes, stride=1):
@@ -101,20 +98,18 @@ class Bottleneck(nn.Module):
 
 
 class ResNet(nn.Module):
-
     def __init__(self, block, layers, return_features, zero_init_residual=False):
         """
         Generic ResNet network with layer return.
         Attributes
         ----------
         return_features: list of length 5
-            layers to return. 
+            layers to return.
         """
         super(ResNet, self).__init__()
         self.inplanes = 64
         self.return_features = return_features
-        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
-                               bias=False)
+        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
         self.bn1 = nn.BatchNorm2d(64)
         self.relu = nn.ReLU(inplace=True)
         self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
@@ -123,13 +118,20 @@ class ResNet(nn.Module):
         self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
         self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
 
-        
-        self.features = [self.conv1, self.bn1, self.relu, self.maxpool
-                                    ,self.layer1,self.layer2,self.layer3,self.layer4]
+        self.features = [
+            self.conv1,
+            self.bn1,
+            self.relu,
+            self.maxpool,
+            self.layer1,
+            self.layer2,
+            self.layer3,
+            self.layer4,
+        ]
 
         for m in self.modules():
             if isinstance(m, nn.Conv2d):
-                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
+                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
             elif isinstance(m, nn.BatchNorm2d):
                 nn.init.constant_(m.weight, 1)
                 nn.init.constant_(m.bias, 0)
@@ -164,7 +166,7 @@ class ResNet(nn.Module):
         outputs = []
         # hw of input, needed for DRIU and HED
         outputs.append(x.shape[2:4])
-        for index,m in enumerate(self.features):
+        for index, m in enumerate(self.features):
             x = m(x)
             # extract layers
             if index in self.return_features:
@@ -179,7 +181,7 @@ def resnet18(pretrained=False, **kwargs):
     """
     model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
     if pretrained:
-        model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
+        model.load_state_dict(model_zoo.load_url(model_urls["resnet18"]))
     return model
 
 
@@ -190,7 +192,7 @@ def resnet34(pretrained=False, **kwargs):
     """
     model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
     if pretrained:
-        model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
+        model.load_state_dict(model_zoo.load_url(model_urls["resnet34"]))
     return model
 
 
@@ -201,9 +203,10 @@ def resnet50(pretrained=False, **kwargs):
     """
     model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
     if pretrained:
-        model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
+        model.load_state_dict(model_zoo.load_url(model_urls["resnet50"]))
     return model
 
+
 def shaperesnet50(pretrained=False, **kwargs):
     """Constructs a ResNet-50 model, pretrained on Stylized-ImageNe and ImageNet and fine-tuned on ImageNet.
     Args:
@@ -211,9 +214,14 @@ def shaperesnet50(pretrained=False, **kwargs):
     """
     model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
     if pretrained:
-        model.load_state_dict(model_zoo.load_url(model_urls['resnet50_trained_on_SIN_and_IN_then_finetuned_on_IN']))
+        model.load_state_dict(
+            model_zoo.load_url(
+                model_urls["resnet50_trained_on_SIN_and_IN_then_finetuned_on_IN"]
+            )
+        )
     return model
 
+
 def resnet101(pretrained=False, **kwargs):
     """Constructs a ResNet-101 model.
     Args:
@@ -221,9 +229,10 @@ def resnet101(pretrained=False, **kwargs):
     """
     model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
     if pretrained:
-        model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
+        model.load_state_dict(model_zoo.load_url(model_urls["resnet101"]))
     return model
 
+
 def resnet152(pretrained=False, **kwargs):
     """Constructs a ResNet-152 model.
     Args:
@@ -231,5 +240,5 @@ def resnet152(pretrained=False, **kwargs):
     """
     model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
     if pretrained:
-        model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
-    return model
\ No newline at end of file
+        model.load_state_dict(model_zoo.load_url(model_urls["resnet152"]))
+    return model
diff --git a/bob/ip/binseg/modeling/backbones/vgg.py b/bob/ip/binseg/modeling/backbones/vgg.py
index 85a375805d5182309101067e6163e651deebc44b..e3909fcbb2096f3c91a1b8e3f359dae42365f22b 100644
--- a/bob/ip/binseg/modeling/backbones/vgg.py
+++ b/bob/ip/binseg/modeling/backbones/vgg.py
@@ -1,32 +1,25 @@
 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
 
-# Adapted from https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py 
+# Adapted from https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
 
 import torch.nn as nn
 import torch.utils.model_zoo as model_zoo
 
 
-__all__ = [
-    'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn',
-    'vgg19_bn', 'vgg19',
-]
-
-
 model_urls = {
-    'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
-    'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
-    'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
-    'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
-    'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth',
-    'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth',
-    'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth',
-    'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth',
+    "vgg11": "https://download.pytorch.org/models/vgg11-bbd30ac9.pth",
+    "vgg13": "https://download.pytorch.org/models/vgg13-c768596a.pth",
+    "vgg16": "https://download.pytorch.org/models/vgg16-397923af.pth",
+    "vgg19": "https://download.pytorch.org/models/vgg19-dcbb9e9d.pth",
+    "vgg11_bn": "https://download.pytorch.org/models/vgg11_bn-6002323d.pth",
+    "vgg13_bn": "https://download.pytorch.org/models/vgg13_bn-abd245e5.pth",
+    "vgg16_bn": "https://download.pytorch.org/models/vgg16_bn-6c64b313.pth",
+    "vgg19_bn": "https://download.pytorch.org/models/vgg19_bn-c79401a0.pth",
 }
 
 
 class VGG(nn.Module):
-
     def __init__(self, features, return_features, init_weights=True):
         super(VGG, self).__init__()
         self.features = features
@@ -38,7 +31,7 @@ class VGG(nn.Module):
         outputs = []
         # hw of input, needed for DRIU and HED
         outputs.append(x.shape[2:4])
-        for index,m in enumerate(self.features):
+        for index, m in enumerate(self.features):
             x = m(x)
             # extract layers
             if index in self.return_features:
@@ -48,7 +41,7 @@ class VGG(nn.Module):
     def _initialize_weights(self):
         for m in self.modules():
             if isinstance(m, nn.Conv2d):
-                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
+                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
                 if m.bias is not None:
                     nn.init.constant_(m.bias, 0)
             elif isinstance(m, nn.BatchNorm2d):
@@ -63,7 +56,7 @@ def make_layers(cfg, batch_norm=False):
     layers = []
     in_channels = 3
     for v in cfg:
-        if v == 'M':
+        if v == "M":
             layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
         else:
             conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
@@ -75,11 +68,52 @@ def make_layers(cfg, batch_norm=False):
     return nn.Sequential(*layers)
 
 
-cfg = {
-    'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
-    'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
-    'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
-    'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
+_cfg = {
+    "A": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"],
+    "B": [64, 64, "M", 128, 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"],
+    "D": [
+        64,
+        64,
+        "M",
+        128,
+        128,
+        "M",
+        256,
+        256,
+        256,
+        "M",
+        512,
+        512,
+        512,
+        "M",
+        512,
+        512,
+        512,
+        "M",
+    ],
+    "E": [
+        64,
+        64,
+        "M",
+        128,
+        128,
+        "M",
+        256,
+        256,
+        256,
+        256,
+        "M",
+        512,
+        512,
+        512,
+        512,
+        "M",
+        512,
+        512,
+        512,
+        512,
+        "M",
+    ],
 }
 
 
@@ -89,10 +123,10 @@ def vgg11(pretrained=False, **kwargs):
         pretrained (bool): If True, returns a model pre-trained on ImageNet
     """
     if pretrained:
-        kwargs['init_weights'] = False
-    model = VGG(make_layers(cfg['A']), **kwargs)
+        kwargs["init_weights"] = False
+    model = VGG(make_layers(_cfg["A"]), **kwargs)
     if pretrained:
-        model.load_state_dict(model_zoo.load_url(model_urls['vgg11']))
+        model.load_state_dict(model_zoo.load_url(model_urls["vgg11"]))
     return model
 
 
@@ -102,10 +136,10 @@ def vgg11_bn(pretrained=False, **kwargs):
         pretrained (bool): If True, returns a model pre-trained on ImageNet
     """
     if pretrained:
-        kwargs['init_weights'] = False
-    model = VGG(make_layers(cfg['A'], batch_norm=True), **kwargs)
+        kwargs["init_weights"] = False
+    model = VGG(make_layers(_cfg["A"], batch_norm=True), **kwargs)
     if pretrained:
-        model.load_state_dict(model_zoo.load_url(model_urls['vgg11_bn']))
+        model.load_state_dict(model_zoo.load_url(model_urls["vgg11_bn"]))
     return model
 
 
@@ -115,10 +149,10 @@ def vgg13(pretrained=False, **kwargs):
         pretrained (bool): If True, returns a model pre-trained on ImageNet
     """
     if pretrained:
-        kwargs['init_weights'] = False
-    model = VGG(make_layers(cfg['B']), **kwargs)
+        kwargs["init_weights"] = False
+    model = VGG(make_layers(_cfg["B"]), **kwargs)
     if pretrained:
-        model.load_state_dict(model_zoo.load_url(model_urls['vgg13']))
+        model.load_state_dict(model_zoo.load_url(model_urls["vgg13"]))
     return model
 
 
@@ -128,10 +162,10 @@ def vgg13_bn(pretrained=False, **kwargs):
         pretrained (bool): If True, returns a model pre-trained on ImageNet
     """
     if pretrained:
-        kwargs['init_weights'] = False
-    model = VGG(make_layers(cfg['B'], batch_norm=True), **kwargs)
+        kwargs["init_weights"] = False
+    model = VGG(make_layers(_cfg["B"], batch_norm=True), **kwargs)
     if pretrained:
-        model.load_state_dict(model_zoo.load_url(model_urls['vgg13_bn']))
+        model.load_state_dict(model_zoo.load_url(model_urls["vgg13_bn"]))
     return model
 
 
@@ -141,10 +175,10 @@ def vgg16(pretrained=False, **kwargs):
         pretrained (bool): If True, returns a model pre-trained on ImageNet
     """
     if pretrained:
-        kwargs['init_weights'] = False
-    model = VGG(make_layers(cfg['D']), **kwargs)
+        kwargs["init_weights"] = False
+    model = VGG(make_layers(_cfg["D"]), **kwargs)
     if pretrained:
-        model.load_state_dict(model_zoo.load_url(model_urls['vgg16']),strict=False)
+        model.load_state_dict(model_zoo.load_url(model_urls["vgg16"]), strict=False)
     return model
 
 
@@ -154,10 +188,10 @@ def vgg16_bn(pretrained=False, **kwargs):
         pretrained (bool): If True, returns a model pre-trained on ImageNet
     """
     if pretrained:
-        kwargs['init_weights'] = False
-    model = VGG(make_layers(cfg['D'], batch_norm=True), **kwargs)
+        kwargs["init_weights"] = False
+    model = VGG(make_layers(_cfg["D"], batch_norm=True), **kwargs)
     if pretrained:
-        model.load_state_dict(model_zoo.load_url(model_urls['vgg16_bn']))
+        model.load_state_dict(model_zoo.load_url(model_urls["vgg16_bn"]))
     return model
 
 
@@ -167,10 +201,10 @@ def vgg19(pretrained=False, **kwargs):
         pretrained (bool): If True, returns a model pre-trained on ImageNet
     """
     if pretrained:
-        kwargs['init_weights'] = False
-    model = VGG(make_layers(cfg['E']), **kwargs)
+        kwargs["init_weights"] = False
+    model = VGG(make_layers(_cfg["E"]), **kwargs)
     if pretrained:
-        model.load_state_dict(model_zoo.load_url(model_urls['vgg19']))
+        model.load_state_dict(model_zoo.load_url(model_urls["vgg19"]))
     return model
 
 
@@ -180,8 +214,8 @@ def vgg19_bn(pretrained=False, **kwargs):
         pretrained (bool): If True, returns a model pre-trained on ImageNet
     """
     if pretrained:
-        kwargs['init_weights'] = False
-    model = VGG(make_layers(cfg['E'], batch_norm=True), **kwargs)
+        kwargs["init_weights"] = False
+    model = VGG(make_layers(_cfg["E"], batch_norm=True), **kwargs)
     if pretrained:
-        model.load_state_dict(model_zoo.load_url(model_urls['vgg19_bn']))
-    return model
\ No newline at end of file
+        model.load_state_dict(model_zoo.load_url(model_urls["vgg19_bn"]))
+    return model
diff --git a/bob/ip/binseg/modeling/driu.py b/bob/ip/binseg/modeling/driu.py
index 466d4eb0942dcbc5e8f7f26a4ce2ca8db52d6f38..c63dc843a7a267fd9a2f1f6bbc7dd20b4cd1a2a1 100644
--- a/bob/ip/binseg/modeling/driu.py
+++ b/bob/ip/binseg/modeling/driu.py
@@ -2,79 +2,99 @@
 # -*- coding: utf-8 -*-
 
 import torch
-from torch import nn
+import torch.nn
 from collections import OrderedDict
 from bob.ip.binseg.modeling.backbones.vgg import vgg16
-from bob.ip.binseg.modeling.make_layers import conv_with_kaiming_uniform,convtrans_with_kaiming_uniform, UpsampleCropBlock
+from bob.ip.binseg.modeling.make_layers import (
+    conv_with_kaiming_uniform,
+    convtrans_with_kaiming_uniform,
+    UpsampleCropBlock,
+)
 
-class ConcatFuseBlock(nn.Module):
-    """ 
-    Takes in four feature maps with 16 channels each, concatenates them 
-    and applies a 1x1 convolution with 1 output channel. 
+
+class ConcatFuseBlock(torch.nn.Module):
+    """
+    Takes in four feature maps with 16 channels each, concatenates them
+    and applies a 1x1 convolution with 1 output channel.
     """
+
     def __init__(self):
         super().__init__()
-        self.conv = conv_with_kaiming_uniform(4*16,1,1,1,0)
-    
-    def forward(self,x1,x2,x3,x4):
-        x_cat = torch.cat([x1,x2,x3,x4],dim=1)
+        self.conv = conv_with_kaiming_uniform(4 * 16, 1, 1, 1, 0)
+
+    def forward(self, x1, x2, x3, x4):
+
+        x_cat = torch.cat([x1, x2, x3, x4], dim=1)
         x = self.conv(x_cat)
-        return x 
-            
-class DRIU(nn.Module):
+        return x
+
+
+class DRIU(torch.nn.Module):
     """
     DRIU head module
-    Based on paper by `Maninis et al. (2016)`_ 
+
+    Based on paper by [MANINIS-2016]_.
+
     Parameters
     ----------
     in_channels_list : list
         number of channels for each feature map that is returned from backbone
     """
+
     def __init__(self, in_channels_list=None):
         super(DRIU, self).__init__()
-        in_conv_1_2_16, in_upsample2, in_upsample_4, in_upsample_8 = in_channels_list
+        (in_conv_1_2_16, in_upsample2, in_upsample_4, in_upsample_8,) = in_channels_list
 
-        self.conv1_2_16 = nn.Conv2d(in_conv_1_2_16, 16, 3, 1, 1)
+        self.conv1_2_16 = torch.nn.Conv2d(in_conv_1_2_16, 16, 3, 1, 1)
         # Upsample layers
         self.upsample2 = UpsampleCropBlock(in_upsample2, 16, 4, 2, 0)
         self.upsample4 = UpsampleCropBlock(in_upsample_4, 16, 8, 4, 0)
         self.upsample8 = UpsampleCropBlock(in_upsample_8, 16, 16, 8, 0)
-        
+
         # Concat and Fuse
         self.concatfuse = ConcatFuseBlock()
 
-    def forward(self,x):
+    def forward(self, x):
         """
+
         Parameters
         ----------
+
         x : list
-            list of tensors as returned from the backbone network.
-            First element: height and width of input image. 
-            Remaining elements: feature maps for each feature level.
+            list of tensors as returned from the backbone network.  First
+            element: height and width of input image.  Remaining elements:
+            feature maps for each feature level.
 
         Returns
         -------
-        :py:class:`torch.Tensor`
+
+        tensor : :py:class:`torch.Tensor`
+
         """
         hw = x[0]
-        conv1_2_16 = self.conv1_2_16(x[1])  # conv1_2_16   
-        upsample2 = self.upsample2(x[2], hw) # side-multi2-up
-        upsample4 = self.upsample4(x[3], hw) # side-multi3-up
-        upsample8 = self.upsample8(x[4], hw) # side-multi4-up
+        conv1_2_16 = self.conv1_2_16(x[1])  # conv1_2_16
+        upsample2 = self.upsample2(x[2], hw)  # side-multi2-up
+        upsample4 = self.upsample4(x[3], hw)  # side-multi3-up
+        upsample8 = self.upsample8(x[4], hw)  # side-multi4-up
         out = self.concatfuse(conv1_2_16, upsample2, upsample4, upsample8)
         return out
 
+
 def build_driu():
-    """ 
+    """
     Adds backbone and head together
 
     Returns
     -------
-    :py:class:torch.nn.Module
+
+    module : :py:class:`torch.nn.Module`
+
     """
-    backbone = vgg16(pretrained=False, return_features = [3, 8, 14, 22])
+    backbone = vgg16(pretrained=False, return_features=[3, 8, 14, 22])
     driu_head = DRIU([64, 128, 256, 512])
 
-    model = nn.Sequential(OrderedDict([("backbone", backbone), ("head", driu_head)]))
-    model.name = "DRIU"
-    return model
\ No newline at end of file
+    model = torch.nn.Sequential(
+        OrderedDict([("backbone", backbone), ("head", driu_head)])
+    )
+    model.name = "driu"
+    return model
diff --git a/bob/ip/binseg/modeling/driubn.py b/bob/ip/binseg/modeling/driubn.py
index 6043fcd6257b73712572002d1895fca84ca7e69f..fd834353eedd5a15e7fa017b97e517966f2a740c 100644
--- a/bob/ip/binseg/modeling/driubn.py
+++ b/bob/ip/binseg/modeling/driubn.py
@@ -2,56 +2,66 @@
 # -*- coding: utf-8 -*-
 
 import torch
-from torch import nn
+import torch.nn
 from collections import OrderedDict
 from bob.ip.binseg.modeling.backbones.vgg import vgg16_bn
-from bob.ip.binseg.modeling.make_layers import conv_with_kaiming_uniform,convtrans_with_kaiming_uniform, UpsampleCropBlock
+from bob.ip.binseg.modeling.make_layers import (
+    conv_with_kaiming_uniform,
+    convtrans_with_kaiming_uniform,
+    UpsampleCropBlock,
+)
 
-class ConcatFuseBlock(nn.Module):
-    """ 
-    Takes in four feature maps with 16 channels each, concatenates them 
-    and applies a 1x1 convolution with 1 output channel. 
+
+class ConcatFuseBlock(torch.nn.Module):
+    """
+    Takes in four feature maps with 16 channels each, concatenates them
+    and applies a 1x1 convolution with 1 output channel.
     """
+
     def __init__(self):
         super().__init__()
-        self.conv = nn.Sequential(
-            conv_with_kaiming_uniform(4*16,1,1,1,0)
-            ,nn.BatchNorm2d(1)
+        self.conv = torch.nn.Sequential(
+            conv_with_kaiming_uniform(4 * 16, 1, 1, 1, 0), torch.nn.BatchNorm2d(1)
         )
-    def forward(self,x1,x2,x3,x4):
-        x_cat = torch.cat([x1,x2,x3,x4],dim=1)
+
+    def forward(self, x1, x2, x3, x4):
+        x_cat = torch.cat([x1, x2, x3, x4], dim=1)
         x = self.conv(x_cat)
-        return x 
-            
-class DRIU(nn.Module):
+        return x
+
+
+class DRIU(torch.nn.Module):
     """
     DRIU head module
-    Based on paper by `Maninis et al. (2016)`_ 
+
+    Based on paper by [MANINIS-2016]_.
+
     Parameters
     ----------
     in_channels_list : list
         number of channels for each feature map that is returned from backbone
     """
+
     def __init__(self, in_channels_list=None):
         super(DRIU, self).__init__()
         in_conv_1_2_16, in_upsample2, in_upsample_4, in_upsample_8 = in_channels_list
 
-        self.conv1_2_16 = nn.Conv2d(in_conv_1_2_16, 16, 3, 1, 1)
+        self.conv1_2_16 = torch.nn.Conv2d(in_conv_1_2_16, 16, 3, 1, 1)
         # Upsample layers
         self.upsample2 = UpsampleCropBlock(in_upsample2, 16, 4, 2, 0)
         self.upsample4 = UpsampleCropBlock(in_upsample_4, 16, 8, 4, 0)
         self.upsample8 = UpsampleCropBlock(in_upsample_8, 16, 16, 8, 0)
-        
+
         # Concat and Fuse
         self.concatfuse = ConcatFuseBlock()
 
-    def forward(self,x):
+    def forward(self, x):
         """
         Parameters
         ----------
         x : list
             list of tensors as returned from the backbone network.
-            First element: height and width of input image. 
+            First element: height and width of input image.
             Remaining elements: feature maps for each feature level.
 
         Returns
@@ -59,24 +69,29 @@ class DRIU(nn.Module):
         :py:class:`torch.Tensor`
         """
         hw = x[0]
-        conv1_2_16 = self.conv1_2_16(x[1])  # conv1_2_16   
-        upsample2 = self.upsample2(x[2], hw) # side-multi2-up
-        upsample4 = self.upsample4(x[3], hw) # side-multi3-up
-        upsample8 = self.upsample8(x[4], hw) # side-multi4-up
+        conv1_2_16 = self.conv1_2_16(x[1])  # conv1_2_16
+        upsample2 = self.upsample2(x[2], hw)  # side-multi2-up
+        upsample4 = self.upsample4(x[3], hw)  # side-multi3-up
+        upsample8 = self.upsample8(x[4], hw)  # side-multi4-up
         out = self.concatfuse(conv1_2_16, upsample2, upsample4, upsample8)
         return out
 
+
 def build_driu():
-    """ 
+    """
     Adds backbone and head together
 
     Returns
     -------
-    :py:class:torch.nn.Module
+
+    module : :py:class:`torch.nn.Module`
+
     """
-    backbone = vgg16_bn(pretrained=False, return_features = [5, 12, 19, 29])
+    backbone = vgg16_bn(pretrained=False, return_features=[5, 12, 19, 29])
     driu_head = DRIU([64, 128, 256, 512])
 
-    model = nn.Sequential(OrderedDict([("backbone", backbone), ("head", driu_head)]))
-    model.name = "DRIUBN"
-    return model
\ No newline at end of file
+    model = torch.nn.Sequential(
+        OrderedDict([("backbone", backbone), ("head", driu_head)])
+    )
+    model.name = "driu-bn"
+    return model
diff --git a/bob/ip/binseg/modeling/driuod.py b/bob/ip/binseg/modeling/driuod.py
index cfa11973279ecba3b71401f5c87b661f77b34ae6..dbd26167eda41e196bf33a6c52eb9e0cf63bc59d 100644
--- a/bob/ip/binseg/modeling/driuod.py
+++ b/bob/ip/binseg/modeling/driuod.py
@@ -2,34 +2,42 @@
 # -*- coding: utf-8 -*-
 
 import torch
-from torch import nn
+import torch.nn
 from collections import OrderedDict
 from bob.ip.binseg.modeling.backbones.vgg import vgg16
-from bob.ip.binseg.modeling.make_layers import conv_with_kaiming_uniform,convtrans_with_kaiming_uniform, UpsampleCropBlock
+from bob.ip.binseg.modeling.make_layers import (
+    conv_with_kaiming_uniform,
+    convtrans_with_kaiming_uniform,
+    UpsampleCropBlock,
+)
 
-class ConcatFuseBlock(nn.Module):
-    """ 
-    Takes in four feature maps with 16 channels each, concatenates them 
-    and applies a 1x1 convolution with 1 output channel. 
+
+class ConcatFuseBlock(torch.nn.Module):
+    """
+    Takes in four feature maps with 16 channels each, concatenates them
+    and applies a 1x1 convolution with 1 output channel.
     """
+
     def __init__(self):
         super().__init__()
-        self.conv = conv_with_kaiming_uniform(4*16,1,1,1,0)
-    
-    def forward(self,x1,x2,x3,x4):
-        x_cat = torch.cat([x1,x2,x3,x4],dim=1)
+        self.conv = conv_with_kaiming_uniform(4 * 16, 1, 1, 1, 0)
+
+    def forward(self, x1, x2, x3, x4):
+        x_cat = torch.cat([x1, x2, x3, x4], dim=1)
         x = self.conv(x_cat)
-        return x 
-            
-class DRIUOD(nn.Module):
+        return x
+
+
+class DRIUOD(torch.nn.Module):
     """
     DRIU head module
-    
+
     Parameters
     ----------
     in_channels_list : list
         number of channels for each feature map that is returned from backbone
     """
+
     def __init__(self, in_channels_list=None):
         super(DRIUOD, self).__init__()
         in_upsample2, in_upsample_4, in_upsample_8, in_upsample_16 = in_channels_list
@@ -40,17 +48,16 @@ class DRIUOD(nn.Module):
         self.upsample8 = UpsampleCropBlock(in_upsample_8, 16, 16, 8, 0)
         self.upsample16 = UpsampleCropBlock(in_upsample_16, 16, 32, 16, 0)
 
-        
         # Concat and Fuse
         self.concatfuse = ConcatFuseBlock()
 
-    def forward(self,x):
+    def forward(self, x):
         """
         Parameters
         ----------
         x : list
             list of tensors as returned from the backbone network.
-            First element: height and width of input image. 
+            First element: height and width of input image.
             Remaining elements: feature maps for each feature level.
 
         Returns
@@ -59,23 +66,27 @@ class DRIUOD(nn.Module):
         """
         hw = x[0]
         upsample2 = self.upsample2(x[1], hw)  # side-multi2-up
-        upsample4 = self.upsample4(x[2], hw)   # side-multi3-up
-        upsample8 = self.upsample8(x[3], hw)   # side-multi4-up
+        upsample4 = self.upsample4(x[2], hw)  # side-multi3-up
+        upsample8 = self.upsample8(x[3], hw)  # side-multi4-up
         upsample16 = self.upsample16(x[4], hw)  # side-multi5-up
-        out = self.concatfuse(upsample2, upsample4, upsample8,upsample16)
+        out = self.concatfuse(upsample2, upsample4, upsample8, upsample16)
         return out
 
+
 def build_driuod():
-    """ 
+    """
     Adds backbone and head together
 
     Returns
     -------
-    :py:class:torch.nn.Module
+    module : :py:class:`torch.nn.Module`
+
     """
-    backbone = vgg16(pretrained=False, return_features = [8, 14, 22,29])
-    driu_head = DRIUOD([128, 256, 512,512])
+    backbone = vgg16(pretrained=False, return_features=[8, 14, 22, 29])
+    driu_head = DRIUOD([128, 256, 512, 512])
 
-    model = nn.Sequential(OrderedDict([("backbone", backbone), ("head", driu_head)]))
-    model.name = "DRIUOD"
-    return model
\ No newline at end of file
+    model = torch.nn.Sequential(
+        OrderedDict([("backbone", backbone), ("head", driu_head)])
+    )
+    model.name = "driu-od"
+    return model
diff --git a/bob/ip/binseg/modeling/driupix.py b/bob/ip/binseg/modeling/driupix.py
index 00e40932afc0c04f52925783fe3595fa22a7d098..eef95c9f9ac237c1f9235b7fc34f3e90752ccfeb 100644
--- a/bob/ip/binseg/modeling/driupix.py
+++ b/bob/ip/binseg/modeling/driupix.py
@@ -2,54 +2,66 @@
 # -*- coding: utf-8 -*-
 
 import torch
-from torch import nn
+import torch.nn
 from collections import OrderedDict
 from bob.ip.binseg.modeling.backbones.vgg import vgg16
-from bob.ip.binseg.modeling.make_layers import conv_with_kaiming_uniform,convtrans_with_kaiming_uniform, UpsampleCropBlock
+from bob.ip.binseg.modeling.make_layers import (
+    conv_with_kaiming_uniform,
+    convtrans_with_kaiming_uniform,
+    UpsampleCropBlock,
+)
 
-class ConcatFuseBlock(nn.Module):
-    """ 
-    Takes in four feature maps with 16 channels each, concatenates them 
-    and applies a 1x1 convolution with 1 output channel. 
+
+class ConcatFuseBlock(torch.nn.Module):
+    """
+    Takes in four feature maps with 16 channels each, concatenates them
+    and applies a 1x1 convolution with 1 output channel.
     """
+
     def __init__(self):
         super().__init__()
-        self.conv = conv_with_kaiming_uniform(4*16,1,1,1,0)
-    
-    def forward(self,x1,x2,x3,x4):
-        x_cat = torch.cat([x1,x2,x3,x4],dim=1)
+        self.conv = conv_with_kaiming_uniform(4 * 16, 1, 1, 1, 0)
+
+    def forward(self, x1, x2, x3, x4):
+        x_cat = torch.cat([x1, x2, x3, x4], dim=1)
         x = self.conv(x_cat)
-        return x 
-            
-class DRIUPIX(nn.Module):
+        return x
+
+
+class DRIUPIX(torch.nn.Module):
     """
     DRIUPIX head module. DRIU with pixelshuffle instead of ConvTrans2D
-    
+
     Parameters
     ----------
     in_channels_list : list
         number of channels for each feature map that is returned from backbone
     """
+
     def __init__(self, in_channels_list=None):
         super(DRIUPIX, self).__init__()
         in_conv_1_2_16, in_upsample2, in_upsample_4, in_upsample_8 = in_channels_list
 
-        self.conv1_2_16 = nn.Conv2d(in_conv_1_2_16, 16, 3, 1, 1)
+        self.conv1_2_16 = torch.nn.Conv2d(in_conv_1_2_16, 16, 3, 1, 1)
         # Upsample layers
         self.upsample2 = UpsampleCropBlock(in_upsample2, 16, 4, 2, 0, pixelshuffle=True)
-        self.upsample4 = UpsampleCropBlock(in_upsample_4, 16, 8, 4, 0, pixelshuffle=True)
-        self.upsample8 = UpsampleCropBlock(in_upsample_8, 16, 16, 8, 0, pixelshuffle=True)
-        
+        self.upsample4 = UpsampleCropBlock(
+            in_upsample_4, 16, 8, 4, 0, pixelshuffle=True
+        )
+        self.upsample8 = UpsampleCropBlock(
+            in_upsample_8, 16, 16, 8, 0, pixelshuffle=True
+        )
+
         # Concat and Fuse
         self.concatfuse = ConcatFuseBlock()
 
-    def forward(self,x):
+    def forward(self, x):
         """
         Parameters
         ----------
         x : list
             list of tensors as returned from the backbone network.
-            First element: height and width of input image. 
+            First element: height and width of input image.
             Remaining elements: feature maps for each feature level.
 
         Returns
@@ -57,24 +69,28 @@ class DRIUPIX(nn.Module):
         :py:class:`torch.Tensor`
         """
         hw = x[0]
-        conv1_2_16 = self.conv1_2_16(x[1])  # conv1_2_16   
-        upsample2 = self.upsample2(x[2], hw) # side-multi2-up
-        upsample4 = self.upsample4(x[3], hw) # side-multi3-up
-        upsample8 = self.upsample8(x[4], hw) # side-multi4-up
+        conv1_2_16 = self.conv1_2_16(x[1])  # conv1_2_16
+        upsample2 = self.upsample2(x[2], hw)  # side-multi2-up
+        upsample4 = self.upsample4(x[3], hw)  # side-multi3-up
+        upsample8 = self.upsample8(x[4], hw)  # side-multi4-up
         out = self.concatfuse(conv1_2_16, upsample2, upsample4, upsample8)
         return out
 
+
 def build_driupix():
-    """ 
+    """
     Adds backbone and head together
 
     Returns
     -------
-    :py:class:torch.nn.Module
+    module : :py:class:`torch.nn.Module`
+
     """
-    backbone = vgg16(pretrained=False, return_features = [3, 8, 14, 22])
+    backbone = vgg16(pretrained=False, return_features=[3, 8, 14, 22])
     driu_head = DRIUPIX([64, 128, 256, 512])
 
-    model = nn.Sequential(OrderedDict([("backbone", backbone), ("head", driu_head)]))
-    model.name = "DRIUPIX"
-    return model
\ No newline at end of file
+    model = torch.nn.Sequential(
+        OrderedDict([("backbone", backbone), ("head", driu_head)])
+    )
+    model.name = "driu-pix"
+    return model
diff --git a/bob/ip/binseg/modeling/hed.py b/bob/ip/binseg/modeling/hed.py
index fa44366e4e75dce1059a130e83f78e7884922501..db42515c78c137b93153df9f33d17e7a3a3bd7a1 100644
--- a/bob/ip/binseg/modeling/hed.py
+++ b/bob/ip/binseg/modeling/hed.py
@@ -2,82 +2,101 @@
 # -*- coding: utf-8 -*-
 
 import torch
-from torch import nn
+import torch.nn
 from collections import OrderedDict
 from bob.ip.binseg.modeling.backbones.vgg import vgg16
-from bob.ip.binseg.modeling.make_layers import conv_with_kaiming_uniform, convtrans_with_kaiming_uniform, UpsampleCropBlock
+from bob.ip.binseg.modeling.make_layers import (
+    conv_with_kaiming_uniform,
+    convtrans_with_kaiming_uniform,
+    UpsampleCropBlock,
+)
 
-class ConcatFuseBlock(nn.Module):
-    """ 
-    Takes in five feature maps with one channel each, concatenates thems 
-    and applies a 1x1 convolution with 1 output channel. 
+
+class ConcatFuseBlock(torch.nn.Module):
+    """
+    Takes in five feature maps with one channel each, concatenates thems
+    and applies a 1x1 convolution with 1 output channel.
     """
+
     def __init__(self):
         super().__init__()
-        self.conv = conv_with_kaiming_uniform(5,1,1,1,0)
-    
-    def forward(self,x1,x2,x3,x4,x5):
-        x_cat = torch.cat([x1,x2,x3,x4,x5],dim=1)
+        self.conv = conv_with_kaiming_uniform(5, 1, 1, 1, 0)
+
+    def forward(self, x1, x2, x3, x4, x5):
+        x_cat = torch.cat([x1, x2, x3, x4, x5], dim=1)
         x = self.conv(x_cat)
-        return x 
-            
-class HED(nn.Module):
+        return x
+
+
+class HED(torch.nn.Module):
     """
     HED head module
-    
+
     Parameters
     ----------
     in_channels_list : list
         number of channels for each feature map that is returned from backbone
     """
+
     def __init__(self, in_channels_list=None):
         super(HED, self).__init__()
-        in_conv_1_2_16, in_upsample2, in_upsample_4, in_upsample_8, in_upsample_16 = in_channels_list
-        
-        self.conv1_2_16 = nn.Conv2d(in_conv_1_2_16,1,3,1,1)
+        (
+            in_conv_1_2_16,
+            in_upsample2,
+            in_upsample_4,
+            in_upsample_8,
+            in_upsample_16,
+        ) = in_channels_list
+
+        self.conv1_2_16 = torch.nn.Conv2d(in_conv_1_2_16, 1, 3, 1, 1)
         # Upsample
-        self.upsample2 = UpsampleCropBlock(in_upsample2,1,4,2,0)
-        self.upsample4 = UpsampleCropBlock(in_upsample_4,1,8,4,0)
-        self.upsample8 = UpsampleCropBlock(in_upsample_8,1,16,8,0)
-        self.upsample16 = UpsampleCropBlock(in_upsample_16,1,32,16,0)
+        self.upsample2 = UpsampleCropBlock(in_upsample2, 1, 4, 2, 0)
+        self.upsample4 = UpsampleCropBlock(in_upsample_4, 1, 8, 4, 0)
+        self.upsample8 = UpsampleCropBlock(in_upsample_8, 1, 16, 8, 0)
+        self.upsample16 = UpsampleCropBlock(in_upsample_16, 1, 32, 16, 0)
         # Concat and Fuse
         self.concatfuse = ConcatFuseBlock()
 
-    def forward(self,x):
+    def forward(self, x):
         """
         Parameters
         ----------
         x : list
             list of tensors as returned from the backbone network.
-            First element: height and width of input image. 
+            First element: height and width of input image.
             Remaining elements: feature maps for each feature level.
-        
+
         Returns
         -------
-        :py:class:`torch.Tensor`
+        tensor : :py:class:`torch.Tensor`
         """
         hw = x[0]
-        conv1_2_16 = self.conv1_2_16(x[1])  
-        upsample2 = self.upsample2(x[2],hw)
-        upsample4 = self.upsample4(x[3],hw)
-        upsample8 = self.upsample8(x[4],hw)
-        upsample16 = self.upsample16(x[5],hw) 
-        concatfuse = self.concatfuse(conv1_2_16,upsample2,upsample4,upsample8,upsample16)
-        
-        out = [upsample2,upsample4,upsample8,upsample16,concatfuse]
+        conv1_2_16 = self.conv1_2_16(x[1])
+        upsample2 = self.upsample2(x[2], hw)
+        upsample4 = self.upsample4(x[3], hw)
+        upsample8 = self.upsample8(x[4], hw)
+        upsample16 = self.upsample16(x[5], hw)
+        concatfuse = self.concatfuse(
+            conv1_2_16, upsample2, upsample4, upsample8, upsample16
+        )
+
+        out = [upsample2, upsample4, upsample8, upsample16, concatfuse]
         return out
 
+
 def build_hed():
-    """ 
+    """
     Adds backbone and head together
 
     Returns
     -------
-    :py:class:torch.nn.Module
+    module : :py:class:`torch.nn.Module`
     """
-    backbone = vgg16(pretrained=False, return_features = [3, 8, 14, 22, 29])
+    backbone = vgg16(pretrained=False, return_features=[3, 8, 14, 22, 29])
     hed_head = HED([64, 128, 256, 512, 512])
 
-    model = nn.Sequential(OrderedDict([("backbone", backbone), ("head", hed_head)]))
-    model.name = "HED"
-    return model
\ No newline at end of file
+    model = torch.nn.Sequential(
+        OrderedDict([("backbone", backbone), ("head", hed_head)])
+    )
+    model.name = "hed"
+    return model
diff --git a/bob/ip/binseg/modeling/losses.py b/bob/ip/binseg/modeling/losses.py
index de85a581515cb6bccb52074a68963e9978f2c72e..2f435c14cbaa3d33453a6c3b4c6d82a6d0588821 100644
--- a/bob/ip/binseg/modeling/losses.py
+++ b/bob/ip/binseg/modeling/losses.py
@@ -1,19 +1,40 @@
+"""Loss implementations"""
+
 import torch
 from torch.nn.modules.loss import _Loss
-from torch._jit_internal import weak_script_method
 
+# Conditionally decorates a method if a decorator exists in PyTorch
+# This overcomes an import error with versions of PyTorch >= 1.2, where the
+# decorator ``weak_script_method`` is not anymore available.  See:
+# https://github.com/pytorch/pytorch/commit/10c4b98ade8349d841518d22f19a653a939e260c#diff-ee07db084d958260fd24b4b02d4f078d
+# from July 4th, 2019.
+try:
+    from torch._jit_internal import weak_script_method
+except ImportError:
 
+    def weak_script_method(x):
+        return x
 
 
 class WeightedBCELogitsLoss(_Loss):
-    """ 
-    Implements Equation 1 in `Maninis et al. (2016)`_. Based on ``torch.nn.modules.loss.BCEWithLogitsLoss``. 
+    """
+    Implements Equation 1 in [MANINIS-2016]_. Based on
+    :py:class:`torch.nn.BCEWithLogitsLoss`.
+
     Calculate sum of weighted cross entropy loss.
     """
-    def __init__(self, weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None):
+
+    def __init__(
+        self,
+        weight=None,
+        size_average=None,
+        reduce=None,
+        reduction="mean",
+        pos_weight=None,
+    ):
         super(WeightedBCELogitsLoss, self).__init__(size_average, reduce, reduction)
-        self.register_buffer('weight', weight)
-        self.register_buffer('pos_weight', pos_weight)
+        self.register_buffer("weight", weight)
+        self.register_buffer("pos_weight", pos_weight)
 
     @weak_script_method
     def forward(self, input, target, masks=None):
@@ -23,37 +44,57 @@ class WeightedBCELogitsLoss(_Loss):
         input : :py:class:`torch.Tensor`
         target : :py:class:`torch.Tensor`
         masks : :py:class:`torch.Tensor`, optional
-        
+
         Returns
         -------
         :py:class:`torch.Tensor`
         """
         n, c, h, w = target.shape
-        num_pos = torch.sum(target, dim=[1, 2, 3]).float().reshape(n,1) # torch.Size([n, 1])
-        if hasattr(masks,'dtype'):
-            num_mask_neg = c * h * w - torch.sum(masks, dim=[1, 2, 3]).float().reshape(n,1) # torch.Size([n, 1])
-            num_neg =  c * h * w - num_pos - num_mask_neg
+        num_pos = (
+            torch.sum(target, dim=[1, 2, 3]).float().reshape(n, 1)
+        )  # torch.Size([n, 1])
+        if hasattr(masks, "dtype"):
+            num_mask_neg = c * h * w - torch.sum(masks, dim=[1, 2, 3]).float().reshape(
+                n, 1
+            )  # torch.Size([n, 1])
+            num_neg = c * h * w - num_pos - num_mask_neg
         else:
-            num_neg = c * h * w - num_pos 
-        numposnumtotal = torch.ones_like(target) * (num_pos / (num_pos + num_neg)).unsqueeze(1).unsqueeze(2)
-        numnegnumtotal = torch.ones_like(target) * (num_neg / (num_pos + num_neg)).unsqueeze(1).unsqueeze(2)
-        weight = torch.where((target <= 0.5) , numposnumtotal, numnegnumtotal)
+            num_neg = c * h * w - num_pos
+        numposnumtotal = torch.ones_like(target) * (
+            num_pos / (num_pos + num_neg)
+        ).unsqueeze(1).unsqueeze(2)
+        numnegnumtotal = torch.ones_like(target) * (
+            num_neg / (num_pos + num_neg)
+        ).unsqueeze(1).unsqueeze(2)
+        weight = torch.where((target <= 0.5), numposnumtotal, numnegnumtotal)
+
+        loss = torch.nn.functional.binary_cross_entropy_with_logits(
+            input, target, weight=weight, reduction=self.reduction
+        )
+        return loss
 
-        loss = torch.nn.functional.binary_cross_entropy_with_logits(input, target, weight=weight, reduction=self.reduction)
-        return loss 
 
 class SoftJaccardBCELogitsLoss(_Loss):
-    """ 
-    Implements Equation 3 in `Iglovikov  et al. (2018)`_. Based on ``torch.nn.modules.loss.BCEWithLogitsLoss``. 
+    """
+    Implements Equation 3 in [IGLOVIKOV-2018]_.  Based on
+    ``torch.nn.BCEWithLogitsLoss``.
 
     Attributes
     ----------
     alpha : float
         determines the weighting of SoftJaccard and BCE. Default: ``0.7``
     """
-    def __init__(self, alpha=0.7, size_average=None, reduce=None, reduction='mean', pos_weight=None):
-        super(SoftJaccardBCELogitsLoss, self).__init__(size_average, reduce, reduction) 
-        self.alpha = alpha   
+
+    def __init__(
+        self,
+        alpha=0.7,
+        size_average=None,
+        reduce=None,
+        reduction="mean",
+        pos_weight=None,
+    ):
+        super(SoftJaccardBCELogitsLoss, self).__init__(size_average, reduce, reduction)
+        self.alpha = alpha
 
     @weak_script_method
     def forward(self, input, target, masks=None):
@@ -63,7 +104,7 @@ class SoftJaccardBCELogitsLoss(_Loss):
         input : :py:class:`torch.Tensor`
         target : :py:class:`torch.Tensor`
         masks : :py:class:`torch.Tensor`, optional
-        
+
         Returns
         -------
         :py:class:`torch.Tensor`
@@ -72,23 +113,35 @@ class SoftJaccardBCELogitsLoss(_Loss):
         probabilities = torch.sigmoid(input)
         intersection = (probabilities * target).sum()
         sums = probabilities.sum() + target.sum()
-        
-        softjaccard = intersection/(sums - intersection + eps)
 
-        bceloss = torch.nn.functional.binary_cross_entropy_with_logits(input, target, weight=None, reduction=self.reduction)
-        loss = self.alpha * bceloss + (1 - self.alpha) * (1-softjaccard)
+        softjaccard = intersection / (sums - intersection + eps)
+
+        bceloss = torch.nn.functional.binary_cross_entropy_with_logits(
+            input, target, weight=None, reduction=self.reduction
+        )
+        loss = self.alpha * bceloss + (1 - self.alpha) * (1 - softjaccard)
         return loss
 
 
 class HEDWeightedBCELogitsLoss(_Loss):
-    """ 
-    Implements Equation 2 in `He et al. (2015)`_. Based on ``torch.nn.modules.loss.BCEWithLogitsLoss``. 
+    """
+    Implements Equation 2 in [HE-2015]_. Based on
+    ``torch.nn.modules.loss.BCEWithLogitsLoss``.
+
     Calculate sum of weighted cross entropy loss.
     """
-    def __init__(self, weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None):
+
+    def __init__(
+        self,
+        weight=None,
+        size_average=None,
+        reduce=None,
+        reduction="mean",
+        pos_weight=None,
+    ):
         super(HEDWeightedBCELogitsLoss, self).__init__(size_average, reduce, reduction)
-        self.register_buffer('weight', weight)
-        self.register_buffer('pos_weight', pos_weight)
+        self.register_buffer("weight", weight)
+        self.register_buffer("pos_weight", pos_weight)
 
     @weak_script_method
     def forward(self, inputlist, target, masks=None):
@@ -106,33 +159,57 @@ class HEDWeightedBCELogitsLoss(_Loss):
         loss_over_all_inputs = []
         for input in inputlist:
             n, c, h, w = target.shape
-            num_pos = torch.sum(target, dim=[1, 2, 3]).float().reshape(n,1) # torch.Size([n, 1])
-            if hasattr(masks,'dtype'):
-                num_mask_neg = c * h * w - torch.sum(masks, dim=[1, 2, 3]).float().reshape(n,1) # torch.Size([n, 1])
-                num_neg =  c * h * w - num_pos - num_mask_neg
-            else: 
+            num_pos = (
+                torch.sum(target, dim=[1, 2, 3]).float().reshape(n, 1)
+            )  # torch.Size([n, 1])
+            if hasattr(masks, "dtype"):
+                num_mask_neg = c * h * w - torch.sum(
+                    masks, dim=[1, 2, 3]
+                ).float().reshape(
+                    n, 1
+                )  # torch.Size([n, 1])
+                num_neg = c * h * w - num_pos - num_mask_neg
+            else:
                 num_neg = c * h * w - num_pos  # torch.Size([n, 1])
-            numposnumtotal = torch.ones_like(target) * (num_pos / (num_pos + num_neg)).unsqueeze(1).unsqueeze(2)
-            numnegnumtotal = torch.ones_like(target) * (num_neg / (num_pos + num_neg)).unsqueeze(1).unsqueeze(2)
-            weight = torch.where((target <= 0.5) , numposnumtotal, numnegnumtotal)
-            loss = torch.nn.functional.binary_cross_entropy_with_logits(input, target, weight=weight, reduction=self.reduction)
+            numposnumtotal = torch.ones_like(target) * (
+                num_pos / (num_pos + num_neg)
+            ).unsqueeze(1).unsqueeze(2)
+            numnegnumtotal = torch.ones_like(target) * (
+                num_neg / (num_pos + num_neg)
+            ).unsqueeze(1).unsqueeze(2)
+            weight = torch.where((target <= 0.5), numposnumtotal, numnegnumtotal)
+            loss = torch.nn.functional.binary_cross_entropy_with_logits(
+                input, target, weight=weight, reduction=self.reduction
+            )
             loss_over_all_inputs.append(loss.unsqueeze(0))
         final_loss = torch.cat(loss_over_all_inputs).mean()
-        return final_loss 
+        return final_loss
 
 
 class HEDSoftJaccardBCELogitsLoss(_Loss):
-    """ 
-    Implements  Equation 3 in `Iglovikov  et al. (2018)`_ for the hed network. Based on ``torch.nn.modules.loss.BCEWithLogitsLoss``. 
+    """
+
+    Implements  Equation 3 in [IGLOVIKOV-2018]_ for the hed network. Based on
+    :py:class:`torch.nn.BCEWithLogitsLoss`.
 
     Attributes
     ----------
     alpha : float
         determines the weighting of SoftJaccard and BCE. Default: ``0.3``
     """
-    def __init__(self, alpha=0.3, size_average=None, reduce=None, reduction='mean', pos_weight=None):
-        super(HEDSoftJaccardBCELogitsLoss, self).__init__(size_average, reduce, reduction) 
-        self.alpha = alpha   
+
+    def __init__(
+        self,
+        alpha=0.3,
+        size_average=None,
+        reduce=None,
+        reduction="mean",
+        pos_weight=None,
+    ):
+        super(HEDSoftJaccardBCELogitsLoss, self).__init__(
+            size_average, reduce, reduction
+        )
+        self.alpha = alpha
 
     @weak_script_method
     def forward(self, inputlist, target, masks=None):
@@ -142,7 +219,7 @@ class HEDSoftJaccardBCELogitsLoss(_Loss):
         input : :py:class:`torch.Tensor`
         target : :py:class:`torch.Tensor`
         masks : :py:class:`torch.Tensor`, optional
-        
+
         Returns
         -------
         :py:class:`torch.Tensor`
@@ -153,48 +230,63 @@ class HEDSoftJaccardBCELogitsLoss(_Loss):
             probabilities = torch.sigmoid(input)
             intersection = (probabilities * target).sum()
             sums = probabilities.sum() + target.sum()
-            
-            softjaccard = intersection/(sums - intersection + eps)
-    
-            bceloss = torch.nn.functional.binary_cross_entropy_with_logits(input, target, weight=None, reduction=self.reduction)
-            loss = self.alpha * bceloss + (1 - self.alpha) * (1-softjaccard)
+
+            softjaccard = intersection / (sums - intersection + eps)
+
+            bceloss = torch.nn.functional.binary_cross_entropy_with_logits(
+                input, target, weight=None, reduction=self.reduction
+            )
+            loss = self.alpha * bceloss + (1 - self.alpha) * (1 - softjaccard)
             loss_over_all_inputs.append(loss.unsqueeze(0))
         final_loss = torch.cat(loss_over_all_inputs).mean()
-        return loss
-
+        return final_loss
 
 
 class MixJacLoss(_Loss):
-    """ 
-    Attributes
+    """
+
+    Parameters
     ----------
+
     lambda_u : int
         determines the weighting of SoftJaccard and BCE.
+
     """
-    def __init__(self, lambda_u=100, jacalpha=0.7, size_average=None, reduce=None, reduction='mean', pos_weight=None):
+
+    def __init__(
+        self,
+        lambda_u=100,
+        jacalpha=0.7,
+        size_average=None,
+        reduce=None,
+        reduction="mean",
+        pos_weight=None,
+    ):
         super(MixJacLoss, self).__init__(size_average, reduce, reduction)
         self.lambda_u = lambda_u
         self.labeled_loss = SoftJaccardBCELogitsLoss(alpha=jacalpha)
         self.unlabeled_loss = torch.nn.BCEWithLogitsLoss()
 
-
     @weak_script_method
     def forward(self, input, target, unlabeled_input, unlabeled_traget, ramp_up_factor):
         """
         Parameters
         ----------
+
         input : :py:class:`torch.Tensor`
         target : :py:class:`torch.Tensor`
         unlabeled_input : :py:class:`torch.Tensor`
         unlabeled_traget : :py:class:`torch.Tensor`
         ramp_up_factor : float
-        
+
         Returns
         -------
+
         list
+
         """
-        ll = self.labeled_loss(input,target)
+        ll = self.labeled_loss(input, target)
         ul = self.unlabeled_loss(unlabeled_input, unlabeled_traget)
-        
+
         loss = ll + self.lambda_u * ramp_up_factor * ul
-        return loss, ll, ul
\ No newline at end of file
+        return loss, ll, ul
diff --git a/bob/ip/binseg/modeling/m2u.py b/bob/ip/binseg/modeling/m2u.py
index 7db86168c0b6f703546de4dca2e22539e73adeb4..8861b965e3294a472da5edf54d23d215536f8c0d 100644
--- a/bob/ip/binseg/modeling/m2u.py
+++ b/bob/ip/binseg/modeling/m2u.py
@@ -5,99 +5,116 @@
 
 from collections import OrderedDict
 import torch
-from torch import nn
+import torch.nn
 from bob.ip.binseg.modeling.backbones.mobilenetv2 import MobileNetV2, InvertedResidual
 
-class DecoderBlock(nn.Module):
+
+class DecoderBlock(torch.nn.Module):
     """
     Decoder block: upsample and concatenate with features maps from the encoder part
     """
-    def __init__(self,up_in_c,x_in_c,upsamplemode='bilinear',expand_ratio=0.15):
+
+    def __init__(self, up_in_c, x_in_c, upsamplemode="bilinear", expand_ratio=0.15):
         super().__init__()
-        self.upsample = nn.Upsample(scale_factor=2,mode=upsamplemode,align_corners=False) # H, W -> 2H, 2W
-        self.ir1 = InvertedResidual(up_in_c+x_in_c,(x_in_c + up_in_c) // 2,stride=1,expand_ratio=expand_ratio)
+        self.upsample = torch.nn.Upsample(
+            scale_factor=2, mode=upsamplemode, align_corners=False
+        )  # H, W -> 2H, 2W
+        self.ir1 = InvertedResidual(
+            up_in_c + x_in_c,
+            (x_in_c + up_in_c) // 2,
+            stride=1,
+            expand_ratio=expand_ratio,
+        )
 
-    def forward(self,up_in,x_in):
+    def forward(self, up_in, x_in):
         up_out = self.upsample(up_in)
-        cat_x = torch.cat([up_out, x_in] , dim=1)
+        cat_x = torch.cat([up_out, x_in], dim=1)
         x = self.ir1(cat_x)
         return x
-    
-class LastDecoderBlock(nn.Module):
-    def __init__(self,x_in_c,upsamplemode='bilinear',expand_ratio=0.15):
+
+
+class LastDecoderBlock(torch.nn.Module):
+    def __init__(self, x_in_c, upsamplemode="bilinear", expand_ratio=0.15):
         super().__init__()
-        self.upsample = nn.Upsample(scale_factor=2,mode=upsamplemode,align_corners=False) # H, W -> 2H, 2W
-        self.ir1 = InvertedResidual(x_in_c,1,stride=1,expand_ratio=expand_ratio)
+        self.upsample = torch.nn.Upsample(
+            scale_factor=2, mode=upsamplemode, align_corners=False
+        )  # H, W -> 2H, 2W
+        self.ir1 = InvertedResidual(x_in_c, 1, stride=1, expand_ratio=expand_ratio)
 
-    def forward(self,up_in,x_in):
+    def forward(self, up_in, x_in):
         up_out = self.upsample(up_in)
-        cat_x = torch.cat([up_out, x_in] , dim=1)
+        cat_x = torch.cat([up_out, x_in], dim=1)
         x = self.ir1(cat_x)
         return x
 
 
-
-class M2U(nn.Module):
+class M2U(torch.nn.Module):
     """
     M2U-Net head module
-    
+
     Parameters
     ----------
     in_channels_list : list
         number of channels for each feature map that is returned from backbone
     """
-    def __init__(self, in_channels_list=None,upsamplemode='bilinear',expand_ratio=0.15):
+
+    def __init__(
+        self, in_channels_list=None, upsamplemode="bilinear", expand_ratio=0.15
+    ):
         super(M2U, self).__init__()
 
         # Decoder
-        self.decode4 = DecoderBlock(96,32,upsamplemode,expand_ratio)
-        self.decode3 = DecoderBlock(64,24,upsamplemode,expand_ratio)
-        self.decode2 = DecoderBlock(44,16,upsamplemode,expand_ratio)
-        self.decode1 = LastDecoderBlock(33,upsamplemode,expand_ratio)
-        
-        # initilaize weights 
+        self.decode4 = DecoderBlock(96, 32, upsamplemode, expand_ratio)
+        self.decode3 = DecoderBlock(64, 24, upsamplemode, expand_ratio)
+        self.decode2 = DecoderBlock(44, 16, upsamplemode, expand_ratio)
+        self.decode1 = LastDecoderBlock(33, upsamplemode, expand_ratio)
+
+        # initilaize weights
         self._initialize_weights()
 
     def _initialize_weights(self):
         for m in self.modules():
-            if isinstance(m, nn.Conv2d):
-                nn.init.kaiming_uniform_(m.weight, a=1)
+            if isinstance(m, torch.nn.Conv2d):
+                torch.nn.init.kaiming_uniform_(m.weight, a=1)
                 if m.bias is not None:
-                    nn.init.constant_(m.bias, 0)
-            elif isinstance(m, nn.BatchNorm2d):
+                    torch.nn.init.constant_(m.bias, 0)
+            elif isinstance(m, torch.nn.BatchNorm2d):
                 m.weight.data.fill_(1)
                 m.bias.data.zero_()
-    
-    def forward(self,x):
+
+    def forward(self, x):
         """
         Parameters
         ----------
         x : list
             list of tensors as returned from the backbone network.
-            First element: height and width of input image. 
+            First element: height and width of input image.
             Remaining elements: feature maps for each feature level.
         Returns
         -------
-        :py:class:`torch.Tensor`
+        tensor : :py:class:`torch.Tensor`
         """
-        decode4 = self.decode4(x[5],x[4])    # 96, 32
-        decode3 = self.decode3(decode4,x[3]) # 64, 24
-        decode2 = self.decode2(decode3,x[2]) # 44, 16
-        decode1 = self.decode1(decode2,x[1]) # 30, 3
-        
+        decode4 = self.decode4(x[5], x[4])  # 96, 32
+        decode3 = self.decode3(decode4, x[3])  # 64, 24
+        decode2 = self.decode2(decode3, x[2])  # 44, 16
+        decode1 = self.decode1(decode2, x[1])  # 30, 3
+
         return decode1
 
+
 def build_m2unet():
-    """ 
+    """
     Adds backbone and head together
 
     Returns
     -------
-    :py:class:torch.nn.Module
+    module : :py:class:`torch.nn.Module`
     """
-    backbone = MobileNetV2(return_features = [1, 3, 6, 13], m2u=True)
+    backbone = MobileNetV2(return_features=[1, 3, 6, 13], m2u=True)
     m2u_head = M2U(in_channels_list=[16, 24, 32, 96])
 
-    model = nn.Sequential(OrderedDict([("backbone", backbone), ("head", m2u_head)]))
-    model.name = "M2UNet"
-    return model
\ No newline at end of file
+    model = torch.nn.Sequential(
+        OrderedDict([("backbone", backbone), ("head", m2u_head)])
+    )
+    model.name = "m2unet"
+    return model
diff --git a/bob/ip/binseg/modeling/make_layers.py b/bob/ip/binseg/modeling/make_layers.py
index 7e3984433273eaa0d7f86b3e720682c9460552f3..23704eae10913ad9235a19cde4f024587333ddac 100644
--- a/bob/ip/binseg/modeling/make_layers.py
+++ b/bob/ip/binseg/modeling/make_layers.py
@@ -2,76 +2,108 @@
 # -*- coding: utf-8 -*-
 
 import torch
-import torch.nn as nn
+import torch.nn
 from torch.nn import Conv2d
 from torch.nn import ConvTranspose2d
 
-def conv_with_kaiming_uniform(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1):
+
+def conv_with_kaiming_uniform(
+    in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1
+):
     conv = Conv2d(
-        in_channels, 
-        out_channels, 
-        kernel_size=kernel_size, 
-        stride=stride, 
-        padding=padding, 
-        dilation=dilation, 
-        bias= True
-        )
-        # Caffe2 implementation uses XavierFill, which in fact
-        # corresponds to kaiming_uniform_ in PyTorch
-    nn.init.kaiming_uniform_(conv.weight, a=1)
-    nn.init.constant_(conv.bias, 0)
+        in_channels,
+        out_channels,
+        kernel_size=kernel_size,
+        stride=stride,
+        padding=padding,
+        dilation=dilation,
+        bias=True,
+    )
+    # Caffe2 implementation uses XavierFill, which in fact
+    # corresponds to kaiming_uniform_ in PyTorch
+    torch.nn.init.kaiming_uniform_(conv.weight, a=1)
+    torch.nn.init.constant_(conv.bias, 0)
     return conv
 
 
-def convtrans_with_kaiming_uniform(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1):
+def convtrans_with_kaiming_uniform(
+    in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1
+):
     conv = ConvTranspose2d(
-        in_channels, 
-        out_channels, 
-        kernel_size=kernel_size, 
-        stride=stride, 
-        padding=padding, 
-        dilation=dilation, 
-        bias= True
-        )
-        # Caffe2 implementation uses XavierFill, which in fact
-        # corresponds to kaiming_uniform_ in PyTorch
-    nn.init.kaiming_uniform_(conv.weight, a=1)
-    nn.init.constant_(conv.bias, 0)
+        in_channels,
+        out_channels,
+        kernel_size=kernel_size,
+        stride=stride,
+        padding=padding,
+        dilation=dilation,
+        bias=True,
+    )
+    # Caffe2 implementation uses XavierFill, which in fact
+    # corresponds to kaiming_uniform_ in PyTorch
+    torch.nn.init.kaiming_uniform_(conv.weight, a=1)
+    torch.nn.init.constant_(conv.bias, 0)
     return conv
 
 
-class UpsampleCropBlock(nn.Module):
-    def __init__(self, in_channels, out_channels, up_kernel_size, up_stride, up_padding, pixelshuffle=False):
-        """
-        Combines Conv2d, ConvTransposed2d and Cropping. Simulates the caffe2 crop layer in the forward function.
-        Used for DRIU and HED. 
-        
-        Attributes
-        ----------
-            in_channels : number of channels of intermediate layer
-            out_channels : number of output channels
-            up_kernel_size : kernel size for transposed convolution
-            up_stride : stride for transposed convolution
-            up_padding : padding for transposed convolution
-        """
+class UpsampleCropBlock(torch.nn.Module):
+    """
+    Combines Conv2d, ConvTransposed2d and Cropping. Simulates the caffe2 crop
+    layer in the forward function.
+
+    Used for DRIU and HED.
+
+    Parameters
+    ----------
+
+    in_channels : int
+        number of channels of intermediate layer
+    out_channels : int
+        number of output channels
+    up_kernel_size : int
+        kernel size for transposed convolution
+    up_stride : int
+        stride for transposed convolution
+    up_padding : int
+        padding for transposed convolution
+
+    """
+
+    def __init__(
+        self,
+        in_channels,
+        out_channels,
+        up_kernel_size,
+        up_stride,
+        up_padding,
+        pixelshuffle=False,
+    ):
         super().__init__()
-        # NOTE: Kaiming init, replace with nn.Conv2d and nn.ConvTranspose2d to get original DRIU impl.
+        # NOTE: Kaiming init, replace with torch.nn.Conv2d and torch.nn.ConvTranspose2d to get original DRIU impl.
         self.conv = conv_with_kaiming_uniform(in_channels, out_channels, 3, 1, 1)
         if pixelshuffle:
-            self.upconv = PixelShuffle_ICNR( out_channels, out_channels, scale = up_stride)
+            self.upconv = PixelShuffle_ICNR(out_channels, out_channels, scale=up_stride)
         else:
-            self.upconv = convtrans_with_kaiming_uniform(out_channels, out_channels, up_kernel_size, up_stride, up_padding)        
-        
-        
+            self.upconv = convtrans_with_kaiming_uniform(
+                out_channels, out_channels, up_kernel_size, up_stride, up_padding
+            )
+
     def forward(self, x, input_res):
-        """
-        Forward pass of UpsampleBlock. Upsampled feature maps are cropped to the resolution of the input image.
-        Attributes
+        """Forward pass of UpsampleBlock.
+
+        Upsampled feature maps are cropped to the resolution of the input
+        image.
+
+        Parameters
         ----------
-        x : input channels
-        input_res : tuple (h,w)    
-            Resolution of the input image
+
+        x : tuple
+            input channels
+
+        input_res : tuple
+            Resolution of the input image format ``(height, width)``
+
         """
+
         img_h = input_res[0]
         img_w = input_res[1]
         x = self.conv(x)
@@ -80,84 +112,93 @@ class UpsampleCropBlock(nn.Module):
         # height
         up_h = x.shape[2]
         h_crop = up_h - img_h
-        h_s = h_crop//2
+        h_s = h_crop // 2
         h_e = up_h - (h_crop - h_s)
         # width
         up_w = x.shape[3]
-        w_crop = up_w-img_w
-        w_s = w_crop//2
+        w_crop = up_w - img_w
+        w_s = w_crop // 2
         w_e = up_w - (w_crop - w_s)
-        # perform crop 
-        # needs explicit ranges for onnx export 
-        x = x[:,:,h_s:h_e,w_s:w_e] # crop to input size 
-        
-        return x
+        # perform crop
+        # needs explicit ranges for onnx export
+        x = x[:, :, h_s:h_e, w_s:w_e]  # crop to input size
 
+        return x
 
 
 def ifnone(a, b):
-    "`a` if `a` is not None, otherwise `b`."
+    "``a`` if ``a`` is not None, otherwise ``b``."
     return b if a is None else a
 
-def icnr(x, scale=2, init=nn.init.kaiming_normal_):
-    """
-    https://docs.fast.ai/layers.html#PixelShuffle_ICNR
-    ICNR init of `x`, with `scale` and `init` function.
+
+def icnr(x, scale=2, init=torch.nn.init.kaiming_normal_):
+    """https://docs.fast.ai/layers.html#PixelShuffle_ICNR
+
+    ICNR init of ``x``, with ``scale`` and ``init`` function.
     """
-    ni,nf,h,w = x.shape
-    ni2 = int(ni/(scale**2))
-    k = init(torch.zeros([ni2,nf,h,w])).transpose(0, 1)
+
+    ni, nf, h, w = x.shape
+    ni2 = int(ni / (scale ** 2))
+    k = init(torch.zeros([ni2, nf, h, w])).transpose(0, 1)
     k = k.contiguous().view(ni2, nf, -1)
-    k = k.repeat(1, 1, scale**2)
-    k = k.contiguous().view([nf,ni,h,w]).transpose(0, 1)
+    k = k.repeat(1, 1, scale ** 2)
+    k = k.contiguous().view([nf, ni, h, w]).transpose(0, 1)
     x.data.copy_(k)
 
-class PixelShuffle_ICNR(nn.Module):
-    """
-    https://docs.fast.ai/layers.html#PixelShuffle_ICNR 
-    Upsample by `scale` from `ni` filters to `nf` (default `ni`), using `nn.PixelShuffle`, `icnr` init, and `weight_norm`.
+
+class PixelShuffle_ICNR(torch.nn.Module):
+    """https://docs.fast.ai/layers.html#PixelShuffle_ICNR
+
+    Upsample by ``scale`` from ``ni`` filters to ``nf`` (default ``ni``), using
+    ``torch.nn.PixelShuffle``, ``icnr`` init, and ``weight_norm``.
     """
-    def __init__(self, ni:int, nf:int=None, scale:int=2):
+
+    def __init__(self, ni: int, nf: int = None, scale: int = 2):
         super().__init__()
         nf = ifnone(nf, ni)
-        self.conv = conv_with_kaiming_uniform(ni, nf*(scale**2), 1)
+        self.conv = conv_with_kaiming_uniform(ni, nf * (scale ** 2), 1)
         icnr(self.conv.weight)
-        self.shuf = nn.PixelShuffle(scale)
+        self.shuf = torch.nn.PixelShuffle(scale)
         # Blurring over (h*w) kernel
         # "Super-Resolution using Convolutional Neural Networks without Any Checkerboard Artifacts"
         # - https://arxiv.org/abs/1806.02658
-        self.pad = nn.ReplicationPad2d((1,0,1,0))
-        self.blur = nn.AvgPool2d(2, stride=1)
-        self.relu = nn.ReLU(inplace=True)
+        self.pad = torch.nn.ReplicationPad2d((1, 0, 1, 0))
+        self.blur = torch.nn.AvgPool2d(2, stride=1)
+        self.relu = torch.nn.ReLU(inplace=True)
 
-    def forward(self,x):
+    def forward(self, x):
         x = self.shuf(self.relu(self.conv(x)))
         x = self.blur(self.pad(x))
         return x
 
-class UnetBlock(nn.Module):
+
+class UnetBlock(torch.nn.Module):
     def __init__(self, up_in_c, x_in_c, pixel_shuffle=False, middle_block=False):
         super().__init__()
 
         # middle block for VGG based U-Net
         if middle_block:
-            up_out_c =  up_in_c
+            up_out_c = up_in_c
         else:
-            up_out_c =  up_in_c // 2
+            up_out_c = up_in_c // 2
         cat_channels = x_in_c + up_out_c
         inner_channels = cat_channels // 2
-        
+
         if pixel_shuffle:
-            self.upsample = PixelShuffle_ICNR( up_in_c, up_out_c )
+            self.upsample = PixelShuffle_ICNR(up_in_c, up_out_c)
         else:
-            self.upsample = convtrans_with_kaiming_uniform( up_in_c, up_out_c, 2, 2)
-        self.convtrans1 = convtrans_with_kaiming_uniform( cat_channels, inner_channels, 3, 1, 1)
-        self.convtrans2 = convtrans_with_kaiming_uniform( inner_channels, inner_channels, 3, 1, 1)
-        self.relu = nn.ReLU(inplace=True)
+            self.upsample = convtrans_with_kaiming_uniform(up_in_c, up_out_c, 2, 2)
+        self.convtrans1 = convtrans_with_kaiming_uniform(
+            cat_channels, inner_channels, 3, 1, 1
+        )
+        self.convtrans2 = convtrans_with_kaiming_uniform(
+            inner_channels, inner_channels, 3, 1, 1
+        )
+        self.relu = torch.nn.ReLU(inplace=True)
 
     def forward(self, up_in, x_in):
         up_out = self.upsample(up_in)
-        cat_x = torch.cat([up_out, x_in] , dim=1)
+        cat_x = torch.cat([up_out, x_in], dim=1)
         x = self.relu(self.convtrans1(cat_x))
         x = self.relu(self.convtrans2(x))
-        return x
\ No newline at end of file
+        return x
diff --git a/bob/ip/binseg/modeling/resunet.py b/bob/ip/binseg/modeling/resunet.py
index 38f66cddf787b8e48f8d7f8aeb50001121c229eb..cce8242ec957dc9814186ee5967b5cb3ae57b5cd 100644
--- a/bob/ip/binseg/modeling/resunet.py
+++ b/bob/ip/binseg/modeling/resunet.py
@@ -2,28 +2,32 @@
 # -*- coding: utf-8 -*-
 
 import torch.nn as nn
-import torch
 from collections import OrderedDict
-from bob.ip.binseg.modeling.make_layers  import conv_with_kaiming_uniform, convtrans_with_kaiming_uniform, PixelShuffle_ICNR, UnetBlock
+from bob.ip.binseg.modeling.make_layers import (
+    conv_with_kaiming_uniform,
+    convtrans_with_kaiming_uniform,
+    PixelShuffle_ICNR,
+    UnetBlock,
+)
 from bob.ip.binseg.modeling.backbones.resnet import resnet50
 
 
-
 class ResUNet(nn.Module):
     """
     UNet head module for ResNet backbones
-    
+
     Parameters
     ----------
     in_channels_list : list
                         number of channels for each feature map that is returned from backbone
     """
+
     def __init__(self, in_channels_list=None, pixel_shuffle=False):
         super(ResUNet, self).__init__()
         # number of channels
         c_decode1, c_decode2, c_decode3, c_decode4, c_decode5 = in_channels_list
         # number of channels for last upsampling operation
-        c_decode0 = (c_decode1 + c_decode2//2)//2
+        c_decode0 = (c_decode1 + c_decode2 // 2) // 2
 
         # build layers
         self.decode4 = UnetBlock(c_decode5, c_decode4, pixel_shuffle)
@@ -36,34 +40,35 @@ class ResUNet(nn.Module):
             self.decode0 = convtrans_with_kaiming_uniform(c_decode0, c_decode0, 2, 2)
         self.final = conv_with_kaiming_uniform(c_decode0, 1, 1)
 
-    def forward(self,x):
+    def forward(self, x):
         """
         Parameters
         ----------
         x : list
                 list of tensors as returned from the backbone network.
-                First element: height and width of input image. 
+                First element: height and width of input image.
                 Remaining elements: feature maps for each feature level.
         """
         # NOTE: x[0]: height and width of input image not needed in U-Net architecture
-        decode4 = self.decode4(x[5], x[4])  
-        decode3 = self.decode3(decode4, x[3]) 
-        decode2 = self.decode2(decode3, x[2]) 
-        decode1 = self.decode1(decode2, x[1]) 
+        decode4 = self.decode4(x[5], x[4])
+        decode3 = self.decode3(decode4, x[3])
+        decode2 = self.decode2(decode3, x[2])
+        decode1 = self.decode1(decode2, x[1])
         decode0 = self.decode0(decode1)
         out = self.final(decode0)
         return out
 
+
 def build_res50unet():
-    """ 
+    """
     Adds backbone and head together
 
     Returns
     -------
-    model : :py:class:torch.nn.Module
+    model : :py:class:`torch.nn.Module`
     """
-    backbone = resnet50(pretrained=False, return_features = [2, 4, 5, 6, 7])
-    unet_head  = ResUNet([64, 256, 512, 1024, 2048],pixel_shuffle=False)
+    backbone = resnet50(pretrained=False, return_features=[2, 4, 5, 6, 7])
+    unet_head = ResUNet([64, 256, 512, 1024, 2048], pixel_shuffle=False)
     model = nn.Sequential(OrderedDict([("backbone", backbone), ("head", unet_head)]))
-    model.name = "ResUNet"
-    return model
\ No newline at end of file
+    model.name = "resunet"
+    return model
diff --git a/bob/ip/binseg/modeling/unet.py b/bob/ip/binseg/modeling/unet.py
index d1102592b74d2ea2c8af8ea2657ac6f1775a92d7..ac3f1d5850a066da01b20cf37620c29c2cb20e62 100644
--- a/bob/ip/binseg/modeling/unet.py
+++ b/bob/ip/binseg/modeling/unet.py
@@ -2,27 +2,31 @@
 # -*- coding: utf-8 -*-
 
 import torch.nn as nn
-import torch
 from collections import OrderedDict
-from bob.ip.binseg.modeling.make_layers  import conv_with_kaiming_uniform, convtrans_with_kaiming_uniform, PixelShuffle_ICNR, UnetBlock
+from bob.ip.binseg.modeling.make_layers import (
+    conv_with_kaiming_uniform,
+    convtrans_with_kaiming_uniform,
+    PixelShuffle_ICNR,
+    UnetBlock,
+)
 from bob.ip.binseg.modeling.backbones.vgg import vgg16
 
 
-
 class UNet(nn.Module):
     """
     UNet head module
-    
+
     Parameters
     ----------
     in_channels_list : list
                         number of channels for each feature map that is returned from backbone
     """
+
     def __init__(self, in_channels_list=None, pixel_shuffle=False):
         super(UNet, self).__init__()
         # number of channels
         c_decode1, c_decode2, c_decode3, c_decode4, c_decode5 = in_channels_list
-        
+
         # build layers
         self.decode4 = UnetBlock(c_decode5, c_decode4, pixel_shuffle, middle_block=True)
         self.decode3 = UnetBlock(c_decode4, c_decode3, pixel_shuffle)
@@ -30,34 +34,36 @@ class UNet(nn.Module):
         self.decode1 = UnetBlock(c_decode2, c_decode1, pixel_shuffle)
         self.final = conv_with_kaiming_uniform(c_decode1, 1, 1)
 
-    def forward(self,x):
+    def forward(self, x):
         """
         Parameters
         ----------
         x : list
             list of tensors as returned from the backbone network.
-            First element: height and width of input image. 
+            First element: height and width of input image.
             Remaining elements: feature maps for each feature level.
         """
         # NOTE: x[0]: height and width of input image not needed in U-Net architecture
-        decode4 = self.decode4(x[5], x[4])  
-        decode3 = self.decode3(decode4, x[3]) 
-        decode2 = self.decode2(decode3, x[2]) 
-        decode1 = self.decode1(decode2, x[1]) 
+        decode4 = self.decode4(x[5], x[4])
+        decode3 = self.decode3(decode4, x[3])
+        decode2 = self.decode2(decode3, x[2])
+        decode1 = self.decode1(decode2, x[1])
         out = self.final(decode1)
         return out
 
+
 def build_unet():
-    """ 
+    """
     Adds backbone and head together
 
     Returns
     -------
-    model : :py:class:torch.nn.Module
+    module : :py:class:`torch.nn.Module`
     """
-    backbone = vgg16(pretrained=False, return_features = [3, 8, 14, 22, 29])
+
+    backbone = vgg16(pretrained=False, return_features=[3, 8, 14, 22, 29])
     unet_head = UNet([64, 128, 256, 512, 512], pixel_shuffle=False)
 
     model = nn.Sequential(OrderedDict([("backbone", backbone), ("head", unet_head)]))
     model.name = "UNet"
-    return model
\ No newline at end of file
+    return model
diff --git a/bob/ip/binseg/script/__init__.py b/bob/ip/binseg/script/__init__.py
index 2ca5e07cb73f0bdddcb863ef497955964087e301..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644
--- a/bob/ip/binseg/script/__init__.py
+++ b/bob/ip/binseg/script/__init__.py
@@ -1,3 +0,0 @@
-# see https://docs.python.org/3/library/pkgutil.html
-from pkgutil import extend_path
-__path__ = extend_path(__path__, __name__)
\ No newline at end of file
diff --git a/bob/ip/binseg/script/analyze.py b/bob/ip/binseg/script/analyze.py
new file mode 100644
index 0000000000000000000000000000000000000000..bd66611d635c5a31b7163c0b69eb9da1ee5e955e
--- /dev/null
+++ b/bob/ip/binseg/script/analyze.py
@@ -0,0 +1,274 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+import os
+
+import click
+
+from bob.extension.scripts.click_helper import (
+    verbosity_option,
+    ConfigCommand,
+    ResourceOption,
+)
+
+from .binseg import save_sh_command
+
+import logging
+
+logger = logging.getLogger(__name__)
+
+
+@click.command(
+    entry_point_group="bob.ip.binseg.config",
+    cls=ConfigCommand,
+    epilog="""Examples:
+
+\b
+    1. Re-evaluates a pre-trained M2U-Net model with DRIVE (vessel
+    segmentation), on the CPU, by running inference and evaluation on results
+    from its test set:
+
+       $ bob binseg analyze -vv m2unet drive --weight=model.path
+
+""",
+)
+@click.option(
+    "--output-folder",
+    "-o",
+    help="Path where to store experiment outputs (created if does not exist)",
+    required=True,
+    type=click.Path(),
+    default="results",
+    cls=ResourceOption,
+)
+@click.option(
+    "--model",
+    "-m",
+    help="A torch.nn.Module instance implementing the network to be trained, and then evaluated",
+    required=True,
+    cls=ResourceOption,
+)
+@click.option(
+    "--dataset",
+    "-d",
+    help="A dictionary mapping string keys to "
+    "bob.ip.binseg.data.utils.SampleList2TorchDataset's.  At least one key "
+    "named 'train' must be available.  This dataset will be used for training "
+    "the network model.  All other datasets will be used for prediction and "
+    "evaluation. Dataset descriptions include all required pre-processing, "
+    "including eventual data augmentation, which may be eventually excluded "
+    "for prediction and evaluation purposes",
+    required=True,
+    cls=ResourceOption,
+)
+@click.option(
+    "--second-annotator",
+    "-S",
+    help="A dataset or dictionary, like in --dataset, with the same "
+    "sample keys, but with annotations from a different annotator that is "
+    "going to be compared to the one in --dataset",
+    required=False,
+    default=None,
+    cls=ResourceOption,
+    show_default=True,
+)
+@click.option(
+    "--batch-size",
+    "-b",
+    help="Number of samples in every batch (this parameter affects "
+    "memory requirements for the network).  If the number of samples in "
+    "the batch is larger than the total number of samples available for "
+    "training, this value is truncated.  If this number is smaller, then "
+    "batches of the specified size are created and fed to the network "
+    "until there are no more new samples to feed (epoch is finished).  "
+    "If the total number of training samples is not a multiple of the "
+    "batch-size, the last batch will be smaller than the first.",
+    required=True,
+    show_default=True,
+    default=1,
+    type=click.IntRange(min=1),
+    cls=ResourceOption,
+)
+@click.option(
+    "--device",
+    "-d",
+    help='A string indicating the device to use (e.g. "cpu" or "cuda:0")',
+    show_default=True,
+    required=True,
+    default="cpu",
+    cls=ResourceOption,
+)
+@click.option(
+    "--overlayed/--no-overlayed",
+    "-O",
+    help="Creates overlayed representations of the output probability maps, "
+    "similar to --overlayed in prediction-mode, except it includes "
+    "distinctive colours for true and false positives and false negatives.  "
+    "If not set, or empty then do **NOT** output overlayed images.",
+    show_default=True,
+    default=False,
+    required=False,
+    cls=ResourceOption,
+)
+@click.option(
+    "--weight",
+    "-w",
+    help="Path or URL to pretrained model file (.pth extension)",
+    required=True,
+    cls=ResourceOption,
+)
+@verbosity_option(cls=ResourceOption)
+@click.pass_context
+def analyze(
+    ctx,
+    model,
+    output_folder,
+    batch_size,
+    dataset,
+    second_annotator,
+    device,
+    overlayed,
+    weight,
+    verbose,
+    **kwargs,
+):
+    """Runs a complete evaluation from prediction to comparison
+
+    This script is just a wrapper around the individual scripts for running
+    prediction and evaluating FCN models.  It organises the output in a
+    preset way::
+
+\b
+       └─ <output-folder>/
+          ├── predictions/  #the prediction outputs for the train/test set
+          ├── overlayed/  #the overlayed outputs for the train/test set
+             ├── predictions/  #predictions overlayed on the input images
+             ├── analysis/  #predictions overlayed on the input images
+             ├              #including analysis of false positives, negatives
+             ├              #and true positives
+             └── second-annotator/  #if set, store overlayed images for the
+                                    #second annotator here
+          └── analysis /  #the outputs of the analysis of both train/test sets
+                          #includes second-annotator "metrics" as well, if
+                          # configured
+
+    N.B.: The tool is designed to prevent analysis bias and allows one to
+    provide separate subsets for training and evaluation.  Instead of using
+    simple datasets, datasets for full experiment running should be
+    dictionaries with specific subset names:
+
+    * ``__train__``: dataset used for training, prioritarily.  It is typically
+      the dataset containing data augmentation pipelines.
+    * ``train`` (optional): a copy of the ``__train__`` dataset, without data
+      augmentation, that will be evaluated alongside other sets available
+    * ``*``: any other name, not starting with an underscore character (``_``),
+      will be considered a test set for evaluation.
+
+    N.B.2: The threshold used for calculating the F1-score on the test set, or
+    overlay analysis (false positives, negatives and true positives overprinted
+    on the original image) also follows the logic above.
+    """
+
+    command_sh = os.path.join(output_folder, "command.sh")
+    if not os.path.exists(command_sh):
+        # only save if experiment has not saved yet something similar
+        save_sh_command(command_sh)
+
+
+
+    ## Prediction
+    logger.info("Started prediction")
+
+    from .predict import predict
+
+    predictions_folder = os.path.join(output_folder, "predictions")
+    overlayed_folder = (
+        os.path.join(output_folder, "overlayed", "predictions")
+        if overlayed
+        else None
+    )
+
+    ctx.invoke(
+        predict,
+        output_folder=predictions_folder,
+        model=model,
+        dataset=dataset,
+        batch_size=batch_size,
+        device=device,
+        weight=weight,
+        overlayed=overlayed_folder,
+        verbose=verbose,
+    )
+    logger.info("Ended prediction")
+
+    ## Evaluation
+    logger.info("Started evaluation")
+
+    from .evaluate import evaluate
+
+    overlayed_folder = (
+        os.path.join(output_folder, "overlayed", "analysis")
+        if overlayed
+        else None
+    )
+
+    # choosing the overlayed_threshold
+    if "validation" in dataset:
+        threshold = "validation"
+    elif "train" in dataset:
+        threshold = "train"
+    else:
+        threshold = 0.5
+    logger.info(f"Setting --threshold={threshold}...")
+
+    analysis_folder = os.path.join(output_folder, "analysis")
+    ctx.invoke(
+        evaluate,
+        output_folder=analysis_folder,
+        predictions_folder=predictions_folder,
+        dataset=dataset,
+        second_annotator=second_annotator,
+        overlayed=overlayed_folder,
+        threshold=threshold,
+        verbose=verbose,
+    )
+
+    logger.info("Ended evaluation")
+
+    ## Comparison
+    logger.info("Started comparison")
+
+    # compare performances on the various sets
+    from .compare import compare
+
+    systems = []
+    for k, v in dataset.items():
+        if k.startswith("_"):
+            logger.info(f"Skipping dataset '{k}' (not to be compared)")
+            continue
+        systems += [k, os.path.join(analysis_folder, f"{k}.csv")]
+    if second_annotator is not None:
+        for k, v in second_annotator.items():
+            if k.startswith("_"):
+                logger.info(f"Skipping dataset '{k}' (not to be compared)")
+                continue
+            systems += [
+                f"{k} (2nd. annot.)",
+                os.path.join(
+                    analysis_folder, "second-annotator", f"{k}.csv"
+                ),
+            ]
+
+    output_figure = os.path.join(output_folder, "comparison.pdf")
+    output_table = os.path.join(output_folder, "comparison.rst")
+
+    ctx.invoke(
+        compare,
+        label_path=systems,
+        output_figure=output_figure,
+        output_table=output_table,
+        threshold=threshold,
+        verbose=verbose,
+    )
+
+    logger.info("Ended comparison")
diff --git a/bob/ip/binseg/script/binseg.py b/bob/ip/binseg/script/binseg.py
index 944a99953a40ed2fc4c3a0a9d07e28e8f0f21c5e..5fea88b1ffc244b4a6a55d022cbb666332de7e2b 100644
--- a/bob/ip/binseg/script/binseg.py
+++ b/bob/ip/binseg/script/binseg.py
@@ -3,628 +3,121 @@
 
 """The main entry for bob ip binseg (click-based) scripts."""
 
-
 import os
+import sys
 import time
-import numpy
-import collections
-import pkg_resources
-import glob
+import tempfile
+import urllib.request
 
+import pkg_resources
 import click
 from click_plugins import with_plugins
+from tqdm import tqdm
 
-import logging
-import torch
-
-import bob.extension
-from bob.extension.scripts.click_helper import (verbosity_option,
-    ConfigCommand, ResourceOption, AliasedGroup)
-
-from bob.ip.binseg.utils.checkpointer import DetectronCheckpointer
-from torch.utils.data import DataLoader
-from bob.ip.binseg.engine.trainer import do_train
-from bob.ip.binseg.engine.ssltrainer import do_ssltrain
-from bob.ip.binseg.engine.inferencer import do_inference
-from bob.ip.binseg.utils.plot import plot_overview
-from bob.ip.binseg.utils.click import OptionEatAll
-from bob.ip.binseg.utils.rsttable import create_overview_grid
-from bob.ip.binseg.utils.plot import metricsviz, overlay,savetransformedtest
-from bob.ip.binseg.utils.transformfolder import transformfolder as transfld
-from bob.ip.binseg.utils.evaluate import do_eval
-from bob.ip.binseg.engine.predicter import do_predict
+from bob.extension.scripts.click_helper import AliasedGroup
 
+import logging
 logger = logging.getLogger(__name__)
 
 
-@with_plugins(pkg_resources.iter_entry_points('bob.ip.binseg.cli'))
-@click.group(cls=AliasedGroup)
-def binseg():
-    """Binary 2D Fundus Image Segmentation Benchmark commands."""
-    pass
-
-# Train
-@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand)
-@click.option(
-    '--output-path',
-    '-o',
-    required=True,
-    default="output",
-    cls=ResourceOption
-    )
-@click.option(
-    '--model',
-    '-m',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--dataset',
-    '-d',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--optimizer',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--criterion',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--scheduler',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--pretrained-backbone',
-    '-t',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--batch-size',
-    '-b',
-    required=True,
-    default=2,
-    cls=ResourceOption)
-@click.option(
-    '--epochs',
-    '-e',
-    help='Number of epochs used for training',
-    show_default=True,
-    required=True,
-    default=1000,
-    cls=ResourceOption)
-@click.option(
-    '--checkpoint-period',
-    '-p',
-    help='Number of epochs after which a checkpoint is saved',
-    show_default=True,
-    required=True,
-    default=100,
-    cls=ResourceOption)
-@click.option(
-    '--device',
-    '-d',
-    help='A string indicating the device to use (e.g. "cpu" or "cuda:0"',
-    show_default=True,
-    required=True,
-    default='cpu',
-    cls=ResourceOption)
-@click.option(
-    '--seed',
-    '-s',
-    help='torch random seed',
-    show_default=True,
-    required=False,
-    default=42,
-    cls=ResourceOption)
-
-@verbosity_option(cls=ResourceOption)
-def train(model
-        ,optimizer
-        ,scheduler
-        ,output_path
-        ,epochs
-        ,pretrained_backbone
-        ,batch_size
-        ,criterion
-        ,dataset
-        ,checkpoint_period
-        ,device
-        ,seed
-        ,**kwargs):
-    """ Train a model """
-
-    if not os.path.exists(output_path): os.makedirs(output_path)
-    torch.manual_seed(seed)
-    # PyTorch dataloader
-    data_loader = DataLoader(
-        dataset = dataset
-        ,batch_size = batch_size
-        ,shuffle= True
-        ,pin_memory = torch.cuda.is_available()
-        )
-
-    # Checkpointer
-    checkpointer = DetectronCheckpointer(model, optimizer, scheduler,save_dir = output_path, save_to_disk=True)
-    arguments = {}
-    arguments["epoch"] = 0
-    extra_checkpoint_data = checkpointer.load(pretrained_backbone)
-    arguments.update(extra_checkpoint_data)
-    arguments["max_epoch"] = epochs
-
-    # Train
-    logger.info("Training for {} epochs".format(arguments["max_epoch"]))
-    logger.info("Continuing from epoch {}".format(arguments["epoch"]))
-    do_train(model
-            , data_loader
-            , optimizer
-            , criterion
-            , scheduler
-            , checkpointer
-            , checkpoint_period
-            , device
-            , arguments
-            , output_path
-            )
-
-
-# Inference
-@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand)
-@click.option(
-    '--output-path',
-    '-o',
-    required=True,
-    default="output",
-    cls=ResourceOption
-    )
-@click.option(
-    '--model',
-    '-m',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--dataset',
-    '-d',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--batch-size',
-    '-b',
-    required=True,
-    default=2,
-    cls=ResourceOption)
-@click.option(
-    '--device',
-    '-d',
-    help='A string indicating the device to use (e.g. "cpu" or "cuda:0"',
-    show_default=True,
-    required=True,
-    default='cpu',
-    cls=ResourceOption)
-@click.option(
-    '--weight',
-    '-w',
-    help='Path or URL to pretrained model',
-    required=False,
-    default=None,
-    cls=ResourceOption
-    )
-@verbosity_option(cls=ResourceOption)
-def test(model
-        ,output_path
-        ,device
-        ,batch_size
-        ,dataset
-        ,weight
-        , **kwargs):
-    """ Run inference and evalaute the model performance """
-
-    # PyTorch dataloader
-    data_loader = DataLoader(
-        dataset = dataset
-        ,batch_size = batch_size
-        ,shuffle= False
-        ,pin_memory = torch.cuda.is_available()
-        )
-
-    # checkpointer, load last model in dir
-    checkpointer = DetectronCheckpointer(model, save_dir = output_path, save_to_disk=False)
-    checkpointer.load(weight)
-    do_inference(model, data_loader, device, output_path)
-
-
-
-# Plot comparison
-@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand)
-@click.option(
-    '--output-path-list',
-    '-l',
-    required=True,
-    help='Pass all output paths as arguments',
-    cls=OptionEatAll,
-    )
-@click.option(
-    '--output-path',
-    '-o',
-    required=True,
-    )
-@click.option(
-    '--title',
-    '-t',
-    required=False,
-    )
-@verbosity_option(cls=ResourceOption)
-def compare(output_path_list, output_path, title, **kwargs):
-    """ Compares multiple metrics files that are stored in the format mymodel/results/Metrics.csv """
-    logger.debug("Output paths: {}".format(output_path_list))
-    logger.info('Plotting precision vs recall curves for {}'.format(output_path_list))
-    fig = plot_overview(output_path_list,title)
-    if not os.path.exists(output_path): os.makedirs(output_path)
-    fig_filename = os.path.join(output_path, 'precision_recall_comparison.pdf')
-    logger.info('saving {}'.format(fig_filename))
-    fig.savefig(fig_filename)
-
-
-# Create grid table with results
-@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand)
-@click.option(
-    '--output-path',
-    '-o',
-    required=True,
-    )
-@verbosity_option(cls=ResourceOption)
-def gridtable(output_path, **kwargs):
-    """ Creates an overview table in grid rst format for all Metrics.csv in the output_path
-    tree structure:
-        ├── DATABASE
-        ├── MODEL
-            ├── images
-            └── results
+def save_sh_command(destfile):
+    """Records command-line to reproduce this experiment
+
+    This function can record the current command-line used to call the script
+    being run.  It creates an executable ``bash`` script setting up the current
+    working directory and activating a conda environment, if needed.  It
+    records further information on the date and time the script was run and the
+    version of the package.
+
+
+    Parameters
+    ----------
+
+    destfile : str
+        Path leading to the file where the commands to reproduce the current
+        run will be recorded.  This file cannot be overwritten by this
+        function.  If needed, you should check and remove an existing file
+        **before** calling this function.
+
     """
-    logger.info('Creating grid for all results in {}'.format(output_path))
-    create_overview_grid(output_path)
-
-
-# Create metrics viz
-@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand)
-@click.option(
-    '--dataset',
-    '-d',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--output-path',
-    '-o',
-    required=True,
-    )
-@verbosity_option(cls=ResourceOption)
-def visualize(dataset, output_path, **kwargs):
-    """ Creates the following visualizations of the probabilties output maps:
-    overlayed: test images overlayed with prediction probabilities vessel tree
-    tpfnfpviz: highlights true positives, false negatives and false positives
-
-    Required tree structure:
-    ├── DATABASE
-        ├── MODEL
-            ├── images
-            └── results
+
+    if os.path.exists(destfile) and not overwrite:
+        logger.info(f"Not overwriting existing file '{destfile}'")
+        return
+
+    logger.info(f"Writing command-line for reproduction at '{destfile}'...")
+    os.makedirs(os.path.dirname(destfile), exist_ok=True)
+
+    with open(destfile, "wt") as f:
+        f.write("#!/usr/bin/env sh\n")
+        f.write(f"# date: {time.asctime()}\n")
+        version = pkg_resources.require("bob.ip.binseg")[0].version
+        f.write(f"# version: {version} (bob.ip.binseg)\n")
+        f.write(f"# platform: {sys.platform}\n")
+        f.write("\n")
+        args = []
+        for k in sys.argv:
+            if " " in k:
+                args.append(f'"{k}"')
+            else:
+                args.append(k)
+        if os.environ.get("CONDA_DEFAULT_ENV") is not None:
+            f.write(f"#conda activate {os.environ['CONDA_DEFAULT_ENV']}\n")
+        f.write(f"#cd {os.path.realpath(os.curdir)}\n")
+        f.write(" ".join(args) + "\n")
+    os.chmod(destfile, 0o755)
+
+
+def download_to_tempfile(url, progress=False):
+    """Downloads a file to a temporary named file and returns it
+
+    Parameters
+    ----------
+
+    url : str
+        The URL pointing to the file to download
+
+    progress : :py:class:`bool`, Optional
+        If a progress bar should be displayed for downloading the URL.
+
+
+    Returns
+    -------
+
+    f : tempfile.NamedTemporaryFile
+        A named temporary file that contains the downloaded URL
+
     """
-    logger.info('Creating TP, FP, FN visualizations for {}'.format(output_path))
-    metricsviz(dataset=dataset, output_path=output_path)
-    logger.info('Creating overlay visualizations for {}'.format(output_path))
-    overlay(dataset=dataset, output_path=output_path)
-    logger.info('Saving transformed test images {}'.format(output_path))
-    savetransformedtest(dataset=dataset, output_path=output_path)
-
-
-# SSLTrain
-@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand)
-@click.option(
-    '--output-path',
-    '-o',
-    required=True,
-    default="output",
-    cls=ResourceOption
-    )
-@click.option(
-    '--model',
-    '-m',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--dataset',
-    '-d',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--optimizer',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--criterion',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--scheduler',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--pretrained-backbone',
-    '-t',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--batch-size',
-    '-b',
-    required=True,
-    default=2,
-    cls=ResourceOption)
-@click.option(
-    '--epochs',
-    '-e',
-    help='Number of epochs used for training',
-    show_default=True,
-    required=True,
-    default=1000,
-    cls=ResourceOption)
-@click.option(
-    '--checkpoint-period',
-    '-p',
-    help='Number of epochs after which a checkpoint is saved',
-    show_default=True,
-    required=True,
-    default=100,
-    cls=ResourceOption)
-@click.option(
-    '--device',
-    '-d',
-    help='A string indicating the device to use (e.g. "cpu" or "cuda:0"',
-    show_default=True,
-    required=True,
-    default='cpu',
-    cls=ResourceOption)
-@click.option(
-    '--rampup',
-    '-r',
-    help='Ramp-up length in epochs',
-    show_default=True,
-    required=True,
-    default='900',
-    cls=ResourceOption)
-@click.option(
-    '--seed',
-    '-s',
-    help='torch random seed',
-    show_default=True,
-    required=False,
-    default=42,
-    cls=ResourceOption)
-
-@verbosity_option(cls=ResourceOption)
-def ssltrain(model
-        ,optimizer
-        ,scheduler
-        ,output_path
-        ,epochs
-        ,pretrained_backbone
-        ,batch_size
-        ,criterion
-        ,dataset
-        ,checkpoint_period
-        ,device
-        ,rampup
-        ,seed
-        ,**kwargs):
-    """ Train a model """
-
-    if not os.path.exists(output_path): os.makedirs(output_path)
-    torch.manual_seed(seed)
-    # PyTorch dataloader
-    data_loader = DataLoader(
-        dataset = dataset
-        ,batch_size = batch_size
-        ,shuffle= True
-        ,pin_memory = torch.cuda.is_available()
-        )
-
-    # Checkpointer
-    checkpointer = DetectronCheckpointer(model, optimizer, scheduler,save_dir = output_path, save_to_disk=True)
-    arguments = {}
-    arguments["epoch"] = 0
-    extra_checkpoint_data = checkpointer.load(pretrained_backbone)
-    arguments.update(extra_checkpoint_data)
-    arguments["max_epoch"] = epochs
-
-    # Train
-    logger.info("Training for {} epochs".format(arguments["max_epoch"]))
-    logger.info("Continuing from epoch {}".format(arguments["epoch"]))
-    do_ssltrain(model
-            , data_loader
-            , optimizer
-            , criterion
-            , scheduler
-            , checkpointer
-            , checkpoint_period
-            , device
-            , arguments
-            , output_path
-            , rampup
-            )
-
-# Apply image transforms to a folder containing images
-@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand)
-@click.option(
-    '--source-path',
-    '-s',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--target-path',
-    '-t',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--transforms',
-    '-a',
-    required=True,
-    cls=ResourceOption
-    )
-
-@verbosity_option(cls=ResourceOption)
-def transformfolder(source_path ,target_path,transforms,**kwargs):
-    logger.info('Applying transforms to images in {} and saving them to {}'.format(source_path, target_path))
-    transfld(source_path,target_path,transforms)
-
-
-# Run inference and create predictions only (no ground truth available)
-@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand)
-@click.option(
-    '--output-path',
-    '-o',
-    required=True,
-    default="output",
-    cls=ResourceOption
-    )
-@click.option(
-    '--model',
-    '-m',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--dataset',
-    '-d',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--batch-size',
-    '-b',
-    required=True,
-    default=2,
-    cls=ResourceOption)
-@click.option(
-    '--device',
-    '-d',
-    help='A string indicating the device to use (e.g. "cpu" or "cuda:0"',
-    show_default=True,
-    required=True,
-    default='cpu',
-    cls=ResourceOption)
-@click.option(
-    '--weight',
-    '-w',
-    help='Path or URL to pretrained model',
-    required=False,
-    default=None,
-    cls=ResourceOption
-    )
-@verbosity_option(cls=ResourceOption)
-def predict(model
-        ,output_path
-        ,device
-        ,batch_size
-        ,dataset
-        ,weight
-        , **kwargs):
-    """ Run inference and evalaute the model performance """
-
-    # PyTorch dataloader
-    data_loader = DataLoader(
-        dataset = dataset
-        ,batch_size = batch_size
-        ,shuffle= False
-        ,pin_memory = torch.cuda.is_available()
-        )
-
-    # checkpointer, load last model in dir
-    checkpointer = DetectronCheckpointer(model, save_dir = output_path, save_to_disk=False)
-    checkpointer.load(weight)
-    do_predict(model, data_loader, device, output_path)
-
-    # Overlayed images
-    overlay(dataset=dataset, output_path=output_path)
-
-
-
-# Evaluate only. Runs evaluation on predicted probability maps (--prediction-folder)
-@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand)
-@click.option(
-    '--output-path',
-    '-o',
-    required=True,
-    default="output",
-    cls=ResourceOption
-    )
-@click.option(
-    '--prediction-folder',
-    '-p',
-    help = 'Path containing output probability maps',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--prediction-extension',
-    '-x',
-    help = 'Extension (e.g. ".png") for the prediction files',
-    default=".png",
-    required=False,
-    cls=ResourceOption
-    )
-@click.option(
-    '--dataset',
-    '-d',
-    required=True,
-    cls=ResourceOption
-    )
-@click.option(
-    '--title',
-    required=False,
-    cls=ResourceOption
-    )
-@click.option(
-    '--legend',
-    cls=ResourceOption
-    )
-
-@verbosity_option(cls=ResourceOption)
-def evalpred(
-        output_path
-        ,prediction_folder
-        ,prediction_extension
-        ,dataset
-        ,title
-        ,legend
-        , **kwargs):
-    """ Run inference and evalaute the model performance """
-
-    # PyTorch dataloader
-    data_loader = DataLoader(
-        dataset = dataset
-        ,batch_size = 1
-        ,shuffle= False
-        ,pin_memory = torch.cuda.is_available()
-        )
-
-    # Run eval
-    do_eval(prediction_folder, data_loader, output_folder = output_path, title=title, legend=legend, prediction_extension=prediction_extension)
 
+    file_size = 0
+    response = urllib.request.urlopen(url)
+    meta = response.info()
+    if hasattr(meta, "getheaders"):
+        content_length = meta.getheaders("Content-Length")
+    else:
+        content_length = meta.get_all("Content-Length")
 
+    if content_length is not None and len(content_length) > 0:
+        file_size = int(content_length[0])
 
+    progress &= bool(file_size)
+
+    f = tempfile.NamedTemporaryFile()
+
+    with tqdm(total=file_size, disable=not progress) as pbar:
+        while True:
+            buffer = response.read(8192)
+            if len(buffer) == 0:
+                break
+            f.write(buffer)
+            pbar.update(len(buffer))
+
+    f.flush()
+    f.seek(0)
+    return f
+
+
+@with_plugins(pkg_resources.iter_entry_points("bob.ip.binseg.cli"))
+@click.group(cls=AliasedGroup)
+def binseg():
+    """Binary 2D Image Segmentation Benchmark commands."""
diff --git a/bob/ip/binseg/script/compare.py b/bob/ip/binseg/script/compare.py
new file mode 100644
index 0000000000000000000000000000000000000000..813a5cb8c392ceb2eb280d9e45a36752b01839b5
--- /dev/null
+++ b/bob/ip/binseg/script/compare.py
@@ -0,0 +1,203 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+import os
+import click
+
+from bob.extension.scripts.click_helper import (
+    verbosity_option,
+    AliasedGroup,
+)
+
+import pandas
+import tabulate
+
+from ..utils.plot import precision_recall_f1iso
+from ..utils.table import performance_table
+
+import logging
+logger = logging.getLogger(__name__)
+
+
+def _validate_threshold(t, dataset):
+    """Validates the user threshold selection.  Returns parsed threshold."""
+
+    if t is None:
+        return t
+
+    try:
+        # we try to convert it to float first
+        t = float(t)
+        if t < 0.0 or t > 1.0:
+            raise ValueError("Float thresholds must be within range [0.0, 1.0]")
+    except ValueError:
+        # it is a bit of text - assert dataset with name is available
+        if not isinstance(dataset, dict):
+            raise ValueError(
+                "Threshold should be a floating-point number "
+                "if your provide only a single dataset for evaluation"
+            )
+        if t not in dataset:
+            raise ValueError(
+                f"Text thresholds should match dataset names, "
+                f"but {t} is not available among the datasets provided ("
+                f"({', '.join(dataset.keys())})"
+            )
+
+    return t
+
+
+def _load(data, threshold=None):
+    """Plots comparison chart of all evaluated models
+
+    Parameters
+    ----------
+
+    data : dict
+        A dict in which keys are the names of the systems and the values are
+        paths to ``metrics.csv`` style files.
+
+    threshold : :py:class:`float`, :py:class:`str`, Optional
+        A value indicating which threshold to choose for selecting a "F1-score"
+        If set to ``None``, then use the maximum F1-score on that metrics file.
+        If set to a floating-point value, then use the F1-score that is
+        obtained on that particular threshold.  If set to a string, it should
+        match one of the keys in ``data``.  It then first calculate the
+        threshold reaching the maximum F1-score on that particular dataset and
+        then applies that threshold to all other sets.
+
+
+    Returns
+    -------
+
+    data : dict
+        A dict in which keys are the names of the systems and the values are
+        dictionaries that contain two keys:
+
+        * ``df``: A :py:class:`pandas.DataFrame` with the metrics data loaded
+          to
+        * ``threshold``: A threshold to be used for summarization, depending on
+          the ``threshold`` parameter set on the input
+
+    """
+
+    if isinstance(threshold, str):
+        logger.info(f"Calculating threshold from maximum F1-score at "
+                f"'{threshold}' dataset...")
+        metrics_path = data[threshold]
+        df = pandas.read_csv(metrics_path)
+
+        maxf1 = df.f1_score.max()
+        use_threshold = df.threshold[df.f1_score.idxmax()]
+        logger.info(f"Dataset '*': threshold = {use_threshold:.3f}'")
+
+    elif isinstance(threshold, float):
+        use_threshold = threshold
+        logger.info(f"Dataset '*': threshold = {use_threshold:.3f}'")
+
+    names = []
+    dfs = []
+    thresholds = []
+
+    # loads all data
+    retval = {}
+    for name, metrics_path in data.items():
+
+        logger.info(f"Loading metrics from {metrics_path}...")
+        df = pandas.read_csv(metrics_path)
+
+        if threshold is None:
+            use_threshold = df.threshold[df.f1_score.idxmax()]
+            logger.info(f"Dataset '{name}': threshold = {use_threshold:.3f}'")
+
+        retval[name] = dict(df=df, threshold=use_threshold)
+
+    return retval
+
+
+@click.command(
+    epilog="""Examples:
+
+\b
+    1. Compares system A and B, with their own pre-computed metric files:
+\b
+       $ bob binseg compare -vv A path/to/A/metrics.csv B path/to/B/metrics.csv
+""",
+)
+@click.argument(
+        'label_path',
+        nargs=-1,
+        )
+@click.option(
+    "--output-figure",
+    "-f",
+    help="Path where write the output figure (any extension supported by "
+    "matplotlib is possible).  If not provided, does not produce a figure.",
+    required=False,
+    default=None,
+    type=click.Path(dir_okay=False, file_okay=True),
+)
+@click.option(
+    "--table-format",
+    "-T",
+    help="The format to use for the comparison table",
+    show_default=True,
+    required=True,
+    default="rst",
+    type=click.Choice(tabulate.tabulate_formats),
+)
+@click.option(
+    "--output-table",
+    "-u",
+    help="Path where write the output table. If not provided, does not write "
+    "write a table to file, only to stdout.",
+    required=False,
+    default=None,
+    type=click.Path(dir_okay=False, file_okay=True),
+)
+@click.option(
+    "--threshold",
+    "-t",
+    help="This number is used to select which F1-score to use for "
+    "representing a system performance.  If not set, we report the maximum "
+    "F1-score in the set, which is equivalent to threshold selection a "
+    "posteriori (biased estimator).  You can either set this value to a "
+    "floating-point number in the range [0.0, 1.0], or to a string, naming "
+    "one of the systems which will be used to calculate the threshold "
+    "leading to the maximum F1-score and then applied to all other sets.",
+    default=None,
+    show_default=False,
+    required=False,
+)
+@verbosity_option()
+def compare(label_path, output_figure, table_format, output_table, threshold,
+        **kwargs):
+    """Compares multiple systems together"""
+
+    # hack to get a dictionary from arguments passed to input
+    if len(label_path) % 2 != 0:
+        raise click.ClickException("Input label-paths should be doubles"
+                " composed of name-path entries")
+    data = dict(zip(label_path[::2], label_path[1::2]))
+
+    threshold = _validate_threshold(threshold, data)
+
+    # load all data metrics
+    data = _load(data, threshold=threshold)
+
+    if output_figure is not None:
+        output_figure = os.path.realpath(output_figure)
+        logger.info(f"Creating and saving plot at {output_figure}...")
+        os.makedirs(os.path.dirname(output_figure), exist_ok=True)
+        fig = precision_recall_f1iso(data, confidence=True)
+        fig.savefig(output_figure)
+
+    logger.info("Tabulating performance summary...")
+    table = performance_table(data, table_format)
+    click.echo(table)
+    if output_table is not None:
+        output_table = os.path.realpath(output_table)
+        logger.info(f"Saving table at {output_table}...")
+        os.makedirs(os.path.dirname(output_table), exist_ok=True)
+        with open(output_table, "wt") as f:
+            f.write(table)
diff --git a/bob/ip/binseg/script/config.py b/bob/ip/binseg/script/config.py
new file mode 100644
index 0000000000000000000000000000000000000000..0ab6b4ca71493a6d20903cfcbd53fd9a1365bb9e
--- /dev/null
+++ b/bob/ip/binseg/script/config.py
@@ -0,0 +1,193 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+import shutil
+import inspect
+
+import click
+import pkg_resources
+
+from bob.extension.scripts.click_helper import (
+    verbosity_option,
+    AliasedGroup,
+)
+
+import logging
+logger = logging.getLogger(__name__)
+
+
+@click.group(cls=AliasedGroup)
+def config():
+    """Commands for listing, describing and copying configuration resources"""
+    pass
+
+
+@config.command(
+    epilog="""
+\b
+Examples:
+
+\b
+  1. Lists all configuration resources (type: bob.ip.binseg.config) installed:
+
+\b
+     $ bob binseg config list
+
+
+\b
+  2. Lists all configuration resources and their descriptions (notice this may
+     be slow as it needs to load all modules once):
+
+\b
+     $ bob binseg config list -v
+
+"""
+)
+@verbosity_option()
+def list(verbose):
+    """Lists configuration files installed"""
+
+    entry_points = pkg_resources.iter_entry_points("bob.ip.binseg.config")
+    entry_points = dict([(k.name, k) for k in entry_points])
+
+    # all modules with configuration resources
+    modules = set(
+        k.module_name.rsplit(".", 1)[0] for k in entry_points.values()
+    )
+    keep_modules = []
+    for k in sorted(modules):
+        if k not in keep_modules and \
+                not any(k.startswith(l) for l in keep_modules):
+            keep_modules.append(k)
+    modules = keep_modules
+
+    # sort data entries by originating module
+    entry_points_by_module = {}
+    for k in modules:
+        entry_points_by_module[k] = {}
+        for name, ep in entry_points.items():
+            if ep.module_name.startswith(k):
+                entry_points_by_module[k][name] = ep
+
+    for config_type in sorted(entry_points_by_module):
+
+        # calculates the longest config name so we offset the printing
+        longest_name_length = max(
+            len(k) for k in entry_points_by_module[config_type].keys()
+        )
+
+        # set-up printing options
+        print_string = "  %%-%ds   %%s" % (longest_name_length,)
+        # 79 - 4 spaces = 75 (see string above)
+        description_leftover = 75 - longest_name_length
+
+        print("module: %s" % (config_type,))
+        for name in sorted(entry_points_by_module[config_type]):
+            ep = entry_points[name]
+
+            if verbose >= 1:
+                module = ep.load()
+                doc = inspect.getdoc(module)
+                if doc is not None:
+                    summary = doc.split("\n\n")[0]
+                else:
+                    summary = "<DOCSTRING NOT AVAILABLE>"
+            else:
+                summary = ""
+
+            summary = (
+                (summary[: (description_leftover - 3)] + "...")
+                if len(summary) > (description_leftover - 3)
+                else summary
+            )
+
+            print(print_string % (name, summary))
+
+
+@config.command(
+    epilog="""
+\b
+Examples:
+
+\b
+  1. Describes the DRIVE (training) dataset configuration:
+
+\b
+     $ bob binseg config describe drive
+
+
+\b
+  2. Describes the DRIVE (training) dataset configuration and lists its
+     contents:
+
+\b
+     $ bob binseg config describe drive -v
+
+"""
+)
+@click.argument(
+    "name", required=True, nargs=-1,
+)
+@verbosity_option()
+def describe(name, verbose):
+    """Describes a specific configuration file"""
+
+    entry_points = pkg_resources.iter_entry_points("bob.ip.binseg.config")
+    entry_points = dict([(k.name, k) for k in entry_points])
+
+    for k in name:
+        if k not in entry_points:
+            logger.error("Cannot find configuration resource '%s'", k)
+            continue
+        ep = entry_points[k]
+        print("Configuration: %s" % (ep.name,))
+        print("Python Module: %s" % (ep.module_name,))
+        print("")
+        mod = ep.load()
+
+        if verbose >= 1:
+            fname = inspect.getfile(mod)
+            print("Contents:")
+            with open(fname, "r") as f:
+                print(f.read())
+        else:  #only output documentation
+            print("Documentation:")
+            print(inspect.getdoc(mod))
+
+
+@config.command(
+    epilog="""
+\b
+Examples:
+
+\b
+  1. Makes a copy of one of the stock configuration files locally, so it can be
+     adapted:
+
+\b
+     $ bob binseg config copy drive -vvv newdataset.py
+
+
+"""
+)
+@click.argument(
+    "source", required=True, nargs=1,
+)
+@click.argument(
+    "destination", required=True, nargs=1,
+)
+@verbosity_option()
+def copy(source, destination, verbose):
+    """Copies a specific configuration resource so it can be modified locally"""
+
+    entry_points = pkg_resources.iter_entry_points("bob.ip.binseg.config")
+    entry_points = dict([(k.name, k) for k in entry_points])
+
+    if source not in entry_points:
+        logger.error("Cannot find configuration resource '%s'", source)
+        return 1
+    ep = entry_points[source]
+    mod = ep.load()
+    src_name = inspect.getfile(mod)
+    logger.info('cp %s -> %s' % (src_name, destination))
+    shutil.copyfile(src_name, destination)
diff --git a/bob/ip/binseg/script/dataset.py b/bob/ip/binseg/script/dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..c2eb52db9cf95ad92423e63713a5922680c972ba
--- /dev/null
+++ b/bob/ip/binseg/script/dataset.py
@@ -0,0 +1,137 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+import os
+import pkg_resources
+import importlib
+import click
+
+from bob.extension import rc
+from bob.extension.scripts.click_helper import (
+    verbosity_option,
+    AliasedGroup,
+)
+
+
+import logging
+logger = logging.getLogger(__name__)
+
+
+def _get_supported_datasets():
+    """Returns a list of supported dataset names
+    """
+
+    basedir = pkg_resources.resource_filename(__name__, '')
+    basedir = os.path.join(os.path.dirname(basedir), 'data')
+
+    retval = []
+    for k in os.listdir(basedir):
+        candidate = os.path.join(basedir, k)
+        if os.path.isdir(candidate) and '__init__.py' in os.listdir(candidate):
+            retval.append(k)
+    return retval
+
+def _get_installed_datasets():
+    """Returns a list of installed datasets as regular expressions
+
+    * group(0): the name of the key for the dataset directory
+    * group("name"): the short name for the dataset
+
+    """
+
+    import re
+    dataset_re = re.compile(r'^bob\.ip\.binseg\.(?P<name>[^\.]+)\.datadir$')
+    return [dataset_re.match(k) for k in rc.keys() if dataset_re.match(k)]
+
+
+@click.group(cls=AliasedGroup)
+def dataset():
+    """Commands for listing and verifying datasets"""
+    pass
+
+
+@dataset.command(
+    epilog="""Examples:
+
+\b
+    1. To install a dataset, set up its data directory ("datadir").  For
+       example, to setup access to DRIVE files you downloaded locally at
+       the directory "/path/to/drive/files", do the following:
+\b
+       $ bob config set "bob.ip.binseg.drive.datadir" "/path/to/drive/files"
+
+       Notice this setting **is** case-sensitive.
+
+    2. List all raw datasets supported (and configured):
+
+       $ bob binseg dataset list
+
+""",
+)
+@verbosity_option()
+def list(**kwargs):
+    """Lists all supported and configured datasets"""
+
+    supported = _get_supported_datasets()
+    installed = _get_installed_datasets()
+    installed = dict((k.group("name"), k.group(0)) for k in installed)
+
+    click.echo("Supported datasets:")
+    for k in supported:
+        if k in installed:
+            click.echo(f"- {k}: {installed[k]} = \"{rc.get(installed[k])}\"")
+        else:
+            click.echo(f"* {k}: bob.ip.binseg.{k}.datadir (not set)")
+
+
+@dataset.command(
+    epilog="""Examples:
+
+    1. Check if all files of the DRIVE dataset can be loaded:
+
+       $ bob binseg dataset check -vv drive
+
+    2. Check if all files of multiple installed datasets can be loaded:
+
+       $ bob binseg dataset check -vv drive stare
+
+    3. Check if all files of all installed datasets can be loaded:
+
+       $ bob binseg dataset check
+""",
+)
+@click.argument(
+        'dataset',
+        nargs=-1,
+        )
+@click.option(
+    "--limit",
+    "-l",
+    help="Limit check to the first N samples in each dataset, making the "
+            "check sensibly faster.  Set it to zero to check everything.",
+    required=True,
+    type=click.IntRange(0),
+    default=0,
+)
+@verbosity_option()
+def check(dataset, limit, **kwargs):
+    """Checks file access on one or more datasets"""
+
+    to_check = _get_installed_datasets()
+
+    if dataset:  #check only some
+        to_check = [k for k in to_check if k.group("name") in dataset]
+
+    if not to_check:
+        click.echo("No configured datasets matching specifications")
+        click.echo("Try bob binseg dataset list --help to get help in "
+                "configuring a dataset")
+    else:
+        errors = 0
+        for k in to_check:
+            click.echo(f"Checking \"{k.group('name')}\" dataset...")
+            module = importlib.import_module(f"...data.{k.group('name')}",
+                    __name__)
+            errors += module.dataset.check(limit)
+        if not errors:
+            click.echo(f"No errors reported")
diff --git a/bob/ip/binseg/script/evaluate.py b/bob/ip/binseg/script/evaluate.py
new file mode 100644
index 0000000000000000000000000000000000000000..8a4b33d1a7a44991bbc827dc25f83f127fd47875
--- /dev/null
+++ b/bob/ip/binseg/script/evaluate.py
@@ -0,0 +1,179 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+import os
+import click
+
+from bob.extension.scripts.click_helper import (
+    verbosity_option,
+    ConfigCommand,
+    ResourceOption,
+)
+
+from ..engine.evaluator import run, compare_annotators
+
+import logging
+
+logger = logging.getLogger(__name__)
+
+
+def _validate_threshold(t, dataset):
+    """Validates the user threshold selection.  Returns parsed threshold."""
+
+    if t is None:
+        return 0.5
+
+    try:
+        # we try to convert it to float first
+        t = float(t)
+        if t < 0.0 or t > 1.0:
+            raise ValueError("Float thresholds must be within range [0.0, 1.0]")
+    except ValueError:
+        # it is a bit of text - assert dataset with name is available
+        if not isinstance(dataset, dict):
+            raise ValueError(
+                "Threshold should be a floating-point number "
+                "if your provide only a single dataset for evaluation"
+            )
+        if t not in dataset:
+            raise ValueError(
+                f"Text thresholds should match dataset names, "
+                f"but {t} is not available among the datasets provided ("
+                f"({', '.join(dataset.keys())})"
+            )
+
+    return t
+
+
+@click.command(
+    entry_point_group="bob.ip.binseg.config",
+    cls=ConfigCommand,
+    epilog="""Examples:
+
+\b
+    1. Runs evaluation on an existing dataset configuration:
+\b
+       $ bob binseg evaluate -vv drive --predictions-folder=path/to/predictions --output-folder=path/to/results
+\b
+    2. To run evaluation on a folder with your own images and annotations, you
+       must first specify resizing, cropping, etc, so that the image can be
+       correctly input to the model.  Failing to do so will likely result in
+       poor performance.  To figure out such specifications, you must consult
+       the dataset configuration used for **training** the provided model.
+       Once you figured this out, do the following:
+\b
+       $ bob binseg config copy csv-dataset-example mydataset.py
+       # modify "mydataset.py" to your liking
+       $ bob binseg evaluate -vv mydataset.py --predictions-folder=path/to/predictions --output-folder=path/to/results
+""",
+)
+@click.option(
+    "--output-folder",
+    "-o",
+    help="Path where to store the analysis result (created if does not exist)",
+    required=True,
+    default="results",
+    type=click.Path(),
+    cls=ResourceOption,
+)
+@click.option(
+    "--predictions-folder",
+    "-p",
+    help="Path where predictions are currently stored",
+    required=True,
+    type=click.Path(exists=True, file_okay=False, dir_okay=True),
+    cls=ResourceOption,
+)
+@click.option(
+    "--dataset",
+    "-d",
+    help="A torch.utils.data.dataset.Dataset instance implementing a dataset "
+    "to be used for evaluation purposes, possibly including all pre-processing "
+    "pipelines required or, optionally, a dictionary mapping string keys to "
+    "torch.utils.data.dataset.Dataset instances.  All keys that do not start "
+    "with an underscore (_) will be processed.",
+    required=True,
+    cls=ResourceOption,
+)
+@click.option(
+    "--second-annotator",
+    "-S",
+    help="A dataset or dictionary, like in --dataset, with the same "
+    "sample keys, but with annotations from a different annotator that is "
+    "going to be compared to the one in --dataset.  The same rules regarding "
+    "dataset naming conventions apply",
+    required=False,
+    default=None,
+    cls=ResourceOption,
+    show_default=True,
+)
+@click.option(
+    "--overlayed",
+    "-O",
+    help="Creates overlayed representations of the output probability maps, "
+    "similar to --overlayed in prediction-mode, except it includes "
+    "distinctive colours for true and false positives and false negatives.  "
+    "If not set, or empty then do **NOT** output overlayed images.  "
+    "Otherwise, the parameter represents the name of a folder where to "
+    "store those",
+    show_default=True,
+    default=None,
+    required=False,
+    cls=ResourceOption,
+)
+@click.option(
+    "--threshold",
+    "-t",
+    help="This number is used to define positives and negatives from "
+    "probability maps, and report F1-scores (a priori). It "
+    "should either come from the training set or a separate validation set "
+    "to avoid biasing the analysis.  Optionally, if you provide a multi-set "
+    "dataset as input, this may also be the name of an existing set from "
+    "which the threshold will be estimated (highest F1-score) and then "
+    "applied to the subsequent sets.  This number is also used to print "
+    "the test set F1-score a priori performance (default: 0.5)",
+    default=None,
+    show_default=False,
+    required=False,
+    cls=ResourceOption,
+)
+@verbosity_option(cls=ResourceOption)
+def evaluate(
+    output_folder,
+    predictions_folder,
+    dataset,
+    second_annotator,
+    overlayed,
+    threshold,
+    **kwargs,
+):
+    """Evaluates an FCN on a binary segmentation task.
+    """
+
+    threshold = _validate_threshold(threshold, dataset)
+
+    if not isinstance(dataset, dict):
+        dataset = {"test": dataset}
+
+    if second_annotator is None:
+        second_annotator = {}
+    elif not isinstance(second_annotator, dict):
+        second_annotator = {"test": second_annotator}
+    #else, second_annotator must be a dict
+
+    if isinstance(threshold, str):
+        # first run evaluation for reference dataset, do not save overlays
+        logger.info(f"Evaluating threshold on '{threshold}' set")
+        threshold = run(dataset[threshold], threshold, predictions_folder)
+        logger.info(f"Set --threshold={threshold:.5f}")
+
+    # now run with the
+    for k, v in dataset.items():
+        if k.startswith("_"):
+            logger.info(f"Skipping dataset '{k}' (not to be evaluated)")
+            continue
+        logger.info(f"Analyzing '{k}' set...")
+        run(v, k, predictions_folder, output_folder, overlayed, threshold)
+        second = second_annotator.get(k)
+        if second is not None:
+            compare_annotators(v, second, k, output_folder, overlayed)
diff --git a/bob/ip/binseg/script/experiment.py b/bob/ip/binseg/script/experiment.py
new file mode 100644
index 0000000000000000000000000000000000000000..cbbfd56f0754327b6bb93abde03b4718c387d930
--- /dev/null
+++ b/bob/ip/binseg/script/experiment.py
@@ -0,0 +1,327 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+import os
+import shutil
+
+import click
+
+from bob.extension.scripts.click_helper import (
+    verbosity_option,
+    ConfigCommand,
+    ResourceOption,
+)
+
+from .binseg import save_sh_command
+
+import logging
+
+logger = logging.getLogger(__name__)
+
+
+@click.command(
+    entry_point_group="bob.ip.binseg.config",
+    cls=ConfigCommand,
+    epilog="""Examples:
+
+\b
+    1. Trains an M2U-Net model (VGG-16 backbone) with DRIVE (vessel
+       segmentation), on the CPU, for only two epochs, then runs inference and
+       evaluation on stock datasets, report performance as a table and a figure:
+
+       $ bob binseg experiment -vv m2unet drive --epochs=2
+
+""",
+)
+@click.option(
+    "--output-folder",
+    "-o",
+    help="Path where to store experiment outputs (created if does not exist)",
+    required=True,
+    type=click.Path(),
+    default="results",
+    cls=ResourceOption,
+)
+@click.option(
+    "--model",
+    "-m",
+    help="A torch.nn.Module instance implementing the network to be trained, and then evaluated",
+    required=True,
+    cls=ResourceOption,
+)
+@click.option(
+    "--dataset",
+    "-d",
+    help="A dictionary mapping string keys to "
+    "bob.ip.binseg.data.utils.SampleList2TorchDataset's.  At least one key "
+    "named 'train' must be available.  This dataset will be used for training "
+    "the network model.  All other datasets will be used for prediction and "
+    "evaluation. Dataset descriptions include all required pre-processing, "
+    "including eventual data augmentation, which may be eventually excluded "
+    "for prediction and evaluation purposes",
+    required=True,
+    cls=ResourceOption,
+)
+@click.option(
+    "--second-annotator",
+    "-S",
+    help="A dataset or dictionary, like in --dataset, with the same "
+    "sample keys, but with annotations from a different annotator that is "
+    "going to be compared to the one in --dataset",
+    required=False,
+    default=None,
+    cls=ResourceOption,
+    show_default=True,
+)
+@click.option(
+    "--optimizer",
+    help="A torch.optim.Optimizer that will be used to train the network",
+    required=True,
+    cls=ResourceOption,
+)
+@click.option(
+    "--criterion",
+    help="A loss function to compute the FCN error for every sample "
+    "respecting the PyTorch API for loss functions (see torch.nn.modules.loss)",
+    required=True,
+    cls=ResourceOption,
+)
+@click.option(
+    "--scheduler",
+    help="A learning rate scheduler that drives changes in the learning "
+    "rate depending on the FCN state (see torch.optim.lr_scheduler)",
+    required=True,
+    cls=ResourceOption,
+)
+@click.option(
+    "--pretrained-backbone",
+    "-t",
+    help="URL of a pre-trained model file that will be used to preset "
+    "FCN weights (where relevant) before training starts "
+    "(e.g. vgg16, mobilenetv2)",
+    required=True,
+    cls=ResourceOption,
+)
+@click.option(
+    "--batch-size",
+    "-b",
+    help="Number of samples in every batch (this parameter affects "
+    "memory requirements for the network).  If the number of samples in "
+    "the batch is larger than the total number of samples available for "
+    "training, this value is truncated.  If this number is smaller, then "
+    "batches of the specified size are created and fed to the network "
+    "until there are no more new samples to feed (epoch is finished).  "
+    "If the total number of training samples is not a multiple of the "
+    "batch-size, the last batch will be smaller than the first, unless "
+    "--drop-incomplete--batch is set, in which case this batch is not used.",
+    required=True,
+    show_default=True,
+    default=2,
+    type=click.IntRange(min=1),
+    cls=ResourceOption,
+)
+@click.option(
+    "--drop-incomplete-batch/--no-drop-incomplete-batch",
+    "-D",
+    help="If set, then may drop the last batch in an epoch, in case it is "
+    "incomplete.  If you set this option, you should also consider "
+    "increasing the total number of epochs of training, as the total number "
+    "of training steps may be reduced",
+    required=True,
+    show_default=True,
+    default=False,
+    cls=ResourceOption,
+)
+@click.option(
+    "--epochs",
+    "-e",
+    help="Number of epochs (complete training set passes) to train for",
+    show_default=True,
+    required=True,
+    default=1000,
+    type=click.IntRange(min=1),
+    cls=ResourceOption,
+)
+@click.option(
+    "--checkpoint-period",
+    "-p",
+    help="Number of epochs after which a checkpoint is saved. "
+    "A value of zero will disable check-pointing. If checkpointing is "
+    "enabled and training stops, it is automatically resumed from the "
+    "last saved checkpoint if training is restarted with the same "
+    "configuration.",
+    show_default=True,
+    required=True,
+    default=0,
+    type=click.IntRange(min=0),
+    cls=ResourceOption,
+)
+@click.option(
+    "--device",
+    "-d",
+    help='A string indicating the device to use (e.g. "cpu" or "cuda:0")',
+    show_default=True,
+    required=True,
+    default="cpu",
+    cls=ResourceOption,
+)
+@click.option(
+    "--seed",
+    "-s",
+    help="Seed to use for the random number generator",
+    show_default=True,
+    required=False,
+    default=42,
+    type=click.IntRange(min=0),
+    cls=ResourceOption,
+)
+@click.option(
+    "--ssl/--no-ssl",
+    help="Switch ON/OFF semi-supervised training mode",
+    show_default=True,
+    required=True,
+    default=False,
+    cls=ResourceOption,
+)
+@click.option(
+    "--rampup",
+    "-r",
+    help="Ramp-up length in epochs (for SSL training only)",
+    show_default=True,
+    required=True,
+    default=900,
+    type=click.IntRange(min=0),
+    cls=ResourceOption,
+)
+@click.option(
+    "--overlayed/--no-overlayed",
+    "-O",
+    help="Creates overlayed representations of the output probability maps, "
+    "similar to --overlayed in prediction-mode, except it includes "
+    "distinctive colours for true and false positives and false negatives.  "
+    "If not set, or empty then do **NOT** output overlayed images.",
+    show_default=True,
+    default=False,
+    required=False,
+    cls=ResourceOption,
+)
+@verbosity_option(cls=ResourceOption)
+@click.pass_context
+def experiment(
+    ctx,
+    model,
+    optimizer,
+    scheduler,
+    output_folder,
+    epochs,
+    pretrained_backbone,
+    batch_size,
+    drop_incomplete_batch,
+    criterion,
+    dataset,
+    second_annotator,
+    checkpoint_period,
+    device,
+    seed,
+    ssl,
+    rampup,
+    overlayed,
+    verbose,
+    **kwargs,
+):
+    """Runs a complete experiment, from training, to prediction and evaluation
+
+    This script is just a wrapper around the individual scripts for training,
+    running prediction, evaluating and comparing FCN model performance.  It
+    organises the output in a preset way::
+
+\b
+       └─ <output-folder>/
+          ├── model/  #the generated model will be here
+          ├── predictions/  #the prediction outputs for the train/test set
+          ├── overlayed/  #the overlayed outputs for the train/test set
+             ├── predictions/  #predictions overlayed on the input images
+             ├── analysis/  #predictions overlayed on the input images
+             ├              #including analysis of false positives, negatives
+             ├              #and true positives
+             └── second-annotator/  #if set, store overlayed images for the
+                                    #second annotator here
+          └── analysis /  #the outputs of the analysis of both train/test sets
+                          #includes second-annotator "metrics" as well, if
+                          # configured
+
+    Training is performed for a configurable number of epochs, and generates at
+    least a final_model.pth.  It may also generate a number of intermediate
+    checkpoints.  Checkpoints are model files (.pth files) that are stored
+    during the training and useful to resume the procedure in case it stops
+    abruptly.
+
+    N.B.: The tool is designed to prevent analysis bias and allows one to
+    provide separate subsets for training and evaluation.  Instead of using
+    simple datasets, datasets for full experiment running should be
+    dictionaries with specific subset names:
+
+    * ``__train__``: dataset used for training, prioritarily.  It is typically
+      the dataset containing data augmentation pipelines.
+    * ``train`` (optional): a copy of the ``__train__`` dataset, without data
+      augmentation, that will be evaluated alongside other sets available
+    * ``*``: any other name, not starting with an underscore character (``_``),
+      will be considered a test set for evaluation.
+
+    N.B.2: The threshold used for calculating the F1-score on the test set, or
+    overlay analysis (false positives, negatives and true positives overprinted
+    on the original image) also follows the logic above.
+    """
+
+    command_sh = os.path.join(output_folder, "command.sh")
+    if os.path.exists(command_sh):
+        backup = command_sh + '~'
+        if os.path.exists(backup):
+            os.unlink(backup)
+        shutil.move(command_sh, backup)
+    save_sh_command(command_sh)
+
+    ## Training
+    logger.info("Started training")
+
+    from .train import train
+
+    train_output_folder = os.path.join(output_folder, "model")
+
+    ctx.invoke(
+        train,
+        model=model,
+        optimizer=optimizer,
+        scheduler=scheduler,
+        output_folder=train_output_folder,
+        epochs=epochs,
+        pretrained_backbone=pretrained_backbone,
+        batch_size=batch_size,
+        drop_incomplete_batch=drop_incomplete_batch,
+        criterion=criterion,
+        dataset=dataset,
+        checkpoint_period=checkpoint_period,
+        device=device,
+        seed=seed,
+        ssl=ssl,
+        rampup=rampup,
+        verbose=verbose,
+    )
+    logger.info("Ended training")
+
+    from .analyze import analyze
+
+    model_file = os.path.join(train_output_folder, "model_final.pth")
+
+    ctx.invoke(
+            analyze,
+            model=model,
+            output_folder=output_folder,
+            batch_size=batch_size,
+            dataset=dataset,
+            second_annotator=second_annotator,
+            device=device,
+            overlayed=overlayed,
+            weight=model_file,
+            verbose=verbose,
+            )
diff --git a/bob/ip/binseg/script/predict.py b/bob/ip/binseg/script/predict.py
new file mode 100644
index 0000000000000000000000000000000000000000..14c9cd7495d05aff04a6edd8f3e85be9ef1b6129
--- /dev/null
+++ b/bob/ip/binseg/script/predict.py
@@ -0,0 +1,151 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+import os
+import tempfile
+
+import click
+import torch
+from torch.utils.data import DataLoader
+
+from bob.extension.scripts.click_helper import (
+    verbosity_option,
+    ConfigCommand,
+    ResourceOption,
+)
+
+from ..engine.predictor import run
+from ..utils.checkpointer import DetectronCheckpointer
+
+from .binseg import download_to_tempfile
+
+import logging
+logger = logging.getLogger(__name__)
+
+
+@click.command(
+    entry_point_group="bob.ip.binseg.config",
+    cls=ConfigCommand,
+    epilog="""Examples:
+
+\b
+    1. Runs prediction on an existing dataset configuration:
+\b
+       $ bob binseg predict -vv m2unet drive --weight=path/to/model_final.pth --output-folder=path/to/predictions
+\b
+    2. To run prediction on a folder with your own images, you must first
+       specify resizing, cropping, etc, so that the image can be correctly
+       input to the model.  Failing to do so will likely result in poor
+       performance.  To figure out such specifications, you must consult the
+       dataset configuration used for **training** the provided model.  Once
+       you figured this out, do the following:
+\b
+       $ bob binseg config copy csv-dataset-example mydataset.py
+       # modify "mydataset.py" to include the base path and required transforms
+       $ bob binseg predict -vv m2unet mydataset.py --weight=path/to/model_final.pth --output-folder=path/to/predictions
+""",
+)
+@click.option(
+    "--output-folder",
+    "-o",
+    help="Path where to store the predictions (created if does not exist)",
+    required=True,
+    default="results",
+    cls=ResourceOption,
+    type=click.Path(),
+)
+@click.option(
+    "--model",
+    "-m",
+    help="A torch.nn.Module instance implementing the network to be evaluated",
+    required=True,
+    cls=ResourceOption,
+)
+@click.option(
+    "--dataset",
+    "-d",
+    help="A torch.utils.data.dataset.Dataset instance implementing a dataset "
+    "to be used for running prediction, possibly including all pre-processing "
+    "pipelines required or, optionally, a dictionary mapping string keys to "
+    "torch.utils.data.dataset.Dataset instances.  All keys that do not start "
+    "with an underscore (_) will be processed.",
+    required=True,
+    cls=ResourceOption,
+)
+@click.option(
+    "--batch-size",
+    "-b",
+    help="Number of samples in every batch (this parameter affects memory requirements for the network)",
+    required=True,
+    show_default=True,
+    default=1,
+    type=click.IntRange(min=1),
+    cls=ResourceOption,
+)
+@click.option(
+    "--device",
+    "-d",
+    help='A string indicating the device to use (e.g. "cpu" or "cuda:0")',
+    show_default=True,
+    required=True,
+    default="cpu",
+    cls=ResourceOption,
+)
+@click.option(
+    "--weight",
+    "-w",
+    help="Path or URL to pretrained model file (.pth extension)",
+    required=True,
+    cls=ResourceOption,
+)
+@click.option(
+    "--overlayed",
+    "-O",
+    help="Creates overlayed representations of the output probability maps on "
+    "top of input images (store results as PNG files).   If not set, or empty "
+    "then do **NOT** output overlayed images.  Otherwise, the parameter "
+    "represents the name of a folder where to store those",
+    show_default=True,
+    default=None,
+    required=False,
+    cls=ResourceOption,
+)
+@verbosity_option(cls=ResourceOption)
+def predict(output_folder, model, dataset, batch_size, device, weight,
+        overlayed, **kwargs):
+    """Predicts vessel map (probabilities) on input images"""
+
+    dataset = dataset if isinstance(dataset, dict) else dict(test=dataset)
+
+    if weight.startswith("http"):
+        logger.info(f"Temporarily downloading '{weight}'...")
+        f = download_to_tempfile(weight, progress=True)
+        weight_fullpath = os.path.abspath(f.name)
+    else:
+        weight_fullpath = os.path.abspath(weight)
+
+    weight_path = os.path.dirname(weight_fullpath)
+    weight_name = os.path.basename(weight_fullpath)
+    checkpointer = DetectronCheckpointer(model, save_dir=weight_path,
+            save_to_disk=False)
+    checkpointer.load(weight_name)
+
+    # clean-up the overlayed path
+    if overlayed is not None:
+        overlayed = overlayed.strip()
+
+    for k,v in dataset.items():
+
+        if k.startswith("_"):
+            logger.info(f"Skipping dataset '{k}' (not to be evaluated)")
+            continue
+
+        logger.info(f"Running inference on '{k}' set...")
+
+        data_loader = DataLoader(
+            dataset=v,
+            batch_size=batch_size,
+            shuffle=False,
+            pin_memory=torch.cuda.is_available(),
+        )
+        run(model, data_loader, device, output_folder, overlayed)
diff --git a/bob/ip/binseg/script/train.py b/bob/ip/binseg/script/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..3076aae4c9796fedb8ed009aea4ee6afb89edc85
--- /dev/null
+++ b/bob/ip/binseg/script/train.py
@@ -0,0 +1,289 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+import os
+
+import click
+import torch
+from torch.utils.data import DataLoader
+
+from bob.extension.scripts.click_helper import (
+    verbosity_option,
+    ConfigCommand,
+    ResourceOption,
+)
+
+from ..utils.checkpointer import DetectronCheckpointer
+
+import logging
+logger = logging.getLogger(__name__)
+
+
+@click.command(
+    entry_point_group="bob.ip.binseg.config",
+    cls=ConfigCommand,
+    epilog="""Examples:
+
+\b
+    1. Trains a U-Net model (VGG-16 backbone) with DRIVE (vessel segmentation),
+       on a GPU (``cuda:0``):
+
+       $ bob binseg train -vv unet drive --batch-size=4 --device="cuda:0"
+
+    2. Trains a HED model with HRF on a GPU (``cuda:0``):
+
+       $ bob binseg train -vv hed hrf --batch-size=8 --device="cuda:0"
+
+    3. Trains a M2U-Net model on the COVD-DRIVE dataset on the CPU:
+
+       $ bob binseg train -vv m2unet covd-drive --batch-size=8
+
+    4. Trains a DRIU model with SSL on the COVD-HRF dataset on the CPU:
+
+       $ bob binseg train -vv --ssl driu-ssl covd-drive-ssl --batch-size=1
+
+""",
+)
+@click.option(
+    "--output-folder",
+    "-o",
+    help="Path where to store the generated model (created if does not exist)",
+    required=True,
+    type=click.Path(),
+    default="results",
+    cls=ResourceOption,
+)
+@click.option(
+    "--model",
+    "-m",
+    help="A torch.nn.Module instance implementing the network to be trained",
+    required=True,
+    cls=ResourceOption,
+)
+@click.option(
+    "--dataset",
+    "-d",
+    help="A torch.utils.data.dataset.Dataset instance implementing a dataset "
+    "to be used for training the model, possibly including all pre-processing "
+    "pipelines required or, optionally, a dictionary mapping string keys to "
+    "torch.utils.data.dataset.Dataset instances.  At least one key "
+    "named ``train`` must be available.  This dataset will be used for "
+    "training the network model.  The dataset description must include all "
+    "required pre-processing, including eventual data augmentation.  If a "
+    "dataset named ``__train__`` is available, it is used prioritarily for "
+    "training instead of ``train``.",
+    required=True,
+    cls=ResourceOption,
+)
+@click.option(
+    "--optimizer",
+    help="A torch.optim.Optimizer that will be used to train the network",
+    required=True,
+    cls=ResourceOption,
+)
+@click.option(
+    "--criterion",
+    help="A loss function to compute the FCN error for every sample "
+    "respecting the PyTorch API for loss functions (see torch.nn.modules.loss)",
+    required=True,
+    cls=ResourceOption,
+)
+@click.option(
+    "--scheduler",
+    help="A learning rate scheduler that drives changes in the learning "
+    "rate depending on the FCN state (see torch.optim.lr_scheduler)",
+    required=True,
+    cls=ResourceOption,
+)
+@click.option(
+    "--pretrained-backbone",
+    "-t",
+    help="URL of a pre-trained model file that will be used to preset "
+    "FCN weights (where relevant) before training starts "
+    "(e.g. vgg16, mobilenetv2)",
+    required=True,
+    cls=ResourceOption,
+)
+@click.option(
+    "--batch-size",
+    "-b",
+    help="Number of samples in every batch (this parameter affects "
+    "memory requirements for the network).  If the number of samples in "
+    "the batch is larger than the total number of samples available for "
+    "training, this value is truncated.  If this number is smaller, then "
+    "batches of the specified size are created and fed to the network "
+    "until there are no more new samples to feed (epoch is finished).  "
+    "If the total number of training samples is not a multiple of the "
+    "batch-size, the last batch will be smaller than the first, unless "
+    "--drop-incomplete--batch is set, in which case this batch is not used.",
+    required=True,
+    show_default=True,
+    default=2,
+    type=click.IntRange(min=1),
+    cls=ResourceOption,
+)
+@click.option(
+    "--drop-incomplete-batch/--no-drop-incomplete-batch",
+    "-D",
+    help="If set, then may drop the last batch in an epoch, in case it is "
+    "incomplete.  If you set this option, you should also consider "
+    "increasing the total number of epochs of training, as the total number "
+    "of training steps may be reduced",
+    required=True,
+    show_default=True,
+    default=False,
+    cls=ResourceOption,
+)
+@click.option(
+    "--epochs",
+    "-e",
+    help="Number of epochs (complete training set passes) to train for",
+    show_default=True,
+    required=True,
+    default=1000,
+    type=click.IntRange(min=1),
+    cls=ResourceOption,
+)
+@click.option(
+    "--checkpoint-period",
+    "-p",
+    help="Number of epochs after which a checkpoint is saved. "
+    "A value of zero will disable check-pointing. If checkpointing is "
+    "enabled and training stops, it is automatically resumed from the "
+    "last saved checkpoint if training is restarted with the same "
+    "configuration.",
+    show_default=True,
+    required=True,
+    default=0,
+    type=click.IntRange(min=0),
+    cls=ResourceOption,
+)
+@click.option(
+    "--device",
+    "-d",
+    help='A string indicating the device to use (e.g. "cpu" or "cuda:0")',
+    show_default=True,
+    required=True,
+    default="cpu",
+    cls=ResourceOption,
+)
+@click.option(
+    "--seed",
+    "-s",
+    help="Seed to use for the random number generator",
+    show_default=True,
+    required=False,
+    default=42,
+    type=click.IntRange(min=0),
+    cls=ResourceOption,
+)
+@click.option(
+    "--ssl/--no-ssl",
+    help="Switch ON/OFF semi-supervised training mode",
+    show_default=True,
+    required=True,
+    default=False,
+    cls=ResourceOption,
+)
+@click.option(
+    "--rampup",
+    "-r",
+    help="Ramp-up length in epochs (for SSL training only)",
+    show_default=True,
+    required=True,
+    default=900,
+    type=click.IntRange(min=0),
+    cls=ResourceOption,
+)
+@verbosity_option(cls=ResourceOption)
+def train(
+    model,
+    optimizer,
+    scheduler,
+    output_folder,
+    epochs,
+    pretrained_backbone,
+    batch_size,
+    drop_incomplete_batch,
+    criterion,
+    dataset,
+    checkpoint_period,
+    device,
+    seed,
+    ssl,
+    rampup,
+    verbose,
+    **kwargs,
+):
+    """Trains an FCN to perform binary segmentation
+
+    Training is performed for a configurable number of epochs, and generates at
+    least a final_model.pth.  It may also generate a number of intermediate
+    checkpoints.  Checkpoints are model files (.pth files) that are stored
+    during the training and useful to resume the procedure in case it stops
+    abruptly.
+    """
+
+    torch.manual_seed(seed)
+
+    use_dataset = dataset
+    if isinstance(dataset, dict):
+        if "__train__" in dataset:
+            logger.info("Found (dedicated) '__train__' set for training")
+            use_dataset = dataset["__train__"]
+        else:
+            use_dataset = dataset["train"]
+
+    # PyTorch dataloader
+    data_loader = DataLoader(
+        dataset=use_dataset,
+        batch_size=batch_size,
+        shuffle=True,
+        drop_last=drop_incomplete_batch,
+        pin_memory=torch.cuda.is_available(),
+    )
+
+    # Checkpointer
+    checkpointer = DetectronCheckpointer(
+        model, optimizer, scheduler, save_dir=output_folder, save_to_disk=True
+    )
+
+    arguments = {}
+    arguments["epoch"] = 0
+    extra_checkpoint_data = checkpointer.load(pretrained_backbone)
+    arguments.update(extra_checkpoint_data)
+    arguments["max_epoch"] = epochs
+
+    logger.info("Training for {} epochs".format(arguments["max_epoch"]))
+    logger.info("Continuing from epoch {}".format(arguments["epoch"]))
+
+    if not ssl:
+        from ..engine.trainer import run
+        run(
+            model,
+            data_loader,
+            optimizer,
+            criterion,
+            scheduler,
+            checkpointer,
+            checkpoint_period,
+            device,
+            arguments,
+            output_folder,
+        )
+
+    else:
+        from ..engine.ssltrainer import run
+        run(
+            model,
+            data_loader,
+            optimizer,
+            criterion,
+            scheduler,
+            checkpointer,
+            checkpoint_period,
+            device,
+            arguments,
+            output_folder,
+            rampup,
+        )
diff --git a/bob/ip/binseg/test/__init__.py b/bob/ip/binseg/test/__init__.py
index 2ca5e07cb73f0bdddcb863ef497955964087e301..e4b13525b1e78beb2b5b4e9a141b3bb5fa2f4f8c 100644
--- a/bob/ip/binseg/test/__init__.py
+++ b/bob/ip/binseg/test/__init__.py
@@ -1,3 +1,76 @@
-# see https://docs.python.org/3/library/pkgutil.html
-from pkgutil import extend_path
-__path__ = extend_path(__path__, __name__)
\ No newline at end of file
+#!/usr/bin/env python
+# coding=utf-8
+
+"""Unit tests"""
+
+import tempfile
+import logging
+
+logger = logging.getLogger(__name__)
+
+TESTDB_TMPDIR = None
+_URL = (
+    "http://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/_testdb.zip"
+)
+_RCKEY = "bob.ip.binseg.stare.datadir"
+
+
+def teardown_package():
+    global TESTDB_TMPDIR
+    if TESTDB_TMPDIR is not None:
+        logger.info(f"Removing temporary directory {TESTDB_TMPDIR.name}...")
+        TESTDB_TMPDIR.cleanup()
+
+
+def _mock_test_skipper(name):
+    """
+    Dummary decorator that does nothing
+    """
+    import functools
+
+    def wrapped_function(test):
+        @functools.wraps(test)
+        def wrapper(*args, **kwargs):
+            return test(*args, **kwargs)
+
+        return wrapper
+
+    return wrapped_function
+
+
+def mock_dataset():
+    global TESTDB_TMPDIR
+    from bob.extension import rc
+
+    if (TESTDB_TMPDIR is not None) or (_RCKEY in rc):
+        logger.info("Test database already set up - not downloading")
+    else:
+        logger.info("Test database not available, downloading...")
+        import zipfile
+        import urllib.request
+
+        # Download the file from `url` and save it locally under `file_name`:
+        with urllib.request.urlopen(_URL) as r, tempfile.TemporaryFile() as f:
+            f.write(r.read())
+            f.flush()
+            f.seek(0)
+            TESTDB_TMPDIR = tempfile.TemporaryDirectory(prefix=__name__ + "-")
+            print(f"Creating test database at {TESTDB_TMPDIR.name}...")
+            logger.info(f"Creating test database at {TESTDB_TMPDIR.name}...")
+            with zipfile.ZipFile(f) as zf:
+                zf.extractall(TESTDB_TMPDIR.name)
+
+    from ..data import stare
+
+    if TESTDB_TMPDIR is None:
+        # if the user has the STARE directory ready, then we do a normal return
+        from .utils import rc_variable_set
+
+        return rc["bob.ip.binseg.stare.datadir"], stare.dataset, rc_variable_set
+
+    # else, we do a "mock" return
+    return (
+        TESTDB_TMPDIR.name,
+        stare._make_dataset(TESTDB_TMPDIR.name),
+        _mock_test_skipper,
+    )
diff --git a/bob/ip/binseg/test/data/img-16bit.png b/bob/ip/binseg/test/data/img-16bit.png
new file mode 100644
index 0000000000000000000000000000000000000000..1bd5c6ad984e9200e0611d492149126b628fd74d
Binary files /dev/null and b/bob/ip/binseg/test/data/img-16bit.png differ
diff --git a/bob/ip/binseg/test/data/iris-test.csv b/bob/ip/binseg/test/data/iris-test.csv
new file mode 100644
index 0000000000000000000000000000000000000000..27d1b05a7aa70667844b74778504f3b51c624884
--- /dev/null
+++ b/bob/ip/binseg/test/data/iris-test.csv
@@ -0,0 +1,75 @@
+5,3,1.6,0.2,Iris-setosa
+5,3.4,1.6,0.4,Iris-setosa
+5.2,3.5,1.5,0.2,Iris-setosa
+5.2,3.4,1.4,0.2,Iris-setosa
+4.7,3.2,1.6,0.2,Iris-setosa
+4.8,3.1,1.6,0.2,Iris-setosa
+5.4,3.4,1.5,0.4,Iris-setosa
+5.2,4.1,1.5,0.1,Iris-setosa
+5.5,4.2,1.4,0.2,Iris-setosa
+4.9,3.1,1.5,0.1,Iris-setosa
+5,3.2,1.2,0.2,Iris-setosa
+5.5,3.5,1.3,0.2,Iris-setosa
+4.9,3.1,1.5,0.1,Iris-setosa
+4.4,3,1.3,0.2,Iris-setosa
+5.1,3.4,1.5,0.2,Iris-setosa
+5,3.5,1.3,0.3,Iris-setosa
+4.5,2.3,1.3,0.3,Iris-setosa
+4.4,3.2,1.3,0.2,Iris-setosa
+5,3.5,1.6,0.6,Iris-setosa
+5.1,3.8,1.9,0.4,Iris-setosa
+4.8,3,1.4,0.3,Iris-setosa
+5.1,3.8,1.6,0.2,Iris-setosa
+4.6,3.2,1.4,0.2,Iris-setosa
+5.3,3.7,1.5,0.2,Iris-setosa
+5,3.3,1.4,0.2,Iris-setosa
+6.6,3,4.4,1.4,Iris-versicolor
+6.8,2.8,4.8,1.4,Iris-versicolor
+6.7,3,5,1.7,Iris-versicolor
+6,2.9,4.5,1.5,Iris-versicolor
+5.7,2.6,3.5,1,Iris-versicolor
+5.5,2.4,3.8,1.1,Iris-versicolor
+5.5,2.4,3.7,1,Iris-versicolor
+5.8,2.7,3.9,1.2,Iris-versicolor
+6,2.7,5.1,1.6,Iris-versicolor
+5.4,3,4.5,1.5,Iris-versicolor
+6,3.4,4.5,1.6,Iris-versicolor
+6.7,3.1,4.7,1.5,Iris-versicolor
+6.3,2.3,4.4,1.3,Iris-versicolor
+5.6,3,4.1,1.3,Iris-versicolor
+5.5,2.5,4,1.3,Iris-versicolor
+5.5,2.6,4.4,1.2,Iris-versicolor
+6.1,3,4.6,1.4,Iris-versicolor
+5.8,2.6,4,1.2,Iris-versicolor
+5,2.3,3.3,1,Iris-versicolor
+5.6,2.7,4.2,1.3,Iris-versicolor
+5.7,3,4.2,1.2,Iris-versicolor
+5.7,2.9,4.2,1.3,Iris-versicolor
+6.2,2.9,4.3,1.3,Iris-versicolor
+5.1,2.5,3,1.1,Iris-versicolor
+5.7,2.8,4.1,1.3,Iris-versicolor
+7.2,3.2,6,1.8,Iris-virginica
+6.2,2.8,4.8,1.8,Iris-virginica
+6.1,3,4.9,1.8,Iris-virginica
+6.4,2.8,5.6,2.1,Iris-virginica
+7.2,3,5.8,1.6,Iris-virginica
+7.4,2.8,6.1,1.9,Iris-virginica
+7.9,3.8,6.4,2,Iris-virginica
+6.4,2.8,5.6,2.2,Iris-virginica
+6.3,2.8,5.1,1.5,Iris-virginica
+6.1,2.6,5.6,1.4,Iris-virginica
+7.7,3,6.1,2.3,Iris-virginica
+6.3,3.4,5.6,2.4,Iris-virginica
+6.4,3.1,5.5,1.8,Iris-virginica
+6,3,4.8,1.8,Iris-virginica
+6.9,3.1,5.4,2.1,Iris-virginica
+6.7,3.1,5.6,2.4,Iris-virginica
+6.9,3.1,5.1,2.3,Iris-virginica
+5.8,2.7,5.1,1.9,Iris-virginica
+6.8,3.2,5.9,2.3,Iris-virginica
+6.7,3.3,5.7,2.5,Iris-virginica
+6.7,3,5.2,2.3,Iris-virginica
+6.3,2.5,5,1.9,Iris-virginica
+6.5,3,5.2,2,Iris-virginica
+6.2,3.4,5.4,2.3,Iris-virginica
+5.9,3,5.1,1.8,Iris-virginica
diff --git a/bob/ip/binseg/test/data/iris-train.csv b/bob/ip/binseg/test/data/iris-train.csv
new file mode 100644
index 0000000000000000000000000000000000000000..82d5b134803975463f070aebe6847e7c742749d2
--- /dev/null
+++ b/bob/ip/binseg/test/data/iris-train.csv
@@ -0,0 +1,75 @@
+5.1,3.5,1.4,0.2,Iris-setosa
+4.9,3,1.4,0.2,Iris-setosa
+4.7,3.2,1.3,0.2,Iris-setosa
+4.6,3.1,1.5,0.2,Iris-setosa
+5,3.6,1.4,0.2,Iris-setosa
+5.4,3.9,1.7,0.4,Iris-setosa
+4.6,3.4,1.4,0.3,Iris-setosa
+5,3.4,1.5,0.2,Iris-setosa
+4.4,2.9,1.4,0.2,Iris-setosa
+4.9,3.1,1.5,0.1,Iris-setosa
+5.4,3.7,1.5,0.2,Iris-setosa
+4.8,3.4,1.6,0.2,Iris-setosa
+4.8,3,1.4,0.1,Iris-setosa
+4.3,3,1.1,0.1,Iris-setosa
+5.8,4,1.2,0.2,Iris-setosa
+5.7,4.4,1.5,0.4,Iris-setosa
+5.4,3.9,1.3,0.4,Iris-setosa
+5.1,3.5,1.4,0.3,Iris-setosa
+5.7,3.8,1.7,0.3,Iris-setosa
+5.1,3.8,1.5,0.3,Iris-setosa
+5.4,3.4,1.7,0.2,Iris-setosa
+5.1,3.7,1.5,0.4,Iris-setosa
+4.6,3.6,1,0.2,Iris-setosa
+5.1,3.3,1.7,0.5,Iris-setosa
+4.8,3.4,1.9,0.2,Iris-setosa
+7,3.2,4.7,1.4,Iris-versicolor
+6.4,3.2,4.5,1.5,Iris-versicolor
+6.9,3.1,4.9,1.5,Iris-versicolor
+5.5,2.3,4,1.3,Iris-versicolor
+6.5,2.8,4.6,1.5,Iris-versicolor
+5.7,2.8,4.5,1.3,Iris-versicolor
+6.3,3.3,4.7,1.6,Iris-versicolor
+4.9,2.4,3.3,1,Iris-versicolor
+6.6,2.9,4.6,1.3,Iris-versicolor
+5.2,2.7,3.9,1.4,Iris-versicolor
+5,2,3.5,1,Iris-versicolor
+5.9,3,4.2,1.5,Iris-versicolor
+6,2.2,4,1,Iris-versicolor
+6.1,2.9,4.7,1.4,Iris-versicolor
+5.6,2.9,3.6,1.3,Iris-versicolor
+6.7,3.1,4.4,1.4,Iris-versicolor
+5.6,3,4.5,1.5,Iris-versicolor
+5.8,2.7,4.1,1,Iris-versicolor
+6.2,2.2,4.5,1.5,Iris-versicolor
+5.6,2.5,3.9,1.1,Iris-versicolor
+5.9,3.2,4.8,1.8,Iris-versicolor
+6.1,2.8,4,1.3,Iris-versicolor
+6.3,2.5,4.9,1.5,Iris-versicolor
+6.1,2.8,4.7,1.2,Iris-versicolor
+6.4,2.9,4.3,1.3,Iris-versicolor
+6.3,3.3,6,2.5,Iris-virginica
+5.8,2.7,5.1,1.9,Iris-virginica
+7.1,3,5.9,2.1,Iris-virginica
+6.3,2.9,5.6,1.8,Iris-virginica
+6.5,3,5.8,2.2,Iris-virginica
+7.6,3,6.6,2.1,Iris-virginica
+4.9,2.5,4.5,1.7,Iris-virginica
+7.3,2.9,6.3,1.8,Iris-virginica
+6.7,2.5,5.8,1.8,Iris-virginica
+7.2,3.6,6.1,2.5,Iris-virginica
+6.5,3.2,5.1,2,Iris-virginica
+6.4,2.7,5.3,1.9,Iris-virginica
+6.8,3,5.5,2.1,Iris-virginica
+5.7,2.5,5,2,Iris-virginica
+5.8,2.8,5.1,2.4,Iris-virginica
+6.4,3.2,5.3,2.3,Iris-virginica
+6.5,3,5.5,1.8,Iris-virginica
+7.7,3.8,6.7,2.2,Iris-virginica
+7.7,2.6,6.9,2.3,Iris-virginica
+6,2.2,5,1.5,Iris-virginica
+6.9,3.2,5.7,2.3,Iris-virginica
+5.6,2.8,4.9,2,Iris-virginica
+7.7,2.8,6.7,2,Iris-virginica
+6.3,2.7,4.9,1.8,Iris-virginica
+6.7,3.3,5.7,2.1,Iris-virginica
diff --git a/bob/ip/binseg/test/data/iris.json b/bob/ip/binseg/test/data/iris.json
new file mode 100644
index 0000000000000000000000000000000000000000..1777efc361562880096b9a21b2011218c152ecac
--- /dev/null
+++ b/bob/ip/binseg/test/data/iris.json
@@ -0,0 +1,156 @@
+{
+    "train": [
+        [5.1,3.5,1.4,0.2,"Iris-setosa"],
+        [4.9,3,1.4,0.2,"Iris-setosa"],
+        [4.7,3.2,1.3,0.2,"Iris-setosa"],
+        [4.6,3.1,1.5,0.2,"Iris-setosa"],
+        [5,3.6,1.4,0.2,"Iris-setosa"],
+        [5.4,3.9,1.7,0.4,"Iris-setosa"],
+        [4.6,3.4,1.4,0.3,"Iris-setosa"],
+        [5,3.4,1.5,0.2,"Iris-setosa"],
+        [4.4,2.9,1.4,0.2,"Iris-setosa"],
+        [4.9,3.1,1.5,0.1,"Iris-setosa"],
+        [5.4,3.7,1.5,0.2,"Iris-setosa"],
+        [4.8,3.4,1.6,0.2,"Iris-setosa"],
+        [4.8,3,1.4,0.1,"Iris-setosa"],
+        [4.3,3,1.1,0.1,"Iris-setosa"],
+        [5.8,4,1.2,0.2,"Iris-setosa"],
+        [5.7,4.4,1.5,0.4,"Iris-setosa"],
+        [5.4,3.9,1.3,0.4,"Iris-setosa"],
+        [5.1,3.5,1.4,0.3,"Iris-setosa"],
+        [5.7,3.8,1.7,0.3,"Iris-setosa"],
+        [5.1,3.8,1.5,0.3,"Iris-setosa"],
+        [5.4,3.4,1.7,0.2,"Iris-setosa"],
+        [5.1,3.7,1.5,0.4,"Iris-setosa"],
+        [4.6,3.6,1,0.2,"Iris-setosa"],
+        [5.1,3.3,1.7,0.5,"Iris-setosa"],
+        [4.8,3.4,1.9,0.2,"Iris-setosa"],
+        [7,3.2,4.7,1.4,"Iris-versicolor"],
+        [6.4,3.2,4.5,1.5,"Iris-versicolor"],
+        [6.9,3.1,4.9,1.5,"Iris-versicolor"],
+        [5.5,2.3,4,1.3,"Iris-versicolor"],
+        [6.5,2.8,4.6,1.5,"Iris-versicolor"],
+        [5.7,2.8,4.5,1.3,"Iris-versicolor"],
+        [6.3,3.3,4.7,1.6,"Iris-versicolor"],
+        [4.9,2.4,3.3,1,"Iris-versicolor"],
+        [6.6,2.9,4.6,1.3,"Iris-versicolor"],
+        [5.2,2.7,3.9,1.4,"Iris-versicolor"],
+        [5,2,3.5,1,"Iris-versicolor"],
+        [5.9,3,4.2,1.5,"Iris-versicolor"],
+        [6,2.2,4,1,"Iris-versicolor"],
+        [6.1,2.9,4.7,1.4,"Iris-versicolor"],
+        [5.6,2.9,3.6,1.3,"Iris-versicolor"],
+        [6.7,3.1,4.4,1.4,"Iris-versicolor"],
+        [5.6,3,4.5,1.5,"Iris-versicolor"],
+        [5.8,2.7,4.1,1,"Iris-versicolor"],
+        [6.2,2.2,4.5,1.5,"Iris-versicolor"],
+        [5.6,2.5,3.9,1.1,"Iris-versicolor"],
+        [5.9,3.2,4.8,1.8,"Iris-versicolor"],
+        [6.1,2.8,4,1.3,"Iris-versicolor"],
+        [6.3,2.5,4.9,1.5,"Iris-versicolor"],
+        [6.1,2.8,4.7,1.2,"Iris-versicolor"],
+        [6.4,2.9,4.3,1.3,"Iris-versicolor"],
+        [6.3,3.3,6,2.5,"Iris-virginica"],
+        [5.8,2.7,5.1,1.9,"Iris-virginica"],
+        [7.1,3,5.9,2.1,"Iris-virginica"],
+        [6.3,2.9,5.6,1.8,"Iris-virginica"],
+        [6.5,3,5.8,2.2,"Iris-virginica"],
+        [7.6,3,6.6,2.1,"Iris-virginica"],
+        [4.9,2.5,4.5,1.7,"Iris-virginica"],
+        [7.3,2.9,6.3,1.8,"Iris-virginica"],
+        [6.7,2.5,5.8,1.8,"Iris-virginica"],
+        [7.2,3.6,6.1,2.5,"Iris-virginica"],
+        [6.5,3.2,5.1,2,"Iris-virginica"],
+        [6.4,2.7,5.3,1.9,"Iris-virginica"],
+        [6.8,3,5.5,2.1,"Iris-virginica"],
+        [5.7,2.5,5,2,"Iris-virginica"],
+        [5.8,2.8,5.1,2.4,"Iris-virginica"],
+        [6.4,3.2,5.3,2.3,"Iris-virginica"],
+        [6.5,3,5.5,1.8,"Iris-virginica"],
+        [7.7,3.8,6.7,2.2,"Iris-virginica"],
+        [7.7,2.6,6.9,2.3,"Iris-virginica"],
+        [6,2.2,5,1.5,"Iris-virginica"],
+        [6.9,3.2,5.7,2.3,"Iris-virginica"],
+        [5.6,2.8,4.9,2,"Iris-virginica"],
+        [7.7,2.8,6.7,2,"Iris-virginica"],
+        [6.3,2.7,4.9,1.8,"Iris-virginica"],
+        [6.7,3.3,5.7,2.1,"Iris-virginica"]
+    ],
+    "test": [
+        [5,3,1.6,0.2,"Iris-setosa"],
+        [5,3.4,1.6,0.4,"Iris-setosa"],
+        [5.2,3.5,1.5,0.2,"Iris-setosa"],
+        [5.2,3.4,1.4,0.2,"Iris-setosa"],
+        [4.7,3.2,1.6,0.2,"Iris-setosa"],
+        [4.8,3.1,1.6,0.2,"Iris-setosa"],
+        [5.4,3.4,1.5,0.4,"Iris-setosa"],
+        [5.2,4.1,1.5,0.1,"Iris-setosa"],
+        [5.5,4.2,1.4,0.2,"Iris-setosa"],
+        [4.9,3.1,1.5,0.1,"Iris-setosa"],
+        [5,3.2,1.2,0.2,"Iris-setosa"],
+        [5.5,3.5,1.3,0.2,"Iris-setosa"],
+        [4.9,3.1,1.5,0.1,"Iris-setosa"],
+        [4.4,3,1.3,0.2,"Iris-setosa"],
+        [5.1,3.4,1.5,0.2,"Iris-setosa"],
+        [5,3.5,1.3,0.3,"Iris-setosa"],
+        [4.5,2.3,1.3,0.3,"Iris-setosa"],
+        [4.4,3.2,1.3,0.2,"Iris-setosa"],
+        [5,3.5,1.6,0.6,"Iris-setosa"],
+        [5.1,3.8,1.9,0.4,"Iris-setosa"],
+        [4.8,3,1.4,0.3,"Iris-setosa"],
+        [5.1,3.8,1.6,0.2,"Iris-setosa"],
+        [4.6,3.2,1.4,0.2,"Iris-setosa"],
+        [5.3,3.7,1.5,0.2,"Iris-setosa"],
+        [5,3.3,1.4,0.2,"Iris-setosa"],
+        [6.6,3,4.4,1.4,"Iris-versicolor"],
+        [6.8,2.8,4.8,1.4,"Iris-versicolor"],
+        [6.7,3,5,1.7,"Iris-versicolor"],
+        [6,2.9,4.5,1.5,"Iris-versicolor"],
+        [5.7,2.6,3.5,1,"Iris-versicolor"],
+        [5.5,2.4,3.8,1.1,"Iris-versicolor"],
+        [5.5,2.4,3.7,1,"Iris-versicolor"],
+        [5.8,2.7,3.9,1.2,"Iris-versicolor"],
+        [6,2.7,5.1,1.6,"Iris-versicolor"],
+        [5.4,3,4.5,1.5,"Iris-versicolor"],
+        [6,3.4,4.5,1.6,"Iris-versicolor"],
+        [6.7,3.1,4.7,1.5,"Iris-versicolor"],
+        [6.3,2.3,4.4,1.3,"Iris-versicolor"],
+        [5.6,3,4.1,1.3,"Iris-versicolor"],
+        [5.5,2.5,4,1.3,"Iris-versicolor"],
+        [5.5,2.6,4.4,1.2,"Iris-versicolor"],
+        [6.1,3,4.6,1.4,"Iris-versicolor"],
+        [5.8,2.6,4,1.2,"Iris-versicolor"],
+        [5,2.3,3.3,1,"Iris-versicolor"],
+        [5.6,2.7,4.2,1.3,"Iris-versicolor"],
+        [5.7,3,4.2,1.2,"Iris-versicolor"],
+        [5.7,2.9,4.2,1.3,"Iris-versicolor"],
+        [6.2,2.9,4.3,1.3,"Iris-versicolor"],
+        [5.1,2.5,3,1.1,"Iris-versicolor"],
+        [5.7,2.8,4.1,1.3,"Iris-versicolor"],
+        [7.2,3.2,6,1.8,"Iris-virginica"],
+        [6.2,2.8,4.8,1.8,"Iris-virginica"],
+        [6.1,3,4.9,1.8,"Iris-virginica"],
+        [6.4,2.8,5.6,2.1,"Iris-virginica"],
+        [7.2,3,5.8,1.6,"Iris-virginica"],
+        [7.4,2.8,6.1,1.9,"Iris-virginica"],
+        [7.9,3.8,6.4,2,"Iris-virginica"],
+        [6.4,2.8,5.6,2.2,"Iris-virginica"],
+        [6.3,2.8,5.1,1.5,"Iris-virginica"],
+        [6.1,2.6,5.6,1.4,"Iris-virginica"],
+        [7.7,3,6.1,2.3,"Iris-virginica"],
+        [6.3,3.4,5.6,2.4,"Iris-virginica"],
+        [6.4,3.1,5.5,1.8,"Iris-virginica"],
+        [6,3,4.8,1.8,"Iris-virginica"],
+        [6.9,3.1,5.4,2.1,"Iris-virginica"],
+        [6.7,3.1,5.6,2.4,"Iris-virginica"],
+        [6.9,3.1,5.1,2.3,"Iris-virginica"],
+        [5.8,2.7,5.1,1.9,"Iris-virginica"],
+        [6.8,3.2,5.9,2.3,"Iris-virginica"],
+        [6.7,3.3,5.7,2.5,"Iris-virginica"],
+        [6.7,3,5.2,2.3,"Iris-virginica"],
+        [6.3,2.5,5,1.9,"Iris-virginica"],
+        [6.5,3,5.2,2,"Iris-virginica"],
+        [6.2,3.4,5.4,2.3,"Iris-virginica"],
+        [5.9,3,5.1,1.8,"Iris-virginica"]
+    ]
+}
diff --git a/bob/ip/binseg/test/test_basemetrics.py b/bob/ip/binseg/test/test_basemetrics.py
index bf478ac788d038dd9038ca5d5b5cf7aa1ac7a83a..969894f5e453bfdf6fc86fe07448d8e1c8f7ece2 100644
--- a/bob/ip/binseg/test/test_basemetrics.py
+++ b/bob/ip/binseg/test/test_basemetrics.py
@@ -2,43 +2,47 @@
 # -*- coding: utf-8 -*-
 
 import unittest
-import numpy as np
 from bob.ip.binseg.utils.metric import base_metrics
 import random
 
+
 class Tester(unittest.TestCase):
     """
     Unit test for base metrics
     """
+
     def setUp(self):
         self.tp = random.randint(1, 100)
         self.fp = random.randint(1, 100)
         self.tn = random.randint(1, 100)
         self.fn = random.randint(1, 100)
-    
+
     def test_precision(self):
         precision = base_metrics(self.tp, self.fp, self.tn, self.fn)[0]
-        self.assertEqual((self.tp)/(self.tp + self.fp),precision)
+        self.assertEqual((self.tp) / (self.tp + self.fp), precision)
 
     def test_recall(self):
         recall = base_metrics(self.tp, self.fp, self.tn, self.fn)[1]
-        self.assertEqual((self.tp)/(self.tp + self.fn),recall)
+        self.assertEqual((self.tp) / (self.tp + self.fn), recall)
 
     def test_specificity(self):
         specificity = base_metrics(self.tp, self.fp, self.tn, self.fn)[2]
-        self.assertEqual((self.tn)/(self.tn + self.fp),specificity)
-    
+        self.assertEqual((self.tn) / (self.tn + self.fp), specificity)
+
     def test_accuracy(self):
         accuracy = base_metrics(self.tp, self.fp, self.tn, self.fn)[3]
-        self.assertEqual((self.tp + self.tn)/(self.tp + self.tn + self.fp + self.fn), accuracy)
+        self.assertEqual(
+            (self.tp + self.tn) / (self.tp + self.tn + self.fp + self.fn), accuracy
+        )
 
     def test_jaccard(self):
         jaccard = base_metrics(self.tp, self.fp, self.tn, self.fn)[4]
-        self.assertEqual(self.tp / (self.tp+self.fp+self.fn), jaccard)
+        self.assertEqual(self.tp / (self.tp + self.fp + self.fn), jaccard)
 
     def test_f1(self):
         f1 = base_metrics(self.tp, self.fp, self.tn, self.fn)[5]
-        self.assertEqual((2.0 * self.tp ) / (2.0 * self.tp + self.fp + self.fn ),f1)
-        
-if __name__ == '__main__':
-    unittest.main()
\ No newline at end of file
+        self.assertEqual((2.0 * self.tp) / (2.0 * self.tp + self.fp + self.fn), f1)
+
+
+if __name__ == "__main__":
+    unittest.main()
diff --git a/bob/ip/binseg/test/test_batchmetrics.py b/bob/ip/binseg/test/test_batchmetrics.py
index 4988cab6ea8a7ffbc907f2e580ebe46b48ad9611..09ffe250a805a00718d2cb4687ea2bbe5e49daf4 100644
--- a/bob/ip/binseg/test/test_batchmetrics.py
+++ b/bob/ip/binseg/test/test_batchmetrics.py
@@ -2,38 +2,45 @@
 # -*- coding: utf-8 -*-
 
 import unittest
-import numpy as np
-from bob.ip.binseg.engine.inferencer import batch_metrics
 import random
-import shutil, tempfile
-import logging
+import shutil
+
 import torch
+import pandas
+import numpy
+
+from ..engine.evaluator import _sample_metrics
+
+import logging
+logger = logging.getLogger(__name__)
+
 
 class Tester(unittest.TestCase):
     """
     Unit test for batch metrics
     """
+
     def setUp(self):
         self.tp = random.randint(1, 100)
         self.fp = random.randint(1, 100)
         self.tn = random.randint(1, 100)
         self.fn = random.randint(1, 100)
-        self.predictions = torch.rand(size=(2,1,420,420))
-        self.ground_truths = torch.randint(low=0, high=2, size=(2,1,420,420))
-        self.names = ['Bob','Tim'] 
-        self.output_folder = tempfile.mkdtemp()
-        self.logger = logging.getLogger(__name__)
-
-    def tearDown(self):
-        # Remove the temporary folder after the test
-        shutil.rmtree(self.output_folder)
-    
+        self.predictions = torch.rand(size=(2, 1, 420, 420))
+        self.ground_truths = torch.randint(low=0, high=2, size=(2, 1, 420, 420))
+        self.names = ["Bob", "Tim"]
+
     def test_batch_metrics(self):
-        bm = batch_metrics(self.predictions, self.ground_truths, self.names, self.output_folder, self.logger)
-        self.assertEqual(len(bm),2*100)
-        for metric in bm:
-            # check whether f1 score agree
-            self.assertAlmostEqual(metric[-1],2*(metric[-6]*metric[-5])/(metric[-6]+metric[-5]))
-
-if __name__ == '__main__':
-    unittest.main()
\ No newline at end of file
+        dfs = []
+        for pred, gt in zip(self.predictions, self.ground_truths):
+            dfs.append(_sample_metrics(pred, gt, 100))
+        bm = pandas.concat(dfs)
+
+        self.assertEqual(len(bm), 2 * 100)
+        # check whether f1 score agree
+        calculated = bm.f1_score.to_numpy()
+        ours = (2*(bm.precision*bm.recall)/(bm.precision+bm.recall)).to_numpy()
+        assert numpy.isclose(calculated, ours).all()
+
+
+if __name__ == "__main__":
+    unittest.main()
diff --git a/bob/ip/binseg/test/test_chasedb1.py b/bob/ip/binseg/test/test_chasedb1.py
new file mode 100644
index 0000000000000000000000000000000000000000..d5a980c14f2992307a53e69924cb6b7c314fc538
--- /dev/null
+++ b/bob/ip/binseg/test/test_chasedb1.py
@@ -0,0 +1,99 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+
+"""Tests for CHASE-DB1"""
+
+import os
+
+import numpy
+import nose.tools
+
+from ..data.chasedb1 import dataset
+from .utils import rc_variable_set, count_bw
+
+
+def test_protocol_consistency():
+
+    subset = dataset.subsets("first-annotator")
+    nose.tools.eq_(len(subset), 2)
+
+    assert "train" in subset
+    nose.tools.eq_(len(subset["train"]), 8)
+    for s in subset["train"]:
+        assert s.key.startswith("Image_")
+
+    assert "test" in subset
+    nose.tools.eq_(len(subset["test"]), 20)
+    for s in subset["test"]:
+        assert s.key.startswith("Image_")
+
+    subset = dataset.subsets("second-annotator")
+    nose.tools.eq_(len(subset), 2)
+
+    assert "train" in subset
+    nose.tools.eq_(len(subset["train"]), 8)
+    for s in subset["train"]:
+        assert s.key.startswith("Image_")
+
+    assert "test" in subset
+    nose.tools.eq_(len(subset["test"]), 20)
+    for s in subset["test"]:
+        assert s.key.startswith("Image_")
+
+
+@rc_variable_set('bob.ip.binseg.chasedb1.datadir')
+def test_loading():
+
+    image_size = (999, 960)
+
+    def _check_sample(s, bw_threshold_label):
+
+        data = s.data
+        assert isinstance(data, dict)
+        nose.tools.eq_(len(data), 2)
+
+        assert "data" in data
+        nose.tools.eq_(data["data"].size, image_size)
+        nose.tools.eq_(data["data"].mode, "RGB")
+
+        assert "label" in data
+        nose.tools.eq_(data["label"].size, image_size)
+        nose.tools.eq_(data["label"].mode, "1")
+        b, w = count_bw(data["label"])
+        assert (b+w) == numpy.prod(image_size), \
+                f"Counts of black + white ({b}+{w}) do not add up to total " \
+                f"image size ({numpy.prod(image_size)}) at '{s.key}':label"
+        assert (w/b) < bw_threshold_label, \
+                f"The proportion between black and white pixels " \
+                f"({w}/{b}={w/b:.2f}) is larger than the allowed threshold " \
+                f"of {bw_threshold_label} at '{s.key}':label - this could " \
+                f"indicate a loading problem!"
+
+        # to visualize images, uncomment the folowing code
+        # it should display an image with a faded background representing the
+        # original data, blended with green labels.
+        #from ..data.utils import overlayed_image
+        #display = overlayed_image(data["data"], data["label"])
+        #display.show()
+        #import ipdb; ipdb.set_trace()
+
+        return w/b
+
+    limit = None  #use this to limit testing to first images only
+    subset = dataset.subsets("first-annotator")
+    proportions = [_check_sample(s, 0.08) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, 0.10) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+
+    subset = dataset.subsets("second-annotator")
+    proportions = [_check_sample(s, 0.09) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, 0.09) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+
+
+@rc_variable_set('bob.ip.binseg.chasedb1.datadir')
+def test_check():
+    nose.tools.eq_(dataset.check(), 0)
diff --git a/bob/ip/binseg/test/test_checkpointer.py b/bob/ip/binseg/test/test_checkpointer.py
index 45a181b39a298fb0a7340ad745113543c4048b2f..52bd9ac0fafefd1d7d250bfcd87c4d3e6703ad15 100644
--- a/bob/ip/binseg/test/test_checkpointer.py
+++ b/bob/ip/binseg/test/test_checkpointer.py
@@ -1,8 +1,6 @@
 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
 
-# https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/engine/trainer.py 
-# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
 from collections import OrderedDict
 from tempfile import TemporaryDirectory
 import unittest
@@ -41,9 +39,7 @@ class TestCheckpointer(unittest.TestCase):
         trained_model = self.create_model()
         fresh_model = self.create_model()
         with TemporaryDirectory() as f:
-            checkpointer = Checkpointer(
-                trained_model, save_dir=f, save_to_disk=True
-            )
+            checkpointer = Checkpointer(trained_model, save_dir=f, save_to_disk=True)
             checkpointer.save("checkpoint_file")
 
             # in the same folder
@@ -51,7 +47,7 @@ class TestCheckpointer(unittest.TestCase):
             self.assertTrue(fresh_checkpointer.has_checkpoint())
             self.assertEqual(
                 fresh_checkpointer.get_checkpoint_file(),
-                os.path.join(f, "checkpoint_file.pth"),
+                "checkpoint_file.pth",
             )
             _ = fresh_checkpointer.load()
 
@@ -68,9 +64,7 @@ class TestCheckpointer(unittest.TestCase):
         trained_model = self.create_model()
         fresh_model = self.create_model()
         with TemporaryDirectory() as f:
-            checkpointer = Checkpointer(
-                trained_model, save_dir=f, save_to_disk=True
-            )
+            checkpointer = Checkpointer(trained_model, save_dir=f, save_to_disk=True)
             checkpointer.save("checkpoint_file")
 
             # on different folders
@@ -90,4 +84,4 @@ class TestCheckpointer(unittest.TestCase):
 
 
 if __name__ == "__main__":
-    unittest.main()
\ No newline at end of file
+    unittest.main()
diff --git a/bob/ip/binseg/test/test_cli.py b/bob/ip/binseg/test/test_cli.py
new file mode 100644
index 0000000000000000000000000000000000000000..0b0d20af4fb3fe312afb2c95ed7acd577d737b40
--- /dev/null
+++ b/bob/ip/binseg/test/test_cli.py
@@ -0,0 +1,573 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""Tests for our CLI applications"""
+
+import os
+import re
+import fnmatch
+import tempfile
+import contextlib
+
+import nose.tools
+
+from click.testing import CliRunner
+
+from . import mock_dataset
+
+stare_datadir, stare_dataset, rc_variable_set = mock_dataset()
+
+
+@contextlib.contextmanager
+def stdout_logging():
+
+    ## copy logging messages to std out
+    import sys
+    import logging
+    import io
+
+    buf = io.StringIO()
+    ch = logging.StreamHandler(buf)
+    ch.setFormatter(logging.Formatter("%(message)s"))
+    ch.setLevel(logging.INFO)
+    logger = logging.getLogger("bob")
+    logger.addHandler(ch)
+    yield buf
+    logger.removeHandler(ch)
+
+
+def _assert_exit_0(result):
+
+    assert (
+        result.exit_code == 0
+    ), f"Exit code {result.exit_code} != 0 -- Output:\n{result.output}"
+
+
+def _check_help(entry_point):
+
+    runner = CliRunner()
+    result = runner.invoke(entry_point, ["--help"])
+    _assert_exit_0(result)
+    assert result.output.startswith("Usage:")
+
+
+def test_main_help():
+    from ..script.binseg import binseg
+
+    _check_help(binseg)
+
+
+def test_experiment_help():
+    from ..script.experiment import experiment
+
+    _check_help(experiment)
+
+
+def _str_counter(substr, s):
+    return sum(1 for _ in re.finditer(substr, s, re.MULTILINE))
+
+
+def _check_experiment_stare(overlay):
+
+    from ..script.experiment import experiment
+
+    runner = CliRunner()
+    with runner.isolated_filesystem(), stdout_logging() as buf, tempfile.NamedTemporaryFile(
+        mode="wt"
+    ) as config:
+
+        # re-write STARE dataset configuration for test
+        config.write("from bob.ip.binseg.data.stare import _make_dataset\n")
+        config.write(f"_raw = _make_dataset('{stare_datadir}')\n")
+        config.write(
+            "from bob.ip.binseg.configs.datasets.stare import _maker\n"
+        )
+        config.write("dataset = _maker('ah', _raw)\n")
+        config.write("second_annotator = _maker('vk', _raw)\n")
+        config.flush()
+
+        output_folder = "results"
+        options = [
+                "m2unet",
+                config.name,
+                "-vv",
+                "--epochs=1",
+                "--batch-size=1",
+                f"--output-folder={output_folder}",
+                ]
+        if overlay:
+            options += ["--overlayed"]
+        result = runner.invoke(experiment, options)
+        _assert_exit_0(result)
+
+        # check command-line
+        assert os.path.exists(os.path.join(output_folder, "command.sh"))
+
+        # check model was saved
+        train_folder = os.path.join(output_folder, "model")
+        assert os.path.exists(os.path.join(train_folder, "model_final.pth"))
+        assert os.path.exists(os.path.join(train_folder, "last_checkpoint"))
+        assert os.path.exists(os.path.join(train_folder, "constants.csv"))
+        assert os.path.exists(os.path.join(train_folder, "trainlog.csv"))
+        assert os.path.exists(os.path.join(train_folder, "model_summary.txt"))
+
+        # check predictions are there
+        predict_folder = os.path.join(output_folder, "predictions")
+        basedir = os.path.join(predict_folder, "stare-images")
+        assert os.path.exists(basedir)
+        nose.tools.eq_(len(fnmatch.filter(os.listdir(basedir), "*.hdf5")), 20)
+
+        overlay_folder = os.path.join(output_folder, "overlayed", "predictions")
+        basedir = os.path.join(overlay_folder, "stare-images")
+        if overlay:
+            # check overlayed images are there (since we requested them)
+            assert os.path.exists(basedir)
+            nose.tools.eq_(len(fnmatch.filter(os.listdir(basedir), "*.png")), 20)
+        else:
+            assert not os.path.exists(basedir)
+
+        # check evaluation outputs
+        eval_folder = os.path.join(output_folder, "analysis")
+        assert os.path.exists(os.path.join(eval_folder, "train.csv"))
+        assert os.path.exists(os.path.join(eval_folder, "test.csv"))
+        assert os.path.exists(
+            os.path.join(eval_folder, "second-annotator", "train.csv")
+        )
+        assert os.path.exists(
+            os.path.join(eval_folder, "second-annotator" , "test.csv")
+        )
+
+        overlay_folder = os.path.join(output_folder, "overlayed", "analysis")
+        basedir = os.path.join(overlay_folder, "stare-images")
+        if overlay:
+            # check overlayed images are there (since we requested them)
+            assert os.path.exists(basedir)
+            nose.tools.eq_(len(fnmatch.filter(os.listdir(basedir), "*.png")), 20)
+        else:
+            assert not os.path.exists(basedir)
+
+        # check overlayed images from first-to-second annotator comparisons
+        # are there (since we requested them)
+        overlay_folder = os.path.join(output_folder, "overlayed", "analysis",
+                "second-annotator")
+        basedir = os.path.join(overlay_folder, "stare-images")
+        if overlay:
+            assert os.path.exists(basedir)
+            nose.tools.eq_(len(fnmatch.filter(os.listdir(basedir), "*.png")), 20)
+        else:
+            assert not os.path.exists(basedir)
+
+        # check outcomes of the comparison phase
+        assert os.path.exists(os.path.join(output_folder, "comparison.pdf"))
+        assert os.path.exists(os.path.join(output_folder, "comparison.rst"))
+
+        keywords = {
+            r"^Started training$": 1,
+            r"^Found \(dedicated\) '__train__' set for training$": 1,
+            r"^Continuing from epoch 0$": 1,
+            r"^Saving model summary at.*$": 1,
+            r"^Model has.*$": 1,
+            r"^Saving checkpoint": 1,
+            r"^Ended training$": 1,
+            r"^Started prediction$": 1,
+            r"^Loading checkpoint from": 2,
+            r"^Ended prediction$": 1,
+            r"^Started evaluation$": 1,
+            r"^Maximum F1-score of.*\(chosen \*a posteriori\*\)$": 3,
+            r"^F1-score of.*\(chosen \*a priori\*\)$": 2,
+            r"^F1-score of.*\(second annotator; threshold=0.5\)$": 2,
+            r"^Ended evaluation$": 1,
+            r"^Started comparison$": 1,
+            r"^Loading metrics from": 4,
+            r"^Creating and saving plot at": 1,
+            r"^Tabulating performance summary...": 1,
+            r"^Saving table at": 1,
+            r"^Ended comparison.*$": 1,
+        }
+        buf.seek(0)
+        logging_output = buf.read()
+        for k, v in keywords.items():
+            # if _str_counter(k, logging_output) != v:
+            #    print(f"Count for string '{k}' appeared " \
+            #        f"({_str_counter(k, result.output)}) " \
+            #        f"instead of the expected {v}")
+            assert _str_counter(k, logging_output) == v, (
+                f"Count for string '{k}' appeared "
+                f"({_str_counter(k, logging_output)}) "
+                f"instead of the expected {v}"
+            )
+
+
+@rc_variable_set("bob.ip.binseg.stare.datadir")
+def test_experiment_stare_with_overlay():
+    _check_experiment_stare(overlay=True)
+
+
+@rc_variable_set("bob.ip.binseg.stare.datadir")
+def test_experiment_stare_without_overlay():
+    _check_experiment_stare(overlay=False)
+
+
+def _check_train(runner):
+
+    from ..script.train import train
+
+    with tempfile.NamedTemporaryFile(
+        mode="wt"
+    ) as config, stdout_logging() as buf:
+
+        # single training set configuration
+        config.write("from bob.ip.binseg.data.stare import _make_dataset\n")
+        config.write(f"_raw = _make_dataset('{stare_datadir}')\n")
+        config.write(
+            "from bob.ip.binseg.configs.datasets.stare import _maker\n"
+        )
+        config.write("dataset = _maker('ah', _raw)['train']\n")
+        config.flush()
+
+        output_folder = "results"
+        result = runner.invoke(
+            train,
+            [
+                "m2unet",
+                config.name,
+                "-vv",
+                "--epochs=1",
+                "--batch-size=1",
+                f"--output-folder={output_folder}",
+            ],
+        )
+        _assert_exit_0(result)
+
+        assert os.path.exists(os.path.join(output_folder, "model_final.pth"))
+        assert os.path.exists(os.path.join(output_folder, "last_checkpoint"))
+        assert os.path.exists(os.path.join(output_folder, "constants.csv"))
+        assert os.path.exists(os.path.join(output_folder, "trainlog.csv"))
+        assert os.path.exists(os.path.join(output_folder, "model_summary.txt"))
+
+        keywords = {
+            r"^Continuing from epoch 0$": 1,
+            r"^Saving model summary at.*$": 1,
+            r"^Model has.*$": 1,
+            rf"^Saving checkpoint to {output_folder}/model_final.pth$": 1,
+            r"^Total training time:": 1,
+        }
+        buf.seek(0)
+        logging_output = buf.read()
+
+        for k, v in keywords.items():
+            # if _str_counter(k, logging_output) != v:
+            #    print(f"Count for string '{k}' appeared " \
+            #        f"({_str_counter(k, result.output)}) " \
+            #        f"instead of the expected {v}")
+            assert _str_counter(k, logging_output) == v, (
+                f"Count for string '{k}' appeared "
+                f"({_str_counter(k, logging_output)}) "
+                f"instead of the expected {v}:\nOutput:\n{logging_output}"
+            )
+
+
+def _check_predict(runner):
+
+    from ..script.predict import predict
+
+    with tempfile.NamedTemporaryFile(
+        mode="wt"
+    ) as config, stdout_logging() as buf:
+
+        # single training set configuration
+        config.write("from bob.ip.binseg.data.stare import _make_dataset\n")
+        config.write(f"_raw = _make_dataset('{stare_datadir}')\n")
+        config.write(
+            "from bob.ip.binseg.configs.datasets.stare import _maker\n"
+        )
+        config.write("dataset = _maker('ah', _raw)['test']\n")
+        config.flush()
+
+        output_folder = "predictions"
+        overlay_folder = os.path.join("overlayed", "predictions")
+        result = runner.invoke(
+            predict,
+            [
+                "m2unet",
+                config.name,
+                "-vv",
+                "--batch-size=1",
+                "--weight=results/model_final.pth",
+                f"--output-folder={output_folder}",
+                f"--overlayed={overlay_folder}",
+            ],
+        )
+        _assert_exit_0(result)
+
+        # check predictions are there
+        basedir = os.path.join(output_folder, "stare-images")
+        assert os.path.exists(basedir)
+        nose.tools.eq_(len(fnmatch.filter(os.listdir(basedir), "*.hdf5")), 10)
+
+        # check overlayed images are there (since we requested them)
+        basedir = os.path.join(overlay_folder, "stare-images")
+        assert os.path.exists(basedir)
+        nose.tools.eq_(len(fnmatch.filter(os.listdir(basedir), "*.png")), 10)
+
+        keywords = {
+            r"^Loading checkpoint from.*$": 1,
+            r"^Total time:.*$": 1,
+        }
+        buf.seek(0)
+        logging_output = buf.read()
+
+        for k, v in keywords.items():
+            # if _str_counter(k, logging_output) != v:
+            #    print(f"Count for string '{k}' appeared " \
+            #        f"({_str_counter(k, result.output)}) " \
+            #        f"instead of the expected {v}")
+            assert _str_counter(k, logging_output) == v, (
+                f"Count for string '{k}' appeared "
+                f"({_str_counter(k, logging_output)}) "
+                f"instead of the expected {v}:\nOutput:\n{logging_output}"
+            )
+
+
+def _check_evaluate(runner):
+
+    from ..script.evaluate import evaluate
+
+    with tempfile.NamedTemporaryFile(
+        mode="wt"
+    ) as config, stdout_logging() as buf:
+
+        # single training set configuration
+        config.write("from bob.ip.binseg.data.stare import _make_dataset\n")
+        config.write(f"_raw = _make_dataset('{stare_datadir}')\n")
+        config.write(
+            "from bob.ip.binseg.configs.datasets.stare import _maker\n"
+        )
+        config.write("dataset = _maker('ah', _raw)['test']\n")
+        config.write("second_annotator = _maker('vk', _raw)['test']\n")
+        config.flush()
+
+        output_folder = "evaluations"
+        overlay_folder = os.path.join("overlayed", "analysis")
+        result = runner.invoke(
+            evaluate,
+            [
+                config.name,
+                "-vv",
+                f"--output-folder={output_folder}",
+                "--predictions-folder=predictions",
+                f"--overlayed={overlay_folder}",
+            ],
+        )
+        _assert_exit_0(result)
+
+        assert os.path.exists(os.path.join(output_folder, "test.csv"))
+        assert os.path.exists(os.path.join(output_folder,
+            "second-annotator", "test.csv"))
+
+        # check overlayed images are there (since we requested them)
+        basedir = os.path.join(overlay_folder, "stare-images")
+        assert os.path.exists(basedir)
+        nose.tools.eq_(len(fnmatch.filter(os.listdir(basedir), "*.png")), 10)
+
+        keywords = {
+            r"^Skipping dataset '__train__'": 0,
+            r"^Saving averages over all input images.*$": 2,
+            r"^Maximum F1-score of.*\(chosen \*a posteriori\*\)$": 1,
+            r"^F1-score of.*\(chosen \*a priori\*\)$": 1,
+            r"^F1-score of.*\(second annotator; threshold=0.5\)$": 1,
+        }
+        buf.seek(0)
+        logging_output = buf.read()
+
+        for k, v in keywords.items():
+            # if _str_counter(k, logging_output) != v:
+            #    print(f"Count for string '{k}' appeared " \
+            #        f"({_str_counter(k, result.output)}) " \
+            #        f"instead of the expected {v}")
+            assert _str_counter(k, logging_output) == v, (
+                f"Count for string '{k}' appeared "
+                f"({_str_counter(k, logging_output)}) "
+                f"instead of the expected {v}:\nOutput:\n{logging_output}"
+            )
+
+
+def _check_compare(runner):
+
+    from ..script.compare import compare
+
+    with stdout_logging() as buf:
+
+        output_folder = "evaluations"
+        result = runner.invoke(
+            compare,
+            [
+                "-vv",
+                # label - path to metrics
+                "test",
+                os.path.join(output_folder, "test.csv"),
+                "test (2nd. human)",
+                os.path.join(output_folder, "second-annotator", "test.csv"),
+                "--output-figure=comparison.pdf",
+                "--output-table=comparison.rst",
+            ],
+        )
+        _assert_exit_0(result)
+
+        assert os.path.exists("comparison.pdf")
+        assert os.path.exists("comparison.rst")
+
+        keywords = {
+            r"^Loading metrics from": 2,
+            r"^Creating and saving plot at": 1,
+            r"^Tabulating performance summary...": 1,
+            r"^Saving table at": 1,
+        }
+        buf.seek(0)
+        logging_output = buf.read()
+
+        for k, v in keywords.items():
+            # if _str_counter(k, logging_output) != v:
+            #    print(f"Count for string '{k}' appeared " \
+            #        f"({_str_counter(k, result.output)}) " \
+            #        f"instead of the expected {v}")
+            assert _str_counter(k, logging_output) == v, (
+                f"Count for string '{k}' appeared "
+                f"({_str_counter(k, logging_output)}) "
+                f"instead of the expected {v}:\nOutput:\n{logging_output}"
+            )
+
+
+@rc_variable_set("bob.ip.binseg.stare.datadir")
+def test_discrete_experiment_stare():
+
+    runner = CliRunner()
+    with runner.isolated_filesystem():
+        _check_train(runner)
+        _check_predict(runner)
+        _check_evaluate(runner)
+        _check_compare(runner)
+
+
+def test_train_help():
+    from ..script.train import train
+
+    _check_help(train)
+
+
+def test_predict_help():
+    from ..script.predict import predict
+
+    _check_help(predict)
+
+
+def test_evaluate_help():
+    from ..script.evaluate import evaluate
+
+    _check_help(evaluate)
+
+
+def test_compare_help():
+    from ..script.compare import compare
+
+    _check_help(compare)
+
+
+def test_config_help():
+    from ..script.config import config
+
+    _check_help(config)
+
+
+def test_config_list_help():
+    from ..script.config import list
+
+    _check_help(list)
+
+
+def test_config_list():
+    from ..script.config import list
+
+    runner = CliRunner()
+    result = runner.invoke(list)
+    _assert_exit_0(result)
+    assert "module: bob.ip.binseg.configs.datasets" in result.output
+    assert "module: bob.ip.binseg.configs.models" in result.output
+
+
+def test_config_list_v():
+    from ..script.config import list
+
+    runner = CliRunner()
+    result = runner.invoke(list, ["--verbose"])
+    _assert_exit_0(result)
+    assert "module: bob.ip.binseg.configs.datasets" in result.output
+    assert "module: bob.ip.binseg.configs.models" in result.output
+
+
+def test_config_describe_help():
+    from ..script.config import describe
+
+    _check_help(describe)
+
+
+def test_config_describe_drive():
+    from ..script.config import describe
+
+    runner = CliRunner()
+    result = runner.invoke(describe, ["drive"])
+    _assert_exit_0(result)
+    assert "[DRIVE-2004]" in result.output
+
+
+def test_config_copy_help():
+    from ..script.config import copy
+
+    _check_help(copy)
+
+
+def test_config_copy():
+    from ..script.config import copy
+
+    runner = CliRunner()
+    with runner.isolated_filesystem():
+        result = runner.invoke(copy, ["drive", "test.py"])
+        _assert_exit_0(result)
+        with open("test.py") as f:
+            data = f.read()
+        assert "[DRIVE-2004]" in data
+
+
+def test_dataset_help():
+    from ..script.dataset import dataset
+
+    _check_help(dataset)
+
+
+def test_dataset_list_help():
+    from ..script.dataset import list
+
+    _check_help(list)
+
+
+def test_dataset_list():
+    from ..script.dataset import list
+
+    runner = CliRunner()
+    result = runner.invoke(list)
+    _assert_exit_0(result)
+    assert result.output.startswith("Supported datasets:")
+
+
+def test_dataset_check_help():
+    from ..script.dataset import check
+
+    _check_help(check)
+
+
+def test_dataset_check():
+    from ..script.dataset import check
+
+    runner = CliRunner()
+    result = runner.invoke(check, ["--verbose", "--verbose", "--limit=2"])
+    _assert_exit_0(result)
diff --git a/bob/ip/binseg/test/test_config.py b/bob/ip/binseg/test/test_config.py
new file mode 100644
index 0000000000000000000000000000000000000000..52e3a2b3258485e752cb0887b80bb72e6f05cda4
--- /dev/null
+++ b/bob/ip/binseg/test/test_config.py
@@ -0,0 +1,555 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+import importlib
+
+import nose.tools
+
+import torch
+
+from . import mock_dataset
+stare_datadir, stare_dataset, stare_variable_set = mock_dataset()
+from .utils import rc_variable_set
+
+# we only iterate over the first N elements at most - dataset loading has
+# already been checked on the individual datset tests.  Here, we are only
+# testing for the extra tools wrapping the dataset
+N = 10
+
+
+@rc_variable_set("bob.ip.binseg.drive.datadir")
+def test_drive():
+
+    def _check_subset(samples, size):
+        nose.tools.eq_(len(samples), size)
+        for s in samples:
+            nose.tools.eq_(len(s), 4)
+            assert isinstance(s[0], str)
+            nose.tools.eq_(s[1].shape, (3, 544, 544)) #planes, height, width
+            nose.tools.eq_(s[1].dtype, torch.float32)
+            nose.tools.eq_(s[2].shape, (1, 544, 544)) #planes, height, width
+            nose.tools.eq_(s[2].dtype, torch.float32)
+            nose.tools.eq_(s[3].shape, (1, 544, 544)) #planes, height, width
+            nose.tools.eq_(s[3].dtype, torch.float32)
+
+    from ..configs.datasets.drive.default import dataset
+
+    nose.tools.eq_(len(dataset), 3)
+    _check_subset(dataset["__train__"], 20)
+    _check_subset(dataset["train"], 20)
+    _check_subset(dataset["test"], 20)
+
+    from ..configs.datasets.drive.second_annotator import dataset
+
+    nose.tools.eq_(len(dataset), 1)
+    _check_subset(dataset["test"], 20)
+
+
+@rc_variable_set("bob.ip.binseg.drive.datadir")
+@stare_variable_set("bob.ip.binseg.stare.datadir")
+@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
+@rc_variable_set("bob.ip.binseg.hrf.datadir")
+@rc_variable_set("bob.ip.binseg.iostar.datadir")
+def test_drive_mtest():
+
+    from ..configs.datasets.drive.mtest import dataset
+    nose.tools.eq_(len(dataset), 6)
+
+    from ..configs.datasets.drive.default import dataset as baseline
+    nose.tools.eq_(dataset["train"], baseline["train"])
+    nose.tools.eq_(dataset["test"], baseline["test"])
+
+    for subset in dataset:
+        for sample in dataset[subset]:
+            assert 3 <= len(sample) <= 4
+            assert isinstance(sample[0], str)
+            nose.tools.eq_(sample[1].shape, (3, 544, 544)) #planes, height, width
+            nose.tools.eq_(sample[1].dtype, torch.float32)
+            nose.tools.eq_(sample[2].shape, (1, 544, 544))
+            nose.tools.eq_(sample[2].dtype, torch.float32)
+            if len(sample) == 4:
+                nose.tools.eq_(sample[3].shape, (1, 544, 544))
+                nose.tools.eq_(sample[3].dtype, torch.float32)
+
+
+@rc_variable_set("bob.ip.binseg.drive.datadir")
+@stare_variable_set("bob.ip.binseg.stare.datadir")
+@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
+@rc_variable_set("bob.ip.binseg.hrf.datadir")
+@rc_variable_set("bob.ip.binseg.iostar.datadir")
+def test_drive_covd():
+
+    from ..configs.datasets.drive.covd import dataset
+    nose.tools.eq_(len(dataset), 3)
+
+    from ..configs.datasets.drive.default import dataset as baseline
+    nose.tools.eq_(dataset["train"], baseline["train"])
+    nose.tools.eq_(dataset["test"], baseline["test"])
+
+    # this is the only different set from the baseline
+    nose.tools.eq_(len(dataset["__train__"]), 53)
+
+    for sample in dataset["__train__"]:
+        assert 3 <= len(sample) <= 4
+        assert isinstance(sample[0], str)
+        nose.tools.eq_(sample[1].shape, (3, 544, 544)) #planes, height, width
+        nose.tools.eq_(sample[1].dtype, torch.float32)
+        nose.tools.eq_(sample[2].shape, (1, 544, 544)) #planes, height, width
+        nose.tools.eq_(sample[2].dtype, torch.float32)
+        if len(sample) == 4:
+            nose.tools.eq_(sample[3].shape, (1, 544, 544)) #planes, height, width
+            nose.tools.eq_(sample[3].dtype, torch.float32)
+
+
+@rc_variable_set("bob.ip.binseg.drive.datadir")
+@stare_variable_set("bob.ip.binseg.stare.datadir")
+@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
+@rc_variable_set("bob.ip.binseg.hrf.datadir")
+@rc_variable_set("bob.ip.binseg.iostar.datadir")
+def test_drive_ssl():
+
+    from ..configs.datasets.drive.ssl import dataset
+    nose.tools.eq_(len(dataset), 3)
+
+    from ..configs.datasets.drive.default import dataset as baseline
+    nose.tools.eq_(dataset["train"], baseline["train"])
+    nose.tools.eq_(dataset["test"], baseline["test"])
+
+    # this is the only different set from the baseline
+    nose.tools.eq_(len(dataset["__train__"]), 53)
+
+    for sample in dataset["__train__"]:
+        assert 5 <= len(sample) <= 6
+        assert isinstance(sample[0], str)
+        nose.tools.eq_(sample[1].shape, (3, 544, 544)) #planes, height, width
+        nose.tools.eq_(sample[1].dtype, torch.float32)
+        nose.tools.eq_(sample[2].shape, (1, 544, 544)) #planes, height, width
+        nose.tools.eq_(sample[2].dtype, torch.float32)
+        if len(sample) == 6:
+            nose.tools.eq_(sample[3].shape, (1, 544, 544)) #planes, height, width
+            nose.tools.eq_(sample[3].dtype, torch.float32)
+            assert isinstance(sample[4], str)
+            nose.tools.eq_(sample[5].shape, (3, 544, 544)) #planes, height, width
+            nose.tools.eq_(sample[5].dtype, torch.float32)
+        else:
+            assert isinstance(sample[3], str)
+            nose.tools.eq_(sample[4].shape, (3, 544, 544)) #planes, height, width
+            nose.tools.eq_(sample[4].dtype, torch.float32)
+
+
+@stare_variable_set("bob.ip.binseg.stare.datadir")
+def test_stare_augmentation_manipulation():
+
+    # some tests to check our context management for dataset augmentation works
+    # adequately, with one example dataset
+
+    # hack to allow testing on the CI
+    from ..configs.datasets.stare import _maker
+    dataset = _maker("ah", stare_dataset)
+
+    nose.tools.eq_(len(dataset["__train__"]._transforms.transforms),
+            len(dataset["test"]._transforms.transforms) + 4)
+
+    nose.tools.eq_(len(dataset["train"]._transforms.transforms),
+            len(dataset["test"]._transforms.transforms))
+
+
+@stare_variable_set("bob.ip.binseg.stare.datadir")
+def test_stare():
+
+    def _check_subset(samples, size):
+        nose.tools.eq_(len(samples), size)
+        for s in samples:
+            nose.tools.eq_(len(s), 3)
+            assert isinstance(s[0], str)
+            nose.tools.eq_(s[1].shape, (3, 608, 704)) #planes, height, width
+            nose.tools.eq_(s[1].dtype, torch.float32)
+            nose.tools.eq_(s[2].shape, (1, 608, 704)) #planes, height, width
+            nose.tools.eq_(s[2].dtype, torch.float32)
+
+    # hack to allow testing on the CI
+    from ..configs.datasets.stare import _maker
+
+    for protocol in "ah", "vk":
+        dataset = _maker(protocol, stare_dataset)
+        nose.tools.eq_(len(dataset), 3)
+        _check_subset(dataset["__train__"], 10)
+        _check_subset(dataset["train"], 10)
+        _check_subset(dataset["test"], 10)
+
+
+@rc_variable_set("bob.ip.binseg.drive.datadir")
+@stare_variable_set("bob.ip.binseg.stare.datadir")
+@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
+@rc_variable_set("bob.ip.binseg.hrf.datadir")
+@rc_variable_set("bob.ip.binseg.iostar.datadir")
+def test_stare_mtest():
+
+    from ..configs.datasets.stare.mtest import dataset
+    nose.tools.eq_(len(dataset), 6)
+
+    from ..configs.datasets.stare.ah import dataset as baseline
+    nose.tools.eq_(dataset["train"], baseline["train"])
+    nose.tools.eq_(dataset["test"], baseline["test"])
+
+    for subset in dataset:
+        for sample in dataset[subset]:
+            assert 3 <= len(sample) <= 4
+            assert isinstance(sample[0], str)
+            nose.tools.eq_(sample[1].shape, (3, 608, 704)) #planes,height,width
+            nose.tools.eq_(sample[1].dtype, torch.float32)
+            nose.tools.eq_(sample[2].shape, (1, 608, 704)) #planes,height,width
+            nose.tools.eq_(sample[2].dtype, torch.float32)
+            if len(sample) == 4:
+                nose.tools.eq_(sample[3].shape, (1, 608, 704))
+                nose.tools.eq_(sample[3].dtype, torch.float32)
+
+
+@stare_variable_set("bob.ip.binseg.stare.datadir")
+@rc_variable_set("bob.ip.binseg.drive.datadir")
+@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
+@rc_variable_set("bob.ip.binseg.hrf.datadir")
+@rc_variable_set("bob.ip.binseg.iostar.datadir")
+def test_stare_covd():
+
+    from ..configs.datasets.stare.covd import dataset
+    nose.tools.eq_(len(dataset), 3)
+
+    from ..configs.datasets.stare.ah import dataset as baseline
+    nose.tools.eq_(dataset["train"], baseline["train"])
+    nose.tools.eq_(dataset["test"], baseline["test"])
+
+    # this is the only different set from the baseline
+    nose.tools.eq_(len(dataset["__train__"]), 63)
+    for sample in dataset["__train__"]:
+        assert 3 <= len(sample) <= 4
+        assert isinstance(sample[0], str)
+        nose.tools.eq_(sample[1].shape, (3, 608, 704)) #planes, height, width
+        nose.tools.eq_(sample[1].dtype, torch.float32)
+        nose.tools.eq_(sample[2].shape, (1, 608, 704)) #planes, height, width
+        nose.tools.eq_(sample[2].dtype, torch.float32)
+        if len(sample) == 4:
+            nose.tools.eq_(sample[3].shape, (1, 608, 704)) #planes, height, width
+            nose.tools.eq_(sample[3].dtype, torch.float32)
+
+
+@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
+def test_chasedb1():
+
+    def _check_subset(samples, size):
+        nose.tools.eq_(len(samples), size)
+        for s in samples:
+            nose.tools.eq_(len(s), 3)
+            assert isinstance(s[0], str)
+            nose.tools.eq_(s[1].shape, (3, 960, 960)) #planes, height, width
+            nose.tools.eq_(s[1].dtype, torch.float32)
+            nose.tools.eq_(s[2].shape, (1, 960, 960)) #planes, height, width
+            nose.tools.eq_(s[2].dtype, torch.float32)
+
+    for m in ("first_annotator", "second_annotator"):
+        d = importlib.import_module(f"...configs.datasets.chasedb1.{m}",
+                package=__name__).dataset
+        nose.tools.eq_(len(d), 3)
+        _check_subset(d["__train__"], 8)
+        _check_subset(d["train"], 8)
+        _check_subset(d["test"], 20)
+
+
+@rc_variable_set("bob.ip.binseg.drive.datadir")
+@stare_variable_set("bob.ip.binseg.stare.datadir")
+@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
+@rc_variable_set("bob.ip.binseg.hrf.datadir")
+@rc_variable_set("bob.ip.binseg.iostar.datadir")
+def test_chasedb1_mtest():
+
+    from ..configs.datasets.chasedb1.mtest import dataset
+    nose.tools.eq_(len(dataset), 6)
+
+    from ..configs.datasets.chasedb1.first_annotator import dataset as baseline
+    nose.tools.eq_(dataset["train"], baseline["train"])
+    nose.tools.eq_(dataset["test"], baseline["test"])
+
+    for subset in dataset:
+        for sample in dataset[subset]:
+            assert 3 <= len(sample) <= 4
+            assert isinstance(sample[0], str)
+            nose.tools.eq_(sample[1].shape, (3, 960, 960)) #planes,height,width
+            nose.tools.eq_(sample[1].dtype, torch.float32)
+            nose.tools.eq_(sample[2].shape, (1, 960, 960)) #planes,height,width
+            nose.tools.eq_(sample[2].dtype, torch.float32)
+            if len(sample) == 4:
+                nose.tools.eq_(sample[3].shape, (1, 960, 960))
+                nose.tools.eq_(sample[3].dtype, torch.float32)
+
+
+@rc_variable_set("bob.ip.binseg.drive.datadir")
+@stare_variable_set("bob.ip.binseg.stare.datadir")
+@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
+@rc_variable_set("bob.ip.binseg.hrf.datadir")
+@rc_variable_set("bob.ip.binseg.iostar.datadir")
+def test_chasedb1_covd():
+
+    from ..configs.datasets.chasedb1.covd import dataset
+    nose.tools.eq_(len(dataset), 3)
+
+    from ..configs.datasets.chasedb1.first_annotator import dataset as baseline
+    nose.tools.eq_(dataset["train"], baseline["train"])
+    nose.tools.eq_(dataset["test"], baseline["test"])
+
+    # this is the only different set from the baseline
+    nose.tools.eq_(len(dataset["__train__"]), 65)
+    for sample in dataset["__train__"]:
+        assert 3 <= len(sample) <= 4
+        assert isinstance(sample[0], str)
+        nose.tools.eq_(sample[1].shape, (3, 960, 960)) #planes, height, width
+        nose.tools.eq_(sample[1].dtype, torch.float32)
+        nose.tools.eq_(sample[2].shape, (1, 960, 960)) #planes, height, width
+        nose.tools.eq_(sample[2].dtype, torch.float32)
+        if len(sample) == 4:
+            nose.tools.eq_(sample[3].shape, (1, 960, 960)) #planes, height, width
+            nose.tools.eq_(sample[3].dtype, torch.float32)
+
+
+@rc_variable_set("bob.ip.binseg.hrf.datadir")
+def test_hrf():
+
+    def _check_subset(samples, size):
+        nose.tools.eq_(len(samples), size)
+        for s in samples:
+            nose.tools.eq_(len(s), 4)
+            assert isinstance(s[0], str)
+            nose.tools.eq_(s[1].shape, (3, 1168, 1648)) #planes, height, width
+            nose.tools.eq_(s[1].dtype, torch.float32)
+            nose.tools.eq_(s[2].shape, (1, 1168, 1648)) #planes, height, width
+            nose.tools.eq_(s[2].dtype, torch.float32)
+            nose.tools.eq_(s[3].shape, (1, 1168, 1648)) #planes, height, width
+            nose.tools.eq_(s[3].dtype, torch.float32)
+
+    from ..configs.datasets.hrf.default import dataset
+    nose.tools.eq_(len(dataset), 3)
+    _check_subset(dataset["__train__"], 15)
+    _check_subset(dataset["train"], 15)
+    _check_subset(dataset["test"], 30)
+
+
+@rc_variable_set("bob.ip.binseg.drive.datadir")
+@stare_variable_set("bob.ip.binseg.stare.datadir")
+@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
+@rc_variable_set("bob.ip.binseg.hrf.datadir")
+@rc_variable_set("bob.ip.binseg.iostar.datadir")
+def test_hrf_mtest():
+
+    from ..configs.datasets.hrf.mtest import dataset
+    nose.tools.eq_(len(dataset), 6)
+
+    from ..configs.datasets.hrf.default import dataset as baseline
+    nose.tools.eq_(dataset["train"], baseline["train"])
+    nose.tools.eq_(dataset["test"], baseline["test"])
+
+    for subset in dataset:
+        for sample in dataset[subset]:
+            assert 3 <= len(sample) <= 4
+            assert isinstance(sample[0], str)
+            nose.tools.eq_(sample[1].shape, (3, 1168, 1648)) #planes,height,width
+            nose.tools.eq_(sample[1].dtype, torch.float32)
+            nose.tools.eq_(sample[2].shape, (1, 1168, 1648)) #planes,height,width
+            nose.tools.eq_(sample[2].dtype, torch.float32)
+            if len(sample) == 4:
+                nose.tools.eq_(sample[3].shape, (1, 1168, 1648))
+                nose.tools.eq_(sample[3].dtype, torch.float32)
+
+
+@rc_variable_set("bob.ip.binseg.drive.datadir")
+@stare_variable_set("bob.ip.binseg.stare.datadir")
+@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
+@rc_variable_set("bob.ip.binseg.hrf.datadir")
+@rc_variable_set("bob.ip.binseg.iostar.datadir")
+def test_hrf_covd():
+
+    from ..configs.datasets.hrf.covd import dataset
+    nose.tools.eq_(len(dataset), 3)
+
+    from ..configs.datasets.hrf.default import dataset as baseline
+    nose.tools.eq_(dataset["train"], baseline["train"])
+    nose.tools.eq_(dataset["test"], baseline["test"])
+
+    # this is the only different set from the baseline
+    nose.tools.eq_(len(dataset["__train__"]), 58)
+    for sample in dataset["__train__"]:
+        assert 3 <= len(sample) <= 4
+        assert isinstance(sample[0], str)
+        nose.tools.eq_(sample[1].shape, (3, 1168, 1648)) #planes, height, width
+        nose.tools.eq_(sample[1].dtype, torch.float32)
+        nose.tools.eq_(sample[2].shape, (1, 1168, 1648)) #planes, height, width
+        nose.tools.eq_(sample[2].dtype, torch.float32)
+        if len(sample) == 4:
+            nose.tools.eq_(sample[3].shape, (1, 1168, 1648))
+            nose.tools.eq_(sample[3].dtype, torch.float32)
+
+
+@rc_variable_set("bob.ip.binseg.iostar.datadir")
+def test_iostar():
+
+    def _check_subset(samples, size):
+        nose.tools.eq_(len(samples), size)
+        for s in samples:
+            nose.tools.eq_(len(s), 4)
+            assert isinstance(s[0], str)
+            nose.tools.eq_(s[1].shape, (3, 1024, 1024)) #planes, height, width
+            nose.tools.eq_(s[1].dtype, torch.float32)
+            nose.tools.eq_(s[2].shape, (1, 1024, 1024)) #planes, height, width
+            nose.tools.eq_(s[2].dtype, torch.float32)
+            nose.tools.eq_(s[3].shape, (1, 1024, 1024)) #planes, height, width
+            nose.tools.eq_(s[3].dtype, torch.float32)
+
+    for m in ("vessel", "optic_disc"):
+        d = importlib.import_module(f"...configs.datasets.iostar.{m}",
+                package=__name__).dataset
+        nose.tools.eq_(len(d), 3)
+        _check_subset(d["__train__"], 20)
+        _check_subset(d["train"], 20)
+        _check_subset(d["test"], 10)
+
+
+@rc_variable_set("bob.ip.binseg.drive.datadir")
+@stare_variable_set("bob.ip.binseg.stare.datadir")
+@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
+@rc_variable_set("bob.ip.binseg.hrf.datadir")
+@rc_variable_set("bob.ip.binseg.iostar.datadir")
+def test_iostar_mtest():
+
+    from ..configs.datasets.iostar.vessel_mtest import dataset
+    nose.tools.eq_(len(dataset), 6)
+
+    from ..configs.datasets.iostar.vessel import dataset as baseline
+    nose.tools.eq_(dataset["train"], baseline["train"])
+    nose.tools.eq_(dataset["test"], baseline["test"])
+
+    for subset in dataset:
+        for sample in dataset[subset]:
+            assert 3 <= len(sample) <= 4
+            assert isinstance(sample[0], str)
+            nose.tools.eq_(sample[1].shape, (3, 1024, 1024)) #planes,height,width
+            nose.tools.eq_(sample[1].dtype, torch.float32)
+            nose.tools.eq_(sample[2].shape, (1, 1024, 1024)) #planes,height,width
+            nose.tools.eq_(sample[2].dtype, torch.float32)
+            if len(sample) == 4:
+                nose.tools.eq_(sample[3].shape, (1, 1024, 1024))
+                nose.tools.eq_(sample[3].dtype, torch.float32)
+
+
+@rc_variable_set("bob.ip.binseg.drive.datadir")
+@stare_variable_set("bob.ip.binseg.stare.datadir")
+@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
+@rc_variable_set("bob.ip.binseg.hrf.datadir")
+@rc_variable_set("bob.ip.binseg.iostar.datadir")
+def test_iostar_covd():
+
+    from ..configs.datasets.iostar.covd import dataset
+    nose.tools.eq_(len(dataset), 3)
+
+    from ..configs.datasets.iostar.vessel import dataset as baseline
+    nose.tools.eq_(dataset["train"], baseline["train"])
+    nose.tools.eq_(dataset["test"], baseline["test"])
+
+    # this is the only different set from the baseline
+    nose.tools.eq_(len(dataset["__train__"]), 53)
+    for sample in dataset["__train__"]:
+        assert 3 <= len(sample) <= 4
+        assert isinstance(sample[0], str)
+        nose.tools.eq_(sample[1].shape, (3, 1024, 1024)) #planes, height, width
+        nose.tools.eq_(sample[1].dtype, torch.float32)
+        nose.tools.eq_(sample[2].shape, (1, 1024, 1024)) #planes, height, width
+        nose.tools.eq_(sample[2].dtype, torch.float32)
+        if len(sample) == 4:
+            nose.tools.eq_(sample[3].shape, (1, 1024, 1024))
+            nose.tools.eq_(sample[3].dtype, torch.float32)
+
+
+@rc_variable_set("bob.ip.binseg.refuge.datadir")
+def test_refuge():
+
+    def _check_subset(samples, size):
+        nose.tools.eq_(len(samples), size)
+        for s in samples[:N]:
+            nose.tools.eq_(len(s), 3)
+            assert isinstance(s[0], str)
+            nose.tools.eq_(s[1].shape, (3, 1632, 1632)) #planes, height, width
+            nose.tools.eq_(s[1].dtype, torch.float32)
+            nose.tools.eq_(s[2].shape, (1, 1632, 1632)) #planes, height, width
+            nose.tools.eq_(s[2].dtype, torch.float32)
+
+    for m in ("disc", "cup"):
+        d = importlib.import_module(f"...configs.datasets.refuge.{m}",
+                package=__name__).dataset
+        nose.tools.eq_(len(d), 4)
+        _check_subset(d["__train__"], 400)
+        _check_subset(d["train"], 400)
+        _check_subset(d["validation"], 400)
+        _check_subset(d["test"], 400)
+
+
+@rc_variable_set("bob.ip.binseg.drishtigs1.datadir")
+def test_drishtigs1():
+
+    def _check_subset(samples, size):
+        nose.tools.eq_(len(samples), size)
+        for s in samples[:N]:
+            nose.tools.eq_(len(s), 3)
+            assert isinstance(s[0], str)
+            nose.tools.eq_(s[1].shape, (3, 1760, 2048)) #planes, height, width
+            nose.tools.eq_(s[1].dtype, torch.float32)
+            nose.tools.eq_(s[2].shape, (1, 1760, 2048)) #planes, height, width
+            nose.tools.eq_(s[2].dtype, torch.float32)
+
+    for m in ("disc_all", "cup_all", "disc_any", "cup_any"):
+        d = importlib.import_module(f"...configs.datasets.drishtigs1.{m}",
+                package=__name__).dataset
+        nose.tools.eq_(len(d), 3)
+        _check_subset(d["__train__"], 50)
+        _check_subset(d["train"], 50)
+        _check_subset(d["test"], 51)
+
+
+@rc_variable_set("bob.ip.binseg.rimoner3.datadir")
+def test_rimoner3():
+
+    def _check_subset(samples, size):
+        nose.tools.eq_(len(samples), size)
+        for s in samples[:N]:
+            nose.tools.eq_(len(s), 3)
+            assert isinstance(s[0], str)
+            nose.tools.eq_(s[1].shape, (3, 1440, 1088)) #planes, height, width
+            nose.tools.eq_(s[1].dtype, torch.float32)
+            nose.tools.eq_(s[2].shape, (1, 1440, 1088)) #planes, height, width
+            nose.tools.eq_(s[2].dtype, torch.float32)
+
+    for m in ("disc_exp1", "cup_exp1", "disc_exp2", "cup_exp2"):
+        d = importlib.import_module(f"...configs.datasets.rimoner3.{m}",
+                package=__name__).dataset
+        nose.tools.eq_(len(d), 3)
+        _check_subset(d["__train__"], 99)
+        _check_subset(d["train"], 99)
+        _check_subset(d["test"], 60)
+
+
+@rc_variable_set("bob.ip.binseg.drionsdb.datadir")
+def test_drionsdb():
+
+    def _check_subset(samples, size):
+        nose.tools.eq_(len(samples), size)
+        for s in samples[:N]:
+            nose.tools.eq_(len(s), 3)
+            assert isinstance(s[0], str)
+            nose.tools.eq_(s[1].shape, (3, 416, 608)) #planes, height, width
+            nose.tools.eq_(s[1].dtype, torch.float32)
+            nose.tools.eq_(s[2].shape, (1, 416, 608)) #planes, height, width
+            nose.tools.eq_(s[2].dtype, torch.float32)
+
+    for m in ("expert1", "expert2"):
+        d = importlib.import_module(f"...configs.datasets.drionsdb.{m}",
+                package=__name__).dataset
+        nose.tools.eq_(len(d), 3)
+        _check_subset(d["__train__"], 60)
+        _check_subset(d["train"], 60)
+        _check_subset(d["test"], 50)
diff --git a/bob/ip/binseg/test/test_dataset.py b/bob/ip/binseg/test/test_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..f06d1a4ab2fe6d313af6d65ba5d81529daa6ca71
--- /dev/null
+++ b/bob/ip/binseg/test/test_dataset.py
@@ -0,0 +1,98 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+"""Test code for datasets"""
+
+import os
+import pkg_resources
+import nose.tools
+
+from ..data.dataset import CSVDataset, JSONDataset
+from ..data.sample import Sample
+
+
+def _data_file(f):
+    return pkg_resources.resource_filename(__name__, os.path.join("data", f))
+
+
+def _raw_data_loader(context, d):
+    return Sample(
+            data=[
+                float(d["sepal_length"]),
+                float(d["sepal_width"]),
+                float(d["petal_length"]),
+                float(d["petal_width"]),
+                d["species"][5:],
+                ],
+            key=(context["subset"] + str(context["order"]))
+            )
+
+
+def test_csv_loading():
+
+    # tests if we can build a simple CSV loader for the Iris Flower dataset
+    subsets = {
+            "train": _data_file("iris-train.csv"),
+            "test": _data_file("iris-train.csv")
+            }
+
+    fieldnames = (
+            "sepal_length",
+            "sepal_width",
+            "petal_length",
+            "petal_width",
+            "species",
+            )
+
+    dataset = CSVDataset(subsets, fieldnames, _raw_data_loader)
+    dataset.check()
+
+    data = dataset.subsets()
+
+    nose.tools.eq_(len(data["train"]), 75)
+    for k in data["train"]:
+        for f in range(4):
+            nose.tools.eq_(type(k.data[f]), float)
+        nose.tools.eq_(type(k.data[4]), str)
+        nose.tools.eq_(type(k.key), str)
+
+    nose.tools.eq_(len(data["test"]), 75)
+    for k in data["test"]:
+        for f in range(4):
+            nose.tools.eq_(type(k.data[f]), float)
+        nose.tools.eq_(type(k.data[4]), str)
+        assert k.data[4] in ("setosa", "versicolor", "virginica")
+        nose.tools.eq_(type(k.key), str)
+
+
+def test_json_loading():
+
+    # tests if we can build a simple JSON loader for the Iris Flower dataset
+    protocols = {"default": _data_file("iris.json")}
+
+    fieldnames = (
+            "sepal_length",
+            "sepal_width",
+            "petal_length",
+            "petal_width",
+            "species",
+            )
+
+    dataset = JSONDataset(protocols, fieldnames, _raw_data_loader)
+    dataset.check()
+
+    data = dataset.subsets("default")
+
+    nose.tools.eq_(len(data["train"]), 75)
+    for k in data["train"]:
+        for f in range(4):
+            nose.tools.eq_(type(k.data[f]), float)
+        nose.tools.eq_(type(k.data[4]), str)
+        nose.tools.eq_(type(k.key), str)
+
+    nose.tools.eq_(len(data["test"]), 75)
+    for k in data["test"]:
+        for f in range(4):
+            nose.tools.eq_(type(k.data[f]), float)
+        nose.tools.eq_(type(k.data[4]), str)
+        nose.tools.eq_(type(k.key), str)
diff --git a/bob/ip/binseg/test/test_drionsdb.py b/bob/ip/binseg/test/test_drionsdb.py
new file mode 100644
index 0000000000000000000000000000000000000000..7508a23df9a5bc41f13a814584a431c2e9cc4a94
--- /dev/null
+++ b/bob/ip/binseg/test/test_drionsdb.py
@@ -0,0 +1,93 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+
+"""Tests for DRIONS-DB"""
+
+import os
+
+import numpy
+import nose.tools
+from nose.plugins.attrib import attr
+
+from ..data.drionsdb import dataset
+from .utils import rc_variable_set, count_bw
+
+
+def test_protocol_consistency():
+
+    for protocol in ("expert1", "expert2"):
+
+        subset = dataset.subsets(protocol)
+        nose.tools.eq_(len(subset), 2)
+
+        assert "train" in subset
+        nose.tools.eq_(len(subset["train"]), 60)
+        for s in subset["train"]:
+            assert s.key.startswith(os.path.join("images", "image_0"))
+
+        assert "test" in subset
+        nose.tools.eq_(len(subset["test"]), 50)
+        for s in subset["test"]:
+            assert s.key.startswith(os.path.join("images", "image_"))
+
+
+@rc_variable_set("bob.ip.binseg.drionsdb.datadir")
+@attr("slow")
+def test_loading():
+
+    image_size = (600, 400)
+
+    def _check_sample(s, bw_threshold_label):
+
+        data = s.data
+        assert isinstance(data, dict)
+        nose.tools.eq_(len(data), 2)
+
+        assert "data" in data
+        nose.tools.eq_(data["data"].size, image_size)
+        nose.tools.eq_(data["data"].mode, "RGB")
+
+        assert "label" in data
+        nose.tools.eq_(data["label"].size, image_size)
+        nose.tools.eq_(data["label"].mode, "1")
+
+        b, w = count_bw(data["label"])
+        assert (b + w) == numpy.prod(image_size), (
+            f"Counts of black + white ({b}+{w}) do not add up to total "
+            f"image size ({numpy.prod(image_size)}) at '{s.key}':label"
+        )
+        assert (w / b) < bw_threshold_label, (
+            f"The proportion between black and white pixels "
+            f"({w}/{b}={w/b:.3f}) is larger than the allowed threshold "
+            f"of {bw_threshold_label} at '{s.key}':label - this could "
+            f"indicate a loading problem!"
+        )
+
+        # to visualize images, uncomment the folowing code
+        # it should display an image with a faded background representing the
+        # original data, blended with green labels.
+        #from ..data.utils import overlayed_image
+        #display = overlayed_image(data["data"], data["label"])
+        #display.show()
+        #import ipdb; ipdb.set_trace()
+
+        return w/b
+
+    limit = None  #use this to limit testing to first images only
+    subset = dataset.subsets("expert1")
+    proportions = [_check_sample(s, 0.046) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, 0.043) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+
+    subset = dataset.subsets("expert2")
+    proportions = [_check_sample(s, 0.044) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, 0.045) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+
+@rc_variable_set("bob.ip.binseg.drionsdb.datadir")
+@attr("slow")
+def test_check():
+    nose.tools.eq_(dataset.check(), 0)
diff --git a/bob/ip/binseg/test/test_drishtigs1.py b/bob/ip/binseg/test/test_drishtigs1.py
new file mode 100644
index 0000000000000000000000000000000000000000..17e39a2ad455b6f04ed5f9d4798d581bc4b668a1
--- /dev/null
+++ b/bob/ip/binseg/test/test_drishtigs1.py
@@ -0,0 +1,114 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+
+"""Tests for Drishti-GS1"""
+
+import os
+
+import numpy
+import nose.tools
+from nose.plugins.attrib import attr
+
+from ..data.drishtigs1 import dataset
+from .utils import rc_variable_set, count_bw
+
+
+def test_protocol_consistency():
+
+    for protocol in ("optic-disc-all", "optic-cup-all", "optic-disc-any",
+            "optic-cup-any"):
+
+        subset = dataset.subsets(protocol)
+        nose.tools.eq_(len(subset), 2)
+
+        assert "train" in subset
+        nose.tools.eq_(len(subset["train"]), 50)
+        for s in subset["train"]:
+            assert s.key.startswith(os.path.join("Drishti-GS1_files",
+                "Training", "Images", "drishtiGS_"))
+
+        assert "test" in subset
+        nose.tools.eq_(len(subset["test"]), 51)
+        for s in subset["test"]:
+            assert s.key.startswith(os.path.join("Drishti-GS1_files",
+                "Test", "Images", "drishtiGS_"))
+
+
+@rc_variable_set("bob.ip.binseg.drishtigs1.datadir")
+@attr("slow")
+def test_loading():
+
+    def _check_sample(s, bw_threshold_label):
+
+        data = s.data
+        assert isinstance(data, dict)
+        nose.tools.eq_(len(data), 2)
+
+        assert "data" in data
+        assert data["data"].size[0] > 2040, (
+                f"Width ({data['data'].size[0]}) for {s.key} is smaller "
+                f"than 2040 pixels"
+                )
+        assert data["data"].size[1] > 1740, (
+                f"Width ({data['data'].size[1]}) for {s.key} is smaller "
+                f"than 1740 pixels"
+                )
+        nose.tools.eq_(data["data"].mode, "RGB")
+
+        assert "label" in data
+        #nose.tools.eq_(data["label"].size, image_size)
+        nose.tools.eq_(data["data"].size, data["label"].size)
+        nose.tools.eq_(data["label"].mode, "1")
+        b, w = count_bw(data["label"])
+        assert (b + w) == numpy.prod(data["data"].size), (
+            f"Counts of black + white ({b}+{w}) do not add up to total "
+            f"image size ({numpy.prod(image_size)}) at '{s.key}':label"
+        )
+        assert (w / b) < bw_threshold_label, (
+            f"The proportion between black and white pixels "
+            f"({w}/{b}={w/b:.3f}) is larger than the allowed threshold "
+            f"of {bw_threshold_label} at '{s.key}':label - this could "
+            f"indicate a loading problem!"
+        )
+
+        # to visualize images, uncomment the folowing code
+        # it should display an image with a faded background representing the
+        # original data, blended with green labels.
+        #from ..data.utils import overlayed_image
+        #display = overlayed_image(data["data"], data["label"])
+        #display.show()
+        #import ipdb; ipdb.set_trace()
+
+        return w/b
+
+    limit = None
+    subset = dataset.subsets("optic-cup-all")
+    proportions = [_check_sample(s, 0.027) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, 0.035) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+
+    subset = dataset.subsets("optic-disc-all")
+    proportions = [_check_sample(s, 0.045) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, 0.055) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+
+    subset = dataset.subsets("optic-cup-any")
+    proportions = [_check_sample(s, 0.034) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, 0.047) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+
+    subset = dataset.subsets("optic-disc-any")
+    proportions = [_check_sample(s, 0.052) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, 0.060) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+
+
+@rc_variable_set("bob.ip.binseg.drishtigs1.datadir")
+@attr("slow")
+def test_check():
+    nose.tools.eq_(dataset.check(), 0)
diff --git a/bob/ip/binseg/test/test_drive.py b/bob/ip/binseg/test/test_drive.py
new file mode 100644
index 0000000000000000000000000000000000000000..53c953e9fd3d2e54785129bb57c674800cd742d3
--- /dev/null
+++ b/bob/ip/binseg/test/test_drive.py
@@ -0,0 +1,109 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+
+"""Tests for DRIVE"""
+
+import os
+
+import numpy
+import nose.tools
+
+from ..data.drive import dataset
+from .utils import rc_variable_set, count_bw
+
+
+def test_protocol_consistency():
+
+    subset = dataset.subsets("default")
+    nose.tools.eq_(len(subset), 2)
+
+    assert "train" in subset
+    nose.tools.eq_(len(subset["train"]), 20)
+    for s in subset["train"]:
+        assert s.key.startswith(os.path.join("training", "images"))
+
+    assert "test" in subset
+    nose.tools.eq_(len(subset["test"]), 20)
+    for s in subset["test"]:
+        assert s.key.startswith(os.path.join("test", "images"))
+
+    subset = dataset.subsets("second-annotator")
+    nose.tools.eq_(len(subset), 1)
+
+    assert "test" in subset
+    nose.tools.eq_(len(subset["test"]), 20)
+    for s in subset["test"]:
+        assert s.key.startswith(os.path.join("test", "images"))
+
+
+@rc_variable_set('bob.ip.binseg.drive.datadir')
+def test_loading():
+
+    image_size = (565, 584)
+
+    def _check_sample(s, bw_threshold_label, bw_threshold_mask):
+
+        data = s.data
+        assert isinstance(data, dict)
+        nose.tools.eq_(len(data), 3)
+
+        assert "data" in data
+        nose.tools.eq_(data["data"].size, image_size)
+        nose.tools.eq_(data["data"].mode, "RGB")
+
+        assert "label" in data
+        nose.tools.eq_(data["label"].size, image_size)
+        nose.tools.eq_(data["label"].mode, "1")
+        b, w = count_bw(data["label"])
+        assert (b+w) == numpy.prod(image_size), \
+                f"Counts of black + white ({b}+{w}) do not add up to total " \
+                f"image size ({numpy.prod(image_size)}) at '{s.key}':label"
+        assert (w/b) < bw_threshold_label, \
+                f"The proportion between black and white pixels in labels " \
+                f"({w}/{b}={w/b:.2f}) is larger than the allowed threshold " \
+                f"of {bw_threshold_label} at '{s.key}':label - this could " \
+                f"indicate a loading problem!"
+
+        assert "mask" in data
+        nose.tools.eq_(data["mask"].size, image_size)
+        nose.tools.eq_(data["mask"].mode, "1")
+        bm, wm = count_bw(data["mask"])
+        assert (bm+wm) == numpy.prod(image_size), \
+                f"Counts of black + white ({bm}+{wm}) do not add up to total " \
+                f"image size ({numpy.prod(image_size)}) at '{s.key}':mask"
+        assert (wm/bm) > bw_threshold_mask, \
+                f"The proportion between black and white pixels in masks " \
+                f"({wm}/{bm}={wm/bm:.2f}) is smaller than the allowed " \
+                f"threshold of {bw_threshold_mask} at '{s.key}':label - " \
+                f"this could indicate a loading problem!"
+
+        # to visualize images, uncomment the folowing code
+        # it should display an image with a faded background representing the
+        # original data, blended with green labels and blue area indicating the
+        # parts to be masked out.
+        #from ..data.utils import overlayed_image
+        #display = overlayed_image(data["data"], data["label"], data["mask"])
+        #display.show()
+        #import ipdb; ipdb.set_trace()
+
+        return w/b, wm/bm
+
+    limit = None  #use this to limit testing to first images only
+    subset = dataset.subsets("default")
+    proportions = [_check_sample(s, 0.14, 2.14) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(k[0] for k in proportions)}")
+    #print(f"min mask proportions = {min(k[1] for k in proportions)}")
+    proportions = [_check_sample(s, 0.12, 2.12) for s in subset["test"]][:limit]
+    #print(f"max label proportions = {max(k[0] for k in proportions)}")
+    #print(f"min mask proportions = {min(k[1] for k in proportions)}")
+
+    subset = dataset.subsets("second-annotator")
+    proportions = [_check_sample(s, 0.12, 2.12) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(k[0] for k in proportions)}")
+    #print(f"min mask proportions = {min(k[1] for k in proportions)}")
+
+
+@rc_variable_set('bob.ip.binseg.drive.datadir')
+def test_check():
+    nose.tools.eq_(dataset.check(), 0)
diff --git a/bob/ip/binseg/test/test_hrf.py b/bob/ip/binseg/test/test_hrf.py
new file mode 100644
index 0000000000000000000000000000000000000000..fdddfbbc78d79c228e1bca01e3a3ebf9dda84f65
--- /dev/null
+++ b/bob/ip/binseg/test/test_hrf.py
@@ -0,0 +1,96 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+
+"""Tests for HRF"""
+
+import os
+
+import numpy
+import nose.tools
+
+from ..data.hrf import dataset
+from .utils import rc_variable_set, count_bw
+
+
+def test_protocol_consistency():
+
+    subset = dataset.subsets("default")
+    nose.tools.eq_(len(subset), 2)
+
+    assert "train" in subset
+    nose.tools.eq_(len(subset["train"]), 15)
+    for s in subset["train"]:
+        assert s.key.startswith(os.path.join("images", "0"))
+
+    assert "test" in subset
+    nose.tools.eq_(len(subset["test"]), 30)
+    for s in subset["test"]:
+        assert s.key.startswith("images")
+
+
+@rc_variable_set('bob.ip.binseg.hrf.datadir')
+def test_loading():
+
+    image_size = (3504, 2336)
+
+    def _check_sample(s, bw_threshold_label, bw_threshold_mask):
+
+        data = s.data
+        assert isinstance(data, dict)
+        nose.tools.eq_(len(data), 3)
+
+        assert "data" in data
+        nose.tools.eq_(data["data"].size, image_size)
+        nose.tools.eq_(data["data"].mode, "RGB")
+
+        assert "label" in data
+        nose.tools.eq_(data["label"].size, image_size)
+        nose.tools.eq_(data["label"].mode, "1")
+        b, w = count_bw(data["label"])
+        assert (b+w) == numpy.prod(image_size), \
+                f"Counts of black + white ({b}+{w}) do not add up to total " \
+                f"image size ({numpy.prod(image_size)}) at '{s.key}':label"
+        assert (w/b) < bw_threshold_label, \
+                f"The proportion between black and white pixels " \
+                f"({w}/{b}={w/b:.2f}) is larger than the allowed threshold " \
+                f"of {bw_threshold_label} at '{s.key}':label - this could " \
+                f"indicate a loading problem!"
+
+        assert "mask" in data
+        nose.tools.eq_(data["mask"].size, image_size)
+        nose.tools.eq_(data["mask"].mode, "1")
+        bm, wm = count_bw(data["mask"])
+        assert (bm+wm) == numpy.prod(image_size), \
+                f"Counts of black + white ({bm}+{wm}) do not add up to total " \
+                f"image size ({numpy.prod(image_size)}) at '{s.key}':mask"
+        assert (wm/bm) > bw_threshold_mask, \
+                f"The proportion between black and white pixels in masks " \
+                f"({wm}/{bm}={wm/bm:.2f}) is smaller than the allowed " \
+                f"threshold of {bw_threshold_mask} at '{s.key}':label - " \
+                f"this could indicate a loading problem!"
+
+        # to visualize images, uncomment the folowing code
+        # it should display an image with a faded background representing the
+        # original data, blended with green labels and blue area indicating the
+        # parts to be masked out.
+        #from ..data.utils import overlayed_image
+        #display = overlayed_image(data["data"], data["label"], data["mask"])
+        #display.show()
+        #import ipdb; ipdb.set_trace()
+
+        return w/b, wm/bm
+
+    limit = None  #use this to limit testing to first images only
+    subset = dataset.subsets("default")
+    proportions = [_check_sample(s, 0.12, 5.42) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(k[0] for k in proportions)}")
+    #print(f"min mask proportions = {min(k[1] for k in proportions)}")
+    proportions = [_check_sample(s, 0.12, 5.41) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(k[0] for k in proportions)}")
+    #print(f"min mask proportions = {min(k[1] for k in proportions)}")
+
+
+@rc_variable_set('bob.ip.binseg.hrf.datadir')
+def test_check():
+    nose.tools.eq_(dataset.check(), 0)
diff --git a/bob/ip/binseg/test/test_iostar.py b/bob/ip/binseg/test/test_iostar.py
new file mode 100644
index 0000000000000000000000000000000000000000..9d8946b60d1160fa5b0dca95c39de7badac1a1aa
--- /dev/null
+++ b/bob/ip/binseg/test/test_iostar.py
@@ -0,0 +1,116 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+
+"""Tests for IOSTAR"""
+
+import os
+
+import numpy
+import nose.tools
+
+from ..data.iostar import dataset
+from .utils import rc_variable_set, count_bw
+
+
+def test_protocol_consistency():
+
+    subset = dataset.subsets("vessel")
+    nose.tools.eq_(len(subset), 2)
+
+    assert "train" in subset
+    nose.tools.eq_(len(subset["train"]), 20)
+    for s in subset["train"]:
+        assert s.key.startswith(os.path.join("image", "STAR "))
+
+    assert "test" in subset
+    nose.tools.eq_(len(subset["test"]), 10)
+    for s in subset["test"]:
+        assert s.key.startswith(os.path.join("image", "STAR "))
+
+    subset = dataset.subsets("optic-disc")
+    nose.tools.eq_(len(subset), 2)
+
+    assert "train" in subset
+    nose.tools.eq_(len(subset["train"]), 20)
+    for s in subset["train"]:
+        assert s.key.startswith(os.path.join("image", "STAR "))
+
+    assert "test" in subset
+    nose.tools.eq_(len(subset["test"]), 10)
+    for s in subset["test"]:
+        assert s.key.startswith(os.path.join("image", "STAR "))
+
+
+@rc_variable_set('bob.ip.binseg.iostar.datadir')
+def test_loading():
+
+    image_size = (1024, 1024)
+
+    def _check_sample(s, bw_threshold_label, bw_threshold_mask):
+
+        data = s.data
+        assert isinstance(data, dict)
+        nose.tools.eq_(len(data), 3)
+
+        assert "data" in data
+        nose.tools.eq_(data["data"].size, image_size)
+        nose.tools.eq_(data["data"].mode, "RGB")
+
+        assert "label" in data
+        nose.tools.eq_(data["label"].size, image_size)
+        nose.tools.eq_(data["label"].mode, "1")
+        b, w = count_bw(data["label"])
+        assert (b+w) == numpy.prod(image_size), \
+                f"Counts of black + white ({b}+{w}) do not add up to total " \
+                f"image size ({numpy.prod(image_size)}) at '{s.key}':label"
+        assert (w/b) < bw_threshold_label, \
+                f"The proportion between black and white pixels " \
+                f"({w}/{b}={w/b:.2f}) is larger than the allowed threshold " \
+                f"of {bw_threshold_label} at '{s.key}':label - this could " \
+                f"indicate a loading problem!"
+
+        assert "mask" in data
+        nose.tools.eq_(data["mask"].size, image_size)
+        nose.tools.eq_(data["mask"].mode, "1")
+        bm, wm = count_bw(data["mask"])
+        assert (bm+wm) == numpy.prod(image_size), \
+                f"Counts of black + white ({bm}+{wm}) do not add up to total " \
+                f"image size ({numpy.prod(image_size)}) at '{s.key}':mask"
+        assert (wm/bm) > bw_threshold_mask, \
+                f"The proportion between black and white pixels in masks " \
+                f"({wm}/{bm}={wm/bm:.2f}) is smaller than the allowed " \
+                f"threshold of {bw_threshold_mask} at '{s.key}':label - " \
+                f"this could indicate a loading problem!"
+
+        # to visualize images, uncomment the folowing code
+        # it should display an image with a faded background representing the
+        # original data, blended with green labels and blue area indicating the
+        # parts to be masked out.
+        #from ..data.utils import overlayed_image
+        #display = overlayed_image(data["data"], data["label"], data["mask"])
+        #display.show()
+        #import ipdb; ipdb.set_trace()
+
+        return w/b, wm/bm
+
+    limit = None  #use this to limit testing to first images only
+    subset = dataset.subsets("vessel")
+    proportions = [_check_sample(s, 0.11, 3.19) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(k[0] for k in proportions)}")
+    #print(f"min mask proportions = {min(k[1] for k in proportions)}")
+    proportions = [_check_sample(s, 0.10, 3.27) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(k[0] for k in proportions)}")
+    #print(f"min mask proportions = {min(k[1] for k in proportions)}")
+
+    subset = dataset.subsets("optic-disc")
+    proportions = [_check_sample(s, 0.023, 3.19) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(k[0] for k in proportions)}")
+    #print(f"min mask proportions = {min(k[1] for k in proportions)}")
+    proportions = [_check_sample(s, 0.033, 3.27) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(k[0] for k in proportions)}")
+    #print(f"min mask proportions = {min(k[1] for k in proportions)}")
+
+@rc_variable_set('bob.ip.binseg.iostar.datadir')
+def test_check():
+    nose.tools.eq_(dataset.check(), 0)
diff --git a/bob/ip/binseg/test/test_refuge.py b/bob/ip/binseg/test/test_refuge.py
new file mode 100644
index 0000000000000000000000000000000000000000..d4fac282cc210e1f04d09d74ad16d818641cae59
--- /dev/null
+++ b/bob/ip/binseg/test/test_refuge.py
@@ -0,0 +1,105 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+
+"""Tests for REFUGE"""
+
+import os
+
+import numpy
+import nose.tools
+from nose.plugins.attrib import attr
+
+from ..data.refuge import dataset
+from .utils import rc_variable_set, count_bw
+
+
+def test_protocol_consistency():
+
+    for protocol in ("optic-disc", "optic-cup"):
+
+        subset = dataset.subsets(protocol)
+        nose.tools.eq_(len(subset), 3)
+
+        assert "train" in subset
+        nose.tools.eq_(len(subset["train"]), 400)
+        for s in subset["train"]:
+            assert s.key.startswith("Training400")
+
+        assert "validation" in subset
+        nose.tools.eq_(len(subset["validation"]), 400)
+        for s in subset["validation"]:
+            assert s.key.startswith("REFUGE-Validation400")
+
+        assert "test" in subset
+        nose.tools.eq_(len(subset["test"]), 400)
+        for s in subset["test"]:
+            assert s.key.startswith("Test400")
+
+
+@rc_variable_set("bob.ip.binseg.refuge.datadir")
+@attr("slow")
+def test_loading():
+
+    def _check_sample(
+        s, image_size, glaucoma_label, entries, bw_threshold_label
+    ):
+
+        data = s.data
+        assert isinstance(data, dict)
+        nose.tools.eq_(len(data), entries)
+
+        assert "data" in data
+        nose.tools.eq_(data["data"].size, image_size)
+        nose.tools.eq_(data["data"].mode, "RGB")
+
+        assert "label" in data
+        nose.tools.eq_(data["label"].size, image_size)
+        nose.tools.eq_(data["label"].mode, "1")
+        b, w = count_bw(data["label"])
+        assert (b + w) == numpy.prod(image_size), (
+            f"Counts of black + white ({b}+{w}) do not add up to total "
+            f"image size ({numpy.prod(image_size)}) at '{s.key}':label"
+        )
+        assert (w / b) < bw_threshold_label, (
+            f"The proportion between black and white pixels "
+            f"({w}/{b}={w/b:.3f}) is larger than the allowed threshold "
+            f"of {bw_threshold_label} at '{s.key}':label - this could "
+            f"indicate a loading problem!"
+        )
+
+        if glaucoma_label:
+            assert "glaucoma" in data
+
+        # to visualize images, uncomment the folowing code
+        # it should display an image with a faded background representing the
+        # original data, blended with green labels.
+        #from ..data.utils import overlayed_image
+        #display = overlayed_image(data["data"], data["label"])
+        #display.show()
+        #import ipdb; ipdb.set_trace()
+
+        return w/b
+
+    limit = None  #use this to limit testing to first images only
+    subset = dataset.subsets("optic-disc")
+    proportions = [_check_sample(s, (2124, 2056), True, 3, 0.029) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, (1634, 1634), False, 2, 0.043) for s in subset["validation"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, (1634, 1634), True, 3, 0.026) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+
+    subset = dataset.subsets("optic-cup")
+    proportions = [_check_sample(s, (2124, 2056), True, 3, 0.018) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, (1634, 1634), False, 2, 0.030) for s in subset["validation"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, (1634, 1634), True, 3, 0.017) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+
+
+@rc_variable_set("bob.ip.binseg.refuge.datadir")
+@attr("slow")
+def test_check():
+    nose.tools.eq_(dataset.check(), 0)
diff --git a/bob/ip/binseg/test/test_rimoner3.py b/bob/ip/binseg/test/test_rimoner3.py
new file mode 100644
index 0000000000000000000000000000000000000000..e6010cf6a3dec0c9b4c5c84dc0857b92c349f174
--- /dev/null
+++ b/bob/ip/binseg/test/test_rimoner3.py
@@ -0,0 +1,116 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+
+"""Tests for RIM-ONE r3"""
+
+import os
+
+import numpy
+import nose.tools
+from nose.plugins.attrib import attr
+
+from ..data.rimoner3 import dataset
+from .utils import rc_variable_set, count_bw
+
+
+def test_protocol_consistency():
+
+    for protocol in ("optic-disc-exp1", "optic-cup-exp1", "optic-disc-exp2",
+            "optic-cup-exp2", "optic-disc-avg", "optic-cup-avg"):
+
+        subset = dataset.subsets(protocol)
+        nose.tools.eq_(len(subset), 2)
+
+        assert "train" in subset
+        nose.tools.eq_(len(subset["train"]), 99)
+        for s in subset["train"]:
+            assert "Stereo Images" in s.key
+
+        assert "test" in subset
+        nose.tools.eq_(len(subset["test"]), 60)
+        for s in subset["test"]:
+            assert "Stereo Images" in s.key
+
+
+@rc_variable_set("bob.ip.binseg.rimoner3.datadir")
+@attr("slow")
+def test_loading():
+
+    image_size = (1072, 1424)
+
+    def _check_sample(s, bw_threshold_label):
+
+        data = s.data
+        assert isinstance(data, dict)
+        nose.tools.eq_(len(data), 2)
+
+        assert "data" in data
+        nose.tools.eq_(data["data"].size, image_size)
+        nose.tools.eq_(data["data"].mode, "RGB")
+
+        assert "label" in data
+        nose.tools.eq_(data["label"].size, image_size)
+        nose.tools.eq_(data["label"].mode, "1")
+        b, w = count_bw(data["label"])
+        assert (b+w) == numpy.prod(image_size), \
+                f"Counts of black + white ({b}+{w}) do not add up to total " \
+                f"image size ({numpy.prod(image_size)}) at '{s.key}':label"
+        assert (w/b) < bw_threshold_label, \
+                f"The proportion between black and white pixels " \
+                f"({w}/{b}={w/b:.2f}) is larger than the allowed threshold " \
+                f"of {bw_threshold_label} at '{s.key}':label - this could " \
+                f"indicate a loading problem!"
+
+        # to visualize images, uncomment the folowing code
+        # it should display an image with a faded background representing the
+        # original data, blended with green labels.
+        #from ..data.utils import overlayed_image
+        #display = overlayed_image(data["data"], data["label"])
+        #display.show()
+        #import ipdb; ipdb.set_trace()
+
+        return w/b
+
+    subset = dataset.subsets("optic-cup-exp1")
+    limit = None
+    proportions = [_check_sample(s, 0.048) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, 0.042) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+
+    subset = dataset.subsets("optic-disc-exp1")
+    proportions = [_check_sample(s, 0.088) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, 0.061) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+
+    subset = dataset.subsets("optic-cup-exp2")
+    proportions = [_check_sample(s, 0.039) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, 0.038) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+
+    subset = dataset.subsets("optic-disc-exp2")
+    proportions = [_check_sample(s, 0.090) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, 0.065) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+
+    subset = dataset.subsets("optic-cup-avg")
+    proportions = [_check_sample(s, 0.042) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, 0.040) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+
+    subset = dataset.subsets("optic-disc-avg")
+    proportions = [_check_sample(s, 0.089) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, 0.063) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+
+
+@rc_variable_set("bob.ip.binseg.rimoner3.datadir")
+@attr("slow")
+def test_check():
+    nose.tools.eq_(dataset.check(), 0)
diff --git a/bob/ip/binseg/test/test_stare.py b/bob/ip/binseg/test/test_stare.py
new file mode 100644
index 0000000000000000000000000000000000000000..edc52ae1cccb0d2efa6b00d7e0469898f4c1eef5
--- /dev/null
+++ b/bob/ip/binseg/test/test_stare.py
@@ -0,0 +1,102 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+
+"""Tests for STARE"""
+
+import os
+
+import numpy
+import nose.tools
+
+## special trick for CI builds
+from . import mock_dataset
+datadir, dataset, rc_variable_set = mock_dataset()
+
+from .utils import count_bw
+
+
+def test_protocol_consistency():
+
+    subset = dataset.subsets("ah")
+    nose.tools.eq_(len(subset), 2)
+
+    assert "train" in subset
+    nose.tools.eq_(len(subset["train"]), 10)
+    for s in subset["train"]:
+        assert s.key.startswith(os.path.join("stare-images", "im0"))
+
+    assert "test" in subset
+    nose.tools.eq_(len(subset["test"]), 10)
+    for s in subset["test"]:
+        assert s.key.startswith(os.path.join("stare-images", "im0"))
+
+    subset = dataset.subsets("vk")
+    nose.tools.eq_(len(subset), 2)
+
+    assert "train" in subset
+    nose.tools.eq_(len(subset["train"]), 10)
+    for s in subset["train"]:
+        assert s.key.startswith(os.path.join("stare-images", "im0"))
+
+    assert "test" in subset
+    nose.tools.eq_(len(subset["test"]), 10)
+    for s in subset["test"]:
+        assert s.key.startswith(os.path.join("stare-images", "im0"))
+
+
+@rc_variable_set('bob.ip.binseg.stare.datadir')
+def test_loading():
+
+    image_size = (700, 605)
+
+    def _check_sample(s, bw_threshold_label):
+
+        data = s.data
+        assert isinstance(data, dict)
+        nose.tools.eq_(len(data), 2)
+
+        assert "data" in data
+        nose.tools.eq_(data["data"].size, image_size)
+        nose.tools.eq_(data["data"].mode, "RGB")
+
+        assert "label" in data
+        nose.tools.eq_(data["label"].size, image_size)
+        nose.tools.eq_(data["label"].mode, "1")
+        b, w = count_bw(data["label"])
+        assert (b+w) == numpy.prod(image_size), \
+                f"Counts of black + white ({b}+{w}) do not add up to total " \
+                f"image size ({numpy.prod(image_size)}) at '{s.key}':label"
+        assert (w/b) < bw_threshold_label, \
+                f"The proportion between black and white pixels " \
+                f"({w}/{b}={w/b:.2f}) is larger than the allowed threshold " \
+                f"of {bw_threshold_label} at '{s.key}':label - this could " \
+                f"indicate a loading problem!"
+
+        # to visualize images, uncomment the folowing code
+        # it should display an image with a faded background representing the
+        # original data, blended with green labels.
+        #from ..data.utils import overlayed_image
+        #display = overlayed_image(data["data"], data["label"])
+        #display.show()
+        #import ipdb; ipdb.set_trace()
+
+        return w/b
+
+    limit = None  #use this to limit testing to first images only
+    subset = dataset.subsets("ah")
+    proportions = [_check_sample(s, 0.10) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, 0.12) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+
+    subset = dataset.subsets("vk")
+    proportions = [_check_sample(s, 0.19) for s in subset["train"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+    proportions = [_check_sample(s, 0.18) for s in subset["test"][:limit]]
+    #print(f"max label proportions = {max(proportions)}")
+
+
+@rc_variable_set('bob.ip.binseg.stare.datadir')
+def test_check():
+    nose.tools.eq_(dataset.check(), 0)
diff --git a/bob/ip/binseg/test/test_summary.py b/bob/ip/binseg/test/test_summary.py
index 7faabf796674db6b7914d631ba41f9160c08a623..a6d9948aed57612f238ec3a1333e7148b5401cb7 100644
--- a/bob/ip/binseg/test/test_summary.py
+++ b/bob/ip/binseg/test/test_summary.py
@@ -1,9 +1,8 @@
 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
 
-import torch
+import os
 import unittest
-import numpy as np
 from bob.ip.binseg.modeling.driu import build_driu
 from bob.ip.binseg.modeling.driuod import build_driuod
 from bob.ip.binseg.modeling.hed import build_hed
@@ -11,36 +10,42 @@ from bob.ip.binseg.modeling.unet import build_unet
 from bob.ip.binseg.modeling.resunet import build_res50unet
 from bob.ip.binseg.utils.summary import summary
 
+
 class Tester(unittest.TestCase):
     """
     Unit test for model architectures
-    """    
+    """
+
     def test_summary_driu(self):
         model = build_driu()
-        param = summary(model)
-        self.assertIsInstance(param,int)
+        s, param = summary(model)
+        self.assertIsInstance(s, str)
+        self.assertIsInstance(param, int)
 
-
-    def test__summary_driuod(self):
+    def test_summary_driuod(self):
         model = build_driuod()
-        param = summary(model)
-        self.assertIsInstance(param,int)
-
+        s, param = summary(model)
+        self.assertIsInstance(s, str)
+        self.assertIsInstance(param, int)
 
     def test_summary_hed(self):
         model = build_hed()
-        param = summary(model)
-        self.assertIsInstance(param,int)
+        s, param = summary(model)
+        self.assertIsInstance(s, str)
+        self.assertIsInstance(param, int)
 
     def test_summary_unet(self):
         model = build_unet()
-        param = summary(model)
-        self.assertIsInstance(param,int)
+        s, param = summary(model)
+        self.assertIsInstance(s, str)
+        self.assertIsInstance(param, int)
 
     def test_summary_resunet(self):
         model = build_res50unet()
-        param = summary(model)
-        self.assertIsInstance(param,int)
+        s, param = summary(model)
+        self.assertIsInstance(s, str)
+        self.assertIsInstance(param, int)
+
 
-if __name__ == '__main__':
-    unittest.main()
\ No newline at end of file
+if __name__ == "__main__":
+    unittest.main()
diff --git a/bob/ip/binseg/test/test_transforms.py b/bob/ip/binseg/test/test_transforms.py
index 479cd79c063e8059c6048dfd0ead1f3a7062e006..e71a4a4927f1598a49037dc09a672de91845dd11 100644
--- a/bob/ip/binseg/test/test_transforms.py
+++ b/bob/ip/binseg/test/test_transforms.py
@@ -1,49 +1,365 @@
 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
 
+import os
+import random
+
+import nose.tools
+import pkg_resources
+
+import numpy
+import PIL.Image
 import torch
-import unittest
-import numpy as np
-from bob.ip.binseg.data.transforms import *
-
-transforms = Compose([
-                        RandomHFlip(prob=1)
-                        ,RandomHFlip(prob=1)
-                        ,RandomVFlip(prob=1)
-                        ,RandomVFlip(prob=1)
-                    ])
-
-def create_img():
-    t = torch.randn((3,42,24))
-    pil = VF.to_pil_image(t)
+import torchvision.transforms.functional
+
+from ..data.transforms import *
+
+
+def _create_img(size):
+    t = torch.randn(size)
+    pil = torchvision.transforms.functional.to_pil_image(t)
     return pil
 
 
-class Tester(unittest.TestCase):
-    """
-    Unit test for random flips
-    """
-    
-    def test_flips(self):
-        transforms = Compose([
-                        RandomHFlip(prob=1)
-                        ,RandomHFlip(prob=1)
-                        ,RandomVFlip(prob=1)
-                        ,RandomVFlip(prob=1)
-                    ])
-        img, gt, mask = [create_img() for i in range(3)]
-        img_t, gt_t, mask_t = transforms(img, gt, mask)
-        self.assertTrue(np.all(np.array(img_t) == np.array(img)))
-        self.assertTrue(np.all(np.array(gt_t) == np.array(gt)))
-        self.assertTrue(np.all(np.array(mask_t) == np.array(mask)))
-
-    def test_to_tensor(self):
-        transforms = ToTensor()
-        img, gt, mask = [create_img() for i in range(3)]
-        img_t, gt_t, mask_t = transforms(img, gt, mask)
-        self.assertEqual(str(img_t.dtype),"torch.float32")
-        self.assertEqual(str(gt_t.dtype),"torch.float32")
-        self.assertEqual(str(mask_t.dtype),"torch.float32")
-
-if __name__ == '__main__':
-    unittest.main()
\ No newline at end of file
+def test_center_crop():
+
+    # parameters
+    im_size = (3, 22, 20)  # (planes, height, width)
+    crop_size = (10, 12)  # (height, width)
+
+    # test
+    bh = (im_size[1] - crop_size[0]) // 2
+    bw = (im_size[2] - crop_size[1]) // 2
+    idx = (slice(bh, -bh), slice(bw, -bw), slice(0, im_size[0]))
+    transforms = CenterCrop(crop_size)
+    img, gt, mask = [_create_img(im_size) for i in range(3)]
+    nose.tools.eq_(img.size, (im_size[2], im_size[1]))  # confirms the above
+    img_t, gt_t, mask_t = transforms(img, gt, mask)
+    nose.tools.eq_(
+        img_t.size, (crop_size[1], crop_size[0])
+    )  # confirms the above
+    # notice that PIL->array does array.transpose(1, 2, 0)
+    # so it creates an array that is (height, width, planes)
+    assert numpy.all(numpy.array(img_t) == numpy.array(img)[idx])
+    assert numpy.all(numpy.array(gt_t) == numpy.array(gt)[idx])
+    assert numpy.all(numpy.array(mask_t) == numpy.array(mask)[idx])
+
+
+def test_center_crop_uneven():
+
+    # parameters
+    im_size = (3, 23, 20)  # (planes, height, width)
+    crop_size = (10, 13)  # (height, width)
+
+    # test
+    bh = (im_size[1] - crop_size[0]) // 2
+    bw = (im_size[2] - crop_size[1]) // 2
+    # when the crop size is uneven, this is what happens - notice here that the
+    # image height is uneven, and the crop width as well - the attributions of
+    # extra pixels will depend on what is uneven (original image or crop)
+    idx = (slice(bh, -(bh + 1)), slice((bw + 1), -bw), slice(0, im_size[0]))
+    transforms = CenterCrop(crop_size)
+    img, gt, mask = [_create_img(im_size) for i in range(3)]
+    nose.tools.eq_(img.size, (im_size[2], im_size[1]))  # confirms the above
+    img_t, gt_t, mask_t = transforms(img, gt, mask)
+    nose.tools.eq_(
+        img_t.size, (crop_size[1], crop_size[0])
+    )  # confirms the above
+    # notice that PIL->array does array.transpose(1, 2, 0)
+    # so it creates an array that is (height, width, planes)
+    assert numpy.all(numpy.array(img_t) == numpy.array(img)[idx])
+    assert numpy.all(numpy.array(gt_t) == numpy.array(gt)[idx])
+    assert numpy.all(numpy.array(mask_t) == numpy.array(mask)[idx])
+
+
+def test_pad_default():
+
+    # parameters
+    im_size = (3, 22, 20)  # (planes, height, width)
+    pad_size = 2
+
+    # test
+    idx = (
+        slice(pad_size, -pad_size),
+        slice(pad_size, -pad_size),
+        slice(0, im_size[0]),
+    )
+    transforms = Pad(pad_size)
+    img, gt, mask = [_create_img(im_size) for i in range(3)]
+    nose.tools.eq_(img.size, (im_size[2], im_size[1]))  # confirms the above
+    img_t, gt_t, mask_t = transforms(img, gt, mask)
+    # notice that PIL->array does array.transpose(1, 2, 0)
+    # so it creates an array that is (height, width, planes)
+    assert numpy.all(numpy.array(img_t)[idx] == numpy.array(img))
+    assert numpy.all(numpy.array(gt_t)[idx] == numpy.array(gt))
+    assert numpy.all(numpy.array(mask_t)[idx] == numpy.array(mask))
+
+    # checks that the border introduced with padding is all about "fill"
+    img_t = numpy.array(img_t)
+    img_t[idx] = 0
+    border_size_plane = img_t[:, :, 0].size - numpy.array(img)[:, :, 0].size
+    nose.tools.eq_(img_t.sum(), 0)
+
+    gt_t = numpy.array(gt_t)
+    gt_t[idx] = 0
+    nose.tools.eq_(gt_t.sum(), 0)
+
+    mask_t = numpy.array(mask_t)
+    mask_t[idx] = 0
+    nose.tools.eq_(mask_t.sum(), 0)
+
+
+def test_pad_2tuple():
+
+    # parameters
+    im_size = (3, 22, 20)  # (planes, height, width)
+    pad_size = (1, 2)  # left/right, top/bottom
+    fill = (3, 4, 5)
+
+    # test
+    idx = (
+        slice(pad_size[1], -pad_size[1]),
+        slice(pad_size[0], -pad_size[0]),
+        slice(0, im_size[0]),
+    )
+    transforms = Pad(pad_size, fill)
+    img, gt, mask = [_create_img(im_size) for i in range(3)]
+    nose.tools.eq_(img.size, (im_size[2], im_size[1]))  # confirms the above
+    img_t, gt_t, mask_t = transforms(img, gt, mask)
+    # notice that PIL->array does array.transpose(1, 2, 0)
+    # so it creates an array that is (height, width, planes)
+    assert numpy.all(numpy.array(img_t)[idx] == numpy.array(img))
+    assert numpy.all(numpy.array(gt_t)[idx] == numpy.array(gt))
+    assert numpy.all(numpy.array(mask_t)[idx] == numpy.array(mask))
+
+    # checks that the border introduced with padding is all about "fill"
+    img_t = numpy.array(img_t)
+    img_t[idx] = 0
+    border_size_plane = img_t[:, :, 0].size - numpy.array(img)[:, :, 0].size
+    expected_sum = sum((fill[k] * border_size_plane) for k in range(3))
+    nose.tools.eq_(img_t.sum(), expected_sum)
+
+    gt_t = numpy.array(gt_t)
+    gt_t[idx] = 0
+    nose.tools.eq_(gt_t.sum(), expected_sum)
+
+    mask_t = numpy.array(mask_t)
+    mask_t[idx] = 0
+    nose.tools.eq_(mask_t.sum(), expected_sum)
+
+
+def test_pad_4tuple():
+
+    # parameters
+    im_size = (3, 22, 20)  # (planes, height, width)
+    pad_size = (1, 2, 3, 4)  # left, top, right, bottom
+    fill = (3, 4, 5)
+
+    # test
+    idx = (
+        slice(pad_size[1], -pad_size[3]),
+        slice(pad_size[0], -pad_size[2]),
+        slice(0, im_size[0]),
+    )
+    transforms = Pad(pad_size, fill)
+    img, gt, mask = [_create_img(im_size) for i in range(3)]
+    nose.tools.eq_(img.size, (im_size[2], im_size[1]))  # confirms the above
+    img_t, gt_t, mask_t = transforms(img, gt, mask)
+    # notice that PIL->array does array.transpose(1, 2, 0)
+    # so it creates an array that is (height, width, planes)
+    assert numpy.all(numpy.array(img_t)[idx] == numpy.array(img))
+    assert numpy.all(numpy.array(gt_t)[idx] == numpy.array(gt))
+    assert numpy.all(numpy.array(mask_t)[idx] == numpy.array(mask))
+
+    # checks that the border introduced with padding is all about "fill"
+    img_t = numpy.array(img_t)
+    img_t[idx] = 0
+    border_size_plane = img_t[:, :, 0].size - numpy.array(img)[:, :, 0].size
+    expected_sum = sum((fill[k] * border_size_plane) for k in range(3))
+    nose.tools.eq_(img_t.sum(), expected_sum)
+
+    gt_t = numpy.array(gt_t)
+    gt_t[idx] = 0
+    nose.tools.eq_(gt_t.sum(), expected_sum)
+
+    mask_t = numpy.array(mask_t)
+    mask_t[idx] = 0
+    nose.tools.eq_(mask_t.sum(), expected_sum)
+
+
+def test_resize_downscale_w():
+
+    # parameters
+    im_size = (3, 22, 20)  # (planes, height, width)
+    new_size = 10  # (smallest edge)
+
+    # test
+    transforms = Resize(new_size)
+    img, gt, mask = [_create_img(im_size) for i in range(3)]
+    nose.tools.eq_(img.size, (im_size[2], im_size[1]))  # confirms the above
+    img_t, gt_t, mask_t = transforms(img, gt, mask)
+    new_size = (new_size, (new_size * im_size[1]) / im_size[2])
+    nose.tools.eq_(img_t.size, new_size)
+    nose.tools.eq_(gt_t.size, new_size)
+    nose.tools.eq_(mask_t.size, new_size)
+
+
+def test_resize_downscale_hw():
+
+    # parameters
+    im_size = (3, 22, 20)  # (planes, height, width)
+    new_size = (10, 12)  # (height, width)
+
+    # test
+    transforms = Resize(new_size)
+    img, gt, mask = [_create_img(im_size) for i in range(3)]
+    nose.tools.eq_(img.size, (im_size[2], im_size[1]))  # confirms the above
+    img_t, gt_t, mask_t = transforms(img, gt, mask)
+    nose.tools.eq_(img_t.size, (new_size[1], new_size[0]))
+    nose.tools.eq_(gt_t.size, (new_size[1], new_size[0]))
+    nose.tools.eq_(mask_t.size, (new_size[1], new_size[0]))
+
+
+def test_crop():
+
+    # parameters
+    im_size = (3, 22, 20)  # (planes, height, width)
+    crop_size = (3, 2, 10, 12)  # (upper, left, height, width)
+
+    # test
+    idx = (
+        slice(crop_size[0], crop_size[0] + crop_size[2]),
+        slice(crop_size[1], crop_size[1] + crop_size[3]),
+        slice(0, im_size[0]),
+    )
+    transforms = Crop(*crop_size)
+    img, gt, mask = [_create_img(im_size) for i in range(3)]
+    nose.tools.eq_(img.size, (im_size[2], im_size[1]))  # confirms the above
+    img_t, gt_t, mask_t = transforms(img, gt, mask)
+    # notice that PIL->array does array.transpose(1, 2, 0)
+    # so it creates an array that is (height, width, planes)
+    assert numpy.all(numpy.array(img_t) == numpy.array(img)[idx])
+    assert numpy.all(numpy.array(gt_t) == numpy.array(gt)[idx])
+    assert numpy.all(numpy.array(mask_t) == numpy.array(mask)[idx])
+
+
+def test_to_tensor():
+
+    transforms = ToTensor()
+    img, gt, mask = [_create_img((3, 5, 5)) for i in range(3)]
+    gt = gt.convert("1", dither=None)
+    mask = mask.convert("1", dither=None)
+    img_t, gt_t, mask_t = transforms(img, gt, mask)
+    nose.tools.eq_(img_t.dtype, torch.float32)
+    nose.tools.eq_(gt_t.dtype, torch.float32)
+    nose.tools.eq_(mask_t.dtype, torch.float32)
+
+
+def test_horizontal_flip():
+
+    transforms = RandomHorizontalFlip(p=1)
+
+    im_size = (3, 24, 42)  # (planes, height, width)
+    img, gt, mask = [_create_img(im_size) for i in range(3)]
+    img_t, gt_t, mask_t = transforms(img, gt, mask)
+
+    # notice that PIL->array does array.transpose(1, 2, 0)
+    # so it creates an array that is (height, width, planes)
+    assert numpy.all(numpy.flip(img_t, axis=1) == numpy.array(img))
+    assert numpy.all(numpy.flip(gt_t, axis=1) == numpy.array(gt))
+    assert numpy.all(numpy.flip(mask_t, axis=1) == numpy.array(mask))
+
+
+def test_vertical_flip():
+
+    transforms = RandomVerticalFlip(p=1)
+
+    im_size = (3, 24, 42)  # (planes, height, width)
+    img, gt, mask = [_create_img(im_size) for i in range(3)]
+    img_t, gt_t, mask_t = transforms(img, gt, mask)
+
+    # notice that PIL->array does array.transpose(1, 2, 0)
+    # so it creates an array that is (height, width, planes)
+    assert numpy.all(numpy.flip(img_t, axis=0) == numpy.array(img))
+    assert numpy.all(numpy.flip(gt_t, axis=0) == numpy.array(gt))
+    assert numpy.all(numpy.flip(mask_t, axis=0) == numpy.array(mask))
+
+
+def test_rotation():
+
+    im_size = (3, 24, 42)  # (planes, height, width)
+    transforms = RandomRotation(degrees=90, p=1)
+    img = _create_img(im_size)
+
+    # asserts all images are rotated the same
+    # and they are different from the original
+    random.seed(42)
+    img1_t, img2_t, img3_t = transforms(img, img, img)
+    nose.tools.eq_(img1_t.size, (im_size[2], im_size[1]))
+    assert numpy.all(numpy.array(img1_t) == numpy.array(img2_t))
+    assert numpy.all(numpy.array(img1_t) == numpy.array(img3_t))
+    assert numpy.any(numpy.array(img1_t) != numpy.array(img))
+
+    # asserts two random transforms are not the same
+    (img_t2,) = transforms(img)
+    assert numpy.any(numpy.array(img_t2) != numpy.array(img1_t))
+
+
+def test_color_jitter():
+
+    im_size = (3, 24, 42)  # (planes, height, width)
+    transforms = ColorJitter(p=1)
+    img = _create_img(im_size)
+
+    # asserts only the first image is jittered
+    # and it is different from the original
+    # all others match the input data
+    random.seed(42)
+    img1_t, img2_t, img3_t = transforms(img, img, img)
+    nose.tools.eq_(img1_t.size, (im_size[2], im_size[1]))
+    assert numpy.any(numpy.array(img1_t) != numpy.array(img))
+    assert numpy.any(numpy.array(img1_t) != numpy.array(img2_t))
+    assert numpy.all(numpy.array(img2_t) == numpy.array(img3_t))
+    assert numpy.all(numpy.array(img2_t) == numpy.array(img))
+
+    # asserts two random transforms are not the same
+    img1_t2, img2_t2, img3_t2 = transforms(img, img, img)
+    assert numpy.any(numpy.array(img1_t2) != numpy.array(img1_t))
+    assert numpy.all(numpy.array(img2_t2) == numpy.array(img))
+    assert numpy.all(numpy.array(img3_t2) == numpy.array(img))
+
+
+def test_compose():
+
+    transforms = Compose(
+        [
+            RandomVerticalFlip(p=1),
+            RandomHorizontalFlip(p=1),
+            RandomVerticalFlip(p=1),
+            RandomHorizontalFlip(p=1),
+        ]
+    )
+
+    img, gt, mask = [_create_img((3, 24, 42)) for i in range(3)]
+    img_t, gt_t, mask_t = transforms(img, gt, mask)
+    assert numpy.all(numpy.array(img_t) == numpy.array(img))
+    assert numpy.all(numpy.array(gt_t) == numpy.array(gt))
+    assert numpy.all(numpy.array(mask_t) == numpy.array(mask))
+
+
+def test_16bit_autolevel():
+
+    path = pkg_resources.resource_filename(__name__, os.path.join("data",
+        "img-16bit.png"))
+    # the way to load a 16-bit PNG image correctly, according to:
+    # https://stackoverflow.com/questions/32622658/read-16-bit-png-image-file-using-python
+    # https://github.com/python-pillow/Pillow/issues/3011
+    img = PIL.Image.fromarray(numpy.array(PIL.Image.open(path)).astype("uint16"))
+    nose.tools.eq_(img.mode, "I;16")
+    nose.tools.eq_(img.getextrema(), (0, 65281))
+
+    timg = SingleAutoLevel16to8()(img)
+    nose.tools.eq_(timg.mode, "L")
+    nose.tools.eq_(timg.getextrema(), (0, 255))
+    #timg.show()
+    #import ipdb; ipdb.set_trace()
diff --git a/bob/ip/binseg/test/utils.py b/bob/ip/binseg/test/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..0f2e7fcf62dc8404b88f75a15cb2ab8c96d4992a
--- /dev/null
+++ b/bob/ip/binseg/test/utils.py
@@ -0,0 +1,56 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+
+"""Test utilities"""
+
+
+import functools
+
+import numpy
+import nose.plugins.skip
+
+import bob.extension
+
+
+def rc_variable_set(name):
+    """
+    Decorator that checks if a given bobrc variable is set before running
+    """
+
+    def wrapped_function(test):
+        @functools.wraps(test)
+        def wrapper(*args, **kwargs):
+            if name not in bob.extension.rc:
+                raise nose.plugins.skip.SkipTest("Bob's RC variable '%s' is not set" % name)
+            return test(*args, **kwargs)
+
+        return wrapper
+
+    return wrapped_function
+
+
+def count_bw(b):
+    """Calculates totals of black and white pixels in a binary image
+
+
+    Parameters
+    ----------
+
+    b : PIL.Image.Image
+        A PIL image in mode "1" to be used for calculating positives and
+        negatives
+
+    Returns
+    -------
+
+    black : int
+        Number of black pixels in the binary image
+
+    white : int
+        Number of white pixels in the binary image
+    """
+
+    boolean_array = numpy.array(b)
+    white = boolean_array.sum()
+    return (boolean_array.size-white), white
diff --git a/bob/ip/binseg/utils/FreeMono.ttf b/bob/ip/binseg/utils/FreeMono.ttf
deleted file mode 100644
index 7485f9e4c84d5a372c81e11df2cd9f5e2eb2064a..0000000000000000000000000000000000000000
Binary files a/bob/ip/binseg/utils/FreeMono.ttf and /dev/null differ
diff --git a/bob/ip/binseg/utils/__init__.py b/bob/ip/binseg/utils/__init__.py
index 2ca5e07cb73f0bdddcb863ef497955964087e301..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644
--- a/bob/ip/binseg/utils/__init__.py
+++ b/bob/ip/binseg/utils/__init__.py
@@ -1,3 +0,0 @@
-# see https://docs.python.org/3/library/pkgutil.html
-from pkgutil import extend_path
-__path__ = extend_path(__path__, __name__)
\ No newline at end of file
diff --git a/bob/ip/binseg/utils/checkpointer.py b/bob/ip/binseg/utils/checkpointer.py
index f3899e1dc2a23e6b6c8c250bebfd9a40ebc1fc93..4ae57e5c1a5f58727edc990f04e8553bc6f8de4e 100644
--- a/bob/ip/binseg/utils/checkpointer.py
+++ b/bob/ip/binseg/utils/checkpointer.py
@@ -1,23 +1,22 @@
 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
 
-# Adapted from https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/engine/trainer.py 
 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
 
-import logging
 import torch
 import os
 from bob.ip.binseg.utils.model_serialization import load_state_dict
 from bob.ip.binseg.utils.model_zoo import cache_url
 
+import logging
+logger = logging.getLogger(__name__)
+
+
 class Checkpointer:
-    """Adapted from `maskrcnn-benchmark`_ under MIT license
-    
-    Returns
-    -------
-    [type]
-        [description]
+    """Adapted from `maskrcnn-benchmark
+    <https://github.com/facebookresearch/maskrcnn-benchmark>`_ under MIT license
     """
+
     def __init__(
         self,
         model,
@@ -25,16 +24,12 @@ class Checkpointer:
         scheduler=None,
         save_dir="",
         save_to_disk=None,
-        logger=None,
     ):
         self.model = model
         self.optimizer = optimizer
         self.scheduler = scheduler
         self.save_dir = save_dir
         self.save_to_disk = save_to_disk
-        if logger is None:
-            logger = logging.getLogger(__name__)
-        self.logger = logger
 
     def save(self, name, **kwargs):
         if not self.save_dir:
@@ -51,10 +46,11 @@ class Checkpointer:
             data["scheduler"] = self.scheduler.state_dict()
         data.update(kwargs)
 
-        save_file = os.path.join(self.save_dir, "{}.pth".format(name))
-        self.logger.info("Saving checkpoint to {}".format(save_file))
+        dest_filename = f"{name}.pth"
+        save_file = os.path.join(self.save_dir, dest_filename)
+        logger.info(f"Saving checkpoint to {save_file}")
         torch.save(data, save_file)
-        self.tag_last_checkpoint(save_file)
+        self.tag_last_checkpoint(dest_filename)
 
     def load(self, f=None):
         if self.has_checkpoint():
@@ -62,16 +58,16 @@ class Checkpointer:
             f = self.get_checkpoint_file()
         if not f:
             # no checkpoint could be found
-            self.logger.warn("No checkpoint found. Initializing model from scratch")
+            logger.warn("No checkpoint found. Initializing model from scratch")
             return {}
-        self.logger.info("Loading checkpoint from {}".format(f))
         checkpoint = self._load_file(f)
         self._load_model(checkpoint)
+        actual_file = os.path.join(self.save_dir, f)
         if "optimizer" in checkpoint and self.optimizer:
-            self.logger.info("Loading optimizer from {}".format(f))
+            logger.info(f"Loading optimizer from {actual_file}")
             self.optimizer.load_state_dict(checkpoint.pop("optimizer"))
         if "scheduler" in checkpoint and self.scheduler:
-            self.logger.info("Loading scheduler from {}".format(f))
+            logger.info(f"Loading scheduler from {actual_file}")
             self.scheduler.load_state_dict(checkpoint.pop("scheduler"))
 
         # return any further checkpoint data
@@ -99,7 +95,9 @@ class Checkpointer:
             f.write(last_filename)
 
     def _load_file(self, f):
-        return torch.load(f, map_location=torch.device("cpu"))
+        actual_file = os.path.join(self.save_dir, f)
+        logger.info(f"Loading checkpoint from {actual_file}")
+        return torch.load(actual_file, map_location=torch.device("cpu"))
 
     def _load_model(self, checkpoint):
         load_state_dict(self.model, checkpoint.pop("model"))
@@ -113,10 +111,9 @@ class DetectronCheckpointer(Checkpointer):
         scheduler=None,
         save_dir="",
         save_to_disk=None,
-        logger=None,
     ):
         super(DetectronCheckpointer, self).__init__(
-            model, optimizer, scheduler, save_dir, save_to_disk, logger
+            model, optimizer, scheduler, save_dir, save_to_disk
         )
 
     def _load_file(self, f):
@@ -124,10 +121,10 @@ class DetectronCheckpointer(Checkpointer):
         if f.startswith("http"):
             # if the file is a url path, download it and cache it
             cached_f = cache_url(f)
-            self.logger.info("url {} cached in {}".format(f, cached_f))
+            logger.info(f"url {f} cached in {cached_f}")
             f = cached_f
         # load checkpoint
         loaded = super(DetectronCheckpointer, self)._load_file(f)
         if "model" not in loaded:
             loaded = dict(model=loaded)
-        return loaded
\ No newline at end of file
+        return loaded
diff --git a/bob/ip/binseg/utils/click.py b/bob/ip/binseg/utils/click.py
deleted file mode 100644
index 8b8294d97f869167f0908f22c4521c6fcda1a243..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/utils/click.py
+++ /dev/null
@@ -1,53 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-
-
-import click
-
-class OptionEatAll(click.Option):
-    """
-    Allows for *args and **kwargs to be passed to click 
-    https://stackoverflow.com/questions/48391777/nargs-equivalent-for-options-in-click 
-    """
-
-    def __init__(self, *args, **kwargs):
-        self.save_other_options = kwargs.pop('save_other_options', True)
-        nargs = kwargs.pop('nargs', -1)
-        assert nargs == -1, 'nargs, if set, must be -1 not {}'.format(nargs)
-        super(OptionEatAll, self).__init__(*args, **kwargs)
-        self._previous_parser_process = None
-        self._eat_all_parser = None
-
-    def add_to_parser(self, parser, ctx):
-
-        def parser_process(value, state):
-            # method to hook to the parser.process
-            done = False
-            value = [value]
-            if self.save_other_options:
-                # grab everything up to the next option
-                while state.rargs and not done:
-                    for prefix in self._eat_all_parser.prefixes:
-                        if state.rargs[0].startswith(prefix):
-                            done = True
-                    if not done:
-                        value.append(state.rargs.pop(0))
-            else:
-                # grab everything remaining
-                value += state.rargs
-                state.rargs[:] = []
-            value = tuple(value)
-
-            # call the actual process
-            self._previous_parser_process(value, state)
-
-        retval = super(OptionEatAll, self).add_to_parser(parser, ctx)
-        for name in self.opts:
-            our_parser = parser._long_opt.get(name) or parser._short_opt.get(name)
-            if our_parser:
-                self._eat_all_parser = our_parser
-                self._previous_parser_process = our_parser.process
-                our_parser.process = parser_process
-                break
-        return retval
\ No newline at end of file
diff --git a/bob/ip/binseg/utils/evaluate.py b/bob/ip/binseg/utils/evaluate.py
deleted file mode 100644
index 99259f412be8f00e7b2ea2572ba654689a4cf92d..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/utils/evaluate.py
+++ /dev/null
@@ -1,194 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-# only use to evaluate 2nd human annotator
-#
-import os
-import logging
-import time
-import datetime
-import numpy as np
-import torch
-import pandas as pd
-import torchvision.transforms.functional as VF
-from tqdm import tqdm
-
-from bob.ip.binseg.utils.metric import SmoothedValue, base_metrics
-from bob.ip.binseg.utils.plot import precision_recall_f1iso, precision_recall_f1iso_confintval
-from bob.ip.binseg.utils.summary import summary
-from PIL import Image
-from torchvision.transforms.functional import to_tensor
-
-
-def batch_metrics(predictions, ground_truths, names, output_folder, logger):
-    """
-    Calculates metrics on the batch and saves it to disc
-
-    Parameters
-    ----------
-    predictions : :py:class:`torch.Tensor`
-        tensor with pixel-wise probabilities
-    ground_truths : :py:class:`torch.Tensor`
-        tensor with binary ground-truth
-    names : list
-        list of file names
-    output_folder : str
-        output path
-    logger : :py:class:`logging.Logger`
-        python logger
-
-    Returns
-    -------
-    list
-        list containing batch metrics: ``[name, threshold, precision, recall, specificity, accuracy, jaccard, f1_score]``
-    """
-    step_size = 0.01
-    batch_metrics = []
-
-    for j in range(predictions.size()[0]):
-        # ground truth byte
-        gts = ground_truths[j].byte()
-
-        file_name = "{}.csv".format(names[j])
-        logger.info("saving {}".format(file_name))
-
-        with open (os.path.join(output_folder,file_name), "w+") as outfile:
-
-            outfile.write("threshold, precision, recall, specificity, accuracy, jaccard, f1_score\n")
-
-            for threshold in np.arange(0.0,1.0,step_size):
-                # threshold
-                binary_pred = torch.gt(predictions[j], threshold).byte()
-
-                # equals and not-equals
-                equals = torch.eq(binary_pred, gts) # tensor
-                notequals = torch.ne(binary_pred, gts) # tensor
-
-                # true positives
-                tp_tensor = (gts * binary_pred ) # tensor
-                tp_count = torch.sum(tp_tensor).item() # scalar
-
-                # false positives
-                fp_tensor = torch.eq((binary_pred + tp_tensor), 1)
-                fp_count = torch.sum(fp_tensor).item()
-
-                # true negatives
-                tn_tensor = equals - tp_tensor
-                tn_count = torch.sum(tn_tensor).item()
-
-                # false negatives
-                fn_tensor = notequals - fp_tensor
-                fn_count = torch.sum(fn_tensor).item()
-
-                # calc metrics
-                metrics = base_metrics(tp_count, fp_count, tn_count, fn_count)
-
-                # write to disk
-                outfile.write("{:.2f},{:.5f},{:.5f},{:.5f},{:.5f},{:.5f},{:.5f} \n".format(threshold, *metrics))
-
-                batch_metrics.append([names[j],threshold, *metrics ])
-
-
-    return batch_metrics
-
-
-
-def do_eval(
-    prediction_folder,
-    data_loader,
-    output_folder = None,
-    title = '2nd human',
-    legend = '2nd human',
-    prediction_extension = None,
-):
-
-    """
-    Calculate metrics on saved prediction images (needs batch_size = 1 !)
-
-    Parameters
-    ---------
-    model : :py:class:`torch.nn.Module`
-        neural network model (e.g. DRIU, HED, UNet)
-    data_loader : py:class:`torch.torch.utils.data.DataLoader`
-    device : str
-        device to use ``'cpu'`` or ``'cuda'``
-    output_folder : str
-    """
-    logger = logging.getLogger("bob.ip.binseg.engine.evaluate")
-    logger.info("Start evaluation")
-    logger.info("Prediction folder {}".format(prediction_folder))
-    results_subfolder = os.path.join(output_folder,'results')
-    os.makedirs(results_subfolder,exist_ok=True)
-
-
-    # Collect overall metrics
-    metrics = []
-    num_images = len(data_loader)
-    for samples in tqdm(data_loader):
-        names = samples[0]
-        images = samples[1]
-        ground_truths = samples[2]
-
-        if prediction_extension is None:
-            pred_file = os.path.join(prediction_folder,names[0])
-        else:
-            pred_file = os.path.join(prediction_folder,os.path.splitext(names[0])[0] + '.png')
-        probabilities = Image.open(pred_file)
-        probabilities = probabilities.convert(mode='L')
-        probabilities = to_tensor(probabilities)
-
-
-        b_metrics = batch_metrics(probabilities, ground_truths, names,results_subfolder, logger)
-        metrics.extend(b_metrics)
-
-
-
-    # DataFrame
-    df_metrics = pd.DataFrame(metrics,columns= \
-                           ["name",
-                            "threshold",
-                            "precision",
-                            "recall",
-                            "specificity",
-                            "accuracy",
-                            "jaccard",
-                            "f1_score"])
-
-    # Report and Averages
-    metrics_file = "Metrics.csv"
-    metrics_path = os.path.join(results_subfolder, metrics_file)
-    logger.info("Saving average over all input images: {}".format(metrics_file))
-
-    avg_metrics = df_metrics.groupby('threshold').mean()
-    std_metrics = df_metrics.groupby('threshold').std()
-
-    # Uncomment below for F1-score calculation based on average precision and metrics instead of
-    # F1-scores of individual images. This method is in line with Maninis et. al. (2016)
-    #avg_metrics["f1_score"] =  (2* avg_metrics["precision"]*avg_metrics["recall"])/ \
-    #    (avg_metrics["precision"]+avg_metrics["recall"])
-
-
-    avg_metrics["std_pr"] = std_metrics["precision"]
-    avg_metrics["pr_upper"] = avg_metrics['precision'] + avg_metrics["std_pr"]
-    avg_metrics["pr_lower"] = avg_metrics['precision'] - avg_metrics["std_pr"]
-    avg_metrics["std_re"] = std_metrics["recall"]
-    avg_metrics["re_upper"] = avg_metrics['recall'] + avg_metrics["std_re"]
-    avg_metrics["re_lower"] = avg_metrics['recall'] - avg_metrics["std_re"]
-    avg_metrics["std_f1"] = std_metrics["f1_score"]
-
-    avg_metrics.to_csv(metrics_path)
-    maxf1 = avg_metrics['f1_score'].max()
-    optimal_f1_threshold = avg_metrics['f1_score'].idxmax()
-
-    logger.info("Highest F1-score of {:.5f}, achieved at threshold {}".format(maxf1, optimal_f1_threshold))
-
-    # Plotting
-    #print(avg_metrics)
-    np_avg_metrics = avg_metrics.to_numpy().T
-    fig_name = "precision_recall.pdf"
-    logger.info("saving {}".format(fig_name))
-    fig = precision_recall_f1iso_confintval([np_avg_metrics[0]],[np_avg_metrics[1]],[np_avg_metrics[7]],[np_avg_metrics[8]],[np_avg_metrics[10]],[np_avg_metrics[11]], [legend ,None], title=title)
-    fig_filename = os.path.join(results_subfolder, fig_name)
-    fig.savefig(fig_filename)
-
-
-
diff --git a/bob/ip/binseg/utils/metric.py b/bob/ip/binseg/utils/metric.py
index bcb91511f533a8ed69843487ef8cbe793e42a925..903836f6ef17b231ecb942efc4156c3408cff885 100644
--- a/bob/ip/binseg/utils/metric.py
+++ b/bob/ip/binseg/utils/metric.py
@@ -1,7 +1,6 @@
 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
 
-from collections import defaultdict
 from collections import deque
 import torch
 
@@ -27,10 +26,11 @@ class SmoothedValue:
         d = torch.tensor(list(self.deque))
         return d.mean().item()
 
+
 def base_metrics(tp, fp, tn, fn):
     """
     Calculates Precision, Recall (=Sensitivity), Specificity, Accuracy, Jaccard and F1-score (Dice)
-    
+
 
     Parameters
     ----------
@@ -39,7 +39,7 @@ def base_metrics(tp, fp, tn, fn):
         True positives
 
     fp : float
-        False positives 
+        False positives
 
     tn : float
         True negatives
@@ -52,13 +52,36 @@ def base_metrics(tp, fp, tn, fn):
     -------
 
     metrics : list
-    
+
     """
-    precision = tp / (tp + fp + ( (tp+fp) == 0) )
-    recall = tp / (tp + fn + ( (tp+fn) == 0) )
-    specificity = tn / (fp + tn + ( (fp+tn) == 0) )
-    accuracy = (tp + tn) / (tp+fp+fn+tn)
-    jaccard = tp / (tp+fp+fn + ( (tp+fp+fn) == 0) )
-    f1_score = (2.0 * tp ) / (2.0 * tp + fp + fn + ( (2.0 * tp + fp + fn) == 0) )
-    #f1_score = (2.0 * precision * recall) / (precision + recall)
-    return [precision, recall, specificity, accuracy, jaccard, f1_score]
\ No newline at end of file
+    precision = tp / (tp + fp + ((tp + fp) == 0))
+    recall = tp / (tp + fn + ((tp + fn) == 0))
+    specificity = tn / (fp + tn + ((fp + tn) == 0))
+    accuracy = (tp + tn) / (tp + fp + fn + tn)
+    jaccard = tp / (tp + fp + fn + ((tp + fp + fn) == 0))
+    f1_score = (2.0 * tp) / (2.0 * tp + fp + fn + ((2.0 * tp + fp + fn) == 0))
+    # f1_score = (2.0 * precision * recall) / (precision + recall)
+    return [precision, recall, specificity, accuracy, jaccard, f1_score]
+
+
+def auc(precision, recall):
+    """Calculates the area under the precision-recall curve (AUC)
+
+    .. todo:: Integrate this to metrics reporting in compare.py
+    """
+
+    rec_unique, rec_unique_ndx = numpy.unique(recall, return_index=True)
+
+    prec_unique = precision[rec_unique_ndx]
+
+    if rec_unique.shape[0] > 1:
+        prec_interp = numpy.interp(
+            numpy.arange(0, 1, 0.01),
+            rec_unique,
+            prec_unique,
+            left=0.0,
+            right=0.0,
+        )
+        return prec_interp.sum() * 0.01
+
+    return 0.0
diff --git a/bob/ip/binseg/utils/model_serialization.py b/bob/ip/binseg/utils/model_serialization.py
index 84ff2491ea85751cc0b0910d278f035e9571f0eb..4c84e84f7e57364c128cc88c0116c8aec5e2bcc5 100644
--- a/bob/ip/binseg/utils/model_serialization.py
+++ b/bob/ip/binseg/utils/model_serialization.py
@@ -1,10 +1,14 @@
 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
 # https://github.com/facebookresearch/maskrcnn-benchmark
+
 from collections import OrderedDict
+
 import logging
+logger = logging.getLogger(__name__)
 
 import torch
 
+
 def align_and_update_state_dicts(model_state_dict, loaded_state_dict):
     """
     Strategy: suppose that the models that we will create will have prefixes appended
@@ -38,14 +42,13 @@ def align_and_update_state_dicts(model_state_dict, loaded_state_dict):
     max_size = max([len(key) for key in current_keys]) if current_keys else 1
     max_size_loaded = max([len(key) for key in loaded_keys]) if loaded_keys else 1
     log_str_template = "{: <{}} loaded from {: <{}} of shape {}"
-    logger = logging.getLogger(__name__)
     for idx_new, idx_old in enumerate(idxs.tolist()):
         if idx_old == -1:
             continue
         key = current_keys[idx_new]
         key_old = loaded_keys[idx_old]
         model_state_dict[key] = loaded_state_dict[key_old]
-        logger.info(
+        logger.debug(
             log_str_template.format(
                 key,
                 max_size,
@@ -75,4 +78,4 @@ def load_state_dict(model, loaded_state_dict):
     align_and_update_state_dicts(model_state_dict, loaded_state_dict)
 
     # use strict loading
-    model.load_state_dict(model_state_dict)
\ No newline at end of file
+    model.load_state_dict(model_state_dict)
diff --git a/bob/ip/binseg/utils/model_zoo.py b/bob/ip/binseg/utils/model_zoo.py
index 8bc7c931e0e05d682e03cc52c22413c2f185965e..2eb98f552f1654043b5bf4a03ae4e4627a65c944 100644
--- a/bob/ip/binseg/utils/model_zoo.py
+++ b/bob/ip/binseg/utils/model_zoo.py
@@ -5,19 +5,15 @@
 # https://github.com/pytorch/pytorch/blob/master/torch/hub.py
 # https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/utils/checkpoint.py
 
-import errno
 import hashlib
 import os
 import re
 import shutil
 import sys
 import tempfile
-import torch
-import warnings
-import zipfile
 from urllib.request import urlopen
 from urllib.parse import urlparse
-from tqdm import tqdm 
+from tqdm import tqdm
 
 modelurls = {
     "vgg11": "https://download.pytorch.org/models/vgg11-bbd30ac9.pth",
@@ -33,15 +29,19 @@ modelurls = {
     "resnet50": "https://download.pytorch.org/models/resnet50-19c8e357.pth",
     "resnet101": "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth",
     "resnet152": "https://download.pytorch.org/models/resnet152-b121ed2d.pth",
-    "resnet50_SIN_IN": "https://bitbucket.org/robert_geirhos/texture-vs-shape-pretrained-models/raw/60b770e128fffcbd8562a3ab3546c1a735432d03/resnet50_finetune_60_epochs_lr_decay_after_30_start_resnet50_train_45_epochs_combined_IN_SF-ca06340c.pth.tar",
-    "mobilenetv2": "https://dl.dropboxusercontent.com/s/4nie4ygivq04p8y/mobilenet_v2.pth.tar",
-    }
+    #"resnet50_SIN_IN": "https://bitbucket.org/robert_geirhos/texture-vs-shape-pretrained-models/raw/60b770e128fffcbd8562a3ab3546c1a735432d03/resnet50_finetune_60_epochs_lr_decay_after_30_start_resnet50_train_45_epochs_combined_IN_SF-ca06340c.pth.tar",
+    "resnet50_SIN_IN": "http://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/resnet50_finetune_60_epochs_lr_decay_after_30_start_resnet50_train_45_epochs_combined_IN_SF-ca06340c.pth.tar",
+    #"mobilenetv2": "https://dl.dropboxusercontent.com/s/4nie4ygivq04p8y/mobilenet_v2.pth.tar",
+    "mobilenetv2": "http://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/mobilenet_v2.pth.tar",
+}
+"""URLs of pre-trained models (backbones)"""
 
-def _download_url_to_file(url, dst, hash_prefix, progress):
+
+def download_url_to_file(url, dst, hash_prefix, progress):
     file_size = None
     u = urlopen(url)
     meta = u.info()
-    if hasattr(meta, 'getheaders'):
+    if hasattr(meta, "getheaders"):
         content_length = meta.getheaders("Content-Length")
     else:
         content_length = meta.get_all("Content-Length")
@@ -65,16 +65,21 @@ def _download_url_to_file(url, dst, hash_prefix, progress):
         f.close()
         if hash_prefix is not None:
             digest = sha256.hexdigest()
-            if digest[:len(hash_prefix)] != hash_prefix:
-                raise RuntimeError('invalid hash value (expected "{}", got "{}")'
-                                   .format(hash_prefix, digest))
+            if digest[: len(hash_prefix)] != hash_prefix:
+                raise RuntimeError(
+                    'invalid hash value (expected "{}", got "{}")'.format(
+                        hash_prefix, digest
+                    )
+                )
         shutil.move(f.name, dst)
     finally:
         f.close()
         if os.path.exists(f.name):
             os.remove(f.name)
 
-HASH_REGEX = re.compile(r'-([a-f0-9]*)\.')
+
+HASH_REGEX = re.compile(r"-([a-f0-9]*)\.")
+
 
 def cache_url(url, model_dir=None, progress=True):
     r"""Loads the Torch serialized object at the given URL.
@@ -99,13 +104,13 @@ def cache_url(url, model_dir=None, progress=True):
         os.makedirs(model_dir)
     parts = urlparse(url)
     filename = os.path.basename(parts.path)
-    
+
     cached_file = os.path.join(model_dir, filename)
     if not os.path.exists(cached_file):
         sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
         hash_prefix = HASH_REGEX.search(filename)
         if hash_prefix is not None:
             hash_prefix = hash_prefix.group(1)
-        _download_url_to_file(url, cached_file, hash_prefix, progress=progress)
-    
-    return cached_file
\ No newline at end of file
+        download_url_to_file(url, cached_file, hash_prefix, progress=progress)
+
+    return cached_file
diff --git a/bob/ip/binseg/utils/plot.py b/bob/ip/binseg/utils/plot.py
index de1d531d8bdab9db1f2263f4221157a3cca24912..9be1b0edec5f4ddd298df6561a48ac1009b3deab 100644
--- a/bob/ip/binseg/utils/plot.py
+++ b/bob/ip/binseg/utils/plot.py
@@ -1,454 +1,271 @@
 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
 
-import numpy as np
-import os
-import csv
-import pandas as pd
-import PIL
-from PIL import Image,ImageFont, ImageDraw
-import torchvision.transforms.functional as VF
-import torch
-
-def precision_recall_f1iso(precision, recall, names, title=None):
-    """
-    Author: Andre Anjos (andre.anjos@idiap.ch).
+import contextlib
+from itertools import cycle
 
-    Creates a precision-recall plot of the given data.
-    The plot will be annotated with F1-score iso-lines (in which the F1-score
-    maintains the same value)
+import numpy
+import pandas
 
-    Parameters
-    ----------
-    precision : :py:class:`numpy.ndarray` or :py:class:`list`
-        A list of 1D np arrays containing the Y coordinates of the plot, or
-        the precision, or a 2D np array in which the rows correspond to each
-        of the system's precision coordinates.
-    recall : :py:class:`numpy.ndarray` or :py:class:`list`
-        A list of 1D np arrays containing the X coordinates of the plot, or
-        the recall, or a 2D np array in which the rows correspond to each
-        of the system's recall coordinates.
-    names : :py:class:`list`
-        An iterable over the names of each of the systems along the rows of
-        ``precision`` and ``recall``
-    title : :py:class:`str`, optional
-        A title for the plot. If not set, omits the title
+import matplotlib
+matplotlib.use("agg")
 
-    Returns
-    -------
-    matplotlib.figure.Figure
-        A matplotlib figure you can save or display
-    """
-    import matplotlib
-    matplotlib.use('agg')
-    import matplotlib.pyplot as plt
-    from itertools import cycle
-    fig, ax1 = plt.subplots(1)
-    lines = ["-","--","-.",":"]
-    linecycler = cycle(lines)
-    for p, r, n in zip(precision, recall, names):
-        # Plots only from the point where recall reaches its maximum, otherwise, we
-        # don't see a curve...
-        i = r.argmax()
-        pi = p[i:]
-        ri = r[i:]
-        valid = (pi+ri) > 0
-        f1 = 2 * (pi[valid]*ri[valid]) / (pi[valid]+ri[valid])
-        # optimal point along the curve
-        argmax = f1.argmax()
-        opi = pi[argmax]
-        ori = ri[argmax]
-        # Plot Recall/Precision as threshold changes
-        ax1.plot(ri[pi>0], pi[pi>0], next(linecycler), label='[F={:.4f}] {}'.format(f1.max(), n),)
-        ax1.plot(ori,opi, marker='o', linestyle=None, markersize=3, color='black')
-    ax1.grid(linestyle='--', linewidth=1, color='gray', alpha=0.2)
-    if len(names) > 1:
-        plt.legend(loc='lower left', framealpha=0.5)
-    ax1.set_xlabel('Recall')
-    ax1.set_ylabel('Precision')
-    ax1.set_xlim([0.0, 1.0])
-    ax1.set_ylim([0.0, 1.0])
-    if title is not None: ax1.set_title(title)
-    # Annotates plot with F1-score iso-lines
-    ax2 = ax1.twinx()
-    f_scores = np.linspace(0.1, 0.9, num=9)
-    tick_locs = []
-    tick_labels = []
-    for f_score in f_scores:
-        x = np.linspace(0.01, 1)
-        y = f_score * x / (2 * x - f_score)
-        l, = plt.plot(x[y >= 0], y[y >= 0], color='green', alpha=0.1)
-        tick_locs.append(y[-1])
-        tick_labels.append('%.1f' % f_score)
-    ax2.tick_params(axis='y', which='both', pad=0, right=False, left=False)
-    ax2.set_ylabel('iso-F', color='green', alpha=0.3)
-    ax2.set_ylim([0.0, 1.0])
-    ax2.yaxis.set_label_coords(1.015, 0.97)
-    ax2.set_yticks(tick_locs) #notice these are invisible
-    for k in ax2.set_yticklabels(tick_labels):
-        k.set_color('green')
-        k.set_alpha(0.3)
-        k.set_size(8)
-    # we should see some of axes 1 axes
-    ax1.spines['right'].set_visible(False)
-    ax1.spines['top'].set_visible(False)
-    ax1.spines['left'].set_position(('data', -0.015))
-    ax1.spines['bottom'].set_position(('data', -0.015))
-    # we shouldn't see any of axes 2 axes
-    ax2.spines['right'].set_visible(False)
-    ax2.spines['top'].set_visible(False)
-    ax2.spines['left'].set_visible(False)
-    ax2.spines['bottom'].set_visible(False)
-    plt.tight_layout()
-    return fig
+import matplotlib.pyplot as plt
+
+import logging
+logger = logging.getLogger(__name__)
 
-def precision_recall_f1iso_confintval(precision, recall, pr_upper, pr_lower, re_upper, re_lower, names, title=None):
-    """
-    Author: Andre Anjos (andre.anjos@idiap.ch).
 
-    Creates a precision-recall plot of the given data.
-    The plot will be annotated with F1-score iso-lines (in which the F1-score
-    maintains the same value)
+@contextlib.contextmanager
+def _precision_recall_canvas(title=None):
+    """Generates a canvas to draw precision-recall curves
+
+    Works like a context manager, yielding a figure and an axes set in which
+    the precision-recall curves should be added to.  The figure already
+    contains F1-ISO lines and is preset to a 0-1 square region.  Once the
+    context is finished, ``fig.tight_layout()`` is called.
+
 
     Parameters
     ----------
-    precision : :py:class:`numpy.ndarray` or :py:class:`list`
-        A list of 1D np arrays containing the Y coordinates of the plot, or
-        the precision, or a 2D np array in which the rows correspond to each
-        of the system's precision coordinates.
-    recall : :py:class:`numpy.ndarray` or :py:class:`list`
-        A list of 1D np arrays containing the X coordinates of the plot, or
-        the recall, or a 2D np array in which the rows correspond to each
-        of the system's recall coordinates.
-    names : :py:class:`list`
-        An iterable over the names of each of the systems along the rows of
-        ``precision`` and ``recall``
-    title : :py:class:`str`, optional
-        A title for the plot. If not set, omits the title
 
-    Returns
-    -------
-    matplotlib.figure.Figure
-        A matplotlib figure you can save or display
+    title : :py:class:`str`, Optional
+        Optional title to add to this plot
+
+
+    Yields
+    ------
+
+    figure : matplotlib.figure.Figure
+        The figure that should be finally returned to the user
+
+    axes : matplotlib.figure.Axes
+        An axis set where to precision-recall plots should be added to
+
     """
-    import matplotlib
-    matplotlib.use('agg')
-    import matplotlib.pyplot as plt
-    from itertools import cycle
-    fig, ax1 = plt.subplots(1)
-    lines = ["-","--","-.",":"]
-    colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728',
-              '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',
-              '#bcbd22', '#17becf']
-    colorcycler = cycle(colors)
-    linecycler = cycle(lines)
-    for p, r, pu, pl, ru, rl, n in zip(precision, recall, pr_upper, pr_lower, re_upper, re_lower, names):
-        # Plots only from the point where recall reaches its maximum, otherwise, we
-        # don't see a curve...
-        i = r.argmax()
-        pi = p[i:]
-        ri = r[i:]
-        pui = pu[i:]
-        pli = pl[i:]
-        rui = ru[i:]
-        rli = rl[i:]
-        valid = (pi+ri) > 0
-        f1 = 2 * (pi[valid]*ri[valid]) / (pi[valid]+ri[valid])
-        # optimal point along the curve
-        argmax = f1.argmax()
-        opi = pi[argmax]
-        ori = ri[argmax]
-        # Plot Recall/Precision as threshold changes
-        ax1.plot(ri[pi>0], pi[pi>0], next(linecycler), label='[F={:.4f}] {}'.format(f1.max(), n),)
-        ax1.plot(ori,opi, marker='o', linestyle=None, markersize=3, color='black')
-        # Plot confidence
-        # Upper bound
-        #ax1.plot(r95ui[p95ui>0], p95ui[p95ui>0])
-        # Lower bound
-        #ax1.plot(r95li[p95li>0], p95li[p95li>0])
-        # create the limiting polygon
-        vert_x = np.concatenate((rui[pui>0], rli[pli>0][::-1]))
-        vert_y = np.concatenate((pui[pui>0], pli[pli>0][::-1]))
-        # hacky workaround to plot 2nd human
-        if np.isclose(np.mean(rui), rui[1], rtol=1e-05):
-            print('found human')
-            p = plt.Polygon(np.column_stack((vert_x, vert_y)), facecolor='none', alpha=.2, edgecolor=next(colorcycler),lw=2)
-        else:
-            p = plt.Polygon(np.column_stack((vert_x, vert_y)), facecolor=next(colorcycler), alpha=.2, edgecolor='none',lw=.2)
-        ax1.add_artist(p)
-
-    ax1.grid(linestyle='--', linewidth=1, color='gray', alpha=0.2)
-    if len(names) > 1:
-        plt.legend(loc='lower left', framealpha=0.5)
-    ax1.set_xlabel('Recall')
-    ax1.set_ylabel('Precision')
-    ax1.set_xlim([0.0, 1.0])
-    ax1.set_ylim([0.0, 1.0])
-    if title is not None: ax1.set_title(title)
+
+    fig, axes1 = plt.subplots(1)
+
+    # Names and bounds
+    axes1.set_xlabel("Recall")
+    axes1.set_ylabel("Precision")
+    axes1.set_xlim([0.0, 1.0])
+    axes1.set_ylim([0.0, 1.0])
+
+    if title is not None:
+        axes1.set_title(title)
+
+    axes1.grid(linestyle="--", linewidth=1, color="gray", alpha=0.2)
+    axes2 = axes1.twinx()
+
     # Annotates plot with F1-score iso-lines
-    ax2 = ax1.twinx()
-    f_scores = np.linspace(0.1, 0.9, num=9)
+    f_scores = numpy.linspace(0.1, 0.9, num=9)
     tick_locs = []
     tick_labels = []
     for f_score in f_scores:
-        x = np.linspace(0.01, 1)
+        x = numpy.linspace(0.01, 1)
         y = f_score * x / (2 * x - f_score)
-        l, = plt.plot(x[y >= 0], y[y >= 0], color='green', alpha=0.1)
+        (l,) = plt.plot(x[y >= 0], y[y >= 0], color="green", alpha=0.1)
         tick_locs.append(y[-1])
-        tick_labels.append('%.1f' % f_score)
-    ax2.tick_params(axis='y', which='both', pad=0, right=False, left=False)
-    ax2.set_ylabel('iso-F', color='green', alpha=0.3)
-    ax2.set_ylim([0.0, 1.0])
-    ax2.yaxis.set_label_coords(1.015, 0.97)
-    ax2.set_yticks(tick_locs) #notice these are invisible
-    for k in ax2.set_yticklabels(tick_labels):
-        k.set_color('green')
+        tick_labels.append("%.1f" % f_score)
+    axes2.tick_params(axis="y", which="both", pad=0, right=False, left=False)
+    axes2.set_ylabel("iso-F", color="green", alpha=0.3)
+    axes2.set_ylim([0.0, 1.0])
+    axes2.yaxis.set_label_coords(1.015, 0.97)
+    axes2.set_yticks(tick_locs)  # notice these are invisible
+    for k in axes2.set_yticklabels(tick_labels):
+        k.set_color("green")
         k.set_alpha(0.3)
         k.set_size(8)
+
     # we should see some of axes 1 axes
-    ax1.spines['right'].set_visible(False)
-    ax1.spines['top'].set_visible(False)
-    ax1.spines['left'].set_position(('data', -0.015))
-    ax1.spines['bottom'].set_position(('data', -0.015))
+    axes1.spines["right"].set_visible(False)
+    axes1.spines["top"].set_visible(False)
+    axes1.spines["left"].set_position(("data", -0.015))
+    axes1.spines["bottom"].set_position(("data", -0.015))
+
     # we shouldn't see any of axes 2 axes
-    ax2.spines['right'].set_visible(False)
-    ax2.spines['top'].set_visible(False)
-    ax2.spines['left'].set_visible(False)
-    ax2.spines['bottom'].set_visible(False)
+    axes2.spines["right"].set_visible(False)
+    axes2.spines["top"].set_visible(False)
+    axes2.spines["left"].set_visible(False)
+    axes2.spines["bottom"].set_visible(False)
+
+    # yield execution, lets user draw precision-recall plots, and the legend
+    # before tighteneing the layout
+    yield fig, axes1
+
     plt.tight_layout()
-    return fig
 
-def loss_curve(df, title):
-    """ Creates a loss curve given a Dataframe with column names:
 
-    ``['avg. loss', 'median loss','lr','max memory']``
+def precision_recall_f1iso(data, confidence=True):
+    """Creates a precision-recall plot with confidence intervals
+
+    This function creates and returns a Matplotlib figure with a
+    precision-recall plot containing shaded confidence intervals (standard
+    deviation on the precision-recall measurements).  The plot will be
+    annotated with F1-score iso-lines (in which the F1-score maintains the same
+    value).
+
+    This function specially supports "second-annotator" entries by plotting a
+    line showing the comparison between the default annotator being analyzed
+    and a second "opinion".  Second annotator dataframes contain a single
+    entry (threshold=0.5), given the nature of the binary map comparisons.
+
 
     Parameters
     ----------
-    df : :py:class:`pandas.DataFrame`
 
-    Returns
-    -------
-    matplotlib.figure.Figure
-    """
-    import matplotlib
-    matplotlib.use('agg')
-    import matplotlib.pyplot as plt
-    ax1 = df.plot(y="median loss", grid=True)
-    ax1.set_title(title)
-    ax1.set_ylabel('median loss')
-    ax1.grid(linestyle='--', linewidth=1, color='gray', alpha=0.2)
-    ax2 = df['lr'].plot(secondary_y=True,legend=True,grid=True,)
-    ax2.set_ylabel('lr')
-    ax1.set_xlabel('epoch')
-    plt.tight_layout()
-    fig = ax1.get_figure()
-    return fig
+    data : dict
+        A dictionary in which keys are strings defining plot labels and values
+        are dictionaries with two entries:
 
+        * ``df``: :py:class:`pandas.DataFrame`
 
-def read_metricscsv(file):
-    """
-    Read precision and recall from csv file
+          A dataframe that is produced by our evaluator engine, indexed by
+          integer "thresholds", containing the following columns: ``threshold``
+          (sorted ascending), ``precision``, ``recall``, ``pr_upper`` (upper
+          precision bounds), ``pr_lower`` (lower precision bounds),
+          ``re_upper`` (upper recall bounds), ``re_lower`` (lower recall
+          bounds).
 
-    Parameters
-    ----------
-    file : str
-        path to file
+        * ``threshold``: :py:class:`list`
+
+          A threshold to graph with a dot for each set.    Specific
+          threshold values do not affect "second-annotator" dataframes.
+
+    confidence : :py:class:`bool`, Optional
+        If set, draw confidence intervals for each line, using ``*_upper`` and
+        ``*_lower`` entries.
 
-    Returns
-    -------
-    :py:class:`numpy.ndarray`
-    :py:class:`numpy.ndarray`
-    """
-    with open (file, "r") as infile:
-        metricsreader = csv.reader(infile)
-        # skip header row
-        next(metricsreader)
-        precision = []
-        recall = []
-        pr_upper = []
-        pr_lower = []
-        re_upper = []
-        re_lower = []
-        for row in metricsreader:
-            precision.append(float(row[1]))
-            recall.append(float(row[2]))
-            pr_upper.append(float(row[8]))
-            pr_lower.append(float(row[9]))
-            re_upper.append(float(row[11]))
-            re_lower.append(float(row[12]))
-    return np.array(precision), np.array(recall), np.array(pr_upper), np.array(pr_lower), np.array(re_upper), np.array(re_lower)
-
-
-def plot_overview(outputfolders,title):
-    """
-    Plots comparison chart of all trained models
 
-    Parameters
-    ----------
-    outputfolder : list
-        list containing output paths of all evaluated models (e.g. ``['DRIVE/model1', 'DRIVE/model2']``)
-    title : str
-        title of plot
     Returns
     -------
-    matplotlib.figure.Figure
+
+    figure : matplotlib.figure.Figure
+        A matplotlib figure you can save or display (uses an ``agg`` backend)
+
     """
-    precisions = []
-    recalls = []
-    pr_ups = []
-    pr_lows = []
-    re_ups = []
-    re_lows = []
-    names = []
-    params = []
-    for folder in outputfolders:
-        # metrics
-        metrics_path = os.path.join(folder,'results/Metrics.csv')
-        pr, re, pr_upper, pr_lower, re_upper, re_lower = read_metricscsv(metrics_path)
-        precisions.append(pr)
-        recalls.append(re)
-        pr_ups.append(pr_upper)
-        pr_lows.append(pr_lower)
-        re_ups.append(re_upper)
-        re_lows.append(re_lower)
-        modelname = folder.split('/')[-1]
-        name = '{} '.format(modelname)
-        names.append(name)
-    #title = folder.split('/')[-4]
-    fig = precision_recall_f1iso_confintval(precisions,recalls, pr_ups, pr_lows, re_ups, re_lows, names,title)
+
+    lines = ["-", "--", "-.", ":"]
+    colors = [
+            "#1f77b4",
+            "#ff7f0e",
+            "#2ca02c",
+            "#d62728",
+            "#9467bd",
+            "#8c564b",
+            "#e377c2",
+            "#7f7f7f",
+            "#bcbd22",
+            "#17becf",
+            ]
+    colorcycler = cycle(colors)
+    linecycler = cycle(lines)
+
+    with _precision_recall_canvas(title=None) as (fig, axes):
+
+        legend = []
+
+        for name, value in data.items():
+
+            df = value["df"]
+            threshold = value["threshold"]
+
+            # plots only from the point where recall reaches its maximum,
+            # otherwise, we don't see a curve...
+            max_recall = df["recall"].idxmax()
+            pi = df.precision[max_recall:]
+            ri = df.recall[max_recall:]
+
+            valid = (pi + ri) > 0
+            f1 = 2 * (pi[valid] * ri[valid]) / (pi[valid] + ri[valid])
+
+            # optimal point along the curve
+            bins = len(df)
+            index = int(round(bins*threshold))
+            index = min(index, len(df)-1)  #avoids out of range indexing
+
+            # plots Recall/Precision as threshold changes
+            label = f"{name} (F1={df.f1_score[index]:.4f})"
+            color = next(colorcycler)
+
+            if len(df) == 1:
+                # plot black dot for F1-score at select threshold
+                marker, = axes.plot(df.recall[index], df.precision[index],
+                        marker="*", markersize=6, color=color, alpha=0.8,
+                        linestyle="None")
+                line, = axes.plot(df.recall[index], df.precision[index],
+                        linestyle="None", color=color, alpha=0.2)
+                legend.append(([marker, line], label))
+            else:
+                # line first, so marker gets on top
+                style = next(linecycler)
+                line, = axes.plot(ri[pi > 0], pi[pi > 0], color=color,
+                        linestyle=style)
+                marker, = axes.plot(df.recall[index], df.precision[index],
+                        marker="o", linestyle=style, markersize=4,
+                        color=color, alpha=0.8)
+                legend.append(([marker, line], label))
+
+            if confidence:
+
+                pui = df.pr_upper[max_recall:]
+                pli = df.pr_lower[max_recall:]
+                rui = df.re_upper[max_recall:]
+                rli = df.re_lower[max_recall:]
+
+                # Plot confidence
+                # Upper bound
+                # create the limiting polygon
+                vert_x = numpy.concatenate((rui[pui > 0], rli[pli > 0][::-1]))
+                vert_y = numpy.concatenate((pui[pui > 0], pli[pli > 0][::-1]))
+
+                # hacky workaround to plot 2nd human
+                if len(df) == 1:  #binary system, very likely
+                    logger.warning("Found 2nd human annotator - patching...")
+                    p, = axes.plot(vert_x, vert_y, color=color, alpha=0.1, lw=3)
+                else:
+                    p = plt.Polygon(
+                        numpy.column_stack((vert_x, vert_y)),
+                        facecolor=color,
+                        alpha=0.2,
+                        edgecolor="none",
+                        lw=0.2,
+                    )
+                legend[-1][0].append(p)
+                axes.add_artist(p)
+
+        if len(label) > 1:
+            axes.legend([tuple(k[0]) for k in legend], [k[1] for k in legend],
+                    loc="lower left", fancybox=True, framealpha=0.7)
+
     return fig
 
-def metricsviz(dataset
-                ,output_path
-                ,tp_color= (0,255,0) # (128,128,128) Gray
-                ,fp_color = (0, 0, 255) # (70, 240, 240) Cyan
-                ,fn_color = (255, 0, 0) # (245, 130, 48) Orange
-                ,overlayed=True):
-    """ Visualizes true positives, false positives and false negatives
-    Default colors TP: Gray, FP: Cyan, FN: Orange
+
+def loss_curve(df):
+    """Creates a loss curve in a Matplotlib figure.
 
     Parameters
     ----------
-    dataset : :py:class:`torch.utils.data.Dataset`
-    output_path : str
-        path where results and probability output images are stored. E.g. ``'DRIVE/MODEL'``
-    tp_color : tuple
-        RGB values, by default (128,128,128)
-    fp_color : tuple
-        RGB values, by default (70, 240, 240)
-    fn_color : tuple
-        RGB values, by default (245, 130, 48)
-    """
 
-    for sample in dataset:
-        # get sample
-        name  = sample[0]
-        img = VF.to_pil_image(sample[1]) # PIL Image
-        gt = sample[2].byte() # byte tensor
-
-        # read metrics
-        metrics = pd.read_csv(os.path.join(output_path,'results','Metrics.csv'))
-        optimal_threshold = metrics['threshold'][metrics['f1_score'].idxmax()]
-
-        # read probability output
-        pred = Image.open(os.path.join(output_path,'images',name))
-        pred = pred.convert(mode='L')
-        pred = VF.to_tensor(pred)
-        binary_pred = torch.gt(pred, optimal_threshold).byte()
-
-        # calc metrics
-        # equals and not-equals
-        equals = torch.eq(binary_pred, gt) # tensor
-        notequals = torch.ne(binary_pred, gt) # tensor
-        # true positives
-        tp_tensor = (gt * binary_pred ) # tensor
-        tp_pil = VF.to_pil_image(tp_tensor.float())
-        tp_pil_colored = PIL.ImageOps.colorize(tp_pil, (0,0,0), tp_color)
-        # false positives
-        fp_tensor = torch.eq((binary_pred + tp_tensor), 1)
-        fp_pil = VF.to_pil_image(fp_tensor.float())
-        fp_pil_colored = PIL.ImageOps.colorize(fp_pil, (0,0,0), fp_color)
-        # false negatives
-        fn_tensor = notequals - fp_tensor
-        fn_pil = VF.to_pil_image(fn_tensor.float())
-        fn_pil_colored = PIL.ImageOps.colorize(fn_pil, (0,0,0), fn_color)
-
-        # paste together
-        tp_pil_colored.paste(fp_pil_colored,mask=fp_pil)
-        tp_pil_colored.paste(fn_pil_colored,mask=fn_pil)
-
-        if overlayed:
-            tp_pil_colored = PIL.Image.blend(img, tp_pil_colored, 0.4)
-            img_metrics = pd.read_csv(os.path.join(output_path,'results',name+'.csv'))
-            f1 = img_metrics[' f1_score'].max()
-            # add f1-score
-            fnt_size = tp_pil_colored.size[1]//25
-            draw = ImageDraw.Draw(tp_pil_colored)
-            fnt = ImageFont.truetype('FreeMono.ttf', fnt_size)
-            draw.text((0, 0),"F1: {:.4f}".format(f1),(255,255,255),font=fnt)
-
-        # save to disk
-        overlayed_path = os.path.join(output_path,'tpfnfpviz')
-        fullpath = os.path.join(overlayed_path, name)
-        fulldir = os.path.dirname(fullpath)
-        if not os.path.exists(fulldir): os.makedirs(fulldir)
-        tp_pil_colored.save(fullpath)
-
-
-def overlay(dataset, output_path):
-    """Overlays prediction probabilities vessel tree with original test image.
+    df : :py:class:`pandas.DataFrame`
+        A dataframe containing, at least, "epoch", "median-loss" and
+        "learning-rate" columns, that will be plotted.
 
-    Parameters
-    ----------
-    dataset : :py:class:`torch.utils.data.Dataset`
-    output_path : str
-        path where results and probability output images are stored. E.g. ``'DRIVE/MODEL'``
-    """
+    Returns
+    -------
 
-    for sample in dataset:
-        # get sample
-        name  = sample[0]
-        img = VF.to_pil_image(sample[1]) # PIL Image
-
-        # read probability output
-        pred = Image.open(os.path.join(output_path,'images',name)).convert(mode='L')
-        # color and overlay
-        pred_green = PIL.ImageOps.colorize(pred, (0,0,0), (0,255,0))
-        overlayed = PIL.Image.blend(img, pred_green, 0.4)
-
-        # add f1-score
-        #fnt_size = overlayed.size[1]//25
-        #draw = ImageDraw.Draw(overlayed)
-        #fnt = ImageFont.truetype('FreeMono.ttf', fnt_size)
-        #draw.text((0, 0),"F1: {:.4f}".format(f1),(255,255,255),font=fnt)
-        # save to disk
-        overlayed_path = os.path.join(output_path,'overlayed')
-        fullpath = os.path.join(overlayed_path, name)
-        fulldir = os.path.dirname(fullpath)
-        if not os.path.exists(fulldir): os.makedirs(fulldir)
-        overlayed.save(fullpath)
-
-
-def savetransformedtest(dataset, output_path):
-    """Save the test images as they are fed into the neural network.
-    Makes it easier to create overlay animations (e.g. slide)
+    figure : matplotlib.figure.Figure
+        A figure, that may be saved or displayed
 
-    Parameters
-    ----------
-    dataset : :py:class:`torch.utils.data.Dataset`
-    output_path : str
-        path where results and probability output images are stored. E.g. ``'DRIVE/MODEL'``
     """
 
-    for sample in dataset:
-        # get sample
-        name  = sample[0]
-        img = VF.to_pil_image(sample[1]) # PIL Image
-
-        # save to disk
-        testimg_path = os.path.join(output_path,'transformedtestimages')
-        fullpath = os.path.join(testimg_path, name)
-        fulldir = os.path.dirname(fullpath)
-        if not os.path.exists(fulldir): os.makedirs(fulldir)
-        img.save(fullpath)
+    ax1 = df.plot(x="epoch", y="median-loss", grid=True)
+    ax1.set_ylabel("Median Loss")
+    ax1.grid(linestyle="--", linewidth=1, color="gray", alpha=0.2)
+    ax2 = df["learning-rate"].plot(secondary_y=True, legend=True, grid=True,)
+    ax2.set_ylabel("Learning Rate")
+    ax1.set_xlabel("Epoch")
+    plt.tight_layout()
+    fig = ax1.get_figure()
+    return fig
diff --git a/bob/ip/binseg/utils/resources.py b/bob/ip/binseg/utils/resources.py
new file mode 100644
index 0000000000000000000000000000000000000000..ea64657ca7f4f1dea3684fc0499eb269a8ffe2e4
--- /dev/null
+++ b/bob/ip/binseg/utils/resources.py
@@ -0,0 +1,220 @@
+#!/usr/bin/env python
+# vim: set fileencoding=utf-8 :
+
+"""Tools for interacting with the running computer or GPU"""
+
+import os
+import subprocess
+import shutil
+
+import psutil
+
+import logging
+
+logger = logging.getLogger(__name__)
+
+_nvidia_smi = shutil.which("nvidia-smi")
+"""Location of the nvidia-smi program, if one exists"""
+
+
+GB = float(2 ** 30)
+"""The number of bytes in a gigabyte"""
+
+
+def run_nvidia_smi(query, rename=None):
+    """Returns GPU information from query
+
+    For a comprehensive list of options and help, execute ``nvidia-smi
+    --help-query-gpu`` on a host with a GPU
+
+
+    Parameters
+    ----------
+
+    query : list
+        A list of query strings as defined by ``nvidia-smi --help-query-gpu``
+
+    rename : :py:class:`list`, Optional
+        A list of keys to yield in the return value for each entry above.  It
+        gives you the opportunity to rewrite some key names for convenience.
+        This list, if provided, must be of the same length as ``query``.
+
+
+    Returns
+    -------
+
+    data : :py:class:`tuple`, None
+        An ordered dictionary (organized as 2-tuples) containing the queried
+        parameters (``rename`` versions).  If ``nvidia-smi`` is not available,
+        returns ``None``.  Percentage information is left alone,
+        memory information is transformed to gigabytes (floating-point).
+
+    """
+
+    if _nvidia_smi is not None:
+
+        if rename is None:
+            rename = query
+        else:
+            assert len(rename) == len(query)
+
+        values = subprocess.getoutput(
+            "%s --query-gpu=%s --format=csv,noheader"
+            % (_nvidia_smi, ",".join(query))
+        )
+        values = [k.strip() for k in values.split(",")]
+        t_values = []
+        for k in values:
+            if k.endswith("%"):
+                t_values.append(float(k[:-1].strip()))
+            elif k.endswith("MiB"):
+                t_values.append(float(k[:-3].strip()) / 1024)
+            else:
+                t_values.append(k)  #unchanged
+        return tuple(zip(rename, t_values))
+
+
+def gpu_constants():
+    """Returns GPU (static) information using nvidia-smi
+
+    See :py:func:`run_nvidia_smi` for operational details.
+
+    Returns
+    -------
+
+    data : :py:class:`tuple`, None
+        If ``nvidia-smi`` is not available, returns ``None``, otherwise, we
+        return an ordered dictionary (organized as 2-tuples) containing the
+        following ``nvidia-smi`` query information:
+
+        * ``gpu_name``, as ``gpu_name`` (:py:class:`str`)
+        * ``driver_version``, as ``gpu_driver_version`` (:py:class:`str`)
+        * ``memory.total``, as ``gpu_memory_total`` (transformed to gigabytes,
+          :py:class:`float`)
+
+    """
+
+    return run_nvidia_smi(
+        ("gpu_name", "driver_version", "memory.total"),
+        ("gpu_name", "gpu_driver_version", "gpu_memory_total"),
+    )
+
+
+def gpu_log():
+    """Returns GPU information about current non-static status using nvidia-smi
+
+    See :py:func:`run_nvidia_smi` for operational details.
+
+    Returns
+    -------
+
+    data : :py:class:`tuple`, None
+        If ``nvidia-smi`` is not available, returns ``None``, otherwise, we
+        return an ordered dictionary (organized as 2-tuples) containing the
+        following ``nvidia-smi`` query information:
+
+        * ``memory.used``, as ``gpu_memory_used`` (transformed to gigabytes,
+          :py:class:`float`)
+        * ``memory.free``, as ``gpu_memory_free`` (transformed to gigabytes,
+          :py:class:`float`)
+        * ``utilization.memory``, as ``gpu_memory_percent``,
+          (:py:class:`float`, in percent)
+        * ``utilization.gpu``, as ``gpu_utilization``,
+          (:py:class:`float`, in percent)
+
+    """
+
+    return run_nvidia_smi(
+        ("memory.used", "memory.free", "utilization.memory", "utilization.gpu"),
+        (
+            "gpu_memory_used",
+            "gpu_memory_free",
+            "gpu_memory_percent",
+            "gpu_percent",
+        ),
+    )
+
+
+_CLUSTER = []
+"""List of processes currently being monitored"""
+
+
+def cpu_constants():
+    """Returns static CPU information about the current system.
+
+
+    Returns
+    -------
+
+    data : tuple
+        An ordered dictionary (organized as 2-tuples) containing these entries:
+
+        0. ``cpu_memory_total`` (:py:class:`float`): total memory available,
+           in gigabytes
+        1. ``cpu_count`` (:py:class:`int`): number of logical CPUs available
+
+    """
+
+    return (
+        ("cpu_memory_total", psutil.virtual_memory().total / GB),
+        ("cpu_count", psutil.cpu_count(logical=True)),
+    )
+
+
+def cpu_log():
+    """Returns process (+child) information using ``psutil``.
+
+    This call examines the current process plus any spawn child and returns the
+    combined resource usage summary for the process group.
+
+
+    Returns
+    -------
+
+    data : tuple
+        An ordered dictionary (organized as 2-tuples) containing these entries:
+
+        0. ``cpu_memory_used`` (:py:class:`float`): total memory used from
+           the system, in gigabytes
+        1. ``cpu_rss`` (:py:class:`float`):  RAM currently used by
+           process and children, in gigabytes
+        2. ``cpu_vms`` (:py:class:`float`):  total memory (RAM + swap) currently
+           used by process and children, in gigabytes
+        3. ``cpu_percent`` (:py:class:`float`): percentage of the total CPU
+           used by this process and children (recursively) since last call
+           (first time called should be ignored).  This number depends on the
+           number of CPUs in the system and can be greater than 100%
+        4. ``cpu_processes`` (:py:class:`int`): total number of processes
+           including self and children (recursively)
+        5. ``cpu_open_files`` (:py:class:`int`): total number of open files by
+           self and children
+
+    """
+
+    global _CLUSTER
+    if (not _CLUSTER) or (_CLUSTER[0] != psutil.Process()):  # initialization
+        this = psutil.Process()
+        _CLUSTER = [this] + this.children(recursive=True)
+        # touch cpu_percent() at least once for all
+        [k.cpu_percent(interval=None) for k in _CLUSTER]
+    else:
+        # check all cluster components and update process list
+        # done so we can keep the cpu_percent() initialization
+        children = _CLUSTER[0].children()
+        stored_children = set(_CLUSTER[1:])
+        current_children = set(_CLUSTER[0].children())
+        keep_children = stored_children - current_children
+        new_children = current_children - stored_children
+        [k.cpu_percent(interval=None) for k in new_children]
+        _CLUSTER = _CLUSTER[:1] + list(keep_children) + list(new_children)
+
+    memory_info = [k.memory_info() for k in _CLUSTER]
+
+    return (
+        ("cpu_memory_used", psutil.virtual_memory().used / GB),
+        ("cpu_rss", sum([k.rss for k in memory_info]) / GB),
+        ("cpu_vms", sum([k.vms for k in memory_info]) / GB),
+        ("cpu_percent", sum(k.cpu_percent(interval=None) for k in _CLUSTER)),
+        ("cpu_processes", len(_CLUSTER)),
+        ("cpu_open_files", sum(len(k.open_files()) for k in _CLUSTER)),
+    )
diff --git a/bob/ip/binseg/utils/rsttable.py b/bob/ip/binseg/utils/rsttable.py
deleted file mode 100644
index fdc17982f8bfcdb1643baf3aff57a988352f3561..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/utils/rsttable.py
+++ /dev/null
@@ -1,55 +0,0 @@
-import pandas as pd
-from tabulate import tabulate
-import os
-from pathlib import Path
-
-def get_paths(output_path, filename):
-    """
-    Parameters
-    ----------
-    output_path : str
-        path in which to look for files
-    filename : str
-
-    Returns
-    -------
-    list 
-        list of file paths
-    """
-    datadir = Path(output_path)
-    file_paths = sorted(list(datadir.glob('**/{}'.format(filename))))
-    file_paths = [f.as_posix() for f in file_paths]
-    return file_paths
-
-
-def create_overview_grid(output_path):
-    """ Reads all Metrics.csv in a certain output path and pivots them to a rst grid table"""
-    filename = 'Metrics.csv'
-    metrics = get_paths(output_path,filename)
-    f1s = []
-    stds = []
-    models = []
-    databases = []
-    for m in metrics:
-        metrics = pd.read_csv(m)
-        maxf1 = metrics['f1_score'].max()
-        idmaxf1 = metrics['f1_score'].idxmax()
-        std = metrics['std_f1'][idmaxf1]
-        stds.append(std)
-        f1s.append(maxf1)
-        model = m.split('/')[-3]
-        models.append(model)
-        database = m.split('/')[-4]
-        databases.append(database)
-    df = pd.DataFrame()
-    df['database'] = databases
-    df['model'] = models
-    df['f1'] = f1s
-    df['std'] = stds
-    pivot = df.pivot(index='database',columns='model',values='f1')
-    pivot2 = df.pivot(index='database',columns='model',values='std')
-
-    with open (os.path.join(output_path,'Metrics_overview.rst'), "w+") as outfile:
-        outfile.write(tabulate(pivot,headers=pivot.columns, tablefmt="grid"))
-    with open (os.path.join(output_path,'Metrics_overview_std.rst'), "w+") as outfile:
-        outfile.write(tabulate(pivot2,headers=pivot2.columns, tablefmt="grid"))
\ No newline at end of file
diff --git a/bob/ip/binseg/utils/summary.py b/bob/ip/binseg/utils/summary.py
index 127c5e66a3d7c97629ef95acebccb4f138ba43b6..7788cb7a98e0a09c09801be207232ac7ce2754e6 100644
--- a/bob/ip/binseg/utils/summary.py
+++ b/bob/ip/binseg/utils/summary.py
@@ -1,63 +1,64 @@
 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
 
-# Adapted from https://github.com/pytorch/pytorch/issues/2001#issuecomment-405675488 
+# Adapted from https://github.com/pytorch/pytorch/issues/2001#issuecomment-405675488
 import sys
-import logging
 from functools import reduce
 
 from torch.nn.modules.module import _addindent
-from bob.ip.binseg.modeling.driu import build_driu
 
 
-def summary(model, file=sys.stderr):
-    """Counts the number of paramters in each layers
-    
+def summary(model):
+    """Counts the number of parameters in each model layer
+
     Parameters
     ----------
+
     model : :py:class:`torch.nn.Module`
-    
+        model to summarize
+
     Returns
     -------
-    int
+
+    repr : str
+        a multiline string representation of the network
+
+    nparam : int
         number of parameters
+
     """
+
     def repr(model):
+
         # We treat the extra repr like the sub-module, one item per line
         extra_lines = []
         extra_repr = model.extra_repr()
         # empty string will be split into list ['']
         if extra_repr:
-            extra_lines = extra_repr.split('\n')
+            extra_lines = extra_repr.split("\n")
         child_lines = []
         total_params = 0
         for key, module in model._modules.items():
             mod_str, num_params = repr(module)
             mod_str = _addindent(mod_str, 2)
-            child_lines.append('(' + key + '): ' + mod_str)
+            child_lines.append("(" + key + "): " + mod_str)
             total_params += num_params
         lines = extra_lines + child_lines
 
         for name, p in model._parameters.items():
-            if hasattr(p,'dtype'):
+            if hasattr(p, "dtype"):
                 total_params += reduce(lambda x, y: x * y, p.shape)
 
-        main_str = model._get_name() + '('
+        main_str = model._get_name() + "("
         if lines:
             # simple one-liner info, which most builtin Modules will use
             if len(extra_lines) == 1 and not child_lines:
                 main_str += extra_lines[0]
             else:
-                main_str += '\n  ' + '\n  '.join(lines) + '\n'
+                main_str += "\n  " + "\n  ".join(lines) + "\n"
 
-        main_str += ')'
-        if file is sys.stderr:
-            main_str += ', \033[92m{:,}\033[0m params'.format(total_params)
-        else:
-            main_str += ', {:,} params'.format(total_params)
+        main_str += ")"
+        main_str += ", {:,} params".format(total_params)
         return main_str, total_params
 
-    string, count = repr(model)
-    if file is not None:
-        print(string, file=file)
-    return count
\ No newline at end of file
+    return repr(model)
diff --git a/bob/ip/binseg/utils/table.py b/bob/ip/binseg/utils/table.py
new file mode 100644
index 0000000000000000000000000000000000000000..5feb27f8c54fd3f2a747eb649eb0690d028dfd89
--- /dev/null
+++ b/bob/ip/binseg/utils/table.py
@@ -0,0 +1,79 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+
+import tabulate
+
+
+def performance_table(data, fmt):
+    """Tables result comparison in a given format
+
+
+    Parameters
+    ----------
+
+    data : dict
+        A dictionary in which keys are strings defining plot labels and values
+        are dictionaries with two entries:
+
+        * ``df``: :py:class:`pandas.DataFrame`
+
+          A dataframe that is produced by our evaluator engine, indexed by
+          integer "thresholds", containing the following columns: ``threshold``
+          (sorted ascending), ``precision``, ``recall``, ``pr_upper`` (upper
+          precision bounds), ``pr_lower`` (lower precision bounds),
+          ``re_upper`` (upper recall bounds), ``re_lower`` (lower recall
+          bounds).
+
+        * ``threshold``: :py:class:`list`
+
+          A threshold to graph with a dot for each set.    Specific
+          threshold values do not affect "second-annotator" dataframes.
+
+
+    fmt : str
+        One of the formats supported by tabulate.
+
+
+    Returns
+    -------
+
+    table : str
+        A table in a specific format
+
+    """
+
+    headers = [
+        "Dataset",
+        "T",
+        "F1",
+        "F1\nstd",
+        "P",
+        "R",
+        "F1\nmax",
+        "P\nmax",
+        "R\nmax",
+        ]
+
+    table = []
+    for k, v in data.items():
+        entry = [k, v["threshold"], ]
+
+        # statistics based on the "assigned" threshold (a priori, less biased)
+        bins = len(v["df"])
+        index = int(round(bins*v["threshold"]))
+        index = min(index, len(v["df"])-1)  #avoids out of range indexing
+        entry.append(v["df"].f1_score[index])
+        entry.append(v["df"].std_f1[index])
+        entry.append(v["df"].precision[index])
+        entry.append(v["df"].recall[index])
+
+        # statistics based on the best threshold (a posteriori, biased)
+        entry.append(v["df"].f1_score.max())
+        f1max_idx = v["df"].f1_score.idxmax()
+        entry.append(v["df"].precision[f1max_idx])
+        entry.append(v["df"].recall[f1max_idx])
+
+        table.append(entry)
+
+    return tabulate.tabulate(table, headers, tablefmt=fmt, floatfmt=".3f")
diff --git a/bob/ip/binseg/utils/transformfolder.py b/bob/ip/binseg/utils/transformfolder.py
deleted file mode 100644
index 9308d64705adeba36ae0edefc7f07b3f56b8069f..0000000000000000000000000000000000000000
--- a/bob/ip/binseg/utils/transformfolder.py
+++ /dev/null
@@ -1,27 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-from pathlib import Path,PurePosixPath
-from PIL import Image
-from torchvision.transforms.functional import to_pil_image
-
-def transformfolder(source_path, target_path, transforms):
-    """Applies a set of transfroms on an image folder 
-    
-    Parameters
-    ----------
-    source_path : str
-        [description]
-    target_path : str
-        [description]
-    transforms : [type]
-        transform function
-    """
-    source_path = Path(source_path)
-    target_path = Path(target_path)
-    file_paths = sorted(list(source_path.glob('*?.*')))
-    for f in file_paths:
-        timg_path = PurePosixPath(target_path).joinpath(f.name)
-        img = Image.open(f).convert(mode='1', dither=None)
-        img, _ = transforms(img,img)
-        img = to_pil_image(img)
-        img.save(str(timg_path))
\ No newline at end of file
diff --git a/conda/meta.yaml b/conda/meta.yaml
index 1a7c95acb6da05634579c283c8de6248c82a7677..4685c1b569c4be237642cdfcb5da41f1b8d77d58 100644
--- a/conda/meta.yaml
+++ b/conda/meta.yaml
@@ -25,32 +25,30 @@ requirements:
   host:
     - python {{ python }}
     - setuptools {{ setuptools }}
-    - torchvision  {{ torchvision }} # [linux]
-    - pytorch {{ pytorch }} # [linux]
     - numpy {{ numpy }}
+    - h5py {{ h5py }}
+    - pytorch {{ pytorch }} # [linux]
+    - torchvision  {{ torchvision }} # [linux]
     - bob.extension
   run:
     - python
     - setuptools
+    - {{ pin_compatible('numpy') }}
     - {{ pin_compatible('pytorch') }} # [linux]
     - {{ pin_compatible('torchvision') }} # [linux]
-    - {{ pin_compatible('numpy') }}
-    - pandas
     - matplotlib
+    - pandas
+    - pillow
+    - psutil
+    - h5py
     - tqdm
     - tabulate
-    - bob.core
 
 test:
   imports:
     - {{ name }}
   commands:
-    # test commands ("script" entry-points) from your package here
-    - bob binseg --help
-    - bob binseg train --help
-    - bob binseg test --help
-    - bob binseg compare --help
-    - nosetests --with-coverage --cover-package={{ name }} -sv {{ name }}
+    - nosetests --with-coverage --cover-package={{ name }} --cover-erase --cover-html-dir={{ project_dir }}/sphinx/coverage --cover-html --cover-xml-file={{ project_dir }}/coverage.xml --cover-xml -sv {{ name }}
     - sphinx-build -aEW {{ project_dir }}/doc {{ project_dir }}/sphinx
     - sphinx-build -aEb doctest {{ project_dir }}/doc sphinx
     - conda inspect linkages -p $PREFIX {{ name }}  # [not win]
@@ -61,15 +59,8 @@ test:
     - coverage
     - sphinx
     - sphinx_rtd_theme
-    - bob.db.drive
-    - bob.db.stare
-    - bob.db.chasedb1
-    - bob.db.hrf
-    - bob.db.drionsdb
-    - bob.db.rimoner3
-    - bob.db.drishtigs1
-    - bob.db.refuge
-    - bob.db.iostar
+    - sphinxcontrib-programoutput
+    - graphviz
 
 about:
   summary: Binary Segmentation Benchmark Package for Bob
diff --git a/develop.cfg b/develop.cfg
index 9229bdf942a37e259b48ae2e724027d8b228f214..0bc61a9ea2ad1c927e7929eaf7f711c715a2e5a8 100644
--- a/develop.cfg
+++ b/develop.cfg
@@ -4,10 +4,6 @@
 [buildout]
 parts = scripts
 eggs = bob.ip.binseg
-       bob.db.drive
-       bob.db.stare
-       bob.db.chasedb1
-       bob.db.hrf
        bob.db.drionsdb
        bob.db.rimoner3
        bob.db.drishtigs1
@@ -16,11 +12,7 @@ eggs = bob.ip.binseg
 extensions = bob.buildout
              mr.developer
 auto-checkout = *
-develop = src/bob.db.drive
-          src/bob.db.stare
-          src/bob.db.chasedb1
-          src/bob.db.hrf
-          src/bob.db.drionsdb
+develop = src/bob.db.drionsdb
           src/bob.db.rimoner3
           src/bob.db.drishtigs1
           src/bob.db.refuge
@@ -33,10 +25,6 @@ verbose = true
 newest = false
 
 [sources]
-bob.db.drive      = git git@gitlab.idiap.ch:bob/bob.db.drive
-bob.db.stare      = git git@gitlab.idiap.ch:bob/bob.db.stare
-bob.db.chasedb1   = git git@gitlab.idiap.ch:bob/bob.db.chasedb1
-bob.db.hrf        = git git@gitlab.idiap.ch:bob/bob.db.hrf
 bob.db.drionsdb   = git git@gitlab.idiap.ch:bob/bob.db.drionsdb
 bob.db.rimoner3   = git git@gitlab.idiap.ch:bob/bob.db.rimoner3
 bob.db.drishtigs1 = git git@gitlab.idiap.ch:bob/bob.db.drishtigs1
diff --git a/doc/_templates/config.rst b/doc/_templates/config.rst
new file mode 100644
index 0000000000000000000000000000000000000000..a287392f705f1c10adec86c2e2e5a1b0b1c9cb24
--- /dev/null
+++ b/doc/_templates/config.rst
@@ -0,0 +1,2 @@
+{% include "autosummary/module.rst" %}
+.. literalinclude:: ../../../../{{ fullname.replace(".", "/") }}.py
diff --git a/doc/acknowledgements.rst b/doc/acknowledgements.rst
index 7dde8b5d62beb777bc0145af8ad5cbdbae53ebff..9783907ffca7da96f7dc391994894e079c11d1be 100644
--- a/doc/acknowledgements.rst
+++ b/doc/acknowledgements.rst
@@ -1,39 +1,17 @@
 .. -*- coding: utf-8 -*-
+
 .. _bob.ip.binseg.acknowledgements:
 
-================
-Acknowledgements
-================
+==================
+ Acknowledgements
+==================
 
 This packages utilizes code from the following packages:
 
-* The model-checkpointer is based on the Checkpointer in maskrcnn_benchmark by::
-
-    @misc{massa2018mrcnn,
-    author = {Massa, Francisco and Girshick, Ross},
-    title = {{maskrcnn-benchmark: Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch}},
-    year = {2018},
-    howpublished = {\url{https://github.com/facebookresearch/maskrcnn-benchmark}},
-    note = {Accessed: 2019.05.01}
-    }
-
-* The AdaBound optimizer code by::
-
-    @inproceedings{Luo2019AdaBound,
-     author = {Luo, Liangchen and Xiong, Yuanhao and Liu, Yan and Sun, Xu},
-     title = {Adaptive Gradient Methods with Dynamic Bound of Learning Rate},
-     booktitle = {Proceedings of the 7th International Conference on Learning Representations},
-     month = {May},
-     year = {2019},
-     address = {New Orleans, Louisiana}
-    }   
+* The model-checkpointer is based on the implementation in
+  `maskrcnn-benchmark`_ by [MASSA-2018]_
+* The AdaBound optimizer code was sourced from [LUO-2019]_
+* The MobileNetV2 backbone is based on [LIN-2018]_
 
-* The MobileNetV2 backbone is based on an implementation by::
 
-    @misc{tonylins,
-    author = {Ji Lin},
-    title = {pytorch-mobilenet-v2},
-    year = {2018}
-    howpublished = {\url{https://github.com/tonylins/pytorch-mobilenet-v2}},
-    note = {Accessed: 2019.05.01}
-    }
+.. include:: links.rst
diff --git a/doc/api.rst b/doc/api.rst
index 1eade48273e9a1117484ac0d14a7df6b510b5e3d..8d145ad5534429edf24cc0be8286449ab86f93a9 100644
--- a/doc/api.rst
+++ b/doc/api.rst
@@ -1,50 +1,187 @@
 .. -*- coding: utf-8 -*-
-.. _bob.ip.binseg.api:
 
-============
- Python API
-============
+=====================================
+ Application Program Interface (API)
+=====================================
 
-This section lists all the functionality available in this library allowing to
-run binary-segmentation benchmarks.
+.. To update these lists, run the following command on the root of the package:
+.. find bob -name '*.py' | sed -e 's#/#.#g;s#.py$##g;s#.__init__##g' | sort
+.. You may apply further filtering to update only one of the subsections below
 
 
-PyTorch bob.db Dataset
-======================
-.. automodule:: bob.ip.binseg.data.binsegdataset
+Data Manipulation
+-----------------
 
-PyTorch ImageFolder Dataset
-===========================
-.. automodule:: bob.ip.binseg.data.imagefolder
+.. autosummary::
+   :toctree: api/data
 
-.. automodule:: bob.ip.binseg.data.imagefolderinference
+   bob.ip.binseg.data.dataset
+   bob.ip.binseg.data.loader
+   bob.ip.binseg.data.sample
+   bob.ip.binseg.data.utils
+   bob.ip.binseg.data.transforms
 
-Transforms
-==========
-.. note::
-    All transforms work with :py:class:`PIL.Image.Image` objects. We make heavy use of the
-    `torchvision package`_
 
-.. automodule:: bob.ip.binseg.data.transforms
+Datasets
+--------
 
-Losses
+.. autosummary::
+   :toctree: api/dataset
+
+   bob.ip.binseg.data.drive
+   bob.ip.binseg.data.stare
+   bob.ip.binseg.data.chasedb1
+   bob.ip.binseg.data.hrf
+   bob.ip.binseg.data.iostar
+   bob.ip.binseg.data.refuge
+   bob.ip.binseg.data.drishtigs1
+   bob.ip.binseg.data.rimoner3
+   bob.ip.binseg.data.drionsdb
+
+
+Engines
+-------
+
+.. autosummary::
+   :toctree: api/engine
+
+   bob.ip.binseg.engine
+   bob.ip.binseg.engine.trainer
+   bob.ip.binseg.engine.ssltrainer
+   bob.ip.binseg.engine.predictor
+   bob.ip.binseg.engine.evaluator
+   bob.ip.binseg.engine.adabound
+
+
+Neural Network Models
+---------------------
+
+.. autosummary::
+   :toctree: api/modeling
+
+   bob.ip.binseg.modeling
+   bob.ip.binseg.modeling.backbones
+   bob.ip.binseg.modeling.backbones.mobilenetv2
+   bob.ip.binseg.modeling.backbones.resnet
+   bob.ip.binseg.modeling.backbones.vgg
+   bob.ip.binseg.modeling.driu
+   bob.ip.binseg.modeling.driubn
+   bob.ip.binseg.modeling.driuod
+   bob.ip.binseg.modeling.driupix
+   bob.ip.binseg.modeling.hed
+   bob.ip.binseg.modeling.losses
+   bob.ip.binseg.modeling.m2u
+   bob.ip.binseg.modeling.make_layers
+   bob.ip.binseg.modeling.resunet
+   bob.ip.binseg.modeling.unet
+
+
+Toolbox
+-------
+
+.. autosummary::
+   :toctree: api/utils
+
+   bob.ip.binseg.utils
+   bob.ip.binseg.utils.checkpointer
+   bob.ip.binseg.utils.metric
+   bob.ip.binseg.utils.model_serialization
+   bob.ip.binseg.utils.model_zoo
+   bob.ip.binseg.utils.plot
+   bob.ip.binseg.utils.table
+   bob.ip.binseg.utils.summary
+
+
+.. _bob.ip.binseg.configs:
+
+Preset Configurations
+---------------------
+
+Preset configurations for baseline systems
+
+This module contains preset configurations for baseline FCN architectures and
+datasets.
+
+
+Models
 ======
-.. automodule:: bob.ip.binseg.modeling.losses
 
-Training
-========
-.. automodule:: bob.ip.binseg.engine.trainer
+.. autosummary::
+   :toctree: api/configs/models
+   :template: config.rst
 
-Checkpointer
-============
-.. automodule:: bob.ip.binseg.utils.checkpointer
+   bob.ip.binseg.configs.models.driu
+   bob.ip.binseg.configs.models.driu_bn
+   bob.ip.binseg.configs.models.driu_bn_ssl
+   bob.ip.binseg.configs.models.driu_od
+   bob.ip.binseg.configs.models.driu_ssl
+   bob.ip.binseg.configs.models.hed
+   bob.ip.binseg.configs.models.m2unet
+   bob.ip.binseg.configs.models.m2unet_ssl
+   bob.ip.binseg.configs.models.resunet
+   bob.ip.binseg.configs.models.unet
 
-Inference and Evaluation
-========================
-.. automodule:: bob.ip.binseg.engine.inferencer
 
-Plotting
+.. _bob.ip.binseg.configs.datasets:
+
+Datasets
 ========
-.. automodule:: bob.ip.binseg.utils.plot
 
-.. include:: links.rst
+.. automodule:: bob.ip.binseg.configs.datasets
+
+.. autosummary::
+   :toctree: api/configs/datasets
+   :template: config.rst
+
+   bob.ip.binseg.configs.datasets.csv
+
+   bob.ip.binseg.configs.datasets.chasedb1.first_annotator
+   bob.ip.binseg.configs.datasets.chasedb1.second_annotator
+   bob.ip.binseg.configs.datasets.chasedb1.xtest
+   bob.ip.binseg.configs.datasets.chasedb1.mtest
+   bob.ip.binseg.configs.datasets.chasedb1.covd
+   bob.ip.binseg.configs.datasets.chasedb1.ssl
+
+   bob.ip.binseg.configs.datasets.drive.default
+   bob.ip.binseg.configs.datasets.drive.second_annotator
+   bob.ip.binseg.configs.datasets.drive.xtest
+   bob.ip.binseg.configs.datasets.drive.mtest
+   bob.ip.binseg.configs.datasets.drive.covd
+   bob.ip.binseg.configs.datasets.drive.ssl
+
+   bob.ip.binseg.configs.datasets.hrf.default
+   bob.ip.binseg.configs.datasets.hrf.xtest
+   bob.ip.binseg.configs.datasets.hrf.mtest
+   bob.ip.binseg.configs.datasets.hrf.default_fullres
+   bob.ip.binseg.configs.datasets.hrf.covd
+   bob.ip.binseg.configs.datasets.hrf.ssl
+
+   bob.ip.binseg.configs.datasets.iostar.vessel
+   bob.ip.binseg.configs.datasets.iostar.vessel_xtest
+   bob.ip.binseg.configs.datasets.iostar.vessel_mtest
+   bob.ip.binseg.configs.datasets.iostar.optic_disc
+   bob.ip.binseg.configs.datasets.iostar.covd
+   bob.ip.binseg.configs.datasets.iostar.ssl
+
+   bob.ip.binseg.configs.datasets.stare.ah
+   bob.ip.binseg.configs.datasets.stare.vk
+   bob.ip.binseg.configs.datasets.stare.xtest
+   bob.ip.binseg.configs.datasets.stare.mtest
+   bob.ip.binseg.configs.datasets.stare.covd
+   bob.ip.binseg.configs.datasets.stare.ssl
+
+   bob.ip.binseg.configs.datasets.refuge.cup
+   bob.ip.binseg.configs.datasets.refuge.disc
+
+   bob.ip.binseg.configs.datasets.rimoner3.cup_exp1
+   bob.ip.binseg.configs.datasets.rimoner3.cup_exp2
+   bob.ip.binseg.configs.datasets.rimoner3.disc_exp1
+   bob.ip.binseg.configs.datasets.rimoner3.disc_exp2
+
+   bob.ip.binseg.configs.datasets.drishtigs1.cup_all
+   bob.ip.binseg.configs.datasets.drishtigs1.cup_any
+   bob.ip.binseg.configs.datasets.drishtigs1.disc_all
+   bob.ip.binseg.configs.datasets.drishtigs1.disc_any
+
+   bob.ip.binseg.configs.datasets.drionsdb.expert1
+   bob.ip.binseg.configs.datasets.drionsdb.expert2
diff --git a/doc/benchmarkresults.rst b/doc/benchmarkresults.rst
deleted file mode 100644
index 2f391611db75358ffeb809058e5bf2242a474b93..0000000000000000000000000000000000000000
--- a/doc/benchmarkresults.rst
+++ /dev/null
@@ -1,30 +0,0 @@
-.. -*- coding: utf-8 -*-
-.. _bob.ip.binseg.benchmarkresults:
-
-
-==================
-Benchmark Results
-==================
-
-F1 Scores
-===========
-
-* Benchmark results for models: DRIU, HED, M2UNet and U-Net.
-* Models are trained and tested on the same dataset using the train-test split as indicated in :ref:`bob.ip.binseg.datasets`
-* Standard-deviations across all test images are indicated in brakets
-
-+--------------------------------------------+------------------------------------------------+---------------------------------------------+-------------------------------------------+----------------------------------------------+---------------------------------------------+
-| F1 (std)                                   | :ref:`bob.ip.binseg.configs.datasets.chasedb1` | :ref:`bob.ip.binseg.configs.datasets.drive` | :ref:`bob.ip.binseg.configs.datasets.hrf` | :ref:`bob.ip.binseg.configs.datasets.iostar` | :ref:`bob.ip.binseg.configs.datasets.stare` |
-+--------------------------------------------+------------------------------------------------+---------------------------------------------+-------------------------------------------+----------------------------------------------+---------------------------------------------+
-| :ref:`bob.ip.binseg.configs.models.driu`   | `0.810 (0.021) <driu_chasedb1.pth_>`_          | `0.820 (0.014) <driu_drive.pth_>`_          | `0.783 (0.055) <driu_hrf.pth_>`_          | `0.825 (0.020) <driu_iostar.pth_>`_          | `0.827 (0.037) <driu_stare.pth_>`_          |
-+--------------------------------------------+------------------------------------------------+---------------------------------------------+-------------------------------------------+----------------------------------------------+---------------------------------------------+
-| :ref:`bob.ip.binseg.configs.models.hed`    | 0.810 (0.022)                                  | 0.817 (0.013)                               | 0.783 (0.058)                             | 0.825 (0.020)                                | 0.823 (0.037)                               |
-+--------------------------------------------+------------------------------------------------+---------------------------------------------+-------------------------------------------+----------------------------------------------+---------------------------------------------+
-| :ref:`bob.ip.binseg.configs.models.m2unet` | `0.802 (0.019) <m2unet_chasedb1.pth_>`_        | `0.803 (0.014) <m2unet_drive.pth_>`_        | `0.780 (0.057) <m2unet_hrf.pth_>`_        | `0.817 (0.020) <m2unet_iostar.pth_>`_        | `0.815 (0.041) <m2unet_stare.pth_>`_        |
-+--------------------------------------------+------------------------------------------------+---------------------------------------------+-------------------------------------------+----------------------------------------------+---------------------------------------------+
-| :ref:`bob.ip.binseg.configs.models.unet`   | 0.812 (0.020)                                  | 0.822 (0.015)                               | 0.788 (0.051)                             | 0.818 (0.019)                                | 0.829 (0.042)                               |
-+--------------------------------------------+------------------------------------------------+---------------------------------------------+-------------------------------------------+----------------------------------------------+---------------------------------------------+
-
-
-
-.. include:: links.rst
diff --git a/doc/cli.rst b/doc/cli.rst
new file mode 100644
index 0000000000000000000000000000000000000000..588cc997c85333e3fd2cf948dd9bd650f26b8a8e
--- /dev/null
+++ b/doc/cli.rst
@@ -0,0 +1,182 @@
+.. -*- coding: utf-8 -*-
+
+.. _bob.ip.binseg.cli:
+
+==============================
+ Command-Line Interface (CLI)
+==============================
+
+This package provides a single entry point for all of its applications using
+:ref:`Bob's unified CLI mechanism <bob.extension.cli>`.  A list of available
+applications can be retrieved using:
+
+.. command-output:: bob binseg --help
+
+
+Setup
+-----
+
+A CLI application to list and check installed (raw) datasets.
+
+.. _bob.ip.binseg.cli.dataset:
+
+.. command-output:: bob binseg dataset --help
+
+
+List available datasets
+=======================
+
+Lists supported and configured raw datasets.
+
+.. _bob.ip.binseg.cli.dataset.list:
+
+.. command-output:: bob binseg dataset list --help
+
+
+Check available datasets
+========================
+
+Checks if we can load all files listed for a given dataset (all subsets in all
+protocols).
+
+.. _bob.ip.binseg.cli.dataset.check:
+
+.. command-output:: bob binseg dataset check --help
+
+
+Preset Configuration Resources
+------------------------------
+
+A CLI application allows one to list, inspect and copy available configuration
+resources exported by this package.
+
+.. _bob.ip.binseg.cli.config:
+
+.. command-output:: bob binseg config --help
+
+
+.. _bob.ip.binseg.cli.config.list:
+
+Listing Resources
+=================
+
+.. command-output:: bob binseg config list --help
+
+
+.. _bob.ip.binseg.cli.config.list.all:
+
+Available Resources
+===================
+
+Here is a list of all resources currently exported.
+
+.. command-output:: bob binseg config list -v
+
+
+.. _bob.ip.binseg.cli.config.describe:
+
+Describing a Resource
+=====================
+
+.. command-output:: bob binseg config describe --help
+
+
+.. _bob.ip.binseg.cli.config.copy:
+
+Copying a Resource
+==================
+
+You may use this command to locally copy a resource file so you can change it.
+
+.. command-output:: bob binseg config copy --help
+
+
+.. _bob.ip.binseg.cli.combined:
+
+Running and Analyzing Experiments
+---------------------------------
+
+These applications run a combined set of steps in one go.  They work well with
+our preset :ref:`configuration resources <bob.ip.binseg.cli.config.list.all>`.
+
+
+.. _bob.ip.binseg.cli.experiment:
+
+Running a Full Experiment Cycle
+===============================
+
+This command can run training, prediction, evaluation and comparison from a
+single, multi-step application.
+
+.. command-output:: bob binseg experiment --help
+
+
+.. _bob.ip.binseg.cli.analyze:
+
+Running Complete Experiment Analysis
+====================================
+
+This command can run prediction, evaluation and comparison from a
+single, multi-step application.
+
+.. command-output:: bob binseg analyze --help
+
+
+.. _bob.ip.binseg.cli.single:
+
+Single-Step Applications
+------------------------
+
+These applications allow finer control over the experiment cycle.  They also
+work well with our preset :ref:`configuration resources
+<bob.ip.binseg.cli.config.list.all>`, but allow finer control on the input
+datasets.
+
+
+.. _bob.ip.binseg.cli.train:
+
+Training FCNs
+=============
+
+Training creates of a new PyTorch_ model.  This model can be used for
+evaluation tests or for inference.
+
+.. command-output:: bob binseg train --help
+
+
+.. _bob.ip.binseg.cli.predict:
+
+Prediction with FCNs
+====================
+
+Inference takes as input a PyTorch_ model and generates output probabilities as
+HDF5 files.  The probability map has the same size as the input and indicates,
+from 0 to 1 (floating-point number), the probability of a vessel in that pixel,
+from less probable (0.0) to more probable (1.0).
+
+.. command-output:: bob binseg predict --help
+
+
+.. _bob.ip.binseg.cli.evaluate:
+
+FCN Performance Evaluation
+==========================
+
+Evaluation takes inference results and compares it to ground-truth, generating
+a series of analysis figures which are useful to understand model performance.
+
+.. command-output:: bob binseg evaluate --help
+
+
+.. _bob.ip.binseg.cli.compare:
+
+Performance Comparison
+======================
+
+Performance comparison takes the performance evaluation results and generate
+combined figures and tables that compare results of multiple systems.
+
+.. command-output:: bob binseg compare --help
+
+
+.. include:: links.rst
diff --git a/doc/conf.py b/doc/conf.py
index d64d7794ac7eaa26cc5ea7cb49728aa892946210..c822aa64808f039d7f956fef3044cada9fcd8d62 100644
--- a/doc/conf.py
+++ b/doc/conf.py
@@ -23,9 +23,15 @@ extensions = [
     'sphinx.ext.napoleon',
     'sphinx.ext.viewcode',
     'sphinx.ext.mathjax',
+    'sphinxcontrib.programoutput',
     #'matplotlib.sphinxext.plot_directive'
 ]
 
+# This allows sphinxcontrib-programoutput to work in buildout mode
+candidate_binpath = os.path.join(os.path.dirname(os.path.realpath(os.curdir)), 'bin')
+if os.path.exists(candidate_binpath):
+    os.environ['PATH'] = candidate_binpath + os.pathsep + os.environ.get('PATH', '')
+
 # Be picky about warnings
 nitpicky = True
 
@@ -96,7 +102,12 @@ release = distribution.version
 
 # List of patterns, relative to source directory, that match files and
 # directories to ignore when looking for source files.
-exclude_patterns = ['links.rst']
+exclude_patterns = [
+        'links.rst',
+        'api/modules.rst',
+        'api/bob.rst',
+        'api/bob.ip.rst',
+        ]
 
 # The reST default role (used for this markup: `text`) to use for all documents.
 #default_role = None
@@ -236,25 +247,12 @@ else:
 intersphinx_mapping['torch'] = ('https://pytorch.org/docs/stable/', None)
 intersphinx_mapping['PIL'] = ('http://pillow.readthedocs.io/en/stable', None)
 intersphinx_mapping['pandas'] = ('https://pandas.pydata.org/pandas-docs/stable/',None)
-# We want to remove all private (i.e. _. or __.__) members
-# that are not in the list of accepted functions
-accepted_private_functions = ['__array__']
-
-
-def member_function_test(app, what, name, obj, skip, options):
-    # test if we have a private function
-    if len(name) > 1 and name[0] == '_':
-        # test if this private function should be allowed
-        if name not in accepted_private_functions:
-            # omit privat functions that are not in the list of accepted private functions
-            return skip
-        else:
-            # test if the method is documented
-            if not hasattr(obj, '__doc__') or not obj.__doc__:
-                return skip
-    return False
-
-
-def setup(app):
-    app.connect('autodoc-skip-member', member_function_test)
-    
\ No newline at end of file
+
+# Figures out the major click version we use
+import pkg_resources
+click_version = pkg_resources.require('click')[0].version.split('.')[0]
+click_version += '.x'
+intersphinx_mapping['click'] = ('https://click.palletsprojects.com/en/%s/' % (click_version,),None)
+
+# Add our private index (for extras and fixes)
+intersphinx_mapping['extras'] = ('', 'extras.inv')
diff --git a/doc/configs.rst b/doc/configs.rst
deleted file mode 100644
index e25e66c6afc3e2fc629c915f25475d101f81033c..0000000000000000000000000000000000000000
--- a/doc/configs.rst
+++ /dev/null
@@ -1,208 +0,0 @@
-.. -*- coding: utf-8 -*-
-.. _bob.ip.binseg.configs:
-
-===============
-Configs
-===============
-
-Dataset Configs
-===============
-
-.. _bob.ip.binseg.configs.datasets.imagefolder:
-
-ImageFolder
-----------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/imagefolder.py
-
-.. _bob.ip.binseg.configs.datasets.imagefoldertest:
-
-ImageFolderTest
-----------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/imagefoldertest.py
-
-.. _bob.ip.binseg.configs.datasets.imagefolderinference:
-
-ImageFolderInference
----------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/imagefolderinference.py
-
-.. _bob.ip.binseg.configs.datasets.chasedb1:
-
-CHASEDB1
-----------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/chasedb1.py
-
-CHASEDB1TEST
-----------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/chasedb1test.py
-
-.. _bob.ip.binseg.configs.datasets.covd-drive:
-
-COVD-DRIVE
-----------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/starechasedb1iostarhrf544.py
-
-.. _bob.ip.binseg.configs.datasets.covd-drive_ssl:
-
-COVD-DRIVE_SSL
-----------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/starechasedb1iostarhrf544ssldrive.py
-
-
-.. _bob.ip.binseg.configs.datasets.covd-stare:
-
-COVD-STARE
-----------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivechasedb1iostarhrf608.py
-
-.. _bob.ip.binseg.configs.datasets.covd-stare_ssl:
-
-COVD-STARE_SSL
-----------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivechasedb1iostarhrf608sslstare.py
-
-
-.. _bob.ip.binseg.configs.datasets.covd-iostar:
-
-COVD-IOSTARVESSEL
-----------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivestarechasedb1hrf1024.py
-
-.. _bob.ip.binseg.configs.datasets.covd-iostar_ssl:
-
-COVD-IOSTARVESSEL_SSL
-----------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivestarechasedb1hrf1024ssliostar.py
-
-
-.. _bob.ip.binseg.configs.datasets.covd-hrf:
-
-COVD-HRF
-----------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivestarechasedb1iostar1168.py
-
-.. _bob.ip.binseg.configs.datasets.covd-hrf_ssl:
-
-COVD-HRF_SSL
-----------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivestarechasedb1iostar1168sslhrf.py
-
-
-.. _bob.ip.binseg.configs.datasets.covd-chasedb1:
-
-COVD-CHASEDB1
-----------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivestareiostarhrf960.py
-
-.. _bob.ip.binseg.configs.datasets.covd-chasedb1_ssl:
-
-COVD-CHASEDB1_SSL
-----------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivestareiostarhrf960.py
-
-
-.. _bob.ip.binseg.configs.datasets.drive:
-
-DRIVE
-----------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drive.py
-
-
-DRIVETEST
-----------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivetest.py
-
-
-.. _bob.ip.binseg.configs.datasets.hrf:
-
-HRF
-----------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/hrf1168.py
-
-HRFTEST
-----------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/hrftest.py
-
-
-
-.. _bob.ip.binseg.configs.datasets.iostar:
-
-IOSTARVESSEL
-----------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/iostarvessel.py
-
-IOSTARVESSELTEST
-----------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/iostarvesseltest.py
-
-
-
-.. _bob.ip.binseg.configs.datasets.stare:
-
-STARE
-----------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/stare.py
-
-STARETEST
-----------------------
-.. literalinclude:: ../bob/ip/binseg/configs/datasets/staretest.py
-
-
-
-Model Configs
-==============
-
-.. _bob.ip.binseg.configs.models.driu:
-
-DRIU
------
-.. literalinclude:: ../bob/ip/binseg/configs/models/driu.py
-
-
-.. _bob.ip.binseg.configs.models.driubn:
-
-DRIUBN
-------
-.. literalinclude:: ../bob/ip/binseg/configs/models/driubn.py
-
-
-.. _bob.ip.binseg.configs.models.hed:
-
-HED
------
-.. literalinclude:: ../bob/ip/binseg/configs/models/hed.py
-
-
-.. _bob.ip.binseg.configs.models.m2unet:
-
-M2UNet
-------
-.. literalinclude:: ../bob/ip/binseg/configs/models/m2unet.py
-
-
-.. _bob.ip.binseg.configs.models.unet:
-
-UNet
------
-.. literalinclude:: ../bob/ip/binseg/configs/models/unet.py
-
-
-.. _bob.ip.binseg.configs.models.driussl:
-
-DRIUSSL
---------
-.. literalinclude:: ../bob/ip/binseg/configs/models/driussl.py
-
-.. _bob.ip.binseg.configs.models.driubnssl:
-
-DRIUBNSSL
----------
-.. literalinclude:: ../bob/ip/binseg/configs/models/driubnssl.py
-
-
-.. _bob.ip.binseg.configs.models.m2unetssl:
-
-M2UNetSSL
----------
-.. literalinclude:: ../bob/ip/binseg/configs/models/m2unetssl.py
-
diff --git a/doc/covdresults.rst b/doc/covdresults.rst
deleted file mode 100644
index bf2305f41fc0d8dfbb6fc379af11702d51b5e6da..0000000000000000000000000000000000000000
--- a/doc/covdresults.rst
+++ /dev/null
@@ -1,84 +0,0 @@
-.. -*- coding: utf-8 -*-
-.. _bob.ip.binseg.covdresults:
-
-
-==========================
-COVD- and COVD-SLL Results
-==========================
-
-In addition to the M2U-Net architecture, we also evaluated the larger DRIU network and a variation of it
-that contains batch normalization (DRIU BN) on COVD- and COVD-SSL. Perhaps surprisingly, for the
-majority of combinations, the performance of the DRIU variants are roughly equal or worse than the M2U-Net.
-We anticipate that one reason for this could be overparameterization of large VGG16 models
-that are pretrained on ImageNet.
-
-F1 Scores
-===========
-
-Comparison of F1-micro-scores (std) of DRIU and M2U-Net on COVD- and COVD-SSL.
-Standard deviation across test-images in brackets.
-
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| F1 score                                                | :ref:`bob.ip.binseg.configs.models.driu`/:ref:`bob.ip.binseg.configs.models.driussl` | :ref:`bob.ip.binseg.configs.models.driubn`/:ref:`bob.ip.binseg.configs.models.driubnssl` | :ref:`bob.ip.binseg.configs.models.m2unet`/:ref:`bob.ip.binseg.configs.models.m2unetssl` |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-drive`        | 0.788 (0.018)                                                                        | 0.797 (0.019)                                                                            | `0.789 (0.018) <m2unet_covd-drive.pth>`_                                                 |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-drive_ssl`    | 0.785 (0.018)                                                                        | 0.783 (0.019)                                                                            | `0.791 (0.014) <m2unet_covd-drive_ssl.pth>`_                                             |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-stare`        | 0.778 (0.117)                                                                        | 0.778 (0.122)                                                                            | `0.812 (0.046) <m2unet_covd-stare.pth>`_                                                 |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-stare_ssl`    | 0.788 (0.102)                                                                        | 0.811 (0.074)                                                                            | `0.820 (0.044) <m2unet_covd-stare_ssl.pth>`_                                             |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-chasedb1`     | 0.796 (0.027)                                                                        | 0.791 (0.025)                                                                            | `0.788 (0.024) <m2unet_covd-chasedb1.pth>`_                                              |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-chasedb1_ssl` | 0.796 (0.024)                                                                        | 0.798 (0.025)                                                                            | `0.799 (0.026) <m2unet_covd-chasedb1_ssl.pth>`_                                          |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-hrf`          | 0.799 (0.044)                                                                        | 0.800 (0.045)                                                                            | `0.802 (0.045) <m2unet_covd-hrf.pth>`_                                                   |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-hrf_ssl`      | 0.799 (0.044)                                                                        | 0.784 (0.048)                                                                            | `0.797 (0.044) <m2unet_covd-hrf_ssl.pth>`_                                               |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-iostar`       | 0.791 (0.021)                                                                        | 0.777 (0.032)                                                                            | `0.793 (0.015) <m2unet_covd-iostar.pth>`_                                                |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-| :ref:`bob.ip.binseg.configs.datasets.covd-iostar_ssl`   | 0.797 (0.017)                                                                        | 0.811 (0.074)                                                                            | `0.785 (0.018) <m2unet_covd-iostar_ssl.pth>`_                                            |
-+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+
-
-M2U-Net Precision vs. Recall Curves
-===================================
-Precision vs. recall curves for each evaluated dataset.
-Note that here the F1-score is calculated on a macro level (see paper for more details).
-
-.. figure:: img/pr_CHASEDB1.png
-   :scale: 50 %
-   :align: center
-   :alt: model comparisons
-
-   CHASE_DB1: Precision vs Recall curve and F1 scores
-
-.. figure:: img/pr_DRIVE.png
-   :scale: 50 %
-   :align: center
-   :alt: model comparisons
-
-   DRIVE: Precision vs Recall curve and F1 scores
-
-.. figure:: img/pr_HRF.png
-   :scale: 50 %
-   :align: center
-   :alt: model comparisons
-
-   HRF: Precision vs Recall curve and F1 scores
-
-.. figure:: img/pr_IOSTARVESSEL.png
-   :scale: 50 %
-   :align: center
-   :alt: model comparisons
-
-   IOSTAR: Precision vs Recall curve and F1 scores
-
-.. figure:: img/pr_STARE.png
-   :scale: 50 %
-   :align: center
-   :alt: model comparisons
-
-   STARE: Precision vs Recall curve and F1 scores
-
diff --git a/doc/datasets.rst b/doc/datasets.rst
index 5b82d3b12f8909a414055a17a3360c73d8449e1e..a1fb29e04e27da12f0d508f15be1a498ff589c70 100644
--- a/doc/datasets.rst
+++ b/doc/datasets.rst
@@ -1,64 +1,129 @@
 .. -*- coding: utf-8 -*-
-.. _bob.ip.binseg.datasets:
-
-==================
-Supported Datasets
-==================
-
-+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+
-|  #  |     Name      |    H x W    | # imgs | Train | Test | Mask | Vessel | OD  | Cup | Train-Test split reference |
-+=====+===============+=============+========+=======+======+======+========+=====+=====+============================+
-| 1   | Drive_        | 584 x 565   | 40     | 20    | 20   | x    | x      |     |     | `Staal et al. (2004)`_     |
-+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+
-| 2   | STARE_        | 605 x 700   | 20     | 10    | 10   |      | x      |     |     | `Maninis et al. (2016)`_   |
-+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+
-| 3   | CHASEDB1_     | 960 x 999   | 28     | 8     | 20   |      | x      |     |     | `Fraz et al. (2012)`_      |
-+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+
-| 4   | HRF_          | 2336 x 3504 | 45     | 15    | 30   | x    | x      |     |     | `Orlando et al. (2016)`_   |
-+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+
-| 5   | IOSTAR_       | 1024 x 1024 | 30     | 20    | 10   | x    | x      | x   |     | `Meyer et al. (2017)`_     |
-+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+
-| 6   | DRIONS-DB_    | 400 x 600   | 110    | 60    | 50   |      |        | x   |     | `Maninis et al. (2016)`_   |
-+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+
-| 7   | RIM-ONEr3_    | 1424 x 1072 | 159    | 99    | 60   |      |        | x   | x   | `Maninis et al. (2016)`_   |
-+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+
-| 8   | Drishti-GS1_  | varying     | 101    | 50    | 51   |      |        | x   | x   | `Sivaswamy et al. (2014)`_ |
-+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+
-| 9   | REFUGE_ train | 2056 x 2124 | 400    | 400   |      |      |        | x   | x   | REFUGE_                    |
-+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+
-| 9   | REFUGE_ val   | 1634 x 1634 | 400    |       | 400  |      |        | x   | x   | REFUGE_                    |
-+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+
-
-
-Add-on: Folder-based Dataset
-============================
-
-For quick experimentation we also provide a PyTorch class that works with the following 
-dataset folder structure for images and ground-truth (gt):
-
-.. code-block:: bash
-
-    root
-       |- images
-       |- gt 
 
-the file names should have the same stem. Currently all image formats that can be read via PIL are supported. Additionally we support hdf5 binary files.
-
-For training a new dataset config needs to be created. You can copy the template :ref:`bob.ip.binseg.configs.datasets.imagefolder` and amend accordingly, 
-e.g. the full path of the dataset and if necessary any preprocessing steps such as resizing, cropping, padding etc..
-
-Training can then be started with
-
-.. code-block:: bash
-
-    bob binseg train M2UNet /path/to/myimagefolderconfig.py -b 4 -d cuda -o /my/output/path -vv
-
-Similary for testing, a test dataset config needs to be created. You can copy the template :ref:`bob.ip.binseg.configs.datasets.imagefoldertest` and amend accordingly.
-
-Testing can then be started with 
+.. _bob.ip.binseg.datasets:
 
-.. code-block:: bash
+====================
+ Supported Datasets
+====================
+
+Here is a list of currently support datasets in this package, alongside notable
+properties.  Each dataset name is linked to the current location where raw data
+can be downloaded.  We include the reference of the data split protocols used
+to generate iterators for training and testing.
+
+
+.. list-table::
+
+   * - Dataset
+     - Reference
+     - H x W
+     - Samples
+     - Mask
+     - Vessel
+     - OD
+     - Cup
+     - Split Reference
+     - Train
+     - Test
+   * - DRIVE_
+     - [DRIVE-2004]_
+     - 584 x 565
+     - 40
+     - x
+     - x
+     -
+     -
+     - [DRIVE-2004]_
+     - 20
+     - 20
+   * - STARE_
+     - [STARE-2000]_
+     - 605 x 700
+     - 20
+     -
+     - x
+     -
+     -
+     - [MANINIS-2016]_
+     - 10
+     - 10
+   * - CHASE-DB1_
+     - [CHASEDB1-2012]_
+     - 960 x 999
+     - 28
+     -
+     - x
+     -
+     -
+     - [CHASEDB1-2012]_
+     - 8
+     - 20
+   * - HRF_
+     - [HRF-2013]_
+     - 2336 x 3504
+     - 45
+     - x
+     - x
+     -
+     -
+     - [ORLANDO-2017]_
+     - 15
+     - 30
+   * - IOSTAR_
+     - [IOSTAR-2016]_
+     - 1024 x 1024
+     - 30
+     - x
+     - x
+     - x
+     -
+     - [MEYER-2017]_
+     - 20
+     - 10
+   * - DRIONS-DB_
+     - [DRIONSDB-2008]_
+     - 400 x 600
+     - 110
+     -
+     -
+     - x
+     -
+     - [MANINIS-2016]_
+     - 60
+     - 50
+   * - `RIM-ONE r3`_
+     - [RIMONER3-2015]_
+     - 1424 x 1072
+     - 159
+     -
+     -
+     - x
+     - x
+     - [MANINIS-2016]_
+     - 99
+     - 60
+   * - Drishti-GS1_
+     - [DRISHTIGS1-2014]_
+     - varying
+     - 101
+     -
+     -
+     - x
+     - x
+     - [DRISHTIGS1-2014]_
+     - 50
+     - 51
+   * - REFUGE_
+     - [REFUGE-2018]_
+     - 2056 x 2124 (1634 x 1634)
+     - 1200
+     -
+     -
+     - x
+     - x
+     - [REFUGE-2018]_
+     - 400 (+400)
+     - 400
 
-    bob binseg test M2UNet /path/to/myimagefoldertestconfig.py -b 2 -d cuda -o /my/output/path -vv
 
 .. include:: links.rst
diff --git a/doc/evaluation.rst b/doc/evaluation.rst
index 2fb923a00978a3a6aa172722697472f77c94a118..0368ad6ddd23ab5c231a0e3c29fe8f88f9c0e51b 100644
--- a/doc/evaluation.rst
+++ b/doc/evaluation.rst
@@ -1,111 +1,97 @@
 .. -*- coding: utf-8 -*-
-.. _bob.ip.binseg.evaluation:
 
-==========
-Evaluation
-==========
+.. _bob.ip.binseg.eval:
 
-To evaluate trained models use use ``bob binseg test`` followed by
-the model config, the dataset config and the path to the pretrained
-model via the argument ``-w``.
+==========================
+ Inference and Evaluation
+==========================
 
-Alternatively point to the output folder used during training via
-the ``-o`` argument. The Checkpointer will load the model as indicated
-in the file: ``last_checkpoint``.
+This guides explains how to run inference or a complete evaluation using
+command-line tools.  Inference produces probability maps for input images,
+while evaluation will analyze such output against existing annotations and
+produce performance figures.
 
-Use ``bob binseg test --help`` for more information.
 
-E.g. run inference on model M2U-Net on the DRIVE test set:
+Inference
+---------
 
-.. code-block:: bash
+You may use one of your trained models (or :ref:`one of ours
+<bob.ip.binseg.models>` to run inference on existing datasets or your own
+dataset.  In inference (or prediction) mode, we input data, the trained model,
+and output HDF5 files containing the prediction outputs for every input image.
+Each HDF5 file contains a single object with a 2-dimensional matrix of floating
+point numbers indicating the vessel probability (``[0.0,1.0]``) for each pixel
+in the input image.
 
-    # Point directly to saved model via -w argument:
-    bob binseg test M2UNet DRIVETEST -o /outputfolder/for/results -w /direct/path/to/weight/model_final.pth
 
-    # Use training output path (requries last_checkpoint file to be present)
-    # The evaluation results will be stored in the same folder
-    bob binseg test M2UNet DRIVETEST -o /DRIVE/M2UNet/output
+Inference on an existing dataset
+================================
+
+To run inference, use the sub-command :ref:`predict
+<bob.ip.binseg.cli.predict>` to run prediction on an existing dataset:
+
+.. code-block:: sh
+
+   $ bob binseg predict -vv <model> -w <path/to/model.pth> <dataset>
 
-Outputs
-========
-The inference run generates the following output files:
+
+Replace ``<model>`` and ``<dataset>`` by the appropriate :ref:`configuration
+files <bob.ip.binseg.configs>`.  Replace ``<path/to/model.pth>`` to a path
+leading to the pre-trained model, or URL pointing to a pre-trained model (e.g.
+:ref:`one of ours <bob.ip.binseg.models>`).
+
+
+Inference on a custom dataset
+=============================
+
+If you would like to test your own data against one of the pre-trained models,
+you need to instantiate :py:mod:`A CSV-based configuration
+<bob.ip.binseg.configs.datasets.csv>`
+
+Read the appropriate module documentation for details.
 
 .. code-block:: bash
 
-    .
-    ├── images  # the predicted probabilities as grayscale images in .png format 
-    ├── hdf5    # the predicted probabilties in hdf5 format
-    ├── last_checkpoint  # text file that keeps track of the last checkpoint 
-    ├── M2UNet_trainlog.csv # training log 
-    ├── M2UNet_trainlog.pdf # training log plot
-    ├── model_*.pth # model checkpoints
-    └── results
-        ├── image*.jpg.csv # evaluation metrics for each image
-        ├── Metrics.csv # average evaluation metrics
-        ├── ModelSummary.txt # model summary and parameter count
-        ├── precision_recall.pdf # precision vs recall plot
-        └── Times.txt # inference times
-
-Inference Only Mode
-====================
-
-If you wish to run inference only on a folder containing images, use the ``predict`` function in combination with a :ref:`bob.ip.binseg.configs.datasets.imagefolderinference` config. E.g.:
+   $ bob binseg config copy csv-dataset-example mydataset.py
+   # edit mydataset.py to your liking
+   $ bob binseg predict -vv <model> -w <path/to/model.pth> ./mydataset.py
+
+
+Inference typically consumes less resources than training, but you may speed
+things up using ``--device='cuda:0'`` in case you have a GPU.
+
+
+Evaluation
+----------
+
+In evaluation, we input an **annotated** dataset and predictions to generate
+performance summaries that help analysis of a trained model.  Evaluation is
+done using the :ref:`evaluate command `<bob.ip.binseg.cli.evaluate>` followed
+by the model and the annotated dataset configuration, and the path to the
+pretrained weights via the ``--weight`` argument.
+
+Use ``bob binseg evaluate --help`` for more information.
+
+E.g. run inference on predictions from the DRIVE test set, do the following:
 
 .. code-block:: bash
 
-    bob binseg predict M2UNet /path/to/myinferencedatasetconfig.py -b 1 -d cpu -o /my/output/path -w /path/to/pretrained/weight/model_final.pth -vv
+    # Point directly to saved model via -w argument:
+    bob binseg evaluate -vv drive-test -p /predictions/folder -o /eval/results/folder
+
+If available, you may use the option ``--second-annotator`` to
 
-Pretrained Models
+
+Comparing Systems
 =================
 
-Due to storage limitations we only provide weights of a subset
-of all evaluated models:
-
-
-
-+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+
-|                    | DRIU               | M2UNet                                                                                                                         |
-+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+
-| DRIVE              | `DRIU_DRIVE.pth`_  | `M2UNet_DRIVE.pth <m2unet_drive.pth_>`_                                                                                        |
-+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+
-| COVD-DRIVE         |                    | `M2UNet_COVD-DRIVE.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-DRIVE.pth>`_               |
-+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+
-| COVD-DRIVE SSL     |                    | `M2UNet_COVD-DRIVE_SSL.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-DRIVE_SSL.pth>`_       |
-+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+
-| STARE              | DRIU_STARE.pth_    | `M2UNet_STARE.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_STARE.pth>`_                         |
-+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+
-| COVD-STARE         |                    | `M2UNet_COVD-STARE.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-STARE.pth>`_               |
-+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+
-| COVD-STARE SSL     |                    | `M2UNet_COVD-STARE_SSL.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-STARE_SSL.pth>`_       |
-+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+
-| CHASE_DB1          | DRIU_CHASEDB1.pth_ | `M2UNet_CHASEDB1.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_CHASEDB1.pth>`_                   |
-+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+
-| COVD-CHASE_DB1     |                    | `M2UNet_COVD-CHASEDB1.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-CHASEDB1.pth>`_         |
-+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+
-| COVD-CHASE_DB1 SSL |                    | `M2UNet_COVD-CHASEDB1_SSL.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-CHASEDB1_SSL.pth>`_ |
-+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+
-| IOSTARVESSEL       | DRIU_IOSTAR.pth_   | `M2UNet_IOSTARVESSEL.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_IOSTARVESSEL.pth>`_           |
-+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+
-| COVD-IOSTAR        |                    | `M2UNet_COVD-IOSTAR.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-IOSTAR.pth>`_             |
-+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+
-| COVD-IOSTAR SSL    |                    | `M2UNet_COVD-IOSTAR_SSL.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-IOSTAR_SSL.pth>`_     |
-+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+
-| HRF                | DRIU_HRF.pth_      | `M2UNet_HRF1168.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_HRF1168.pth>`_                     |
-+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+
-| COVD-HRF           |                    | `M2UNet_COVD-HRF.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-HRF.pth>`_                   |
-+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+
-| COVD-HRF SSL       |                    | `M2UNet_COVD-HRF_SSL.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-HRF_SSL.pth>`_           |
-+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+
-
-
-
-To run evaluation of pretrained models pass url as ``-w`` argument. E.g.:
+To compare multiple systems together and generate combined plots and tables,
+use the :ref:`compare command <bob.ip.binseg.cli.compare>`.  Use ``--help`` for
+a quick guide.
 
 .. code-block:: bash
 
-    bob binseg test DRIU DRIVETEST -o Evaluation_DRIU_DRIVE -w https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_DRIVE.pth
-    bob binseg test M2UNet DRIVETEST -o Evaluation_M2UNet_DRIVE -w https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_DRIVE.pth
-
+   $ bob binseg compare -vv A A/metrics.csv B B/metrics.csv
 
 
 .. include:: links.rst
diff --git a/doc/experiment.rst b/doc/experiment.rst
new file mode 100644
index 0000000000000000000000000000000000000000..9050af004419e2ca7fb3a2d41a72c245bcc448eb
--- /dev/null
+++ b/doc/experiment.rst
@@ -0,0 +1,192 @@
+.. -*- coding: utf-8 -*-
+
+.. _bob.ip.binseg.experiment:
+
+==============================
+ Running complete experiments
+==============================
+
+We provide an :ref:`aggregator command called "experiment"
+<bob.ip.binseg.cli.experiment>` that runs training, followed by prediction,
+evaluation and comparison.  After running, you will be able to find results
+from model fitting, prediction, evaluation and comparison under a single output
+directory.
+
+For example, to train a Mobile V2 U-Net architecture on the STARE dataset,
+evaluate both train and test set performances, output prediction maps and
+overlay analysis, together with a performance curve, run the following:
+
+.. code-block:: sh
+
+   $ bob binseg experiment -vv m2unet stare --batch-size=16 --overlayed
+   # check results in the "results" folder
+
+You may run the system on a GPU by using the ``--device=cuda:0`` option.
+
+
+Using your own dataset
+======================
+
+To use your own dataset, we recommend you read our instructions at
+:py:mod:`bob.ip.binseg.configs.datasets.csv`, and setup one or more CSV file
+describing input data and ground-truth (segmentation maps), and potential test
+data.  Then, prepare a configuration file by copying our configuration example
+and edit it to apply the required transforms to your input data.  Once you are
+happy with the result, use it in place of one of our datasets:
+
+.. code-block:: sh
+
+   $ bob binseg config copy csv-dataset-example mydataset.py
+   # edit mydataset following instructions
+   $ bob binseg train ... mydataset.py ...
+
+
+Baseline Benchmarks
+===================
+
+The following table describes recommended batch sizes for 24Gb of RAM GPU
+card, for supervised training of baselines.  Use it like this:
+
+.. code-block:: sh
+
+   # change <model> and <dataset> by one of items bellow
+   $ bob binseg experiment -vv <model> <dataset> --batch-size=<see-table> --device="cuda:0"
+   # check results in the "results" folder
+
+.. list-table::
+
+  * - **Models / Datasets**
+    - :py:mod:`drive <bob.ip.binseg.configs.datasets.drive.default>`
+    - :py:mod:`stare <bob.ip.binseg.configs.datasets.stare.ah>`
+    - :py:mod:`chasedb1 <bob.ip.binseg.configs.datasets.chasedb1.first_annotator>`
+    - :py:mod:`iostar-vessel <bob.ip.binseg.configs.datasets.iostar.vessel>`
+    - :py:mod:`hrf <bob.ip.binseg.configs.datasets.hrf.default>`
+  * - :py:mod:`unet <bob.ip.binseg.configs.models.unet>`
+    - 4
+    - 2
+    - 2
+    - 2
+    - 1
+  * - :py:mod:`hed <bob.ip.binseg.configs.models.hed>`
+    - 8
+    - 4
+    - 4
+    - 4
+    - 1
+  * - :py:mod:`driu <bob.ip.binseg.configs.models.driu>` / :py:mod:`driu-bn <bob.ip.binseg.configs.models.driu_bn>`
+    - 8
+    - 5
+    - 4
+    - 4
+    - 1
+  * - :py:mod:`m2unet <bob.ip.binseg.configs.models.m2unet>`
+    - 16
+    - 6
+    - 6
+    - 6
+    - 1
+
+
+.. tip::
+
+   Instead of the default configurations, you can pass the full path of your
+   customized dataset and model files.  You may :ref:`copy any of the existing
+   configuration resources <bob.ip.binseg.cli.config.copy>` and change them
+   locally.  Once you're happy, you may use the newly created files directly on
+   your command line.  For example, suppose you wanted to slightly change the
+   DRIVE pre-processing pipeline.  You could do the following:
+
+   .. code-block:: bash
+
+      $ bob binseg config copy drive my_drive_remix.py
+      # edit my_drive_remix.py to your needs
+      $ bob binseg train -vv <model> ./my_drive_remix.py
+
+
+.. _bob.ip.binseg.gridtk-tip:
+
+.. tip::
+
+   If you are at Idiap, you may install the package ``gridtk`` (``conda install
+   gridtk``) on your environment, and submit the job like this:
+
+   .. code-block:: sh
+
+      $ jman submit --queue=gpu --memory=24G --name=myjob -- bob binseg train --device='cuda:0' ... #paste the rest of the command-line
+
+.. _bob.ip.binseg.baseline-script:
+
+The :download:`following shell script <scripts/baselines.sh>` can run the
+various baselines described above and place results in a single directory:
+
+.. literalinclude:: scripts/baselines.sh
+   :language: bash
+
+You will find results obtained running these baselines :ref:`further in this
+guide <bob.ip.binseg.results.baselines>`.
+
+
+Combined Vessel Dataset (COVD)
+==============================
+
+The following table describes recommended batch sizes for 24Gb of RAM GPU card,
+for supervised training of COVD- systems.  Use it like this:
+
+.. code-block:: sh
+
+   # change <model> and <dataset> by one of items bellow
+   $ bob binseg train -vv <model> <dataset> --batch-size=<see-table> --device="cuda:0"
+
+.. list-table::
+
+  * - **Models / Datasets**
+    - :py:mod:`drive-covd <bob.ip.binseg.configs.datasets.drive.covd>`
+    - :py:mod:`stare-covd <bob.ip.binseg.configs.datasets.stare.covd>`
+    - :py:mod:`chasedb1-covd <bob.ip.binseg.configs.datasets.chasedb1.covd>`
+    - :py:mod:`iostar-vessel-covd <bob.ip.binseg.configs.datasets.iostar.covd>`
+    - :py:mod:`hrf-covd <bob.ip.binseg.configs.datasets.hrf.covd>`
+  * - :py:mod:`driu <bob.ip.binseg.configs.models.driu>` / :py:mod:`driu-bn <bob.ip.binseg.configs.models.driu_bn>`
+    - 4
+    - 4
+    - 2
+    - 2
+    - 2
+  * - :py:mod:`m2unet <bob.ip.binseg.configs.models.m2unet>`
+    - 8
+    - 4
+    - 4
+    - 4
+    - 4
+
+
+Combined Vessel Dataset (COVD) and Semi-Supervised Learning (SSL)
+=================================================================
+
+The following table describes recommended batch sizes for 24Gb of RAM GPU
+card, for semi-supervised learning of COVD- systems.  Use it like this:
+
+.. code-block:: sh
+
+   # change <model> and <dataset> by one of items bellow
+   $ bob binseg train -vv --ssl <model> <dataset> --batch-size=<see-table> --device="cuda:0"
+
+.. list-table::
+
+  * - **Models / Datasets**
+    - :py:mod:`drive-ssl <bob.ip.binseg.configs.datasets.drive.ssl>`
+    - :py:mod:`stare-ssl <bob.ip.binseg.configs.datasets.stare.ssl>`
+    - :py:mod:`chasedb1-ssl <bob.ip.binseg.configs.datasets.chasedb1.ssl>`
+    - :py:mod:`iostar-vessel-ssl <bob.ip.binseg.configs.datasets.iostar.ssl>`
+    - :py:mod:`hrf-ssl <bob.ip.binseg.configs.datasets.hrf.ssl>`
+  * - :py:mod:`driu-ssl <bob.ip.binseg.configs.models.driu_ssl>` / :py:mod:`driu-bn-ssl <bob.ip.binseg.configs.models.driu_bn_ssl>`
+    - 4
+    - 4
+    - 2
+    - 1
+    - 1
+  * - :py:mod:`m2unet-ssl <bob.ip.binseg.configs.models.m2unet_ssl>`
+    - 4
+    - 4
+    - 2
+    - 2
+    - 2
diff --git a/doc/extra-intersphinx.txt b/doc/extra-intersphinx.txt
index 37f700a78ecad7bea22172702e640797d7136a17..ac988bdf8417d99a3c45236479862b18684c79f5 100644
--- a/doc/extra-intersphinx.txt
+++ b/doc/extra-intersphinx.txt
@@ -1,2 +1,2 @@
 torch
-torchvision
\ No newline at end of file
+torchvision
diff --git a/doc/extras.inv b/doc/extras.inv
new file mode 100644
index 0000000000000000000000000000000000000000..55baaba61aa2392fa690178e23d9dbea964b8fc4
Binary files /dev/null and b/doc/extras.inv differ
diff --git a/doc/extras.txt b/doc/extras.txt
new file mode 100644
index 0000000000000000000000000000000000000000..4bd227b7d23d3ad0c631ffc5a285e08378c44468
--- /dev/null
+++ b/doc/extras.txt
@@ -0,0 +1,20 @@
+# Sphinx inventory version 2
+# Project: extras
+# Version: stable
+# The remainder of this file is compressed using zlib.
+torch.optim.optimizer.Optimizer py:class 1 https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer -
+torch.nn.Module py:class 1 https://pytorch.org/docs/stable/nn.html?highlight=module#torch.nn.Module -
+torch.nn.modules.module.Module py:class 1 https://pytorch.org/docs/stable/nn.html?highlight=module#torch.nn.Module -
+torch.utils.data.dataset.Dataset py:class 1 https://pytorch.org/docs/stable/data.html?highlight=dataset#torch.utils.data.Dataset -
+unittest.case.TestCase py:class 1 https://docs.python.org/3/library/unittest.html?highlight=testcase#unittest.TestCase -
+click.core.Option py:class 1 https://click.palletsprojects.com/en/7.x/api/#click.Option -
+torchvision.transforms.transforms.ColorJitter py:class 1 https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.ColorJitter -
+torchvision.transforms.transforms.RandomRotation py:class 1 https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.RandomRotation -
+torchvision.transforms.transforms.RandomVerticalFlip py:class 1 https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.RandomVerticalFlip -
+torchvision.transforms.transforms.RandomHorizontalFlip py:class 1 https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.RandomHorizontalFlip -
+torchvision.transforms.transforms.Compose py:class 1 https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.Compose -
+torchvision.transforms.transforms.ToTensor py:class 1 https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.ToTensor -
+torchvision.transforms.transforms.Resize py:class 1 https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.Resize -
+torchvision.transforms.transforms.Pad py:class 1 https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.Pad -
+torchvision.transforms.transforms.CenterCrop py:class 1 https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.CenterCrop -
+torchvision.transforms py:module 1 https://pytorch.org/docs/stable/torchvision/transforms.html -
diff --git a/doc/framework.dot b/doc/framework.dot
new file mode 100644
index 0000000000000000000000000000000000000000..50bfce5a2ff0030ee75c0138efd884c4e8f3228b
--- /dev/null
+++ b/doc/framework.dot
@@ -0,0 +1,60 @@
+digraph framework {
+
+    graph [
+        rankdir=LR,
+        ];
+    edge [
+        fontname=Helvetica,
+        fontsize=12,
+        fontcolor=blue,
+        minlen=2,
+        labeldistance=2.5,
+        ];
+
+    node [
+        fontname=Helvetica,
+        fontsize=12,
+        fontcolor=black,
+        shape=record,
+        style="filled,rounded",
+        fillcolor=grey92,
+        ];
+
+    dataset [
+        label="<train>\nTraining\n\n|<test>\nTest\n\n",
+        fillcolor=yellow,
+        style="filled",
+        ];
+
+    {rank = min; dataset;}
+
+    subgraph cluster_experiment {
+        label=<<b>experiment</b>>;
+        shape=record;
+        style="filled,rounded";
+        fillcolor=white;
+        train;
+
+        subgraph cluster_analyze {
+            label=<<b>analyze</b>>;
+            predict;
+            evaluate;
+            compare;
+        }
+    }
+
+    figure, table [
+        fillcolor=lightblue,
+        style="filled",
+    ];
+    {rank = max; figure; table; }
+
+    dataset:train -> train [headlabel="sample + label",labelangle=30];
+    dataset:test -> predict [headlabel="sample",labelangle=30];
+    train -> predict [headlabel="model"];
+    dataset:test -> evaluate [headlabel="label"];
+    predict -> evaluate [headlabel="probabilities    ",labelangle=-30];
+    evaluate -> compare [headlabel="metrics"];
+    compare -> figure;
+    compare -> table;
+}
diff --git a/doc/index.rst b/doc/index.rst
index c9d3853ae3eaaf8c1b4d837cb268fdef12dba6c7..b08fd5b7d3b0308bf39828076d4ee814971e1104 100644
--- a/doc/index.rst
+++ b/doc/index.rst
@@ -15,7 +15,7 @@ Please use the BibTeX reference below to cite this work:
 .. code:: bibtex
 
    @misc{laibacher_anjos_2019,
-      title         = {On the Evaluation and Real-World Usage Scenarios of Deep Vessel Segmentation for Funduscopy},
+      title         = {On the Evaluation and Real-World Usage Scenarios of Deep Vessel Segmentation for Retinography},
       author        = {Tim Laibacher and Andr\'e Anjos},
       year          = {2019},
       eprint        = {1909.03856},
@@ -26,30 +26,37 @@ Please use the BibTeX reference below to cite this work:
 
 
 Additional Material
-===================
+-------------------
 
 The additional material referred to in the paper can be found under
-:ref:`bob.ip.binseg.covdresults` and :download:`here </additionalresults.pdf>`
+:ref:`bob.ip.binseg.results` and :download:`here </additionalresults.pdf>`
 
 
-Users Guide
-===========
+.. todolist::
+
+
+User Guide
+----------
 
 .. toctree::
    :maxdepth: 2
 
    setup
+   usage
+   results/index
+   acknowledgements
+   references
    datasets
-   training
-   evaluation
-   benchmarkresults
-   covdresults
-   configs
-   plotting
-   visualization
+   cli
    api
-   acknowledgements
 
-.. todolist::
+
+Indices and tables
+------------------
+
+* :ref:`genindex`
+* :ref:`modindex`
+* :ref:`search`
+
 
 .. include:: links.rst
diff --git a/doc/links.rst b/doc/links.rst
index 12e8c5d3e7d6f2f144f888b8d2c3a2dde515e406..ce2c72d68eb7f9a94b4704b39e30cbb3da111552 100644
--- a/doc/links.rst
+++ b/doc/links.rst
@@ -4,85 +4,77 @@
 
 .. _idiap: http://www.idiap.ch
 .. _bob: http://www.idiap.ch/software/bob
-.. _installation: https://www.idiap.ch/software/bob/docs/bob/docs/stable/bob/bob/doc/install.html
+.. _installation: https://www.idiap.ch/software/bob/install
 .. _mailing list: https://www.idiap.ch/software/bob/discuss
-.. _torchvision package: https://github.com/pytorch/vision
-
-.. DRIVE
-
-.. _drive: https://doi.org/10.1109/TMI.2004.825627
-.. _staal et al. (2004): https://doi.org/10.1109/TMI.2004.825627
-
-.. STARE
-
-.. _stare: https://doi.org/10.1109/42.845178
-.. _maninis et al. (2016): https://doi.org/10.1007/978-3-319-46723-8_17
-
-.. HRF
-
-.. _hrf: http://dx.doi.org/10.1155/2013/154860
-.. _orlando et al. (2016): https://doi.org/10.1109/TBME.2016.2535311
-
-.. IOSTAR
-
-.. _iostar: https://doi.org/10.1109/TMI.2016.2587062
-.. _meyer et al. (2017): https://doi.org/10.1007/978-3-319-59876-5_56
-
-.. CHASEDB1
-
-.. _chasedb1: https://doi.org/10.1109/TBME.2012.2205687
-.. _fraz et al. (2012): https://doi.org/10.1109/TBME.2012.2205687
-
-.. DRIONSDB
-
-.. _drions-db: http://dx.doi.org/10.1016/j.artmed.2008.04.005
-.. _maninis et al. (2016): https://doi.org/10.1007/978-3-319-46723-8_17
-
-.. RIM-ONE r3
-
-.. _rim-oner3: https://dspace5.zcu.cz/bitstream/11025/29670/1/Fumero.pdf
-.. _maninis et al. (2016): https://doi.org/10.1007/978-3-319-46723-8_17
-
-.. Drishti-GS1
-
-.. _drishti-gs1: https://doi.org/10.1109/ISBI.2014.6867807
-.. _sivaswamy et al. (2014): https://doi.org/10.1109/ISBI.2014.6867807
-
-.. REFUGE
-
-.. _refuge: http://ai.baidu.com/broad/download?dataset=gon
-
-.. OtherPapers
-
-.. _Iglovikov  et al. (2018): http://openaccess.thecvf.com/content_cvpr_2018_workshops/w4/html/Iglovikov_TernausNetV2_Fully_Convolutional_CVPR_2018_paper.html
-.. _He et al. (2015): https://doi.org/10.1109/ICCV.2015.164
+.. _pytorch: https://pytorch.org
+.. _tabulate: https://pypi.org/project/tabulate/
+.. _our paper: https://arxiv.org/abs/1909.03856
+
+.. Raw data websites
+.. _drive: https://www.isi.uu.nl/Research/Databases/DRIVE/
+.. _stare: http://cecas.clemson.edu/~ahoover/stare/
+.. _hrf: https://www5.cs.fau.de/research/data/fundus-images/
+.. _iostar: http://www.retinacheck.org/datasets
+.. _chase-db1: https://blogs.kingston.ac.uk/retinal/chasedb1/
+.. _drions-db: http://www.ia.uned.es/~ejcarmona/DRIONS-DB.html
+.. _rim-one r3: http://medimrg.webs.ull.es/research/downloads/
+.. _drishti-gs1: http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php
+.. _refuge: https://refuge.grand-challenge.org/Details/
 
 .. Software Tools
-
 .. _maskrcnn-benchmark: https://github.com/facebookresearch/maskrcnn-benchmark
 
 
 .. Pretrained models
 
-.. _driu_chasedb1.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_CHASEDB1.pth
-.. _driu_drive.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_DRIVE.pth
-.. _driu_hrf.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_HRF1168.pth
-.. _driu_stare.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_STARE.pth
-.. _driu_iostar.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_IOSTARVESSEL.pth
+.. _baselines_driu_drive: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/driu/drive/model.pth
+.. _baselines_hed_drive: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/hed/drive/model.pth
+.. _baselines_m2unet_drive: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/m2unet/drive/model.pth
+.. _baselines_unet_drive: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/unet/drive/model.pth
+.. _baselines_driu_stare: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/driu/stare/model.pth
+.. _baselines_hed_stare: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/hed/stare/model.pth
+.. _baselines_m2unet_stare: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/m2unet/stare/model.pth
+.. _baselines_unet_stare: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/unet/stare/model.pth
+.. _baselines_driu_chase: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/driu/chasedb1/model.pth
+.. _baselines_hed_chase: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/hed/chasedb1/model.pth
+.. _baselines_m2unet_chase: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/m2unet/chasedb1/model.pth
+.. _baselines_unet_chase: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/unet/chasedb1/model.pth
+.. _baselines_driu_hrf: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/driu/hrf/model.pth
+.. _baselines_hed_hrf: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/hed/hrf/model.pth
+.. _baselines_m2unet_hrf: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/m2unet/hrf/model.pth
+.. _baselines_unet_hrf: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/unet/hrf/model.pth
+.. _baselines_driu_iostar: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/driu/iostar-vessel/model.pth
+.. _baselines_hed_iostar: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/hed/iostar-vessel/model.pth
+.. _baselines_m2unet_iostar: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/m2unet/iostar-vessel/model.pth
+.. _baselines_unet_iostar: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/unet/iostar-vessel/model.pth
 
-.. _m2unet_chasedb1.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_CHASEDB1.pth
+
+.. DRIVE
+.. _driu_drive.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_DRIVE.pth
 .. _m2unet_drive.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_DRIVE.pth
-.. _m2unet_hrf.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_HRF1168.pth
-.. _m2unet_stare.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_STARE.pth
-.. _m2unet_iostar.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_IOSTARVESSEL.pth
 .. _m2unet_covd-drive.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-DRIVE.pth
 .. _m2unet_covd-drive_ssl.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-DRIVE_SSL.pth
+
+.. STARE
+.. _driu_stare.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_STARE.pth
+.. _m2unet_stare.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_STARE.pth
 .. _m2unet_covd-stare.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-STARE.pth
 .. _m2unet_covd-stare_ssl.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-STARE_SSL.pth
-.. _m2unet_covd-chaesdb1.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-CHASEDB1.pth
-.. _m2unet_covd-chaesdb1_ssl.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-CHASEDB1_SSL.pth
-.. _m2unet_covd-hrf.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-HRF.pth
-.. _m2unet_covd-hrf_ssl.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-HRF_SSL.pth
+
+.. CHASE-DB1
+.. _driu_chasedb1.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_CHASEDB1.pth
+.. _m2unet_chasedb1.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_CHASEDB1.pth
+.. _m2unet_covd-chasedb1.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-CHASEDB1.pth
+.. _m2unet_covd-chasedb1_ssl.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-CHASEDB1_SSL.pth
+
+.. IOSTAR
+.. _driu_iostar.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_IOSTARVESSEL.pth
+.. _m2unet_iostar.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_IOSTARVESSEL.pth
 .. _m2unet_covd-iostar.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-IOSTAR.pth
 .. _m2unet_covd-iostar_ssl.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-IOSTAR_SSL.pth
 
+.. HRF
+.. _driu_hrf.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_HRF1168.pth
+.. _m2unet_hrf.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_HRF1168.pth
+.. _m2unet_covd-hrf.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-HRF.pth
+.. _m2unet_covd-hrf_ssl.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-HRF_SSL.pth
diff --git a/doc/models.rst b/doc/models.rst
new file mode 100644
index 0000000000000000000000000000000000000000..168b2414ad72cc730220315ca08ef6cb0a38411a
--- /dev/null
+++ b/doc/models.rst
@@ -0,0 +1,65 @@
+.. -*- coding: utf-8 -*-
+
+.. _bob.ip.binseg.models:
+
+===================
+ Pretrained Models
+===================
+
+We offer the following pre-trained models allowing inference and score
+reproduction of our results.  Due to storage limitations we only provide
+weights of a subset of all evaluated models.
+
+
+.. list-table::
+
+   * - **Datasets / Models**
+     - :py:mod:`driu <bob.ip.binseg.configs.models.driu>`
+     - :py:mod:`m2unet <bob.ip.binseg.configs.models.m2unet>`
+   * - :py:mod:`drive <bob.ip.binseg.configs.datasets.drive.default>`
+     - driu_drive.pth_
+     - m2unet_drive.pth_
+   * - :py:mod:`drive-drive <bob.ip.binseg.configs.datasets.drive.covd>`
+     -
+     - m2unet_covd-drive.pth_
+   * - :py:mod:`drive-ssl <bob.ip.binseg.configs.datasets.drive.ssl>`
+     -
+     - m2unet_covd-drive_ssl.pth_
+   * - :py:mod:`stare <bob.ip.binseg.configs.datasets.stare.ah>`
+     - driu_stare.pth_
+     - m2unet_stare.pth_
+   * - :py:mod:`stare-covd <bob.ip.binseg.configs.datasets.stare.covd>`
+     -
+     - m2unet_covd-stare.pth_
+   * - :py:mod:`stare-ssl <bob.ip.binseg.configs.datasets.stare.ssl>`
+     -
+     - m2unet_covd-stare_ssl.pth_
+   * - :py:mod:`chasedb1 <bob.ip.binseg.configs.datasets.chasedb1.first_annotator>`
+     - driu_chasedb1.pth_
+     - m2unet_chasedb1.pth_
+   * - :py:mod:`chasedb1-covd <bob.ip.binseg.configs.datasets.chasedb1.covd>`
+     -
+     - m2unet_covd-chasedb1.pth_
+   * - :py:mod:`chasedb1-ssl <bob.ip.binseg.configs.datasets.chasedb1.ssl>`
+     -
+     - m2unet_covd-chasedb1_ssl.pth_
+   * - :py:mod:`iostar-vessel <bob.ip.binseg.configs.datasets.iostar.vessel>`
+     - driu_iostar.pth_
+     - m2unet_iostar.pth_
+   * - :py:mod:`iostar-vessel-covd <bob.ip.binseg.configs.datasets.iostar.covd>`
+     -
+     - m2unet_covd-iostar.pth_
+   * - :py:mod:`iostar-vessel-ssl <bob.ip.binseg.configs.datasets.iostar.ssl>`
+     -
+     - m2unet_covd-iostar_ssl.pth_
+   * - :py:mod:`hrf <bob.ip.binseg.configs.datasets.hrf.default>`
+     - driu_hrf.pth_
+     - m2unet_hrf.pth_
+   * - :py:mod:`hrf-covd <bob.ip.binseg.configs.datasets.hrf.covd>`
+     -
+     - m2unet_covd-hrf.pth_
+   * - :py:mod:`hrf-ssl <bob.ip.binseg.configs.datasets.hrf.ssl>`
+     -
+     - m2unet_covd-hrf_ssl.pth_
+
+.. include:: links.rst
diff --git a/doc/nitpick-exceptions.txt b/doc/nitpick-exceptions.txt
index bd53da1a83ba588f4c110926093fc88ba0016501..8f6fe3b338c959f4f3113d1280c57228351a8c0a 100644
--- a/doc/nitpick-exceptions.txt
+++ b/doc/nitpick-exceptions.txt
@@ -1,6 +1,2 @@
-py:class torch.nn.modules.module.Module
 py:class torch.nn.modules.loss._Loss
-py:class torch.utils.data.dataset.Dataset
 py:class Module
-py:mod bob.db.base
-py:obj list
diff --git a/doc/plotting.rst b/doc/plotting.rst
deleted file mode 100644
index f05ee42d12572211ffe4037a1c7d706283042a63..0000000000000000000000000000000000000000
--- a/doc/plotting.rst
+++ /dev/null
@@ -1,20 +0,0 @@
-.. -*- coding: utf-8 -*-
-.. _bob.ip.binseg.plotting:
-
-========
-Plotting
-========
-
-Precision vs recall curves for each evaluation run are generated by default and
-stored in the ``results`` subfolder of the model output directory.
-
-To generate a comparison chart of various models use the ``compare`` command
-and pass as arguments the output paths of the models you would like to plot.
-
-E.g.:
-
-.. code-block:: bash
-
-    bob binseg compare -o myoutput -l myoutput/DRIVE/M2U-Net myoutput/DRIVE/U-Net myoutput/DRIVE/HED -t MyPlotTitle
-
-Use ``bob binseg compare --help`` for more information.
diff --git a/doc/references.rst b/doc/references.rst
new file mode 100644
index 0000000000000000000000000000000000000000..6b942813843865e8d8e9cc87d15952c3a3ad3af4
--- /dev/null
+++ b/doc/references.rst
@@ -0,0 +1,106 @@
+.. coding=utf-8
+
+============
+ References
+============
+
+.. [STARE-2000] *A. D. Hoover, V. Kouznetsova and M. Goldbaum*, **Locating blood
+   vessels in retinal images by piecewise threshold probing of a matched filter
+   response**, in IEEE Transactions on Medical Imaging, vol. 19, no. 3, pp.
+   203-210, March 2000. https://doi.org/10.1109/42.845178
+
+.. [DRIVE-2004] *J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever and B.
+   van Ginneken*, **Ridge-based vessel segmentation in color images of the
+   retina**, in IEEE Transactions on Medical Imaging, vol. 23, no. 4, pp.
+   501-509, April 2004. https://doi.org/10.1109/TMI.2004.825627
+
+.. [CHASEDB1-2012] *M. M. Fraz et al.*, **An Ensemble Classification-Based
+   Approach Applied to Retinal Blood Vessel Segmentation**, in IEEE
+   Transactions on Biomedical Engineering, vol. 59, no. 9, pp. 2538-2548, Sept.
+   2012. https://doi.org/10.1109/TBME.2012.2205687
+
+.. [HRF-2013] *A. Budai, R. Bock, A. Maier, J. Hornegger, and G. Michelson*,
+   **Robust Vessel Segmentation in Fundus Images**, in International Journal of
+   Biomedical Imaging, vol. 2013, p. 11, 2013.
+   http://dx.doi.org/10.1155/2013/154860
+
+.. [IOSTAR-2016] *J. Zhang, B. Dashtbozorg, E. Bekkers, J. P. W. Pluim, R. Duits
+   and B. M. ter Haar Romeny*, **Robust Retinal Vessel Segmentation via Locally
+   Adaptive Derivative Frames in Orientation Scores**, in IEEE Transactions on
+   Medical Imaging, vol. 35, no. 12, pp. 2631-2644, Dec. 2016.
+   https://doi.org/10.1109/TMI.2016.2587062
+
+.. [DRIONSDB-2008] *Enrique J. Carmona, Mariano Rincón, Julián García-Feijoó, José
+   M. Martínez-de-la-Casa*, **Identification of the optic nerve head with
+   genetic algorithms**, in Artificial Intelligence in Medicine, Volume 43,
+   Issue 3, pp. 243-259, 2008. http://dx.doi.org/10.1016/j.artmed.2008.04.005
+
+.. [RIMONER3-2015] *F. Fumero, J. Sigut, S. Alayón, M. González-Hernández, M.
+   González de la Rosa*, **Interactive Tool and Database for Optic Disc and Cup
+   Segmentation of Stereo and Monocular Retinal Fundus Images**, Conference on
+   Computer Graphics, Visualization and Computer Vision, 2015.
+   https://dspace5.zcu.cz/bitstream/11025/29670/1/Fumero.pdf
+
+.. [DRISHTIGS1-2014] *J. Sivaswamy, S. R. Krishnadas, G. Datt Joshi, M. Jain and
+   A. U. Syed Tabish*, **Drishti-GS: Retinal image dataset for optic nerve
+   head (ONH) segmentation**, 2014 IEEE 11th International Symposium on
+   Biomedical Imaging (ISBI), Beijing, 2014, pp. 53-56.
+   https://doi.org/10.1109/ISBI.2014.6867807
+
+.. [REFUGE-2018] https://refuge.grand-challenge.org/Details/
+
+.. [MANINIS-2016] *K.-K. Maninis, J. Pont-Tuset, P. Arbeláez, and L. Van Gool*,
+   **Deep Retinal Image Understanding**, in Medical Image Computing and
+   Computer-Assisted Intervention – MICCAI 2016, Cham, 2016, pp. 140–148.
+   https://doi.org/10.1007/978-3-319-46723-8_17
+
+.. [ORLANDO-2017] *J. I. Orlando, E. Prokofyeva and M. B. Blaschko*, **A
+   Discriminatively Trained Fully Connected Conditional Random Field Model for
+   Blood Vessel Segmentation in Fundus Images**, in IEEE Transactions on
+   Biomedical Engineering, vol. 64, no. 1, pp. 16-27, Jan. 2017.
+   https://doi.org/10.1109/TBME.2016.2535311
+
+.. [MEYER-2017] *M. I. Meyer, P. Costa, A. Galdran, A. M. Mendonça, and A.
+   Campilho*, **A Deep Neural Network for Vessel Segmentation of Scanning Laser
+   Ophthalmoscopy Images**, in Image Analysis and Recognition, vol. 10317, F.
+   Karray, A. Campilho, and F. Cheriet, Eds. Cham: Springer International
+   Publishing, 2017, pp. 507–515. https://doi.org/10.1007/978-3-319-59876-5_56
+
+.. [IGLOVIKOV-2018] *V. Iglovikov, S. Seferbekov, A. Buslaev and A. Shvets*,
+   **TernausNetV2: Fully Convolutional Network for Instance Segmentation**,
+   2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
+   Workshops (CVPRW), Salt Lake City, UT, 2018, pp. 228-2284.
+   https://doi.org/10.1109/CVPRW.2018.00042
+
+.. [HE-2015] *S. Xie and Z. Tu*, **Holistically-Nested Edge Detection**, 2015
+   IEEE International Conference on Computer Vision (ICCV), Santiago, 2015, pp.
+   1395-1403. https://doi.org/10.1109/ICCV.2015.164
+
+.. [LUO-2019] *L. Luo, Y. Xiong, Y. Liu, and X. Sun*, **Adaptive Gradient
+   Methods with Dynamic Bound of Learning Rate**, Proceedings of the 7th
+   International Conference on Learning Representations (ICLR), Feb. 2019.
+   https://arxiv.org/abs/1902.09843v1
+
+.. [MASSA-2018] *F. Massa and R. Girshick*, **maskrcnn-benchmark: Fast, modular
+   reference implementation of Instance Segmentation and Object Detection
+   algorithms in PyTorch**. 2018.  Last accessed: 21.03.2020.
+   https://github.com/facebookresearch/maskrcnn-benchmark
+
+.. [LIN-2018] *J. Lin*, **pytorch-mobilenet-v2: A PyTorch implementation of
+   MobileNetV2**, 2018.  Last accessed: 21.03.2020.
+   https://github.com/tonylins/pytorch-mobilenet-v2
+
+.. [XIE-2015] *S. Xie and Z. Tu*, **Holistically-Nested Edge Detection**, 2015
+   IEEE International Conference on Computer Vision (ICCV), Santiago, 2015, pp.
+   1395-1403.  https://doi.org/10.1109/ICCV.2015.164
+
+.. [RONNEBERGER-2015] *O. Ronneberger, P. Fischer, T. Brox*, **U-Net:
+   Convolutional Networks for Biomedical Image Segmentation**, 2015.
+   https://arxiv.org/abs/1505.04597
+
+.. [ZHANG-2017] *Z. Zhang, Q. Liu, Y. Wang*, **Road Extraction by Deep Residual
+   U-Net**, 2017. https://arxiv.org/abs/1711.10684
+
+.. [SANDLER-2018] *M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C.h Chen*,
+   **MobileNetV2: Inverted Residuals and Linear Bottlenecks**, 2018.
+   https://arxiv.org/abs/1801.04381
diff --git a/doc/results/baselines/chasedb1.pdf b/doc/results/baselines/chasedb1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..3139798feaa762bc1c9a11e8a6716a5ae21e9a63
Binary files /dev/null and b/doc/results/baselines/chasedb1.pdf differ
diff --git a/doc/results/baselines/chasedb1.png b/doc/results/baselines/chasedb1.png
new file mode 100644
index 0000000000000000000000000000000000000000..0f760b2a097c2b42fa0e067a5a9920d0a525788c
Binary files /dev/null and b/doc/results/baselines/chasedb1.png differ
diff --git a/doc/results/baselines/drive.pdf b/doc/results/baselines/drive.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..3fba78c86bf8c0f20d8ac2612b87a67cdad0b20b
Binary files /dev/null and b/doc/results/baselines/drive.pdf differ
diff --git a/doc/results/baselines/drive.png b/doc/results/baselines/drive.png
new file mode 100644
index 0000000000000000000000000000000000000000..9ecae7f663dde499a0cd3999e0aeaecf17aab778
Binary files /dev/null and b/doc/results/baselines/drive.png differ
diff --git a/doc/results/baselines/hrf.pdf b/doc/results/baselines/hrf.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..03bd6092d55df80b9f35c04e23caec13828d80f3
Binary files /dev/null and b/doc/results/baselines/hrf.pdf differ
diff --git a/doc/results/baselines/hrf.png b/doc/results/baselines/hrf.png
new file mode 100644
index 0000000000000000000000000000000000000000..1608a3e7fdcab0bac4321b85945eb6766abb5827
Binary files /dev/null and b/doc/results/baselines/hrf.png differ
diff --git a/doc/results/baselines/index.rst b/doc/results/baselines/index.rst
new file mode 100644
index 0000000000000000000000000000000000000000..ce5361fbe43cf1da75b49bcdf03a673f3efce830
--- /dev/null
+++ b/doc/results/baselines/index.rst
@@ -0,0 +1,136 @@
+.. -*- coding: utf-8 -*-
+
+.. _bob.ip.binseg.results.baselines:
+
+===================
+ Baseline Results
+===================
+
+F1 Scores (micro-level)
+-----------------------
+
+* Benchmark results for models: DRIU, HED, M2U-Net and U-Net.
+* Models are trained and tested on the same dataset (**numbers in bold**
+  indicate number of parameters per model).  Models are trained for a fixed
+  number of 1000 epochs, with a learning rate of 0.001 until epoch 900 and then
+  0.0001 until the end of the training.
+* Database and model resource configuration links (table top row and left
+  column) are linked to the originating configuration files used to obtain
+  these results.
+* Check `our paper`_ for details on the calculation of the F1 Score and standard
+  deviations (in parentheses).
+* Single performance numbers correspond to *a priori* performance indicators,
+  where the threshold is previously selected on the training set
+* You can cross check the analysis numbers provided in this table by
+  downloading this software package, the raw data, and running ``bob binseg
+  analyze`` providing the model URL as ``--weight`` parameter.
+* For comparison purposes, we provide "second-annotator" performances on the
+  same test set, where available.
+
+
+.. list-table::
+   :header-rows: 2
+
+   * -
+     -
+     - :py:mod:`driu <bob.ip.binseg.configs.models.driu>`
+     - :py:mod:`hed <bob.ip.binseg.configs.models.hed>`
+     - :py:mod:`m2unet <bob.ip.binseg.configs.models.m2unet>`
+     - :py:mod:`unet <bob.ip.binseg.configs.models.unet>`
+   * - Dataset
+     - 2nd. Annot.
+     - 15M
+     - 14.7M
+     - 0.55M
+     - 25.8M
+   * - :py:mod:`drive <bob.ip.binseg.configs.datasets.drive.default>`
+     - 0.788 (0.021)
+     - `0.819 (0.016) <baselines_driu_drive_>`_
+     - `0.806 (0.015) <baselines_hed_drive_>`_
+     - `0.804 (0.014) <baselines_m2unet_drive_>`_
+     - `0.823 (0.015) <baselines_unet_drive_>`_
+   * - :py:mod:`stare <bob.ip.binseg.configs.datasets.stare.ah>`
+     - 0.759 (0.028)
+     - `0.824 (0.037) <baselines_driu_stare_>`_
+     - `0.810 (0.045) <baselines_hed_stare_>`_
+     - `0.811 (0.039) <baselines_m2unet_stare_>`_
+     - `0.828 (0.041) <baselines_unet_stare_>`_
+   * - :py:mod:`chasedb1 <bob.ip.binseg.configs.datasets.chasedb1.first_annotator>`
+     - 0.768 (0.023)
+     - `0.811 (0.018) <baselines_driu_chase_>`_
+     - `0.806 (0.021) <baselines_hed_chase_>`_
+     - `0.801 (0.018) <baselines_m2unet_chase_>`_
+     - `0.802 (0.015) <baselines_unet_chase_>`_
+   * - :py:mod:`hrf <bob.ip.binseg.configs.datasets.hrf.default>`
+     -
+     - `0.802 (0.039) <baselines_driu_hrf_>`_
+     - `0.793 (0.041) <baselines_hed_hrf_>`_
+     - `0.796 (0.043) <baselines_m2unet_hrf_>`_
+     - `0.798 (0.038) <baselines_unet_hrf_>`_
+   * - :py:mod:`iostar-vessel <bob.ip.binseg.configs.datasets.iostar.vessel>`
+     -
+     - `0.825 (0.021) <baselines_driu_iostar_>`_
+     - `0.822 (0.023) <baselines_hed_iostar_>`_
+     - `0.817 (0.021) <baselines_m2unet_iostar_>`_
+     - `0.818 (0.019) <baselines_unet_iostar_>`_
+
+
+Precision-Recall (PR) Curves
+----------------------------
+
+Next, you will find the PR plots showing confidence intervals, for the various
+models explored, on a per dataset arrangement.  All curves correspond to test
+set performances.  Single performance figures (F1-micro scores) correspond to
+its average value across all test set images, for a fixed threshold set to
+``0.5``.
+
+.. list-table::
+
+    * - .. figure:: drive.png
+           :align: center
+           :scale: 50%
+           :alt: Model comparisons for drive datasets
+
+           :py:mod:`drive <bob.ip.binseg.configs.datasets.drive.default>`: PR curve and F1 scores at T=0.5 (:download:`pdf <drive.pdf>`)
+      - .. figure:: stare.png
+           :align: center
+           :scale: 50%
+           :alt: Model comparisons for stare datasets
+
+           :py:mod:`stare <bob.ip.binseg.configs.datasets.stare.ah>`: PR curve and F1 scores at T=0.5 (:download:`pdf <stare.pdf>`)
+    * - .. figure:: chasedb1.png
+           :align: center
+           :scale: 50%
+           :alt: Model comparisons for chasedb1 datasets
+
+           :py:mod:`chasedb1 <bob.ip.binseg.configs.datasets.chasedb1.first_annotator>`: PR curve and F1 scores at T=0.5 (:download:`pdf <chasedb1.pdf>`)
+      - .. figure:: hrf.png
+           :align: center
+           :scale: 50%
+           :alt: Model comparisons for hrf datasets
+
+           :py:mod:`hrf <bob.ip.binseg.configs.datasets.hrf.default>`: PR curve and F1 scores at T=0.5 (:download:`pdf <hrf.pdf>`)
+    * - .. figure:: iostar-vessel.png
+           :align: center
+           :scale: 50%
+           :alt: Model comparisons for iostar-vessel datasets
+
+           :py:mod:`iostar-vessel <bob.ip.binseg.configs.datasets.iostar.vessel>`: PR curve and F1 scores at T=0.5 (:download:`pdf <iostar-vessel.pdf>`)
+      -
+
+
+Remarks
+-------
+
+* There seems to be no clear winner as confidence intervals based on the
+  standard deviation overlap substantially between the different models, and
+  across different datasets.
+* There seems to be almost no effect on the number of parameters on
+  performance.  U-Net, the largest model, is not a clear winner through all
+  baseline benchmarks
+* Where second annotator labels exist, model performance and variability seems
+  on par with such annotations.  One possible exception is for CHASE-DB1, where
+  models show consistently less variability than the second annotator.
+  Unfortunately, this cannot be conclusive.
+
+.. include:: ../../links.rst
diff --git a/doc/results/baselines/iostar-vessel.pdf b/doc/results/baselines/iostar-vessel.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..141ea565273373311ca3960cdb994ba2f2c6f58c
Binary files /dev/null and b/doc/results/baselines/iostar-vessel.pdf differ
diff --git a/doc/results/baselines/iostar-vessel.png b/doc/results/baselines/iostar-vessel.png
new file mode 100644
index 0000000000000000000000000000000000000000..7da4802492e1eac053166080e5b19090c2499f59
Binary files /dev/null and b/doc/results/baselines/iostar-vessel.png differ
diff --git a/doc/results/baselines/stare.pdf b/doc/results/baselines/stare.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..8bafd654a22dac56458355e048ede26ce4ce7cd1
Binary files /dev/null and b/doc/results/baselines/stare.pdf differ
diff --git a/doc/results/baselines/stare.png b/doc/results/baselines/stare.png
new file mode 100644
index 0000000000000000000000000000000000000000..7a632af2907d4c0f4d48d23072dcc97c189cf83f
Binary files /dev/null and b/doc/results/baselines/stare.png differ
diff --git a/doc/results/covd/index.rst b/doc/results/covd/index.rst
new file mode 100644
index 0000000000000000000000000000000000000000..844d9b963871fd3afcf2495d260d6778a758b3f6
--- /dev/null
+++ b/doc/results/covd/index.rst
@@ -0,0 +1,122 @@
+.. -*- coding: utf-8 -*-
+
+.. _bob.ip.binseg.results.covd:
+
+.. todo::
+
+   This section is outdated and needs re-factoring.
+
+
+============================
+ COVD- and COVD-SLL Results
+============================
+
+In addition to the M2U-Net architecture, we also evaluated the larger DRIU
+network and a variation of it that contains batch normalization (DRIU+BN) on
+COVD- (Combined Vessel Dataset from all training data minus target test set)
+and COVD-SSL (COVD- and Semi-Supervised Learning). Perhaps surprisingly, for
+the majority of combinations, the performance of the DRIU variants are roughly
+equal or worse to the ones obtained with the much smaller M2U-Net.  We
+anticipate that one reason for this could be overparameterization of large
+VGG-16 models that are pretrained on ImageNet.
+
+
+F1 Scores
+---------
+
+Comparison of F1 Scores (micro-level and standard deviation) of DRIU and
+M2U-Net on COVD- and COVD-SSL.  Standard deviation across test-images in
+brackets.
+
+.. list-table::
+   :header-rows: 1
+
+   * - F1 score
+     - :py:mod:`DRIU <bob.ip.binseg.configs.models.driu>`/:py:mod:`DRIU@SSL <bob.ip.binseg.configs.models.driu_ssl>`
+     - :py:mod:`DRIU+BN <bob.ip.binseg.configs.models.driu_bn>`/:py:mod:`DRIU+BN@SSL <bob.ip.binseg.configs.models.driu_bn_ssl>`
+     - :py:mod:`M2U-Net <bob.ip.binseg.configs.models.m2unet>`/:py:mod:`M2U-Net@SSL <bob.ip.binseg.configs.models.m2unet_ssl>`
+   * - :py:mod:`COVD-DRIVE <bob.ip.binseg.configs.datasets.drive.covd>`
+     - 0.788 (0.018)
+     - 0.797 (0.019)
+     - `0.789 (0.018) <m2unet_covd-drive.pth>`_
+   * - :py:mod:`COVD-DRIVE+SSL <bob.ip.binseg.configs.datasets.drive.ssl>`
+     - 0.785 (0.018)
+     - 0.783 (0.019)
+     - `0.791 (0.014) <m2unet_covd-drive_ssl.pth>`_
+   * - :py:mod:`COVD-STARE <bob.ip.binseg.configs.datasets.stare.covd>`
+     - 0.778 (0.117)
+     - 0.778 (0.122)
+     - `0.812 (0.046) <m2unet_covd-stare.pth>`_
+   * - :py:mod:`COVD-STARE+SSL <bob.ip.binseg.configs.datasets.stare.ssl>`
+     - 0.788 (0.102)
+     - 0.811 (0.074)
+     - `0.820 (0.044) <m2unet_covd-stare_ssl.pth>`_
+   * - :py:mod:`COVD-CHASEDB1 <bob.ip.binseg.configs.datasets.chasedb1.covd>`
+     - 0.796 (0.027)
+     - 0.791 (0.025)
+     - `0.788 (0.024) <m2unet_covd-chasedb1.pth>`_
+   * - :py:mod:`COVD-CHASEDB1+SSL <bob.ip.binseg.configs.datasets.chasedb1.ssl>`
+     - 0.796 (0.024)
+     - 0.798 (0.025)
+     - `0.799 (0.026) <m2unet_covd-chasedb1_ssl.pth>`_
+   * - :py:mod:`COVD-HRF <bob.ip.binseg.configs.datasets.hrf.covd>`
+     - 0.799 (0.044)
+     - 0.800 (0.045)
+     - `0.802 (0.045) <m2unet_covd-hrf.pth>`_
+   * - :py:mod:`COVD-HRF+SSL <bob.ip.binseg.configs.datasets.hrf.ssl>`
+     - 0.799 (0.044)
+     - 0.784 (0.048)
+     - `0.797 (0.044) <m2unet_covd-hrf_ssl.pth>`_
+   * - :py:mod:`COVD-IOSTAR-VESSEL <bob.ip.binseg.configs.datasets.iostar.covd>`
+     - 0.791 (0.021)
+     - 0.777 (0.032)
+     - `0.793 (0.015) <m2unet_covd-iostar.pth>`_
+   * - :py:mod:`COVD-IOSTAR-VESSEL+SSL <bob.ip.binseg.configs.datasets.iostar.ssl>`
+     - 0.797 (0.017)
+     - 0.811 (0.074)
+     - `0.785 (0.018) <m2unet_covd-iostar_ssl.pth>`_
+
+
+M2U-Net Precision vs. Recall Curves
+-----------------------------------
+
+Precision vs. recall curves for each evaluated dataset.  Note that here the
+F1-score is calculated on a macro level (see paper for more details).
+
+.. figure:: pr_CHASEDB1.png
+   :scale: 50 %
+   :align: center
+   :alt: model comparisons
+
+   CHASE_DB1: Precision vs Recall curve and F1 scores
+
+.. figure:: pr_DRIVE.png
+   :scale: 50 %
+   :align: center
+   :alt: model comparisons
+
+   DRIVE: Precision vs Recall curve and F1 scores
+
+.. figure:: pr_HRF.png
+   :scale: 50 %
+   :align: center
+   :alt: model comparisons
+
+   HRF: Precision vs Recall curve and F1 scores
+
+.. figure:: pr_IOSTARVESSEL.png
+   :scale: 50 %
+   :align: center
+   :alt: model comparisons
+
+   IOSTAR: Precision vs Recall curve and F1 scores
+
+.. figure:: pr_STARE.png
+   :scale: 50 %
+   :align: center
+   :alt: model comparisons
+
+   STARE: Precision vs Recall curve and F1 scores
+
+
+.. include:: ../../links.rst
diff --git a/doc/img/pr_CHASEDB1.png b/doc/results/covd/pr_CHASEDB1.png
similarity index 100%
rename from doc/img/pr_CHASEDB1.png
rename to doc/results/covd/pr_CHASEDB1.png
diff --git a/doc/img/pr_DRIVE.png b/doc/results/covd/pr_DRIVE.png
similarity index 100%
rename from doc/img/pr_DRIVE.png
rename to doc/results/covd/pr_DRIVE.png
diff --git a/doc/img/pr_HRF.png b/doc/results/covd/pr_HRF.png
similarity index 100%
rename from doc/img/pr_HRF.png
rename to doc/results/covd/pr_HRF.png
diff --git a/doc/img/pr_IOSTARVESSEL.png b/doc/results/covd/pr_IOSTARVESSEL.png
similarity index 100%
rename from doc/img/pr_IOSTARVESSEL.png
rename to doc/results/covd/pr_IOSTARVESSEL.png
diff --git a/doc/img/pr_STARE.png b/doc/results/covd/pr_STARE.png
similarity index 100%
rename from doc/img/pr_STARE.png
rename to doc/results/covd/pr_STARE.png
diff --git a/doc/results/index.rst b/doc/results/index.rst
new file mode 100644
index 0000000000000000000000000000000000000000..f2d7e2ac8de271a3745b1de154d0b848ef70806b
--- /dev/null
+++ b/doc/results/index.rst
@@ -0,0 +1,23 @@
+.. -*- coding: utf-8 -*-
+
+.. _bob.ip.binseg.results:
+
+=========
+ Results
+=========
+
+This section summarizes results that can be obtained with this package, and
+were presented in our paper.  We organize the result section in two parts, for
+covering baseline results (training and testing on the same dataset) and
+results using our Combined Vessel Dataset minus target dataset (COVD-) training
+strategy.
+
+.. toctree::
+   :maxdepth: 2
+
+   baselines/index
+   xtest/index
+   covd/index
+
+
+.. include:: ../links.rst
diff --git a/doc/results/xtest/driu-chasedb1.pdf b/doc/results/xtest/driu-chasedb1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..bb28aafb8479d2f07336a7dfdcdd16fa148f5117
Binary files /dev/null and b/doc/results/xtest/driu-chasedb1.pdf differ
diff --git a/doc/results/xtest/driu-chasedb1.png b/doc/results/xtest/driu-chasedb1.png
new file mode 100644
index 0000000000000000000000000000000000000000..be26e9f8e8b140aaca692c417892abb515a180f4
Binary files /dev/null and b/doc/results/xtest/driu-chasedb1.png differ
diff --git a/doc/results/xtest/driu-drive.pdf b/doc/results/xtest/driu-drive.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..1f9fc10b1ffa612f6f889666598620f1007ef03f
Binary files /dev/null and b/doc/results/xtest/driu-drive.pdf differ
diff --git a/doc/results/xtest/driu-drive.png b/doc/results/xtest/driu-drive.png
new file mode 100644
index 0000000000000000000000000000000000000000..fba68683bf3a43a19a0a99c2f2f63d3f5d219473
Binary files /dev/null and b/doc/results/xtest/driu-drive.png differ
diff --git a/doc/results/xtest/driu-hrf.pdf b/doc/results/xtest/driu-hrf.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..01d78c98e041d4db603bce19ad549811b3cc3a81
Binary files /dev/null and b/doc/results/xtest/driu-hrf.pdf differ
diff --git a/doc/results/xtest/driu-hrf.png b/doc/results/xtest/driu-hrf.png
new file mode 100644
index 0000000000000000000000000000000000000000..0cbd94c9f9c9ffa71f5f513cd8f997070bc979ee
Binary files /dev/null and b/doc/results/xtest/driu-hrf.png differ
diff --git a/doc/results/xtest/driu-iostar-vessel.pdf b/doc/results/xtest/driu-iostar-vessel.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..db822d0f5c53d1579b8c71f3e339eefe2519e582
Binary files /dev/null and b/doc/results/xtest/driu-iostar-vessel.pdf differ
diff --git a/doc/results/xtest/driu-iostar-vessel.png b/doc/results/xtest/driu-iostar-vessel.png
new file mode 100644
index 0000000000000000000000000000000000000000..5842c71646109aecb0456cb20f99783b3b3bda0d
Binary files /dev/null and b/doc/results/xtest/driu-iostar-vessel.png differ
diff --git a/doc/results/xtest/driu-stare.pdf b/doc/results/xtest/driu-stare.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..f44d12dafca83b3e2d3af52a48244ad1bd43365c
Binary files /dev/null and b/doc/results/xtest/driu-stare.pdf differ
diff --git a/doc/results/xtest/driu-stare.png b/doc/results/xtest/driu-stare.png
new file mode 100644
index 0000000000000000000000000000000000000000..6573b820be3e2402e732c45d1c106f0abb103aef
Binary files /dev/null and b/doc/results/xtest/driu-stare.png differ
diff --git a/doc/results/xtest/index.rst b/doc/results/xtest/index.rst
new file mode 100644
index 0000000000000000000000000000000000000000..e65c9e9997e8dca62e0a6fcfd0bea45bae11906d
--- /dev/null
+++ b/doc/results/xtest/index.rst
@@ -0,0 +1,241 @@
+.. -*- coding: utf-8 -*-
+
+.. _bob.ip.binseg.results.xtest:
+
+==========================
+ Cross-Database (X-)Tests
+==========================
+
+F1 Scores (micro-level)
+-----------------------
+
+* Models are trained and tested on the same dataset (numbers in parenthesis
+  indicate number of parameters per model), and then evaluated across the test
+  sets of other databases.  X-tested datasets therefore represent *unseen*
+  data and can be a good proxy for generalisation analysis.
+* Each table row indicates a base trained model and each column the databases
+  the model was tested against.  The native performance (intra-database) is
+  marked **in bold**.  Thresholds are chosen *a priori* on the training set of
+  the database used to generate the model being cross-tested.  Hence, the
+  threshold used for all experiments in a same row is always the same.
+* You can cross check the analysis numbers provided in this table by
+  downloading this software package, the raw data, and running ``bob binseg
+  analyze`` providing the model URL as ``--weight`` parameter, and then the
+  ``-xtest`` resource variant of the dataset the model was trained on.  For
+  example, to run cross-evaluation tests for the DRIVE dataset, use the
+  configuration resource :py:mod:`drive-xtest
+  <bob.ip.binseg.configs.datasets.drive.xtest>`.
+* We only show results for DRIU (~15.4 million parameters) and M2U-Net (~550
+  thousand parameters) as these models seem to represent the performance
+  extremes according to our :ref:`baseline analysis
+  <bob.ip.binseg.results.baselines>`.  You may run analysis on the other models
+  by downloading them from our website (via the ``--weight`` parameter on the
+  :ref:`analyze script <bob.ip.binseg.cli.analyze>`).  This script may help you
+  in this task, provided you created a directory structure as suggested by
+  :ref:`our baseline script <bob.ip.binseg.baseline-script>`:
+
+  .. literalinclude:: ../../scripts/xtest.sh
+     :language: bash
+
+
+DRIU
+====
+
+
+.. list-table::
+   :header-rows: 2
+
+   * -
+     - drive
+     - stare
+     - chasedb1
+     - hrf
+     - iostar-vessel
+   * - Model / W x H
+     - 544 x 544
+     - 704 x 608
+     - 960 x 960
+     - 1648 x 1168
+     - 1024 x 1024
+   * - :py:mod:`drive <bob.ip.binseg.configs.datasets.drive.default>` (`model <baselines_driu_drive_>`_)
+     - **0.819 (0.016)**
+     - 0.759 (0.151)
+     - 0.321 (0.068)
+     - 0.711 (0.067)
+     - 0.493 (0.049)
+   * - :py:mod:`stare <bob.ip.binseg.configs.datasets.stare.ah>` (`model <baselines_driu_stare_>`_)
+     - 0.733 (0.037)
+     - **0.824 (0.037)**
+     - 0.491 (0.094)
+     - 0.773 (0.051)
+     - 0.469 (0.055)
+   * - :py:mod:`chasedb1 <bob.ip.binseg.configs.datasets.chasedb1.first_annotator>` (`model <baselines_driu_chase_>`_)
+     - 0.730 (0.023)
+     - 0.730 (0.101)
+     - **0.811 (0.018)**
+     - 0.779 (0.043)
+     - 0.774 (0.019)
+   * - :py:mod:`hrf <bob.ip.binseg.configs.datasets.hrf.default>` (`model <baselines_driu_hrf_>`_)
+     - 0.702 (0.038)
+     - 0.641 (0.160)
+     - 0.600 (0.072)
+     - **0.802 (0.039)**
+     - 0.546  (0.078)
+   * - :py:mod:`iostar-vessel <bob.ip.binseg.configs.datasets.iostar.vessel>` (`model <baselines_driu_iostar_>`_)
+     - 0.758 (0.019)
+     - 0.724 (0.115)
+     - 0.777 (0.032)
+     - 0.727 (0.059)
+     - **0.825 (0.021)**
+
+
+Next, you will find the PR plots showing confidence intervals, for the various
+cross-tests explored, on a per cross-tested model arrangement.  All curves
+correspond to test set performances.  Single performance figures (F1-micro
+scores) correspond to its average value across all test set images, for a fixed
+threshold set *a priori* on the training set of dataset used for creating the
+model.
+
+.. list-table::
+
+    * - .. figure:: driu-drive.png
+           :align: center
+           :scale: 40%
+           :alt: X-tests for a DRIU model based on DRIVE
+
+           :py:mod:`drive <bob.ip.binseg.configs.datasets.drive.xtest>`: DRIU model X-tested (:download:`pdf <driu-drive.pdf>`)
+      - .. figure:: driu-stare.png
+           :align: center
+           :scale: 40%
+           :alt: X-tests for a DRIU model based on STARE
+
+           :py:mod:`stare <bob.ip.binseg.configs.datasets.stare.xtest>`: DRIU model X-tested (:download:`pdf <driu-stare.pdf>`)
+    * - .. figure:: driu-chasedb1.png
+           :align: center
+           :scale: 40%
+           :alt: X-tests for a DRIU model based on CHASE-DB1
+
+           :py:mod:`chasedb1 <bob.ip.binseg.configs.datasets.chasedb1.xtest>`: DRIU model X-tested (:download:`pdf <driu-chasedb1.pdf>`)
+      - .. figure:: driu-hrf.png
+           :align: center
+           :scale: 40%
+           :alt: X-tests for a DRIU model based on HRF
+
+           :py:mod:`hrf <bob.ip.binseg.configs.datasets.hrf.xtest>`: DRIU model X-tested (:download:`pdf <driu-hrf.pdf>`)
+    * - .. figure:: driu-iostar-vessel.png
+           :align: center
+           :scale: 40%
+           :alt: X-tests for a DRIU model based on IOSTAR (vessel)
+
+           :py:mod:`iostar-vessel <bob.ip.binseg.configs.datasets.iostar.vessel_xtest>`: DRIU model X-tested (:download:`pdf <driu-iostar-vessel.pdf>`)
+      -
+
+
+M2U-Net
+=======
+
+
+.. list-table::
+   :header-rows: 2
+
+   * -
+     - drive
+     - stare
+     - chasedb1
+     - hrf
+     - iostar-vessel
+   * - Model / W x H
+     - 544 x 544
+     - 704 x 608
+     - 960 x 960
+     - 1648 x 1168
+     - 1024 x 1024
+   * - :py:mod:`drive <bob.ip.binseg.configs.datasets.drive.default>` (`model <baselines_m2unet_drive_>`_)
+     - **0.804 (0.014)**
+     - 0.736 (0.144)
+     - 0.548 (0.055)
+     - 0.744 (0.058)
+     - 0.722 (0.036)
+   * - :py:mod:`stare <bob.ip.binseg.configs.datasets.stare.ah>` (`model <baselines_m2unet_stare_>`_)
+     - 0.715 (0.031)
+     - **0.811 (0.039)**
+     - 0.632 (0.033)
+     - 0.765 (0.049)
+     - 0.673 (0.033)
+   * - :py:mod:`chasedb1 <bob.ip.binseg.configs.datasets.chasedb1.first_annotator>` (`model <baselines_m2unet_chase_>`_)
+     - 0.677 (0.027)
+     - 0.695 (0.099)
+     - **0.801 (0.018)**
+     - 0.763 (0.040)
+     - 0.761 (0.018)
+   * - :py:mod:`hrf <bob.ip.binseg.configs.datasets.hrf.default>` (`model <baselines_m2unet_hrf_>`_)
+     - 0.591 (0.071)
+     - 0.460 (0.230)
+     - 0.332 (0.108)
+     - **0.796 (0.043)**
+     - 0.419 (0.088)
+   * - :py:mod:`iostar-vessel <bob.ip.binseg.configs.datasets.iostar.vessel>` (`model <baselines_m2unet_iostar_>`_)
+     - 0.743 (0.019)
+     - 0.745 (0.076)
+     - 0.771 (0.030)
+     - 0.749 (0.052)
+     - **0.817 (0.021)**
+
+
+Next, you will find the PR plots showing confidence intervals, for the various
+cross-tests explored, on a per cross-tested model arrangement.  All curves
+correspond to test set performances.  Single performance figures (F1-micro
+scores) correspond to its average value across all test set images, for a fixed
+threshold set *a priori* on the training set of dataset used for creating the
+model.
+
+.. list-table::
+
+    * - .. figure:: m2unet-drive.png
+           :align: center
+           :scale: 40%
+           :alt: X-tests for a M2U-Net model based on DRIVE
+
+           :py:mod:`drive <bob.ip.binseg.configs.datasets.drive.xtest>`: M2U-Net model X-tested (:download:`pdf <m2unet-drive.pdf>`)
+      - .. figure:: m2unet-stare.png
+           :align: center
+           :scale: 40%
+           :alt: X-tests for a M2U-Net model based on STARE
+
+           :py:mod:`stare <bob.ip.binseg.configs.datasets.stare.xtest>`: M2U-Net model X-tested (:download:`pdf <m2unet-stare.pdf>`)
+    * - .. figure:: m2unet-chasedb1.png
+           :align: center
+           :scale: 40%
+           :alt: X-tests for a M2U-Net model based on CHASE-DB1
+
+           :py:mod:`chasedb1 <bob.ip.binseg.configs.datasets.chasedb1.xtest>`: M2U-Net model X-tested (:download:`pdf <m2unet-chasedb1.pdf>`)
+      - .. figure:: m2unet-hrf.png
+           :align: center
+           :scale: 40%
+           :alt: X-tests for a M2U-Net model based on HRF
+
+           :py:mod:`hrf <bob.ip.binseg.configs.datasets.hrf.xtest>`: M2U-Net model X-tested (:download:`pdf <m2unet-hrf.pdf>`)
+    * - .. figure:: m2unet-iostar-vessel.png
+           :align: center
+           :scale: 40%
+           :alt: X-tests for a M2U-Net model based on IOSTAR (vessel)
+
+           :py:mod:`iostar-vessel <bob.ip.binseg.configs.datasets.iostar.vessel_xtest>`: M2U-Net model X-tested (:download:`pdf <m2unet-iostar-vessel.pdf>`)
+      -
+
+
+
+Remarks
+-------
+
+* For each row, the peak performance is always obtained in an intra-database
+  test (training and testing on the same database).  Conversely, we observe a
+  performance degradation (albeit not catastrophic in most cases) for all other
+  datasets in the cross test.
+* X-test performance on a model created from HRF suggests a strong bias, as
+  performance does not generalize well for other (unseen) datasets.
+* Models generated from CHASE-DB1 and IOSTAR (vessel) seem to generalize quite
+  well to unseen data, when compared to the relatively poor generalization
+  capabilites of models generated from HRF or DRIVE.
+
+.. include:: ../../links.rst
diff --git a/doc/results/xtest/m2unet-chasedb1.pdf b/doc/results/xtest/m2unet-chasedb1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..22368ff4c89b9968a63a2c937ba1945f1dc881ec
Binary files /dev/null and b/doc/results/xtest/m2unet-chasedb1.pdf differ
diff --git a/doc/results/xtest/m2unet-chasedb1.png b/doc/results/xtest/m2unet-chasedb1.png
new file mode 100644
index 0000000000000000000000000000000000000000..f7fbaffad64fd42012f2394e412b7f4183ba2f05
Binary files /dev/null and b/doc/results/xtest/m2unet-chasedb1.png differ
diff --git a/doc/results/xtest/m2unet-drive.pdf b/doc/results/xtest/m2unet-drive.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..e8090cecb4c178646e0a0bb51da5b3a89f0b1548
Binary files /dev/null and b/doc/results/xtest/m2unet-drive.pdf differ
diff --git a/doc/results/xtest/m2unet-drive.png b/doc/results/xtest/m2unet-drive.png
new file mode 100644
index 0000000000000000000000000000000000000000..0b628ddfab5d6dc678d5f665f4e4eb3c7edec1fd
Binary files /dev/null and b/doc/results/xtest/m2unet-drive.png differ
diff --git a/doc/results/xtest/m2unet-hrf.pdf b/doc/results/xtest/m2unet-hrf.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..73d400cf279864de7fb3d372824606c2cdba79aa
Binary files /dev/null and b/doc/results/xtest/m2unet-hrf.pdf differ
diff --git a/doc/results/xtest/m2unet-hrf.png b/doc/results/xtest/m2unet-hrf.png
new file mode 100644
index 0000000000000000000000000000000000000000..ab4bcb45f2fa74bd6fa3b6a575723d71160a5c32
Binary files /dev/null and b/doc/results/xtest/m2unet-hrf.png differ
diff --git a/doc/results/xtest/m2unet-iostar-vessel.pdf b/doc/results/xtest/m2unet-iostar-vessel.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..6a59bc6ea23d7d17d54d08db8c8735b54445aae0
Binary files /dev/null and b/doc/results/xtest/m2unet-iostar-vessel.pdf differ
diff --git a/doc/results/xtest/m2unet-iostar-vessel.png b/doc/results/xtest/m2unet-iostar-vessel.png
new file mode 100644
index 0000000000000000000000000000000000000000..df9cc400f92f759f752161788e28a31826c17c94
Binary files /dev/null and b/doc/results/xtest/m2unet-iostar-vessel.png differ
diff --git a/doc/results/xtest/m2unet-stare.pdf b/doc/results/xtest/m2unet-stare.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..127f8d2abbc8aafd33fcbdcd4cc9613bea15b3b0
Binary files /dev/null and b/doc/results/xtest/m2unet-stare.pdf differ
diff --git a/doc/results/xtest/m2unet-stare.png b/doc/results/xtest/m2unet-stare.png
new file mode 100644
index 0000000000000000000000000000000000000000..e80cd25d1bce4604f62358d7d01bdfb1d4f67c6d
Binary files /dev/null and b/doc/results/xtest/m2unet-stare.png differ
diff --git a/doc/scripts/baselines.sh b/doc/scripts/baselines.sh
new file mode 100755
index 0000000000000000000000000000000000000000..6f82b1aff351acd0a217a5e84221110483a75b4b
--- /dev/null
+++ b/doc/scripts/baselines.sh
@@ -0,0 +1,46 @@
+#!/usr/bin/env bash
+
+# Runs all of our baselines
+
+# set output directory and location of "bob" executable
+OUTDIR=/path/to/output/diretory
+BOB=/path/to/bob/execuble
+
+# run <modelconfig> <dbconfig> <batchsize> [<device> [<queue>]]
+function run() {
+    local device="cpu"
+    [ $# -gt 3 ] && device="${4}"
+
+    local cmd=(${BOB} binseg experiment)
+    cmd+=("-vv" "--device=${device}" ${1} ${2})
+    cmd+=("--batch-size=${3}" "--output-folder=${OUTDIR}/${1}/${2}")
+
+    # notice this assumes gridtk is installed
+    [ $# -gt 4 ] && cmd=(jman submit "--memory=24G" "--queue=${5}" -- "${cmd[@]}")
+
+    "${cmd[@]}"
+}
+
+# run/submit all baselines
+# comment out from "sgpu/gpu" to run locally
+# comment out from "cuda:0" to run on CPU
+run m2unet stare          6 #cuda:0 #sgpu
+run hed    stare          4 #cuda:0 #sgpu
+run driu   stare          5 #cuda:0 #sgpu
+run unet   stare          2 #cuda:0 #sgpu
+run m2unet drive         16 #cuda:0 #sgpu
+run hed    drive          8 #cuda:0 #sgpu
+run driu   drive          8 #cuda:0 #sgpu
+run unet   drive          4 #cuda:0 #sgpu
+run m2unet iostar-vessel  6 #cuda:0 #sgpu
+run hed    iostar-vessel  4 #cuda:0 #sgpu
+run driu   iostar-vessel  4 #cuda:0 #sgpu
+run unet   iostar-vessel  2 #cuda:0 #sgpu
+run m2unet chasedb1       6 #cuda:0 #sgpu
+run hed    chasedb1       4 #cuda:0 #sgpu
+run driu   chasedb1       4 #cuda:0 #sgpu
+run unet   chasedb1       2 #cuda:0 #sgpu
+run m2unet hrf            1 #cuda:0 #gpu
+run hed    hrf            1 #cuda:0 #gpu
+run driu   hrf            1 #cuda:0 #gpu
+run unet   hrf            1 #cuda:0 #gpu
diff --git a/doc/scripts/xtest.sh b/doc/scripts/xtest.sh
new file mode 100755
index 0000000000000000000000000000000000000000..6a198c98e5e3a53f57f39f25d17f1277c98a5977
--- /dev/null
+++ b/doc/scripts/xtest.sh
@@ -0,0 +1,14 @@
+#!/usr/bin/env bash
+
+# Runs cross database tests
+
+BOB=$HOME/work/bob/bob.ip.binseg/bin/bob
+
+for d in drive stare chasedb1 iostar-vessel hrf; do
+    for m in driu hed m2unet unet; do
+        cmd=(${BOB} binseg analyze -vv ${m} "${d}-xtest")
+        cmd+=("--weight=${m}/${d}/model/model_final.pth")
+        cmd+=("--output-folder=${m}/${d}/xtest")
+        "${cmd[@]}"
+    done
+done
diff --git a/doc/setup.rst b/doc/setup.rst
index 1200aac25c1074e9dc4695e0d78debdbcc995e5c..0955a905bc559e98a74106f1e6415425ebf7cc74 100644
--- a/doc/setup.rst
+++ b/doc/setup.rst
@@ -1,104 +1,72 @@
 .. -*- coding: utf-8 -*-
 .. _bob.ip.binseg.setup:
 
-=========
-Setup
-=========
+=======
+ Setup
+=======
 
-Bob.ip.binseg
-=============
+Complete Bob's `installation`_ instructions. Then, to install this package, do
+this:
 
-Complete bob's `installation`_ instructions. Then, to install this
-package
-
-.. code-block:: bash
-
-    conda install bob.ip.binseg
-
-Datasets
-========
+.. code-block:: sh
 
-The package supports a range of retina fundus datasets but does not install the `bob.db`
-APIs by default, nor does it include the datasets. 
+   $ conda activate <myenv>
+   (<myenv>) $ conda install bob.ip.binseg
 
-To setup a datasets:
+.. note::
 
-1. Download the dataset from the authors website
-2. Install the corresponding bob.db package via ``conda install bob.db.<database>``.  E.g. to install the DRIVE API run ``conda install bob.db.drive``
-3. :ref:`datasetpathsetup`
-4. :ref:`dsconsistency`
+   The value ``<myenv>`` should correspond to the name of the environment where
+   you initially installed your Bob packages.
 
-+------------+----------------------------------------------------------------------+---------------------+
-| Dataset    | Website                                                              | `bob.db` package    |
-+------------+----------------------------------------------------------------------+---------------------+
-| STARE      | http://cecas.clemson.edu/~ahoover/stare/                             | `bob.db.stare`      |
-+------------+----------------------------------------------------------------------+---------------------+
-| DRIVE      | https://www.isi.uu.nl/Research/Databases/DRIVE/                      | `bob.db.drive`      |
-+------------+----------------------------------------------------------------------+---------------------+
-| DRIONS     | http://www.ia.uned.es/~ejcarmona/DRIONS-DB.html                      | `bob.db.drionsdb`   |
-+------------+----------------------------------------------------------------------+---------------------+
-| RIM-ONE    | http://medimrg.webs.ull.es/research/downloads/                       | `bob.db.rimoner3`   |
-+------------+----------------------------------------------------------------------+---------------------+
-| CHASE-DB1  | https://blogs.kingston.ac.uk/retinal/chasedb1/                       | `bob.db.chasedb`    |
-+------------+----------------------------------------------------------------------+---------------------+
-| HRF        | https://www5.cs.fau.de/research/data/fundus-images/                  | `bob.db.hrf`        |
-+------------+----------------------------------------------------------------------+---------------------+
-| Drishti-GS | http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php | `bob.db.drishtigs1` |
-+------------+----------------------------------------------------------------------+---------------------+
-| IOSTAR     | http://www.retinacheck.org/datasets                                  | `bob.db.iostar`     |
-+------------+----------------------------------------------------------------------+---------------------+
-| REFUGE     | https://refuge.grand-challenge.org/Details/                          | `bob.db.refuge`     |
-+------------+----------------------------------------------------------------------+---------------------+
 
-.. _datasetpathsetup:
+Datasets
+--------
 
-Set up dataset paths
-=====================
+The package supports a range of retina fundus datasets, but does not include
+the raw data itself, which you must procure.
 
-For each dataset that you are planning to use, set the datadir to
-the path where it is stored. E.g.:
+To setup a dataset, do the following:
 
-.. code-block:: bash
+1. Download the dataset from the authors website (see
+   :ref:`bob.ip.binseg.datasets` for download links and details), unpack it and
+   store the directory leading to the uncompressed directory structure.
 
-    bob config set bob.db.drive.datadir "/path/to/drivedataset/"
+   .. warning::
 
-To check your current setup
+      Our dataset connectors expect you provide "root" paths of raw datasets as
+      you unpack them in their **pristine** state.  Changing the location of
+      files within a dataset distribution will likely cause execution errors.
 
-.. code-block:: bash
+2.  For each dataset that you are planning to use, set the ``datadir`` to the
+    root path where it is stored.  E.g.:
 
-    bob config show
+    .. code-block:: sh
 
-This should result in an output similar to the following:
+       (<myenv>) $ bob config set bob.ip.binseg.drive.datadir "/path/to/drive"
 
-.. code-block:: bash
+    To check supported raw datasets and your current setup, do the following:
 
-    {
-        "bob.db.chasedb1.datadir": "/idiap/resource/database/CHASE-DB11/",
-        "bob.db.drionsdb.datadir": "/idiap/resource/database/DRIONS",
-        "bob.db.drishtigs1.datadir": "/idiap/resource/database/Drishti-GS1/",
-        "bob.db.drive.datadir": "/idiap/resource/database/DRIVE",
-        "bob.db.hrf.datadir": "/idiap/resource/database/HRF",
-        "bob.db.iostar.datadir": "/idiap/resource/database/IOSTAR/IOSTAR Vessel Segmentation Dataset/",
-        "bob.db.refuge.datadir": "/idiap/resource/database/REFUGE",
-        "bob.db.rimoner3.datadir": "/idiap/resource/database/RIM-ONE/RIM-ONE r3",
-        "bob.db.stare.datadir": "/idiap/resource/database/STARE"
-    }
+    .. code-block:: sh
 
+       (<myenv>) $ bob binseg dataset list
+       Supported datasets:
+       - drive: bob.ip.binseg.drive.datadir = "/Users/andre/work/bob/dbs/drive"
+       * stare: bob.ip.binseg.stare.datadir (not set)
 
-.. _dsconsistency:
+    This command will show the set location for each configured dataset, and
+    the variable names for each supported dataset which has not yet been setup.
 
-Test dataset consitency
-========================
+3. To check whether the downloaded version is consistent with the structure
+   that is expected by this package, run ``bob binseg dataset check
+   <dataset>``, where ``<dataset>`` should be replaced by the
+   dataset programmatic name. E.g., to check DRIVE files, use:
 
-To check whether the downloaded version is consistent with
-the structure that is expected by our ``bob.db`` packages
-run ``bob_dbmanage.py datasettocheck checkfiles``
-E.g.:
+   .. code-block:: sh
 
-.. code-block:: sh
+      (<myenv>) $ bob binseg dataset check drive
+      ...
 
-    conda activate your-conda-env-with-bob.ip.binseg
-    bob_dbmanage.py drive checkfiles
-    > checkfiles completed sucessfully
+   If there are problems on the current file organisation, this procedure
+   should detect and highlight which files are missing (cannot be loaded).
 
 .. include:: links.rst
diff --git a/doc/training.rst b/doc/training.rst
index 5e5c83a4ada67722c274039429bd4731d844c72c..254cac14cfafcaf6f67698c2d41d62096c204d14 100644
--- a/doc/training.rst
+++ b/doc/training.rst
@@ -1,325 +1,21 @@
 .. -*- coding: utf-8 -*-
-.. _bob.ip.binseg.training:
-
-
-========
-Training
-========
-
-To replicate our results use ``bob binseg train`` followed by the model config
-and the dataset config. Use ``bob binseg train --help`` for more information.
-
-.. note::
-
-   We strongly advice training with a GPU (using ``-d cuda``). Depending on the available GPU
-   memory you might have to adjust your batch size (``-b``).
-
-Default Dataset configs
-=======================
-
-1. Vessel:
-
-* CHASEDB1
-* CHASEDB1TEST
-* COVD-DRIVE
-* COVD-DRIVE_SSL
-* COVD-STARE
-* COVD-STARE_SSL
-* COVD-IOSTARVESSEL
-* COVD-IOSTARVESSEL_SSL
-* COVD-HRF
-* COVD-HRF_SSL
-* COVD-CHASEDB1
-* COVD-CHASEDB1_SSL
-* DRIVE
-* DRIVETEST
-* HRF
-* HRFTEST
-* IOSTARVESSEL
-* IOSTARVESSELTEST
-* STARE
-* STARETEST
-
-2. Optic Disc and Cup
-
-* DRIONSDB
-* DRIONSDBTEST
-* DRISHTIGS1OD
-* DRISHTIGS1ODTEST
-* DRISHTIGS1CUP
-* DRISHTIGS1CUPTEST
-* IOSTAROD
-* IOSTARODTEST
-* REFUGECUP
-* REFUGECUPTEST
-* REFUGEOD
-* REFUGEODTEST
-* RIMONER3CUP
-* RIMONER3CUPTEST
-* RIMONER3OD
-* RIMONER3ODTEST
-
-Default Model configs
-=====================
-
-* DRIU
-* DRIUBN
-* DRIUSSL
-* DRIUBNSSL
-* DRIUOD
-* HED
-* M2UNet
-* M2UNetSSL
-* UNet
-
-
-Baseline Benchmarks
-===================
-
-.. code-block:: bash
-
-    #!/bin/bash
-    # set output directory
-    outputroot=`pwd`"/output"
-    mkdir -p $outputroot
-
-    #### Global config ####
-    m2u=M2UNet
-    hed=HED
-    driu=DRIU
-    unet=UNet
-    m2ussl=M2UNetSSL
-    driussl=DRIUSSL
-
-    #### CHASE_DB 1 ####
-    dataset=CHASEDB1
-    output=$outputroot"/"$dataset
-    mkdir -p $output
-    # batch sizes
-    b_m2u=6
-    b_hed=4
-    b_driu=4
-    b_unet=2
-    # Train
-    bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv
-    bob binseg train $hed $dataset -b $b_hed -d cuda -o $output"/"$hed -vv
-    bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv
-    bob binseg train $unet $dataset -b $b_unet -d cuda -o $output"/"$unet -vv
-
-    #### DRIVE ####
-    dataset=DRIVE
-    output=$outputroot"/"$dataset
-    mkdir -p $output
-    # model configs
-    b_m2u=16
-    b_hed=8
-    b_driu=8
-    b_unet=4
-    # Train
-    bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv
-    bob binseg train $hed $dataset -b $b_hed -d cuda -o $output"/"$hed -vv
-    bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv
-    bob binseg train $unet $dataset -b $b_unet -d cuda -o $output"/"$unet -vv
-
-    #### HRF ####
-    dataset=HRF
-    output=$outputroot"/"$dataset
-    mkdir -p $output
-    # model configs
-    b_m2u=1
-    b_hed=1
-    b_driu=1
-    b_unet=1
-    # Train
-    bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv
-    bob binseg train $hed $dataset -b $b_hed -d cuda -o $output"/"$hed -vv
-    bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv
-    bob binseg train $unet $dataset -b $b_unet -d cuda -o $output"/"$unet -vv
 
-    #### IOSTAR VESSEL ####
-    dataset=IOSTARVESSEL
-    output=$outputroot"/"$dataset
-    mkdir -p $output
-    # model configs
-    b_m2u=6
-    b_hed=4
-    b_driu=4
-    b_unet=2
-    # Train
-    bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv
-    bob binseg train $hed $dataset -b $b_hed -d cuda -o $output"/"$hed -vv
-    bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv
-    bob binseg train $unet $dataset -b $b_unet -d cuda -o $output"/"$unet -vv
-
-    #### STARE ####
-    dataset=STARE
-    output=$outputroot"/"$dataset
-    mkdir -p $output
-    # model configs
-    b_m2u=6
-    b_hed=4
-    b_driu=5
-    b_unet=2
-    # Train
-    bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv
-    bob binseg train $hed $dataset -b $b_hed -d cuda -o $output"/"$hed -vv
-    bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv
-    bob binseg train $unet $dataset -b $b_unet -d cuda -o $output"/"$unet -vv
-
-
-Combined Vessel Dataset (COVD) and Semi-Supervised Learning (SSL)
-=================================================================
-
-COVD-:
-
-.. code-block:: bash
-
-    ### COVD-DRIVE ####
-    dataset=COVD-DRIVE
-    output=$outputroot"/"$dataset
-    mkdir -p $output
-    # model configs
-    driu=DRIU
-    m2u=M2UNet
-    b_driu=4
-    b_m2u=8
-    # Train
-    bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv
-    bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv
-
-    ### COVD-STARE ####
-    dataset=COVD-STARE
-    output=$outputroot"/"$dataset
-    mkdir -p $output
-    # model configs
-    driu=DRIU
-    m2u=M2UNet
-    b_driu=4
-    b_m2u=4
-    # Train
-    bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv
-    bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv
-
-    ### COVD-IOSTAR ####
-    dataset=COVD-IOSTARVESSEL
-    output=$outputroot"/"$dataset
-    mkdir -p $output
-    # model configs
-    driu=DRIU
-    m2u=M2UNet
-    b_driu=2
-    b_m2u=4
-    # Train
-    bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv
-    bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv
-
-    ### COVD-CHASEDB1 ####
-    dataset=COVD-CHASEDB1
-    output=$outputroot"/"$dataset
-    mkdir -p $output
-    # model configs
-    driu=DRIU
-    m2u=M2UNet
-    b_driu=2
-    b_m2u=4
-    # Train
-    bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv
-    bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv
-
-    ### COVD-HRF ####
-    dataset=COVD-HRF
-    output=$outputroot"/"$dataset
-    mkdir -p $output
-    # model configs
-    driu=DRIU
-    m2u=M2UNet
-    b_driu=2
-    b_m2u=4
-    # Train
-    bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv
-    bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv
-
-
-COVD-SSL:
-
-.. code-block:: bash
-
-    ### COVD-DRIVE_SSL ####
-    dataset=COVD-DRIVE_SSL
-    output=$outputroot"/"$dataset
-    mkdir -p $output
-    # model configs
-    driu=DRIUSSL
-    m2u=M2UNetSSL
-    b_driu=4
-    b_m2u=4
-    # Train
-    bob binseg ssltrain $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv
-    bob binseg ssltrain $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv
-
-    ### COVD-STARE_SSL ####
-    dataset=COVD-STARE_SSL
-    output=$outputroot"/"$dataset
-    mkdir -p $output
-    # model configs
-    driu=DRIUSSL
-    m2u=M2UNetSSL
-    b_driu=4
-    b_m2u=4
-    # Train
-    bob binseg ssltrain $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv
-    bob binseg ssltrain $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv
-
-    ### COVD-IOSTAR_SSL ####
-    dataset=COVD-IOSTARVESSEL_SSL
-    output=$outputroot"/"$dataset
-    mkdir -p $output
-    # model configs
-    driu=DRIUSSL
-    m2u=M2UNetSSL
-    b_driu=1
-    b_m2u=2
-    # Train
-    bob binseg ssltrain $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv
-    bob binseg ssltrain $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv
-
-    ### COVD-CHASEDB1_SSL ####
-    dataset=COVD-CHASEDB1_SSL
-    output=$outputroot"/"$dataset
-    mkdir -p $output
-    # model configs
-    driu=DRIUSSL
-    m2u=M2UNetSSL
-    b_driu=2
-    b_m2u=2
-    # Train
-    bob binseg ssltrain $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv
-    bob binseg ssltrain $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv
-
-
-    ### COVD-HRF_SSL ####
-    dataset=COVD-HRF_SSL
-    output=$outputroot"/"$dataset
-    mkdir -p $output
-    # model configs
-    driu=DRIUSSL
-    m2u=M2UNetSSL
-    b_driu=1
-    b_m2u=2
-    # Train
-    bob binseg ssltrain $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv
-    bob binseg ssltrain $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv
-
-Using your own configs
-======================
+.. _bob.ip.binseg.training:
 
-Instead of the default configs you can pass the full path of your
-customized dataset and model config (both in PyTorch format).
-The default configs are stored under ``bob.ip.binseg/bob/ip/binseg/configs/``.
+==========
+ Training
+==========
 
-.. code-block:: bash
+To train a new FCN, use the command-line interface (CLI) application ``bob
+binseg train``, available on your prompt.  To use this CLI, you must define the
+input dataset that will be used to train the FCN, as well as the type of model
+that will be trained.  You may issue ``bob binseg train --help`` for a help
+message containing more detailed instructions.
 
-    bob binseg train /path/to/model/config.py /path/to/dataset/config.py
+.. tip::
 
+   We strongly advice training with a GPU (using ``--device="cuda:0"``).
+   Depending on the available GPU memory you might have to adjust your batch
+   size (``--batch``).
 
 
diff --git a/doc/usage.rst b/doc/usage.rst
new file mode 100644
index 0000000000000000000000000000000000000000..b63cd4378782167b0c91b194167f30da1add4360
--- /dev/null
+++ b/doc/usage.rst
@@ -0,0 +1,68 @@
+.. -*- coding: utf-8 -*-
+
+.. _bob.ip.binseg.usage:
+
+=======
+ Usage
+=======
+
+This package supports a fully reproducible research experimentation cycle for
+semantic binary segmentation with support for the following activities:
+
+* Training: Images are fed to a Fully Convolutional Deep Neural Network (FCN),
+  that is trained to reconstruct annotations (pre-segmented binary maps),
+  automatically, via error back propagation.  The objective of this phase is to
+  produce an FCN model.
+* Inference (prediction): The FCN is used to generate vessel map predictions
+* Evaluation: Vessel map predictions are used evaluate FCN performance against
+  provided annotations, or visualize prediction results overlayed on
+  the original raw images.
+* Comparison: Use evaluation results to compare performance as you like.
+
+Whereas we provide :ref:`command-line interfaces (CLI)
+<bob.ip.binseg.cli.single>` that implement each of the phases above, we also
+provide command aggregators that can :ref:`run all of the phases
+<bob.ip.binseg.cli.combined>`.  Both interfaces are configurable using
+:ref:`Bob's extensible configuration framework <bob.extension.framework>`.  In
+essence, each command-line option may be provided as a variable with the same
+name in a Python file.  Each file may combine any number of variables that are
+pertinent to an application.
+
+.. tip::
+
+   For reproducibility, we recommend you stick to configuration files when
+   parameterizing our CLI.  Notice some of the options in the CLI interface
+   (e.g. ``--dataset``) cannot be passed via the actual command-line as it
+   may require complex Python types that cannot be synthetized in a single
+   input parameter.
+
+
+The following flowchart represents the various experiment phases and output
+results that can be produced for each of our CLI interfaces (rounded white
+rectangles).  Processing subproducts (marked in blue), are stored on disk by
+the end of each step.
+
+.. graphviz:: framework.dot
+   :caption: Framework actions and CLI
+
+
+We provide a number of :ref:`preset configuration files
+<bob.ip.binseg.cli.config.list.all>` that can be used in one or more of the
+activities described in this section.  Our command-line framework allows you to
+refer to these preset configuration files using special names (a.k.a.
+"resources"), that procure and load these for you automatically.  Aside preset
+configuration files, you may also create your own to extend existing baseline
+experiments by :ref:`locally copying <bob.ip.binseg.cli.config.copy>` and
+modifying one of our configuration resources.
+
+
+.. toctree::
+   :maxdepth: 2
+
+   experiment
+   training
+   models
+   evaluation
+
+
+.. include:: links.rst
diff --git a/doc/visualization.rst b/doc/visualization.rst
deleted file mode 100644
index 56728e9562003c676dab0a5d51ca4640b12df1e8..0000000000000000000000000000000000000000
--- a/doc/visualization.rst
+++ /dev/null
@@ -1,30 +0,0 @@
-.. -*- coding: utf-8 -*-
-.. _bob.ip.binseg.visualization:
-
-=============
-Visualization
-=============
-
-Two visualization are generated via the ``bob binseg visualize`` command:
-
-1. Visualizations of true positives, false positives and false negatives
-overlayed over the test images
-2. Visualizations of the probability map outputs overlayed over the test images
-
-The following directory structure is expected:
-
-.. code-block:: bash
-
-    ├── DATABASE
-        ├── MODEL
-            ├── images
-            └── results
-
-Example to generate visualization for outputs for the DRIVE dataset:
-
-.. code-block:: bash
-
-    # Visualizations are stored in the same output folder.
-    bob binseg visualize DRIVETEST -o /DRIVE/M2UNet/output
-
-Use ``bob binseg visualize --help`` for more information.
diff --git a/requirements.txt b/requirements.txt
index 82b7843aa0e051bad5f22858752465620aca6772..706cd10addac90fafe7f8720b1e2d7aacde87445 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,10 +1,12 @@
-setuptools
-numpy
 bob.extension
+matplotlib
+numpy
+pandas
+h5py
+pillow
+psutil
+setuptools
+tabulate
 torch
 torchvision
-pandas
-matplotlib
 tqdm
-tabulate
-bob.core
diff --git a/setup.py b/setup.py
index 8a7dd13d8cb3f4ce5e7730167eccbc9db5f49405..bff45cf36196001418a51894c65f90f82d3066e2 100644
--- a/setup.py
+++ b/setup.py
@@ -1,10 +1,6 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
 from setuptools import setup, dist
 
 dist.Distribution(dict(setup_requires=["bob.extension"]))
-
 from bob.extension.utils import load_requirements, find_packages
 
 install_requires = load_requirements()
@@ -33,63 +29,94 @@ setup(
     entry_points={
         # main entry for bob binseg cli
         "bob.cli": ["binseg = bob.ip.binseg.script.binseg:binseg"],
-        # bob hed sub-commands
+        # bob binseg sub-commands
         "bob.ip.binseg.cli": [
-            "train = bob.ip.binseg.script.binseg:train",
-            "test = bob.ip.binseg.script.binseg:test",
-            "compare =  bob.bin.binseg.script.binseg:compare",
-            "gridtable = bob.ip.binseg.script.binseg:testcheckpoints",
-            "visualize = bob.ip.binseg.script.binseg:visualize",
+            "config = bob.ip.binseg.script.config:config",
+            "dataset =  bob.ip.binseg.script.dataset:dataset",
+            "train = bob.ip.binseg.script.train:train",
+            "predict = bob.ip.binseg.script.predict:predict",
+            "evaluate = bob.ip.binseg.script.evaluate:evaluate",
+            "compare =  bob.ip.binseg.script.compare:compare",
+            "analyze =  bob.ip.binseg.script.analyze:analyze",
+            "experiment =  bob.ip.binseg.script.experiment:experiment",
         ],
         # bob train configurations
         "bob.ip.binseg.config": [
-            "DRIU = bob.ip.binseg.configs.models.driu",
-            "DRIUBN = bob.ip.binseg.configs.models.driubn",
-            "DRIUSSL = bob.ip.binseg.configs.models.driussl",
-            "DRIUBNSSL = bob.ip.binseg.configs.models.driubnssl",
-            "DRIUOD = bob.ip.binseg.configs.models.driuod",
-            "HED = bob.ip.binseg.configs.models.hed",
-            "M2UNet = bob.ip.binseg.configs.models.m2unet",
-            "M2UNetSSL = bob.ip.binseg.configs.models.m2unetssl",
-            "UNet = bob.ip.binseg.configs.models.unet",
-            "ResUNet = bob.ip.binseg.configs.models.resunet",
-            "IMAGEFOLDER = bob.ip.binseg.configs.datasets.imagefolder",
-            "CHASEDB1 = bob.ip.binseg.configs.datasets.chasedb1",
-            "CHASEDB1TEST = bob.ip.binseg.configs.datasets.chasedb1test",
-            "COVD-DRIVE = bob.ip.binseg.configs.datasets.starechasedb1iostarhrf544",
-            "COVD-DRIVE_SSL = bob.ip.binseg.configs.datasets.starechasedb1iostarhrf544ssldrive",
-            "COVD-STARE = bob.ip.binseg.configs.datasets.drivechasedb1iostarhrf608",
-            "COVD-STARE_SSL = bob.ip.binseg.configs.datasets.drivechasedb1iostarhrf608sslstare",
-            "COVD-IOSTARVESSEL = bob.ip.binseg.configs.datasets.drivestarechasedb1hrf1024",
-            "COVD-IOSTARVESSEL_SSL = bob.ip.binseg.configs.datasets.drivestarechasedb1hrf1024ssliostar",
-            "COVD-HRF = bob.ip.binseg.configs.datasets.drivestarechasedb1iostar1168",
-            "COVD-HRF_SSL = bob.ip.binseg.configs.datasets.drivestarechasedb1iostar1168sslhrf",
-            "COVD-CHASEDB1 = bob.ip.binseg.configs.datasets.drivestareiostarhrf960",
-            "COVD-CHASEDB1_SSL = bob.ip.binseg.configs.datasets.drivestareiostarhrf960sslchase",
-            "DRIONSDB = bob.ip.binseg.configs.datasets.drionsdb",
-            "DRIONSDBTEST = bob.ip.binseg.configs.datasets.drionsdbtest",
-            "DRISHTIGS1OD = bob.ip.binseg.configs.datasets.dristhigs1od",
-            "DRISHTIGS1ODTEST = bob.ip.binseg.configs.datasets.dristhigs1odtest",
-            "DRISHTIGS1CUP = bob.ip.binseg.configs.datasets.dristhigs1cup",
-            "DRISHTIGS1CUPTEST = bob.ip.binseg.configs.datasets.dristhigs1cuptest",
-            "DRIVE = bob.ip.binseg.configs.datasets.drive",
-            "DRIVETEST = bob.ip.binseg.configs.datasets.drivetest",
-            "HRF = bob.ip.binseg.configs.datasets.hrf1168",
-            "HRFTEST = bob.ip.binseg.configs.datasets.hrftest",
-            "IOSTAROD = bob.ip.binseg.configs.datasets.iostarod",
-            "IOSTARODTEST = bob.ip.binseg.configs.datasets.iostarodtest",
-            "IOSTARVESSEL = bob.ip.binseg.configs.datasets.iostarvessel",
-            "IOSTARVESSELTEST = bob.ip.binseg.configs.datasets.iostarvesseltest",
-            "REFUGECUP = bob.ip.binseg.configs.datasets.refugecup",
-            "REFUGECUPTEST = bob.ip.binseg.configs.datasets.refugecuptest",
-            "REFUGEOD = bob.ip.binseg.configs.datasets.refugeod",
-            "REFUGEODTEST = bob.ip.binseg.configs.datasets.refugeodtest",
-            "RIMONER3CUP = bob.ip.binseg.configs.datasets.rimoner3cup",
-            "RIMONER3CUPTEST = bob.ip.binseg.configs.datasets.rimoner3cuptest",
-            "RIMONER3OD = bob.ip.binseg.configs.datasets.rimoner3od",
-            "RIMONER3ODTEST = bob.ip.binseg.configs.datasets.rimoner3odtest",
-            "STARE = bob.ip.binseg.configs.datasets.stare",
-            "STARETEST = bob.ip.binseg.configs.datasets.staretest",
+
+            # models
+            "driu = bob.ip.binseg.configs.models.driu",
+            "driu-bn = bob.ip.binseg.configs.models.driu_bn",
+            "driu-ssl = bob.ip.binseg.configs.models.driu_ssl",
+            "driu-bn-ssl = bob.ip.binseg.configs.models.driu_bn_ssl",
+            "driu-od = bob.ip.binseg.configs.models.driu_od",
+            "hed = bob.ip.binseg.configs.models.hed",
+            "m2unet = bob.ip.binseg.configs.models.m2unet",
+            "m2unet-ssl = bob.ip.binseg.configs.models.m2unet_ssl",
+            "unet = bob.ip.binseg.configs.models.unet",
+            "resunet = bob.ip.binseg.configs.models.resunet",
+
+            # example datasets
+            "csv-dataset-example = bob.ip.binseg.configs.datasets.csv",
+
+            # drive dataset
+            "drive = bob.ip.binseg.configs.datasets.drive.default",
+            "drive-2nd = bob.ip.binseg.configs.datasets.drive.second_annotator",
+            "drive-xtest = bob.ip.binseg.configs.datasets.drive.xtest",
+            "drive-mtest = bob.ip.binseg.configs.datasets.drive.mtest",
+            "drive-covd = bob.ip.binseg.configs.datasets.drive.covd",
+            "drive-ssl = bob.ip.binseg.configs.datasets.drive.ssl",
+
+            # stare dataset
+            "stare = bob.ip.binseg.configs.datasets.stare.ah",
+            "stare-2nd = bob.ip.binseg.configs.datasets.stare.vk",
+            "stare-xtest = bob.ip.binseg.configs.datasets.stare.xtest",
+            "stare-mtest = bob.ip.binseg.configs.datasets.stare.mtest",
+            "stare-covd = bob.ip.binseg.configs.datasets.stare.covd",
+            "stare-ssl = bob.ip.binseg.configs.datasets.stare.ssl",
+
+            # iostar
+            "iostar-vessel = bob.ip.binseg.configs.datasets.iostar.vessel",
+            "iostar-vessel-xtest = bob.ip.binseg.configs.datasets.iostar.vessel_xtest",
+            "iostar-vessel-mtest = bob.ip.binseg.configs.datasets.iostar.vessel_mtest",
+            "iostar-disc = bob.ip.binseg.configs.datasets.iostar.optic_disc",
+            "iostar-vessel-covd = bob.ip.binseg.configs.datasets.iostar.covd",
+            "iostar-vessel-ssl = bob.ip.binseg.configs.datasets.iostar.ssl",
+
+            # hrf
+            "hrf = bob.ip.binseg.configs.datasets.hrf.default",
+            "hrf-xtest = bob.ip.binseg.configs.datasets.hrf.xtest",
+            "hrf-mtest = bob.ip.binseg.configs.datasets.hrf.mtest",
+            "hrf-highres = bob.ip.binseg.configs.datasets.hrf.default_fullres",
+            "hrf-covd = bob.ip.binseg.configs.datasets.hrf.covd",
+            "hrf-ssl = bob.ip.binseg.configs.datasets.hrf.ssl",
+
+            # chase-db1
+            "chasedb1 = bob.ip.binseg.configs.datasets.chasedb1.first_annotator",
+            "chasedb1-2nd = bob.ip.binseg.configs.datasets.chasedb1.second_annotator",
+            "chasedb1-xtest = bob.ip.binseg.configs.datasets.chasedb1.xtest",
+            "chasedb1-mtest = bob.ip.binseg.configs.datasets.chasedb1.mtest",
+            "chasedb1-covd = bob.ip.binseg.configs.datasets.chasedb1.covd",
+            "chasedb1-ssl = bob.ip.binseg.configs.datasets.chasedb1.ssl",
+
+            # drionsdb
+            "drionsdb = bob.ip.binseg.configs.datasets.drionsdb.expert1",
+            "drionsdb-2nd = bob.ip.binseg.configs.datasets.drionsdb.expert2",
+
+            # drishti-gs1
+            "drishtigs1-disc = bob.ip.binseg.configs.datasets.drishtigs1.disc_all",
+            "drishtigs1-cup = bob.ip.binseg.configs.datasets.drishtigs1.cup_all",
+            "drishtigs1-disc-any = bob.ip.binseg.configs.datasets.drishtigs1.disc_any",
+            "drishtigs1-cup-any = bob.ip.binseg.configs.datasets.drishtigs1.cup_any",
+
+            # refuge
+            "refuge-cup = bob.ip.binseg.configs.datasets.refuge.cup",
+            "refuge-disc = bob.ip.binseg.configs.datasets.refuge.disc",
+
+            # rim one r3
+            "rimoner3-cup = bob.ip.binseg.configs.datasets.rimoner3.cup_exp1",
+            "rimoner3-disc = bob.ip.binseg.configs.datasets.rimoner3.disc_exp1",
+            "rimoner3-cup-2nd = bob.ip.binseg.configs.datasets.rimoner3.cup_exp2",
+            "rimoner3-disc-2nd = bob.ip.binseg.configs.datasets.rimoner3.disc_exp2",
         ],
     },
     # check classifiers, add and remove as you see fit
@@ -97,7 +124,7 @@ setup(
     # don't remove the Bob framework unless it's not a bob package
     classifiers=[
         "Framework :: Bob",
-        "Development Status :: 4 - Beta",
+        "Development Status :: 5 - Production/Stable",
         "Intended Audience :: Science/Research",
         "License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
         "Natural Language :: English",