diff --git a/.gitignore b/.gitignore index fcc2be3d0eb5cbef10d057c51da065a6f947ddfd..fbdcee4cc0c8d8c8736864b4d8065d5d3aec2467 100644 --- a/.gitignore +++ b/.gitignore @@ -1,4 +1,3 @@ -### Bob defaults ### *~ *.swp *.pyc @@ -18,26 +17,15 @@ dist build *.egg src/ +doc/api record.txt core output_temp output *.DS_Store - - -### JupyterNotebook ### *.ipynb .ipynb_checkpoints */.ipynb_checkpoints/* - - -### VisualStudioCode ### -.vscode/* -.vscode/settings.json -.vscode/tasks.json -.vscode/launch.json -.vscode/extensions.json - -### VisualStudioCode Patch ### -# Ignore all local history of files -.history \ No newline at end of file +submitted.sql3 +./logs/ +.coverage diff --git a/MANIFEST.in b/MANIFEST.in index 946a661e098c89b0b5b505c5b22594f474fd8b9a..70f6ad2ea295cdf025eab2310e578179315433f1 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,2 +1,3 @@ include README.rst buildout.cfg COPYING version.txt requirements.txt -recursive-include doc *.rst *.png *.ico *.txt +recursive-include doc *.sh *.rst *.png *.pdf *.ico *.txt +recursive-include bob *.json *.png *.csv *.jpg diff --git a/README.rst b/README.rst index 9ce05003a7e41e5e0b9b9e8116745884305e1da6..bb0badec1ef9f6f3fb29e033c37ca0288c9f4afb 100644 --- a/README.rst +++ b/README.rst @@ -4,10 +4,10 @@ :target: https://www.idiap.ch/software/bob/docs/bob/bob.ip.binseg/stable/index.html .. image:: https://img.shields.io/badge/docs-latest-orange.svg :target: https://www.idiap.ch/software/bob/docs/bob/bob.ip.binseg/master/index.html -.. image:: https://gitlab.idiap.ch/bob/bob.ip.binseg/badges/master/build.svg +.. image:: https://gitlab.idiap.ch/bob/bob.ip.binseg/badges/master/pipeline.svg :target: https://gitlab.idiap.ch/bob/bob.ip.binseg/commits/master .. image:: https://gitlab.idiap.ch/bob/bob.ip.binseg/badges/master/coverage.svg - :target: https://gitlab.idiap.ch/bob/bob.ip.binseg/commits/master + :target: https://www.idiap.ch/software/bob/docs/bob/bob.ip.binseg/master/coverage/index.html .. image:: https://img.shields.io/badge/gitlab-project-0000c0.svg :target: https://gitlab.idiap.ch/bob/bob.ip.binseg .. image:: https://img.shields.io/pypi/v/bob.ip.binseg.svg @@ -38,7 +38,7 @@ If you use this software package in a publication, we would appreciate if you could cite our work:: @misc{laibacher_anjos_2019, - title = {On the Evaluation and Real-World Usage Scenarios of Deep Vessel Segmentation for Funduscopy}, + title = {On the Evaluation and Real-World Usage Scenarios of Deep Vessel Segmentation for Retinography}, author = {Tim Laibacher and Andr\'e Anjos}, year = {2019}, eprint = {1909.03856}, diff --git a/bob/__init__.py b/bob/__init__.py index 2ab1e28b150f0549def9963e9e87de3fdd6b2579..edbb4090fca046b19d22d3982711084621bff3be 100644 --- a/bob/__init__.py +++ b/bob/__init__.py @@ -1,3 +1,4 @@ # see https://docs.python.org/3/library/pkgutil.html from pkgutil import extend_path + __path__ = extend_path(__path__, __name__) diff --git a/bob/ip/__init__.py b/bob/ip/__init__.py index 2ca5e07cb73f0bdddcb863ef497955964087e301..edbb4090fca046b19d22d3982711084621bff3be 100644 --- a/bob/ip/__init__.py +++ b/bob/ip/__init__.py @@ -1,3 +1,4 @@ # see https://docs.python.org/3/library/pkgutil.html from pkgutil import extend_path -__path__ = extend_path(__path__, __name__) \ No newline at end of file + +__path__ = extend_path(__path__, __name__) diff --git a/bob/ip/binseg/__init__.py b/bob/ip/binseg/__init__.py index 8e48dba233d1b4e018d5dc08d3eb18aacc86138e..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644 --- a/bob/ip/binseg/__init__.py +++ b/bob/ip/binseg/__init__.py @@ -1,17 +0,0 @@ -# gets sphinx autodoc done right - don't remove it -def __appropriate__(*args): - """Says object was actually declared here, an not on the import module. - - Parameters: - - *args: An iterable of objects to modify - - Resolves `Sphinx referencing issues - <https://github.com/sphinx-doc/sphinx/issues/3048>` - """ - - for obj in args: obj.__module__ = __name__ - -__appropriate__() - -__all__ = [_ for _ in dir() if not _.startswith('_')] diff --git a/bob/ip/binseg/configs/__init__.py b/bob/ip/binseg/configs/__init__.py index 2ca5e07cb73f0bdddcb863ef497955964087e301..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644 --- a/bob/ip/binseg/configs/__init__.py +++ b/bob/ip/binseg/configs/__init__.py @@ -1,3 +0,0 @@ -# see https://docs.python.org/3/library/pkgutil.html -from pkgutil import extend_path -__path__ = extend_path(__path__, __name__) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/__init__.py b/bob/ip/binseg/configs/datasets/__init__.py index 2ca5e07cb73f0bdddcb863ef497955964087e301..cd6d9b34db1ac30aff072a947465a016d413b37f 100644 --- a/bob/ip/binseg/configs/datasets/__init__.py +++ b/bob/ip/binseg/configs/datasets/__init__.py @@ -1,3 +1,176 @@ -# see https://docs.python.org/3/library/pkgutil.html -from pkgutil import extend_path -__path__ = extend_path(__path__, __name__) \ No newline at end of file +#!/usr/bin/env python +# coding=utf-8 + +"""Standard configurations for dataset setup""" + + +from ...data.transforms import ( + RandomRotation as _rotation, + RandomHorizontalFlip as _hflip, + RandomVerticalFlip as _vflip, + ColorJitter as _jitter, +) + + +RANDOM_ROTATION = [_rotation()] +"""Shared data augmentation based on random rotation only""" + + +RANDOM_FLIP_JITTER = [_hflip(), _vflip(), _jitter()] +"""Shared data augmentation transforms without random rotation""" + + +def make_subset(l, transforms, prefixes=[], suffixes=[]): + """Creates a new data set, applying transforms + + .. note:: + + This is a convenience function for our own dataset definitions inside + this module, guaranteeting homogenity between dataset definitions + provided in this package. It assumes certain strategies for data + augmentation that may not be translatable to other applications. + + + Parameters + ---------- + + l : list + List of delayed samples + + transforms : list + A list of transforms that needs to be applied to all samples in the set + + prefixes : list + A list of data augmentation operations that needs to be applied + **before** the transforms above + + suffixes : list + A list of data augmentation operations that needs to be applied + **after** the transforms above + + + Returns + ------- + + subset : :py:class:`bob.ip.binseg.data.utils.SampleListDataset` + A pre-formatted dataset that can be fed to one of our engines + + """ + + from ...data.utils import SampleListDataset as wrapper + + return wrapper(l, prefixes + transforms + suffixes) + + +def make_trainset(l, transforms, rotation_before=False): + """Creates a new training set, **with data augmentation** + + Typically, the transforms are chained to a default set of data augmentation + operations (random rotation, horizontal and vertical flips, and color + jitter), but flag allows prefixing the rotation specially (useful for some + COVD training sets). + + .. note:: + + This is a convenience function for our own dataset definitions inside + this module, guaranteeting homogenity between dataset definitions + provided in this package. It assumes certain strategies for data + augmentation that may not be translatable to other applications. + + + Parameters + ---------- + + l : list + List of delayed samples + + transforms : list + A list of transforms that needs to be applied to all samples in the set + + + Returns + ------- + + subset : :py:class:`bob.ip.binseg.data.utils.SampleListDataset` + A pre-formatted dataset that can be fed to one of our engines + + """ + + if rotation_before: + return make_subset( + l, + transforms=transforms, + prefixes=RANDOM_ROTATION, + suffixes=RANDOM_FLIP_JITTER, + ) + + return make_subset( + l, + transforms=transforms, + suffixes=(RANDOM_ROTATION + RANDOM_FLIP_JITTER), + ) + + +def make_dataset(subsets, transforms): + """Creates a new configuration dataset from dictionary and transforms + + This function takes as input a dictionary as those that can be returned by + :py:meth:`bob.ip.binseg.data.dataset.JSONDataset.subsets`, or + :py:meth:`bob.ip.binseg.data.dataset.CSVDataset.subsets`, mapping protocol + names (such as ``train``, ``dev`` and ``test``) to + :py:class:`bob.ip.binseg.data.sample.DelayedSample` lists, and a set of + transforms, and returns a dictionary applying + :py:class:`bob.ip.binseg.data.utils.SampleListDataset` to these + lists, and our standard data augmentation if a ``train`` set exists. + + For example, if ``subsets`` is composed of two sets named ``train`` and + ``test``, this function will yield a dictionary with the following entries: + + * ``__train__``: Wraps the ``train`` subset, includes data augmentation + (note: datasets with names starting with ``_`` (underscore) are excluded + from prediction and evaluation by default, as they contain data + augmentation transformations.) + * ``train``: Wraps the ``train`` subset, **without** data augmentation + * ``train``: Wraps the ``test`` subset, **without** data augmentation + + .. note:: + + This is a convenience function for our own dataset definitions inside + this module, guaranteeting homogenity between dataset definitions + provided in this package. It assumes certain strategies for data + augmentation that may not be translatable to other applications. + + + Parameters + ---------- + + subsets : dict + A dictionary that contains the delayed sample lists for a number of + named lists. If one of the keys is ``train``, our standard dataset + augmentation transforms are appended to the definition of that subset. + All other subsets remain un-augmented. + + transforms : list + A list of transforms that needs to be applied to all samples in the set + + + Returns + ------- + + dataset : dict + A pre-formatted dataset that can be fed to one of our engines. It maps + string names to + :py:class:`bob.ip.binseg.data.utils.SampleListDataset`'s. + + """ + + retval = {} + + for key in subsets.keys(): + retval[key] = make_subset(subsets[key], transforms=transforms) + if key == "train": + retval["__train__"] = make_trainset( + subsets[key], transforms=transforms, rotation_before=False + ) + + return retval diff --git a/bob/ip/binseg/configs/datasets/amdrive.py b/bob/ip/binseg/configs/datasets/amdrive.py deleted file mode 100644 index 6f7cc3101d158f71c7ea47f32382ce369de0552b..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/amdrive.py +++ /dev/null @@ -1,78 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- -from bob.db.drive import Database as DRIVE -from bob.db.stare import Database as STARE -from bob.db.chasedb1 import Database as CHASEDB1 -from bob.db.iostar import Database as IOSTAR -from bob.db.hrf import Database as HRF -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset -import torch - -# Target size: 544x544 (DRIVE) - -defaulttransforms = [RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor()] - - - -# CHASE_DB1 -transforms_chase = Compose([ - Resize(544) - ,Crop(0,12,544,544) - ,*defaulttransforms - ]) - -# bob.db.dataset init -bobdb_chase = CHASEDB1(protocol = 'default') - -# PyTorch dataset -torch_chase = BinSegDataset(bobdb_chase, split='train', transform=transforms_chase) - - -# IOSTAR VESSEL -transforms_iostar = Compose([ - Resize(544) - ,*defaulttransforms - ]) - -# bob.db.dataset init -bobdb_iostar = IOSTAR(protocol='default_vessel') - -# PyTorch dataset -torch_iostar = BinSegDataset(bobdb_iostar, split='train', transform=transforms_iostar) - -# STARE -transforms = Compose([ - Resize(471) - ,Pad((0,37,0,36)) - ,*defaulttransforms - ]) - -# bob.db.dataset init -bobdb_stare = STARE(protocol = 'default') - -# PyTorch dataset -torch_stare = BinSegDataset(bobdb_stare, split='train', transform=transforms) - - -# HRF -transforms_hrf = Compose([ - Resize((363)) - ,Pad((0,90,0,91)) - ,*defaulttransforms - ]) - -# bob.db.dataset init -bobdb_hrf = HRF(protocol = 'default') - -# PyTorch dataset -torch_hrf = BinSegDataset(bobdb_hrf, split='train', transform=transforms_hrf) - - - -# Merge -dataset = torch.utils.data.ConcatDataset([torch_stare, torch_chase, torch_iostar, torch_hrf]) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/amdrivetest.py b/bob/ip/binseg/configs/datasets/amdrivetest.py deleted file mode 100644 index 026ac236e7e9f48f5f41b6685d01369606c47321..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/amdrivetest.py +++ /dev/null @@ -1,73 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- -from bob.db.drive import Database as DRIVE -from bob.db.stare import Database as STARE -from bob.db.chasedb1 import Database as CHASEDB1 -from bob.db.iostar import Database as IOSTAR -from bob.db.hrf import Database as HRF -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset -import torch - -# Target size: 544x544 (DRIVE) - -defaulttransforms = [ToTensor()] - - -# CHASE_DB1 -transforms_chase = Compose([ - Resize(544) - ,Crop(0,12,544,544) - ,*defaulttransforms - ]) - -# bob.db.dataset init -bobdb_chase = CHASEDB1(protocol = 'default') - -# PyTorch dataset -torch_chase = BinSegDataset(bobdb_chase, split='test', transform=transforms_chase) - - -# IOSTAR VESSEL -transforms_iostar = Compose([ - Resize(544) - ,*defaulttransforms - ]) - -# bob.db.dataset init -bobdb_iostar = IOSTAR(protocol='default_vessel') - -# PyTorch dataset -torch_iostar = BinSegDataset(bobdb_iostar, split='test', transform=transforms_iostar) - -# STARE -transforms = Compose([ - Resize(471) - ,Pad((0,37,0,36)) - ,*defaulttransforms - ]) - -# bob.db.dataset init -bobdb_stare = STARE(protocol = 'default') - -# PyTorch dataset -torch_stare = BinSegDataset(bobdb_stare, split='test', transform=transforms) - - -# HRF -transforms_hrf = Compose([ - Resize((363)) - ,Pad((0,90,0,91)) - ,*defaulttransforms - ]) - -# bob.db.dataset init -bobdb_hrf = HRF(protocol = 'default') - -# PyTorch dataset -torch_hrf = BinSegDataset(bobdb_hrf, split='test', transform=transforms_hrf) - - - -# Merge -dataset = torch.utils.data.ConcatDataset([torch_stare, torch_chase, torch_iostar, torch_hrf]) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/chasedb1.py b/bob/ip/binseg/configs/datasets/chasedb1.py deleted file mode 100644 index 7fa0dc096aa55a8ab19665af45c9f2e1f8368a0c..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/chasedb1.py +++ /dev/null @@ -1,23 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.chasedb1 import Database as CHASEDB1 -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Crop(0,18,960,960) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = CHASEDB1(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/chasedb1/__init__.py b/bob/ip/binseg/configs/datasets/chasedb1/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..00e2c80e7a5d79bd2bda1fa0c1c21097bf11ed3a --- /dev/null +++ b/bob/ip/binseg/configs/datasets/chasedb1/__init__.py @@ -0,0 +1,10 @@ +#!/usr/bin/env python +# coding=utf-8 + +def _maker(protocol): + + from ....data.transforms import Crop + from ....data.chasedb1 import dataset as raw + from .. import make_dataset as mk + return mk(raw.subsets(protocol), [Crop(0, 18, 960, 960)]) + diff --git a/bob/ip/binseg/configs/datasets/chasedb1/covd.py b/bob/ip/binseg/configs/datasets/chasedb1/covd.py new file mode 100644 index 0000000000000000000000000000000000000000..ed8c37aff14036c88fc5949820efb733e802e4ae --- /dev/null +++ b/bob/ip/binseg/configs/datasets/chasedb1/covd.py @@ -0,0 +1,57 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""COVD-CHASEDB1 for Vessel Segmentation + +* Configuration resolution (height x width): 960 x 960 + +The dataset available in this file is composed of DRIVE, STARE, IOSTAR +vessel and HRF (with annotated samples). + +For details on those datasets, consult: + +* See :py:mod:`bob.ip.binseg.data.drive` +* See :py:mod:`bob.ip.binseg.data.stare` +* See :py:mod:`bob.ip.binseg.data.iostar` +* See :py:mod:`bob.ip.binseg.data.hrf` +""" + +from bob.ip.binseg.data.transforms import CenterCrop, Pad, Resize +from bob.ip.binseg.configs.datasets import make_trainset as _maker + +from bob.ip.binseg.data.drive import dataset as _raw_drive + +_drive = _maker( + _raw_drive.subsets("default")["train"], + [CenterCrop((544, 544)), Resize(960)], + rotation_before=True, +) + +from bob.ip.binseg.data.stare import dataset as _raw_stare + +# n.b.: not the best fit, but what was there for Tim's work +_stare = _maker( + _raw_stare.subsets("ah")["train"], + [Pad((0, 32, 0, 32)), Resize(960), CenterCrop(960)], + rotation_before=True, +) + +from bob.ip.binseg.data.hrf import dataset as _raw_hrf + +_hrf = _maker( + _raw_hrf.subsets("default")["train"], [Pad((0, 584, 0, 584)), Resize(960)], +) + +from bob.ip.binseg.data.iostar import dataset as _raw_iostar + +# n.b.: not the best fit, but what was there for Tim's work +_iostar = _maker(_raw_iostar.subsets("vessel")["train"], [Resize(960)]) + +from torch.utils.data import ConcatDataset +from bob.ip.binseg.configs.datasets.chasedb1.first_annotator import ( + dataset as _baseline, +) + +# copy dictionary and replace only the augmented train dataset +dataset = dict(**_baseline) +dataset["__train__"] = ConcatDataset([_drive, _stare, _hrf, _iostar]) diff --git a/bob/ip/binseg/configs/datasets/chasedb1/first_annotator.py b/bob/ip/binseg/configs/datasets/chasedb1/first_annotator.py new file mode 100644 index 0000000000000000000000000000000000000000..07c5684212db6a510a32b246c73a0d7bbe0f8c70 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/chasedb1/first_annotator.py @@ -0,0 +1,14 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""CHASE-DB1 dataset for Vessel Segmentation (first-annotator protocol) + +* Split reference: [CHASEDB1-2012]_ +* Configuration resolution: 960 x 960 (after hand-specified crop) +* See :py:mod:`bob.ip.binseg.data.chasedb1` for dataset details +* This dataset offers a second-annotator comparison +""" + +from bob.ip.binseg.configs.datasets.chasedb1 import _maker +dataset = _maker("first-annotator") +second_annotator = _maker("second-annotator") diff --git a/bob/ip/binseg/configs/datasets/chasedb1/mtest.py b/bob/ip/binseg/configs/datasets/chasedb1/mtest.py new file mode 100644 index 0000000000000000000000000000000000000000..0860d97209d2dcc4ceef736d9f962ddd5dea4776 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/chasedb1/mtest.py @@ -0,0 +1,21 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""CHASE-DB1 cross-evaluation dataset with matched resolution + +* Configuration resolution (height x width): 960 x 960 +""" + +from bob.ip.binseg.data.transforms import CenterCrop, Pad, Resize +from bob.ip.binseg.configs.datasets.chasedb1.xtest import dataset as _xt + +dataset = { + "train": _xt["train"], + "test": _xt["test"], + "drive": _xt["drive"].copy([CenterCrop((544, 544)), Resize(960)]), + "stare": _xt["stare"].copy( + [Pad((0, 32, 0, 32)), Resize(960), CenterCrop(960)] + ), + "hrf": _xt["hrf"].copy([Pad((0, 584, 0, 584)), Resize(960)]), + "iostar": _xt["iostar"].copy([Resize(960)]), +} diff --git a/bob/ip/binseg/configs/datasets/chasedb1/second_annotator.py b/bob/ip/binseg/configs/datasets/chasedb1/second_annotator.py new file mode 100644 index 0000000000000000000000000000000000000000..87a98310bbbe2c6784a0d4d525d58a6126543e2c --- /dev/null +++ b/bob/ip/binseg/configs/datasets/chasedb1/second_annotator.py @@ -0,0 +1,14 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""CHASE-DB1 dataset for Vessel Segmentation (second-annotator protocol) + +* Split reference: [CHASEDB1-2012]_ +* Configuration resolution: 960 x 960 (after hand-specified crop) +* See :py:mod:`bob.ip.binseg.data.chasedb1` for dataset details +* This dataset offers a second-annotator comparison (using "first-annotator") +""" + +from bob.ip.binseg.configs.datasets.chasedb1 import _maker +dataset = _maker("second-annotator") +second_annotator = _maker("first-annotator") diff --git a/bob/ip/binseg/configs/datasets/chasedb1/ssl.py b/bob/ip/binseg/configs/datasets/chasedb1/ssl.py new file mode 100644 index 0000000000000000000000000000000000000000..8bd97ddad2e8a468ec78d20c99b79240deec4f11 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/chasedb1/ssl.py @@ -0,0 +1,30 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""COVD-CHASE-DB1 + SSL for Vessel Segmentation + +* Configuration resolution: 960 x 960 + +The dataset available in this file is composed of DRIVE, STARE, IOSTAR vessel +and HRF (with annotated samples) and CHASE-DB1's "first-annotator" training set +without labels, for training, and CHASE-DB1's "first-annotator" test set, for +evaluation. + +For details on datasets, consult: + +* :py:mod:`bob.ip.binseg.data.stare` +* :py:mod:`bob.ip.binseg.data.drive` +* :py:mod:`bob.ip.binseg.data.chasedb1` +* :py:mod:`bob.ip.binseg.data.iostar` +* :py:mod:`bob.ip.binseg.data.hrf` +""" + +from bob.ip.binseg.configs.datasets.chasedb1.covd import dataset as _covd +from bob.ip.binseg.configs.datasets.chasedb1.first_annotator import ( + dataset as _baseline, +) +from bob.ip.binseg.data.utils import SSLDataset + +# copy dictionary and replace only the augmented train dataset +dataset = dict(**_covd) +dataset["__train__"] = SSLDataset(_covd["__train__"], _baseline["__train__"]) diff --git a/bob/ip/binseg/configs/datasets/chasedb1/xtest.py b/bob/ip/binseg/configs/datasets/chasedb1/xtest.py new file mode 100644 index 0000000000000000000000000000000000000000..cade7b85c1a4f600fd1edcc8558e326c6a4c8d10 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/chasedb1/xtest.py @@ -0,0 +1,22 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""CHASE-DB1 cross-evaluation dataset +""" + +from bob.ip.binseg.configs.datasets.drive.default import dataset as _drive +from bob.ip.binseg.configs.datasets.stare.ah import dataset as _stare +from bob.ip.binseg.configs.datasets.chasedb1.first_annotator import ( + dataset as _chase, +) +from bob.ip.binseg.configs.datasets.hrf.default import dataset as _hrf +from bob.ip.binseg.configs.datasets.iostar.vessel import dataset as _iostar + +dataset = { + "train": _chase["train"], + "test": _chase["test"], + "drive": _drive["test"], + "stare": _stare["test"], + "hrf": _hrf["test"], + "iostar": _iostar["test"], + } diff --git a/bob/ip/binseg/configs/datasets/chasedb11024.py b/bob/ip/binseg/configs/datasets/chasedb11024.py deleted file mode 100644 index 028f10fb443cd4f1c9c728203f13641cc67b95ad..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/chasedb11024.py +++ /dev/null @@ -1,24 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.chasedb1 import Database as CHASEDB1 -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - RandomRotation() - ,Crop(0,18,960,960) - ,Resize(1024) - ,RandomHFlip() - ,RandomVFlip() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = CHASEDB1(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/chasedb11168.py b/bob/ip/binseg/configs/datasets/chasedb11168.py deleted file mode 100644 index d221ea4879c4e7378e0f9ad6bcce2cd5a77bf04c..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/chasedb11168.py +++ /dev/null @@ -1,24 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.chasedb1 import Database as CHASEDB1 -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - RandomRotation() - ,Crop(140,18,680,960) - ,Resize(1168) - ,RandomHFlip() - ,RandomVFlip() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = CHASEDB1(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/chasedb1544.py b/bob/ip/binseg/configs/datasets/chasedb1544.py deleted file mode 100644 index 9632d53996d343deecd0e021fb2140153df9edc0..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/chasedb1544.py +++ /dev/null @@ -1,24 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.chasedb1 import Database as CHASEDB1 -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Resize(544) - ,Crop(0,12,544,544) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = CHASEDB1(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/chasedb1608.py b/bob/ip/binseg/configs/datasets/chasedb1608.py deleted file mode 100644 index 9a475cae5d7fb5be49a28ae6e479dd3fe41760ed..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/chasedb1608.py +++ /dev/null @@ -1,24 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.chasedb1 import Database as CHASEDB1 -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - RandomRotation() - ,CenterCrop((829,960)) - ,Resize(608) - ,RandomHFlip() - ,RandomVFlip() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = CHASEDB1(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/chasedb1test.py b/bob/ip/binseg/configs/datasets/chasedb1test.py deleted file mode 100644 index 4b267b0f022030d512197f89401f74e3373df3cb..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/chasedb1test.py +++ /dev/null @@ -1,19 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.chasedb1 import Database as CHASEDB1 -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Crop(0,18,960,960) - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = CHASEDB1(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='test', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/csv.py b/bob/ip/binseg/configs/datasets/csv.py new file mode 100644 index 0000000000000000000000000000000000000000..3b62ec89e4f373d811e674a5e471f79e24cd9ced --- /dev/null +++ b/bob/ip/binseg/configs/datasets/csv.py @@ -0,0 +1,131 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""Example CSV-based custom filelist dataset + +In case you have your own dataset that is organized on your filesystem (or +elsewhere), this configuration shows an example setup so you can feed such data +(potentially including any ground-truth you may have) to train, predict or +evaluate one of the available network models. + +You must write CSV based file (e.g. using comma as separator) that describes +the data (and ground-truth) locations for each sample on your dataset. So, for +example, if you have a file structure like this: + +.. code-block:: text + + ├── images + ├── image_1.png + ├── ... + └── image_n.png + └── ground-truth + ├── gt_1.png + ├── ... + └── gt_n.png + +Then create one or more files, each containing a subset of your dataset: + +.. code-block:: text + + images/image_1.png,ground-truth/gt_1.png + ...,... + images/image_n.png,ground-truth/gt_n.png + +To create a subset without ground-truth (e.g., for prediction purposes), then +omit the second column on the CSV file. + +Use the path leading to the CSV file and carefully read the comments in this +configuration. **Copy it locally to make changes**: + +.. code-block:: sh + + $ bob binseg config copy csv-dataset-example mydataset.py + # edit mydataset.py as explained here, follow the comments + +Finally, the only object this file needs to provide is one named ``dataset``, +and it should contain a dictionary mapping a name, such as ``train``, ``dev``, +or ``test``, to objects of type :py:class:`torch.utils.data.Dataset`. As you +will see in this example, we provide boilerplate code to do so. + +More information: + +* :py:class:`bob.ip.binseg.data.dataset.CSVDataset` for operational details. +* :py:class:`bob.ip.binseg.data.dataset.JSONDataset` for an alternative for + multi-protocol datasets (all of our supported raw datasets are implemented + using this) +* :py:func:`bob.ip.binseg.configs.datasets.make_dataset` for extra + information on the sample list to pytorch connector. + +""" + +import os + +# First, define how to access and load the raw data. Our package provides some +# stock loaders we use for other datasets. You may have a look at the +# documentation of that module for details. +from bob.ip.binseg.data.loader import ( + load_pil_rgb, + load_pil_1, +) + +from bob.ip.binseg.data.sample import Sample + +# How we use the loaders - "sample" is a dictionary where keys are defined +# below and map to the columns of the CSV files you input. This one is +# configured to load images and labels using PIL. +def _loader(context, sample): + # "context" is ignored in this case - database is homogeneous + # it is a dictionary that passes e.g., the name of the subset + # being loaded, so you can take contextual decisions on the loading + + # Using the path leading to the various data files stored in disk allows + # the CSV file to contain only relative paths and is, therefore, more + # compact. Of course, you can make those paths absolute and then simplify + # it here. + root_path = "/path/where/raw/files/sit" + + data=load_pil_rgb(os.path.join(root_path, sample["data"])) + label=load_pil_1(os.path.join(root_path, sample["label"])) + + # You may also return DelayedSample to avoid data loading to take place + # as the sample object itself is created. Take a look at our own datasets + # for examples. + return Sample( + key=os.path.splitext(sample["data"])[0], + data=dict(data=data, label=label), + ) + + +# This is just a class that puts everything together: the CSV file, how to load +# each sample defined in the dataset, and names for the various columns of the +# CSV file. Once created, this object can be called to generate sample lists. +from bob.ip.binseg.data.dataset import CSVDataset + +_raw_dataset = CSVDataset( + # path to the CSV file(s) - you may add as many subsets as you want: + # * "__train__" is used for training a model (stock data augmentation is + # applied via our "make_dataset()" connector) + # * anything else can be used for prediction and/or evaluation (if labels + # are also provided in such a set). Data augmentation is NOT applied + # using our "make_dataset()" connector. + subsets={ + "__train__": "<path/to/train.csv>", #applies data augmentation + "train": "<path/to/train.csv>", #no data augmentation, evaluate it + "test": "<path/to/test.csv>", #no data augmentation, evaluate it + }, + fieldnames=("data", "label"), # these are the column names + loader=_loader, +) + +# Finally, we build a connector to passes our dataset to the pytorch framework +# so we can, for example, train and evaluate a pytorch model. The connector +# only converts the sample lists into a standard tuple (data[, label[, mask]]) +# that is expected by our engines, after applying the (optional) +# transformations you define. + +# Add/tune your (optional) transforms below - these are just examples +# compatible with a model that requires image inputs of 544 x 544 pixels. +from bob.ip.binseg.data.transforms import CenterCrop +from bob.ip.binseg.configs.datasets import make_dataset as _maker + +#dataset = _maker(_raw_dataset.subsets(), [CenterCrop((544, 544))]) diff --git a/bob/ip/binseg/configs/datasets/drionsdb.py b/bob/ip/binseg/configs/datasets/drionsdb.py deleted file mode 100644 index cd33c1d246755f11c217d7cbf7fcdab35b2144e6..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/drionsdb.py +++ /dev/null @@ -1,23 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.drionsdb import Database as DRIONS -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Pad((4,8,4,8)) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = DRIONS(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/drionsdb/__init__.py b/bob/ip/binseg/configs/datasets/drionsdb/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..99c66bb8d094cc1d8276d428c845577a09ed3d01 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/drionsdb/__init__.py @@ -0,0 +1,9 @@ +#!/usr/bin/env python +# coding=utf-8 + +def _maker(protocol): + + from ....data.transforms import Pad + from ....data.drionsdb import dataset as raw + from .. import make_dataset as mk + return mk(raw.subsets(protocol), [Pad((4, 8, 4, 8))]) diff --git a/bob/ip/binseg/configs/datasets/drionsdb/expert1.py b/bob/ip/binseg/configs/datasets/drionsdb/expert1.py new file mode 100644 index 0000000000000000000000000000000000000000..29749dbc709444c7f4eab7e1fb027b5fecbdc5b3 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/drionsdb/expert1.py @@ -0,0 +1,12 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""DRIONS-DB for Optic Disc Segmentation (expert #1 annotations) + +* Configuration resolution: 416 x 608 (after padding) +* Split reference: [MANINIS-2016]_ +* See :py:mod:`bob.ip.binseg.data.drionsdb` for dataset details +""" + +from bob.ip.binseg.configs.datasets.drionsdb import _maker +dataset = _maker("expert1") diff --git a/bob/ip/binseg/configs/datasets/drionsdb/expert2.py b/bob/ip/binseg/configs/datasets/drionsdb/expert2.py new file mode 100644 index 0000000000000000000000000000000000000000..3e89970fd91341e5be273726024ce541edaae3a3 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/drionsdb/expert2.py @@ -0,0 +1,12 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""DRIONS-DB for Optic Disc Segmentation (expert #2 annotations) + +* Configuration resolution: 416 x 608 (after padding) +* Split reference: [MANINIS-2016]_ +* See :py:mod:`bob.ip.binseg.data.drionsdb` for dataset details +""" + +from bob.ip.binseg.configs.datasets.drionsdb import _maker +dataset = _maker("expert2") diff --git a/bob/ip/binseg/configs/datasets/drionsdbtest.py b/bob/ip/binseg/configs/datasets/drionsdbtest.py deleted file mode 100644 index b65100a6c21eaa0a48f2ff2c33e05e7a17c8825c..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/drionsdbtest.py +++ /dev/null @@ -1,19 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.drionsdb import Database as DRIONS -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Pad((4,8,4,8)) - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = DRIONS(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='test', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/drishtigs1/__init__.py b/bob/ip/binseg/configs/datasets/drishtigs1/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..df8f16b9ddcb4cc6a505fcba1db1b322fbda6eed --- /dev/null +++ b/bob/ip/binseg/configs/datasets/drishtigs1/__init__.py @@ -0,0 +1,9 @@ +#!/usr/bin/env python +# coding=utf-8 + +def _maker(protocol): + + from ....data.transforms import CenterCrop as ccrop + from ....data.drishtigs1 import dataset as raw + from .. import make_dataset as mk + return mk(raw.subsets(protocol), [ccrop((1760, 2048))]) diff --git a/bob/ip/binseg/configs/datasets/drishtigs1/cup_all.py b/bob/ip/binseg/configs/datasets/drishtigs1/cup_all.py new file mode 100644 index 0000000000000000000000000000000000000000..3f648f825754cab99bbaaf4f3ba661bd0d92f07c --- /dev/null +++ b/bob/ip/binseg/configs/datasets/drishtigs1/cup_all.py @@ -0,0 +1,12 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""DRISHTI-GS1 dataset for Cup Segmentation (agreed by all annotators) + +* Configuration resolution: 1760 x 2048 (after center cropping) +* Reference (includes split): [DRISHTIGS1-2014]_ +* See :py:mod:`bob.ip.binseg.data.drishtigs1` for dataset details +""" + +from bob.ip.binseg.configs.datasets.drishtigs1 import _maker +dataset = _maker("optic-cup-all") diff --git a/bob/ip/binseg/configs/datasets/drishtigs1/cup_any.py b/bob/ip/binseg/configs/datasets/drishtigs1/cup_any.py new file mode 100644 index 0000000000000000000000000000000000000000..75471c20810b951a108f6abc58567d3fa5b5db70 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/drishtigs1/cup_any.py @@ -0,0 +1,12 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""DRISHTI-GS1 dataset for Cup Segmentation (agreed by any annotator) + +* Configuration resolution: 1760 x 2048 (after center cropping) +* Reference (includes split): [DRISHTIGS1-2014]_ +* See :py:mod:`bob.ip.binseg.data.drishtigs1` for dataset details +""" + +from bob.ip.binseg.configs.datasets.drishtigs1 import _maker +dataset = _maker("optic-cup-any") diff --git a/bob/ip/binseg/configs/datasets/drishtigs1/disc_all.py b/bob/ip/binseg/configs/datasets/drishtigs1/disc_all.py new file mode 100644 index 0000000000000000000000000000000000000000..fcbe21b1fa73b418bb559f001a02d1b4f4e31873 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/drishtigs1/disc_all.py @@ -0,0 +1,12 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""DRISHTI-GS1 dataset for Optic Disc Segmentation (agreed by all annotators) + +* Configuration resolution: 1760 x 2048 (after center cropping) +* Reference (includes split): [DRISHTIGS1-2014]_ +* See :py:mod:`bob.ip.binseg.data.drishtigs1` for dataset details +""" + +from bob.ip.binseg.configs.datasets.drishtigs1 import _maker +dataset = _maker("optic-disc-all") diff --git a/bob/ip/binseg/configs/datasets/drishtigs1/disc_any.py b/bob/ip/binseg/configs/datasets/drishtigs1/disc_any.py new file mode 100644 index 0000000000000000000000000000000000000000..51cd3d6ad308f6c8ada7f706728ed9c6dd8a616d --- /dev/null +++ b/bob/ip/binseg/configs/datasets/drishtigs1/disc_any.py @@ -0,0 +1,12 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""DRISHTI-GS1 dataset for Optic Disc Segmentation (agreed by any annotator) + +* Configuration resolution: 1760 x 2048 (after center cropping) +* Reference (includes split): [DRISHTIGS1-2014]_ +* See :py:mod:`bob.ip.binseg.data.drishtigs1` for dataset details +""" + +from bob.ip.binseg.configs.datasets.drishtigs1 import _maker +dataset = _maker("optic-disc-any") diff --git a/bob/ip/binseg/configs/datasets/dristhigs1cup.py b/bob/ip/binseg/configs/datasets/dristhigs1cup.py deleted file mode 100644 index f7a69dadcb4010198025e7d4d44fac8aa1b06918..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/dristhigs1cup.py +++ /dev/null @@ -1,23 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.drishtigs1 import Database as DRISHTI -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - CenterCrop((1760,2048)) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = DRISHTI(protocol = 'default_cup') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/dristhigs1cuptest.py b/bob/ip/binseg/configs/datasets/dristhigs1cuptest.py deleted file mode 100644 index 5c2b634e1ba402ed8af801ad7203d6585ecb6b96..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/dristhigs1cuptest.py +++ /dev/null @@ -1,18 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- -from bob.db.drishtigs1 import Database as DRISHTI -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - CenterCrop((1760,2048)) - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = DRISHTI(protocol = 'default_cup') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='test', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/dristhigs1od.py b/bob/ip/binseg/configs/datasets/dristhigs1od.py deleted file mode 100644 index 0bd483c1a03b00e15bd90a32b8ec369b766605ae..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/dristhigs1od.py +++ /dev/null @@ -1,23 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.drishtigs1 import Database as DRISHTI -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - CenterCrop((1760,2048)) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = DRISHTI(protocol = 'default_od') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/dristhigs1odtest.py b/bob/ip/binseg/configs/datasets/dristhigs1odtest.py deleted file mode 100644 index ab1edd6546dac52dd235369b0126e973e2b8611a..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/dristhigs1odtest.py +++ /dev/null @@ -1,19 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.drishtigs1 import Database as DRISHTI -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - CenterCrop((1760,2048)) - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = DRISHTI(protocol = 'default_od') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='test', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/drive.py b/bob/ip/binseg/configs/datasets/drive.py deleted file mode 100644 index 5b6fa356b6f944f6e7e29e1f44b3dda3ec80d9a8..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/drive.py +++ /dev/null @@ -1,23 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.drive import Database as DRIVE -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - CenterCrop((544,544)) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = DRIVE(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/drive/__init__.py b/bob/ip/binseg/configs/datasets/drive/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..fa407a8065cbc39a93d7f0c0490fe83581871d36 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/drive/__init__.py @@ -0,0 +1,9 @@ +#!/usr/bin/env python +# coding=utf-8 + +def _maker(protocol): + + from ....data.transforms import CenterCrop as ccrop + from ....data.drive import dataset as raw + from .. import make_dataset as mk + return mk(raw.subsets(protocol), [ccrop((544, 544))]) diff --git a/bob/ip/binseg/configs/datasets/drive/covd.py b/bob/ip/binseg/configs/datasets/drive/covd.py new file mode 100644 index 0000000000000000000000000000000000000000..494ca9a9960d82fb3508d6a31238ef7810b58e60 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/drive/covd.py @@ -0,0 +1,52 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""COVD-DRIVE for Vessel Segmentation + +* Configuration resolution: 544 x 544 + +The dataset available in this file is composed of STARE, CHASE-DB1, IOSTAR +vessel and HRF (with annotated samples). + +For details on those datasets, consult: + +* See :py:mod:`bob.ip.binseg.data.stare` +* See :py:mod:`bob.ip.binseg.data.chasedb1` +* See :py:mod:`bob.ip.binseg.data.iostar` +* See :py:mod:`bob.ip.binseg.data.hrf` +""" + +from bob.ip.binseg.data.transforms import Resize, Pad, Crop +from bob.ip.binseg.configs.datasets import make_trainset as _maker + +from bob.ip.binseg.data.stare import dataset as _raw_stare + +_stare = _maker( + _raw_stare.subsets("ah")["train"], + [Resize(471), Pad((0, 37, 0, 36))], + rotation_before=True, +) + +from bob.ip.binseg.data.chasedb1 import dataset as _raw_chase + +_chase = _maker( + _raw_chase.subsets("first-annotator")["train"], + [Resize(544), Crop(0, 12, 544, 544)], +) + +from bob.ip.binseg.data.iostar import dataset as _raw_iostar + +_iostar = _maker(_raw_iostar.subsets("vessel")["train"], [Resize(544)],) + +from bob.ip.binseg.data.hrf import dataset as _raw_hrf + +_hrf = _maker( + _raw_hrf.subsets("default")["train"], [Resize((363)), Pad((0, 90, 0, 91))], +) + +from torch.utils.data import ConcatDataset +from bob.ip.binseg.configs.datasets.drive.default import dataset as _baseline + +# copy dictionary and replace only the augmented train dataset +dataset = dict(**_baseline) +dataset["__train__"] = ConcatDataset([_stare, _chase, _iostar, _hrf]) diff --git a/bob/ip/binseg/configs/datasets/drive/default.py b/bob/ip/binseg/configs/datasets/drive/default.py new file mode 100644 index 0000000000000000000000000000000000000000..2331734969206068bdfb32926c495662cb5d08e7 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/drive/default.py @@ -0,0 +1,14 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""DRIVE dataset for Vessel Segmentation (default protocol) + +* Split reference: [DRIVE-2004]_ +* This configuration resolution: 544 x 544 (center-crop) +* See :py:mod:`bob.ip.binseg.data.drive` for dataset details +* This dataset offers a second-annotator comparison for the test set only +""" + +from bob.ip.binseg.configs.datasets.drive import _maker +dataset = _maker("default") +second_annotator = _maker("second-annotator") diff --git a/bob/ip/binseg/configs/datasets/drive/mtest.py b/bob/ip/binseg/configs/datasets/drive/mtest.py new file mode 100644 index 0000000000000000000000000000000000000000..201e7b898cf87bda98640f3081e659450226331c --- /dev/null +++ b/bob/ip/binseg/configs/datasets/drive/mtest.py @@ -0,0 +1,19 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""DRIVE cross-evaluation dataset with matched resolution + +* Configuration resolution: 544 x 544 +""" + +from bob.ip.binseg.data.transforms import Resize, Pad, Crop +from bob.ip.binseg.configs.datasets.drive.xtest import dataset as _xt + +dataset = { + "train": _xt["train"], + "test": _xt["test"], + "stare": _xt["stare"].copy([Resize(471), Pad((0, 37, 0, 36))]), + "chasedb1": _xt["chasedb1"].copy([Resize(544), Crop(0, 12, 544, 544)]), + "hrf": _xt["hrf"].copy([Resize((363)), Pad((0, 90, 0, 91))]), + "iostar": _xt["iostar"].copy([Resize(544)]), + } diff --git a/bob/ip/binseg/configs/datasets/drive/second_annotator.py b/bob/ip/binseg/configs/datasets/drive/second_annotator.py new file mode 100644 index 0000000000000000000000000000000000000000..5637bbc1005846683ed9848baf6654def0f86d5d --- /dev/null +++ b/bob/ip/binseg/configs/datasets/drive/second_annotator.py @@ -0,0 +1,13 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""DRIVE dataset for Vessel Segmentation (second annotation: test only) + +* Split reference: [DRIVE-2004]_ +* This configuration resolution: 544 x 544 (center-crop) +* See :py:mod:`bob.ip.binseg.data.drive` for dataset details +* There are **NO training samples** on this configuration +""" + +from bob.ip.binseg.configs.datasets.drive import _maker +dataset = _maker("second-annotator") diff --git a/bob/ip/binseg/configs/datasets/drive/ssl.py b/bob/ip/binseg/configs/datasets/drive/ssl.py new file mode 100644 index 0000000000000000000000000000000000000000..23af544342f1a48a8e83f87d9041d638f58ed6cf --- /dev/null +++ b/bob/ip/binseg/configs/datasets/drive/ssl.py @@ -0,0 +1,27 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""COVD-DRIVE + SSL for Vessel Segmentation + +* Configuration resolution: 544 x 544 + +The dataset available in this file is composed of STARE, CHASE-DB1, IOSTAR +vessel and HRF (with annotated samples) and DRIVE "default" training set +without labels, for training, and DRIVE's "default" test set, for evaluation. + +For details on datasets, consult: + +* :py:mod:`bob.ip.binseg.data.stare` +* :py:mod:`bob.ip.binseg.data.drive` +* :py:mod:`bob.ip.binseg.data.chasedb1` +* :py:mod:`bob.ip.binseg.data.iostar` +* :py:mod:`bob.ip.binseg.data.hrf` +""" + +from bob.ip.binseg.configs.datasets.drive.covd import dataset as _covd +from bob.ip.binseg.configs.datasets.drive.default import dataset as _baseline +from bob.ip.binseg.data.utils import SSLDataset + +# copy dictionary and replace only the augmented train dataset +dataset = dict(**_covd) +dataset["__train__"] = SSLDataset(_covd["__train__"], _baseline["__train__"]) diff --git a/bob/ip/binseg/configs/datasets/drive/xtest.py b/bob/ip/binseg/configs/datasets/drive/xtest.py new file mode 100644 index 0000000000000000000000000000000000000000..188606b2ce50482feed9624bd40cc625ac8c38b2 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/drive/xtest.py @@ -0,0 +1,22 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""DRIVE cross-evaluation dataset +""" + +from bob.ip.binseg.configs.datasets.drive.default import dataset as _drive +from bob.ip.binseg.configs.datasets.stare.ah import dataset as _stare +from bob.ip.binseg.configs.datasets.chasedb1.first_annotator import ( + dataset as _chase, +) +from bob.ip.binseg.configs.datasets.hrf.default import dataset as _hrf +from bob.ip.binseg.configs.datasets.iostar.vessel import dataset as _iostar + +dataset = { + "train": _drive["train"], + "test": _drive["test"], + "stare": _stare["test"], + "chasedb1": _chase["test"], + "hrf": _hrf["test"], + "iostar": _iostar["test"], + } diff --git a/bob/ip/binseg/configs/datasets/drive1024.py b/bob/ip/binseg/configs/datasets/drive1024.py deleted file mode 100644 index dae199f50dc59c194a5ada24ff8e99f9aa4fd642..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/drive1024.py +++ /dev/null @@ -1,24 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.drive import Database as DRIVE -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - RandomRotation() - ,CenterCrop((540,540)) - ,Resize(1024) - ,RandomHFlip() - ,RandomVFlip() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = DRIVE(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/drive1024test.py b/bob/ip/binseg/configs/datasets/drive1024test.py deleted file mode 100644 index 9e9cb3e935a63ddb45bb0bba85c56c173de6912d..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/drive1024test.py +++ /dev/null @@ -1,20 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.drive import Database as DRIVE -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - CenterCrop((540,540)) - ,Resize(1024) - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = DRIVE(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='test', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/drive1168.py b/bob/ip/binseg/configs/datasets/drive1168.py deleted file mode 100644 index 3f0f0537e1ba67d7beb3d77af492ba8f9fc539a2..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/drive1168.py +++ /dev/null @@ -1,25 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.drive import Database as DRIVE -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - RandomRotation() - ,Crop(75,10,416,544) - ,Pad((21,0,22,0)) - ,Resize(1168) - ,RandomHFlip() - ,RandomVFlip() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = DRIVE(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/drive608.py b/bob/ip/binseg/configs/datasets/drive608.py deleted file mode 100644 index 65bc5e6521dcdd3bbbf66ea77a741c6270dcdd58..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/drive608.py +++ /dev/null @@ -1,25 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.drive import Database as DRIVE -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - RandomRotation() - ,CenterCrop((470,544)) - ,Pad((10,9,10,8)) - ,Resize(608) - ,RandomHFlip() - ,RandomVFlip() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = DRIVE(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/drive960.py b/bob/ip/binseg/configs/datasets/drive960.py deleted file mode 100644 index ab3ac5a9d03916dce4bbb162f51455a5bb05bcba..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/drive960.py +++ /dev/null @@ -1,24 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.drive import Database as DRIVE -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - RandomRotation() - ,CenterCrop((544,544)) - ,Resize(960) - ,RandomHFlip() - ,RandomVFlip() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = DRIVE(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/drivechasedb1iostarhrf608.py b/bob/ip/binseg/configs/datasets/drivechasedb1iostarhrf608.py deleted file mode 100644 index 5ab57b8ad4e34d700e4667138b6111f19b4a488a..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/drivechasedb1iostarhrf608.py +++ /dev/null @@ -1,10 +0,0 @@ -from bob.ip.binseg.configs.datasets.drive608 import dataset as drive -from bob.ip.binseg.configs.datasets.chasedb1608 import dataset as chase -from bob.ip.binseg.configs.datasets.iostarvessel608 import dataset as iostar -from bob.ip.binseg.configs.datasets.hrf608 import dataset as hrf -import torch - -#### Config #### - -# PyTorch dataset -dataset = torch.utils.data.ConcatDataset([drive,chase,iostar,hrf]) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/drivechasedb1iostarhrf608sslstare.py b/bob/ip/binseg/configs/datasets/drivechasedb1iostarhrf608sslstare.py deleted file mode 100644 index 928452f4209d4526e66028457a3ababcd04fda8b..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/drivechasedb1iostarhrf608sslstare.py +++ /dev/null @@ -1,34 +0,0 @@ -from bob.ip.binseg.configs.datasets.drive608 import dataset as drive -from bob.ip.binseg.configs.datasets.chasedb1608 import dataset as chase -from bob.ip.binseg.configs.datasets.iostarvessel608 import dataset as iostar -from bob.ip.binseg.configs.datasets.hrf608 import dataset as hrf -from bob.db.stare import Database as STARE -from bob.ip.binseg.data.transforms import * -import torch -from bob.ip.binseg.data.binsegdataset import BinSegDataset, SSLBinSegDataset, UnLabeledBinSegDataset - - -#### Config #### - -# PyTorch dataset -labeled_dataset = torch.utils.data.ConcatDataset([drive,chase,iostar,hrf]) - -#### Unlabeled STARE TRAIN #### -unlabeled_transforms = Compose([ - Pad((2,1,2,2)) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -starebobdb = STARE(protocol = 'default') - -# PyTorch dataset -unlabeled_dataset = UnLabeledBinSegDataset(starebobdb, split='train', transform=unlabeled_transforms) - -# SSL Dataset - -dataset = SSLBinSegDataset(labeled_dataset, unlabeled_dataset) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/drivestarechasedb11168.py b/bob/ip/binseg/configs/datasets/drivestarechasedb11168.py deleted file mode 100644 index 0e36eff7195de38bd2122a0bb75942a210fba1db..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/drivestarechasedb11168.py +++ /dev/null @@ -1,9 +0,0 @@ -from bob.ip.binseg.configs.datasets.drive1168 import dataset as drive -from bob.ip.binseg.configs.datasets.stare1168 import dataset as stare -from bob.ip.binseg.configs.datasets.chasedb11168 import dataset as chase -import torch - -#### Config #### - -# PyTorch dataset -dataset = torch.utils.data.ConcatDataset([drive,stare,chase]) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/drivestarechasedb1hrf1024.py b/bob/ip/binseg/configs/datasets/drivestarechasedb1hrf1024.py deleted file mode 100644 index 74628abe77801ef572cd3ad2ff379e9af9287506..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/drivestarechasedb1hrf1024.py +++ /dev/null @@ -1,10 +0,0 @@ -from bob.ip.binseg.configs.datasets.drive1024 import dataset as drive -from bob.ip.binseg.configs.datasets.stare1024 import dataset as stare -from bob.ip.binseg.configs.datasets.hrf1024 import dataset as hrf -from bob.ip.binseg.configs.datasets.chasedb11024 import dataset as chase -import torch - -#### Config #### - -# PyTorch dataset -dataset = torch.utils.data.ConcatDataset([drive,stare,hrf,chase]) diff --git a/bob/ip/binseg/configs/datasets/drivestarechasedb1hrf1024ssliostar.py b/bob/ip/binseg/configs/datasets/drivestarechasedb1hrf1024ssliostar.py deleted file mode 100644 index dd9016b7c076b08cc99e875d4f5cc9dcdd3babd0..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/drivestarechasedb1hrf1024ssliostar.py +++ /dev/null @@ -1,33 +0,0 @@ -from bob.ip.binseg.configs.datasets.drive1024 import dataset as drive -from bob.ip.binseg.configs.datasets.stare1024 import dataset as stare -from bob.ip.binseg.configs.datasets.hrf1024 import dataset as hrf -from bob.ip.binseg.configs.datasets.chasedb11024 import dataset as chasedb -from bob.db.iostar import Database as IOSTAR -from bob.ip.binseg.data.transforms import * -import torch -from bob.ip.binseg.data.binsegdataset import BinSegDataset, SSLBinSegDataset, UnLabeledBinSegDataset - - -#### Config #### - -# PyTorch dataset -labeled_dataset = torch.utils.data.ConcatDataset([drive,stare,hrf,chasedb]) - -#### Unlabeled IOSTAR Train #### -unlabeled_transforms = Compose([ - RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -iostarbobdb = IOSTAR(protocol='default_vessel') - -# PyTorch dataset -unlabeled_dataset = UnLabeledBinSegDataset(iostarbobdb, split='train', transform=unlabeled_transforms) - -# SSL Dataset - -dataset = SSLBinSegDataset(labeled_dataset, unlabeled_dataset) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/drivestarechasedb1iostar1168.py b/bob/ip/binseg/configs/datasets/drivestarechasedb1iostar1168.py deleted file mode 100644 index 62e2972d3526fd5ff138a5ea99f0855849beda12..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/drivestarechasedb1iostar1168.py +++ /dev/null @@ -1,10 +0,0 @@ -from bob.ip.binseg.configs.datasets.drive1168 import dataset as drive -from bob.ip.binseg.configs.datasets.stare1168 import dataset as stare -from bob.ip.binseg.configs.datasets.chasedb11168 import dataset as chase -from bob.ip.binseg.configs.datasets.iostarvessel1168 import dataset as iostar -import torch - -#### Config #### - -# PyTorch dataset -dataset = torch.utils.data.ConcatDataset([drive,stare,chase,iostar]) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/drivestarechasedb1iostar1168sslhrf.py b/bob/ip/binseg/configs/datasets/drivestarechasedb1iostar1168sslhrf.py deleted file mode 100644 index 01705e15d8752b628ed6b150cf095db08ca4eed6..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/drivestarechasedb1iostar1168sslhrf.py +++ /dev/null @@ -1,35 +0,0 @@ -from bob.ip.binseg.configs.datasets.drive1168 import dataset as drive -from bob.ip.binseg.configs.datasets.stare1168 import dataset as stare -from bob.ip.binseg.configs.datasets.chasedb11168 import dataset as chasedb -from bob.ip.binseg.configs.datasets.iostarvessel1168 import dataset as iostar -from bob.db.hrf import Database as HRF -from bob.ip.binseg.data.transforms import * -import torch -from bob.ip.binseg.data.binsegdataset import BinSegDataset, SSLBinSegDataset, UnLabeledBinSegDataset - - -#### Config #### - -# PyTorch dataset -labeled_dataset = torch.utils.data.ConcatDataset([drive,stare,iostar,chasedb]) - -#### Unlabeled HRF TRAIN #### -unlabeled_transforms = Compose([ - RandomRotation() - ,Crop(0,108,2336,3296) - ,Resize((1168)) - ,RandomHFlip() - ,RandomVFlip() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -hrfbobdb = HRF(protocol='default') - -# PyTorch dataset -unlabeled_dataset = UnLabeledBinSegDataset(hrfbobdb, split='train', transform=unlabeled_transforms) - -# SSL Dataset - -dataset = SSLBinSegDataset(labeled_dataset, unlabeled_dataset) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/drivestareiostarhrf960.py b/bob/ip/binseg/configs/datasets/drivestareiostarhrf960.py deleted file mode 100644 index 9343cf22c62a0cf9ad02d767b24ca576b00fd4d1..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/drivestareiostarhrf960.py +++ /dev/null @@ -1,10 +0,0 @@ -from bob.ip.binseg.configs.datasets.drive960 import dataset as drive -from bob.ip.binseg.configs.datasets.stare960 import dataset as stare -from bob.ip.binseg.configs.datasets.hrf960 import dataset as hrf -from bob.ip.binseg.configs.datasets.iostarvessel960 import dataset as iostar -import torch - -#### Config #### - -# PyTorch dataset -dataset = torch.utils.data.ConcatDataset([drive,stare,hrf,iostar]) diff --git a/bob/ip/binseg/configs/datasets/drivestareiostarhrf960sslchase.py b/bob/ip/binseg/configs/datasets/drivestareiostarhrf960sslchase.py deleted file mode 100644 index a7bd4576766259e83ec633bfac15b4dc46f0da9d..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/drivestareiostarhrf960sslchase.py +++ /dev/null @@ -1,35 +0,0 @@ -from bob.ip.binseg.configs.datasets.drive960 import dataset as drive -from bob.ip.binseg.configs.datasets.stare960 import dataset as stare -from bob.ip.binseg.configs.datasets.hrf960 import dataset as hrf -from bob.ip.binseg.configs.datasets.iostarvessel960 import dataset as iostar -from bob.db.chasedb1 import Database as CHASE -from bob.db.hrf import Database as HRF -from bob.ip.binseg.data.transforms import * -import torch -from bob.ip.binseg.data.binsegdataset import BinSegDataset, SSLBinSegDataset, UnLabeledBinSegDataset - - -#### Config #### - -# PyTorch dataset -labeled_dataset = torch.utils.data.ConcatDataset([drive,stare,hrf,iostar]) - -#### Unlabeled CHASE TRAIN #### -unlabeled_transforms = Compose([ - Crop(0,18,960,960) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -chasebobdb = CHASE(protocol = 'default') - -# PyTorch dataset -unlabeled_dataset = UnLabeledBinSegDataset(chasebobdb, split='train', transform=unlabeled_transforms) - -# SSL Dataset - -dataset = SSLBinSegDataset(labeled_dataset, unlabeled_dataset) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/drivetest.py b/bob/ip/binseg/configs/datasets/drivetest.py deleted file mode 100644 index 230598dce92a39276e05dd4b4f842643428546b4..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/drivetest.py +++ /dev/null @@ -1,19 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.drive import Database as DRIVE -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - CenterCrop((544,544)) - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = DRIVE(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='test', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/hrf.py b/bob/ip/binseg/configs/datasets/hrf.py deleted file mode 100644 index cb008f7da1736ef66085ddfb4de0335695c28779..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/hrf.py +++ /dev/null @@ -1,23 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.hrf import Database as HRF -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Crop(0,108,2336,3296) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = HRF(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/hrf/__init__.py b/bob/ip/binseg/configs/datasets/hrf/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..b3efe1b8d85cb357fc5abb5dfb4ce0e4498e54b5 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/hrf/__init__.py @@ -0,0 +1,16 @@ +#!/usr/bin/env python +# coding=utf-8 + +def _maker_1168(protocol): + + from ....data.transforms import Crop, Resize + from ....data.hrf import dataset as raw + from .. import make_dataset as mk + return mk(raw.subsets(protocol), [Crop(0, 108, 2336, 3296), Resize(1168)]) + +def _maker(protocol): + + from ....data.transforms import Crop + from ....data.hrf import dataset as raw + from .. import make_dataset as mk + return mk(raw.subsets(protocol), [Crop(0, 108, 2336, 3296)]) diff --git a/bob/ip/binseg/configs/datasets/hrf/covd.py b/bob/ip/binseg/configs/datasets/hrf/covd.py new file mode 100644 index 0000000000000000000000000000000000000000..792a005b6c08fee3b0dbab1cea07e1379c7cf056 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/hrf/covd.py @@ -0,0 +1,59 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""COVD-HRF for Vessel Segmentation + +* Configuration resolution: 1168 x 1648 + +The dataset available in this file is composed of DRIVE STARE, CHASE-DB1, and +IOSTAR vessel (with annotated samples). + +For details on those datasets, consult: + +* See :py:mod:`bob.ip.binseg.data.drive` +* See :py:mod:`bob.ip.binseg.data.stare` +* See :py:mod:`bob.ip.binseg.data.chasedb1` +* See :py:mod:`bob.ip.binseg.data.iostar` +""" + +from bob.ip.binseg.data.transforms import Crop, Pad, Resize +from bob.ip.binseg.configs.datasets import make_trainset as _maker + +from bob.ip.binseg.data.drive import dataset as _raw_drive + +_drive = _maker( + _raw_drive.subsets("default")["train"], + [Crop(75, 10, 416, 544), Pad((21, 0, 22, 0)), Resize(1168)], + rotation_before=True, +) + +from bob.ip.binseg.data.stare import dataset as _raw_stare + +_stare = _maker( + _raw_stare.subsets("ah")["train"], + [Crop(50, 0, 500, 705), Resize(1168), Pad((1, 0, 1, 0))], + rotation_before=True, +) + +from bob.ip.binseg.data.chasedb1 import dataset as _raw_chase + +_chase = _maker( + _raw_chase.subsets("first-annotator")["train"], + [Crop(140, 18, 680, 960), Resize(1168)], + rotation_before=True, +) + +from bob.ip.binseg.data.iostar import dataset as _raw_iostar + +_iostar = _maker( + _raw_iostar.subsets("vessel")["train"], + [Crop(144, 0, 768, 1024), Pad((30, 0, 30, 0)), Resize(1168)], + rotation_before=True, +) + +from torch.utils.data import ConcatDataset +from bob.ip.binseg.configs.datasets.hrf.default import dataset as _baseline + +# copy dictionary and replace only the augmented train dataset +dataset = dict(**_baseline) +dataset["__train__"] = ConcatDataset([_drive, _stare, _chase, _iostar]) diff --git a/bob/ip/binseg/configs/datasets/hrf/default.py b/bob/ip/binseg/configs/datasets/hrf/default.py new file mode 100644 index 0000000000000000000000000000000000000000..9089e7451039644337df43e7261204d9cd79acf5 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/hrf/default.py @@ -0,0 +1,12 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""HRF dataset for Vessel Segmentation (default protocol) + +* Split reference: [ORLANDO-2017]_ +* Configuration resolution: 1168 x 1648 (about half full HRF resolution) +* See :py:mod:`bob.ip.binseg.data.hrf` for dataset details +""" + +from bob.ip.binseg.configs.datasets.hrf import _maker_1168 +dataset = _maker_1168("default") diff --git a/bob/ip/binseg/configs/datasets/hrf/default_fullres.py b/bob/ip/binseg/configs/datasets/hrf/default_fullres.py new file mode 100644 index 0000000000000000000000000000000000000000..8d482510300b47068982def03e916d8fb1f6356f --- /dev/null +++ b/bob/ip/binseg/configs/datasets/hrf/default_fullres.py @@ -0,0 +1,12 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""HRF dataset for Vessel Segmentation (default protocol) + +* Split reference: [ORLANDO-2017]_ +* Configuration resolution: 2336 x 3296 (full dataset resolution) +* See :py:mod:`bob.ip.binseg.data.hrf` for dataset details +""" + +from bob.ip.binseg.configs.datasets.hrf import _maker +dataset = _maker("default") diff --git a/bob/ip/binseg/configs/datasets/hrf/mtest.py b/bob/ip/binseg/configs/datasets/hrf/mtest.py new file mode 100644 index 0000000000000000000000000000000000000000..b5f8f646f4000ddcd89405e379899f45ec5c56b8 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/hrf/mtest.py @@ -0,0 +1,25 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""HRF cross-evaluation dataset with matched resolution + +* Configuration resolution: 1168 x 1648 +""" + +from bob.ip.binseg.data.transforms import Crop, Pad, Resize +from bob.ip.binseg.configs.datasets.hrf.xtest import dataset as _xt + +dataset = { + "train": _xt["train"], + "test": _xt["test"], + "drive": _xt["drive"].copy( + [Crop(75, 10, 416, 544), Pad((21, 0, 22, 0)), Resize(1168)] + ), + "stare": _xt["stare"].copy( + [Crop(50, 0, 500, 705), Resize(1168), Pad((1, 0, 1, 0))] + ), + "chasedb1": _xt["chasedb1"].copy([Crop(140, 18, 680, 960), Resize(1168)]), + "iostar": _xt["iostar"].copy( + [Crop(144, 0, 768, 1024), Pad((30, 0, 30, 0)), Resize(1168)] + ), +} diff --git a/bob/ip/binseg/configs/datasets/hrf/ssl.py b/bob/ip/binseg/configs/datasets/hrf/ssl.py new file mode 100644 index 0000000000000000000000000000000000000000..7f6f369e2510bb39acee083c2caa3ffa74855fa6 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/hrf/ssl.py @@ -0,0 +1,27 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""COVD-HRF + SSL for Vessel Segmentation + +* Configuration resolution: 1168 x 1648 + +The dataset available in this file is composed of DRIVE STARE, CHASE-DB1, and +IOSTAR vessel (with annotated samples), and HRF "default" training set, without +labels, for training, and HRF's "default" test set, for evaluation. + +For details on datasets, consult: + +* :py:mod:`bob.ip.binseg.data.stare` +* :py:mod:`bob.ip.binseg.data.drive` +* :py:mod:`bob.ip.binseg.data.chasedb1` +* :py:mod:`bob.ip.binseg.data.iostar` +* :py:mod:`bob.ip.binseg.data.hrf` +""" + +from bob.ip.binseg.configs.datasets.hrf.covd import dataset as _covd +from bob.ip.binseg.configs.datasets.hrf.default import dataset as _baseline +from bob.ip.binseg.data.utils import SSLDataset + +# copy dictionary and replace only the augmented train dataset +dataset = dict(**_covd) +dataset["__train__"] = SSLDataset(_covd["__train__"], _baseline["__train__"]) diff --git a/bob/ip/binseg/configs/datasets/hrf/xtest.py b/bob/ip/binseg/configs/datasets/hrf/xtest.py new file mode 100644 index 0000000000000000000000000000000000000000..6f96074fb9709f38d4ce89296e242e065520676f --- /dev/null +++ b/bob/ip/binseg/configs/datasets/hrf/xtest.py @@ -0,0 +1,22 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""HRF cross-evaluation dataset +""" + +from bob.ip.binseg.configs.datasets.drive.default import dataset as _drive +from bob.ip.binseg.configs.datasets.stare.ah import dataset as _stare +from bob.ip.binseg.configs.datasets.chasedb1.first_annotator import ( + dataset as _chase, +) +from bob.ip.binseg.configs.datasets.hrf.default import dataset as _hrf +from bob.ip.binseg.configs.datasets.iostar.vessel import dataset as _iostar + +dataset = { + "train": _hrf["train"], + "test": _hrf["test"], + "drive": _drive["test"], + "stare": _stare["test"], + "chasedb1": _chase["test"], + "iostar": _iostar["test"], + } diff --git a/bob/ip/binseg/configs/datasets/hrf1024.py b/bob/ip/binseg/configs/datasets/hrf1024.py deleted file mode 100644 index 48168445f5689b95a1f55ffda0633d2acdbb619a..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/hrf1024.py +++ /dev/null @@ -1,24 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.hrf import Database as HRF -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Pad((0,584,0,584)) - ,Resize((1024)) - ,RandomRotation() - ,RandomHFlip() - ,RandomVFlip() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = HRF(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) diff --git a/bob/ip/binseg/configs/datasets/hrf1168.py b/bob/ip/binseg/configs/datasets/hrf1168.py deleted file mode 100644 index 4d0c4d9eb3097a3c918a24bd2621bb3284f41215..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/hrf1168.py +++ /dev/null @@ -1,24 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.hrf import Database as HRF -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Crop(0,108,2336,3296) - ,Resize((1168)) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = HRF(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/hrf1168test.py b/bob/ip/binseg/configs/datasets/hrf1168test.py deleted file mode 100644 index 86014b75bd7ea428a5f48f85776189d6eeccb619..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/hrf1168test.py +++ /dev/null @@ -1,20 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.hrf import Database as HRF -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Crop(0,108,2336,3296) - ,Resize((1168)) - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = HRF(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='test', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/hrf544.py b/bob/ip/binseg/configs/datasets/hrf544.py deleted file mode 100644 index 0e2cc05152aa20e4c75ffcb464cd8fd90f89e7bd..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/hrf544.py +++ /dev/null @@ -1,24 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.hrf import Database as HRF -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Resize((363)) - ,Pad((0,90,0,91)) - ,RandomRotation() - ,RandomHFlip() - ,RandomVFlip() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = HRF(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) diff --git a/bob/ip/binseg/configs/datasets/hrf544test.py b/bob/ip/binseg/configs/datasets/hrf544test.py deleted file mode 100644 index 86da428b8f6bd0220d0b311b53ddcba098177a70..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/hrf544test.py +++ /dev/null @@ -1,20 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.hrf import Database as HRF -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Resize((363)) - ,Pad((0,90,0,91)) - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = HRF(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='test', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/hrf608.py b/bob/ip/binseg/configs/datasets/hrf608.py deleted file mode 100644 index b26e772a0793d043af6e59f18caab5943805d929..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/hrf608.py +++ /dev/null @@ -1,24 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.hrf import Database as HRF -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Pad((0,345,0,345)) - ,Resize(608) - ,RandomRotation() - ,RandomHFlip() - ,RandomVFlip() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = HRF(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) diff --git a/bob/ip/binseg/configs/datasets/hrf960.py b/bob/ip/binseg/configs/datasets/hrf960.py deleted file mode 100644 index dd43cf00b68e8a66e8e0ec362ec519bf3488358e..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/hrf960.py +++ /dev/null @@ -1,24 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.hrf import Database as HRF -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Pad((0,584,0,584)) - ,Resize((960)) - ,RandomRotation() - ,RandomHFlip() - ,RandomVFlip() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = HRF(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) diff --git a/bob/ip/binseg/configs/datasets/hrftest.py b/bob/ip/binseg/configs/datasets/hrftest.py deleted file mode 100644 index 45f952728f8e5ff4e335c8ea6a6d79762c166b8e..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/hrftest.py +++ /dev/null @@ -1,19 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.hrf import Database as HRF -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Crop(0,108,2336,3296) - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = HRF(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='test', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/imagefolder.py b/bob/ip/binseg/configs/datasets/imagefolder.py deleted file mode 100644 index efcf2879a27973e01badf328a71efa265c9fa7f7..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/imagefolder.py +++ /dev/null @@ -1,21 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.imagefolder import ImageFolder - -#### Config #### - -# add your transforms below -transforms = Compose([ - CenterCrop((544,544)) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# PyTorch dataset -path = '/path/to/dataset' -dataset = ImageFolder(path,transform=transforms) diff --git a/bob/ip/binseg/configs/datasets/imagefolderinference.py b/bob/ip/binseg/configs/datasets/imagefolderinference.py deleted file mode 100644 index 634566b9c0f8c899474494651044f138e610f724..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/imagefolderinference.py +++ /dev/null @@ -1,18 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.imagefolderinference import ImageFolderInference - -#### Config #### - -# add your transforms below -transforms = Compose([ - ToRGB(), - CenterCrop((544,544)) - ,ToTensor() - ]) - -# PyTorch dataset -path = '/path/to/folder/containing/images' -dataset = ImageFolderInference(path,transform=transforms) diff --git a/bob/ip/binseg/configs/datasets/imagefoldertest.py b/bob/ip/binseg/configs/datasets/imagefoldertest.py deleted file mode 100644 index 15d9b0383163cee1f3b102783ceb3b50defe5459..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/imagefoldertest.py +++ /dev/null @@ -1,17 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.imagefolder import ImageFolder - -#### Config #### - -# add your transforms below -transforms = Compose([ - CenterCrop((544,544)) - ,ToTensor() - ]) - -# PyTorch dataset -path = '/path/to/testdataset' -dataset = ImageFolder(path,transform=transforms) diff --git a/bob/ip/binseg/configs/datasets/iostar/__init__.py b/bob/ip/binseg/configs/datasets/iostar/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..fb28f5d47aac2d3905a946fc31c4b1d8cb5ea7d6 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/iostar/__init__.py @@ -0,0 +1,9 @@ +#!/usr/bin/env python +# coding=utf-8 + +def _maker(protocol): + + from ....data.iostar import dataset as raw + from .. import make_dataset as mk + return mk(raw.subsets(protocol), []) + diff --git a/bob/ip/binseg/configs/datasets/iostar/covd.py b/bob/ip/binseg/configs/datasets/iostar/covd.py new file mode 100644 index 0000000000000000000000000000000000000000..e2f054feaa64222cce354265969f9e7937638be0 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/iostar/covd.py @@ -0,0 +1,57 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""COVD-IOSTAR for Vessel Segmentation + +* Configuration resolution: 1024 x 1024 + +The dataset available in this file is composed of DRIVE, STARE, CHASE-DB1, and +HRF (with annotated samples). + +For details on those datasets, consult: + +* See :py:mod:`bob.ip.binseg.data.drive` +* See :py:mod:`bob.ip.binseg.data.stare` +* See :py:mod:`bob.ip.binseg.data.chasedb1` +* See :py:mod:`bob.ip.binseg.data.hrf` +""" + +from bob.ip.binseg.data.transforms import CenterCrop, Crop, Pad, Resize +from bob.ip.binseg.configs.datasets import make_trainset as _maker + +from bob.ip.binseg.data.drive import dataset as _raw_drive + +_drive = _maker( + _raw_drive.subsets("default")["train"], + [CenterCrop((540, 540)), Resize(1024)], + rotation_before=True, +) + +from bob.ip.binseg.data.stare import dataset as _raw_stare + +_stare = _maker( + _raw_stare.subsets("ah")["train"], + [Pad((0, 32, 0, 32)), Resize(1024), CenterCrop(1024)], + rotation_before=True, +) + +from bob.ip.binseg.data.hrf import dataset as _raw_hrf + +_hrf = _maker( + _raw_hrf.subsets("default")["train"], [Pad((0, 584, 0, 584)), Resize(1024)], +) + +from bob.ip.binseg.data.chasedb1 import dataset as _raw_chase + +_chase = _maker( + _raw_chase.subsets("first-annotator")["train"], + [Crop(0, 18, 960, 960), Resize(1024)], + rotation_before=True, +) + +from torch.utils.data import ConcatDataset +from bob.ip.binseg.configs.datasets.iostar.vessel import dataset as _baseline + +# copy dictionary and replace only the augmented train dataset +dataset = dict(**_baseline) +dataset["__train__"] = ConcatDataset([_drive, _stare, _hrf, _chase]) diff --git a/bob/ip/binseg/configs/datasets/iostar/optic_disc.py b/bob/ip/binseg/configs/datasets/iostar/optic_disc.py new file mode 100644 index 0000000000000000000000000000000000000000..4cbea6aa4994889e642c259ae4e89baad7deb4bd --- /dev/null +++ b/bob/ip/binseg/configs/datasets/iostar/optic_disc.py @@ -0,0 +1,12 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""IOSTAR dataset for Optic Disc Segmentation (default protocol) + +* Split reference: [MEYER-2017]_ +* Configuration resolution: 1024 x 1024 (original resolution) +* See :py:mod:`bob.ip.binseg.data.iostar` for dataset details +""" + +from bob.ip.binseg.configs.datasets.iostar import _maker +dataset = _maker("optic-disc") diff --git a/bob/ip/binseg/configs/datasets/iostar/ssl.py b/bob/ip/binseg/configs/datasets/iostar/ssl.py new file mode 100644 index 0000000000000000000000000000000000000000..2635552ee87704cd8c370c56a22431f5faa6b151 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/iostar/ssl.py @@ -0,0 +1,27 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""COVD-IOSTAR + SSL for Vessel Segmentation + +* Configuration resolution: 1024 x 1024 + +The dataset available in this file is composed of DRIVE STARE, HRF, and +CHASE-DB1 (with annotated samples), and IOSTAR "vessel" training set, without +labels, for training, and IOSTAR's "vessel" test set, for evaluation. + +For details on datasets, consult: + +* :py:mod:`bob.ip.binseg.data.stare` +* :py:mod:`bob.ip.binseg.data.drive` +* :py:mod:`bob.ip.binseg.data.hrf` +* :py:mod:`bob.ip.binseg.data.chasedb1` +* :py:mod:`bob.ip.binseg.data.iostar` +""" + +from bob.ip.binseg.configs.datasets.iostar.covd import dataset as _covd +from bob.ip.binseg.configs.datasets.iostar.vessel import dataset as _baseline +from bob.ip.binseg.data.utils import SSLDataset + +# copy dictionary and replace only the augmented train dataset +dataset = dict(**_covd) +dataset["__train__"] = SSLDataset(_covd["__train__"], _baseline["__train__"]) diff --git a/bob/ip/binseg/configs/datasets/iostar/vessel.py b/bob/ip/binseg/configs/datasets/iostar/vessel.py new file mode 100644 index 0000000000000000000000000000000000000000..a561c74e8fd920a43ec4398966acd73922f3cc76 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/iostar/vessel.py @@ -0,0 +1,12 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""IOSTAR dataset for Vessel Segmentation (default protocol) + +* Split reference: [MEYER-2017]_ +* Configuration resolution: 1024 x 1024 (original resolution) +* See :py:mod:`bob.ip.binseg.data.iostar` for dataset details +""" + +from bob.ip.binseg.configs.datasets.iostar import _maker +dataset = _maker("vessel") diff --git a/bob/ip/binseg/configs/datasets/iostar/vessel_mtest.py b/bob/ip/binseg/configs/datasets/iostar/vessel_mtest.py new file mode 100644 index 0000000000000000000000000000000000000000..c89cf204442060247639277b82a8e77affd05295 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/iostar/vessel_mtest.py @@ -0,0 +1,21 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""IOSTAR vessel cross-evaluation dataset with matched resolution + +* Configuration resolution: 1024 x 1024 +""" + +from bob.ip.binseg.data.transforms import CenterCrop, Crop, Pad, Resize +from bob.ip.binseg.configs.datasets.iostar.vessel_xtest import dataset as _xt + +dataset = { + "train": _xt["train"], + "test": _xt["test"], + "drive": _xt["drive"].copy([CenterCrop((540, 540)), Resize(1024)]), + "stare": _xt["stare"].copy( + [Pad((0, 32, 0, 32)), Resize(1024), CenterCrop(1024)] + ), + "chasedb1": _xt["chasedb1"].copy([Crop(0, 18, 960, 960), Resize(1024)]), + "hrf": _xt["hrf"].copy([Pad((0, 584, 0, 584)), Resize(1024)]), +} diff --git a/bob/ip/binseg/configs/datasets/iostar/vessel_xtest.py b/bob/ip/binseg/configs/datasets/iostar/vessel_xtest.py new file mode 100644 index 0000000000000000000000000000000000000000..0d6272751ee4dc916c6e46f0b55209e1263f4190 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/iostar/vessel_xtest.py @@ -0,0 +1,22 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""IOSTAR vessel cross-evaluation dataset +""" + +from bob.ip.binseg.configs.datasets.drive.default import dataset as _drive +from bob.ip.binseg.configs.datasets.stare.ah import dataset as _stare +from bob.ip.binseg.configs.datasets.chasedb1.first_annotator import ( + dataset as _chase, +) +from bob.ip.binseg.configs.datasets.hrf.default import dataset as _hrf +from bob.ip.binseg.configs.datasets.iostar.vessel import dataset as _iostar + +dataset = { + "train": _iostar["train"], + "test": _iostar["test"], + "drive": _drive["test"], + "stare": _stare["test"], + "chasedb1": _chase["test"], + "hrf": _hrf["test"], + } diff --git a/bob/ip/binseg/configs/datasets/iostarod.py b/bob/ip/binseg/configs/datasets/iostarod.py deleted file mode 100644 index 334df2a4ba402f879a436ce0ee3bcc07ca4ff49f..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/iostarod.py +++ /dev/null @@ -1,22 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.iostar import Database as IOSTAR -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = IOSTAR(protocol='default_od') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/iostarodtest.py b/bob/ip/binseg/configs/datasets/iostarodtest.py deleted file mode 100644 index ba06450781bc03c765504e98fa715a4b15b1e774..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/iostarodtest.py +++ /dev/null @@ -1,18 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.iostar import Database as IOSTAR -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - ToTensor() - ]) - -# bob.db.dataset init -bobdb = IOSTAR(protocol='default_od') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='test', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/iostarvessel.py b/bob/ip/binseg/configs/datasets/iostarvessel.py deleted file mode 100644 index ded01bb45820f9402fce9a5c6dc15c14908220eb..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/iostarvessel.py +++ /dev/null @@ -1,22 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.iostar import Database as IOSTAR -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = IOSTAR(protocol='default_vessel') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/iostarvessel1168.py b/bob/ip/binseg/configs/datasets/iostarvessel1168.py deleted file mode 100644 index 5da5ed1e912065ca4ea2a81e4bd0f8b4e8d5475d..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/iostarvessel1168.py +++ /dev/null @@ -1,25 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.iostar import Database as IOSTAR -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - RandomRotation() - ,Crop(144,0,768,1024) - ,Pad((30,0,30,0)) - ,Resize(1168) - ,RandomHFlip() - ,RandomVFlip() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = IOSTAR(protocol='default_vessel') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/iostarvessel544.py b/bob/ip/binseg/configs/datasets/iostarvessel544.py deleted file mode 100644 index aa03abe2feb64a084fb76e6f60c69afc7499961f..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/iostarvessel544.py +++ /dev/null @@ -1,23 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.iostar import Database as IOSTAR -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Resize(544) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = IOSTAR(protocol='default_vessel') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/iostarvessel544test.py b/bob/ip/binseg/configs/datasets/iostarvessel544test.py deleted file mode 100644 index e3ccd854079e57c642669aa33f403d4ba28d4700..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/iostarvessel544test.py +++ /dev/null @@ -1,19 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.iostar import Database as IOSTAR -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Resize(544) - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = IOSTAR(protocol='default_vessel') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='test', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/iostarvessel608.py b/bob/ip/binseg/configs/datasets/iostarvessel608.py deleted file mode 100644 index 7fce4507cd090555a2e0bac7f575dfd9d9f85c3d..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/iostarvessel608.py +++ /dev/null @@ -1,24 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.iostar import Database as IOSTAR -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Pad((81,0,81,0)) - ,Resize(608) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = IOSTAR(protocol='default_vessel') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/iostarvessel960.py b/bob/ip/binseg/configs/datasets/iostarvessel960.py deleted file mode 100644 index 32feec853882cbdcadc9fea91de4a1d61e168cc0..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/iostarvessel960.py +++ /dev/null @@ -1,23 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.iostar import Database as IOSTAR -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Resize(960) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = IOSTAR(protocol='default_vessel') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/iostarvesseltest.py b/bob/ip/binseg/configs/datasets/iostarvesseltest.py deleted file mode 100644 index d8fe13718be5c4517c69683696965cbbe5a9abdf..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/iostarvesseltest.py +++ /dev/null @@ -1,18 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.iostar import Database as IOSTAR -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - ToTensor() - ]) - -# bob.db.dataset init -bobdb = IOSTAR(protocol='default_vessel') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='test', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/refuge/__init__.py b/bob/ip/binseg/configs/datasets/refuge/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..24166450112b511f1847f65b275ddcfec8814437 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/refuge/__init__.py @@ -0,0 +1,15 @@ +#!/usr/bin/env python +# coding=utf-8 + +def _maker(protocol): + + from ....data.transforms import Pad, Resize, CenterCrop + from ....data.refuge import dataset as raw + from .. import make_dataset as mk + # due to different sizes, we need to make the dataset twice + train = mk(raw.subsets(protocol), [Resize(1539), Pad((21, 46, 22, 47))]) + # we'll keep "dev" and "test" from the next one + retval = mk(raw.subsets(protocol), [CenterCrop(1632)]) + # and we keep the "train" set with the right transforms + retval["train"] = train["train"] + return retval diff --git a/bob/ip/binseg/configs/datasets/refuge/cup.py b/bob/ip/binseg/configs/datasets/refuge/cup.py new file mode 100644 index 0000000000000000000000000000000000000000..0f8aef4fba1bb710ed42fc921a653491e9ce604d --- /dev/null +++ b/bob/ip/binseg/configs/datasets/refuge/cup.py @@ -0,0 +1,12 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""REFUGE dataset for Optic Cup Segmentation (default protocol) + +* Configuration resolution: 1632 x 1632 (after resizing and padding) +* Reference (including split): [REFUGE-2018]_ +* See :py:mod:`bob.ip.binseg.data.refuge` for dataset details +""" + +from bob.ip.binseg.configs.datasets.refuge import _maker +dataset = _maker("optic-cup") diff --git a/bob/ip/binseg/configs/datasets/refuge/disc.py b/bob/ip/binseg/configs/datasets/refuge/disc.py new file mode 100644 index 0000000000000000000000000000000000000000..73aa1f9276f965913343d37ae178e9c62a3344af --- /dev/null +++ b/bob/ip/binseg/configs/datasets/refuge/disc.py @@ -0,0 +1,12 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""REFUGE dataset for Optic Disc Segmentation (default protocol) + +* Configuration resolution: 1632 x 1632 (after resizing and padding) +* Reference (including split): [REFUGE-2018]_ +* See :py:mod:`bob.ip.binseg.data.refuge` for dataset details +""" + +from bob.ip.binseg.configs.datasets.refuge import _maker +dataset = _maker("optic-disc") diff --git a/bob/ip/binseg/configs/datasets/refugecup.py b/bob/ip/binseg/configs/datasets/refugecup.py deleted file mode 100644 index 9efac5293295bc0f0eb2a03a78ebacdb4e1615c2..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/refugecup.py +++ /dev/null @@ -1,24 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.refuge import Database as REFUGE -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Resize((1539)) - ,Pad((21,46,22,47)) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = REFUGE(protocol = 'default_cup') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/refugecuptest.py b/bob/ip/binseg/configs/datasets/refugecuptest.py deleted file mode 100644 index 8ff916e30cc60e24e505ccb6c0b3455e97d7a9a9..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/refugecuptest.py +++ /dev/null @@ -1,19 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.refuge import Database as REFUGE -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - CenterCrop(1632) - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = REFUGE(protocol = 'default_cup') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='test', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/refugeod.py b/bob/ip/binseg/configs/datasets/refugeod.py deleted file mode 100644 index 5faaf05a9edcd7fcb4c3353dd6f9a17478233038..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/refugeod.py +++ /dev/null @@ -1,24 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.refuge import Database as REFUGE -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Resize((1539)) - ,Pad((21,46,22,47)) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = REFUGE(protocol = 'default_od') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/refugeodtest.py b/bob/ip/binseg/configs/datasets/refugeodtest.py deleted file mode 100644 index 30085a2f5450eefb12300b27677a15bf27baa8d8..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/refugeodtest.py +++ /dev/null @@ -1,19 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.refuge import Database as REFUGE -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - CenterCrop(1632) - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = REFUGE(protocol = 'default_od') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='test', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/rimoner3/__init__.py b/bob/ip/binseg/configs/datasets/rimoner3/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..3b9a9b941ba616e817c54f9500a761a0933db1e6 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/rimoner3/__init__.py @@ -0,0 +1,9 @@ +#!/usr/bin/env python +# coding=utf-8 + +def _maker(protocol): + + from ....data.transforms import Pad + from ....data.rimoner3 import dataset as raw + from .. import make_dataset as mk + return mk(raw.subsets(protocol), [Pad((8, 8, 8, 8))]) diff --git a/bob/ip/binseg/configs/datasets/rimoner3/cup_exp1.py b/bob/ip/binseg/configs/datasets/rimoner3/cup_exp1.py new file mode 100644 index 0000000000000000000000000000000000000000..4d9075cac2bc1c925230281685ac4774e3f37e72 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/rimoner3/cup_exp1.py @@ -0,0 +1,12 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""RIM-ONE r3 for Optic Cup Segmentation (expert #1 annotations) + +* Configuration resolution: 1440 x 1088 (after padding) +* Split reference: [MANINIS-2016]_ +* See :py:mod:`bob.ip.binseg.data.rimoner3` for dataset details +""" + +from bob.ip.binseg.configs.datasets.rimoner3 import _maker +dataset = _maker("optic-cup-exp1") diff --git a/bob/ip/binseg/configs/datasets/rimoner3/cup_exp2.py b/bob/ip/binseg/configs/datasets/rimoner3/cup_exp2.py new file mode 100644 index 0000000000000000000000000000000000000000..aea08c7e26269ccc110f5ee5579ca8776e4fa25e --- /dev/null +++ b/bob/ip/binseg/configs/datasets/rimoner3/cup_exp2.py @@ -0,0 +1,12 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""RIM-ONE r3 for Optic Cup Segmentation (expert #2 annotations) + +* Configuration resolution: 1440 x 1088 (after padding) +* Split reference: [MANINIS-2016]_ +* See :py:mod:`bob.ip.binseg.data.rimoner3` for dataset details +""" + +from bob.ip.binseg.configs.datasets.rimoner3 import _maker +dataset = _maker("optic-cup-exp2") diff --git a/bob/ip/binseg/configs/datasets/rimoner3/disc_exp1.py b/bob/ip/binseg/configs/datasets/rimoner3/disc_exp1.py new file mode 100644 index 0000000000000000000000000000000000000000..ab5dfc08cc6b11b443680f67053c5aea160b9c26 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/rimoner3/disc_exp1.py @@ -0,0 +1,12 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""RIM-ONE r3 for Optic Disc Segmentation (expert #1 annotations) + +* Configuration resolution: 1440 x 1088 (after padding) +* Split reference: [MANINIS-2016]_ +* See :py:mod:`bob.ip.binseg.data.rimoner3` for dataset details +""" + +from bob.ip.binseg.configs.datasets.rimoner3 import _maker +dataset = _maker("optic-disc-exp1") diff --git a/bob/ip/binseg/configs/datasets/rimoner3/disc_exp2.py b/bob/ip/binseg/configs/datasets/rimoner3/disc_exp2.py new file mode 100644 index 0000000000000000000000000000000000000000..6ee258d8cff7fb4aa2b6294bd5627f81889c27d9 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/rimoner3/disc_exp2.py @@ -0,0 +1,12 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""RIM-ONE r3 for Optic Disc Segmentation (expert #2 annotations) + +* Configuration resolution: 1440 x 1088 (after padding) +* Split reference: [MANINIS-2016]_ +* See :py:mod:`bob.ip.binseg.data.rimoner3` for dataset details +""" + +from bob.ip.binseg.configs.datasets.rimoner3 import _maker +dataset = _maker("optic-disc-exp2") diff --git a/bob/ip/binseg/configs/datasets/rimoner3cup.py b/bob/ip/binseg/configs/datasets/rimoner3cup.py deleted file mode 100644 index 47b62ba0c521d4f4209fb6026c7aae184228fdb2..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/rimoner3cup.py +++ /dev/null @@ -1,23 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.rimoner3 import Database as RIMONER3 -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Pad((8,8,8,8)) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = RIMONER3(protocol = 'default_cup') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/rimoner3cuptest.py b/bob/ip/binseg/configs/datasets/rimoner3cuptest.py deleted file mode 100644 index 9f227be81289e12f4cfc8e63b1a76cbc1251c614..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/rimoner3cuptest.py +++ /dev/null @@ -1,19 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.rimoner3 import Database as RIMONER3 -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Pad((8,8,8,8)) - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = RIMONER3(protocol = 'default_cup') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='test', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/rimoner3od.py b/bob/ip/binseg/configs/datasets/rimoner3od.py deleted file mode 100644 index 4905bec3cb663faed12cd85edc099f7987834657..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/rimoner3od.py +++ /dev/null @@ -1,23 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.rimoner3 import Database as RIMONER3 -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Pad((8,8,8,8)) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = RIMONER3(protocol = 'default_od') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/rimoner3odtest.py b/bob/ip/binseg/configs/datasets/rimoner3odtest.py deleted file mode 100644 index 390f20d795323082c3aca3f6f0a2c81a5b144ba1..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/rimoner3odtest.py +++ /dev/null @@ -1,19 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.rimoner3 import Database as RIMONER3 -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Pad((8,8,8,8)) - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = RIMONER3(protocol = 'default_od') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='test', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/stare.py b/bob/ip/binseg/configs/datasets/stare.py deleted file mode 100644 index f2c784a9ab7a75c82c11ffc5dbb32d6390fb93be..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/stare.py +++ /dev/null @@ -1,23 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.stare import Database as STARE -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Pad((2,1,2,2)) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = STARE(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/stare/__init__.py b/bob/ip/binseg/configs/datasets/stare/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..82d1e14a7813b52dffa558924c861a42bab92760 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/stare/__init__.py @@ -0,0 +1,10 @@ +#!/usr/bin/env python +# coding=utf-8 + +def _maker(protocol, raw=None): + + from ....data.transforms import Pad + from ....data.stare import dataset as _raw + raw = raw or _raw #allows user to recreate dataset for testing purposes + from .. import make_dataset as mk + return mk(raw.subsets(protocol), [Pad((2, 1, 2, 2))]) diff --git a/bob/ip/binseg/configs/datasets/stare/ah.py b/bob/ip/binseg/configs/datasets/stare/ah.py new file mode 100644 index 0000000000000000000000000000000000000000..6b7cec73b37fb19f15f3ea6b94dc61a1a58b06fb --- /dev/null +++ b/bob/ip/binseg/configs/datasets/stare/ah.py @@ -0,0 +1,14 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""STARE dataset for Vessel Segmentation (annotator AH) + +* Configuration resolution: 704 x 608 (after padding) +* Split reference: [MANINIS-2016]_ +* See :py:mod:`bob.ip.binseg.data.stare` for dataset details +* This dataset offers a second-annotator comparison (using protocol "vk") +""" + +from bob.ip.binseg.configs.datasets.stare import _maker +dataset = _maker("ah") +second_annotator = _maker("vk") diff --git a/bob/ip/binseg/configs/datasets/stare/covd.py b/bob/ip/binseg/configs/datasets/stare/covd.py new file mode 100644 index 0000000000000000000000000000000000000000..0abbf93441a7f70036073841786ac06b61ca6528 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/stare/covd.py @@ -0,0 +1,57 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""COVD-STARE for Vessel Segmentation + +* Configuration resolution: 704 x 608 + +The dataset available in this file is composed of DRIVE, CHASE-DB1, IOSTAR +vessel and HRF (with annotated samples). + +For details on those datasets, consult: + +* See :py:mod:`bob.ip.binseg.data.drive` +* See :py:mod:`bob.ip.binseg.data.chasedb1` +* See :py:mod:`bob.ip.binseg.data.iostar` +* See :py:mod:`bob.ip.binseg.data.hrf` +""" + +from bob.ip.binseg.data.transforms import CenterCrop, Pad, Resize +from bob.ip.binseg.configs.datasets import make_trainset as _maker + +from bob.ip.binseg.data.drive import dataset as _raw_drive + +_drive = _maker( + _raw_drive.subsets("default")["train"], + [CenterCrop((470, 544)), Pad((10, 9, 10, 8)), Resize(608)], + rotation_before=True, +) + +from bob.ip.binseg.data.chasedb1 import dataset as _raw_chase + +_chase = _maker( + _raw_chase.subsets("first-annotator")["train"], + [CenterCrop((829, 960)), Resize(608)], + rotation_before=True, +) + +from bob.ip.binseg.data.iostar import dataset as _raw_iostar + +_iostar = _maker( + _raw_iostar.subsets("vessel")["train"], + # n.b.: not the best fit, but what was there for Tim's work + [Pad((81, 0, 81, 0)), Resize(608)], +) + +from bob.ip.binseg.data.hrf import dataset as _raw_hrf + +_hrf = _maker( + _raw_hrf.subsets("default")["train"], [Pad((0, 345, 0, 345)), Resize(608)], +) + +from torch.utils.data import ConcatDataset +from bob.ip.binseg.configs.datasets.stare.ah import dataset as _baseline + +# copy dictionary and replace only the augmented train dataset +dataset = dict(**_baseline) +dataset["__train__"] = ConcatDataset([_drive, _chase, _iostar, _hrf]) diff --git a/bob/ip/binseg/configs/datasets/stare/mtest.py b/bob/ip/binseg/configs/datasets/stare/mtest.py new file mode 100644 index 0000000000000000000000000000000000000000..4485ff815404e09e306aa47c7f8c1f560b877227 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/stare/mtest.py @@ -0,0 +1,21 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""STARE cross-evaluation dataset with matched resolution + +* Configuration resolution: 704 x 608 +""" + +from bob.ip.binseg.data.transforms import CenterCrop, Pad, Resize +from bob.ip.binseg.configs.datasets.stare.xtest import dataset as _xt + +dataset = { + "train": _xt["train"], + "test": _xt["test"], + "drive": _xt["drive"].copy( + [CenterCrop((470, 544)), Pad((10, 9, 10, 8)), Resize(608)] + ), + "chasedb1": _xt["chasedb1"].copy([CenterCrop((829, 960)), Resize(608)]), + "hrf": _xt["hrf"].copy([Pad((0, 345, 0, 345)), Resize(608)]), + "iostar": _xt["iostar"].copy([Pad((81, 0, 81, 0)), Resize(608)]), +} diff --git a/bob/ip/binseg/configs/datasets/stare/ssl.py b/bob/ip/binseg/configs/datasets/stare/ssl.py new file mode 100644 index 0000000000000000000000000000000000000000..10440efd9bb35db7b499c860772c272b01bcc1f6 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/stare/ssl.py @@ -0,0 +1,27 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""COVD-STARE + SSL (training set) for Vessel Segmentation + +* Configuration resolution: 704 x 608 + +The dataset available in this file is composed of DRIVE, CHASE-DB1, IOSTAR +vessel and HRF (with annotated samples) and STARE's "ah" training set, without +labels, for training, and STARE's "ah" test set, for evaluation. + +For details on datasets, consult: + +* :py:mod:`bob.ip.binseg.data.stare` +* :py:mod:`bob.ip.binseg.data.drive` +* :py:mod:`bob.ip.binseg.data.chasedb1` +* :py:mod:`bob.ip.binseg.data.iostar` +* :py:mod:`bob.ip.binseg.data.hrf` +""" + +from bob.ip.binseg.configs.datasets.stare.covd import dataset as _covd +from bob.ip.binseg.configs.datasets.stare.ah import dataset as _baseline +from bob.ip.binseg.data.utils import SSLDataset + +# copy dictionary and replace only the augmented train dataset +dataset = dict(**_covd) +dataset["__train__"] = SSLDataset(_covd["__train__"], _baseline["__train__"]) diff --git a/bob/ip/binseg/configs/datasets/stare/vk.py b/bob/ip/binseg/configs/datasets/stare/vk.py new file mode 100644 index 0000000000000000000000000000000000000000..0ae41c87553b013e0de8ad4d8601c80a80be96e2 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/stare/vk.py @@ -0,0 +1,14 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""STARE dataset for Vessel Segmentation (annotator VK) + +* Configuration resolution: 704 x 608 (after padding) +* Split reference: [MANINIS-2016]_ +* See :py:mod:`bob.ip.binseg.data.stare` for dataset details +* This dataset offers a second-annotator comparison (using protocol "ah") +""" + +from bob.ip.binseg.configs.datasets.stare import _maker +dataset = _maker("vk") +second_annotator = _maker("ah") diff --git a/bob/ip/binseg/configs/datasets/stare/xtest.py b/bob/ip/binseg/configs/datasets/stare/xtest.py new file mode 100644 index 0000000000000000000000000000000000000000..dcd773e872ac3eaeb49b2737e0e6d78c18578d55 --- /dev/null +++ b/bob/ip/binseg/configs/datasets/stare/xtest.py @@ -0,0 +1,22 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""STARE cross-evaluation dataset +""" + +from bob.ip.binseg.configs.datasets.drive.default import dataset as _drive +from bob.ip.binseg.configs.datasets.stare.ah import dataset as _stare +from bob.ip.binseg.configs.datasets.chasedb1.first_annotator import ( + dataset as _chase, +) +from bob.ip.binseg.configs.datasets.hrf.default import dataset as _hrf +from bob.ip.binseg.configs.datasets.iostar.vessel import dataset as _iostar + +dataset = { + "train": _stare["train"], + "test": _stare["test"], + "drive": _drive["test"], + "chasedb1": _chase["test"], + "hrf": _hrf["test"], + "iostar": _iostar["test"], + } diff --git a/bob/ip/binseg/configs/datasets/stare1024.py b/bob/ip/binseg/configs/datasets/stare1024.py deleted file mode 100644 index 8f6df507b16aeffb485bc448c57cf8b21f47bda1..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/stare1024.py +++ /dev/null @@ -1,25 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.stare import Database as STARE -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - RandomRotation() - ,Pad((0,32,0,32)) - ,Resize(1024) - ,CenterCrop(1024) - ,RandomHFlip() - ,RandomVFlip() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = STARE(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/stare1168.py b/bob/ip/binseg/configs/datasets/stare1168.py deleted file mode 100644 index 77e934bf6b6f387105df08519932822bcb11cf09..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/stare1168.py +++ /dev/null @@ -1,25 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.stare import Database as STARE -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - RandomRotation() - ,Crop(50,0,500,705) - ,Resize(1168) - ,Pad((1,0,1,0)) - ,RandomHFlip() - ,RandomVFlip() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = STARE(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/stare544.py b/bob/ip/binseg/configs/datasets/stare544.py deleted file mode 100644 index f03fcefbe6fef80ef1e6a7ec97d2b6c1df221024..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/stare544.py +++ /dev/null @@ -1,23 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.stare import Database as STARE -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ RandomRotation() - ,Resize(471) - ,Pad((0,37,0,36)) - ,RandomHFlip() - ,RandomVFlip() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = STARE(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/stare960.py b/bob/ip/binseg/configs/datasets/stare960.py deleted file mode 100644 index 0d1ed7883cb746f469534ad2a29f491501e7566e..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/stare960.py +++ /dev/null @@ -1,25 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.stare import Database as STARE -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - RandomRotation() - ,Pad((0,32,0,32)) - ,Resize(960) - ,CenterCrop(960) - ,RandomHFlip() - ,RandomVFlip() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = STARE(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='train', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/starechasedb1iostarhrf544.py b/bob/ip/binseg/configs/datasets/starechasedb1iostarhrf544.py deleted file mode 100644 index 72349b3bd6370c0b996edf90e96403df54ec27af..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/starechasedb1iostarhrf544.py +++ /dev/null @@ -1,10 +0,0 @@ -from bob.ip.binseg.configs.datasets.stare544 import dataset as stare -from bob.ip.binseg.configs.datasets.chasedb1544 import dataset as chase -from bob.ip.binseg.configs.datasets.iostarvessel544 import dataset as iostar -from bob.ip.binseg.configs.datasets.hrf544 import dataset as hrf -import torch - -#### Config #### - -# PyTorch dataset -dataset = torch.utils.data.ConcatDataset([stare,chase,hrf,iostar]) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/starechasedb1iostarhrf544ssldrive.py b/bob/ip/binseg/configs/datasets/starechasedb1iostarhrf544ssldrive.py deleted file mode 100644 index 3a5e3008f73cea8d1163030783d70736fad6ef9f..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/starechasedb1iostarhrf544ssldrive.py +++ /dev/null @@ -1,34 +0,0 @@ -from bob.ip.binseg.configs.datasets.stare544 import dataset as stare -from bob.ip.binseg.configs.datasets.chasedb1544 import dataset as chase -from bob.ip.binseg.configs.datasets.iostarvessel544 import dataset as iostar -from bob.ip.binseg.configs.datasets.hrf544 import dataset as hrf -from bob.db.drive import Database as DRIVE -from bob.ip.binseg.data.transforms import * -import torch -from bob.ip.binseg.data.binsegdataset import BinSegDataset, SSLBinSegDataset, UnLabeledBinSegDataset - - -#### Config #### - -# PyTorch dataset -labeled_dataset = torch.utils.data.ConcatDataset([stare,chase,iostar,hrf]) - -#### Unlabeled STARE TRAIN #### -unlabeled_transforms = Compose([ - CenterCrop((544,544)) - ,RandomHFlip() - ,RandomVFlip() - ,RandomRotation() - ,ColorJitter() - ,ToTensor() - ]) - -# bob.db.dataset init -drivebobdb = DRIVE(protocol = 'default') - -# PyTorch dataset -unlabeled_dataset = UnLabeledBinSegDataset(drivebobdb, split='train', transform=unlabeled_transforms) - -# SSL Dataset - -dataset = SSLBinSegDataset(labeled_dataset, unlabeled_dataset) \ No newline at end of file diff --git a/bob/ip/binseg/configs/datasets/staretest.py b/bob/ip/binseg/configs/datasets/staretest.py deleted file mode 100644 index aab80b9bea6339bff87c5cc12d7375ce6216bc60..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/datasets/staretest.py +++ /dev/null @@ -1,19 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from bob.db.stare import Database as STARE -from bob.ip.binseg.data.transforms import * -from bob.ip.binseg.data.binsegdataset import BinSegDataset - -#### Config #### - -transforms = Compose([ - Pad((2,1,2,2)) - ,ToTensor() - ]) - -# bob.db.dataset init -bobdb = STARE(protocol = 'default') - -# PyTorch dataset -dataset = BinSegDataset(bobdb, split='test', transform=transforms) \ No newline at end of file diff --git a/bob/ip/binseg/configs/models/__init__.py b/bob/ip/binseg/configs/models/__init__.py index 2ca5e07cb73f0bdddcb863ef497955964087e301..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644 --- a/bob/ip/binseg/configs/models/__init__.py +++ b/bob/ip/binseg/configs/models/__init__.py @@ -1,3 +0,0 @@ -# see https://docs.python.org/3/library/pkgutil.html -from pkgutil import extend_path -__path__ = extend_path(__path__, __name__) \ No newline at end of file diff --git a/bob/ip/binseg/configs/models/driu.py b/bob/ip/binseg/configs/models/driu.py index 0e8fa1328167de67c1ca55f27791e9b2eefd6efd..cdc9cb89fa3618615dbe46bba61d25f76245fd47 100644 --- a/bob/ip/binseg/configs/models/driu.py +++ b/bob/ip/binseg/configs/models/driu.py @@ -1,10 +1,17 @@ #!/usr/bin/env python -# -*- coding: utf-8 -*- +# coding=utf-8 + +"""DRIU Network for Vessel Segmentation + +Deep Retinal Image Understanding (DRIU), a unified framework of retinal image +analysis that provides both retinal vessel and optic disc segmentation using +deep Convolutional Neural Networks (CNNs). + +Reference: [MANINIS-2016]_ +""" from torch.optim.lr_scheduler import MultiStepLR from bob.ip.binseg.modeling.driu import build_driu -import torch.optim as optim -from torch.nn import BCEWithLogitsLoss from bob.ip.binseg.utils.model_zoo import modelurls from bob.ip.binseg.modeling.losses import SoftJaccardBCELogitsLoss from bob.ip.binseg.engine.adabound import AdaBound @@ -22,17 +29,22 @@ amsbound = False scheduler_milestones = [900] scheduler_gamma = 0.1 -# model model = build_driu() -# pretrained backbone -pretrained_backbone = modelurls['vgg16'] +pretrained_backbone = modelurls["vgg16"] -# optimizer -optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, - eps=eps, weight_decay=weight_decay, amsbound=amsbound) -# criterion +optimizer = AdaBound( + model.parameters(), + lr=lr, + betas=betas, + final_lr=final_lr, + gamma=gamma, + eps=eps, + weight_decay=weight_decay, + amsbound=amsbound, +) criterion = SoftJaccardBCELogitsLoss(alpha=0.7) -# scheduler -scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma) +scheduler = MultiStepLR( + optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma +) diff --git a/bob/ip/binseg/configs/models/driu_bn.py b/bob/ip/binseg/configs/models/driu_bn.py new file mode 100644 index 0000000000000000000000000000000000000000..4e3a4b3c9121b9db5ba64805da2c24d56febbf9c --- /dev/null +++ b/bob/ip/binseg/configs/models/driu_bn.py @@ -0,0 +1,56 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- + +"""DRIU Network for Vessel Segmentation with Batch Normalization + +Deep Retinal Image Understanding (DRIU), a unified framework of retinal image +analysis that provides both retinal vessel and optic disc segmentation using +deep Convolutional Neural Networks (CNNs). This implementation includes batch +normalization as a regularization mechanism. + +Reference: [MANINIS-2016]_ +""" + +from torch.optim.lr_scheduler import MultiStepLR +from bob.ip.binseg.modeling.driubn import build_driu +from bob.ip.binseg.utils.model_zoo import modelurls +from bob.ip.binseg.modeling.losses import SoftJaccardBCELogitsLoss +from bob.ip.binseg.engine.adabound import AdaBound + +##### Config ##### +lr = 0.001 +betas = (0.9, 0.999) +eps = 1e-08 +weight_decay = 0 +final_lr = 0.1 +gamma = 1e-3 +eps = 1e-8 +amsbound = False + +scheduler_milestones = [900] +scheduler_gamma = 0.1 + +# model +model = build_driu() + +# pretrained backbone +pretrained_backbone = modelurls["vgg16_bn"] + +# optimizer +optimizer = AdaBound( + model.parameters(), + lr=lr, + betas=betas, + final_lr=final_lr, + gamma=gamma, + eps=eps, + weight_decay=weight_decay, + amsbound=amsbound, +) +# criterion +criterion = SoftJaccardBCELogitsLoss(alpha=0.7) + +# scheduler +scheduler = MultiStepLR( + optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma +) diff --git a/bob/ip/binseg/configs/models/driu_bn_ssl.py b/bob/ip/binseg/configs/models/driu_bn_ssl.py new file mode 100644 index 0000000000000000000000000000000000000000..a73d4ebe051001d53c3599850c18f4f7084b5ad2 --- /dev/null +++ b/bob/ip/binseg/configs/models/driu_bn_ssl.py @@ -0,0 +1,59 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- + +"""DRIU Network for Vessel Segmentation using SSL and Batch Normalization + +Deep Retinal Image Understanding (DRIU), a unified framework of retinal image +analysis that provides both retinal vessel and optic disc segmentation using +deep Convolutional Neural Networks (CNNs). This version of our model includes +a loss that is suitable for Semi-Supervised Learning (SSL). This version also +includes batch normalization as a regularization mechanism. + +Reference: [MANINIS-2016]_ +""" + +from torch.optim.lr_scheduler import MultiStepLR +from bob.ip.binseg.modeling.driubn import build_driu +from bob.ip.binseg.utils.model_zoo import modelurls +from bob.ip.binseg.modeling.losses import MixJacLoss +from bob.ip.binseg.engine.adabound import AdaBound + +##### Config ##### +lr = 0.001 +betas = (0.9, 0.999) +eps = 1e-08 +weight_decay = 0 +final_lr = 0.1 +gamma = 1e-3 +eps = 1e-8 +amsbound = False + +scheduler_milestones = [900] +scheduler_gamma = 0.1 + +# model +model = build_driu() + +# pretrained backbone +pretrained_backbone = modelurls["vgg16_bn"] + +# optimizer +optimizer = AdaBound( + model.parameters(), + lr=lr, + betas=betas, + final_lr=final_lr, + gamma=gamma, + eps=eps, + weight_decay=weight_decay, + amsbound=amsbound, +) + +# criterion +criterion = MixJacLoss(lambda_u=0.05, jacalpha=0.7) +ssl = True + +# scheduler +scheduler = MultiStepLR( + optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma +) diff --git a/bob/ip/binseg/configs/models/driuod.py b/bob/ip/binseg/configs/models/driu_od.py similarity index 52% rename from bob/ip/binseg/configs/models/driuod.py rename to bob/ip/binseg/configs/models/driu_od.py index 7ad9bb836760b19c021f05d43ea9886685ce3257..9535c89ab5195b0d3f93971f16ad8cd9d336aab7 100644 --- a/bob/ip/binseg/configs/models/driuod.py +++ b/bob/ip/binseg/configs/models/driu_od.py @@ -1,10 +1,17 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- +"""DRIU Network for Optic Disc Segmentation + +Deep Retinal Image Understanding (DRIU), a unified framework of retinal image +analysis that provides both retinal vessel and optic disc segmentation using +deep Convolutional Neural Networks (CNNs). + +Reference: [MANINIS-2016]_ +""" + from torch.optim.lr_scheduler import MultiStepLR from bob.ip.binseg.modeling.driuod import build_driuod -import torch.optim as optim -from torch.nn import BCEWithLogitsLoss from bob.ip.binseg.utils.model_zoo import modelurls from bob.ip.binseg.modeling.losses import SoftJaccardBCELogitsLoss from bob.ip.binseg.engine.adabound import AdaBound @@ -26,13 +33,23 @@ scheduler_gamma = 0.1 model = build_driuod() # pretrained backbone -pretrained_backbone = modelurls['vgg16'] +pretrained_backbone = modelurls["vgg16"] # optimizer -optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, - eps=eps, weight_decay=weight_decay, amsbound=amsbound) +optimizer = AdaBound( + model.parameters(), + lr=lr, + betas=betas, + final_lr=final_lr, + gamma=gamma, + eps=eps, + weight_decay=weight_decay, + amsbound=amsbound, +) # criterion criterion = SoftJaccardBCELogitsLoss(alpha=0.7) # scheduler -scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma) +scheduler = MultiStepLR( + optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma +) diff --git a/bob/ip/binseg/configs/models/driu_ssl.py b/bob/ip/binseg/configs/models/driu_ssl.py new file mode 100644 index 0000000000000000000000000000000000000000..45194f6d8a98b89f176c5aa6a7b1aa8832775eb5 --- /dev/null +++ b/bob/ip/binseg/configs/models/driu_ssl.py @@ -0,0 +1,58 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- + +"""DRIU Network for Vessel Segmentation using SSL + +Deep Retinal Image Understanding (DRIU), a unified framework of retinal image +analysis that provides both retinal vessel and optic disc segmentation using +deep Convolutional Neural Networks (CNNs). This version of our model includes +a loss that is suitable for Semi-Supervised Learning (SSL). + +Reference: [MANINIS-2016]_ +""" + +from torch.optim.lr_scheduler import MultiStepLR +from bob.ip.binseg.modeling.driu import build_driu +from bob.ip.binseg.utils.model_zoo import modelurls +from bob.ip.binseg.modeling.losses import MixJacLoss +from bob.ip.binseg.engine.adabound import AdaBound + +##### Config ##### +lr = 0.001 +betas = (0.9, 0.999) +eps = 1e-08 +weight_decay = 0 +final_lr = 0.1 +gamma = 1e-3 +eps = 1e-8 +amsbound = False + +scheduler_milestones = [900] +scheduler_gamma = 0.1 + +# model +model = build_driu() + +# pretrained backbone +pretrained_backbone = modelurls["vgg16"] + +# optimizer +optimizer = AdaBound( + model.parameters(), + lr=lr, + betas=betas, + final_lr=final_lr, + gamma=gamma, + eps=eps, + weight_decay=weight_decay, + amsbound=amsbound, +) + +# criterion +criterion = MixJacLoss(lambda_u=0.05, jacalpha=0.7) +ssl = True + +# scheduler +scheduler = MultiStepLR( + optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma +) diff --git a/bob/ip/binseg/configs/models/driubn.py b/bob/ip/binseg/configs/models/driubn.py deleted file mode 100644 index 0b95501d0a61053fd74b64976f6a761255944ece..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/models/driubn.py +++ /dev/null @@ -1,38 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from torch.optim.lr_scheduler import MultiStepLR -from bob.ip.binseg.modeling.driubn import build_driu -import torch.optim as optim -from torch.nn import BCEWithLogitsLoss -from bob.ip.binseg.utils.model_zoo import modelurls -from bob.ip.binseg.modeling.losses import SoftJaccardBCELogitsLoss -from bob.ip.binseg.engine.adabound import AdaBound - -##### Config ##### -lr = 0.001 -betas = (0.9, 0.999) -eps = 1e-08 -weight_decay = 0 -final_lr = 0.1 -gamma = 1e-3 -eps = 1e-8 -amsbound = False - -scheduler_milestones = [900] -scheduler_gamma = 0.1 - -# model -model = build_driu() - -# pretrained backbone -pretrained_backbone = modelurls['vgg16_bn'] - -# optimizer -optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, - eps=eps, weight_decay=weight_decay, amsbound=amsbound) -# criterion -criterion = SoftJaccardBCELogitsLoss(alpha=0.7) - -# scheduler -scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma) diff --git a/bob/ip/binseg/configs/models/driubnssl.py b/bob/ip/binseg/configs/models/driubnssl.py deleted file mode 100644 index 52b3a2b35272b99d5f47bae8f23d47da15990135..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/models/driubnssl.py +++ /dev/null @@ -1,39 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from torch.optim.lr_scheduler import MultiStepLR -from bob.ip.binseg.modeling.driubn import build_driu -import torch.optim as optim -from torch.nn import BCEWithLogitsLoss -from bob.ip.binseg.utils.model_zoo import modelurls -from bob.ip.binseg.modeling.losses import MixJacLoss -from bob.ip.binseg.engine.adabound import AdaBound - -##### Config ##### -lr = 0.001 -betas = (0.9, 0.999) -eps = 1e-08 -weight_decay = 0 -final_lr = 0.1 -gamma = 1e-3 -eps = 1e-8 -amsbound = False - -scheduler_milestones = [900] -scheduler_gamma = 0.1 - -# model -model = build_driu() - -# pretrained backbone -pretrained_backbone = modelurls['vgg16_bn'] - -# optimizer -optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, - eps=eps, weight_decay=weight_decay, amsbound=amsbound) - -# criterion -criterion = MixJacLoss(lambda_u=0.05, jacalpha=0.7) - -# scheduler -scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma) diff --git a/bob/ip/binseg/configs/models/driussl.py b/bob/ip/binseg/configs/models/driussl.py deleted file mode 100644 index 39afd4a03f956b24aeeb078c297fb026cdc369b5..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/models/driussl.py +++ /dev/null @@ -1,39 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from torch.optim.lr_scheduler import MultiStepLR -from bob.ip.binseg.modeling.driu import build_driu -import torch.optim as optim -from torch.nn import BCEWithLogitsLoss -from bob.ip.binseg.utils.model_zoo import modelurls -from bob.ip.binseg.modeling.losses import MixJacLoss -from bob.ip.binseg.engine.adabound import AdaBound - -##### Config ##### -lr = 0.001 -betas = (0.9, 0.999) -eps = 1e-08 -weight_decay = 0 -final_lr = 0.1 -gamma = 1e-3 -eps = 1e-8 -amsbound = False - -scheduler_milestones = [900] -scheduler_gamma = 0.1 - -# model -model = build_driu() - -# pretrained backbone -pretrained_backbone = modelurls['vgg16'] - -# optimizer -optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, - eps=eps, weight_decay=weight_decay, amsbound=amsbound) - -# criterion -criterion = MixJacLoss(lambda_u=0.05, jacalpha=0.7) - -# scheduler -scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma) diff --git a/bob/ip/binseg/configs/models/hed.py b/bob/ip/binseg/configs/models/hed.py index eeb0e599e89c967247975456016dc35facdf805c..6a9d7e82f211b2bd6357ad1cc19095765695af66 100644 --- a/bob/ip/binseg/configs/models/hed.py +++ b/bob/ip/binseg/configs/models/hed.py @@ -1,9 +1,19 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- + +"""HED Network for Vessel Segmentation + +Holistically-nested edge detection (HED), turns pixel-wise edge classification +into image-to-image prediction by means of a deep learning model that leverages +fully convolutional neural networks and deeply-supervised nets. + +Reference: [XIE-2015]_ +""" + + from torch.optim.lr_scheduler import MultiStepLR from bob.ip.binseg.modeling.hed import build_hed -import torch.optim as optim from bob.ip.binseg.modeling.losses import HEDSoftJaccardBCELogitsLoss from bob.ip.binseg.utils.model_zoo import modelurls from bob.ip.binseg.engine.adabound import AdaBound @@ -27,13 +37,23 @@ scheduler_gamma = 0.1 model = build_hed() # pretrained backbone -pretrained_backbone = modelurls['vgg16'] +pretrained_backbone = modelurls["vgg16"] # optimizer -optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, - eps=eps, weight_decay=weight_decay, amsbound=amsbound) +optimizer = AdaBound( + model.parameters(), + lr=lr, + betas=betas, + final_lr=final_lr, + gamma=gamma, + eps=eps, + weight_decay=weight_decay, + amsbound=amsbound, +) # criterion criterion = HEDSoftJaccardBCELogitsLoss(alpha=0.7) # scheduler -scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma) +scheduler = MultiStepLR( + optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma +) diff --git a/bob/ip/binseg/configs/models/m2unet.py b/bob/ip/binseg/configs/models/m2unet.py index b15a277966200c97b47a201ff086c7002b9655aa..2edc0372b5b34c59e5feb9baf8b63b97f547441d 100644 --- a/bob/ip/binseg/configs/models/m2unet.py +++ b/bob/ip/binseg/configs/models/m2unet.py @@ -1,10 +1,21 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- +"""MobileNetV2 U-Net Model for Vessel Segmentation + +The MobileNetV2 architecture is based on an inverted residual structure where +the input and output of the residual block are thin bottleneck layers opposite +to traditional residual models which use expanded representations in the input +an MobileNetV2 uses lightweight depthwise convolutions to filter features in +the intermediate expansion layer. This model implements a MobileNetV2 U-Net +model, henceforth named M2U-Net, combining the strenghts of U-Net for medical +segmentation applications and the speed of MobileNetV2 networks. + +References: [SANDLER-2018]_, [RONNEBERGER-2015]_ +""" + from torch.optim.lr_scheduler import MultiStepLR from bob.ip.binseg.modeling.m2u import build_m2unet -import torch.optim as optim -from torch.nn import BCEWithLogitsLoss from bob.ip.binseg.utils.model_zoo import modelurls from bob.ip.binseg.modeling.losses import SoftJaccardBCELogitsLoss from bob.ip.binseg.engine.adabound import AdaBound @@ -26,14 +37,24 @@ scheduler_gamma = 0.1 model = build_m2unet() # pretrained backbone -pretrained_backbone = modelurls['mobilenetv2'] +pretrained_backbone = modelurls["mobilenetv2"] # optimizer -optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, - eps=eps, weight_decay=weight_decay, amsbound=amsbound) - +optimizer = AdaBound( + model.parameters(), + lr=lr, + betas=betas, + final_lr=final_lr, + gamma=gamma, + eps=eps, + weight_decay=weight_decay, + amsbound=amsbound, +) + # criterion criterion = SoftJaccardBCELogitsLoss(alpha=0.7) # scheduler -scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma) +scheduler = MultiStepLR( + optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma +) diff --git a/bob/ip/binseg/configs/models/m2unet_ssl.py b/bob/ip/binseg/configs/models/m2unet_ssl.py new file mode 100644 index 0000000000000000000000000000000000000000..9a456d86efd9c8efbc5a623fbd6f0a75a16ecf9d --- /dev/null +++ b/bob/ip/binseg/configs/models/m2unet_ssl.py @@ -0,0 +1,64 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- + + +"""MobileNetV2 U-Net Model for Vessel Segmentation using SSL + +The MobileNetV2 architecture is based on an inverted residual structure where +the input and output of the residual block are thin bottleneck layers opposite +to traditional residual models which use expanded representations in the input +an MobileNetV2 uses lightweight depthwise convolutions to filter features in +the intermediate expansion layer. This model implements a MobileNetV2 U-Net +model, henceforth named M2U-Net, combining the strenghts of U-Net for medical +segmentation applications and the speed of MobileNetV2 networks. This version +of our model includes a loss that is suitable for Semi-Supervised Learning +(SSL). + +References: [SANDLER-2018]_, [RONNEBERGER-2015]_ +""" + +from torch.optim.lr_scheduler import MultiStepLR +from bob.ip.binseg.modeling.m2u import build_m2unet +from bob.ip.binseg.utils.model_zoo import modelurls +from bob.ip.binseg.modeling.losses import MixJacLoss +from bob.ip.binseg.engine.adabound import AdaBound + +##### Config ##### +lr = 0.001 +betas = (0.9, 0.999) +eps = 1e-08 +weight_decay = 0 +final_lr = 0.1 +gamma = 1e-3 +eps = 1e-8 +amsbound = False + +scheduler_milestones = [900] +scheduler_gamma = 0.1 + +# model +model = build_m2unet() + +# pretrained backbone +pretrained_backbone = modelurls["mobilenetv2"] + +# optimizer +optimizer = AdaBound( + model.parameters(), + lr=lr, + betas=betas, + final_lr=final_lr, + gamma=gamma, + eps=eps, + weight_decay=weight_decay, + amsbound=amsbound, +) + +# criterion +criterion = MixJacLoss(lambda_u=0.05, jacalpha=0.7) +ssl = True + +# scheduler +scheduler = MultiStepLR( + optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma +) diff --git a/bob/ip/binseg/configs/models/m2unetssl.py b/bob/ip/binseg/configs/models/m2unetssl.py deleted file mode 100644 index 3497cea26b03c44b682cfd3beb167afce3015e43..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/configs/models/m2unetssl.py +++ /dev/null @@ -1,39 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from torch.optim.lr_scheduler import MultiStepLR -from bob.ip.binseg.modeling.m2u import build_m2unet -import torch.optim as optim -from torch.nn import BCEWithLogitsLoss -from bob.ip.binseg.utils.model_zoo import modelurls -from bob.ip.binseg.modeling.losses import MixJacLoss -from bob.ip.binseg.engine.adabound import AdaBound - -##### Config ##### -lr = 0.001 -betas = (0.9, 0.999) -eps = 1e-08 -weight_decay = 0 -final_lr = 0.1 -gamma = 1e-3 -eps = 1e-8 -amsbound = False - -scheduler_milestones = [900] -scheduler_gamma = 0.1 - -# model -model = build_m2unet() - -# pretrained backbone -pretrained_backbone = modelurls['mobilenetv2'] - -# optimizer -optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, - eps=eps, weight_decay=weight_decay, amsbound=amsbound) - -# criterion -criterion = MixJacLoss(lambda_u=0.05, jacalpha=0.7) - -# scheduler -scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma) diff --git a/bob/ip/binseg/configs/models/resunet.py b/bob/ip/binseg/configs/models/resunet.py index a1db473cc7f87b6847f57cc1200326d42cb8ab86..ff7e26e599294b7f52da4bb25a71f5d08205c128 100644 --- a/bob/ip/binseg/configs/models/resunet.py +++ b/bob/ip/binseg/configs/models/resunet.py @@ -1,10 +1,21 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- +"""Residual U-Net for Vessel Segmentation + +A semantic segmentation neural network which combines the strengths of residual +learning and U-Net is proposed for road area extraction. The network is built +with residual units and has similar architecture to that of U-Net. The benefits +of this model is two-fold: first, residual units ease training of deep +networks. Second, the rich skip connections within the network could facilitate +information propagation, allowing us to design networks with fewer parameters +however better performance. + +Reference: [ZHANG-2017]_ +""" + from torch.optim.lr_scheduler import MultiStepLR from bob.ip.binseg.modeling.resunet import build_res50unet -import torch.optim as optim -from torch.nn import BCEWithLogitsLoss from bob.ip.binseg.utils.model_zoo import modelurls from bob.ip.binseg.modeling.losses import SoftJaccardBCELogitsLoss from bob.ip.binseg.engine.adabound import AdaBound @@ -26,14 +37,24 @@ scheduler_gamma = 0.1 model = build_res50unet() # pretrained backbone -pretrained_backbone = modelurls['resnet50'] +pretrained_backbone = modelurls["resnet50"] # optimizer -optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, - eps=eps, weight_decay=weight_decay, amsbound=amsbound) - +optimizer = AdaBound( + model.parameters(), + lr=lr, + betas=betas, + final_lr=final_lr, + gamma=gamma, + eps=eps, + weight_decay=weight_decay, + amsbound=amsbound, +) + # criterion criterion = SoftJaccardBCELogitsLoss(alpha=0.7) # scheduler -scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma) +scheduler = MultiStepLR( + optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma +) diff --git a/bob/ip/binseg/configs/models/unet.py b/bob/ip/binseg/configs/models/unet.py index 8182c7fa089c77221b4434e272ae6e0d394b3912..ee1eddb71417c96feb8a2897b9e0079271bdf83e 100644 --- a/bob/ip/binseg/configs/models/unet.py +++ b/bob/ip/binseg/configs/models/unet.py @@ -1,10 +1,19 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- +"""U-Net for Vessel Segmentation + +U-Net is a convolutional neural network that was developed for biomedical image +segmentation at the Computer Science Department of the University of Freiburg, +Germany. The network is based on the fully convolutional network (FCN) and its +architecture was modified and extended to work with fewer training images and +to yield more precise segmentations. + +Reference: [RONNEBERGER-2015]_ +""" + from torch.optim.lr_scheduler import MultiStepLR from bob.ip.binseg.modeling.unet import build_unet -import torch.optim as optim -from torch.nn import BCEWithLogitsLoss from bob.ip.binseg.utils.model_zoo import modelurls from bob.ip.binseg.modeling.losses import SoftJaccardBCELogitsLoss from bob.ip.binseg.engine.adabound import AdaBound @@ -26,14 +35,24 @@ scheduler_gamma = 0.1 model = build_unet() # pretrained backbone -pretrained_backbone = modelurls['vgg16'] +pretrained_backbone = modelurls["vgg16"] # optimizer -optimizer = AdaBound(model.parameters(), lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, - eps=eps, weight_decay=weight_decay, amsbound=amsbound) - +optimizer = AdaBound( + model.parameters(), + lr=lr, + betas=betas, + final_lr=final_lr, + gamma=gamma, + eps=eps, + weight_decay=weight_decay, + amsbound=amsbound, +) + # criterion criterion = SoftJaccardBCELogitsLoss(alpha=0.7) # scheduler -scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma) +scheduler = MultiStepLR( + optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma +) diff --git a/bob/ip/binseg/data/__init__.py b/bob/ip/binseg/data/__init__.py index d776f7534f77d642a336adab27172f4096e3b023..93e77e17a122a8d228fe4844a78f81f085973b00 100644 --- a/bob/ip/binseg/data/__init__.py +++ b/bob/ip/binseg/data/__init__.py @@ -1,4 +1 @@ -# see https://docs.python.org/3/library/pkgutil.html -from pkgutil import extend_path -__path__ = extend_path(__path__, __name__) -from .binsegdataset import BinSegDataset \ No newline at end of file +"""Data manipulation and raw dataset definitions""" diff --git a/bob/ip/binseg/data/binsegdataset.py b/bob/ip/binseg/data/binsegdataset.py deleted file mode 100644 index 2917203c7b530bee796431e0dbe5e7af1f85a2b9..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/data/binsegdataset.py +++ /dev/null @@ -1,163 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- -from torch.utils.data import Dataset -import random - -class BinSegDataset(Dataset): - """PyTorch dataset wrapper around bob.db binary segmentation datasets. - A transform object can be passed that will be applied to the image, ground truth and mask (if present). - It supports indexing such that dataset[i] can be used to get ith sample. - - Parameters - ---------- - bobdb : :py:mod:`bob.db.base` - Binary segmentation bob database (e.g. bob.db.drive) - split : str - ``'train'`` or ``'test'``. Defaults to ``'train'`` - transform : :py:mod:`bob.ip.binseg.data.transforms`, optional - A transform or composition of transfroms. Defaults to ``None``. - mask : bool - whether dataset contains masks or not - """ - def __init__(self, bobdb, split = 'train', transform = None,index_to = None): - if index_to: - self.database = bobdb.samples(split)[:index_to] - else: - self.database = bobdb.samples(split) - self.transform = transform - self.split = split - - @property - def mask(self): - # check if first sample contains a mask - return hasattr(self.database[0], 'mask') - - def __len__(self): - """ - Returns - ------- - int - size of the dataset - """ - return len(self.database) - - def __getitem__(self,index): - """ - Parameters - ---------- - index : int - - Returns - ------- - list - dataitem [img_name, img, gt] - """ - img = self.database[index].img.pil_image() - gt = self.database[index].gt.pil_image() - img_name = self.database[index].img.basename - sample = [img, gt] - - if self.transform : - sample = self.transform(*sample) - - sample.insert(0,img_name) - - return sample - - -class SSLBinSegDataset(Dataset): - """PyTorch dataset wrapper around bob.db binary segmentation datasets. - A transform object can be passed that will be applied to the image, ground truth and mask (if present). - It supports indexing such that dataset[i] can be used to get ith sample. - - Parameters - ---------- - labeled_dataset : :py:class:`torch.utils.data.Dataset` - BinSegDataset with labeled samples - unlabeled_dataset : :py:class:`torch.utils.data.Dataset` - UnLabeledBinSegDataset with unlabeled data - """ - def __init__(self, labeled_dataset, unlabeled_dataset): - self.labeled_dataset = labeled_dataset - self.unlabeled_dataset = unlabeled_dataset - - - def __len__(self): - """ - Returns - ------- - int - size of the dataset - """ - return len(self.labeled_dataset) - - def __getitem__(self,index): - """ - Parameters - ---------- - index : int - - Returns - ------- - list - dataitem [img_name, img, gt, unlabeled_img_name, unlabeled_img] - """ - sample = self.labeled_dataset[index] - unlabeled_img_name, unlabeled_img = self.unlabeled_dataset[0] - sample.extend([unlabeled_img_name, unlabeled_img]) - return sample - - -class UnLabeledBinSegDataset(Dataset): - # TODO: if switch to handle case were not a bob.db object but a path to a directory is used - """PyTorch dataset wrapper around bob.db binary segmentation datasets. - A transform object can be passed that will be applied to the image, ground truth and mask (if present). - It supports indexing such that dataset[i] can be used to get ith sample. - - Parameters - ---------- - dv : :py:mod:`bob.db.base` or str - Binary segmentation bob database (e.g. bob.db.drive) or path to folder containing unlabeled images - split : str - ``'train'`` or ``'test'``. Defaults to ``'train'`` - transform : :py:mod:`bob.ip.binseg.data.transforms`, optional - A transform or composition of transfroms. Defaults to ``None``. - """ - def __init__(self, db, split = 'train', transform = None,index_from= None): - if index_from: - self.database = db.samples(split)[index_from:] - else: - self.database = db.samples(split) - self.transform = transform - self.split = split - - def __len__(self): - """ - Returns - ------- - int - size of the dataset - """ - return len(self.database) - - def __getitem__(self,index): - """ - Parameters - ---------- - index : int - - Returns - ------- - list - dataitem [img_name, img] - """ - random.shuffle(self.database) - img = self.database[index].img.pil_image() - img_name = self.database[index].img.basename - sample = [img] - if self.transform : - sample = self.transform(img) - - sample.insert(0,img_name) - - return sample \ No newline at end of file diff --git a/bob/ip/binseg/data/chasedb1/__init__.py b/bob/ip/binseg/data/chasedb1/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..08a59459c8c137c89d1a64787c85cc72ddaf31d1 --- /dev/null +++ b/bob/ip/binseg/data/chasedb1/__init__.py @@ -0,0 +1,68 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""CHASE-DB1 dataset for Vessel Segmentation + +The CHASE_DB1 is a retinal vessel reference dataset acquired from multiethnic +school children. This database is a part of the Child Heart and Health Study in +England (CHASE), a cardiovascular health survey in 200 primary schools in +London, Birmingham, and Leicester. The ocular imaging was carried out in +46 schools and demonstrated associations between retinal vessel tortuosity and +early risk factors for cardiovascular disease in over 1000 British primary +school children of different ethnic origin. The retinal images of both of the +eyes of each child were recorded with a hand-held Nidek NM-200-D fundus camera. +The images were captured at 30 degrees FOV camera. The dataset of images are +characterized by having nonuniform back-ground illumination, poor contrast of +blood vessels as compared with the background and wider arteriolars that have a +bright strip running down the centre known as the central vessel reflex. + +* Reference: [CHASEDB1-2012]_ +* Original resolution (height x width): 960 x 999 +* Split reference: [CHASEDB1-2012]_ +* Protocol ``first-annotator``: + + * Training samples: 8 (including labels from annotator "1stHO") + * Test samples: 20 (including labels from annotator "1stHO") + +* Protocol ``second-annotator``: + + * Training samples: 8 (including labels from annotator "2ndHO") + * Test samples: 20 (including labels from annotator "2ndHO") + +""" + +import os +import pkg_resources + +import bob.extension + +from ..dataset import JSONDataset +from ..loader import load_pil_rgb, load_pil_1, make_delayed + +_protocols = [ + pkg_resources.resource_filename(__name__, "first-annotator.json"), + pkg_resources.resource_filename(__name__, "second-annotator.json"), +] + +_root_path = bob.extension.rc.get( + "bob.ip.binseg.chasedb1.datadir", os.path.realpath(os.curdir) +) + + +def _raw_data_loader(sample): + return dict( + data=load_pil_rgb(os.path.join(_root_path, sample["data"])), + label=load_pil_1(os.path.join(_root_path, sample["label"])), + ) + + +def _loader(context, sample): + # "context" is ignored in this case - database is homogeneous + # we returned delayed samples to avoid loading all images at once + return make_delayed(sample, _raw_data_loader) + + +dataset = JSONDataset( + protocols=_protocols, fieldnames=("data", "label"), loader=_loader +) +"""CHASE-DB1 dataset object""" diff --git a/bob/ip/binseg/data/chasedb1/first-annotator.json b/bob/ip/binseg/data/chasedb1/first-annotator.json new file mode 100644 index 0000000000000000000000000000000000000000..e7e6761b6ec86022518152a88724d754a7231802 --- /dev/null +++ b/bob/ip/binseg/data/chasedb1/first-annotator.json @@ -0,0 +1,118 @@ +{ + "train": [ + [ + "Image_11L.jpg", + "Image_11L_1stHO.png" + ], + [ + "Image_11R.jpg", + "Image_11R_1stHO.png" + ], + [ + "Image_12L.jpg", + "Image_12L_1stHO.png" + ], + [ + "Image_12R.jpg", + "Image_12R_1stHO.png" + ], + [ + "Image_13L.jpg", + "Image_13L_1stHO.png" + ], + [ + "Image_13R.jpg", + "Image_13R_1stHO.png" + ], + [ + "Image_14L.jpg", + "Image_14L_1stHO.png" + ], + [ + "Image_14R.jpg", + "Image_14R_1stHO.png" + ] + ], + "test": [ + [ + "Image_01L.jpg", + "Image_01L_1stHO.png" + ], + [ + "Image_01R.jpg", + "Image_01R_1stHO.png" + ], + [ + "Image_02L.jpg", + "Image_02L_1stHO.png" + ], + [ + "Image_02R.jpg", + "Image_02R_1stHO.png" + ], + [ + "Image_03L.jpg", + "Image_03L_1stHO.png" + ], + [ + "Image_03R.jpg", + "Image_03R_1stHO.png" + ], + [ + "Image_04L.jpg", + "Image_04L_1stHO.png" + ], + [ + "Image_04R.jpg", + "Image_04R_1stHO.png" + ], + [ + "Image_05L.jpg", + "Image_05L_1stHO.png" + ], + [ + "Image_05R.jpg", + "Image_05R_1stHO.png" + ], + [ + "Image_06L.jpg", + "Image_06L_1stHO.png" + ], + [ + "Image_06R.jpg", + "Image_06R_1stHO.png" + ], + [ + "Image_07L.jpg", + "Image_07L_1stHO.png" + ], + [ + "Image_07R.jpg", + "Image_07R_1stHO.png" + ], + [ + "Image_08L.jpg", + "Image_08L_1stHO.png" + ], + [ + "Image_08R.jpg", + "Image_08R_1stHO.png" + ], + [ + "Image_09L.jpg", + "Image_09L_1stHO.png" + ], + [ + "Image_09R.jpg", + "Image_09R_1stHO.png" + ], + [ + "Image_10L.jpg", + "Image_10L_1stHO.png" + ], + [ + "Image_10R.jpg", + "Image_10R_1stHO.png" + ] + ] +} \ No newline at end of file diff --git a/bob/ip/binseg/data/chasedb1/second-annotator.json b/bob/ip/binseg/data/chasedb1/second-annotator.json new file mode 100644 index 0000000000000000000000000000000000000000..9e26e371fa1df5095c73109cef019f1c95e8b2a5 --- /dev/null +++ b/bob/ip/binseg/data/chasedb1/second-annotator.json @@ -0,0 +1,118 @@ +{ + "train": [ + [ + "Image_11L.jpg", + "Image_11L_2ndHO.png" + ], + [ + "Image_11R.jpg", + "Image_11R_2ndHO.png" + ], + [ + "Image_12L.jpg", + "Image_12L_2ndHO.png" + ], + [ + "Image_12R.jpg", + "Image_12R_2ndHO.png" + ], + [ + "Image_13L.jpg", + "Image_13L_2ndHO.png" + ], + [ + "Image_13R.jpg", + "Image_13R_2ndHO.png" + ], + [ + "Image_14L.jpg", + "Image_14L_2ndHO.png" + ], + [ + "Image_14R.jpg", + "Image_14R_2ndHO.png" + ] + ], + "test": [ + [ + "Image_01L.jpg", + "Image_01L_2ndHO.png" + ], + [ + "Image_01R.jpg", + "Image_01R_2ndHO.png" + ], + [ + "Image_02L.jpg", + "Image_02L_2ndHO.png" + ], + [ + "Image_02R.jpg", + "Image_02R_2ndHO.png" + ], + [ + "Image_03L.jpg", + "Image_03L_2ndHO.png" + ], + [ + "Image_03R.jpg", + "Image_03R_2ndHO.png" + ], + [ + "Image_04L.jpg", + "Image_04L_2ndHO.png" + ], + [ + "Image_04R.jpg", + "Image_04R_2ndHO.png" + ], + [ + "Image_05L.jpg", + "Image_05L_2ndHO.png" + ], + [ + "Image_05R.jpg", + "Image_05R_2ndHO.png" + ], + [ + "Image_06L.jpg", + "Image_06L_2ndHO.png" + ], + [ + "Image_06R.jpg", + "Image_06R_2ndHO.png" + ], + [ + "Image_07L.jpg", + "Image_07L_2ndHO.png" + ], + [ + "Image_07R.jpg", + "Image_07R_2ndHO.png" + ], + [ + "Image_08L.jpg", + "Image_08L_2ndHO.png" + ], + [ + "Image_08R.jpg", + "Image_08R_2ndHO.png" + ], + [ + "Image_09L.jpg", + "Image_09L_2ndHO.png" + ], + [ + "Image_09R.jpg", + "Image_09R_2ndHO.png" + ], + [ + "Image_10L.jpg", + "Image_10L_2ndHO.png" + ], + [ + "Image_10R.jpg", + "Image_10R_2ndHO.png" + ] + ] +} diff --git a/bob/ip/binseg/data/dataset.py b/bob/ip/binseg/data/dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..dd6cb14069237e2935de2814c21102888c6a55e3 --- /dev/null +++ b/bob/ip/binseg/data/dataset.py @@ -0,0 +1,323 @@ +#!/usr/bin/env python +# coding=utf-8 + +import os +import csv +import copy +import json +import pathlib + +import logging + +logger = logging.getLogger(__name__) + + +class JSONDataset: + """ + Generic multi-protocol/subset filelist dataset that yields samples + + To create a new dataset, you need to provide one or more JSON formatted + filelists (one per protocol) with the following contents: + + .. code-block:: json + + { + "subset1": [ + [ + "value1", + "value2", + "value3" + ], + [ + "value4", + "value5", + "value6" + ] + ], + "subset2": [ + ] + } + + Your dataset many contain any number of subsets, but all sample entries + must contain the same number of fields. + + + Parameters + ---------- + + protocols : list, dict + Paths to one or more JSON formatted files containing the various + protocols to be recognized by this dataset, or a dictionary, mapping + protocol names to paths (or opened file objects) of CSV files. + Internally, we save a dictionary where keys default to the basename of + paths (list input). + + fieldnames : list, tuple + An iterable over the field names (strings) to assign to each entry in + the JSON file. It should have as many items as fields in each entry of + the JSON file. + + loader : object + A function that receives as input, a context dictionary (with at least + a "protocol" and "subset" keys indicating which protocol and subset are + being served), and a dictionary with ``{fieldname: value}`` entries, + and returns an object with at least 2 attributes: + + * ``key``: which must be a unique string for every sample across + subsets in a protocol, and + * ``data``: which contains the data associated witht this sample + + """ + + def __init__(self, protocols, fieldnames, loader): + + if isinstance(protocols, dict): + self._protocols = protocols + else: + self._protocols = dict( + (os.path.splitext(os.path.basename(k))[0], k) for k in protocols + ) + self.fieldnames = fieldnames + self._loader = loader + + def check(self, limit=0): + """For each protocol, check if all data can be correctly accessed + + This function assumes each sample has a ``data`` and a ``key`` + attribute. The ``key`` attribute should be a string, or representable + as such. + + + Parameters + ---------- + + limit : int + Maximum number of samples to check (in each protocol/subset + combination) in this dataset. If set to zero, then check + everything. + + + Returns + ------- + + errors : int + Number of errors found + + """ + + logger.info(f"Checking dataset...") + errors = 0 + for proto in self._protocols: + logger.info(f"Checking protocol '{proto}'...") + for name, samples in self.subsets(proto).items(): + logger.info(f"Checking subset '{name}'...") + if limit: + logger.info(f"Checking at most first '{limit}' samples...") + samples = samples[:limit] + for pos, sample in enumerate(samples): + try: + sample.data # may trigger data loading + logger.info(f"{sample.key}: OK") + except Exception as e: + logger.error( + f"Found error loading entry {pos} in subset {name} " + f"of protocol {proto} from file " + f"'{self._protocols[proto]}': {e}" + ) + errors += 1 + except Exception as e: + logger.error(f"{sample.key}: {e}") + errors += 1 + return errors + + def subsets(self, protocol): + """Returns all subsets in a protocol + + This method will load JSON information for a given protocol and return + all subsets of the given protocol after converting each entry through + the loader function. + + Parameters + ---------- + + protocol : str + Name of the protocol data to load + + + Returns + ------- + + subsets : dict + A dictionary mapping subset names to lists of objects (respecting + the ``key``, ``data`` interface). + + """ + + fileobj = self._protocols[protocol] + if isinstance(fileobj, (str, bytes, pathlib.Path)): + with open(self._protocols[protocol], "r") as f: + data = json.load(f) + else: + data = json.load(f) + fileobj.seek(0) + + retval = {} + for subset, samples in data.items(): + retval[subset] = [ + self._loader( + dict(protocol=protocol, subset=subset, order=n), + dict(zip(self.fieldnames, k)) + ) + for n, k in enumerate(samples) + ] + + return retval + + +class CSVDataset: + """ + Generic multi-subset filelist dataset that yields samples + + To create a new dataset, you only need to provide a CSV formatted filelist + using any separator (e.g. comma, space, semi-colon) with the following + information: + + .. code-block:: text + + value1,value2,value3 + value4,value5,value6 + ... + + Notice that all rows must have the same number of entries. + + Parameters + ---------- + + subsets : list, dict + Paths to one or more CSV formatted files containing the various subsets + to be recognized by this dataset, or a dictionary, mapping subset names + to paths (or opened file objects) of CSV files. Internally, we save a + dictionary where keys default to the basename of paths (list input). + + fieldnames : list, tuple + An iterable over the field names (strings) to assign to each column in + the CSV file. It should have as many items as fields in each row of + the CSV file(s). + + loader : object + A function that receives as input, a context dictionary (with, at + least, a "subset" key indicating which subset is being served), and a + dictionary with ``{key: path}`` entries, and returns a dictionary with + the loaded data. + + """ + + def __init__(self, subsets, fieldnames, loader): + + if isinstance(subsets, dict): + self._subsets = subsets + else: + self._subsets = dict( + (os.path.splitext(os.path.basename(k))[0], k) for k in subsets + ) + self.fieldnames = fieldnames + self._loader = loader + + def check(self, limit=0): + """For each subset, check if all data can be correctly accessed + + This function assumes each sample has a ``data`` and a ``key`` + attribute. The ``key`` attribute should be a string, or representable + as such. + + + Parameters + ---------- + + limit : int + Maximum number of samples to check (in each protocol/subset + combination) in this dataset. If set to zero, then check + everything. + + + Returns + ------- + + errors : int + Number of errors found + + """ + + logger.info(f"Checking dataset...") + errors = 0 + for name in self._subsets.keys(): + logger.info(f"Checking subset '{name}'...") + samples = self.samples(name) + if limit: + logger.info(f"Checking at most first '{limit}' samples...") + samples = samples[:limit] + for pos, sample in enumerate(samples): + try: + sample.data # may trigger data loading + logger.info(f"{sample.key}: OK") + except Exception as e: + logger.error( + f"Found error loading entry {pos} in subset {name} " + f"from file '{self._subsets[name]}': {e}" + ) + errors += 1 + return errors + + def subsets(self): + """Returns all available subsets at once + + Returns + ------- + + subsets : dict + A dictionary mapping subset names to lists of objects (respecting + the ``key``, ``data`` interface). + + """ + + return dict((k, self.samples(k)) for k in self._subsets.keys()) + + def samples(self, subset): + """Returns all samples in a subset + + This method will load CSV information for a given subset and return + all samples of the given subset after passing each entry through the + loading function. + + + Parameters + ---------- + + subset : str + Name of the subset data to load + + + Returns + ------- + + subset : list + A lists of objects (respecting the ``key``, ``data`` interface). + + """ + + fileobj = self._subsets[subset] + if isinstance(fileobj, (str, bytes, pathlib.Path)): + with open(self._subsets[subset], newline="") as f: + cf = csv.reader(f) + samples = [k for k in cf] + else: + cf = csv.reader(fileobj) + samples = [k for k in cf] + fileobj.seek(0) + + return [ + self._loader( + dict(subset=subset, order=n), dict(zip(self.fieldnames, k)) + ) + for n, k in enumerate(samples) + ] diff --git a/bob/ip/binseg/data/drionsdb/__init__.py b/bob/ip/binseg/data/drionsdb/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..92e345e3a21ec2309aa23c8f6c42e72bb4b1b4ee --- /dev/null +++ b/bob/ip/binseg/data/drionsdb/__init__.py @@ -0,0 +1,90 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""DRIONS-DB (training set) for Optic Disc Segmentation + +The dataset originates from data collected from 55 patients with glaucoma +(23.1%) and eye hypertension (76.9%), and random selected from an eye fundus +image base belonging to the Ophthalmology Service at Miguel Servet Hospital, +Saragossa (Spain). It contains 110 eye fundus images with a resolution of 600 +x 400. Two sets of ground-truth optic disc annotations are available. The first +set is commonly used for training and testing. The second set acts as a "human" +baseline. + +* Reference: [DRIONSDB-2008]_ +* Original resolution (height x width): 400 x 600 +* Configuration resolution: 416 x 608 (after padding) +* Split reference: [MANINIS-2016]_ +* Protocols ``expert1`` (baseline) and ``expert2`` (human comparison): + + * Training samples: 60 + * Test samples: 50 +""" + +import os +import csv +import pkg_resources + +import PIL.Image +import PIL.ImageDraw + +import bob.extension + +from ..dataset import JSONDataset +from ..loader import load_pil_rgb, make_delayed + +_protocols = [ + pkg_resources.resource_filename(__name__, "expert1.json"), + pkg_resources.resource_filename(__name__, "expert2.json"), +] + +_root_path = bob.extension.rc.get( + "bob.ip.binseg.drionsdb.datadir", os.path.realpath(os.curdir) +) + + +def _txt_to_pil_1(fname, size): + """Converts DRIONS-DB annotations to image format""" + with open(fname, "r") as f: + rows = csv.reader(f, delimiter=",", quoting=csv.QUOTE_NONNUMERIC) + data = list(map(tuple, rows)) + + retval = PIL.Image.new("1", size) + draw = PIL.ImageDraw.ImageDraw(retval) + draw.polygon(data, fill="white") + del draw + return retval + + +def _pad_right(img): + """Pads image on the right by one pixel, respects mode""" + retval = PIL.Image.new(img.mode, (img.size[0] + 1, img.size[1]), "black") + retval.paste(img, (0, 0) + img.size) # top-left pasting + return retval + + +def _raw_data_loader(sample): + data = load_pil_rgb(os.path.join(_root_path, sample["data"])) + label = _txt_to_pil_1(os.path.join(_root_path, sample["label"]), data.size) + return dict(data=data, label=label,) + + +def _sample_101_loader(sample): + # pads the image on the right side to account for a difference in + # resolution to other images in the dataset + retval = _raw_data_loader(sample) + retval["data"] = _pad_right(retval["data"]) + retval["label"] = _pad_right(retval["label"]) + return retval + + +def _loader(context, sample): + if sample["data"].endswith("_101.jpg"): + return make_delayed(sample, _sample_101_loader) + return make_delayed(sample, _raw_data_loader) + + +dataset = JSONDataset( + protocols=_protocols, fieldnames=("data", "label"), loader=_loader +) +"""DRIONSDB dataset object""" diff --git a/bob/ip/binseg/data/drionsdb/expert1.json b/bob/ip/binseg/data/drionsdb/expert1.json new file mode 100644 index 0000000000000000000000000000000000000000..7486980a2cfc8974d6547ca49ead7b912a08653f --- /dev/null +++ b/bob/ip/binseg/data/drionsdb/expert1.json @@ -0,0 +1,446 @@ +{ + "train": [ + [ + "images/image_001.jpg", + "experts_anotation/anotExpert1_001.txt" + ], + [ + "images/image_002.jpg", + "experts_anotation/anotExpert1_002.txt" + ], + [ + "images/image_003.jpg", + "experts_anotation/anotExpert1_003.txt" + ], + [ + "images/image_004.jpg", + "experts_anotation/anotExpert1_004.txt" + ], + [ + "images/image_005.jpg", + "experts_anotation/anotExpert1_005.txt" + ], + [ + "images/image_006.jpg", + "experts_anotation/anotExpert1_006.txt" + ], + [ + "images/image_007.jpg", + "experts_anotation/anotExpert1_007.txt" + ], + [ + "images/image_008.jpg", + "experts_anotation/anotExpert1_008.txt" + ], + [ + "images/image_009.jpg", + "experts_anotation/anotExpert1_009.txt" + ], + [ + "images/image_010.jpg", + "experts_anotation/anotExpert1_010.txt" + ], + [ + "images/image_011.jpg", + "experts_anotation/anotExpert1_011.txt" + ], + [ + "images/image_012.jpg", + "experts_anotation/anotExpert1_012.txt" + ], + [ + "images/image_013.jpg", + "experts_anotation/anotExpert1_013.txt" + ], + [ + "images/image_014.jpg", + "experts_anotation/anotExpert1_014.txt" + ], + [ + "images/image_015.jpg", + "experts_anotation/anotExpert1_015.txt" + ], + [ + "images/image_016.jpg", + "experts_anotation/anotExpert1_016.txt" + ], + [ + "images/image_017.jpg", + "experts_anotation/anotExpert1_017.txt" + ], + [ + "images/image_018.jpg", + "experts_anotation/anotExpert1_018.txt" + ], + [ + "images/image_019.jpg", + "experts_anotation/anotExpert1_019.txt" + ], + [ + "images/image_020.jpg", + "experts_anotation/anotExpert1_020.txt" + ], + [ + "images/image_021.jpg", + "experts_anotation/anotExpert1_021.txt" + ], + [ + "images/image_022.jpg", + "experts_anotation/anotExpert1_022.txt" + ], + [ + "images/image_023.jpg", + "experts_anotation/anotExpert1_023.txt" + ], + [ + "images/image_024.jpg", + "experts_anotation/anotExpert1_024.txt" + ], + [ + "images/image_025.jpg", + "experts_anotation/anotExpert1_025.txt" + ], + [ + "images/image_026.jpg", + "experts_anotation/anotExpert1_026.txt" + ], + [ + "images/image_027.jpg", + "experts_anotation/anotExpert1_027.txt" + ], + [ + "images/image_028.jpg", + "experts_anotation/anotExpert1_028.txt" + ], + [ + "images/image_029.jpg", + "experts_anotation/anotExpert1_029.txt" + ], + [ + "images/image_030.jpg", + "experts_anotation/anotExpert1_030.txt" + ], + [ + "images/image_031.jpg", + "experts_anotation/anotExpert1_031.txt" + ], + [ + "images/image_032.jpg", + "experts_anotation/anotExpert1_032.txt" + ], + [ + "images/image_033.jpg", + "experts_anotation/anotExpert1_033.txt" + ], + [ + "images/image_034.jpg", + "experts_anotation/anotExpert1_034.txt" + ], + [ + "images/image_035.jpg", + "experts_anotation/anotExpert1_035.txt" + ], + [ + "images/image_036.jpg", + "experts_anotation/anotExpert1_036.txt" + ], + [ + "images/image_037.jpg", + "experts_anotation/anotExpert1_037.txt" + ], + [ + "images/image_038.jpg", + "experts_anotation/anotExpert1_038.txt" + ], + [ + "images/image_039.jpg", + "experts_anotation/anotExpert1_039.txt" + ], + [ + "images/image_040.jpg", + "experts_anotation/anotExpert1_040.txt" + ], + [ + "images/image_041.jpg", + "experts_anotation/anotExpert1_041.txt" + ], + [ + "images/image_042.jpg", + "experts_anotation/anotExpert1_042.txt" + ], + [ + "images/image_043.jpg", + "experts_anotation/anotExpert1_043.txt" + ], + [ + "images/image_044.jpg", + "experts_anotation/anotExpert1_044.txt" + ], + [ + "images/image_045.jpg", + "experts_anotation/anotExpert1_045.txt" + ], + [ + "images/image_046.jpg", + "experts_anotation/anotExpert1_046.txt" + ], + [ + "images/image_047.jpg", + "experts_anotation/anotExpert1_047.txt" + ], + [ + "images/image_048.jpg", + "experts_anotation/anotExpert1_048.txt" + ], + [ + "images/image_049.jpg", + "experts_anotation/anotExpert1_049.txt" + ], + [ + "images/image_050.jpg", + "experts_anotation/anotExpert1_050.txt" + ], + [ + "images/image_051.jpg", + "experts_anotation/anotExpert1_051.txt" + ], + [ + "images/image_052.jpg", + "experts_anotation/anotExpert1_052.txt" + ], + [ + "images/image_053.jpg", + "experts_anotation/anotExpert1_053.txt" + ], + [ + "images/image_054.jpg", + "experts_anotation/anotExpert1_054.txt" + ], + [ + "images/image_055.jpg", + "experts_anotation/anotExpert1_055.txt" + ], + [ + "images/image_056.jpg", + "experts_anotation/anotExpert1_056.txt" + ], + [ + "images/image_057.jpg", + "experts_anotation/anotExpert1_057.txt" + ], + [ + "images/image_058.jpg", + "experts_anotation/anotExpert1_058.txt" + ], + [ + "images/image_059.jpg", + "experts_anotation/anotExpert1_059.txt" + ], + [ + "images/image_060.jpg", + "experts_anotation/anotExpert1_060.txt" + ] + ], + "test": [ + [ + "images/image_061.jpg", + "experts_anotation/anotExpert1_061.txt" + ], + [ + "images/image_062.jpg", + "experts_anotation/anotExpert1_062.txt" + ], + [ + "images/image_063.jpg", + "experts_anotation/anotExpert1_063.txt" + ], + [ + "images/image_064.jpg", + "experts_anotation/anotExpert1_064.txt" + ], + [ + "images/image_065.jpg", + "experts_anotation/anotExpert1_065.txt" + ], + [ + "images/image_066.jpg", + "experts_anotation/anotExpert1_066.txt" + ], + [ + "images/image_067.jpg", + "experts_anotation/anotExpert1_067.txt" + ], + [ + "images/image_068.jpg", + "experts_anotation/anotExpert1_068.txt" + ], + [ + "images/image_069.jpg", + "experts_anotation/anotExpert1_069.txt" + ], + [ + "images/image_070.jpg", + "experts_anotation/anotExpert1_070.txt" + ], + [ + "images/image_071.jpg", + "experts_anotation/anotExpert1_071.txt" + ], + [ + "images/image_072.jpg", + "experts_anotation/anotExpert1_072.txt" + ], + [ + "images/image_073.jpg", + "experts_anotation/anotExpert1_073.txt" + ], + [ + "images/image_074.jpg", + "experts_anotation/anotExpert1_074.txt" + ], + [ + "images/image_075.jpg", + "experts_anotation/anotExpert1_075.txt" + ], + [ + "images/image_076.jpg", + "experts_anotation/anotExpert1_076.txt" + ], + [ + "images/image_077.jpg", + "experts_anotation/anotExpert1_077.txt" + ], + [ + "images/image_078.jpg", + "experts_anotation/anotExpert1_078.txt" + ], + [ + "images/image_079.jpg", + "experts_anotation/anotExpert1_079.txt" + ], + [ + "images/image_080.jpg", + "experts_anotation/anotExpert1_080.txt" + ], + [ + "images/image_081.jpg", + "experts_anotation/anotExpert1_081.txt" + ], + [ + "images/image_082.jpg", + "experts_anotation/anotExpert1_082.txt" + ], + [ + "images/image_083.jpg", + "experts_anotation/anotExpert1_083.txt" + ], + [ + "images/image_084.jpg", + "experts_anotation/anotExpert1_084.txt" + ], + [ + "images/image_085.jpg", + "experts_anotation/anotExpert1_085.txt" + ], + [ + "images/image_086.jpg", + "experts_anotation/anotExpert1_086.txt" + ], + [ + "images/image_087.jpg", + "experts_anotation/anotExpert1_087.txt" + ], + [ + "images/image_088.jpg", + "experts_anotation/anotExpert1_088.txt" + ], + [ + "images/image_089.jpg", + "experts_anotation/anotExpert1_089.txt" + ], + [ + "images/image_090.jpg", + "experts_anotation/anotExpert1_090.txt" + ], + [ + "images/image_091.jpg", + "experts_anotation/anotExpert1_091.txt" + ], + [ + "images/image_092.jpg", + "experts_anotation/anotExpert1_092.txt" + ], + [ + "images/image_093.jpg", + "experts_anotation/anotExpert1_093.txt" + ], + [ + "images/image_094.jpg", + "experts_anotation/anotExpert1_094.txt" + ], + [ + "images/image_095.jpg", + "experts_anotation/anotExpert1_095.txt" + ], + [ + "images/image_096.jpg", + "experts_anotation/anotExpert1_096.txt" + ], + [ + "images/image_097.jpg", + "experts_anotation/anotExpert1_097.txt" + ], + [ + "images/image_098.jpg", + "experts_anotation/anotExpert1_098.txt" + ], + [ + "images/image_099.jpg", + "experts_anotation/anotExpert1_099.txt" + ], + [ + "images/image_100.jpg", + "experts_anotation/anotExpert1_100.txt" + ], + [ + "images/image_101.jpg", + "experts_anotation/anotExpert1_101.txt" + ], + [ + "images/image_102.jpg", + "experts_anotation/anotExpert1_102.txt" + ], + [ + "images/image_103.jpg", + "experts_anotation/anotExpert1_103.txt" + ], + [ + "images/image_104.jpg", + "experts_anotation/anotExpert1_104.txt" + ], + [ + "images/image_105.jpg", + "experts_anotation/anotExpert1_105.txt" + ], + [ + "images/image_106.jpg", + "experts_anotation/anotExpert1_106.txt" + ], + [ + "images/image_107.jpg", + "experts_anotation/anotExpert1_107.txt" + ], + [ + "images/image_108.jpg", + "experts_anotation/anotExpert1_108.txt" + ], + [ + "images/image_109.jpg", + "experts_anotation/anotExpert1_109.txt" + ], + [ + "images/image_110.jpg", + "experts_anotation/anotExpert1_110.txt" + ] + ] +} \ No newline at end of file diff --git a/bob/ip/binseg/data/drionsdb/expert2.json b/bob/ip/binseg/data/drionsdb/expert2.json new file mode 100644 index 0000000000000000000000000000000000000000..1f3860ce0c2a822f5db5a65c1c4effd3ef8087f5 --- /dev/null +++ b/bob/ip/binseg/data/drionsdb/expert2.json @@ -0,0 +1,446 @@ +{ + "train": [ + [ + "images/image_001.jpg", + "experts_anotation/anotExpert2_001.txt" + ], + [ + "images/image_002.jpg", + "experts_anotation/anotExpert2_002.txt" + ], + [ + "images/image_003.jpg", + "experts_anotation/anotExpert2_003.txt" + ], + [ + "images/image_004.jpg", + "experts_anotation/anotExpert2_004.txt" + ], + [ + "images/image_005.jpg", + "experts_anotation/anotExpert2_005.txt" + ], + [ + "images/image_006.jpg", + "experts_anotation/anotExpert2_006.txt" + ], + [ + "images/image_007.jpg", + "experts_anotation/anotExpert2_007.txt" + ], + [ + "images/image_008.jpg", + "experts_anotation/anotExpert2_008.txt" + ], + [ + "images/image_009.jpg", + "experts_anotation/anotExpert2_009.txt" + ], + [ + "images/image_010.jpg", + "experts_anotation/anotExpert2_010.txt" + ], + [ + "images/image_011.jpg", + "experts_anotation/anotExpert2_011.txt" + ], + [ + "images/image_012.jpg", + "experts_anotation/anotExpert2_012.txt" + ], + [ + "images/image_013.jpg", + "experts_anotation/anotExpert2_013.txt" + ], + [ + "images/image_014.jpg", + "experts_anotation/anotExpert2_014.txt" + ], + [ + "images/image_015.jpg", + "experts_anotation/anotExpert2_015.txt" + ], + [ + "images/image_016.jpg", + "experts_anotation/anotExpert2_016.txt" + ], + [ + "images/image_017.jpg", + "experts_anotation/anotExpert2_017.txt" + ], + [ + "images/image_018.jpg", + "experts_anotation/anotExpert2_018.txt" + ], + [ + "images/image_019.jpg", + "experts_anotation/anotExpert2_019.txt" + ], + [ + "images/image_020.jpg", + "experts_anotation/anotExpert2_020.txt" + ], + [ + "images/image_021.jpg", + "experts_anotation/anotExpert2_021.txt" + ], + [ + "images/image_022.jpg", + "experts_anotation/anotExpert2_022.txt" + ], + [ + "images/image_023.jpg", + "experts_anotation/anotExpert2_023.txt" + ], + [ + "images/image_024.jpg", + "experts_anotation/anotExpert2_024.txt" + ], + [ + "images/image_025.jpg", + "experts_anotation/anotExpert2_025.txt" + ], + [ + "images/image_026.jpg", + "experts_anotation/anotExpert2_026.txt" + ], + [ + "images/image_027.jpg", + "experts_anotation/anotExpert2_027.txt" + ], + [ + "images/image_028.jpg", + "experts_anotation/anotExpert2_028.txt" + ], + [ + "images/image_029.jpg", + "experts_anotation/anotExpert2_029.txt" + ], + [ + "images/image_030.jpg", + "experts_anotation/anotExpert2_030.txt" + ], + [ + "images/image_031.jpg", + "experts_anotation/anotExpert2_031.txt" + ], + [ + "images/image_032.jpg", + "experts_anotation/anotExpert2_032.txt" + ], + [ + "images/image_033.jpg", + "experts_anotation/anotExpert2_033.txt" + ], + [ + "images/image_034.jpg", + "experts_anotation/anotExpert2_034.txt" + ], + [ + "images/image_035.jpg", + "experts_anotation/anotExpert2_035.txt" + ], + [ + "images/image_036.jpg", + "experts_anotation/anotExpert2_036.txt" + ], + [ + "images/image_037.jpg", + "experts_anotation/anotExpert2_037.txt" + ], + [ + "images/image_038.jpg", + "experts_anotation/anotExpert2_038.txt" + ], + [ + "images/image_039.jpg", + "experts_anotation/anotExpert2_039.txt" + ], + [ + "images/image_040.jpg", + "experts_anotation/anotExpert2_040.txt" + ], + [ + "images/image_041.jpg", + "experts_anotation/anotExpert2_041.txt" + ], + [ + "images/image_042.jpg", + "experts_anotation/anotExpert2_042.txt" + ], + [ + "images/image_043.jpg", + "experts_anotation/anotExpert2_043.txt" + ], + [ + "images/image_044.jpg", + "experts_anotation/anotExpert2_044.txt" + ], + [ + "images/image_045.jpg", + "experts_anotation/anotExpert2_045.txt" + ], + [ + "images/image_046.jpg", + "experts_anotation/anotExpert2_046.txt" + ], + [ + "images/image_047.jpg", + "experts_anotation/anotExpert2_047.txt" + ], + [ + "images/image_048.jpg", + "experts_anotation/anotExpert2_048.txt" + ], + [ + "images/image_049.jpg", + "experts_anotation/anotExpert2_049.txt" + ], + [ + "images/image_050.jpg", + "experts_anotation/anotExpert2_050.txt" + ], + [ + "images/image_051.jpg", + "experts_anotation/anotExpert2_051.txt" + ], + [ + "images/image_052.jpg", + "experts_anotation/anotExpert2_052.txt" + ], + [ + "images/image_053.jpg", + "experts_anotation/anotExpert2_053.txt" + ], + [ + "images/image_054.jpg", + "experts_anotation/anotExpert2_054.txt" + ], + [ + "images/image_055.jpg", + "experts_anotation/anotExpert2_055.txt" + ], + [ + "images/image_056.jpg", + "experts_anotation/anotExpert2_056.txt" + ], + [ + "images/image_057.jpg", + "experts_anotation/anotExpert2_057.txt" + ], + [ + "images/image_058.jpg", + "experts_anotation/anotExpert2_058.txt" + ], + [ + "images/image_059.jpg", + "experts_anotation/anotExpert2_059.txt" + ], + [ + "images/image_060.jpg", + "experts_anotation/anotExpert2_060.txt" + ] + ], + "test": [ + [ + "images/image_061.jpg", + "experts_anotation/anotExpert2_061.txt" + ], + [ + "images/image_062.jpg", + "experts_anotation/anotExpert2_062.txt" + ], + [ + "images/image_063.jpg", + "experts_anotation/anotExpert2_063.txt" + ], + [ + "images/image_064.jpg", + "experts_anotation/anotExpert2_064.txt" + ], + [ + "images/image_065.jpg", + "experts_anotation/anotExpert2_065.txt" + ], + [ + "images/image_066.jpg", + "experts_anotation/anotExpert2_066.txt" + ], + [ + "images/image_067.jpg", + "experts_anotation/anotExpert2_067.txt" + ], + [ + "images/image_068.jpg", + "experts_anotation/anotExpert2_068.txt" + ], + [ + "images/image_069.jpg", + "experts_anotation/anotExpert2_069.txt" + ], + [ + "images/image_070.jpg", + "experts_anotation/anotExpert2_070.txt" + ], + [ + "images/image_071.jpg", + "experts_anotation/anotExpert2_071.txt" + ], + [ + "images/image_072.jpg", + "experts_anotation/anotExpert2_072.txt" + ], + [ + "images/image_073.jpg", + "experts_anotation/anotExpert2_073.txt" + ], + [ + "images/image_074.jpg", + "experts_anotation/anotExpert2_074.txt" + ], + [ + "images/image_075.jpg", + "experts_anotation/anotExpert2_075.txt" + ], + [ + "images/image_076.jpg", + "experts_anotation/anotExpert2_076.txt" + ], + [ + "images/image_077.jpg", + "experts_anotation/anotExpert2_077.txt" + ], + [ + "images/image_078.jpg", + "experts_anotation/anotExpert2_078.txt" + ], + [ + "images/image_079.jpg", + "experts_anotation/anotExpert2_079.txt" + ], + [ + "images/image_080.jpg", + "experts_anotation/anotExpert2_080.txt" + ], + [ + "images/image_081.jpg", + "experts_anotation/anotExpert2_081.txt" + ], + [ + "images/image_082.jpg", + "experts_anotation/anotExpert2_082.txt" + ], + [ + "images/image_083.jpg", + "experts_anotation/anotExpert2_083.txt" + ], + [ + "images/image_084.jpg", + "experts_anotation/anotExpert2_084.txt" + ], + [ + "images/image_085.jpg", + "experts_anotation/anotExpert2_085.txt" + ], + [ + "images/image_086.jpg", + "experts_anotation/anotExpert2_086.txt" + ], + [ + "images/image_087.jpg", + "experts_anotation/anotExpert2_087.txt" + ], + [ + "images/image_088.jpg", + "experts_anotation/anotExpert2_088.txt" + ], + [ + "images/image_089.jpg", + "experts_anotation/anotExpert2_089.txt" + ], + [ + "images/image_090.jpg", + "experts_anotation/anotExpert2_090.txt" + ], + [ + "images/image_091.jpg", + "experts_anotation/anotExpert2_091.txt" + ], + [ + "images/image_092.jpg", + "experts_anotation/anotExpert2_092.txt" + ], + [ + "images/image_093.jpg", + "experts_anotation/anotExpert2_093.txt" + ], + [ + "images/image_094.jpg", + "experts_anotation/anotExpert2_094.txt" + ], + [ + "images/image_095.jpg", + "experts_anotation/anotExpert2_095.txt" + ], + [ + "images/image_096.jpg", + "experts_anotation/anotExpert2_096.txt" + ], + [ + "images/image_097.jpg", + "experts_anotation/anotExpert2_097.txt" + ], + [ + "images/image_098.jpg", + "experts_anotation/anotExpert2_098.txt" + ], + [ + "images/image_099.jpg", + "experts_anotation/anotExpert2_099.txt" + ], + [ + "images/image_100.jpg", + "experts_anotation/anotExpert2_100.txt" + ], + [ + "images/image_101.jpg", + "experts_anotation/anotExpert2_101.txt" + ], + [ + "images/image_102.jpg", + "experts_anotation/anotExpert2_102.txt" + ], + [ + "images/image_103.jpg", + "experts_anotation/anotExpert2_103.txt" + ], + [ + "images/image_104.jpg", + "experts_anotation/anotExpert2_104.txt" + ], + [ + "images/image_105.jpg", + "experts_anotation/anotExpert2_105.txt" + ], + [ + "images/image_106.jpg", + "experts_anotation/anotExpert2_106.txt" + ], + [ + "images/image_107.jpg", + "experts_anotation/anotExpert2_107.txt" + ], + [ + "images/image_108.jpg", + "experts_anotation/anotExpert2_108.txt" + ], + [ + "images/image_109.jpg", + "experts_anotation/anotExpert2_109.txt" + ], + [ + "images/image_110.jpg", + "experts_anotation/anotExpert2_110.txt" + ] + ] +} diff --git a/bob/ip/binseg/data/drishtigs1/__init__.py b/bob/ip/binseg/data/drishtigs1/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..c4ec018ec819f3221b7c0e3c6278cd11341cda4f --- /dev/null +++ b/bob/ip/binseg/data/drishtigs1/__init__.py @@ -0,0 +1,89 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""Drishti-GS1 for Optic Disc and Cup Segmentation + +Drishti-GS is a dataset meant for validation of segmenting OD, cup and +detecting notching. The images in the Drishti-GS dataset have been collected +and annotated by Aravind Eye hospital, Madurai, India. This dataset is of a +single population as all subjects whose eye images are part of this dataset are +Indians. + +The dataset is divided into two: a training set and a testing set of images. +Training images (50) are provided with groundtruths for OD and Cup segmentation +and notching information. + +* Reference (including train/test split): [DRISHTIGS1-2014]_ +* Original resolution (height x width): varying (min: 1749 x 2045, max: 1845 x + 2468) +* Configuration resolution: 1760 x 2048 (after center cropping) +* Protocols ``optic-disc`` and ``optic-cup``: + * Training: 50 + * Test: 51 +""" + +import os +import pkg_resources + +import bob.extension + +from ..dataset import JSONDataset +from ..loader import load_pil_rgb, make_delayed + +_protocols = { + "optic-disc-all": pkg_resources.resource_filename( + __name__, "optic-disc.json" + ), + "optic-cup-all": pkg_resources.resource_filename( + __name__, "optic-cup.json" + ), + "optic-disc-any": pkg_resources.resource_filename( + __name__, "optic-disc.json" + ), + "optic-cup-any": pkg_resources.resource_filename( + __name__, "optic-cup.json" + ), +} + +_root_path = bob.extension.rc.get( + "bob.ip.binseg.drishtigs1.datadir", os.path.realpath(os.curdir) +) + + +def _raw_data_loader_all(sample): + retval = dict( + data=load_pil_rgb(os.path.join(_root_path, sample["data"])), + label=load_pil_rgb(os.path.join(_root_path, sample["label"])).convert( + "L" + ), + ) + retval["label"] = retval["label"].point(lambda p: p > 254, mode="1") + return retval + + +def _raw_data_loader_any(sample): + retval = dict( + data=load_pil_rgb(os.path.join(_root_path, sample["data"])), + label=load_pil_rgb(os.path.join(_root_path, sample["label"])).convert( + "L" + ), + ) + retval["label"] = retval["label"].point(lambda p: p > 0, mode="1") + return retval + + +def _loader(context, sample): + # Drishti-GS provides softmaps of multiple annotators + # we threshold to get gt where all/any of the annotators overlap + if context["protocol"].endswith("-all"): + return make_delayed(sample, _raw_data_loader_all) + elif context["protocol"].endswith("-any"): + return make_delayed(sample, _raw_data_loader_any) + else: + raise RuntimeError(f"Unknown protocol {context['protocol']}") + + +dataset = JSONDataset( + protocols=_protocols, fieldnames=("data", "label"), loader=_loader +) +"""Drishti-GS1 dataset object""" diff --git a/bob/ip/binseg/data/drishtigs1/optic-cup.json b/bob/ip/binseg/data/drishtigs1/optic-cup.json new file mode 100644 index 0000000000000000000000000000000000000000..e543e5b60b7a09b0da7f6136a1d452039c308550 --- /dev/null +++ b/bob/ip/binseg/data/drishtigs1/optic-cup.json @@ -0,0 +1,410 @@ +{ + "train": [ + [ + "Drishti-GS1_files/Training/Images/drishtiGS_002.png", + "Drishti-GS1_files/Training/GT/drishtiGS_002/SoftMap/drishtiGS_002_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_004.png", + "Drishti-GS1_files/Training/GT/drishtiGS_004/SoftMap/drishtiGS_004_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_008.png", + "Drishti-GS1_files/Training/GT/drishtiGS_008/SoftMap/drishtiGS_008_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_010.png", + "Drishti-GS1_files/Training/GT/drishtiGS_010/SoftMap/drishtiGS_010_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_012.png", + "Drishti-GS1_files/Training/GT/drishtiGS_012/SoftMap/drishtiGS_012_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_015.png", + "Drishti-GS1_files/Training/GT/drishtiGS_015/SoftMap/drishtiGS_015_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_016.png", + "Drishti-GS1_files/Training/GT/drishtiGS_016/SoftMap/drishtiGS_016_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_017.png", + "Drishti-GS1_files/Training/GT/drishtiGS_017/SoftMap/drishtiGS_017_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_018.png", + "Drishti-GS1_files/Training/GT/drishtiGS_018/SoftMap/drishtiGS_018_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_022.png", + "Drishti-GS1_files/Training/GT/drishtiGS_022/SoftMap/drishtiGS_022_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_024.png", + "Drishti-GS1_files/Training/GT/drishtiGS_024/SoftMap/drishtiGS_024_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_026.png", + "Drishti-GS1_files/Training/GT/drishtiGS_026/SoftMap/drishtiGS_026_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_031.png", + "Drishti-GS1_files/Training/GT/drishtiGS_031/SoftMap/drishtiGS_031_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_032.png", + "Drishti-GS1_files/Training/GT/drishtiGS_032/SoftMap/drishtiGS_032_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_033.png", + "Drishti-GS1_files/Training/GT/drishtiGS_033/SoftMap/drishtiGS_033_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_035.png", + "Drishti-GS1_files/Training/GT/drishtiGS_035/SoftMap/drishtiGS_035_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_036.png", + "Drishti-GS1_files/Training/GT/drishtiGS_036/SoftMap/drishtiGS_036_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_037.png", + "Drishti-GS1_files/Training/GT/drishtiGS_037/SoftMap/drishtiGS_037_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_038.png", + "Drishti-GS1_files/Training/GT/drishtiGS_038/SoftMap/drishtiGS_038_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_040.png", + "Drishti-GS1_files/Training/GT/drishtiGS_040/SoftMap/drishtiGS_040_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_041.png", + "Drishti-GS1_files/Training/GT/drishtiGS_041/SoftMap/drishtiGS_041_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_042.png", + "Drishti-GS1_files/Training/GT/drishtiGS_042/SoftMap/drishtiGS_042_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_044.png", + "Drishti-GS1_files/Training/GT/drishtiGS_044/SoftMap/drishtiGS_044_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_045.png", + "Drishti-GS1_files/Training/GT/drishtiGS_045/SoftMap/drishtiGS_045_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_046.png", + "Drishti-GS1_files/Training/GT/drishtiGS_046/SoftMap/drishtiGS_046_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_047.png", + "Drishti-GS1_files/Training/GT/drishtiGS_047/SoftMap/drishtiGS_047_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_049.png", + "Drishti-GS1_files/Training/GT/drishtiGS_049/SoftMap/drishtiGS_049_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_051.png", + "Drishti-GS1_files/Training/GT/drishtiGS_051/SoftMap/drishtiGS_051_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_057.png", + "Drishti-GS1_files/Training/GT/drishtiGS_057/SoftMap/drishtiGS_057_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_058.png", + "Drishti-GS1_files/Training/GT/drishtiGS_058/SoftMap/drishtiGS_058_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_060.png", + "Drishti-GS1_files/Training/GT/drishtiGS_060/SoftMap/drishtiGS_060_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_061.png", + "Drishti-GS1_files/Training/GT/drishtiGS_061/SoftMap/drishtiGS_061_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_062.png", + "Drishti-GS1_files/Training/GT/drishtiGS_062/SoftMap/drishtiGS_062_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_063.png", + "Drishti-GS1_files/Training/GT/drishtiGS_063/SoftMap/drishtiGS_063_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_064.png", + "Drishti-GS1_files/Training/GT/drishtiGS_064/SoftMap/drishtiGS_064_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_066.png", + "Drishti-GS1_files/Training/GT/drishtiGS_066/SoftMap/drishtiGS_066_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_068.png", + "Drishti-GS1_files/Training/GT/drishtiGS_068/SoftMap/drishtiGS_068_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_069.png", + "Drishti-GS1_files/Training/GT/drishtiGS_069/SoftMap/drishtiGS_069_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_075.png", + "Drishti-GS1_files/Training/GT/drishtiGS_075/SoftMap/drishtiGS_075_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_076.png", + "Drishti-GS1_files/Training/GT/drishtiGS_076/SoftMap/drishtiGS_076_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_080.png", + "Drishti-GS1_files/Training/GT/drishtiGS_080/SoftMap/drishtiGS_080_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_081.png", + "Drishti-GS1_files/Training/GT/drishtiGS_081/SoftMap/drishtiGS_081_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_084.png", + "Drishti-GS1_files/Training/GT/drishtiGS_084/SoftMap/drishtiGS_084_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_088.png", + "Drishti-GS1_files/Training/GT/drishtiGS_088/SoftMap/drishtiGS_088_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_089.png", + "Drishti-GS1_files/Training/GT/drishtiGS_089/SoftMap/drishtiGS_089_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_090.png", + "Drishti-GS1_files/Training/GT/drishtiGS_090/SoftMap/drishtiGS_090_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_092.png", + "Drishti-GS1_files/Training/GT/drishtiGS_092/SoftMap/drishtiGS_092_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_094.png", + "Drishti-GS1_files/Training/GT/drishtiGS_094/SoftMap/drishtiGS_094_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_098.png", + "Drishti-GS1_files/Training/GT/drishtiGS_098/SoftMap/drishtiGS_098_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_101.png", + "Drishti-GS1_files/Training/GT/drishtiGS_101/SoftMap/drishtiGS_101_cupsegSoftmap.png" + ] + ], + "test": [ + [ + "Drishti-GS1_files/Test/Images/drishtiGS_001.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_001/SoftMap/drishtiGS_001_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_003.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_003/SoftMap/drishtiGS_003_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_005.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_005/SoftMap/drishtiGS_005_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_006.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_006/SoftMap/drishtiGS_006_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_007.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_007/SoftMap/drishtiGS_007_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_009.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_009/SoftMap/drishtiGS_009_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_011.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_011/SoftMap/drishtiGS_011_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_013.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_013/SoftMap/drishtiGS_013_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_014.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_014/SoftMap/drishtiGS_014_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_019.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_019/SoftMap/drishtiGS_019_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_020.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_020/SoftMap/drishtiGS_020_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_021.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_021/SoftMap/drishtiGS_021_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_023.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_023/SoftMap/drishtiGS_023_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_025.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_025/SoftMap/drishtiGS_025_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_027.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_027/SoftMap/drishtiGS_027_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_028.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_028/SoftMap/drishtiGS_028_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_029.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_029/SoftMap/drishtiGS_029_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_030.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_030/SoftMap/drishtiGS_030_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_034.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_034/SoftMap/drishtiGS_034_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_039.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_039/SoftMap/drishtiGS_039_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_043.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_043/SoftMap/drishtiGS_043_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_048.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_048/SoftMap/drishtiGS_048_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_050.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_050/SoftMap/drishtiGS_050_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_052.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_052/SoftMap/drishtiGS_052_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_053.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_053/SoftMap/drishtiGS_053_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_054.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_054/SoftMap/drishtiGS_054_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_055.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_055/SoftMap/drishtiGS_055_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_056.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_056/SoftMap/drishtiGS_056_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_059.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_059/SoftMap/drishtiGS_059_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_065.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_065/SoftMap/drishtiGS_065_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_067.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_067/SoftMap/drishtiGS_067_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_070.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_070/SoftMap/drishtiGS_070_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_071.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_071/SoftMap/drishtiGS_071_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_072.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_072/SoftMap/drishtiGS_072_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_073.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_073/SoftMap/drishtiGS_073_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_074.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_074/SoftMap/drishtiGS_074_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_077.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_077/SoftMap/drishtiGS_077_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_078.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_078/SoftMap/drishtiGS_078_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_079.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_079/SoftMap/drishtiGS_079_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_082.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_082/SoftMap/drishtiGS_082_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_083.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_083/SoftMap/drishtiGS_083_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_085.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_085/SoftMap/drishtiGS_085_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_086.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_086/SoftMap/drishtiGS_086_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_087.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_087/SoftMap/drishtiGS_087_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_091.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_091/SoftMap/drishtiGS_091_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_093.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_093/SoftMap/drishtiGS_093_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_095.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_095/SoftMap/drishtiGS_095_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_096.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_096/SoftMap/drishtiGS_096_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_097.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_097/SoftMap/drishtiGS_097_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_099.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_099/SoftMap/drishtiGS_099_cupsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_100.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_100/SoftMap/drishtiGS_100_cupsegSoftmap.png" + ] + ] +} \ No newline at end of file diff --git a/bob/ip/binseg/data/drishtigs1/optic-disc.json b/bob/ip/binseg/data/drishtigs1/optic-disc.json new file mode 100644 index 0000000000000000000000000000000000000000..250e839833d03fd54efd62fdda942677c0844081 --- /dev/null +++ b/bob/ip/binseg/data/drishtigs1/optic-disc.json @@ -0,0 +1,410 @@ +{ + "train": [ + [ + "Drishti-GS1_files/Training/Images/drishtiGS_002.png", + "Drishti-GS1_files/Training/GT/drishtiGS_002/SoftMap/drishtiGS_002_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_004.png", + "Drishti-GS1_files/Training/GT/drishtiGS_004/SoftMap/drishtiGS_004_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_008.png", + "Drishti-GS1_files/Training/GT/drishtiGS_008/SoftMap/drishtiGS_008_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_010.png", + "Drishti-GS1_files/Training/GT/drishtiGS_010/SoftMap/drishtiGS_010_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_012.png", + "Drishti-GS1_files/Training/GT/drishtiGS_012/SoftMap/drishtiGS_012_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_015.png", + "Drishti-GS1_files/Training/GT/drishtiGS_015/SoftMap/drishtiGS_015_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_016.png", + "Drishti-GS1_files/Training/GT/drishtiGS_016/SoftMap/drishtiGS_016_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_017.png", + "Drishti-GS1_files/Training/GT/drishtiGS_017/SoftMap/drishtiGS_017_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_018.png", + "Drishti-GS1_files/Training/GT/drishtiGS_018/SoftMap/drishtiGS_018_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_022.png", + "Drishti-GS1_files/Training/GT/drishtiGS_022/SoftMap/drishtiGS_022_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_024.png", + "Drishti-GS1_files/Training/GT/drishtiGS_024/SoftMap/drishtiGS_024_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_026.png", + "Drishti-GS1_files/Training/GT/drishtiGS_026/SoftMap/drishtiGS_026_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_031.png", + "Drishti-GS1_files/Training/GT/drishtiGS_031/SoftMap/drishtiGS_031_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_032.png", + "Drishti-GS1_files/Training/GT/drishtiGS_032/SoftMap/drishtiGS_032_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_033.png", + "Drishti-GS1_files/Training/GT/drishtiGS_033/SoftMap/drishtiGS_033_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_035.png", + "Drishti-GS1_files/Training/GT/drishtiGS_035/SoftMap/drishtiGS_035_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_036.png", + "Drishti-GS1_files/Training/GT/drishtiGS_036/SoftMap/drishtiGS_036_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_037.png", + "Drishti-GS1_files/Training/GT/drishtiGS_037/SoftMap/drishtiGS_037_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_038.png", + "Drishti-GS1_files/Training/GT/drishtiGS_038/SoftMap/drishtiGS_038_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_040.png", + "Drishti-GS1_files/Training/GT/drishtiGS_040/SoftMap/drishtiGS_040_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_041.png", + "Drishti-GS1_files/Training/GT/drishtiGS_041/SoftMap/drishtiGS_041_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_042.png", + "Drishti-GS1_files/Training/GT/drishtiGS_042/SoftMap/drishtiGS_042_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_044.png", + "Drishti-GS1_files/Training/GT/drishtiGS_044/SoftMap/drishtiGS_044_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_045.png", + "Drishti-GS1_files/Training/GT/drishtiGS_045/SoftMap/drishtiGS_045_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_046.png", + "Drishti-GS1_files/Training/GT/drishtiGS_046/SoftMap/drishtiGS_046_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_047.png", + "Drishti-GS1_files/Training/GT/drishtiGS_047/SoftMap/drishtiGS_047_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_049.png", + "Drishti-GS1_files/Training/GT/drishtiGS_049/SoftMap/drishtiGS_049_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_051.png", + "Drishti-GS1_files/Training/GT/drishtiGS_051/SoftMap/drishtiGS_051_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_057.png", + "Drishti-GS1_files/Training/GT/drishtiGS_057/SoftMap/drishtiGS_057_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_058.png", + "Drishti-GS1_files/Training/GT/drishtiGS_058/SoftMap/drishtiGS_058_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_060.png", + "Drishti-GS1_files/Training/GT/drishtiGS_060/SoftMap/drishtiGS_060_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_061.png", + "Drishti-GS1_files/Training/GT/drishtiGS_061/SoftMap/drishtiGS_061_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_062.png", + "Drishti-GS1_files/Training/GT/drishtiGS_062/SoftMap/drishtiGS_062_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_063.png", + "Drishti-GS1_files/Training/GT/drishtiGS_063/SoftMap/drishtiGS_063_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_064.png", + "Drishti-GS1_files/Training/GT/drishtiGS_064/SoftMap/drishtiGS_064_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_066.png", + "Drishti-GS1_files/Training/GT/drishtiGS_066/SoftMap/drishtiGS_066_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_068.png", + "Drishti-GS1_files/Training/GT/drishtiGS_068/SoftMap/drishtiGS_068_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_069.png", + "Drishti-GS1_files/Training/GT/drishtiGS_069/SoftMap/drishtiGS_069_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_075.png", + "Drishti-GS1_files/Training/GT/drishtiGS_075/SoftMap/drishtiGS_075_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_076.png", + "Drishti-GS1_files/Training/GT/drishtiGS_076/SoftMap/drishtiGS_076_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_080.png", + "Drishti-GS1_files/Training/GT/drishtiGS_080/SoftMap/drishtiGS_080_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_081.png", + "Drishti-GS1_files/Training/GT/drishtiGS_081/SoftMap/drishtiGS_081_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_084.png", + "Drishti-GS1_files/Training/GT/drishtiGS_084/SoftMap/drishtiGS_084_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_088.png", + "Drishti-GS1_files/Training/GT/drishtiGS_088/SoftMap/drishtiGS_088_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_089.png", + "Drishti-GS1_files/Training/GT/drishtiGS_089/SoftMap/drishtiGS_089_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_090.png", + "Drishti-GS1_files/Training/GT/drishtiGS_090/SoftMap/drishtiGS_090_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_092.png", + "Drishti-GS1_files/Training/GT/drishtiGS_092/SoftMap/drishtiGS_092_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_094.png", + "Drishti-GS1_files/Training/GT/drishtiGS_094/SoftMap/drishtiGS_094_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_098.png", + "Drishti-GS1_files/Training/GT/drishtiGS_098/SoftMap/drishtiGS_098_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Training/Images/drishtiGS_101.png", + "Drishti-GS1_files/Training/GT/drishtiGS_101/SoftMap/drishtiGS_101_ODsegSoftmap.png" + ] + ], + "test": [ + [ + "Drishti-GS1_files/Test/Images/drishtiGS_001.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_001/SoftMap/drishtiGS_001_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_003.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_003/SoftMap/drishtiGS_003_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_005.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_005/SoftMap/drishtiGS_005_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_006.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_006/SoftMap/drishtiGS_006_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_007.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_007/SoftMap/drishtiGS_007_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_009.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_009/SoftMap/drishtiGS_009_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_011.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_011/SoftMap/drishtiGS_011_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_013.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_013/SoftMap/drishtiGS_013_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_014.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_014/SoftMap/drishtiGS_014_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_019.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_019/SoftMap/drishtiGS_019_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_020.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_020/SoftMap/drishtiGS_020_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_021.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_021/SoftMap/drishtiGS_021_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_023.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_023/SoftMap/drishtiGS_023_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_025.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_025/SoftMap/drishtiGS_025_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_027.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_027/SoftMap/drishtiGS_027_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_028.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_028/SoftMap/drishtiGS_028_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_029.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_029/SoftMap/drishtiGS_029_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_030.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_030/SoftMap/drishtiGS_030_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_034.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_034/SoftMap/drishtiGS_034_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_039.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_039/SoftMap/drishtiGS_039_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_043.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_043/SoftMap/drishtiGS_043_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_048.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_048/SoftMap/drishtiGS_048_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_050.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_050/SoftMap/drishtiGS_050_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_052.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_052/SoftMap/drishtiGS_052_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_053.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_053/SoftMap/drishtiGS_053_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_054.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_054/SoftMap/drishtiGS_054_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_055.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_055/SoftMap/drishtiGS_055_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_056.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_056/SoftMap/drishtiGS_056_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_059.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_059/SoftMap/drishtiGS_059_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_065.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_065/SoftMap/drishtiGS_065_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_067.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_067/SoftMap/drishtiGS_067_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_070.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_070/SoftMap/drishtiGS_070_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_071.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_071/SoftMap/drishtiGS_071_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_072.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_072/SoftMap/drishtiGS_072_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_073.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_073/SoftMap/drishtiGS_073_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_074.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_074/SoftMap/drishtiGS_074_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_077.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_077/SoftMap/drishtiGS_077_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_078.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_078/SoftMap/drishtiGS_078_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_079.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_079/SoftMap/drishtiGS_079_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_082.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_082/SoftMap/drishtiGS_082_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_083.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_083/SoftMap/drishtiGS_083_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_085.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_085/SoftMap/drishtiGS_085_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_086.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_086/SoftMap/drishtiGS_086_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_087.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_087/SoftMap/drishtiGS_087_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_091.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_091/SoftMap/drishtiGS_091_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_093.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_093/SoftMap/drishtiGS_093_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_095.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_095/SoftMap/drishtiGS_095_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_096.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_096/SoftMap/drishtiGS_096_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_097.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_097/SoftMap/drishtiGS_097_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_099.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_099/SoftMap/drishtiGS_099_ODsegSoftmap.png" + ], + [ + "Drishti-GS1_files/Test/Images/drishtiGS_100.png", + "Drishti-GS1_files/Test/Test_GT/drishtiGS_100/SoftMap/drishtiGS_100_ODsegSoftmap.png" + ] + ] +} \ No newline at end of file diff --git a/bob/ip/binseg/data/drive/__init__.py b/bob/ip/binseg/data/drive/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..59e6f44f38c98b587cd73f8891c014c077d6fa1d --- /dev/null +++ b/bob/ip/binseg/data/drive/__init__.py @@ -0,0 +1,60 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""DRIVE dataset for Vessel Segmentation + +The DRIVE database has been established to enable comparative studies on +segmentation of blood vessels in retinal images. + +* Reference: [DRIVE-2004]_ +* Original resolution (height x width): 584 x 565 +* Split reference: [DRIVE-2004]_ +* Protocol ``default``: + + * Training samples: 20 (including labels and masks) + * Test samples: 20 (including labels from annotator 1 and masks) + +* Protocol ``second-annotator``: + + * Test samples: 20 (including labels from annotator 2 and masks) + +""" + +import os +import pkg_resources + +import bob.extension + +from ..dataset import JSONDataset +from ..loader import load_pil_rgb, load_pil_1, make_delayed + +_protocols = [ + pkg_resources.resource_filename(__name__, "default.json"), + pkg_resources.resource_filename(__name__, "second-annotator.json"), +] + +_root_path = bob.extension.rc.get( + "bob.ip.binseg.drive.datadir", os.path.realpath(os.curdir) +) + + +def _raw_data_loader(sample): + return dict( + data=load_pil_rgb(os.path.join(_root_path, sample["data"])), + label=load_pil_1(os.path.join(_root_path, sample["label"])), + mask=load_pil_1(os.path.join(_root_path, sample["mask"])), + ) + + +def _loader(context, sample): + # "context" is ignored in this case - database is homogeneous + # we returned delayed samples to avoid loading all images at once + return make_delayed(sample, _raw_data_loader) + + +dataset = JSONDataset( + protocols=_protocols, + fieldnames=("data", "label", "mask"), + loader=_loader, +) +"""DRIVE dataset object""" diff --git a/bob/ip/binseg/data/drive/default.json b/bob/ip/binseg/data/drive/default.json new file mode 100644 index 0000000000000000000000000000000000000000..6707e6edd93546915d7f9960f8ba85d3449a8d6f --- /dev/null +++ b/bob/ip/binseg/data/drive/default.json @@ -0,0 +1,206 @@ +{ + "train": [ + [ + "training/images/21_training.tif", + "training/1st_manual/21_manual1.gif", + "training/mask/21_training_mask.gif" + ], + [ + "training/images/22_training.tif", + "training/1st_manual/22_manual1.gif", + "training/mask/22_training_mask.gif" + ], + [ + "training/images/23_training.tif", + "training/1st_manual/23_manual1.gif", + "training/mask/23_training_mask.gif" + ], + [ + "training/images/24_training.tif", + "training/1st_manual/24_manual1.gif", + "training/mask/24_training_mask.gif" + ], + [ + "training/images/25_training.tif", + "training/1st_manual/25_manual1.gif", + "training/mask/25_training_mask.gif" + ], + [ + "training/images/26_training.tif", + "training/1st_manual/26_manual1.gif", + "training/mask/26_training_mask.gif" + ], + [ + "training/images/27_training.tif", + "training/1st_manual/27_manual1.gif", + "training/mask/27_training_mask.gif" + ], + [ + "training/images/28_training.tif", + "training/1st_manual/28_manual1.gif", + "training/mask/28_training_mask.gif" + ], + [ + "training/images/29_training.tif", + "training/1st_manual/29_manual1.gif", + "training/mask/29_training_mask.gif" + ], + [ + "training/images/30_training.tif", + "training/1st_manual/30_manual1.gif", + "training/mask/30_training_mask.gif" + ], + [ + "training/images/31_training.tif", + "training/1st_manual/31_manual1.gif", + "training/mask/31_training_mask.gif" + ], + [ + "training/images/32_training.tif", + "training/1st_manual/32_manual1.gif", + "training/mask/32_training_mask.gif" + ], + [ + "training/images/33_training.tif", + "training/1st_manual/33_manual1.gif", + "training/mask/33_training_mask.gif" + ], + [ + "training/images/34_training.tif", + "training/1st_manual/34_manual1.gif", + "training/mask/34_training_mask.gif" + ], + [ + "training/images/35_training.tif", + "training/1st_manual/35_manual1.gif", + "training/mask/35_training_mask.gif" + ], + [ + "training/images/36_training.tif", + "training/1st_manual/36_manual1.gif", + "training/mask/36_training_mask.gif" + ], + [ + "training/images/37_training.tif", + "training/1st_manual/37_manual1.gif", + "training/mask/37_training_mask.gif" + ], + [ + "training/images/38_training.tif", + "training/1st_manual/38_manual1.gif", + "training/mask/38_training_mask.gif" + ], + [ + "training/images/39_training.tif", + "training/1st_manual/39_manual1.gif", + "training/mask/39_training_mask.gif" + ], + [ + "training/images/40_training.tif", + "training/1st_manual/40_manual1.gif", + "training/mask/40_training_mask.gif" + ] + ], + "test": [ + [ + "test/images/01_test.tif", + "test/1st_manual/01_manual1.gif", + "test/mask/01_test_mask.gif" + ], + [ + "test/images/02_test.tif", + "test/1st_manual/02_manual1.gif", + "test/mask/02_test_mask.gif" + ], + [ + "test/images/03_test.tif", + "test/1st_manual/03_manual1.gif", + "test/mask/03_test_mask.gif" + ], + [ + "test/images/04_test.tif", + "test/1st_manual/04_manual1.gif", + "test/mask/04_test_mask.gif" + ], + [ + "test/images/05_test.tif", + "test/1st_manual/05_manual1.gif", + "test/mask/05_test_mask.gif" + ], + [ + "test/images/06_test.tif", + "test/1st_manual/06_manual1.gif", + "test/mask/06_test_mask.gif" + ], + [ + "test/images/07_test.tif", + "test/1st_manual/07_manual1.gif", + "test/mask/07_test_mask.gif" + ], + [ + "test/images/08_test.tif", + "test/1st_manual/08_manual1.gif", + "test/mask/08_test_mask.gif" + ], + [ + "test/images/09_test.tif", + "test/1st_manual/09_manual1.gif", + "test/mask/09_test_mask.gif" + ], + [ + "test/images/10_test.tif", + "test/1st_manual/10_manual1.gif", + "test/mask/10_test_mask.gif" + ], + [ + "test/images/11_test.tif", + "test/1st_manual/11_manual1.gif", + "test/mask/11_test_mask.gif" + ], + [ + "test/images/12_test.tif", + "test/1st_manual/12_manual1.gif", + "test/mask/12_test_mask.gif" + ], + [ + "test/images/13_test.tif", + "test/1st_manual/13_manual1.gif", + "test/mask/13_test_mask.gif" + ], + [ + "test/images/14_test.tif", + "test/1st_manual/14_manual1.gif", + "test/mask/14_test_mask.gif" + ], + [ + "test/images/15_test.tif", + "test/1st_manual/15_manual1.gif", + "test/mask/15_test_mask.gif" + ], + [ + "test/images/16_test.tif", + "test/1st_manual/16_manual1.gif", + "test/mask/16_test_mask.gif" + ], + [ + "test/images/17_test.tif", + "test/1st_manual/17_manual1.gif", + "test/mask/17_test_mask.gif" + ], + [ + "test/images/18_test.tif", + "test/1st_manual/18_manual1.gif", + "test/mask/18_test_mask.gif" + ], + [ + "test/images/19_test.tif", + "test/1st_manual/19_manual1.gif", + "test/mask/19_test_mask.gif" + ], + [ + "test/images/20_test.tif", + "test/1st_manual/20_manual1.gif", + "test/mask/20_test_mask.gif" + ] + ] +} diff --git a/bob/ip/binseg/data/drive/second-annotator.json b/bob/ip/binseg/data/drive/second-annotator.json new file mode 100644 index 0000000000000000000000000000000000000000..fee520debd55220ccfd82145df4c70e39b1fc6b5 --- /dev/null +++ b/bob/ip/binseg/data/drive/second-annotator.json @@ -0,0 +1,104 @@ +{ + "test": [ + [ + "test/images/01_test.tif", + "test/2nd_manual/01_manual2.gif", + "test/mask/01_test_mask.gif" + ], + [ + "test/images/02_test.tif", + "test/2nd_manual/02_manual2.gif", + "test/mask/02_test_mask.gif" + ], + [ + "test/images/03_test.tif", + "test/2nd_manual/03_manual2.gif", + "test/mask/03_test_mask.gif" + ], + [ + "test/images/04_test.tif", + "test/2nd_manual/04_manual2.gif", + "test/mask/04_test_mask.gif" + ], + [ + "test/images/05_test.tif", + "test/2nd_manual/05_manual2.gif", + "test/mask/05_test_mask.gif" + ], + [ + "test/images/06_test.tif", + "test/2nd_manual/06_manual2.gif", + "test/mask/06_test_mask.gif" + ], + [ + "test/images/07_test.tif", + "test/2nd_manual/07_manual2.gif", + "test/mask/07_test_mask.gif" + ], + [ + "test/images/08_test.tif", + "test/2nd_manual/08_manual2.gif", + "test/mask/08_test_mask.gif" + ], + [ + "test/images/09_test.tif", + "test/2nd_manual/09_manual2.gif", + "test/mask/09_test_mask.gif" + ], + [ + "test/images/10_test.tif", + "test/2nd_manual/10_manual2.gif", + "test/mask/10_test_mask.gif" + ], + [ + "test/images/11_test.tif", + "test/2nd_manual/11_manual2.gif", + "test/mask/11_test_mask.gif" + ], + [ + "test/images/12_test.tif", + "test/2nd_manual/12_manual2.gif", + "test/mask/12_test_mask.gif" + ], + [ + "test/images/13_test.tif", + "test/2nd_manual/13_manual2.gif", + "test/mask/13_test_mask.gif" + ], + [ + "test/images/14_test.tif", + "test/2nd_manual/14_manual2.gif", + "test/mask/14_test_mask.gif" + ], + [ + "test/images/15_test.tif", + "test/2nd_manual/15_manual2.gif", + "test/mask/15_test_mask.gif" + ], + [ + "test/images/16_test.tif", + "test/2nd_manual/16_manual2.gif", + "test/mask/16_test_mask.gif" + ], + [ + "test/images/17_test.tif", + "test/2nd_manual/17_manual2.gif", + "test/mask/17_test_mask.gif" + ], + [ + "test/images/18_test.tif", + "test/2nd_manual/18_manual2.gif", + "test/mask/18_test_mask.gif" + ], + [ + "test/images/19_test.tif", + "test/2nd_manual/19_manual2.gif", + "test/mask/19_test_mask.gif" + ], + [ + "test/images/20_test.tif", + "test/2nd_manual/20_manual2.gif", + "test/mask/20_test_mask.gif" + ] + ] +} diff --git a/bob/ip/binseg/data/hrf/__init__.py b/bob/ip/binseg/data/hrf/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..dd9f8da453f3863fb20b2d1e3af58cdde958e68f --- /dev/null +++ b/bob/ip/binseg/data/hrf/__init__.py @@ -0,0 +1,56 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""HRF dataset for Vessel Segmentation + +The database includes 15 images of each healthy, diabetic retinopathy (DR), and +glaucomatous eyes. It contains a total of 45 eye fundus images with a +resolution of 3304 x 2336. One set of ground-truth vessel annotations is +available. + +* Reference: [HRF-2013]_ +* Original resolution (height x width): 2336 x 3504 +* Configuration resolution: 1168 x 1648 (after specific cropping and rescaling) +* Split reference: [ORLANDO-2017]_ +* Protocol ``default``: + + * Training samples: 15 (including labels) + * Test samples: 30 (including labels) + +""" + +import os +import pkg_resources + +import bob.extension + +from ..dataset import JSONDataset +from ..loader import load_pil_rgb, load_pil_1, make_delayed + +_protocols = [ + pkg_resources.resource_filename(__name__, "default.json"), +] + +_root_path = bob.extension.rc.get( + "bob.ip.binseg.hrf.datadir", os.path.realpath(os.curdir) +) + + +def _raw_data_loader(sample): + return dict( + data=load_pil_rgb(os.path.join(_root_path, sample["data"])), + label=load_pil_1(os.path.join(_root_path, sample["label"])), + mask=load_pil_1(os.path.join(_root_path, sample["mask"])), + ) + + +def _loader(context, sample): + # "context" is ignored in this case - database is homogeneous + # we returned delayed samples to avoid loading all images at once + return make_delayed(sample, _raw_data_loader) + + +dataset = JSONDataset( + protocols=_protocols, fieldnames=("data", "label", "mask"), loader=_loader, +) +"""HRF dataset object""" diff --git a/bob/ip/binseg/data/hrf/default.json b/bob/ip/binseg/data/hrf/default.json new file mode 100644 index 0000000000000000000000000000000000000000..87f29ad575e071c2abae8118c6b99c3d19dc24b8 --- /dev/null +++ b/bob/ip/binseg/data/hrf/default.json @@ -0,0 +1,231 @@ +{ + "train": [ + [ + "images/01_dr.JPG", + "manual1/01_dr.tif", + "mask/01_dr_mask.tif" + ], + [ + "images/02_dr.JPG", + "manual1/02_dr.tif", + "mask/02_dr_mask.tif" + ], + [ + "images/03_dr.JPG", + "manual1/03_dr.tif", + "mask/03_dr_mask.tif" + ], + [ + "images/04_dr.JPG", + "manual1/04_dr.tif", + "mask/04_dr_mask.tif" + ], + [ + "images/05_dr.JPG", + "manual1/05_dr.tif", + "mask/05_dr_mask.tif" + ], + [ + "images/01_g.jpg", + "manual1/01_g.tif", + "mask/01_g_mask.tif" + ], + [ + "images/02_g.jpg", + "manual1/02_g.tif", + "mask/02_g_mask.tif" + ], + [ + "images/03_g.jpg", + "manual1/03_g.tif", + "mask/03_g_mask.tif" + ], + [ + "images/04_g.jpg", + "manual1/04_g.tif", + "mask/04_g_mask.tif" + ], + [ + "images/05_g.jpg", + "manual1/05_g.tif", + "mask/05_g_mask.tif" + ], + [ + "images/01_h.jpg", + "manual1/01_h.tif", + "mask/01_h_mask.tif" + ], + [ + "images/02_h.jpg", + "manual1/02_h.tif", + "mask/02_h_mask.tif" + ], + [ + "images/03_h.jpg", + "manual1/03_h.tif", + "mask/03_h_mask.tif" + ], + [ + "images/04_h.jpg", + "manual1/04_h.tif", + "mask/04_h_mask.tif" + ], + [ + "images/05_h.jpg", + "manual1/05_h.tif", + "mask/05_h_mask.tif" + ] + ], + "test": [ + [ + "images/06_dr.JPG", + "manual1/06_dr.tif", + "mask/06_dr_mask.tif" + ], + [ + "images/07_dr.JPG", + "manual1/07_dr.tif", + "mask/07_dr_mask.tif" + ], + [ + "images/08_dr.JPG", + "manual1/08_dr.tif", + "mask/08_dr_mask.tif" + ], + [ + "images/09_dr.JPG", + "manual1/09_dr.tif", + "mask/09_dr_mask.tif" + ], + [ + "images/10_dr.JPG", + "manual1/10_dr.tif", + "mask/10_dr_mask.tif" + ], + [ + "images/11_dr.JPG", + "manual1/11_dr.tif", + "mask/11_dr_mask.tif" + ], + [ + "images/12_dr.JPG", + "manual1/12_dr.tif", + "mask/12_dr_mask.tif" + ], + [ + "images/13_dr.JPG", + "manual1/13_dr.tif", + "mask/13_dr_mask.tif" + ], + [ + "images/14_dr.JPG", + "manual1/14_dr.tif", + "mask/14_dr_mask.tif" + ], + [ + "images/15_dr.JPG", + "manual1/15_dr.tif", + "mask/15_dr_mask.tif" + ], + [ + "images/06_g.jpg", + "manual1/06_g.tif", + "mask/06_g_mask.tif" + ], + [ + "images/07_g.jpg", + "manual1/07_g.tif", + "mask/07_g_mask.tif" + ], + [ + "images/08_g.jpg", + "manual1/08_g.tif", + "mask/08_g_mask.tif" + ], + [ + "images/09_g.jpg", + "manual1/09_g.tif", + "mask/09_g_mask.tif" + ], + [ + "images/10_g.jpg", + "manual1/10_g.tif", + "mask/10_g_mask.tif" + ], + [ + "images/11_g.jpg", + "manual1/11_g.tif", + "mask/11_g_mask.tif" + ], + [ + "images/12_g.jpg", + "manual1/12_g.tif", + "mask/12_g_mask.tif" + ], + [ + "images/13_g.jpg", + "manual1/13_g.tif", + "mask/13_g_mask.tif" + ], + [ + "images/14_g.jpg", + "manual1/14_g.tif", + "mask/14_g_mask.tif" + ], + [ + "images/15_g.jpg", + "manual1/15_g.tif", + "mask/15_g_mask.tif" + ], + [ + "images/06_h.jpg", + "manual1/06_h.tif", + "mask/06_h_mask.tif" + ], + [ + "images/07_h.jpg", + "manual1/07_h.tif", + "mask/07_h_mask.tif" + ], + [ + "images/08_h.jpg", + "manual1/08_h.tif", + "mask/08_h_mask.tif" + ], + [ + "images/09_h.jpg", + "manual1/09_h.tif", + "mask/09_h_mask.tif" + ], + [ + "images/10_h.jpg", + "manual1/10_h.tif", + "mask/10_h_mask.tif" + ], + [ + "images/11_h.jpg", + "manual1/11_h.tif", + "mask/11_h_mask.tif" + ], + [ + "images/12_h.jpg", + "manual1/12_h.tif", + "mask/12_h_mask.tif" + ], + [ + "images/13_h.jpg", + "manual1/13_h.tif", + "mask/13_h_mask.tif" + ], + [ + "images/14_h.jpg", + "manual1/14_h.tif", + "mask/14_h_mask.tif" + ], + [ + "images/15_h.jpg", + "manual1/15_h.tif", + "mask/15_h_mask.tif" + ] + ] +} \ No newline at end of file diff --git a/bob/ip/binseg/data/imagefolder.py b/bob/ip/binseg/data/imagefolder.py deleted file mode 100644 index 7ec9dd9dbd558b8a1b405076946dca0919df5990..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/data/imagefolder.py +++ /dev/null @@ -1,79 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- -from torch.utils.data import Dataset -from pathlib import Path -import numpy as np -from PIL import Image -import torch -import torchvision.transforms.functional as VF -import bob.io.base - -def get_file_lists(data_path): - data_path = Path(data_path) - - image_path = data_path.joinpath('images') - image_file_names = np.array(sorted(list(image_path.glob('*')))) - - gt_path = data_path.joinpath('gt') - gt_file_names = np.array(sorted(list(gt_path.glob('*')))) - return image_file_names, gt_file_names - -class ImageFolder(Dataset): - """ - Generic ImageFolder dataset, that contains two folders: - - * ``images`` (vessel images) - * ``gt`` (ground-truth labels) - - - Parameters - ---------- - path : str - full path to root of dataset - - """ - def __init__(self, path, transform = None): - self.transform = transform - self.img_file_list, self.gt_file_list = get_file_lists(path) - - def __len__(self): - """ - Returns - ------- - int - size of the dataset - """ - return len(self.img_file_list) - - def __getitem__(self,index): - """ - Parameters - ---------- - index : int - - Returns - ------- - list - dataitem [img_name, img, gt, mask] - """ - img_path = self.img_file_list[index] - img_name = img_path.name - img = Image.open(img_path).convert(mode='RGB') - - gt_path = self.gt_file_list[index] - if gt_path.suffix == '.hdf5': - gt = bob.io.base.load(str(gt_path)).astype('float32') - # not elegant but since transforms require PIL images we do this hacky workaround here - gt = torch.from_numpy(gt) - gt = VF.to_pil_image(gt).convert(mode='1', dither=None) - else: - gt = Image.open(gt_path).convert(mode='1', dither=None) - - sample = [img, gt] - - if self.transform : - sample = self.transform(*sample) - - sample.insert(0,img_name) - - return sample diff --git a/bob/ip/binseg/data/imagefolderinference.py b/bob/ip/binseg/data/imagefolderinference.py deleted file mode 100644 index c4218755f099e5455e474b67fcaa004f99f46ca4..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/data/imagefolderinference.py +++ /dev/null @@ -1,82 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- -from torch.utils.data import Dataset -from pathlib import Path -import numpy as np -from PIL import Image -import torch -import torchvision.transforms.functional as VF -import bob.io.base - -def get_file_lists(data_path, glob): - """ - Recursively retrieves file lists from a given path, matching a given glob - - This function will use :py:meth:`pathlib.Path.rglob`, together with the - provided glob pattern to search for anything the desired filename. - """ - - data_path = Path(data_path) - image_file_names = np.array(sorted(list(data_path.rglob(glob)))) - return image_file_names - -class ImageFolderInference(Dataset): - """ - Generic ImageFolder containing images for inference - - Notice that this implementation, contrary to its sister - :py:class:`.ImageFolder`, does not *automatically* - convert the input image to RGB, before passing it to the transforms, so it - is possible to accomodate a wider range of input types (e.g. 16-bit PNG - images). - - Parameters - ---------- - path : str - full path to root of dataset - - glob : str - glob that can be used to filter-down files to be loaded on the provided - path - - transform : list - List of transformations to apply to every input sample - - """ - def __init__(self, path, glob='*', transform = None): - self.transform = transform - self.path = path - self.img_file_list = get_file_lists(path, glob) - - def __len__(self): - """ - Returns - ------- - int - size of the dataset - """ - return len(self.img_file_list) - - def __getitem__(self,index): - """ - Parameters - ---------- - index : int - - Returns - ------- - list - dataitem [img_name, img] - """ - img_path = self.img_file_list[index] - img_name = img_path.relative_to(self.path).as_posix() - img = Image.open(img_path) - - sample = [img] - - if self.transform : - sample = self.transform(*sample) - - sample.insert(0,img_name) - - return sample diff --git a/bob/ip/binseg/data/iostar/__init__.py b/bob/ip/binseg/data/iostar/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e5b762d9d714837f25d60062cc08b3c9be2a1e7d --- /dev/null +++ b/bob/ip/binseg/data/iostar/__init__.py @@ -0,0 +1,76 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""IOSTAR (training set) for Vessel and Optic-Disc Segmentation + +The IOSTAR vessel segmentation dataset includes 30 images with a resolution of +1024 × 1024 pixels. All the vessels in this dataset are annotated by a group of +experts working in the field of retinal image analysis. Additionally the +dataset includes annotations for the optic disc and the artery/vein ratio. + +* Reference: [IOSTAR-2016]_ +* Original resolution (height x width): 1024 x 1024 +* Split reference: [MEYER-2017]_ +* Protocol ``vessel``: + + * Training samples: 20 (including labels and masks) + * Test samples: 10 (including labels and masks) + +* Protocol ``optic-disc``: + + * Training samples: 20 (including labels and masks) + * Test samples: 10 (including labels and masks) +""" + +import os +import pkg_resources + +import bob.extension + +from ..dataset import JSONDataset +from ..loader import load_pil_rgb, load_pil_1, make_delayed +from ..utils import invert_mode1_image, subtract_mode1_images + +_protocols = [ + pkg_resources.resource_filename(__name__, "vessel.json"), + pkg_resources.resource_filename(__name__, "optic-disc.json"), +] + +_root_path = bob.extension.rc.get( + "bob.ip.binseg.iostar.datadir", os.path.realpath(os.curdir) +) + + +def _vessel_loader(sample): + return dict( + data=load_pil_rgb(os.path.join(_root_path, sample["data"])), + label=load_pil_1(os.path.join(_root_path, sample["label"])), + mask=load_pil_1(os.path.join(_root_path, sample["mask"])), + ) + + +def _disc_loader(sample): + # For optic-disc analysis, the label provided by IOSTAR raw data is the + # "inverted" (negative) label, and does not consider the mask region, which + # must be subtracted. We do this special manipulation here. + data = load_pil_rgb(os.path.join(_root_path, sample["data"])) + label = load_pil_1(os.path.join(_root_path, sample["label"])) + mask = load_pil_1(os.path.join(_root_path, sample["mask"])) + label = subtract_mode1_images( + invert_mode1_image(label), invert_mode1_image(mask) + ) + return dict(data=data, label=label, mask=mask) + + +def _loader(context, sample): + if context["protocol"] == "optic-disc": + return make_delayed(sample, _disc_loader) + elif context["protocol"] == "vessel": + return make_delayed(sample, _vessel_loader) + raise RuntimeError(f"Unknown protocol {context['protocol']}") + + +dataset = JSONDataset( + protocols=_protocols, fieldnames=("data", "label", "mask"), loader=_loader, +) +"""IOSTAR dataset object""" diff --git a/bob/ip/binseg/data/iostar/optic-disc.json b/bob/ip/binseg/data/iostar/optic-disc.json new file mode 100644 index 0000000000000000000000000000000000000000..7f583b6d8d9fbdde805a4a359857a89a428d84c7 --- /dev/null +++ b/bob/ip/binseg/data/iostar/optic-disc.json @@ -0,0 +1,156 @@ +{ + "train": [ + [ + "image/STAR 01_OSC.jpg", + "mask_OD/STAR 01_OSC_ODMask.tif", + "mask/STAR 01_OSC_Mask.tif" + ], + [ + "image/STAR 02_ODC.jpg", + "mask_OD/STAR 02_ODC_ODMask.tif", + "mask/STAR 02_ODC_Mask.tif" + ], + [ + "image/STAR 03_OSN.jpg", + "mask_OD/STAR 03_OSN_ODMask.tif", + "mask/STAR 03_OSN_Mask.tif" + ], + [ + "image/STAR 05_ODC.jpg", + "mask_OD/STAR 05_ODC_ODMask.tif", + "mask/STAR 05_ODC_Mask.tif" + ], + [ + "image/STAR 06_ODN.jpg", + "mask_OD/STAR 06_ODN_ODMask.tif", + "mask/STAR 06_ODN_Mask.tif" + ], + [ + "image/STAR 08_OSN.jpg", + "mask_OD/STAR 08_OSN_ODMask.tif", + "mask/STAR 08_OSN_Mask.tif" + ], + [ + "image/STAR 09_OSN.jpg", + "mask_OD/STAR 09_OSN_ODMask.tif", + "mask/STAR 09_OSN_Mask.tif" + ], + [ + "image/STAR 10_OSN.jpg", + "mask_OD/STAR 10_OSN_ODMask.tif", + "mask/STAR 10_OSN_Mask.tif" + ], + [ + "image/STAR 13_OSN.jpg", + "mask_OD/STAR 13_OSN_ODMask.tif", + "mask/STAR 13_OSN_Mask.tif" + ], + [ + "image/STAR 15_OSN.jpg", + "mask_OD/STAR 15_OSN_ODMask.tif", + "mask/STAR 15_OSN_Mask.tif" + ], + [ + "image/STAR 16_OSN.jpg", + "mask_OD/STAR 16_OSN_ODMask.tif", + "mask/STAR 16_OSN_Mask.tif" + ], + [ + "image/STAR 17_ODN.jpg", + "mask_OD/STAR 17_ODN_ODMask.tif", + "mask/STAR 17_ODN_Mask.tif" + ], + [ + "image/STAR 20_ODC.jpg", + "mask_OD/STAR 20_ODC_ODMask.tif", + "mask/STAR 20_ODC_Mask.tif" + ], + [ + "image/STAR 21_OSC.jpg", + "mask_OD/STAR 21_OSC_ODMask.tif", + "mask/STAR 21_OSC_Mask.tif" + ], + [ + "image/STAR 24_OSC.jpg", + "mask_OD/STAR 24_OSC_ODMask.tif", + "mask/STAR 24_OSC_Mask.tif" + ], + [ + "image/STAR 26_ODC.jpg", + "mask_OD/STAR 26_ODC_ODMask.tif", + "mask/STAR 26_ODC_Mask.tif" + ], + [ + "image/STAR 28_ODN.jpg", + "mask_OD/STAR 28_ODN_ODMask.tif", + "mask/STAR 28_ODN_Mask.tif" + ], + [ + "image/STAR 30_ODC.jpg", + "mask_OD/STAR 30_ODC_ODMask.tif", + "mask/STAR 30_ODC_Mask.tif" + ], + [ + "image/STAR 31_ODN.jpg", + "mask_OD/STAR 31_ODN_ODMask.tif", + "mask/STAR 31_ODN_Mask.tif" + ], + [ + "image/STAR 32_ODC.jpg", + "mask_OD/STAR 32_ODC_ODMask.tif", + "mask/STAR 32_ODC_Mask.tif" + ] + ], + "test": [ + [ + "image/STAR 34_ODC.jpg", + "mask_OD/STAR 34_ODC_ODMask.tif", + "mask/STAR 34_ODC_Mask.tif" + ], + [ + "image/STAR 36_OSC.jpg", + "mask_OD/STAR 36_OSC_ODMask.tif", + "mask/STAR 36_OSC_Mask.tif" + ], + [ + "image/STAR 37_ODN.jpg", + "mask_OD/STAR 37_ODN_ODMask.tif", + "mask/STAR 37_ODN_Mask.tif" + ], + [ + "image/STAR 38_ODC.jpg", + "mask_OD/STAR 38_ODC_ODMask.tif", + "mask/STAR 38_ODC_Mask.tif" + ], + [ + "image/STAR 39_ODC.jpg", + "mask_OD/STAR 39_ODC_ODMask.tif", + "mask/STAR 39_ODC_Mask.tif" + ], + [ + "image/STAR 40_OSC.jpg", + "mask_OD/STAR 40_OSC_ODMask.tif", + "mask/STAR 40_OSC_Mask.tif" + ], + [ + "image/STAR 43_OSC.jpg", + "mask_OD/STAR 43_OSC_ODMask.tif", + "mask/STAR 43_OSC_Mask.tif" + ], + [ + "image/STAR 44_OSN.jpg", + "mask_OD/STAR 44_OSN_ODMask.tif", + "mask/STAR 44_OSN_Mask.tif" + ], + [ + "image/STAR 45_ODC.jpg", + "mask_OD/STAR 45_ODC_ODMask.tif", + "mask/STAR 45_ODC_Mask.tif" + ], + [ + "image/STAR 48_OSN.jpg", + "mask_OD/STAR 48_OSN_ODMask.tif", + "mask/STAR 48_OSN_Mask.tif" + ] + ] +} \ No newline at end of file diff --git a/bob/ip/binseg/data/iostar/vessel.json b/bob/ip/binseg/data/iostar/vessel.json new file mode 100644 index 0000000000000000000000000000000000000000..7500058bc3cf5229da3c6148a2738a66b8e29e8f --- /dev/null +++ b/bob/ip/binseg/data/iostar/vessel.json @@ -0,0 +1,156 @@ +{ + "train": [ + [ + "image/STAR 01_OSC.jpg", + "GT/STAR 01_OSC_GT.tif", + "mask/STAR 01_OSC_Mask.tif" + ], + [ + "image/STAR 02_ODC.jpg", + "GT/STAR 02_ODC_GT.tif", + "mask/STAR 02_ODC_Mask.tif" + ], + [ + "image/STAR 03_OSN.jpg", + "GT/STAR 03_OSN_GT.tif", + "mask/STAR 03_OSN_Mask.tif" + ], + [ + "image/STAR 05_ODC.jpg", + "GT/STAR 05_ODC_GT.tif", + "mask/STAR 05_ODC_Mask.tif" + ], + [ + "image/STAR 06_ODN.jpg", + "GT/STAR 06_ODN_GT.tif", + "mask/STAR 06_ODN_Mask.tif" + ], + [ + "image/STAR 08_OSN.jpg", + "GT/STAR 08_OSN_GT.tif", + "mask/STAR 08_OSN_Mask.tif" + ], + [ + "image/STAR 09_OSN.jpg", + "GT/STAR 09_OSN_GT.tif", + "mask/STAR 09_OSN_Mask.tif" + ], + [ + "image/STAR 10_OSN.jpg", + "GT/STAR 10_OSN_GT.tif", + "mask/STAR 10_OSN_Mask.tif" + ], + [ + "image/STAR 13_OSN.jpg", + "GT/STAR 13_OSN_GT.tif", + "mask/STAR 13_OSN_Mask.tif" + ], + [ + "image/STAR 15_OSN.jpg", + "GT/STAR 15_OSN_GT.tif", + "mask/STAR 15_OSN_Mask.tif" + ], + [ + "image/STAR 16_OSN.jpg", + "GT/STAR 16_OSN_GT.tif", + "mask/STAR 16_OSN_Mask.tif" + ], + [ + "image/STAR 17_ODN.jpg", + "GT/STAR 17_ODN_GT.tif", + "mask/STAR 17_ODN_Mask.tif" + ], + [ + "image/STAR 20_ODC.jpg", + "GT/STAR 20_ODC_GT.tif", + "mask/STAR 20_ODC_Mask.tif" + ], + [ + "image/STAR 21_OSC.jpg", + "GT/STAR 21_OSC_GT.tif", + "mask/STAR 21_OSC_Mask.tif" + ], + [ + "image/STAR 24_OSC.jpg", + "GT/STAR 24_OSC_GT.tif", + "mask/STAR 24_OSC_Mask.tif" + ], + [ + "image/STAR 26_ODC.jpg", + "GT/STAR 26_ODC_GT.tif", + "mask/STAR 26_ODC_Mask.tif" + ], + [ + "image/STAR 28_ODN.jpg", + "GT/STAR 28_ODN_GT.tif", + "mask/STAR 28_ODN_Mask.tif" + ], + [ + "image/STAR 30_ODC.jpg", + "GT/STAR 30_ODC_GT.tif", + "mask/STAR 30_ODC_Mask.tif" + ], + [ + "image/STAR 31_ODN.jpg", + "GT/STAR 31_ODN_GT.tif", + "mask/STAR 31_ODN_Mask.tif" + ], + [ + "image/STAR 32_ODC.jpg", + "GT/STAR 32_ODC_GT.tif", + "mask/STAR 32_ODC_Mask.tif" + ] + ], + "test": [ + [ + "image/STAR 34_ODC.jpg", + "GT/STAR 34_ODC_GT.tif", + "mask/STAR 34_ODC_Mask.tif" + ], + [ + "image/STAR 36_OSC.jpg", + "GT/STAR 36_OSC_GT.tif", + "mask/STAR 36_OSC_Mask.tif" + ], + [ + "image/STAR 37_ODN.jpg", + "GT/STAR 37_ODN_GT.tif", + "mask/STAR 37_ODN_Mask.tif" + ], + [ + "image/STAR 38_ODC.jpg", + "GT/STAR 38_ODC_GT.tif", + "mask/STAR 38_ODC_Mask.tif" + ], + [ + "image/STAR 39_ODC.jpg", + "GT/STAR 39_ODC_GT.tif", + "mask/STAR 39_ODC_Mask.tif" + ], + [ + "image/STAR 40_OSC.jpg", + "GT/STAR 40_OSC_GT.tif", + "mask/STAR 40_OSC_Mask.tif" + ], + [ + "image/STAR 43_OSC.jpg", + "GT/STAR 43_OSC_GT.tif", + "mask/STAR 43_OSC_Mask.tif" + ], + [ + "image/STAR 44_OSN.jpg", + "GT/STAR 44_OSN_GT.tif", + "mask/STAR 44_OSN_Mask.tif" + ], + [ + "image/STAR 45_ODC.jpg", + "GT/STAR 45_ODC_GT.tif", + "mask/STAR 45_ODC_Mask.tif" + ], + [ + "image/STAR 48_OSN.jpg", + "GT/STAR 48_OSN_GT.tif", + "mask/STAR 48_OSN_Mask.tif" + ] + ] +} \ No newline at end of file diff --git a/bob/ip/binseg/data/loader.py b/bob/ip/binseg/data/loader.py new file mode 100644 index 0000000000000000000000000000000000000000..aa2adc416065fb65e25a4b10c5b364758442e8b7 --- /dev/null +++ b/bob/ip/binseg/data/loader.py @@ -0,0 +1,89 @@ +#!/usr/bin/env python +# coding=utf-8 + + +"""Data loading code""" + + +import os +import functools + +import PIL.Image + +from .sample import DelayedSample + + +def load_pil_rgb(path): + """Loads a sample data + + Parameters + ---------- + + path : str + The full path leading to the image to be loaded + + + Returns + ------- + + image : PIL.Image.Image + A PIL image in RGB mode + + """ + + return PIL.Image.open(path).convert("RGB") + + +def load_pil_1(path): + """Loads a sample binary label or mask + + Parameters + ---------- + + path : str + The full path leading to the image to be loaded + + + Returns + ------- + + image : PIL.Image.Image + A PIL image in mode "1" + + """ + + return PIL.Image.open(path).convert(mode="1", dither=None) + + +def make_delayed(sample, loader, key=None): + """Returns a delayed-loading Sample object + + Parameters + ---------- + + sample : dict + A dictionary that maps field names to sample data values (e.g. paths) + + loader : object + A function that inputs ``sample`` dictionaries and returns the loaded + data. + + key : str + A unique key identifier for this sample. If not provided, assumes + ``sample`` is a dictionary with a ``data`` entry and uses its path as + key. + + + Returns + ------- + + sample : bob.ip.binseg.data.sample.DelayedSample + In which ``key`` is as provided and ``data`` can be accessed to trigger + sample loading. + + """ + + return DelayedSample( + functools.partial(loader, sample), + key=key or os.path.splitext(sample["data"])[0], + ) diff --git a/bob/ip/binseg/data/refuge/__init__.py b/bob/ip/binseg/data/refuge/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..addcfca9f368bafb68efd0a97a4232f88a5a9d8e --- /dev/null +++ b/bob/ip/binseg/data/refuge/__init__.py @@ -0,0 +1,103 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""REFUGE for Optic Disc and Cup Segmentation + +The dataset consists of 1200 color fundus photographs, created for a MICCAI +challenge. The goal of the challenge is to evaluate and compare automated +algorithms for glaucoma detection and optic disc/cup segmentation on a common +dataset of retinal fundus images. + +* Reference (including train/dev/test split): [REFUGE-2018]_ +* Protocols ``optic-disc`` and ``cup``: + + * Training samples: + + * 400 + * includes optic-disc and cup labels + * includes label: glaucomatous and non-glaucomatous + * original resolution: 2056 x 2124 + + * Validation samples: + + * 400 + * includes optic-disc and cup labels + * original resolution: 1634 x 1634 + + * Test samples: + + * 400 + * includes optic-disc and cup labels + * includes label: glaucomatous and non-glaucomatous + * original resolution: +""" + +import os +import pkg_resources + +import bob.extension + +from ..dataset import JSONDataset +from ..loader import load_pil_rgb, make_delayed + +_protocols = { + "optic-disc": pkg_resources.resource_filename(__name__, "default.json"), + "optic-cup": pkg_resources.resource_filename(__name__, "default.json"), +} + +_root_path = bob.extension.rc.get( + "bob.ip.binseg.refuge.datadir", os.path.realpath(os.curdir) +) + + +def _disc_loader(sample): + retval = dict( + data=load_pil_rgb(os.path.join(_root_path, sample["data"])), + label=load_pil_rgb(os.path.join(_root_path, sample["label"])), + glaucoma=sample["glaucoma"], + ) + retval["label"] = retval["label"].convert("L") + retval["label"] = retval["label"].point(lambda p: p <= 150, mode="1") + return retval + + +def _cup_loader(sample): + retval = dict( + data=load_pil_rgb(os.path.join(_root_path, sample["data"])), + label=load_pil_rgb(os.path.join(_root_path, sample["label"])), + glaucoma=sample["glaucoma"], + ) + retval["label"] = retval["label"].convert("L") + retval["label"] = retval["label"].point(lambda p: p <= 100, mode="1") + return retval + + +def _loader(context, sample): + + sample["glaucoma"] = False + if context["subset"] == "train": + # adds binary metadata for glaucoma/non-glaucoma patients + sample["glaucoma"] = os.path.basename(sample["label"]).startswith("g") + elif context["subset"] == "test": + sample["glaucoma"] = (sample["label"].split(os.sep)[-2] == "G") + elif context["subset"] == "validation": + pass + else: + raise RuntimeError(f"Unknown subset {context['subset']}") + + # optic disc is drawn with gray == 128 and includes the cup, drawn with + # black == 0. The rest is white == 255. + if context["protocol"] == "optic-disc": + return make_delayed(sample, _disc_loader) + elif context["protocol"] == "optic-cup": + return make_delayed(sample, _cup_loader) + else: + raise RuntimeError(f"Unknown protocol {context['protocol']}") + + +dataset = JSONDataset( + protocols=_protocols, + fieldnames=("data", "label"), + loader=_loader, +) +"""REFUGE dataset object""" diff --git a/bob/ip/binseg/data/refuge/default.json b/bob/ip/binseg/data/refuge/default.json new file mode 100644 index 0000000000000000000000000000000000000000..cde130a04f5c7240698cdf3382142f0ccacb527e --- /dev/null +++ b/bob/ip/binseg/data/refuge/default.json @@ -0,0 +1,4808 @@ +{ + "train": [ + [ + "Training400/Glaucoma/g0001.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0001.bmp" + ], + [ + "Training400/Glaucoma/g0002.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0002.bmp" + ], + [ + "Training400/Glaucoma/g0003.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0003.bmp" + ], + [ + "Training400/Glaucoma/g0004.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0004.bmp" + ], + [ + "Training400/Glaucoma/g0005.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0005.bmp" + ], + [ + "Training400/Glaucoma/g0006.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0006.bmp" + ], + [ + "Training400/Glaucoma/g0007.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0007.bmp" + ], + [ + "Training400/Glaucoma/g0008.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0008.bmp" + ], + [ + "Training400/Glaucoma/g0009.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0009.bmp" + ], + [ + "Training400/Glaucoma/g0010.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0010.bmp" + ], + [ + "Training400/Glaucoma/g0011.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0011.bmp" + ], + [ + "Training400/Glaucoma/g0012.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0012.bmp" + ], + [ + "Training400/Glaucoma/g0013.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0013.bmp" + ], + [ + "Training400/Glaucoma/g0014.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0014.bmp" + ], + [ + "Training400/Glaucoma/g0015.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0015.bmp" + ], + [ + "Training400/Glaucoma/g0016.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0016.bmp" + ], + [ + "Training400/Glaucoma/g0017.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0017.bmp" + ], + [ + "Training400/Glaucoma/g0018.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0018.bmp" + ], + [ + "Training400/Glaucoma/g0019.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0019.bmp" + ], + [ + "Training400/Glaucoma/g0020.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0020.bmp" + ], + [ + "Training400/Glaucoma/g0021.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0021.bmp" + ], + [ + "Training400/Glaucoma/g0022.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0022.bmp" + ], + [ + "Training400/Glaucoma/g0023.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0023.bmp" + ], + [ + "Training400/Glaucoma/g0024.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0024.bmp" + ], + [ + "Training400/Glaucoma/g0025.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0025.bmp" + ], + [ + "Training400/Glaucoma/g0026.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0026.bmp" + ], + [ + "Training400/Glaucoma/g0027.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0027.bmp" + ], + [ + "Training400/Glaucoma/g0028.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0028.bmp" + ], + [ + "Training400/Glaucoma/g0029.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0029.bmp" + ], + [ + "Training400/Glaucoma/g0030.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0030.bmp" + ], + [ + "Training400/Glaucoma/g0031.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0031.bmp" + ], + [ + "Training400/Glaucoma/g0032.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0032.bmp" + ], + [ + "Training400/Glaucoma/g0033.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0033.bmp" + ], + [ + "Training400/Glaucoma/g0034.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0034.bmp" + ], + [ + "Training400/Glaucoma/g0035.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0035.bmp" + ], + [ + "Training400/Glaucoma/g0036.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0036.bmp" + ], + [ + "Training400/Glaucoma/g0037.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0037.bmp" + ], + [ + "Training400/Glaucoma/g0038.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0038.bmp" + ], + [ + "Training400/Glaucoma/g0039.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0039.bmp" + ], + [ + "Training400/Glaucoma/g0040.jpg", + "Annotation-Training400/Disc_Cup_Masks/Glaucoma/g0040.bmp" + ], + [ + "Training400/Non-Glaucoma/n0001.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0001.bmp" + ], + [ + "Training400/Non-Glaucoma/n0002.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0002.bmp" + ], + [ + "Training400/Non-Glaucoma/n0003.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0003.bmp" + ], + [ + "Training400/Non-Glaucoma/n0004.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0004.bmp" + ], + [ + "Training400/Non-Glaucoma/n0005.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0005.bmp" + ], + [ + "Training400/Non-Glaucoma/n0006.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0006.bmp" + ], + [ + "Training400/Non-Glaucoma/n0007.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0007.bmp" + ], + [ + "Training400/Non-Glaucoma/n0008.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0008.bmp" + ], + [ + "Training400/Non-Glaucoma/n0009.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0009.bmp" + ], + [ + "Training400/Non-Glaucoma/n0010.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0010.bmp" + ], + [ + "Training400/Non-Glaucoma/n0011.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0011.bmp" + ], + [ + "Training400/Non-Glaucoma/n0012.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0012.bmp" + ], + [ + "Training400/Non-Glaucoma/n0013.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0013.bmp" + ], + [ + "Training400/Non-Glaucoma/n0014.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0014.bmp" + ], + [ + "Training400/Non-Glaucoma/n0015.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0015.bmp" + ], + [ + "Training400/Non-Glaucoma/n0016.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0016.bmp" + ], + [ + "Training400/Non-Glaucoma/n0017.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0017.bmp" + ], + [ + "Training400/Non-Glaucoma/n0018.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0018.bmp" + ], + [ + "Training400/Non-Glaucoma/n0019.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0019.bmp" + ], + [ + "Training400/Non-Glaucoma/n0020.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0020.bmp" + ], + [ + "Training400/Non-Glaucoma/n0021.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0021.bmp" + ], + [ + "Training400/Non-Glaucoma/n0022.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0022.bmp" + ], + [ + "Training400/Non-Glaucoma/n0023.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0023.bmp" + ], + [ + "Training400/Non-Glaucoma/n0024.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0024.bmp" + ], + [ + "Training400/Non-Glaucoma/n0025.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0025.bmp" + ], + [ + "Training400/Non-Glaucoma/n0026.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0026.bmp" + ], + [ + "Training400/Non-Glaucoma/n0027.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0027.bmp" + ], + [ + "Training400/Non-Glaucoma/n0028.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0028.bmp" + ], + [ + "Training400/Non-Glaucoma/n0029.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0029.bmp" + ], + [ + "Training400/Non-Glaucoma/n0030.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0030.bmp" + ], + [ + "Training400/Non-Glaucoma/n0031.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0031.bmp" + ], + [ + "Training400/Non-Glaucoma/n0032.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0032.bmp" + ], + [ + "Training400/Non-Glaucoma/n0033.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0033.bmp" + ], + [ + "Training400/Non-Glaucoma/n0034.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0034.bmp" + ], + [ + "Training400/Non-Glaucoma/n0035.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0035.bmp" + ], + [ + "Training400/Non-Glaucoma/n0036.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0036.bmp" + ], + [ + "Training400/Non-Glaucoma/n0037.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0037.bmp" + ], + [ + "Training400/Non-Glaucoma/n0038.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0038.bmp" + ], + [ + "Training400/Non-Glaucoma/n0039.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0039.bmp" + ], + [ + "Training400/Non-Glaucoma/n0040.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0040.bmp" + ], + [ + "Training400/Non-Glaucoma/n0041.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0041.bmp" + ], + [ + "Training400/Non-Glaucoma/n0042.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0042.bmp" + ], + [ + "Training400/Non-Glaucoma/n0043.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0043.bmp" + ], + [ + "Training400/Non-Glaucoma/n0044.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0044.bmp" + ], + [ + "Training400/Non-Glaucoma/n0045.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0045.bmp" + ], + [ + "Training400/Non-Glaucoma/n0046.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0046.bmp" + ], + [ + "Training400/Non-Glaucoma/n0047.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0047.bmp" + ], + [ + "Training400/Non-Glaucoma/n0048.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0048.bmp" + ], + [ + "Training400/Non-Glaucoma/n0049.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0049.bmp" + ], + [ + "Training400/Non-Glaucoma/n0050.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0050.bmp" + ], + [ + "Training400/Non-Glaucoma/n0051.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0051.bmp" + ], + [ + "Training400/Non-Glaucoma/n0052.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0052.bmp" + ], + [ + "Training400/Non-Glaucoma/n0053.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0053.bmp" + ], + [ + "Training400/Non-Glaucoma/n0054.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0054.bmp" + ], + [ + "Training400/Non-Glaucoma/n0055.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0055.bmp" + ], + [ + "Training400/Non-Glaucoma/n0056.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0056.bmp" + ], + [ + "Training400/Non-Glaucoma/n0057.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0057.bmp" + ], + [ + "Training400/Non-Glaucoma/n0058.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0058.bmp" + ], + [ + "Training400/Non-Glaucoma/n0059.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0059.bmp" + ], + [ + "Training400/Non-Glaucoma/n0060.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0060.bmp" + ], + [ + "Training400/Non-Glaucoma/n0061.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0061.bmp" + ], + [ + "Training400/Non-Glaucoma/n0062.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0062.bmp" + ], + [ + "Training400/Non-Glaucoma/n0063.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0063.bmp" + ], + [ + "Training400/Non-Glaucoma/n0064.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0064.bmp" + ], + [ + "Training400/Non-Glaucoma/n0065.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0065.bmp" + ], + [ + "Training400/Non-Glaucoma/n0066.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0066.bmp" + ], + [ + "Training400/Non-Glaucoma/n0067.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0067.bmp" + ], + [ + "Training400/Non-Glaucoma/n0068.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0068.bmp" + ], + [ + "Training400/Non-Glaucoma/n0069.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0069.bmp" + ], + [ + "Training400/Non-Glaucoma/n0070.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0070.bmp" + ], + [ + "Training400/Non-Glaucoma/n0071.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0071.bmp" + ], + [ + "Training400/Non-Glaucoma/n0072.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0072.bmp" + ], + [ + "Training400/Non-Glaucoma/n0073.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0073.bmp" + ], + [ + "Training400/Non-Glaucoma/n0074.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0074.bmp" + ], + [ + "Training400/Non-Glaucoma/n0075.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0075.bmp" + ], + [ + "Training400/Non-Glaucoma/n0076.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0076.bmp" + ], + [ + "Training400/Non-Glaucoma/n0077.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0077.bmp" + ], + [ + "Training400/Non-Glaucoma/n0078.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0078.bmp" + ], + [ + "Training400/Non-Glaucoma/n0079.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0079.bmp" + ], + [ + "Training400/Non-Glaucoma/n0080.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0080.bmp" + ], + [ + "Training400/Non-Glaucoma/n0081.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0081.bmp" + ], + [ + "Training400/Non-Glaucoma/n0082.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0082.bmp" + ], + [ + "Training400/Non-Glaucoma/n0083.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0083.bmp" + ], + [ + "Training400/Non-Glaucoma/n0084.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0084.bmp" + ], + [ + "Training400/Non-Glaucoma/n0085.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0085.bmp" + ], + [ + "Training400/Non-Glaucoma/n0086.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0086.bmp" + ], + [ + "Training400/Non-Glaucoma/n0087.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0087.bmp" + ], + [ + "Training400/Non-Glaucoma/n0088.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0088.bmp" + ], + [ + "Training400/Non-Glaucoma/n0089.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0089.bmp" + ], + [ + "Training400/Non-Glaucoma/n0090.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0090.bmp" + ], + [ + "Training400/Non-Glaucoma/n0091.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0091.bmp" + ], + [ + "Training400/Non-Glaucoma/n0092.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0092.bmp" + ], + [ + "Training400/Non-Glaucoma/n0093.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0093.bmp" + ], + [ + "Training400/Non-Glaucoma/n0094.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0094.bmp" + ], + [ + "Training400/Non-Glaucoma/n0095.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0095.bmp" + ], + [ + "Training400/Non-Glaucoma/n0096.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0096.bmp" + ], + [ + "Training400/Non-Glaucoma/n0097.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0097.bmp" + ], + [ + "Training400/Non-Glaucoma/n0098.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0098.bmp" + ], + [ + "Training400/Non-Glaucoma/n0099.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0099.bmp" + ], + [ + "Training400/Non-Glaucoma/n0100.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0100.bmp" + ], + [ + "Training400/Non-Glaucoma/n0101.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0101.bmp" + ], + [ + "Training400/Non-Glaucoma/n0102.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0102.bmp" + ], + [ + "Training400/Non-Glaucoma/n0103.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0103.bmp" + ], + [ + "Training400/Non-Glaucoma/n0104.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0104.bmp" + ], + [ + "Training400/Non-Glaucoma/n0105.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0105.bmp" + ], + [ + "Training400/Non-Glaucoma/n0106.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0106.bmp" + ], + [ + "Training400/Non-Glaucoma/n0107.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0107.bmp" + ], + [ + "Training400/Non-Glaucoma/n0108.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0108.bmp" + ], + [ + "Training400/Non-Glaucoma/n0109.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0109.bmp" + ], + [ + "Training400/Non-Glaucoma/n0110.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0110.bmp" + ], + [ + "Training400/Non-Glaucoma/n0111.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0111.bmp" + ], + [ + "Training400/Non-Glaucoma/n0112.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0112.bmp" + ], + [ + "Training400/Non-Glaucoma/n0113.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0113.bmp" + ], + [ + "Training400/Non-Glaucoma/n0114.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0114.bmp" + ], + [ + "Training400/Non-Glaucoma/n0115.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0115.bmp" + ], + [ + "Training400/Non-Glaucoma/n0116.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0116.bmp" + ], + [ + "Training400/Non-Glaucoma/n0117.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0117.bmp" + ], + [ + "Training400/Non-Glaucoma/n0118.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0118.bmp" + ], + [ + "Training400/Non-Glaucoma/n0119.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0119.bmp" + ], + [ + "Training400/Non-Glaucoma/n0120.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0120.bmp" + ], + [ + "Training400/Non-Glaucoma/n0121.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0121.bmp" + ], + [ + "Training400/Non-Glaucoma/n0122.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0122.bmp" + ], + [ + "Training400/Non-Glaucoma/n0123.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0123.bmp" + ], + [ + "Training400/Non-Glaucoma/n0124.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0124.bmp" + ], + [ + "Training400/Non-Glaucoma/n0125.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0125.bmp" + ], + [ + "Training400/Non-Glaucoma/n0126.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0126.bmp" + ], + [ + "Training400/Non-Glaucoma/n0127.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0127.bmp" + ], + [ + "Training400/Non-Glaucoma/n0128.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0128.bmp" + ], + [ + "Training400/Non-Glaucoma/n0129.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0129.bmp" + ], + [ + "Training400/Non-Glaucoma/n0130.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0130.bmp" + ], + [ + "Training400/Non-Glaucoma/n0131.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0131.bmp" + ], + [ + "Training400/Non-Glaucoma/n0132.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0132.bmp" + ], + [ + "Training400/Non-Glaucoma/n0133.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0133.bmp" + ], + [ + "Training400/Non-Glaucoma/n0134.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0134.bmp" + ], + [ + "Training400/Non-Glaucoma/n0135.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0135.bmp" + ], + [ + "Training400/Non-Glaucoma/n0136.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0136.bmp" + ], + [ + "Training400/Non-Glaucoma/n0137.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0137.bmp" + ], + [ + "Training400/Non-Glaucoma/n0138.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0138.bmp" + ], + [ + "Training400/Non-Glaucoma/n0139.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0139.bmp" + ], + [ + "Training400/Non-Glaucoma/n0140.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0140.bmp" + ], + [ + "Training400/Non-Glaucoma/n0141.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0141.bmp" + ], + [ + "Training400/Non-Glaucoma/n0142.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0142.bmp" + ], + [ + "Training400/Non-Glaucoma/n0143.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0143.bmp" + ], + [ + "Training400/Non-Glaucoma/n0144.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0144.bmp" + ], + [ + "Training400/Non-Glaucoma/n0145.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0145.bmp" + ], + [ + "Training400/Non-Glaucoma/n0146.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0146.bmp" + ], + [ + "Training400/Non-Glaucoma/n0147.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0147.bmp" + ], + [ + "Training400/Non-Glaucoma/n0148.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0148.bmp" + ], + [ + "Training400/Non-Glaucoma/n0149.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0149.bmp" + ], + [ + "Training400/Non-Glaucoma/n0150.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0150.bmp" + ], + [ + "Training400/Non-Glaucoma/n0151.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0151.bmp" + ], + [ + "Training400/Non-Glaucoma/n0152.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0152.bmp" + ], + [ + "Training400/Non-Glaucoma/n0153.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0153.bmp" + ], + [ + "Training400/Non-Glaucoma/n0154.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0154.bmp" + ], + [ + "Training400/Non-Glaucoma/n0155.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0155.bmp" + ], + [ + "Training400/Non-Glaucoma/n0156.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0156.bmp" + ], + [ + "Training400/Non-Glaucoma/n0157.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0157.bmp" + ], + [ + "Training400/Non-Glaucoma/n0158.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0158.bmp" + ], + [ + "Training400/Non-Glaucoma/n0159.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0159.bmp" + ], + [ + "Training400/Non-Glaucoma/n0160.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0160.bmp" + ], + [ + "Training400/Non-Glaucoma/n0161.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0161.bmp" + ], + [ + "Training400/Non-Glaucoma/n0162.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0162.bmp" + ], + [ + "Training400/Non-Glaucoma/n0163.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0163.bmp" + ], + [ + "Training400/Non-Glaucoma/n0164.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0164.bmp" + ], + [ + "Training400/Non-Glaucoma/n0165.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0165.bmp" + ], + [ + "Training400/Non-Glaucoma/n0166.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0166.bmp" + ], + [ + "Training400/Non-Glaucoma/n0167.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0167.bmp" + ], + [ + "Training400/Non-Glaucoma/n0168.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0168.bmp" + ], + [ + "Training400/Non-Glaucoma/n0169.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0169.bmp" + ], + [ + "Training400/Non-Glaucoma/n0170.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0170.bmp" + ], + [ + "Training400/Non-Glaucoma/n0171.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0171.bmp" + ], + [ + "Training400/Non-Glaucoma/n0172.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0172.bmp" + ], + [ + "Training400/Non-Glaucoma/n0173.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0173.bmp" + ], + [ + "Training400/Non-Glaucoma/n0174.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0174.bmp" + ], + [ + "Training400/Non-Glaucoma/n0175.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0175.bmp" + ], + [ + "Training400/Non-Glaucoma/n0176.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0176.bmp" + ], + [ + "Training400/Non-Glaucoma/n0177.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0177.bmp" + ], + [ + "Training400/Non-Glaucoma/n0178.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0178.bmp" + ], + [ + "Training400/Non-Glaucoma/n0179.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0179.bmp" + ], + [ + "Training400/Non-Glaucoma/n0180.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0180.bmp" + ], + [ + "Training400/Non-Glaucoma/n0181.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0181.bmp" + ], + [ + "Training400/Non-Glaucoma/n0182.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0182.bmp" + ], + [ + "Training400/Non-Glaucoma/n0183.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0183.bmp" + ], + [ + "Training400/Non-Glaucoma/n0184.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0184.bmp" + ], + [ + "Training400/Non-Glaucoma/n0185.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0185.bmp" + ], + [ + "Training400/Non-Glaucoma/n0186.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0186.bmp" + ], + [ + "Training400/Non-Glaucoma/n0187.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0187.bmp" + ], + [ + "Training400/Non-Glaucoma/n0188.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0188.bmp" + ], + [ + "Training400/Non-Glaucoma/n0189.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0189.bmp" + ], + [ + "Training400/Non-Glaucoma/n0190.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0190.bmp" + ], + [ + "Training400/Non-Glaucoma/n0191.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0191.bmp" + ], + [ + "Training400/Non-Glaucoma/n0192.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0192.bmp" + ], + [ + "Training400/Non-Glaucoma/n0193.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0193.bmp" + ], + [ + "Training400/Non-Glaucoma/n0194.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0194.bmp" + ], + [ + "Training400/Non-Glaucoma/n0195.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0195.bmp" + ], + [ + "Training400/Non-Glaucoma/n0196.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0196.bmp" + ], + [ + "Training400/Non-Glaucoma/n0197.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0197.bmp" + ], + [ + "Training400/Non-Glaucoma/n0198.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0198.bmp" + ], + [ + "Training400/Non-Glaucoma/n0199.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0199.bmp" + ], + [ + "Training400/Non-Glaucoma/n0200.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0200.bmp" + ], + [ + "Training400/Non-Glaucoma/n0201.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0201.bmp" + ], + [ + "Training400/Non-Glaucoma/n0202.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0202.bmp" + ], + [ + "Training400/Non-Glaucoma/n0203.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0203.bmp" + ], + [ + "Training400/Non-Glaucoma/n0204.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0204.bmp" + ], + [ + "Training400/Non-Glaucoma/n0205.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0205.bmp" + ], + [ + "Training400/Non-Glaucoma/n0206.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0206.bmp" + ], + [ + "Training400/Non-Glaucoma/n0207.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0207.bmp" + ], + [ + "Training400/Non-Glaucoma/n0208.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0208.bmp" + ], + [ + "Training400/Non-Glaucoma/n0209.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0209.bmp" + ], + [ + "Training400/Non-Glaucoma/n0210.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0210.bmp" + ], + [ + "Training400/Non-Glaucoma/n0211.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0211.bmp" + ], + [ + "Training400/Non-Glaucoma/n0212.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0212.bmp" + ], + [ + "Training400/Non-Glaucoma/n0213.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0213.bmp" + ], + [ + "Training400/Non-Glaucoma/n0214.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0214.bmp" + ], + [ + "Training400/Non-Glaucoma/n0215.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0215.bmp" + ], + [ + "Training400/Non-Glaucoma/n0216.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0216.bmp" + ], + [ + "Training400/Non-Glaucoma/n0217.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0217.bmp" + ], + [ + "Training400/Non-Glaucoma/n0218.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0218.bmp" + ], + [ + "Training400/Non-Glaucoma/n0219.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0219.bmp" + ], + [ + "Training400/Non-Glaucoma/n0220.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0220.bmp" + ], + [ + "Training400/Non-Glaucoma/n0221.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0221.bmp" + ], + [ + "Training400/Non-Glaucoma/n0222.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0222.bmp" + ], + [ + "Training400/Non-Glaucoma/n0223.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0223.bmp" + ], + [ + "Training400/Non-Glaucoma/n0224.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0224.bmp" + ], + [ + "Training400/Non-Glaucoma/n0225.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0225.bmp" + ], + [ + "Training400/Non-Glaucoma/n0226.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0226.bmp" + ], + [ + "Training400/Non-Glaucoma/n0227.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0227.bmp" + ], + [ + "Training400/Non-Glaucoma/n0228.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0228.bmp" + ], + [ + "Training400/Non-Glaucoma/n0229.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0229.bmp" + ], + [ + "Training400/Non-Glaucoma/n0230.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0230.bmp" + ], + [ + "Training400/Non-Glaucoma/n0231.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0231.bmp" + ], + [ + "Training400/Non-Glaucoma/n0232.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0232.bmp" + ], + [ + "Training400/Non-Glaucoma/n0233.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0233.bmp" + ], + [ + "Training400/Non-Glaucoma/n0234.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0234.bmp" + ], + [ + "Training400/Non-Glaucoma/n0235.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0235.bmp" + ], + [ + "Training400/Non-Glaucoma/n0236.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0236.bmp" + ], + [ + "Training400/Non-Glaucoma/n0237.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0237.bmp" + ], + [ + "Training400/Non-Glaucoma/n0238.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0238.bmp" + ], + [ + "Training400/Non-Glaucoma/n0239.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0239.bmp" + ], + [ + "Training400/Non-Glaucoma/n0240.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0240.bmp" + ], + [ + "Training400/Non-Glaucoma/n0241.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0241.bmp" + ], + [ + "Training400/Non-Glaucoma/n0242.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0242.bmp" + ], + [ + "Training400/Non-Glaucoma/n0243.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0243.bmp" + ], + [ + "Training400/Non-Glaucoma/n0244.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0244.bmp" + ], + [ + "Training400/Non-Glaucoma/n0245.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0245.bmp" + ], + [ + "Training400/Non-Glaucoma/n0246.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0246.bmp" + ], + [ + "Training400/Non-Glaucoma/n0247.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0247.bmp" + ], + [ + "Training400/Non-Glaucoma/n0248.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0248.bmp" + ], + [ + "Training400/Non-Glaucoma/n0249.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0249.bmp" + ], + [ + "Training400/Non-Glaucoma/n0250.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0250.bmp" + ], + [ + "Training400/Non-Glaucoma/n0251.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0251.bmp" + ], + [ + "Training400/Non-Glaucoma/n0252.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0252.bmp" + ], + [ + "Training400/Non-Glaucoma/n0253.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0253.bmp" + ], + [ + "Training400/Non-Glaucoma/n0254.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0254.bmp" + ], + [ + "Training400/Non-Glaucoma/n0255.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0255.bmp" + ], + [ + "Training400/Non-Glaucoma/n0256.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0256.bmp" + ], + [ + "Training400/Non-Glaucoma/n0257.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0257.bmp" + ], + [ + "Training400/Non-Glaucoma/n0258.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0258.bmp" + ], + [ + "Training400/Non-Glaucoma/n0259.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0259.bmp" + ], + [ + "Training400/Non-Glaucoma/n0260.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0260.bmp" + ], + [ + "Training400/Non-Glaucoma/n0261.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0261.bmp" + ], + [ + "Training400/Non-Glaucoma/n0262.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0262.bmp" + ], + [ + "Training400/Non-Glaucoma/n0263.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0263.bmp" + ], + [ + "Training400/Non-Glaucoma/n0264.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0264.bmp" + ], + [ + "Training400/Non-Glaucoma/n0265.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0265.bmp" + ], + [ + "Training400/Non-Glaucoma/n0266.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0266.bmp" + ], + [ + "Training400/Non-Glaucoma/n0267.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0267.bmp" + ], + [ + "Training400/Non-Glaucoma/n0268.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0268.bmp" + ], + [ + "Training400/Non-Glaucoma/n0269.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0269.bmp" + ], + [ + "Training400/Non-Glaucoma/n0270.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0270.bmp" + ], + [ + "Training400/Non-Glaucoma/n0271.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0271.bmp" + ], + [ + "Training400/Non-Glaucoma/n0272.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0272.bmp" + ], + [ + "Training400/Non-Glaucoma/n0273.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0273.bmp" + ], + [ + "Training400/Non-Glaucoma/n0274.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0274.bmp" + ], + [ + "Training400/Non-Glaucoma/n0275.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0275.bmp" + ], + [ + "Training400/Non-Glaucoma/n0276.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0276.bmp" + ], + [ + "Training400/Non-Glaucoma/n0277.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0277.bmp" + ], + [ + "Training400/Non-Glaucoma/n0278.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0278.bmp" + ], + [ + "Training400/Non-Glaucoma/n0279.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0279.bmp" + ], + [ + "Training400/Non-Glaucoma/n0280.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0280.bmp" + ], + [ + "Training400/Non-Glaucoma/n0281.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0281.bmp" + ], + [ + "Training400/Non-Glaucoma/n0282.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0282.bmp" + ], + [ + "Training400/Non-Glaucoma/n0283.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0283.bmp" + ], + [ + "Training400/Non-Glaucoma/n0284.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0284.bmp" + ], + [ + "Training400/Non-Glaucoma/n0285.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0285.bmp" + ], + [ + "Training400/Non-Glaucoma/n0286.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0286.bmp" + ], + [ + "Training400/Non-Glaucoma/n0287.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0287.bmp" + ], + [ + "Training400/Non-Glaucoma/n0288.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0288.bmp" + ], + [ + "Training400/Non-Glaucoma/n0289.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0289.bmp" + ], + [ + "Training400/Non-Glaucoma/n0290.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0290.bmp" + ], + [ + "Training400/Non-Glaucoma/n0291.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0291.bmp" + ], + [ + "Training400/Non-Glaucoma/n0292.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0292.bmp" + ], + [ + "Training400/Non-Glaucoma/n0293.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0293.bmp" + ], + [ + "Training400/Non-Glaucoma/n0294.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0294.bmp" + ], + [ + "Training400/Non-Glaucoma/n0295.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0295.bmp" + ], + [ + "Training400/Non-Glaucoma/n0296.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0296.bmp" + ], + [ + "Training400/Non-Glaucoma/n0297.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0297.bmp" + ], + [ + "Training400/Non-Glaucoma/n0298.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0298.bmp" + ], + [ + "Training400/Non-Glaucoma/n0299.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0299.bmp" + ], + [ + "Training400/Non-Glaucoma/n0300.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0300.bmp" + ], + [ + "Training400/Non-Glaucoma/n0301.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0301.bmp" + ], + [ + "Training400/Non-Glaucoma/n0302.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0302.bmp" + ], + [ + "Training400/Non-Glaucoma/n0303.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0303.bmp" + ], + [ + "Training400/Non-Glaucoma/n0304.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0304.bmp" + ], + [ + "Training400/Non-Glaucoma/n0305.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0305.bmp" + ], + [ + "Training400/Non-Glaucoma/n0306.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0306.bmp" + ], + [ + "Training400/Non-Glaucoma/n0307.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0307.bmp" + ], + [ + "Training400/Non-Glaucoma/n0308.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0308.bmp" + ], + [ + "Training400/Non-Glaucoma/n0309.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0309.bmp" + ], + [ + "Training400/Non-Glaucoma/n0310.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0310.bmp" + ], + [ + "Training400/Non-Glaucoma/n0311.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0311.bmp" + ], + [ + "Training400/Non-Glaucoma/n0312.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0312.bmp" + ], + [ + "Training400/Non-Glaucoma/n0313.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0313.bmp" + ], + [ + "Training400/Non-Glaucoma/n0314.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0314.bmp" + ], + [ + "Training400/Non-Glaucoma/n0315.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0315.bmp" + ], + [ + "Training400/Non-Glaucoma/n0316.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0316.bmp" + ], + [ + "Training400/Non-Glaucoma/n0317.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0317.bmp" + ], + [ + "Training400/Non-Glaucoma/n0318.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0318.bmp" + ], + [ + "Training400/Non-Glaucoma/n0319.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0319.bmp" + ], + [ + "Training400/Non-Glaucoma/n0320.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0320.bmp" + ], + [ + "Training400/Non-Glaucoma/n0321.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0321.bmp" + ], + [ + "Training400/Non-Glaucoma/n0322.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0322.bmp" + ], + [ + "Training400/Non-Glaucoma/n0323.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0323.bmp" + ], + [ + "Training400/Non-Glaucoma/n0324.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0324.bmp" + ], + [ + "Training400/Non-Glaucoma/n0325.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0325.bmp" + ], + [ + "Training400/Non-Glaucoma/n0326.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0326.bmp" + ], + [ + "Training400/Non-Glaucoma/n0327.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0327.bmp" + ], + [ + "Training400/Non-Glaucoma/n0328.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0328.bmp" + ], + [ + "Training400/Non-Glaucoma/n0329.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0329.bmp" + ], + [ + "Training400/Non-Glaucoma/n0330.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0330.bmp" + ], + [ + "Training400/Non-Glaucoma/n0331.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0331.bmp" + ], + [ + "Training400/Non-Glaucoma/n0332.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0332.bmp" + ], + [ + "Training400/Non-Glaucoma/n0333.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0333.bmp" + ], + [ + "Training400/Non-Glaucoma/n0334.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0334.bmp" + ], + [ + "Training400/Non-Glaucoma/n0335.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0335.bmp" + ], + [ + "Training400/Non-Glaucoma/n0336.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0336.bmp" + ], + [ + "Training400/Non-Glaucoma/n0337.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0337.bmp" + ], + [ + "Training400/Non-Glaucoma/n0338.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0338.bmp" + ], + [ + "Training400/Non-Glaucoma/n0339.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0339.bmp" + ], + [ + "Training400/Non-Glaucoma/n0340.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0340.bmp" + ], + [ + "Training400/Non-Glaucoma/n0341.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0341.bmp" + ], + [ + "Training400/Non-Glaucoma/n0342.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0342.bmp" + ], + [ + "Training400/Non-Glaucoma/n0343.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0343.bmp" + ], + [ + "Training400/Non-Glaucoma/n0344.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0344.bmp" + ], + [ + "Training400/Non-Glaucoma/n0345.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0345.bmp" + ], + [ + "Training400/Non-Glaucoma/n0346.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0346.bmp" + ], + [ + "Training400/Non-Glaucoma/n0347.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0347.bmp" + ], + [ + "Training400/Non-Glaucoma/n0348.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0348.bmp" + ], + [ + "Training400/Non-Glaucoma/n0349.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0349.bmp" + ], + [ + "Training400/Non-Glaucoma/n0350.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0350.bmp" + ], + [ + "Training400/Non-Glaucoma/n0351.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0351.bmp" + ], + [ + "Training400/Non-Glaucoma/n0352.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0352.bmp" + ], + [ + "Training400/Non-Glaucoma/n0353.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0353.bmp" + ], + [ + "Training400/Non-Glaucoma/n0354.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0354.bmp" + ], + [ + "Training400/Non-Glaucoma/n0355.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0355.bmp" + ], + [ + "Training400/Non-Glaucoma/n0356.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0356.bmp" + ], + [ + "Training400/Non-Glaucoma/n0357.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0357.bmp" + ], + [ + "Training400/Non-Glaucoma/n0358.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0358.bmp" + ], + [ + "Training400/Non-Glaucoma/n0359.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0359.bmp" + ], + [ + "Training400/Non-Glaucoma/n0360.jpg", + "Annotation-Training400/Disc_Cup_Masks/Non-Glaucoma/n0360.bmp" + ] + ], + "validation": [ + [ + "REFUGE-Validation400/V0001.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0001.bmp" + ], + [ + "REFUGE-Validation400/V0002.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0002.bmp" + ], + [ + "REFUGE-Validation400/V0003.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0003.bmp" + ], + [ + "REFUGE-Validation400/V0004.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0004.bmp" + ], + [ + "REFUGE-Validation400/V0005.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0005.bmp" + ], + [ + "REFUGE-Validation400/V0006.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0006.bmp" + ], + [ + "REFUGE-Validation400/V0007.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0007.bmp" + ], + [ + "REFUGE-Validation400/V0008.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0008.bmp" + ], + [ + "REFUGE-Validation400/V0009.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0009.bmp" + ], + [ + "REFUGE-Validation400/V0010.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0010.bmp" + ], + [ + "REFUGE-Validation400/V0011.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0011.bmp" + ], + [ + "REFUGE-Validation400/V0012.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0012.bmp" + ], + [ + "REFUGE-Validation400/V0013.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0013.bmp" + ], + [ + "REFUGE-Validation400/V0014.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0014.bmp" + ], + [ + "REFUGE-Validation400/V0015.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0015.bmp" + ], + [ + "REFUGE-Validation400/V0016.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0016.bmp" + ], + [ + "REFUGE-Validation400/V0017.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0017.bmp" + ], + [ + "REFUGE-Validation400/V0018.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0018.bmp" + ], + [ + "REFUGE-Validation400/V0019.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0019.bmp" + ], + [ + "REFUGE-Validation400/V0020.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0020.bmp" + ], + [ + "REFUGE-Validation400/V0021.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0021.bmp" + ], + [ + "REFUGE-Validation400/V0022.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0022.bmp" + ], + [ + "REFUGE-Validation400/V0023.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0023.bmp" + ], + [ + "REFUGE-Validation400/V0024.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0024.bmp" + ], + [ + "REFUGE-Validation400/V0025.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0025.bmp" + ], + [ + "REFUGE-Validation400/V0026.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0026.bmp" + ], + [ + "REFUGE-Validation400/V0027.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0027.bmp" + ], + [ + "REFUGE-Validation400/V0028.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0028.bmp" + ], + [ + "REFUGE-Validation400/V0029.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0029.bmp" + ], + [ + "REFUGE-Validation400/V0030.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0030.bmp" + ], + [ + "REFUGE-Validation400/V0031.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0031.bmp" + ], + [ + "REFUGE-Validation400/V0032.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0032.bmp" + ], + [ + "REFUGE-Validation400/V0033.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0033.bmp" + ], + [ + "REFUGE-Validation400/V0034.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0034.bmp" + ], + [ + "REFUGE-Validation400/V0035.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0035.bmp" + ], + [ + "REFUGE-Validation400/V0036.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0036.bmp" + ], + [ + "REFUGE-Validation400/V0037.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0037.bmp" + ], + [ + "REFUGE-Validation400/V0038.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0038.bmp" + ], + [ + "REFUGE-Validation400/V0039.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0039.bmp" + ], + [ + "REFUGE-Validation400/V0040.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0040.bmp" + ], + [ + "REFUGE-Validation400/V0041.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0041.bmp" + ], + [ + "REFUGE-Validation400/V0042.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0042.bmp" + ], + [ + "REFUGE-Validation400/V0043.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0043.bmp" + ], + [ + "REFUGE-Validation400/V0044.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0044.bmp" + ], + [ + "REFUGE-Validation400/V0045.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0045.bmp" + ], + [ + "REFUGE-Validation400/V0046.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0046.bmp" + ], + [ + "REFUGE-Validation400/V0047.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0047.bmp" + ], + [ + "REFUGE-Validation400/V0048.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0048.bmp" + ], + [ + "REFUGE-Validation400/V0049.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0049.bmp" + ], + [ + "REFUGE-Validation400/V0050.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0050.bmp" + ], + [ + "REFUGE-Validation400/V0051.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0051.bmp" + ], + [ + "REFUGE-Validation400/V0052.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0052.bmp" + ], + [ + "REFUGE-Validation400/V0053.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0053.bmp" + ], + [ + "REFUGE-Validation400/V0054.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0054.bmp" + ], + [ + "REFUGE-Validation400/V0055.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0055.bmp" + ], + [ + "REFUGE-Validation400/V0056.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0056.bmp" + ], + [ + "REFUGE-Validation400/V0057.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0057.bmp" + ], + [ + "REFUGE-Validation400/V0058.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0058.bmp" + ], + [ + "REFUGE-Validation400/V0059.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0059.bmp" + ], + [ + "REFUGE-Validation400/V0060.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0060.bmp" + ], + [ + "REFUGE-Validation400/V0061.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0061.bmp" + ], + [ + "REFUGE-Validation400/V0062.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0062.bmp" + ], + [ + "REFUGE-Validation400/V0063.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0063.bmp" + ], + [ + "REFUGE-Validation400/V0064.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0064.bmp" + ], + [ + "REFUGE-Validation400/V0065.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0065.bmp" + ], + [ + "REFUGE-Validation400/V0066.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0066.bmp" + ], + [ + "REFUGE-Validation400/V0067.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0067.bmp" + ], + [ + "REFUGE-Validation400/V0068.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0068.bmp" + ], + [ + "REFUGE-Validation400/V0069.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0069.bmp" + ], + [ + "REFUGE-Validation400/V0070.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0070.bmp" + ], + [ + "REFUGE-Validation400/V0071.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0071.bmp" + ], + [ + "REFUGE-Validation400/V0072.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0072.bmp" + ], + [ + "REFUGE-Validation400/V0073.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0073.bmp" + ], + [ + "REFUGE-Validation400/V0074.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0074.bmp" + ], + [ + "REFUGE-Validation400/V0075.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0075.bmp" + ], + [ + "REFUGE-Validation400/V0076.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0076.bmp" + ], + [ + "REFUGE-Validation400/V0077.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0077.bmp" + ], + [ + "REFUGE-Validation400/V0078.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0078.bmp" + ], + [ + "REFUGE-Validation400/V0079.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0079.bmp" + ], + [ + "REFUGE-Validation400/V0080.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0080.bmp" + ], + [ + "REFUGE-Validation400/V0081.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0081.bmp" + ], + [ + "REFUGE-Validation400/V0082.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0082.bmp" + ], + [ + "REFUGE-Validation400/V0083.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0083.bmp" + ], + [ + "REFUGE-Validation400/V0084.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0084.bmp" + ], + [ + "REFUGE-Validation400/V0085.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0085.bmp" + ], + [ + "REFUGE-Validation400/V0086.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0086.bmp" + ], + [ + "REFUGE-Validation400/V0087.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0087.bmp" + ], + [ + "REFUGE-Validation400/V0088.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0088.bmp" + ], + [ + "REFUGE-Validation400/V0089.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0089.bmp" + ], + [ + "REFUGE-Validation400/V0090.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0090.bmp" + ], + [ + "REFUGE-Validation400/V0091.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0091.bmp" + ], + [ + "REFUGE-Validation400/V0092.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0092.bmp" + ], + [ + "REFUGE-Validation400/V0093.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0093.bmp" + ], + [ + "REFUGE-Validation400/V0094.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0094.bmp" + ], + [ + "REFUGE-Validation400/V0095.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0095.bmp" + ], + [ + "REFUGE-Validation400/V0096.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0096.bmp" + ], + [ + "REFUGE-Validation400/V0097.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0097.bmp" + ], + [ + "REFUGE-Validation400/V0098.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0098.bmp" + ], + [ + "REFUGE-Validation400/V0099.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0099.bmp" + ], + [ + "REFUGE-Validation400/V0100.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0100.bmp" + ], + [ + "REFUGE-Validation400/V0101.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0101.bmp" + ], + [ + "REFUGE-Validation400/V0102.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0102.bmp" + ], + [ + "REFUGE-Validation400/V0103.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0103.bmp" + ], + [ + "REFUGE-Validation400/V0104.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0104.bmp" + ], + [ + "REFUGE-Validation400/V0105.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0105.bmp" + ], + [ + "REFUGE-Validation400/V0106.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0106.bmp" + ], + [ + "REFUGE-Validation400/V0107.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0107.bmp" + ], + [ + "REFUGE-Validation400/V0108.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0108.bmp" + ], + [ + "REFUGE-Validation400/V0109.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0109.bmp" + ], + [ + "REFUGE-Validation400/V0110.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0110.bmp" + ], + [ + "REFUGE-Validation400/V0111.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0111.bmp" + ], + [ + "REFUGE-Validation400/V0112.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0112.bmp" + ], + [ + "REFUGE-Validation400/V0113.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0113.bmp" + ], + [ + "REFUGE-Validation400/V0114.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0114.bmp" + ], + [ + "REFUGE-Validation400/V0115.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0115.bmp" + ], + [ + "REFUGE-Validation400/V0116.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0116.bmp" + ], + [ + "REFUGE-Validation400/V0117.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0117.bmp" + ], + [ + "REFUGE-Validation400/V0118.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0118.bmp" + ], + [ + "REFUGE-Validation400/V0119.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0119.bmp" + ], + [ + "REFUGE-Validation400/V0120.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0120.bmp" + ], + [ + "REFUGE-Validation400/V0121.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0121.bmp" + ], + [ + "REFUGE-Validation400/V0122.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0122.bmp" + ], + [ + "REFUGE-Validation400/V0123.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0123.bmp" + ], + [ + "REFUGE-Validation400/V0124.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0124.bmp" + ], + [ + "REFUGE-Validation400/V0125.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0125.bmp" + ], + [ + "REFUGE-Validation400/V0126.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0126.bmp" + ], + [ + "REFUGE-Validation400/V0127.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0127.bmp" + ], + [ + "REFUGE-Validation400/V0128.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0128.bmp" + ], + [ + "REFUGE-Validation400/V0129.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0129.bmp" + ], + [ + "REFUGE-Validation400/V0130.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0130.bmp" + ], + [ + "REFUGE-Validation400/V0131.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0131.bmp" + ], + [ + "REFUGE-Validation400/V0132.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0132.bmp" + ], + [ + "REFUGE-Validation400/V0133.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0133.bmp" + ], + [ + "REFUGE-Validation400/V0134.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0134.bmp" + ], + [ + "REFUGE-Validation400/V0135.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0135.bmp" + ], + [ + "REFUGE-Validation400/V0136.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0136.bmp" + ], + [ + "REFUGE-Validation400/V0137.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0137.bmp" + ], + [ + "REFUGE-Validation400/V0138.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0138.bmp" + ], + [ + "REFUGE-Validation400/V0139.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0139.bmp" + ], + [ + "REFUGE-Validation400/V0140.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0140.bmp" + ], + [ + "REFUGE-Validation400/V0141.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0141.bmp" + ], + [ + "REFUGE-Validation400/V0142.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0142.bmp" + ], + [ + "REFUGE-Validation400/V0143.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0143.bmp" + ], + [ + "REFUGE-Validation400/V0144.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0144.bmp" + ], + [ + "REFUGE-Validation400/V0145.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0145.bmp" + ], + [ + "REFUGE-Validation400/V0146.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0146.bmp" + ], + [ + "REFUGE-Validation400/V0147.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0147.bmp" + ], + [ + "REFUGE-Validation400/V0148.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0148.bmp" + ], + [ + "REFUGE-Validation400/V0149.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0149.bmp" + ], + [ + "REFUGE-Validation400/V0150.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0150.bmp" + ], + [ + "REFUGE-Validation400/V0151.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0151.bmp" + ], + [ + "REFUGE-Validation400/V0152.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0152.bmp" + ], + [ + "REFUGE-Validation400/V0153.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0153.bmp" + ], + [ + "REFUGE-Validation400/V0154.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0154.bmp" + ], + [ + "REFUGE-Validation400/V0155.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0155.bmp" + ], + [ + "REFUGE-Validation400/V0156.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0156.bmp" + ], + [ + "REFUGE-Validation400/V0157.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0157.bmp" + ], + [ + "REFUGE-Validation400/V0158.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0158.bmp" + ], + [ + "REFUGE-Validation400/V0159.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0159.bmp" + ], + [ + "REFUGE-Validation400/V0160.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0160.bmp" + ], + [ + "REFUGE-Validation400/V0161.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0161.bmp" + ], + [ + "REFUGE-Validation400/V0162.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0162.bmp" + ], + [ + "REFUGE-Validation400/V0163.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0163.bmp" + ], + [ + "REFUGE-Validation400/V0164.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0164.bmp" + ], + [ + "REFUGE-Validation400/V0165.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0165.bmp" + ], + [ + "REFUGE-Validation400/V0166.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0166.bmp" + ], + [ + "REFUGE-Validation400/V0167.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0167.bmp" + ], + [ + "REFUGE-Validation400/V0168.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0168.bmp" + ], + [ + "REFUGE-Validation400/V0169.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0169.bmp" + ], + [ + "REFUGE-Validation400/V0170.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0170.bmp" + ], + [ + "REFUGE-Validation400/V0171.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0171.bmp" + ], + [ + "REFUGE-Validation400/V0172.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0172.bmp" + ], + [ + "REFUGE-Validation400/V0173.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0173.bmp" + ], + [ + "REFUGE-Validation400/V0174.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0174.bmp" + ], + [ + "REFUGE-Validation400/V0175.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0175.bmp" + ], + [ + "REFUGE-Validation400/V0176.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0176.bmp" + ], + [ + "REFUGE-Validation400/V0177.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0177.bmp" + ], + [ + "REFUGE-Validation400/V0178.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0178.bmp" + ], + [ + "REFUGE-Validation400/V0179.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0179.bmp" + ], + [ + "REFUGE-Validation400/V0180.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0180.bmp" + ], + [ + "REFUGE-Validation400/V0181.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0181.bmp" + ], + [ + "REFUGE-Validation400/V0182.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0182.bmp" + ], + [ + "REFUGE-Validation400/V0183.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0183.bmp" + ], + [ + "REFUGE-Validation400/V0184.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0184.bmp" + ], + [ + "REFUGE-Validation400/V0185.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0185.bmp" + ], + [ + "REFUGE-Validation400/V0186.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0186.bmp" + ], + [ + "REFUGE-Validation400/V0187.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0187.bmp" + ], + [ + "REFUGE-Validation400/V0188.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0188.bmp" + ], + [ + "REFUGE-Validation400/V0189.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0189.bmp" + ], + [ + "REFUGE-Validation400/V0190.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0190.bmp" + ], + [ + "REFUGE-Validation400/V0191.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0191.bmp" + ], + [ + "REFUGE-Validation400/V0192.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0192.bmp" + ], + [ + "REFUGE-Validation400/V0193.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0193.bmp" + ], + [ + "REFUGE-Validation400/V0194.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0194.bmp" + ], + [ + "REFUGE-Validation400/V0195.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0195.bmp" + ], + [ + "REFUGE-Validation400/V0196.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0196.bmp" + ], + [ + "REFUGE-Validation400/V0197.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0197.bmp" + ], + [ + "REFUGE-Validation400/V0198.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0198.bmp" + ], + [ + "REFUGE-Validation400/V0199.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0199.bmp" + ], + [ + "REFUGE-Validation400/V0200.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0200.bmp" + ], + [ + "REFUGE-Validation400/V0201.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0201.bmp" + ], + [ + "REFUGE-Validation400/V0202.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0202.bmp" + ], + [ + "REFUGE-Validation400/V0203.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0203.bmp" + ], + [ + "REFUGE-Validation400/V0204.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0204.bmp" + ], + [ + "REFUGE-Validation400/V0205.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0205.bmp" + ], + [ + "REFUGE-Validation400/V0206.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0206.bmp" + ], + [ + "REFUGE-Validation400/V0207.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0207.bmp" + ], + [ + "REFUGE-Validation400/V0208.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0208.bmp" + ], + [ + "REFUGE-Validation400/V0209.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0209.bmp" + ], + [ + "REFUGE-Validation400/V0210.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0210.bmp" + ], + [ + "REFUGE-Validation400/V0211.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0211.bmp" + ], + [ + "REFUGE-Validation400/V0212.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0212.bmp" + ], + [ + "REFUGE-Validation400/V0213.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0213.bmp" + ], + [ + "REFUGE-Validation400/V0214.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0214.bmp" + ], + [ + "REFUGE-Validation400/V0215.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0215.bmp" + ], + [ + "REFUGE-Validation400/V0216.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0216.bmp" + ], + [ + "REFUGE-Validation400/V0217.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0217.bmp" + ], + [ + "REFUGE-Validation400/V0218.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0218.bmp" + ], + [ + "REFUGE-Validation400/V0219.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0219.bmp" + ], + [ + "REFUGE-Validation400/V0220.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0220.bmp" + ], + [ + "REFUGE-Validation400/V0221.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0221.bmp" + ], + [ + "REFUGE-Validation400/V0222.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0222.bmp" + ], + [ + "REFUGE-Validation400/V0223.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0223.bmp" + ], + [ + "REFUGE-Validation400/V0224.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0224.bmp" + ], + [ + "REFUGE-Validation400/V0225.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0225.bmp" + ], + [ + "REFUGE-Validation400/V0226.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0226.bmp" + ], + [ + "REFUGE-Validation400/V0227.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0227.bmp" + ], + [ + "REFUGE-Validation400/V0228.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0228.bmp" + ], + [ + "REFUGE-Validation400/V0229.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0229.bmp" + ], + [ + "REFUGE-Validation400/V0230.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0230.bmp" + ], + [ + "REFUGE-Validation400/V0231.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0231.bmp" + ], + [ + "REFUGE-Validation400/V0232.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0232.bmp" + ], + [ + "REFUGE-Validation400/V0233.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0233.bmp" + ], + [ + "REFUGE-Validation400/V0234.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0234.bmp" + ], + [ + "REFUGE-Validation400/V0235.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0235.bmp" + ], + [ + "REFUGE-Validation400/V0236.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0236.bmp" + ], + [ + "REFUGE-Validation400/V0237.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0237.bmp" + ], + [ + "REFUGE-Validation400/V0238.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0238.bmp" + ], + [ + "REFUGE-Validation400/V0239.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0239.bmp" + ], + [ + "REFUGE-Validation400/V0240.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0240.bmp" + ], + [ + "REFUGE-Validation400/V0241.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0241.bmp" + ], + [ + "REFUGE-Validation400/V0242.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0242.bmp" + ], + [ + "REFUGE-Validation400/V0243.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0243.bmp" + ], + [ + "REFUGE-Validation400/V0244.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0244.bmp" + ], + [ + "REFUGE-Validation400/V0245.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0245.bmp" + ], + [ + "REFUGE-Validation400/V0246.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0246.bmp" + ], + [ + "REFUGE-Validation400/V0247.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0247.bmp" + ], + [ + "REFUGE-Validation400/V0248.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0248.bmp" + ], + [ + "REFUGE-Validation400/V0249.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0249.bmp" + ], + [ + "REFUGE-Validation400/V0250.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0250.bmp" + ], + [ + "REFUGE-Validation400/V0251.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0251.bmp" + ], + [ + "REFUGE-Validation400/V0252.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0252.bmp" + ], + [ + "REFUGE-Validation400/V0253.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0253.bmp" + ], + [ + "REFUGE-Validation400/V0254.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0254.bmp" + ], + [ + "REFUGE-Validation400/V0255.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0255.bmp" + ], + [ + "REFUGE-Validation400/V0256.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0256.bmp" + ], + [ + "REFUGE-Validation400/V0257.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0257.bmp" + ], + [ + "REFUGE-Validation400/V0258.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0258.bmp" + ], + [ + "REFUGE-Validation400/V0259.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0259.bmp" + ], + [ + "REFUGE-Validation400/V0260.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0260.bmp" + ], + [ + "REFUGE-Validation400/V0261.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0261.bmp" + ], + [ + "REFUGE-Validation400/V0262.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0262.bmp" + ], + [ + "REFUGE-Validation400/V0263.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0263.bmp" + ], + [ + "REFUGE-Validation400/V0264.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0264.bmp" + ], + [ + "REFUGE-Validation400/V0265.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0265.bmp" + ], + [ + "REFUGE-Validation400/V0266.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0266.bmp" + ], + [ + "REFUGE-Validation400/V0267.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0267.bmp" + ], + [ + "REFUGE-Validation400/V0268.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0268.bmp" + ], + [ + "REFUGE-Validation400/V0269.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0269.bmp" + ], + [ + "REFUGE-Validation400/V0270.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0270.bmp" + ], + [ + "REFUGE-Validation400/V0271.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0271.bmp" + ], + [ + "REFUGE-Validation400/V0272.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0272.bmp" + ], + [ + "REFUGE-Validation400/V0273.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0273.bmp" + ], + [ + "REFUGE-Validation400/V0274.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0274.bmp" + ], + [ + "REFUGE-Validation400/V0275.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0275.bmp" + ], + [ + "REFUGE-Validation400/V0276.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0276.bmp" + ], + [ + "REFUGE-Validation400/V0277.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0277.bmp" + ], + [ + "REFUGE-Validation400/V0278.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0278.bmp" + ], + [ + "REFUGE-Validation400/V0279.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0279.bmp" + ], + [ + "REFUGE-Validation400/V0280.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0280.bmp" + ], + [ + "REFUGE-Validation400/V0281.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0281.bmp" + ], + [ + "REFUGE-Validation400/V0282.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0282.bmp" + ], + [ + "REFUGE-Validation400/V0283.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0283.bmp" + ], + [ + "REFUGE-Validation400/V0284.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0284.bmp" + ], + [ + "REFUGE-Validation400/V0285.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0285.bmp" + ], + [ + "REFUGE-Validation400/V0286.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0286.bmp" + ], + [ + "REFUGE-Validation400/V0287.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0287.bmp" + ], + [ + "REFUGE-Validation400/V0288.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0288.bmp" + ], + [ + "REFUGE-Validation400/V0289.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0289.bmp" + ], + [ + "REFUGE-Validation400/V0290.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0290.bmp" + ], + [ + "REFUGE-Validation400/V0291.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0291.bmp" + ], + [ + "REFUGE-Validation400/V0292.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0292.bmp" + ], + [ + "REFUGE-Validation400/V0293.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0293.bmp" + ], + [ + "REFUGE-Validation400/V0294.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0294.bmp" + ], + [ + "REFUGE-Validation400/V0295.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0295.bmp" + ], + [ + "REFUGE-Validation400/V0296.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0296.bmp" + ], + [ + "REFUGE-Validation400/V0297.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0297.bmp" + ], + [ + "REFUGE-Validation400/V0298.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0298.bmp" + ], + [ + "REFUGE-Validation400/V0299.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0299.bmp" + ], + [ + "REFUGE-Validation400/V0300.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0300.bmp" + ], + [ + "REFUGE-Validation400/V0301.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0301.bmp" + ], + [ + "REFUGE-Validation400/V0302.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0302.bmp" + ], + [ + "REFUGE-Validation400/V0303.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0303.bmp" + ], + [ + "REFUGE-Validation400/V0304.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0304.bmp" + ], + [ + "REFUGE-Validation400/V0305.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0305.bmp" + ], + [ + "REFUGE-Validation400/V0306.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0306.bmp" + ], + [ + "REFUGE-Validation400/V0307.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0307.bmp" + ], + [ + "REFUGE-Validation400/V0308.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0308.bmp" + ], + [ + "REFUGE-Validation400/V0309.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0309.bmp" + ], + [ + "REFUGE-Validation400/V0310.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0310.bmp" + ], + [ + "REFUGE-Validation400/V0311.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0311.bmp" + ], + [ + "REFUGE-Validation400/V0312.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0312.bmp" + ], + [ + "REFUGE-Validation400/V0313.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0313.bmp" + ], + [ + "REFUGE-Validation400/V0314.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0314.bmp" + ], + [ + "REFUGE-Validation400/V0315.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0315.bmp" + ], + [ + "REFUGE-Validation400/V0316.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0316.bmp" + ], + [ + "REFUGE-Validation400/V0317.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0317.bmp" + ], + [ + "REFUGE-Validation400/V0318.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0318.bmp" + ], + [ + "REFUGE-Validation400/V0319.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0319.bmp" + ], + [ + "REFUGE-Validation400/V0320.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0320.bmp" + ], + [ + "REFUGE-Validation400/V0321.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0321.bmp" + ], + [ + "REFUGE-Validation400/V0322.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0322.bmp" + ], + [ + "REFUGE-Validation400/V0323.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0323.bmp" + ], + [ + "REFUGE-Validation400/V0324.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0324.bmp" + ], + [ + "REFUGE-Validation400/V0325.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0325.bmp" + ], + [ + "REFUGE-Validation400/V0326.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0326.bmp" + ], + [ + "REFUGE-Validation400/V0327.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0327.bmp" + ], + [ + "REFUGE-Validation400/V0328.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0328.bmp" + ], + [ + "REFUGE-Validation400/V0329.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0329.bmp" + ], + [ + "REFUGE-Validation400/V0330.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0330.bmp" + ], + [ + "REFUGE-Validation400/V0331.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0331.bmp" + ], + [ + "REFUGE-Validation400/V0332.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0332.bmp" + ], + [ + "REFUGE-Validation400/V0333.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0333.bmp" + ], + [ + "REFUGE-Validation400/V0334.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0334.bmp" + ], + [ + "REFUGE-Validation400/V0335.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0335.bmp" + ], + [ + "REFUGE-Validation400/V0336.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0336.bmp" + ], + [ + "REFUGE-Validation400/V0337.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0337.bmp" + ], + [ + "REFUGE-Validation400/V0338.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0338.bmp" + ], + [ + "REFUGE-Validation400/V0339.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0339.bmp" + ], + [ + "REFUGE-Validation400/V0340.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0340.bmp" + ], + [ + "REFUGE-Validation400/V0341.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0341.bmp" + ], + [ + "REFUGE-Validation400/V0342.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0342.bmp" + ], + [ + "REFUGE-Validation400/V0343.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0343.bmp" + ], + [ + "REFUGE-Validation400/V0344.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0344.bmp" + ], + [ + "REFUGE-Validation400/V0345.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0345.bmp" + ], + [ + "REFUGE-Validation400/V0346.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0346.bmp" + ], + [ + "REFUGE-Validation400/V0347.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0347.bmp" + ], + [ + "REFUGE-Validation400/V0348.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0348.bmp" + ], + [ + "REFUGE-Validation400/V0349.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0349.bmp" + ], + [ + "REFUGE-Validation400/V0350.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0350.bmp" + ], + [ + "REFUGE-Validation400/V0351.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0351.bmp" + ], + [ + "REFUGE-Validation400/V0352.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0352.bmp" + ], + [ + "REFUGE-Validation400/V0353.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0353.bmp" + ], + [ + "REFUGE-Validation400/V0354.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0354.bmp" + ], + [ + "REFUGE-Validation400/V0355.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0355.bmp" + ], + [ + "REFUGE-Validation400/V0356.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0356.bmp" + ], + [ + "REFUGE-Validation400/V0357.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0357.bmp" + ], + [ + "REFUGE-Validation400/V0358.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0358.bmp" + ], + [ + "REFUGE-Validation400/V0359.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0359.bmp" + ], + [ + "REFUGE-Validation400/V0360.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0360.bmp" + ], + [ + "REFUGE-Validation400/V0361.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0361.bmp" + ], + [ + "REFUGE-Validation400/V0362.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0362.bmp" + ], + [ + "REFUGE-Validation400/V0363.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0363.bmp" + ], + [ + "REFUGE-Validation400/V0364.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0364.bmp" + ], + [ + "REFUGE-Validation400/V0365.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0365.bmp" + ], + [ + "REFUGE-Validation400/V0366.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0366.bmp" + ], + [ + "REFUGE-Validation400/V0367.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0367.bmp" + ], + [ + "REFUGE-Validation400/V0368.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0368.bmp" + ], + [ + "REFUGE-Validation400/V0369.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0369.bmp" + ], + [ + "REFUGE-Validation400/V0370.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0370.bmp" + ], + [ + "REFUGE-Validation400/V0371.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0371.bmp" + ], + [ + "REFUGE-Validation400/V0372.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0372.bmp" + ], + [ + "REFUGE-Validation400/V0373.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0373.bmp" + ], + [ + "REFUGE-Validation400/V0374.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0374.bmp" + ], + [ + "REFUGE-Validation400/V0375.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0375.bmp" + ], + [ + "REFUGE-Validation400/V0376.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0376.bmp" + ], + [ + "REFUGE-Validation400/V0377.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0377.bmp" + ], + [ + "REFUGE-Validation400/V0378.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0378.bmp" + ], + [ + "REFUGE-Validation400/V0379.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0379.bmp" + ], + [ + "REFUGE-Validation400/V0380.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0380.bmp" + ], + [ + "REFUGE-Validation400/V0381.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0381.bmp" + ], + [ + "REFUGE-Validation400/V0382.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0382.bmp" + ], + [ + "REFUGE-Validation400/V0383.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0383.bmp" + ], + [ + "REFUGE-Validation400/V0384.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0384.bmp" + ], + [ + "REFUGE-Validation400/V0385.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0385.bmp" + ], + [ + "REFUGE-Validation400/V0386.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0386.bmp" + ], + [ + "REFUGE-Validation400/V0387.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0387.bmp" + ], + [ + "REFUGE-Validation400/V0388.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0388.bmp" + ], + [ + "REFUGE-Validation400/V0389.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0389.bmp" + ], + [ + "REFUGE-Validation400/V0390.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0390.bmp" + ], + [ + "REFUGE-Validation400/V0391.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0391.bmp" + ], + [ + "REFUGE-Validation400/V0392.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0392.bmp" + ], + [ + "REFUGE-Validation400/V0393.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0393.bmp" + ], + [ + "REFUGE-Validation400/V0394.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0394.bmp" + ], + [ + "REFUGE-Validation400/V0395.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0395.bmp" + ], + [ + "REFUGE-Validation400/V0396.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0396.bmp" + ], + [ + "REFUGE-Validation400/V0397.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0397.bmp" + ], + [ + "REFUGE-Validation400/V0398.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0398.bmp" + ], + [ + "REFUGE-Validation400/V0399.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0399.bmp" + ], + [ + "REFUGE-Validation400/V0400.jpg", + "REFUGE-Validation400-GT/Disc_Cup_Masks/V0400.bmp" + ] + ], + "test": [ + [ + "Test400/T0001.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0001.bmp" + ], + [ + "Test400/T0002.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0002.bmp" + ], + [ + "Test400/T0003.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0003.bmp" + ], + [ + "Test400/T0004.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0004.bmp" + ], + [ + "Test400/T0005.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0005.bmp" + ], + [ + "Test400/T0006.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0006.bmp" + ], + [ + "Test400/T0007.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0007.bmp" + ], + [ + "Test400/T0008.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0008.bmp" + ], + [ + "Test400/T0009.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0009.bmp" + ], + [ + "Test400/T0010.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0010.bmp" + ], + [ + "Test400/T0011.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0011.bmp" + ], + [ + "Test400/T0012.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0012.bmp" + ], + [ + "Test400/T0013.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0013.bmp" + ], + [ + "Test400/T0014.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0014.bmp" + ], + [ + "Test400/T0015.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0015.bmp" + ], + [ + "Test400/T0016.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0016.bmp" + ], + [ + "Test400/T0017.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0017.bmp" + ], + [ + "Test400/T0018.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0018.bmp" + ], + [ + "Test400/T0019.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0019.bmp" + ], + [ + "Test400/T0020.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0020.bmp" + ], + [ + "Test400/T0021.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0021.bmp" + ], + [ + "Test400/T0022.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0022.bmp" + ], + [ + "Test400/T0023.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0023.bmp" + ], + [ + "Test400/T0024.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0024.bmp" + ], + [ + "Test400/T0025.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0025.bmp" + ], + [ + "Test400/T0026.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0026.bmp" + ], + [ + "Test400/T0027.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0027.bmp" + ], + [ + "Test400/T0028.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0028.bmp" + ], + [ + "Test400/T0029.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0029.bmp" + ], + [ + "Test400/T0030.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0030.bmp" + ], + [ + "Test400/T0031.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0031.bmp" + ], + [ + "Test400/T0032.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0032.bmp" + ], + [ + "Test400/T0033.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0033.bmp" + ], + [ + "Test400/T0034.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0034.bmp" + ], + [ + "Test400/T0035.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0035.bmp" + ], + [ + "Test400/T0036.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0036.bmp" + ], + [ + "Test400/T0037.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0037.bmp" + ], + [ + "Test400/T0038.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0038.bmp" + ], + [ + "Test400/T0039.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0039.bmp" + ], + [ + "Test400/T0040.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0040.bmp" + ], + [ + "Test400/T0041.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0041.bmp" + ], + [ + "Test400/T0042.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0042.bmp" + ], + [ + "Test400/T0043.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0043.bmp" + ], + [ + "Test400/T0044.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0044.bmp" + ], + [ + "Test400/T0045.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0045.bmp" + ], + [ + "Test400/T0046.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0046.bmp" + ], + [ + "Test400/T0047.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0047.bmp" + ], + [ + "Test400/T0048.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0048.bmp" + ], + [ + "Test400/T0049.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0049.bmp" + ], + [ + "Test400/T0050.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0050.bmp" + ], + [ + "Test400/T0051.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0051.bmp" + ], + [ + "Test400/T0052.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0052.bmp" + ], + [ + "Test400/T0053.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0053.bmp" + ], + [ + "Test400/T0054.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0054.bmp" + ], + [ + "Test400/T0055.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0055.bmp" + ], + [ + "Test400/T0056.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0056.bmp" + ], + [ + "Test400/T0057.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0057.bmp" + ], + [ + "Test400/T0058.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0058.bmp" + ], + [ + "Test400/T0059.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0059.bmp" + ], + [ + "Test400/T0060.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0060.bmp" + ], + [ + "Test400/T0061.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0061.bmp" + ], + [ + "Test400/T0062.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0062.bmp" + ], + [ + "Test400/T0063.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0063.bmp" + ], + [ + "Test400/T0064.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0064.bmp" + ], + [ + "Test400/T0065.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0065.bmp" + ], + [ + "Test400/T0066.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0066.bmp" + ], + [ + "Test400/T0067.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0067.bmp" + ], + [ + "Test400/T0068.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0068.bmp" + ], + [ + "Test400/T0069.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0069.bmp" + ], + [ + "Test400/T0070.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0070.bmp" + ], + [ + "Test400/T0071.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0071.bmp" + ], + [ + "Test400/T0072.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0072.bmp" + ], + [ + "Test400/T0073.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0073.bmp" + ], + [ + "Test400/T0074.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0074.bmp" + ], + [ + "Test400/T0075.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0075.bmp" + ], + [ + "Test400/T0076.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0076.bmp" + ], + [ + "Test400/T0077.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0077.bmp" + ], + [ + "Test400/T0078.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0078.bmp" + ], + [ + "Test400/T0079.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0079.bmp" + ], + [ + "Test400/T0080.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0080.bmp" + ], + [ + "Test400/T0081.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0081.bmp" + ], + [ + "Test400/T0082.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0082.bmp" + ], + [ + "Test400/T0083.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0083.bmp" + ], + [ + "Test400/T0084.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0084.bmp" + ], + [ + "Test400/T0085.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0085.bmp" + ], + [ + "Test400/T0086.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0086.bmp" + ], + [ + "Test400/T0087.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0087.bmp" + ], + [ + "Test400/T0088.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0088.bmp" + ], + [ + "Test400/T0089.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0089.bmp" + ], + [ + "Test400/T0090.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0090.bmp" + ], + [ + "Test400/T0091.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0091.bmp" + ], + [ + "Test400/T0092.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0092.bmp" + ], + [ + "Test400/T0093.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0093.bmp" + ], + [ + "Test400/T0094.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0094.bmp" + ], + [ + "Test400/T0095.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0095.bmp" + ], + [ + "Test400/T0096.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0096.bmp" + ], + [ + "Test400/T0097.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0097.bmp" + ], + [ + "Test400/T0098.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0098.bmp" + ], + [ + "Test400/T0099.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0099.bmp" + ], + [ + "Test400/T0100.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0100.bmp" + ], + [ + "Test400/T0101.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0101.bmp" + ], + [ + "Test400/T0102.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0102.bmp" + ], + [ + "Test400/T0103.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0103.bmp" + ], + [ + "Test400/T0104.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0104.bmp" + ], + [ + "Test400/T0105.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0105.bmp" + ], + [ + "Test400/T0106.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0106.bmp" + ], + [ + "Test400/T0107.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0107.bmp" + ], + [ + "Test400/T0108.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0108.bmp" + ], + [ + "Test400/T0109.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0109.bmp" + ], + [ + "Test400/T0110.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0110.bmp" + ], + [ + "Test400/T0111.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0111.bmp" + ], + [ + "Test400/T0112.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0112.bmp" + ], + [ + "Test400/T0113.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0113.bmp" + ], + [ + "Test400/T0114.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0114.bmp" + ], + [ + "Test400/T0115.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0115.bmp" + ], + [ + "Test400/T0116.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0116.bmp" + ], + [ + "Test400/T0117.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0117.bmp" + ], + [ + "Test400/T0118.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0118.bmp" + ], + [ + "Test400/T0119.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0119.bmp" + ], + [ + "Test400/T0120.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0120.bmp" + ], + [ + "Test400/T0121.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0121.bmp" + ], + [ + "Test400/T0122.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0122.bmp" + ], + [ + "Test400/T0123.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0123.bmp" + ], + [ + "Test400/T0124.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0124.bmp" + ], + [ + "Test400/T0125.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0125.bmp" + ], + [ + "Test400/T0126.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0126.bmp" + ], + [ + "Test400/T0127.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0127.bmp" + ], + [ + "Test400/T0128.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0128.bmp" + ], + [ + "Test400/T0129.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0129.bmp" + ], + [ + "Test400/T0130.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0130.bmp" + ], + [ + "Test400/T0131.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0131.bmp" + ], + [ + "Test400/T0132.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0132.bmp" + ], + [ + "Test400/T0133.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0133.bmp" + ], + [ + "Test400/T0134.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0134.bmp" + ], + [ + "Test400/T0135.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0135.bmp" + ], + [ + "Test400/T0136.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0136.bmp" + ], + [ + "Test400/T0137.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0137.bmp" + ], + [ + "Test400/T0138.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0138.bmp" + ], + [ + "Test400/T0139.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0139.bmp" + ], + [ + "Test400/T0140.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0140.bmp" + ], + [ + "Test400/T0141.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0141.bmp" + ], + [ + "Test400/T0142.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0142.bmp" + ], + [ + "Test400/T0143.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0143.bmp" + ], + [ + "Test400/T0144.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0144.bmp" + ], + [ + "Test400/T0145.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0145.bmp" + ], + [ + "Test400/T0146.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0146.bmp" + ], + [ + "Test400/T0147.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0147.bmp" + ], + [ + "Test400/T0148.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0148.bmp" + ], + [ + "Test400/T0149.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0149.bmp" + ], + [ + "Test400/T0150.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0150.bmp" + ], + [ + "Test400/T0151.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0151.bmp" + ], + [ + "Test400/T0152.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0152.bmp" + ], + [ + "Test400/T0153.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0153.bmp" + ], + [ + "Test400/T0154.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0154.bmp" + ], + [ + "Test400/T0155.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0155.bmp" + ], + [ + "Test400/T0156.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0156.bmp" + ], + [ + "Test400/T0157.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0157.bmp" + ], + [ + "Test400/T0158.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0158.bmp" + ], + [ + "Test400/T0159.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0159.bmp" + ], + [ + "Test400/T0160.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0160.bmp" + ], + [ + "Test400/T0161.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0161.bmp" + ], + [ + "Test400/T0162.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0162.bmp" + ], + [ + "Test400/T0163.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0163.bmp" + ], + [ + "Test400/T0164.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0164.bmp" + ], + [ + "Test400/T0165.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0165.bmp" + ], + [ + "Test400/T0166.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0166.bmp" + ], + [ + "Test400/T0167.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0167.bmp" + ], + [ + "Test400/T0168.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0168.bmp" + ], + [ + "Test400/T0169.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0169.bmp" + ], + [ + "Test400/T0170.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0170.bmp" + ], + [ + "Test400/T0171.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0171.bmp" + ], + [ + "Test400/T0172.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0172.bmp" + ], + [ + "Test400/T0173.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0173.bmp" + ], + [ + "Test400/T0174.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0174.bmp" + ], + [ + "Test400/T0175.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0175.bmp" + ], + [ + "Test400/T0176.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0176.bmp" + ], + [ + "Test400/T0177.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0177.bmp" + ], + [ + "Test400/T0178.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0178.bmp" + ], + [ + "Test400/T0179.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0179.bmp" + ], + [ + "Test400/T0180.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0180.bmp" + ], + [ + "Test400/T0181.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0181.bmp" + ], + [ + "Test400/T0182.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0182.bmp" + ], + [ + "Test400/T0183.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0183.bmp" + ], + [ + "Test400/T0184.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0184.bmp" + ], + [ + "Test400/T0185.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0185.bmp" + ], + [ + "Test400/T0186.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0186.bmp" + ], + [ + "Test400/T0187.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0187.bmp" + ], + [ + "Test400/T0188.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0188.bmp" + ], + [ + "Test400/T0189.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0189.bmp" + ], + [ + "Test400/T0190.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0190.bmp" + ], + [ + "Test400/T0191.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0191.bmp" + ], + [ + "Test400/T0192.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0192.bmp" + ], + [ + "Test400/T0193.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0193.bmp" + ], + [ + "Test400/T0194.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0194.bmp" + ], + [ + "Test400/T0195.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0195.bmp" + ], + [ + "Test400/T0196.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0196.bmp" + ], + [ + "Test400/T0197.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0197.bmp" + ], + [ + "Test400/T0198.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0198.bmp" + ], + [ + "Test400/T0199.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0199.bmp" + ], + [ + "Test400/T0200.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0200.bmp" + ], + [ + "Test400/T0201.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0201.bmp" + ], + [ + "Test400/T0202.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0202.bmp" + ], + [ + "Test400/T0203.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0203.bmp" + ], + [ + "Test400/T0204.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0204.bmp" + ], + [ + "Test400/T0205.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0205.bmp" + ], + [ + "Test400/T0206.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0206.bmp" + ], + [ + "Test400/T0207.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0207.bmp" + ], + [ + "Test400/T0208.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0208.bmp" + ], + [ + "Test400/T0209.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0209.bmp" + ], + [ + "Test400/T0210.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0210.bmp" + ], + [ + "Test400/T0211.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0211.bmp" + ], + [ + "Test400/T0212.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0212.bmp" + ], + [ + "Test400/T0213.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0213.bmp" + ], + [ + "Test400/T0214.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0214.bmp" + ], + [ + "Test400/T0215.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0215.bmp" + ], + [ + "Test400/T0216.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0216.bmp" + ], + [ + "Test400/T0217.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0217.bmp" + ], + [ + "Test400/T0218.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0218.bmp" + ], + [ + "Test400/T0219.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0219.bmp" + ], + [ + "Test400/T0220.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0220.bmp" + ], + [ + "Test400/T0221.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0221.bmp" + ], + [ + "Test400/T0222.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0222.bmp" + ], + [ + "Test400/T0223.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0223.bmp" + ], + [ + "Test400/T0224.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0224.bmp" + ], + [ + "Test400/T0225.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0225.bmp" + ], + [ + "Test400/T0226.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0226.bmp" + ], + [ + "Test400/T0227.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0227.bmp" + ], + [ + "Test400/T0228.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0228.bmp" + ], + [ + "Test400/T0229.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0229.bmp" + ], + [ + "Test400/T0230.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0230.bmp" + ], + [ + "Test400/T0231.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0231.bmp" + ], + [ + "Test400/T0232.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0232.bmp" + ], + [ + "Test400/T0233.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0233.bmp" + ], + [ + "Test400/T0234.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0234.bmp" + ], + [ + "Test400/T0235.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0235.bmp" + ], + [ + "Test400/T0236.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0236.bmp" + ], + [ + "Test400/T0237.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0237.bmp" + ], + [ + "Test400/T0238.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0238.bmp" + ], + [ + "Test400/T0239.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0239.bmp" + ], + [ + "Test400/T0240.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0240.bmp" + ], + [ + "Test400/T0241.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0241.bmp" + ], + [ + "Test400/T0242.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0242.bmp" + ], + [ + "Test400/T0243.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0243.bmp" + ], + [ + "Test400/T0244.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0244.bmp" + ], + [ + "Test400/T0245.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0245.bmp" + ], + [ + "Test400/T0246.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0246.bmp" + ], + [ + "Test400/T0247.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0247.bmp" + ], + [ + "Test400/T0248.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0248.bmp" + ], + [ + "Test400/T0249.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0249.bmp" + ], + [ + "Test400/T0250.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0250.bmp" + ], + [ + "Test400/T0251.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0251.bmp" + ], + [ + "Test400/T0252.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0252.bmp" + ], + [ + "Test400/T0253.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0253.bmp" + ], + [ + "Test400/T0254.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0254.bmp" + ], + [ + "Test400/T0255.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0255.bmp" + ], + [ + "Test400/T0256.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0256.bmp" + ], + [ + "Test400/T0257.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0257.bmp" + ], + [ + "Test400/T0258.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0258.bmp" + ], + [ + "Test400/T0259.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0259.bmp" + ], + [ + "Test400/T0260.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0260.bmp" + ], + [ + "Test400/T0261.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0261.bmp" + ], + [ + "Test400/T0262.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0262.bmp" + ], + [ + "Test400/T0263.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0263.bmp" + ], + [ + "Test400/T0264.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0264.bmp" + ], + [ + "Test400/T0265.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0265.bmp" + ], + [ + "Test400/T0266.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0266.bmp" + ], + [ + "Test400/T0267.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0267.bmp" + ], + [ + "Test400/T0268.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0268.bmp" + ], + [ + "Test400/T0269.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0269.bmp" + ], + [ + "Test400/T0270.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0270.bmp" + ], + [ + "Test400/T0271.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0271.bmp" + ], + [ + "Test400/T0272.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0272.bmp" + ], + [ + "Test400/T0273.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0273.bmp" + ], + [ + "Test400/T0274.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0274.bmp" + ], + [ + "Test400/T0275.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0275.bmp" + ], + [ + "Test400/T0276.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0276.bmp" + ], + [ + "Test400/T0277.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0277.bmp" + ], + [ + "Test400/T0278.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0278.bmp" + ], + [ + "Test400/T0279.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0279.bmp" + ], + [ + "Test400/T0280.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0280.bmp" + ], + [ + "Test400/T0281.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0281.bmp" + ], + [ + "Test400/T0282.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0282.bmp" + ], + [ + "Test400/T0283.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0283.bmp" + ], + [ + "Test400/T0284.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0284.bmp" + ], + [ + "Test400/T0285.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0285.bmp" + ], + [ + "Test400/T0286.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0286.bmp" + ], + [ + "Test400/T0287.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0287.bmp" + ], + [ + "Test400/T0288.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0288.bmp" + ], + [ + "Test400/T0289.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0289.bmp" + ], + [ + "Test400/T0290.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0290.bmp" + ], + [ + "Test400/T0291.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0291.bmp" + ], + [ + "Test400/T0292.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0292.bmp" + ], + [ + "Test400/T0293.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0293.bmp" + ], + [ + "Test400/T0294.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0294.bmp" + ], + [ + "Test400/T0295.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0295.bmp" + ], + [ + "Test400/T0296.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0296.bmp" + ], + [ + "Test400/T0297.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0297.bmp" + ], + [ + "Test400/T0298.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0298.bmp" + ], + [ + "Test400/T0299.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0299.bmp" + ], + [ + "Test400/T0300.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0300.bmp" + ], + [ + "Test400/T0301.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0301.bmp" + ], + [ + "Test400/T0302.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0302.bmp" + ], + [ + "Test400/T0303.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0303.bmp" + ], + [ + "Test400/T0304.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0304.bmp" + ], + [ + "Test400/T0305.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0305.bmp" + ], + [ + "Test400/T0306.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0306.bmp" + ], + [ + "Test400/T0307.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0307.bmp" + ], + [ + "Test400/T0308.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0308.bmp" + ], + [ + "Test400/T0309.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0309.bmp" + ], + [ + "Test400/T0310.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0310.bmp" + ], + [ + "Test400/T0311.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0311.bmp" + ], + [ + "Test400/T0312.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0312.bmp" + ], + [ + "Test400/T0313.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0313.bmp" + ], + [ + "Test400/T0314.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0314.bmp" + ], + [ + "Test400/T0315.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0315.bmp" + ], + [ + "Test400/T0316.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0316.bmp" + ], + [ + "Test400/T0317.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0317.bmp" + ], + [ + "Test400/T0318.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0318.bmp" + ], + [ + "Test400/T0319.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0319.bmp" + ], + [ + "Test400/T0320.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0320.bmp" + ], + [ + "Test400/T0321.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0321.bmp" + ], + [ + "Test400/T0322.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0322.bmp" + ], + [ + "Test400/T0323.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0323.bmp" + ], + [ + "Test400/T0324.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0324.bmp" + ], + [ + "Test400/T0325.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0325.bmp" + ], + [ + "Test400/T0326.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0326.bmp" + ], + [ + "Test400/T0327.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0327.bmp" + ], + [ + "Test400/T0328.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0328.bmp" + ], + [ + "Test400/T0329.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0329.bmp" + ], + [ + "Test400/T0330.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0330.bmp" + ], + [ + "Test400/T0331.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0331.bmp" + ], + [ + "Test400/T0332.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0332.bmp" + ], + [ + "Test400/T0333.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0333.bmp" + ], + [ + "Test400/T0334.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0334.bmp" + ], + [ + "Test400/T0335.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0335.bmp" + ], + [ + "Test400/T0336.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0336.bmp" + ], + [ + "Test400/T0337.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0337.bmp" + ], + [ + "Test400/T0338.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0338.bmp" + ], + [ + "Test400/T0339.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0339.bmp" + ], + [ + "Test400/T0340.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0340.bmp" + ], + [ + "Test400/T0341.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0341.bmp" + ], + [ + "Test400/T0342.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0342.bmp" + ], + [ + "Test400/T0343.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0343.bmp" + ], + [ + "Test400/T0344.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0344.bmp" + ], + [ + "Test400/T0345.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0345.bmp" + ], + [ + "Test400/T0346.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0346.bmp" + ], + [ + "Test400/T0347.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0347.bmp" + ], + [ + "Test400/T0348.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0348.bmp" + ], + [ + "Test400/T0349.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0349.bmp" + ], + [ + "Test400/T0350.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0350.bmp" + ], + [ + "Test400/T0351.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0351.bmp" + ], + [ + "Test400/T0352.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0352.bmp" + ], + [ + "Test400/T0353.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0353.bmp" + ], + [ + "Test400/T0354.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0354.bmp" + ], + [ + "Test400/T0355.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0355.bmp" + ], + [ + "Test400/T0356.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0356.bmp" + ], + [ + "Test400/T0357.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0357.bmp" + ], + [ + "Test400/T0358.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0358.bmp" + ], + [ + "Test400/T0359.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0359.bmp" + ], + [ + "Test400/T0360.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0360.bmp" + ], + [ + "Test400/T0361.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0361.bmp" + ], + [ + "Test400/T0362.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0362.bmp" + ], + [ + "Test400/T0363.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0363.bmp" + ], + [ + "Test400/T0364.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0364.bmp" + ], + [ + "Test400/T0365.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0365.bmp" + ], + [ + "Test400/T0366.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0366.bmp" + ], + [ + "Test400/T0367.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0367.bmp" + ], + [ + "Test400/T0368.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0368.bmp" + ], + [ + "Test400/T0369.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0369.bmp" + ], + [ + "Test400/T0370.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0370.bmp" + ], + [ + "Test400/T0371.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0371.bmp" + ], + [ + "Test400/T0372.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0372.bmp" + ], + [ + "Test400/T0373.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0373.bmp" + ], + [ + "Test400/T0374.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0374.bmp" + ], + [ + "Test400/T0375.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0375.bmp" + ], + [ + "Test400/T0376.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0376.bmp" + ], + [ + "Test400/T0377.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0377.bmp" + ], + [ + "Test400/T0378.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0378.bmp" + ], + [ + "Test400/T0379.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0379.bmp" + ], + [ + "Test400/T0380.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0380.bmp" + ], + [ + "Test400/T0381.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0381.bmp" + ], + [ + "Test400/T0382.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0382.bmp" + ], + [ + "Test400/T0383.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0383.bmp" + ], + [ + "Test400/T0384.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0384.bmp" + ], + [ + "Test400/T0385.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0385.bmp" + ], + [ + "Test400/T0386.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0386.bmp" + ], + [ + "Test400/T0387.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0387.bmp" + ], + [ + "Test400/T0388.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0388.bmp" + ], + [ + "Test400/T0389.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0389.bmp" + ], + [ + "Test400/T0390.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0390.bmp" + ], + [ + "Test400/T0391.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0391.bmp" + ], + [ + "Test400/T0392.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0392.bmp" + ], + [ + "Test400/T0393.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0393.bmp" + ], + [ + "Test400/T0394.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0394.bmp" + ], + [ + "Test400/T0395.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0395.bmp" + ], + [ + "Test400/T0396.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0396.bmp" + ], + [ + "Test400/T0397.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/G/T0397.bmp" + ], + [ + "Test400/T0398.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0398.bmp" + ], + [ + "Test400/T0399.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0399.bmp" + ], + [ + "Test400/T0400.jpg", + "REFUGE-Test-GT/Disc_Cup_Masks/N/T0400.bmp" + ] + ] +} diff --git a/bob/ip/binseg/data/rimoner3/__init__.py b/bob/ip/binseg/data/rimoner3/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5e3eca89794709c4cce482b3c2d16565014b8dc1 --- /dev/null +++ b/bob/ip/binseg/data/rimoner3/__init__.py @@ -0,0 +1,69 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""RIM-ONE r3 (training set) for Cup Segmentation + +The dataset contains 159 stereo eye fundus images with a resolution of 2144 x +1424. The right part of the stereo image is disregarded. Two sets of +ground-truths for optic disc and optic cup are available. The first set is +commonly used for training and testing. The second set acts as a “human†+baseline. A third set, composed of annotation averages may also be used for +training and evaluation purposes. + +* Reference: [RIMONER3-2015]_ +* Original resolution (height x width): 1424 x 1072 +* Split reference: [MANINIS-2016]_ +* Protocols ``optic-disc-exp1``, ``optic-cup-exp1``, ``optic-disc-exp2``, + ``optic-cup-exp2``, ``optic-disc-avg`` and ``optic-cup-avg``: + + * Training: 99 + * Test: 60 +""" + +import os +import pkg_resources + +import bob.extension + +from ..dataset import JSONDataset +from ..loader import load_pil_rgb, load_pil_1, make_delayed + +_protocols = [ + pkg_resources.resource_filename(__name__, "optic-disc-exp1.json"), + pkg_resources.resource_filename(__name__, "optic-cup-exp1.json"), + pkg_resources.resource_filename(__name__, "optic-disc-exp2.json"), + pkg_resources.resource_filename(__name__, "optic-cup-exp2.json"), + pkg_resources.resource_filename(__name__, "optic-disc-avg.json"), + pkg_resources.resource_filename(__name__, "optic-cup-avg.json"), +] + +_root_path = bob.extension.rc.get( + "bob.ip.binseg.rimoner3.datadir", os.path.realpath(os.curdir) +) + + +def _raw_data_loader(sample): + # RIM-ONE r3 provides stereo images - we clip them here to get only the + # left part of the image, which is also annotated + return dict( + data=load_pil_rgb(os.path.join(_root_path, sample["data"])).crop( + (0, 0, 1072, 1424) + ), + label=load_pil_1(os.path.join(_root_path, sample["label"])).crop( + (0, 0, 1072, 1424) + ), + ) + + +def _loader(context, sample): + # "context" is ignored in this case - database is homogeneous + # we returned delayed samples to avoid loading all images at once + return make_delayed(sample, _raw_data_loader) + + +dataset = JSONDataset( + protocols=_protocols, + fieldnames=("data", "label"), + loader=_loader, +) +"""RIM-ONE r3 dataset object""" diff --git a/bob/ip/binseg/data/rimoner3/optic-cup-avg.json b/bob/ip/binseg/data/rimoner3/optic-cup-avg.json new file mode 100644 index 0000000000000000000000000000000000000000..d464222e32e8f1da24898a0c8a7308564c9d0a7f --- /dev/null +++ b/bob/ip/binseg/data/rimoner3/optic-cup-avg.json @@ -0,0 +1,642 @@ +{ + "train": [ + [ + "Healthy/Stereo Images/N-10-R.jpg", + "Healthy/Average_masks/N-10-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-11-L.jpg", + "Healthy/Average_masks/N-11-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-12-R.jpg", + "Healthy/Average_masks/N-12-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-13-L.jpg", + "Healthy/Average_masks/N-13-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-14-R.jpg", + "Healthy/Average_masks/N-14-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-16-R.jpg", + "Healthy/Average_masks/N-16-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-24-R.jpg", + "Healthy/Average_masks/N-24-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-25-L.jpg", + "Healthy/Average_masks/N-25-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-26-R.jpg", + "Healthy/Average_masks/N-26-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-27-L.jpg", + "Healthy/Average_masks/N-27-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-52-R.jpg", + "Healthy/Average_masks/N-52-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-53-L.jpg", + "Healthy/Average_masks/N-53-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-54-R.jpg", + "Healthy/Average_masks/N-54-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-55-L.jpg", + "Healthy/Average_masks/N-55-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-56-R.jpg", + "Healthy/Average_masks/N-56-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-58-R.jpg", + "Healthy/Average_masks/N-58-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-59-L.jpg", + "Healthy/Average_masks/N-59-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-5-L.jpg", + "Healthy/Average_masks/N-5-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-61-L.jpg", + "Healthy/Average_masks/N-61-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-62-R.jpg", + "Healthy/Average_masks/N-62-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-63-L.jpg", + "Healthy/Average_masks/N-63-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-64-R.jpg", + "Healthy/Average_masks/N-64-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-65-L.jpg", + "Healthy/Average_masks/N-65-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-66-R.jpg", + "Healthy/Average_masks/N-66-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-67-L.jpg", + "Healthy/Average_masks/N-67-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-68-R.jpg", + "Healthy/Average_masks/N-68-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-69-L.jpg", + "Healthy/Average_masks/N-69-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-6-R.jpg", + "Healthy/Average_masks/N-6-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-70-R.jpg", + "Healthy/Average_masks/N-70-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-71-L.jpg", + "Healthy/Average_masks/N-71-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-72-R.jpg", + "Healthy/Average_masks/N-72-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-73-R.jpg", + "Healthy/Average_masks/N-73-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-74-L.jpg", + "Healthy/Average_masks/N-74-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-75-R.jpg", + "Healthy/Average_masks/N-75-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-76-R.jpg", + "Healthy/Average_masks/N-76-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-79-L.jpg", + "Healthy/Average_masks/N-79-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-7-L.jpg", + "Healthy/Average_masks/N-7-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-80-R.jpg", + "Healthy/Average_masks/N-80-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-81-L.jpg", + "Healthy/Average_masks/N-81-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-82-R.jpg", + "Healthy/Average_masks/N-82-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-83-L.jpg", + "Healthy/Average_masks/N-83-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-84-R.jpg", + "Healthy/Average_masks/N-84-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-85-L.jpg", + "Healthy/Average_masks/N-85-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-86-R.jpg", + "Healthy/Average_masks/N-86-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-87-L.jpg", + "Healthy/Average_masks/N-87-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-88-R.jpg", + "Healthy/Average_masks/N-88-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-8-L.jpg", + "Healthy/Average_masks/N-8-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-90-R.jpg", + "Healthy/Average_masks/N-90-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-91-L.jpg", + "Healthy/Average_masks/N-91-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-92-R.jpg", + "Healthy/Average_masks/N-92-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-9-L.jpg", + "Healthy/Average_masks/N-9-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-10-L.jpg", + "Glaucoma and suspects/Average_masks/G-10-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-11-R.jpg", + "Glaucoma and suspects/Average_masks/G-11-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-12-L.jpg", + "Glaucoma and suspects/Average_masks/G-12-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-13-R.jpg", + "Glaucoma and suspects/Average_masks/G-13-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-14-R.jpg", + "Glaucoma and suspects/Average_masks/G-14-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-15-L.jpg", + "Glaucoma and suspects/Average_masks/G-15-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-16-R.jpg", + "Glaucoma and suspects/Average_masks/G-16-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-17-L.jpg", + "Glaucoma and suspects/Average_masks/G-17-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-18-R.jpg", + "Glaucoma and suspects/Average_masks/G-18-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-19-R.jpg", + "Glaucoma and suspects/Average_masks/G-19-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-1-L.jpg", + "Glaucoma and suspects/Average_masks/G-1-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-20-L.jpg", + "Glaucoma and suspects/Average_masks/G-20-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-21-R.jpg", + "Glaucoma and suspects/Average_masks/G-21-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-32-L.jpg", + "Glaucoma and suspects/Average_masks/G-32-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-33-R.jpg", + "Glaucoma and suspects/Average_masks/G-33-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-34-L.jpg", + "Glaucoma and suspects/Average_masks/G-34-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-35-R.jpg", + "Glaucoma and suspects/Average_masks/G-35-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-36-R.jpg", + "Glaucoma and suspects/Average_masks/G-36-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-37-R.jpg", + "Glaucoma and suspects/Average_masks/G-37-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-38-L.jpg", + "Glaucoma and suspects/Average_masks/G-38-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-39-L.jpg", + "Glaucoma and suspects/Average_masks/G-39-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-3-R.jpg", + "Glaucoma and suspects/Average_masks/G-3-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-4-L.jpg", + "Glaucoma and suspects/Average_masks/G-4-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-5-R.jpg", + "Glaucoma and suspects/Average_masks/G-5-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-6-L.jpg", + "Glaucoma and suspects/Average_masks/G-6-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-7-L.jpg", + "Glaucoma and suspects/Average_masks/G-7-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-8-R.jpg", + "Glaucoma and suspects/Average_masks/G-8-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-9-R.jpg", + "Glaucoma and suspects/Average_masks/G-9-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-10-R.jpg", + "Glaucoma and suspects/Average_masks/S-10-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-11-L.jpg", + "Glaucoma and suspects/Average_masks/S-11-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-12-L.jpg", + "Glaucoma and suspects/Average_masks/S-12-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-13-R.jpg", + "Glaucoma and suspects/Average_masks/S-13-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-14-R.jpg", + "Glaucoma and suspects/Average_masks/S-14-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-15-L.jpg", + "Glaucoma and suspects/Average_masks/S-15-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-16-R.jpg", + "Glaucoma and suspects/Average_masks/S-16-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-17-L.jpg", + "Glaucoma and suspects/Average_masks/S-17-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-18-L.jpg", + "Glaucoma and suspects/Average_masks/S-18-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-19-R.jpg", + "Glaucoma and suspects/Average_masks/S-19-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-1-L.jpg", + "Glaucoma and suspects/Average_masks/S-1-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-20-L.jpg", + "Glaucoma and suspects/Average_masks/S-20-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-21-R.jpg", + "Glaucoma and suspects/Average_masks/S-21-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-22-L.jpg", + "Glaucoma and suspects/Average_masks/S-22-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-23-L.jpg", + "Glaucoma and suspects/Average_masks/S-23-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-24-R.jpg", + "Glaucoma and suspects/Average_masks/S-24-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-25-L.jpg", + "Glaucoma and suspects/Average_masks/S-25-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-26-R.jpg", + "Glaucoma and suspects/Average_masks/S-26-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-27-L.jpg", + "Glaucoma and suspects/Average_masks/S-27-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-28-R.jpg", + "Glaucoma and suspects/Average_masks/S-28-R-Cup-Avg.png" + ] + ], + "test": [ + [ + "Glaucoma and suspects/Stereo Images/G-22-L.jpg", + "Glaucoma and suspects/Average_masks/G-22-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-23-R.jpg", + "Glaucoma and suspects/Average_masks/G-23-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-24-L.jpg", + "Glaucoma and suspects/Average_masks/G-24-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-25-L.jpg", + "Glaucoma and suspects/Average_masks/G-25-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-26-R.jpg", + "Glaucoma and suspects/Average_masks/G-26-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-27-R.jpg", + "Glaucoma and suspects/Average_masks/G-27-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-28-L.jpg", + "Glaucoma and suspects/Average_masks/G-28-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-29-R.jpg", + "Glaucoma and suspects/Average_masks/G-29-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-2-R.jpg", + "Glaucoma and suspects/Average_masks/G-2-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-30-L.jpg", + "Glaucoma and suspects/Average_masks/G-30-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-31-R.jpg", + "Glaucoma and suspects/Average_masks/G-31-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-17-L.jpg", + "Healthy/Average_masks/N-17-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-18-R.jpg", + "Healthy/Average_masks/N-18-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-1-L.jpg", + "Healthy/Average_masks/N-1-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-20-R.jpg", + "Healthy/Average_masks/N-20-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-21-L.jpg", + "Healthy/Average_masks/N-21-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-22-R.jpg", + "Healthy/Average_masks/N-22-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-23-L.jpg", + "Healthy/Average_masks/N-23-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-28-R.jpg", + "Healthy/Average_masks/N-28-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-29-L.jpg", + "Healthy/Average_masks/N-29-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-2-R.jpg", + "Healthy/Average_masks/N-2-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-30-R.jpg", + "Healthy/Average_masks/N-30-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-31-L.jpg", + "Healthy/Average_masks/N-31-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-32-R.jpg", + "Healthy/Average_masks/N-32-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-33-L.jpg", + "Healthy/Average_masks/N-33-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-34-R.jpg", + "Healthy/Average_masks/N-34-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-35-L.jpg", + "Healthy/Average_masks/N-35-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-36-R.jpg", + "Healthy/Average_masks/N-36-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-37-L.jpg", + "Healthy/Average_masks/N-37-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-38-R.jpg", + "Healthy/Average_masks/N-38-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-39-L.jpg", + "Healthy/Average_masks/N-39-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-3-L.jpg", + "Healthy/Average_masks/N-3-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-40-R.jpg", + "Healthy/Average_masks/N-40-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-41-L.jpg", + "Healthy/Average_masks/N-41-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-42-R.jpg", + "Healthy/Average_masks/N-42-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-43-L.jpg", + "Healthy/Average_masks/N-43-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-44-R.jpg", + "Healthy/Average_masks/N-44-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-46-R.jpg", + "Healthy/Average_masks/N-46-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-47-L.jpg", + "Healthy/Average_masks/N-47-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-48-R.jpg", + "Healthy/Average_masks/N-48-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-49-L.jpg", + "Healthy/Average_masks/N-49-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-4-R.jpg", + "Healthy/Average_masks/N-4-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-50-R.jpg", + "Healthy/Average_masks/N-50-R-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-51-L.jpg", + "Healthy/Average_masks/N-51-L-Cup-Avg.png" + ], + [ + "Healthy/Stereo Images/N-78-R.jpg", + "Healthy/Average_masks/N-78-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-29-R.jpg", + "Glaucoma and suspects/Average_masks/S-29-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-2-L.jpg", + "Glaucoma and suspects/Average_masks/S-2-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-30-L.jpg", + "Glaucoma and suspects/Average_masks/S-30-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-31-L.jpg", + "Glaucoma and suspects/Average_masks/S-31-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-32-L.jpg", + "Glaucoma and suspects/Average_masks/S-32-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-33-R.jpg", + "Glaucoma and suspects/Average_masks/S-33-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-34-L.jpg", + "Glaucoma and suspects/Average_masks/S-34-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-35-R.jpg", + "Glaucoma and suspects/Average_masks/S-35-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-3-R.jpg", + "Glaucoma and suspects/Average_masks/S-3-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-4-L.jpg", + "Glaucoma and suspects/Average_masks/S-4-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-5-L.jpg", + "Glaucoma and suspects/Average_masks/S-5-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-6-R.jpg", + "Glaucoma and suspects/Average_masks/S-6-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-7-L.jpg", + "Glaucoma and suspects/Average_masks/S-7-L-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-8-R.jpg", + "Glaucoma and suspects/Average_masks/S-8-R-Cup-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-9-L.jpg", + "Glaucoma and suspects/Average_masks/S-9-L-Cup-Avg.png" + ] + ] +} diff --git a/bob/ip/binseg/data/rimoner3/optic-cup-exp1.json b/bob/ip/binseg/data/rimoner3/optic-cup-exp1.json new file mode 100644 index 0000000000000000000000000000000000000000..39b14f46763852e652ab5345969a45919fd06f84 --- /dev/null +++ b/bob/ip/binseg/data/rimoner3/optic-cup-exp1.json @@ -0,0 +1,642 @@ +{ + "train": [ + [ + "Healthy/Stereo Images/N-10-R.jpg", + "Healthy/Expert1_masks/N-10-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-11-L.jpg", + "Healthy/Expert1_masks/N-11-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-12-R.jpg", + "Healthy/Expert1_masks/N-12-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-13-L.jpg", + "Healthy/Expert1_masks/N-13-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-14-R.jpg", + "Healthy/Expert1_masks/N-14-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-16-R.jpg", + "Healthy/Expert1_masks/N-16-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-24-R.jpg", + "Healthy/Expert1_masks/N-24-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-25-L.jpg", + "Healthy/Expert1_masks/N-25-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-26-R.jpg", + "Healthy/Expert1_masks/N-26-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-27-L.jpg", + "Healthy/Expert1_masks/N-27-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-52-R.jpg", + "Healthy/Expert1_masks/N-52-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-53-L.jpg", + "Healthy/Expert1_masks/N-53-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-54-R.jpg", + "Healthy/Expert1_masks/N-54-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-55-L.jpg", + "Healthy/Expert1_masks/N-55-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-56-R.jpg", + "Healthy/Expert1_masks/N-56-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-58-R.jpg", + "Healthy/Expert1_masks/N-58-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-59-L.jpg", + "Healthy/Expert1_masks/N-59-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-5-L.jpg", + "Healthy/Expert1_masks/N-5-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-61-L.jpg", + "Healthy/Expert1_masks/N-61-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-62-R.jpg", + "Healthy/Expert1_masks/N-62-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-63-L.jpg", + "Healthy/Expert1_masks/N-63-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-64-R.jpg", + "Healthy/Expert1_masks/N-64-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-65-L.jpg", + "Healthy/Expert1_masks/N-65-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-66-R.jpg", + "Healthy/Expert1_masks/N-66-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-67-L.jpg", + "Healthy/Expert1_masks/N-67-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-68-R.jpg", + "Healthy/Expert1_masks/N-68-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-69-L.jpg", + "Healthy/Expert1_masks/N-69-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-6-R.jpg", + "Healthy/Expert1_masks/N-6-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-70-R.jpg", + "Healthy/Expert1_masks/N-70-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-71-L.jpg", + "Healthy/Expert1_masks/N-71-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-72-R.jpg", + "Healthy/Expert1_masks/N-72-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-73-R.jpg", + "Healthy/Expert1_masks/N-73-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-74-L.jpg", + "Healthy/Expert1_masks/N-74-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-75-R.jpg", + "Healthy/Expert1_masks/N-75-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-76-R.jpg", + "Healthy/Expert1_masks/N-76-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-79-L.jpg", + "Healthy/Expert1_masks/N-79-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-7-L.jpg", + "Healthy/Expert1_masks/N-7-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-80-R.jpg", + "Healthy/Expert1_masks/N-80-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-81-L.jpg", + "Healthy/Expert1_masks/N-81-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-82-R.jpg", + "Healthy/Expert1_masks/N-82-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-83-L.jpg", + "Healthy/Expert1_masks/N-83-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-84-R.jpg", + "Healthy/Expert1_masks/N-84-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-85-L.jpg", + "Healthy/Expert1_masks/N-85-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-86-R.jpg", + "Healthy/Expert1_masks/N-86-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-87-L.jpg", + "Healthy/Expert1_masks/N-87-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-88-R.jpg", + "Healthy/Expert1_masks/N-88-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-8-L.jpg", + "Healthy/Expert1_masks/N-8-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-90-R.jpg", + "Healthy/Expert1_masks/N-90-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-91-L.jpg", + "Healthy/Expert1_masks/N-91-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-92-R.jpg", + "Healthy/Expert1_masks/N-92-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-9-L.jpg", + "Healthy/Expert1_masks/N-9-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-10-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-10-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-11-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-11-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-12-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-12-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-13-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-13-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-14-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-14-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-15-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-15-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-16-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-16-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-17-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-17-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-18-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-18-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-19-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-19-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-1-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-1-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-20-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-20-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-21-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-21-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-32-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-32-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-33-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-33-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-34-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-34-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-35-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-35-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-36-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-36-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-37-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-37-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-38-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-38-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-39-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-39-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-3-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-3-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-4-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-4-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-5-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-5-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-6-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-6-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-7-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-7-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-8-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-8-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-9-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-9-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-10-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-10-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-11-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-11-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-12-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-12-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-13-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-13-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-14-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-14-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-15-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-15-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-16-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-16-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-17-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-17-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-18-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-18-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-19-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-19-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-1-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-1-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-20-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-20-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-21-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-21-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-22-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-22-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-23-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-23-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-24-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-24-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-25-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-25-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-26-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-26-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-27-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-27-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-28-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-28-R-1-Cup-exp1.png" + ] + ], + "test": [ + [ + "Glaucoma and suspects/Stereo Images/G-22-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-22-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-23-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-23-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-24-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-24-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-25-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-25-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-26-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-26-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-27-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-27-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-28-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-28-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-29-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-29-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-2-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-2-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-30-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-30-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-31-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-31-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-17-L.jpg", + "Healthy/Expert1_masks/N-17-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-18-R.jpg", + "Healthy/Expert1_masks/N-18-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-1-L.jpg", + "Healthy/Expert1_masks/N-1-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-20-R.jpg", + "Healthy/Expert1_masks/N-20-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-21-L.jpg", + "Healthy/Expert1_masks/N-21-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-22-R.jpg", + "Healthy/Expert1_masks/N-22-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-23-L.jpg", + "Healthy/Expert1_masks/N-23-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-28-R.jpg", + "Healthy/Expert1_masks/N-28-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-29-L.jpg", + "Healthy/Expert1_masks/N-29-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-2-R.jpg", + "Healthy/Expert1_masks/N-2-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-30-R.jpg", + "Healthy/Expert1_masks/N-30-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-31-L.jpg", + "Healthy/Expert1_masks/N-31-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-32-R.jpg", + "Healthy/Expert1_masks/N-32-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-33-L.jpg", + "Healthy/Expert1_masks/N-33-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-34-R.jpg", + "Healthy/Expert1_masks/N-34-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-35-L.jpg", + "Healthy/Expert1_masks/N-35-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-36-R.jpg", + "Healthy/Expert1_masks/N-36-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-37-L.jpg", + "Healthy/Expert1_masks/N-37-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-38-R.jpg", + "Healthy/Expert1_masks/N-38-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-39-L.jpg", + "Healthy/Expert1_masks/N-39-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-3-L.jpg", + "Healthy/Expert1_masks/N-3-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-40-R.jpg", + "Healthy/Expert1_masks/N-40-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-41-L.jpg", + "Healthy/Expert1_masks/N-41-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-42-R.jpg", + "Healthy/Expert1_masks/N-42-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-43-L.jpg", + "Healthy/Expert1_masks/N-43-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-44-R.jpg", + "Healthy/Expert1_masks/N-44-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-46-R.jpg", + "Healthy/Expert1_masks/N-46-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-47-L.jpg", + "Healthy/Expert1_masks/N-47-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-48-R.jpg", + "Healthy/Expert1_masks/N-48-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-49-L.jpg", + "Healthy/Expert1_masks/N-49-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-4-R.jpg", + "Healthy/Expert1_masks/N-4-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-50-R.jpg", + "Healthy/Expert1_masks/N-50-R-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-51-L.jpg", + "Healthy/Expert1_masks/N-51-L-1-Cup-exp1.png" + ], + [ + "Healthy/Stereo Images/N-78-R.jpg", + "Healthy/Expert1_masks/N-78-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-29-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-29-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-2-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-2-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-30-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-30-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-31-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-31-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-32-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-32-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-33-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-33-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-34-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-34-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-35-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-35-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-3-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-3-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-4-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-4-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-5-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-5-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-6-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-6-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-7-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-7-L-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-8-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-8-R-1-Cup-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-9-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-9-L-1-Cup-exp1.png" + ] + ] +} \ No newline at end of file diff --git a/bob/ip/binseg/data/rimoner3/optic-cup-exp2.json b/bob/ip/binseg/data/rimoner3/optic-cup-exp2.json new file mode 100644 index 0000000000000000000000000000000000000000..32b9850155d9a3d895d2f41214dff0402b8d542c --- /dev/null +++ b/bob/ip/binseg/data/rimoner3/optic-cup-exp2.json @@ -0,0 +1,642 @@ +{ + "train": [ + [ + "Healthy/Stereo Images/N-10-R.jpg", + "Healthy/Expert2_masks/N-10-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-11-L.jpg", + "Healthy/Expert2_masks/N-11-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-12-R.jpg", + "Healthy/Expert2_masks/N-12-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-13-L.jpg", + "Healthy/Expert2_masks/N-13-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-14-R.jpg", + "Healthy/Expert2_masks/N-14-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-16-R.jpg", + "Healthy/Expert2_masks/N-16-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-24-R.jpg", + "Healthy/Expert2_masks/N-24-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-25-L.jpg", + "Healthy/Expert2_masks/N-25-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-26-R.jpg", + "Healthy/Expert2_masks/N-26-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-27-L.jpg", + "Healthy/Expert2_masks/N-27-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-52-R.jpg", + "Healthy/Expert2_masks/N-52-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-53-L.jpg", + "Healthy/Expert2_masks/N-53-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-54-R.jpg", + "Healthy/Expert2_masks/N-54-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-55-L.jpg", + "Healthy/Expert2_masks/N-55-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-56-R.jpg", + "Healthy/Expert2_masks/N-56-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-58-R.jpg", + "Healthy/Expert2_masks/N-58-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-59-L.jpg", + "Healthy/Expert2_masks/N-59-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-5-L.jpg", + "Healthy/Expert2_masks/N-5-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-61-L.jpg", + "Healthy/Expert2_masks/N-61-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-62-R.jpg", + "Healthy/Expert2_masks/N-62-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-63-L.jpg", + "Healthy/Expert2_masks/N-63-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-64-R.jpg", + "Healthy/Expert2_masks/N-64-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-65-L.jpg", + "Healthy/Expert2_masks/N-65-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-66-R.jpg", + "Healthy/Expert2_masks/N-66-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-67-L.jpg", + "Healthy/Expert2_masks/N-67-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-68-R.jpg", + "Healthy/Expert2_masks/N-68-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-69-L.jpg", + "Healthy/Expert2_masks/N-69-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-6-R.jpg", + "Healthy/Expert2_masks/N-6-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-70-R.jpg", + "Healthy/Expert2_masks/N-70-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-71-L.jpg", + "Healthy/Expert2_masks/N-71-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-72-R.jpg", + "Healthy/Expert2_masks/N-72-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-73-R.jpg", + "Healthy/Expert2_masks/N-73-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-74-L.jpg", + "Healthy/Expert2_masks/N-74-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-75-R.jpg", + "Healthy/Expert2_masks/N-75-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-76-R.jpg", + "Healthy/Expert2_masks/N-76-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-79-L.jpg", + "Healthy/Expert2_masks/N-79-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-7-L.jpg", + "Healthy/Expert2_masks/N-7-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-80-R.jpg", + "Healthy/Expert2_masks/N-80-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-81-L.jpg", + "Healthy/Expert2_masks/N-81-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-82-R.jpg", + "Healthy/Expert2_masks/N-82-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-83-L.jpg", + "Healthy/Expert2_masks/N-83-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-84-R.jpg", + "Healthy/Expert2_masks/N-84-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-85-L.jpg", + "Healthy/Expert2_masks/N-85-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-86-R.jpg", + "Healthy/Expert2_masks/N-86-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-87-L.jpg", + "Healthy/Expert2_masks/N-87-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-88-R.jpg", + "Healthy/Expert2_masks/N-88-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-8-L.jpg", + "Healthy/Expert2_masks/N-8-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-90-R.jpg", + "Healthy/Expert2_masks/N-90-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-91-L.jpg", + "Healthy/Expert2_masks/N-91-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-92-R.jpg", + "Healthy/Expert2_masks/N-92-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-9-L.jpg", + "Healthy/Expert2_masks/N-9-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-10-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-10-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-11-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-11-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-12-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-12-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-13-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-13-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-14-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-14-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-15-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-15-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-16-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-16-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-17-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-17-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-18-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-18-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-19-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-19-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-1-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-1-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-20-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-20-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-21-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-21-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-32-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-32-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-33-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-33-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-34-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-34-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-35-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-35-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-36-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-36-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-37-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-37-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-38-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-38-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-39-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-39-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-3-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-3-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-4-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-4-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-5-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-5-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-6-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-6-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-7-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-7-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-8-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-8-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-9-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-9-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-10-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-10-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-11-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-11-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-12-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-12-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-13-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-13-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-14-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-14-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-15-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-15-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-16-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-16-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-17-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-17-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-18-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-18-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-19-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-19-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-1-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-1-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-20-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-20-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-21-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-21-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-22-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-22-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-23-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-23-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-24-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-24-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-25-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-25-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-26-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-26-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-27-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-27-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-28-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-28-R-1-Cup-exp2.png" + ] + ], + "test": [ + [ + "Glaucoma and suspects/Stereo Images/G-22-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-22-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-23-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-23-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-24-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-24-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-25-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-25-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-26-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-26-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-27-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-27-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-28-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-28-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-29-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-29-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-2-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-2-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-30-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-30-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-31-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-31-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-17-L.jpg", + "Healthy/Expert2_masks/N-17-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-18-R.jpg", + "Healthy/Expert2_masks/N-18-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-1-L.jpg", + "Healthy/Expert2_masks/N-1-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-20-R.jpg", + "Healthy/Expert2_masks/N-20-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-21-L.jpg", + "Healthy/Expert2_masks/N-21-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-22-R.jpg", + "Healthy/Expert2_masks/N-22-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-23-L.jpg", + "Healthy/Expert2_masks/N-23-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-28-R.jpg", + "Healthy/Expert2_masks/N-28-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-29-L.jpg", + "Healthy/Expert2_masks/N-29-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-2-R.jpg", + "Healthy/Expert2_masks/N-2-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-30-R.jpg", + "Healthy/Expert2_masks/N-30-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-31-L.jpg", + "Healthy/Expert2_masks/N-31-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-32-R.jpg", + "Healthy/Expert2_masks/N-32-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-33-L.jpg", + "Healthy/Expert2_masks/N-33-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-34-R.jpg", + "Healthy/Expert2_masks/N-34-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-35-L.jpg", + "Healthy/Expert2_masks/N-35-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-36-R.jpg", + "Healthy/Expert2_masks/N-36-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-37-L.jpg", + "Healthy/Expert2_masks/N-37-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-38-R.jpg", + "Healthy/Expert2_masks/N-38-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-39-L.jpg", + "Healthy/Expert2_masks/N-39-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-3-L.jpg", + "Healthy/Expert2_masks/N-3-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-40-R.jpg", + "Healthy/Expert2_masks/N-40-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-41-L.jpg", + "Healthy/Expert2_masks/N-41-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-42-R.jpg", + "Healthy/Expert2_masks/N-42-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-43-L.jpg", + "Healthy/Expert2_masks/N-43-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-44-R.jpg", + "Healthy/Expert2_masks/N-44-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-46-R.jpg", + "Healthy/Expert2_masks/N-46-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-47-L.jpg", + "Healthy/Expert2_masks/N-47-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-48-R.jpg", + "Healthy/Expert2_masks/N-48-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-49-L.jpg", + "Healthy/Expert2_masks/N-49-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-4-R.jpg", + "Healthy/Expert2_masks/N-4-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-50-R.jpg", + "Healthy/Expert2_masks/N-50-R-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-51-L.jpg", + "Healthy/Expert2_masks/N-51-L-1-Cup-exp2.png" + ], + [ + "Healthy/Stereo Images/N-78-R.jpg", + "Healthy/Expert2_masks/N-78-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-29-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-29-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-2-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-2-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-30-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-30-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-31-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-31-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-32-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-32-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-33-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-33-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-34-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-34-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-35-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-35-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-3-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-3-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-4-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-4-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-5-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-5-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-6-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-6-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-7-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-7-L-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-8-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-8-R-1-Cup-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-9-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-9-L-1-Cup-exp2.png" + ] + ] +} diff --git a/bob/ip/binseg/data/rimoner3/optic-disc-avg.json b/bob/ip/binseg/data/rimoner3/optic-disc-avg.json new file mode 100644 index 0000000000000000000000000000000000000000..987d06c04a3b47148734af7003fdfa86101a34ad --- /dev/null +++ b/bob/ip/binseg/data/rimoner3/optic-disc-avg.json @@ -0,0 +1,642 @@ +{ + "train": [ + [ + "Healthy/Stereo Images/N-10-R.jpg", + "Healthy/Average_masks/N-10-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-11-L.jpg", + "Healthy/Average_masks/N-11-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-12-R.jpg", + "Healthy/Average_masks/N-12-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-13-L.jpg", + "Healthy/Average_masks/N-13-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-14-R.jpg", + "Healthy/Average_masks/N-14-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-16-R.jpg", + "Healthy/Average_masks/N-16-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-24-R.jpg", + "Healthy/Average_masks/N-24-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-25-L.jpg", + "Healthy/Average_masks/N-25-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-26-R.jpg", + "Healthy/Average_masks/N-26-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-27-L.jpg", + "Healthy/Average_masks/N-27-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-52-R.jpg", + "Healthy/Average_masks/N-52-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-53-L.jpg", + "Healthy/Average_masks/N-53-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-54-R.jpg", + "Healthy/Average_masks/N-54-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-55-L.jpg", + "Healthy/Average_masks/N-55-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-56-R.jpg", + "Healthy/Average_masks/N-56-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-58-R.jpg", + "Healthy/Average_masks/N-58-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-59-L.jpg", + "Healthy/Average_masks/N-59-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-5-L.jpg", + "Healthy/Average_masks/N-5-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-61-L.jpg", + "Healthy/Average_masks/N-61-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-62-R.jpg", + "Healthy/Average_masks/N-62-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-63-L.jpg", + "Healthy/Average_masks/N-63-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-64-R.jpg", + "Healthy/Average_masks/N-64-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-65-L.jpg", + "Healthy/Average_masks/N-65-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-66-R.jpg", + "Healthy/Average_masks/N-66-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-67-L.jpg", + "Healthy/Average_masks/N-67-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-68-R.jpg", + "Healthy/Average_masks/N-68-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-69-L.jpg", + "Healthy/Average_masks/N-69-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-6-R.jpg", + "Healthy/Average_masks/N-6-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-70-R.jpg", + "Healthy/Average_masks/N-70-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-71-L.jpg", + "Healthy/Average_masks/N-71-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-72-R.jpg", + "Healthy/Average_masks/N-72-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-73-R.jpg", + "Healthy/Average_masks/N-73-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-74-L.jpg", + "Healthy/Average_masks/N-74-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-75-R.jpg", + "Healthy/Average_masks/N-75-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-76-R.jpg", + "Healthy/Average_masks/N-76-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-79-L.jpg", + "Healthy/Average_masks/N-79-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-7-L.jpg", + "Healthy/Average_masks/N-7-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-80-R.jpg", + "Healthy/Average_masks/N-80-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-81-L.jpg", + "Healthy/Average_masks/N-81-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-82-R.jpg", + "Healthy/Average_masks/N-82-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-83-L.jpg", + "Healthy/Average_masks/N-83-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-84-R.jpg", + "Healthy/Average_masks/N-84-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-85-L.jpg", + "Healthy/Average_masks/N-85-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-86-R.jpg", + "Healthy/Average_masks/N-86-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-87-L.jpg", + "Healthy/Average_masks/N-87-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-88-R.jpg", + "Healthy/Average_masks/N-88-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-8-L.jpg", + "Healthy/Average_masks/N-8-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-90-R.jpg", + "Healthy/Average_masks/N-90-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-91-L.jpg", + "Healthy/Average_masks/N-91-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-92-R.jpg", + "Healthy/Average_masks/N-92-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-9-L.jpg", + "Healthy/Average_masks/N-9-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-10-L.jpg", + "Glaucoma and suspects/Average_masks/G-10-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-11-R.jpg", + "Glaucoma and suspects/Average_masks/G-11-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-12-L.jpg", + "Glaucoma and suspects/Average_masks/G-12-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-13-R.jpg", + "Glaucoma and suspects/Average_masks/G-13-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-14-R.jpg", + "Glaucoma and suspects/Average_masks/G-14-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-15-L.jpg", + "Glaucoma and suspects/Average_masks/G-15-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-16-R.jpg", + "Glaucoma and suspects/Average_masks/G-16-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-17-L.jpg", + "Glaucoma and suspects/Average_masks/G-17-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-18-R.jpg", + "Glaucoma and suspects/Average_masks/G-18-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-19-R.jpg", + "Glaucoma and suspects/Average_masks/G-19-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-1-L.jpg", + "Glaucoma and suspects/Average_masks/G-1-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-20-L.jpg", + "Glaucoma and suspects/Average_masks/G-20-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-21-R.jpg", + "Glaucoma and suspects/Average_masks/G-21-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-32-L.jpg", + "Glaucoma and suspects/Average_masks/G-32-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-33-R.jpg", + "Glaucoma and suspects/Average_masks/G-33-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-34-L.jpg", + "Glaucoma and suspects/Average_masks/G-34-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-35-R.jpg", + "Glaucoma and suspects/Average_masks/G-35-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-36-R.jpg", + "Glaucoma and suspects/Average_masks/G-36-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-37-R.jpg", + "Glaucoma and suspects/Average_masks/G-37-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-38-L.jpg", + "Glaucoma and suspects/Average_masks/G-38-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-39-L.jpg", + "Glaucoma and suspects/Average_masks/G-39-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-3-R.jpg", + "Glaucoma and suspects/Average_masks/G-3-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-4-L.jpg", + "Glaucoma and suspects/Average_masks/G-4-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-5-R.jpg", + "Glaucoma and suspects/Average_masks/G-5-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-6-L.jpg", + "Glaucoma and suspects/Average_masks/G-6-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-7-L.jpg", + "Glaucoma and suspects/Average_masks/G-7-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-8-R.jpg", + "Glaucoma and suspects/Average_masks/G-8-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-9-R.jpg", + "Glaucoma and suspects/Average_masks/G-9-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-10-R.jpg", + "Glaucoma and suspects/Average_masks/S-10-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-11-L.jpg", + "Glaucoma and suspects/Average_masks/S-11-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-12-L.jpg", + "Glaucoma and suspects/Average_masks/S-12-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-13-R.jpg", + "Glaucoma and suspects/Average_masks/S-13-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-14-R.jpg", + "Glaucoma and suspects/Average_masks/S-14-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-15-L.jpg", + "Glaucoma and suspects/Average_masks/S-15-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-16-R.jpg", + "Glaucoma and suspects/Average_masks/S-16-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-17-L.jpg", + "Glaucoma and suspects/Average_masks/S-17-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-18-L.jpg", + "Glaucoma and suspects/Average_masks/S-18-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-19-R.jpg", + "Glaucoma and suspects/Average_masks/S-19-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-1-L.jpg", + "Glaucoma and suspects/Average_masks/S-1-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-20-L.jpg", + "Glaucoma and suspects/Average_masks/S-20-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-21-R.jpg", + "Glaucoma and suspects/Average_masks/S-21-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-22-L.jpg", + "Glaucoma and suspects/Average_masks/S-22-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-23-L.jpg", + "Glaucoma and suspects/Average_masks/S-23-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-24-R.jpg", + "Glaucoma and suspects/Average_masks/S-24-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-25-L.jpg", + "Glaucoma and suspects/Average_masks/S-25-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-26-R.jpg", + "Glaucoma and suspects/Average_masks/S-26-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-27-L.jpg", + "Glaucoma and suspects/Average_masks/S-27-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-28-R.jpg", + "Glaucoma and suspects/Average_masks/S-28-R-Disc-Avg.png" + ] + ], + "test": [ + [ + "Glaucoma and suspects/Stereo Images/G-22-L.jpg", + "Glaucoma and suspects/Average_masks/G-22-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-23-R.jpg", + "Glaucoma and suspects/Average_masks/G-23-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-24-L.jpg", + "Glaucoma and suspects/Average_masks/G-24-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-25-L.jpg", + "Glaucoma and suspects/Average_masks/G-25-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-26-R.jpg", + "Glaucoma and suspects/Average_masks/G-26-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-27-R.jpg", + "Glaucoma and suspects/Average_masks/G-27-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-28-L.jpg", + "Glaucoma and suspects/Average_masks/G-28-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-29-R.jpg", + "Glaucoma and suspects/Average_masks/G-29-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-2-R.jpg", + "Glaucoma and suspects/Average_masks/G-2-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-30-L.jpg", + "Glaucoma and suspects/Average_masks/G-30-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-31-R.jpg", + "Glaucoma and suspects/Average_masks/G-31-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-17-L.jpg", + "Healthy/Average_masks/N-17-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-18-R.jpg", + "Healthy/Average_masks/N-18-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-1-L.jpg", + "Healthy/Average_masks/N-1-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-20-R.jpg", + "Healthy/Average_masks/N-20-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-21-L.jpg", + "Healthy/Average_masks/N-21-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-22-R.jpg", + "Healthy/Average_masks/N-22-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-23-L.jpg", + "Healthy/Average_masks/N-23-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-28-R.jpg", + "Healthy/Average_masks/N-28-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-29-L.jpg", + "Healthy/Average_masks/N-29-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-2-R.jpg", + "Healthy/Average_masks/N-2-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-30-R.jpg", + "Healthy/Average_masks/N-30-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-31-L.jpg", + "Healthy/Average_masks/N-31-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-32-R.jpg", + "Healthy/Average_masks/N-32-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-33-L.jpg", + "Healthy/Average_masks/N-33-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-34-R.jpg", + "Healthy/Average_masks/N-34-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-35-L.jpg", + "Healthy/Average_masks/N-35-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-36-R.jpg", + "Healthy/Average_masks/N-36-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-37-L.jpg", + "Healthy/Average_masks/N-37-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-38-R.jpg", + "Healthy/Average_masks/N-38-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-39-L.jpg", + "Healthy/Average_masks/N-39-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-3-L.jpg", + "Healthy/Average_masks/N-3-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-40-R.jpg", + "Healthy/Average_masks/N-40-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-41-L.jpg", + "Healthy/Average_masks/N-41-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-42-R.jpg", + "Healthy/Average_masks/N-42-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-43-L.jpg", + "Healthy/Average_masks/N-43-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-44-R.jpg", + "Healthy/Average_masks/N-44-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-46-R.jpg", + "Healthy/Average_masks/N-46-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-47-L.jpg", + "Healthy/Average_masks/N-47-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-48-R.jpg", + "Healthy/Average_masks/N-48-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-49-L.jpg", + "Healthy/Average_masks/N-49-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-4-R.jpg", + "Healthy/Average_masks/N-4-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-50-R.jpg", + "Healthy/Average_masks/N-50-R-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-51-L.jpg", + "Healthy/Average_masks/N-51-L-Disc-Avg.png" + ], + [ + "Healthy/Stereo Images/N-78-R.jpg", + "Healthy/Average_masks/N-78-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-29-R.jpg", + "Glaucoma and suspects/Average_masks/S-29-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-2-L.jpg", + "Glaucoma and suspects/Average_masks/S-2-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-30-L.jpg", + "Glaucoma and suspects/Average_masks/S-30-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-31-L.jpg", + "Glaucoma and suspects/Average_masks/S-31-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-32-L.jpg", + "Glaucoma and suspects/Average_masks/S-32-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-33-R.jpg", + "Glaucoma and suspects/Average_masks/S-33-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-34-L.jpg", + "Glaucoma and suspects/Average_masks/S-34-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-35-R.jpg", + "Glaucoma and suspects/Average_masks/S-35-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-3-R.jpg", + "Glaucoma and suspects/Average_masks/S-3-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-4-L.jpg", + "Glaucoma and suspects/Average_masks/S-4-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-5-L.jpg", + "Glaucoma and suspects/Average_masks/S-5-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-6-R.jpg", + "Glaucoma and suspects/Average_masks/S-6-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-7-L.jpg", + "Glaucoma and suspects/Average_masks/S-7-L-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-8-R.jpg", + "Glaucoma and suspects/Average_masks/S-8-R-Disc-Avg.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-9-L.jpg", + "Glaucoma and suspects/Average_masks/S-9-L-Disc-Avg.png" + ] + ] +} diff --git a/bob/ip/binseg/data/rimoner3/optic-disc-exp1.json b/bob/ip/binseg/data/rimoner3/optic-disc-exp1.json new file mode 100644 index 0000000000000000000000000000000000000000..c5a8654ca0f28ae34fe615e98925641c868afe1c --- /dev/null +++ b/bob/ip/binseg/data/rimoner3/optic-disc-exp1.json @@ -0,0 +1,642 @@ +{ + "train": [ + [ + "Healthy/Stereo Images/N-10-R.jpg", + "Healthy/Expert1_masks/N-10-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-11-L.jpg", + "Healthy/Expert1_masks/N-11-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-12-R.jpg", + "Healthy/Expert1_masks/N-12-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-13-L.jpg", + "Healthy/Expert1_masks/N-13-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-14-R.jpg", + "Healthy/Expert1_masks/N-14-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-16-R.jpg", + "Healthy/Expert1_masks/N-16-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-24-R.jpg", + "Healthy/Expert1_masks/N-24-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-25-L.jpg", + "Healthy/Expert1_masks/N-25-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-26-R.jpg", + "Healthy/Expert1_masks/N-26-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-27-L.jpg", + "Healthy/Expert1_masks/N-27-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-52-R.jpg", + "Healthy/Expert1_masks/N-52-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-53-L.jpg", + "Healthy/Expert1_masks/N-53-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-54-R.jpg", + "Healthy/Expert1_masks/N-54-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-55-L.jpg", + "Healthy/Expert1_masks/N-55-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-56-R.jpg", + "Healthy/Expert1_masks/N-56-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-58-R.jpg", + "Healthy/Expert1_masks/N-58-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-59-L.jpg", + "Healthy/Expert1_masks/N-59-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-5-L.jpg", + "Healthy/Expert1_masks/N-5-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-61-L.jpg", + "Healthy/Expert1_masks/N-61-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-62-R.jpg", + "Healthy/Expert1_masks/N-62-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-63-L.jpg", + "Healthy/Expert1_masks/N-63-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-64-R.jpg", + "Healthy/Expert1_masks/N-64-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-65-L.jpg", + "Healthy/Expert1_masks/N-65-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-66-R.jpg", + "Healthy/Expert1_masks/N-66-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-67-L.jpg", + "Healthy/Expert1_masks/N-67-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-68-R.jpg", + "Healthy/Expert1_masks/N-68-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-69-L.jpg", + "Healthy/Expert1_masks/N-69-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-6-R.jpg", + "Healthy/Expert1_masks/N-6-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-70-R.jpg", + "Healthy/Expert1_masks/N-70-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-71-L.jpg", + "Healthy/Expert1_masks/N-71-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-72-R.jpg", + "Healthy/Expert1_masks/N-72-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-73-R.jpg", + "Healthy/Expert1_masks/N-73-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-74-L.jpg", + "Healthy/Expert1_masks/N-74-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-75-R.jpg", + "Healthy/Expert1_masks/N-75-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-76-R.jpg", + "Healthy/Expert1_masks/N-76-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-79-L.jpg", + "Healthy/Expert1_masks/N-79-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-7-L.jpg", + "Healthy/Expert1_masks/N-7-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-80-R.jpg", + "Healthy/Expert1_masks/N-80-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-81-L.jpg", + "Healthy/Expert1_masks/N-81-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-82-R.jpg", + "Healthy/Expert1_masks/N-82-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-83-L.jpg", + "Healthy/Expert1_masks/N-83-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-84-R.jpg", + "Healthy/Expert1_masks/N-84-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-85-L.jpg", + "Healthy/Expert1_masks/N-85-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-86-R.jpg", + "Healthy/Expert1_masks/N-86-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-87-L.jpg", + "Healthy/Expert1_masks/N-87-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-88-R.jpg", + "Healthy/Expert1_masks/N-88-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-8-L.jpg", + "Healthy/Expert1_masks/N-8-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-90-R.jpg", + "Healthy/Expert1_masks/N-90-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-91-L.jpg", + "Healthy/Expert1_masks/N-91-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-92-R.jpg", + "Healthy/Expert1_masks/N-92-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-9-L.jpg", + "Healthy/Expert1_masks/N-9-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-10-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-10-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-11-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-11-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-12-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-12-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-13-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-13-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-14-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-14-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-15-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-15-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-16-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-16-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-17-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-17-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-18-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-18-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-19-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-19-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-1-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-1-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-20-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-20-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-21-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-21-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-32-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-32-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-33-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-33-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-34-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-34-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-35-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-35-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-36-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-36-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-37-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-37-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-38-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-38-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-39-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-39-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-3-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-3-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-4-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-4-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-5-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-5-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-6-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-6-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-7-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-7-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-8-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-8-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-9-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-9-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-10-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-10-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-11-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-11-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-12-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-12-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-13-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-13-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-14-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-14-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-15-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-15-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-16-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-16-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-17-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-17-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-18-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-18-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-19-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-19-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-1-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-1-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-20-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-20-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-21-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-21-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-22-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-22-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-23-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-23-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-24-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-24-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-25-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-25-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-26-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-26-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-27-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-27-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-28-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-28-R-1-Disc-exp1.png" + ] + ], + "test": [ + [ + "Glaucoma and suspects/Stereo Images/G-22-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-22-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-23-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-23-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-24-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-24-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-25-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-25-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-26-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-26-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-27-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-27-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-28-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-28-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-29-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-29-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-2-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-2-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-30-L.jpg", + "Glaucoma and suspects/Expert1_masks/G-30-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-31-R.jpg", + "Glaucoma and suspects/Expert1_masks/G-31-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-17-L.jpg", + "Healthy/Expert1_masks/N-17-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-18-R.jpg", + "Healthy/Expert1_masks/N-18-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-1-L.jpg", + "Healthy/Expert1_masks/N-1-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-20-R.jpg", + "Healthy/Expert1_masks/N-20-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-21-L.jpg", + "Healthy/Expert1_masks/N-21-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-22-R.jpg", + "Healthy/Expert1_masks/N-22-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-23-L.jpg", + "Healthy/Expert1_masks/N-23-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-28-R.jpg", + "Healthy/Expert1_masks/N-28-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-29-L.jpg", + "Healthy/Expert1_masks/N-29-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-2-R.jpg", + "Healthy/Expert1_masks/N-2-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-30-R.jpg", + "Healthy/Expert1_masks/N-30-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-31-L.jpg", + "Healthy/Expert1_masks/N-31-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-32-R.jpg", + "Healthy/Expert1_masks/N-32-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-33-L.jpg", + "Healthy/Expert1_masks/N-33-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-34-R.jpg", + "Healthy/Expert1_masks/N-34-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-35-L.jpg", + "Healthy/Expert1_masks/N-35-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-36-R.jpg", + "Healthy/Expert1_masks/N-36-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-37-L.jpg", + "Healthy/Expert1_masks/N-37-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-38-R.jpg", + "Healthy/Expert1_masks/N-38-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-39-L.jpg", + "Healthy/Expert1_masks/N-39-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-3-L.jpg", + "Healthy/Expert1_masks/N-3-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-40-R.jpg", + "Healthy/Expert1_masks/N-40-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-41-L.jpg", + "Healthy/Expert1_masks/N-41-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-42-R.jpg", + "Healthy/Expert1_masks/N-42-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-43-L.jpg", + "Healthy/Expert1_masks/N-43-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-44-R.jpg", + "Healthy/Expert1_masks/N-44-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-46-R.jpg", + "Healthy/Expert1_masks/N-46-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-47-L.jpg", + "Healthy/Expert1_masks/N-47-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-48-R.jpg", + "Healthy/Expert1_masks/N-48-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-49-L.jpg", + "Healthy/Expert1_masks/N-49-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-4-R.jpg", + "Healthy/Expert1_masks/N-4-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-50-R.jpg", + "Healthy/Expert1_masks/N-50-R-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-51-L.jpg", + "Healthy/Expert1_masks/N-51-L-1-Disc-exp1.png" + ], + [ + "Healthy/Stereo Images/N-78-R.jpg", + "Healthy/Expert1_masks/N-78-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-29-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-29-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-2-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-2-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-30-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-30-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-31-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-31-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-32-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-32-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-33-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-33-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-34-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-34-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-35-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-35-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-3-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-3-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-4-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-4-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-5-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-5-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-6-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-6-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-7-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-7-L-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-8-R.jpg", + "Glaucoma and suspects/Expert1_masks/S-8-R-1-Disc-exp1.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-9-L.jpg", + "Glaucoma and suspects/Expert1_masks/S-9-L-1-Disc-exp1.png" + ] + ] +} \ No newline at end of file diff --git a/bob/ip/binseg/data/rimoner3/optic-disc-exp2.json b/bob/ip/binseg/data/rimoner3/optic-disc-exp2.json new file mode 100644 index 0000000000000000000000000000000000000000..3a94781e740e06cdc47cdd1a0e07070ef9d7eb5b --- /dev/null +++ b/bob/ip/binseg/data/rimoner3/optic-disc-exp2.json @@ -0,0 +1,642 @@ +{ + "train": [ + [ + "Healthy/Stereo Images/N-10-R.jpg", + "Healthy/Expert2_masks/N-10-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-11-L.jpg", + "Healthy/Expert2_masks/N-11-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-12-R.jpg", + "Healthy/Expert2_masks/N-12-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-13-L.jpg", + "Healthy/Expert2_masks/N-13-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-14-R.jpg", + "Healthy/Expert2_masks/N-14-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-16-R.jpg", + "Healthy/Expert2_masks/N-16-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-24-R.jpg", + "Healthy/Expert2_masks/N-24-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-25-L.jpg", + "Healthy/Expert2_masks/N-25-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-26-R.jpg", + "Healthy/Expert2_masks/N-26-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-27-L.jpg", + "Healthy/Expert2_masks/N-27-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-52-R.jpg", + "Healthy/Expert2_masks/N-52-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-53-L.jpg", + "Healthy/Expert2_masks/N-53-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-54-R.jpg", + "Healthy/Expert2_masks/N-54-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-55-L.jpg", + "Healthy/Expert2_masks/N-55-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-56-R.jpg", + "Healthy/Expert2_masks/N-56-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-58-R.jpg", + "Healthy/Expert2_masks/N-58-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-59-L.jpg", + "Healthy/Expert2_masks/N-59-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-5-L.jpg", + "Healthy/Expert2_masks/N-5-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-61-L.jpg", + "Healthy/Expert2_masks/N-61-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-62-R.jpg", + "Healthy/Expert2_masks/N-62-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-63-L.jpg", + "Healthy/Expert2_masks/N-63-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-64-R.jpg", + "Healthy/Expert2_masks/N-64-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-65-L.jpg", + "Healthy/Expert2_masks/N-65-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-66-R.jpg", + "Healthy/Expert2_masks/N-66-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-67-L.jpg", + "Healthy/Expert2_masks/N-67-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-68-R.jpg", + "Healthy/Expert2_masks/N-68-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-69-L.jpg", + "Healthy/Expert2_masks/N-69-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-6-R.jpg", + "Healthy/Expert2_masks/N-6-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-70-R.jpg", + "Healthy/Expert2_masks/N-70-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-71-L.jpg", + "Healthy/Expert2_masks/N-71-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-72-R.jpg", + "Healthy/Expert2_masks/N-72-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-73-R.jpg", + "Healthy/Expert2_masks/N-73-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-74-L.jpg", + "Healthy/Expert2_masks/N-74-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-75-R.jpg", + "Healthy/Expert2_masks/N-75-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-76-R.jpg", + "Healthy/Expert2_masks/N-76-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-79-L.jpg", + "Healthy/Expert2_masks/N-79-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-7-L.jpg", + "Healthy/Expert2_masks/N-7-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-80-R.jpg", + "Healthy/Expert2_masks/N-80-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-81-L.jpg", + "Healthy/Expert2_masks/N-81-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-82-R.jpg", + "Healthy/Expert2_masks/N-82-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-83-L.jpg", + "Healthy/Expert2_masks/N-83-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-84-R.jpg", + "Healthy/Expert2_masks/N-84-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-85-L.jpg", + "Healthy/Expert2_masks/N-85-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-86-R.jpg", + "Healthy/Expert2_masks/N-86-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-87-L.jpg", + "Healthy/Expert2_masks/N-87-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-88-R.jpg", + "Healthy/Expert2_masks/N-88-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-8-L.jpg", + "Healthy/Expert2_masks/N-8-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-90-R.jpg", + "Healthy/Expert2_masks/N-90-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-91-L.jpg", + "Healthy/Expert2_masks/N-91-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-92-R.jpg", + "Healthy/Expert2_masks/N-92-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-9-L.jpg", + "Healthy/Expert2_masks/N-9-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-10-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-10-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-11-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-11-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-12-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-12-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-13-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-13-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-14-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-14-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-15-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-15-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-16-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-16-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-17-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-17-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-18-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-18-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-19-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-19-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-1-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-1-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-20-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-20-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-21-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-21-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-32-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-32-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-33-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-33-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-34-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-34-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-35-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-35-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-36-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-36-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-37-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-37-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-38-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-38-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-39-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-39-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-3-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-3-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-4-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-4-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-5-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-5-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-6-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-6-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-7-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-7-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-8-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-8-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-9-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-9-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-10-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-10-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-11-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-11-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-12-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-12-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-13-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-13-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-14-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-14-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-15-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-15-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-16-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-16-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-17-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-17-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-18-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-18-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-19-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-19-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-1-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-1-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-20-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-20-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-21-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-21-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-22-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-22-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-23-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-23-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-24-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-24-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-25-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-25-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-26-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-26-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-27-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-27-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-28-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-28-R-1-Disc-exp2.png" + ] + ], + "test": [ + [ + "Glaucoma and suspects/Stereo Images/G-22-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-22-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-23-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-23-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-24-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-24-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-25-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-25-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-26-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-26-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-27-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-27-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-28-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-28-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-29-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-29-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-2-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-2-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-30-L.jpg", + "Glaucoma and suspects/Expert2_masks/G-30-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/G-31-R.jpg", + "Glaucoma and suspects/Expert2_masks/G-31-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-17-L.jpg", + "Healthy/Expert2_masks/N-17-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-18-R.jpg", + "Healthy/Expert2_masks/N-18-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-1-L.jpg", + "Healthy/Expert2_masks/N-1-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-20-R.jpg", + "Healthy/Expert2_masks/N-20-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-21-L.jpg", + "Healthy/Expert2_masks/N-21-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-22-R.jpg", + "Healthy/Expert2_masks/N-22-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-23-L.jpg", + "Healthy/Expert2_masks/N-23-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-28-R.jpg", + "Healthy/Expert2_masks/N-28-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-29-L.jpg", + "Healthy/Expert2_masks/N-29-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-2-R.jpg", + "Healthy/Expert2_masks/N-2-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-30-R.jpg", + "Healthy/Expert2_masks/N-30-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-31-L.jpg", + "Healthy/Expert2_masks/N-31-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-32-R.jpg", + "Healthy/Expert2_masks/N-32-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-33-L.jpg", + "Healthy/Expert2_masks/N-33-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-34-R.jpg", + "Healthy/Expert2_masks/N-34-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-35-L.jpg", + "Healthy/Expert2_masks/N-35-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-36-R.jpg", + "Healthy/Expert2_masks/N-36-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-37-L.jpg", + "Healthy/Expert2_masks/N-37-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-38-R.jpg", + "Healthy/Expert2_masks/N-38-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-39-L.jpg", + "Healthy/Expert2_masks/N-39-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-3-L.jpg", + "Healthy/Expert2_masks/N-3-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-40-R.jpg", + "Healthy/Expert2_masks/N-40-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-41-L.jpg", + "Healthy/Expert2_masks/N-41-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-42-R.jpg", + "Healthy/Expert2_masks/N-42-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-43-L.jpg", + "Healthy/Expert2_masks/N-43-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-44-R.jpg", + "Healthy/Expert2_masks/N-44-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-46-R.jpg", + "Healthy/Expert2_masks/N-46-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-47-L.jpg", + "Healthy/Expert2_masks/N-47-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-48-R.jpg", + "Healthy/Expert2_masks/N-48-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-49-L.jpg", + "Healthy/Expert2_masks/N-49-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-4-R.jpg", + "Healthy/Expert2_masks/N-4-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-50-R.jpg", + "Healthy/Expert2_masks/N-50-R-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-51-L.jpg", + "Healthy/Expert2_masks/N-51-L-1-Disc-exp2.png" + ], + [ + "Healthy/Stereo Images/N-78-R.jpg", + "Healthy/Expert2_masks/N-78-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-29-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-29-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-2-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-2-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-30-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-30-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-31-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-31-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-32-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-32-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-33-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-33-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-34-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-34-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-35-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-35-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-3-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-3-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-4-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-4-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-5-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-5-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-6-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-6-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-7-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-7-L-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-8-R.jpg", + "Glaucoma and suspects/Expert2_masks/S-8-R-1-Disc-exp2.png" + ], + [ + "Glaucoma and suspects/Stereo Images/S-9-L.jpg", + "Glaucoma and suspects/Expert2_masks/S-9-L-1-Disc-exp2.png" + ] + ] +} diff --git a/bob/ip/binseg/data/sample.py b/bob/ip/binseg/data/sample.py new file mode 100644 index 0000000000000000000000000000000000000000..2d85bf35b4d548d0ea25aeda194dc1bc33bb8a2f --- /dev/null +++ b/bob/ip/binseg/data/sample.py @@ -0,0 +1,110 @@ +from collections.abc import MutableSequence + +"""Base definition of sample + +.. todo:: + + Copied from bob/bob.pipelines **TEMPORARILY**! Remove this and use the + package directly! + +""" + + +def _copy_attributes(s, d): + """Copies attributes from a dictionary to self + """ + s.__dict__.update( + dict([k, v] for k, v in d.items() if k not in ("data", "load", "samples")) + ) + + +class DelayedSample: + """Representation of sample that can be loaded via a callable + + The optional ``**kwargs`` argument allows you to attach more attributes to + this sample instance. + + + Parameters + ---------- + + load : object + A python function that can be called parameterlessly, to load the + sample in question from whatever medium + + parent : :py:class:`DelayedSample`, :py:class:`Sample`, None + If passed, consider this as a parent of this sample, to copy + information + + kwargs : dict + Further attributes of this sample, to be stored and eventually + transmitted to transformed versions of the sample + + """ + + def __init__(self, load, parent=None, **kwargs): + self.load = load + if parent is not None: + _copy_attributes(self, parent.__dict__) + _copy_attributes(self, kwargs) + + @property + def data(self): + """Loads the data from the disk file""" + return self.load() + + +class Sample: + """Representation of sample that is sufficient for the blocks in this module + + Each sample must have the following attributes: + + * attribute ``data``: Contains the data for this sample + + + Parameters + ---------- + + data : object + Object representing the data to initialize this sample with. + + parent : object + A parent object from which to inherit all other attributes (except + ``data``) + + """ + + def __init__(self, data, parent=None, **kwargs): + self.data = data + if parent is not None: + _copy_attributes(self, parent.__dict__) + _copy_attributes(self, kwargs) + + + +class SampleSet(MutableSequence): + """A set of samples with extra attributes + https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes + """ + + def __init__(self, samples, parent=None, **kwargs): + self.samples = samples + if parent is not None: + _copy_attributes(self, parent.__dict__) + _copy_attributes(self, kwargs) + + def __len__(self): + return len(self.samples) + + def __getitem__(self, item): + return self.samples.__getitem__(item) + + def __setitem__(self, key, item): + return self.samples.__setitem__(key, item) + + def __delitem__(self, item): + return self.samples.__delitem__(item) + + def insert(self, index, item): + # if not item in self.samples: + self.samples.insert(index, item) diff --git a/bob/ip/binseg/data/stare/__init__.py b/bob/ip/binseg/data/stare/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..753c98feb92884f4f3ad11de3cc781a99d1bdb9e --- /dev/null +++ b/bob/ip/binseg/data/stare/__init__.py @@ -0,0 +1,73 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""STARE dataset for Vessel Segmentation + +A subset of the original STARE dataset contains 20 annotated eye fundus images +with a resolution of 700 x 605 (width x height). Two sets of ground-truth +vessel annotations are available. The first set by Adam Hoover ("ah") is +commonly used for training and testing. The second set by Valentina Kouznetsova +("vk") is typically used as a “human†baseline. + +* Reference: [STARE-2000]_ +* Original resolution (width x height): 700 x 605 +* Split reference: [MANINIS-2016]_ +* Protocol ``ah`` (default baseline): + + * Training samples: 10 (including labels from annotator "ah") + * Test samples: 10 (including labels from annotator "ah") + +* Protocol ``vk`` (normally used as human comparison): + + * Training samples: 10 (including labels from annotator "vk") + * Test samples: 10 (including labels from annotator "vk") + +""" + +import os +import pkg_resources + +import bob.extension + +from ..dataset import JSONDataset +from ..loader import load_pil_rgb, load_pil_1, make_delayed + +_protocols = [ + pkg_resources.resource_filename(__name__, "ah.json"), + pkg_resources.resource_filename(__name__, "vk.json"), +] + +_fieldnames = ("data", "label") + +_root_path = bob.extension.rc.get( + "bob.ip.binseg.stare.datadir", os.path.realpath(os.curdir) +) + + +def _make_loader(root_path): + #hack to get testing on the CI working fine for this dataset + + def _raw_data_loader(sample): + return dict( + data=load_pil_rgb(os.path.join(root_path, sample["data"])), + label=load_pil_1(os.path.join(root_path, sample["label"])), + ) + + def _loader(context, sample): + # "context" is ignored in this case - database is homogeneous + # we returned delayed samples to avoid loading all images at once + return make_delayed(sample, _raw_data_loader) + + return _loader + + +def _make_dataset(root_path): + + return JSONDataset( + protocols=_protocols, + fieldnames=_fieldnames, + loader=_make_loader(root_path), + ) + +dataset = _make_dataset(_root_path) +"""STARE dataset object""" diff --git a/bob/ip/binseg/data/stare/ah.json b/bob/ip/binseg/data/stare/ah.json new file mode 100644 index 0000000000000000000000000000000000000000..38a965944c32d96bfe7e54bf7ca94eaf0a19dcc8 --- /dev/null +++ b/bob/ip/binseg/data/stare/ah.json @@ -0,0 +1,86 @@ +{ + "train": [ + [ + "stare-images/im0001.ppm", + "labels-ah/im0001.ah.ppm" + ], + [ + "stare-images/im0002.ppm", + "labels-ah/im0002.ah.ppm" + ], + [ + "stare-images/im0003.ppm", + "labels-ah/im0003.ah.ppm" + ], + [ + "stare-images/im0004.ppm", + "labels-ah/im0004.ah.ppm" + ], + [ + "stare-images/im0005.ppm", + "labels-ah/im0005.ah.ppm" + ], + [ + "stare-images/im0044.ppm", + "labels-ah/im0044.ah.ppm" + ], + [ + "stare-images/im0077.ppm", + "labels-ah/im0077.ah.ppm" + ], + [ + "stare-images/im0081.ppm", + "labels-ah/im0081.ah.ppm" + ], + [ + "stare-images/im0082.ppm", + "labels-ah/im0082.ah.ppm" + ], + [ + "stare-images/im0139.ppm", + "labels-ah/im0139.ah.ppm" + ] + ], + "test": [ + [ + "stare-images/im0162.ppm", + "labels-ah/im0162.ah.ppm" + ], + [ + "stare-images/im0163.ppm", + "labels-ah/im0163.ah.ppm" + ], + [ + "stare-images/im0235.ppm", + "labels-ah/im0235.ah.ppm" + ], + [ + "stare-images/im0236.ppm", + "labels-ah/im0236.ah.ppm" + ], + [ + "stare-images/im0239.ppm", + "labels-ah/im0239.ah.ppm" + ], + [ + "stare-images/im0240.ppm", + "labels-ah/im0240.ah.ppm" + ], + [ + "stare-images/im0255.ppm", + "labels-ah/im0255.ah.ppm" + ], + [ + "stare-images/im0291.ppm", + "labels-ah/im0291.ah.ppm" + ], + [ + "stare-images/im0319.ppm", + "labels-ah/im0319.ah.ppm" + ], + [ + "stare-images/im0324.ppm", + "labels-ah/im0324.ah.ppm" + ] + ] +} diff --git a/bob/ip/binseg/data/stare/vk.json b/bob/ip/binseg/data/stare/vk.json new file mode 100644 index 0000000000000000000000000000000000000000..2d9d4e464a13de83ca164b4d02e99e7704e0857b --- /dev/null +++ b/bob/ip/binseg/data/stare/vk.json @@ -0,0 +1,86 @@ +{ + "train": [ + [ + "stare-images/im0001.ppm", + "labels-vk/im0001.vk.ppm" + ], + [ + "stare-images/im0002.ppm", + "labels-vk/im0002.vk.ppm" + ], + [ + "stare-images/im0003.ppm", + "labels-vk/im0003.vk.ppm" + ], + [ + "stare-images/im0004.ppm", + "labels-vk/im0004.vk.ppm" + ], + [ + "stare-images/im0005.ppm", + "labels-vk/im0005.vk.ppm" + ], + [ + "stare-images/im0044.ppm", + "labels-vk/im0044.vk.ppm" + ], + [ + "stare-images/im0077.ppm", + "labels-vk/im0077.vk.ppm" + ], + [ + "stare-images/im0081.ppm", + "labels-vk/im0081.vk.ppm" + ], + [ + "stare-images/im0082.ppm", + "labels-vk/im0082.vk.ppm" + ], + [ + "stare-images/im0139.ppm", + "labels-vk/im0139.vk.ppm" + ] + ], + "test": [ + [ + "stare-images/im0162.ppm", + "labels-vk/im0162.vk.ppm" + ], + [ + "stare-images/im0163.ppm", + "labels-vk/im0163.vk.ppm" + ], + [ + "stare-images/im0235.ppm", + "labels-vk/im0235.vk.ppm" + ], + [ + "stare-images/im0236.ppm", + "labels-vk/im0236.vk.ppm" + ], + [ + "stare-images/im0239.ppm", + "labels-vk/im0239.vk.ppm" + ], + [ + "stare-images/im0240.ppm", + "labels-vk/im0240.vk.ppm" + ], + [ + "stare-images/im0255.ppm", + "labels-vk/im0255.vk.ppm" + ], + [ + "stare-images/im0291.ppm", + "labels-vk/im0291.vk.ppm" + ], + [ + "stare-images/im0319.ppm", + "labels-vk/im0319.vk.ppm" + ], + [ + "stare-images/im0324.ppm", + "labels-vk/im0324.vk.ppm" + ] + ] +} diff --git a/bob/ip/binseg/data/transforms.py b/bob/ip/binseg/data/transforms.py index b97fe7959ba95e571462d6f6d9d2ddade9fad226..bea81bcd9dbf7ba998795f96c35ccae3b7c1b417 100644 --- a/bob/ip/binseg/data/transforms.py +++ b/bob/ip/binseg/data/transforms.py @@ -1,76 +1,57 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -import torchvision.transforms.functional as VF +"""Image transformations for our pipelines + +Differences between methods here and those from +:py:mod:`torchvision.transforms` is that these support multiple simultaneous +image inputs, which are required to feed segmentation networks (e.g. image and +labels or masks). We also take care of data augmentations, in which random +flipping and rotation needs to be applied across all input images, but color +jittering, for example, only on the input image. +""" + import random -import PIL -from PIL import Image -from torchvision.transforms.transforms import Lambda -from torchvision.transforms.transforms import Compose as TorchVisionCompose -import math -from math import floor -import warnings -import collections -import bob.core - -_pil_interpolation_to_str = { - Image.NEAREST: 'PIL.Image.NEAREST', - Image.BILINEAR: 'PIL.Image.BILINEAR', - Image.BICUBIC: 'PIL.Image.BICUBIC', - Image.LANCZOS: 'PIL.Image.LANCZOS', - Image.HAMMING: 'PIL.Image.HAMMING', - Image.BOX: 'PIL.Image.BOX', -} -Iterable = collections.abc.Iterable - -# Compose - -class Compose: - """Composes several transforms. - Attributes - ---------- - transforms : list - list of transforms to compose. - """ +import numpy +import PIL.Image +import torchvision.transforms +import torchvision.transforms.functional + - def __init__(self, transforms): - self.transforms = transforms +class TupleMixin: + """Adds support to work with tuples of objects to torchvision transforms""" def __call__(self, *args): - for t in self.transforms: - args = t(*args) - return args + return [super(TupleMixin, self).__call__(k) for k in args] - def __repr__(self): - format_string = self.__class__.__name__ + '(' - for t in self.transforms: - format_string += '\n' - format_string += ' {0}'.format(t) - format_string += '\n)' - return format_string -# Preprocessing +class CenterCrop(TupleMixin, torchvision.transforms.CenterCrop): + pass -class CenterCrop: - """ - Crop at the center. - Attributes - ---------- - size : int - target size - """ - def __init__(self, size): - self.size = size +class Pad(TupleMixin, torchvision.transforms.Pad): + pass + + +class Resize(TupleMixin, torchvision.transforms.Resize): + pass + + +class ToTensor(TupleMixin, torchvision.transforms.ToTensor): + pass + +class Compose(torchvision.transforms.Compose): def __call__(self, *args): - return [VF.center_crop(img, self.size) for img in args] + for t in self.transforms: + args = t(*args) + return args -class Crop: +class SingleCrop: """ - Crop at the given coordinates. + Crops one image at the given coordinates. Attributes ---------- @@ -83,304 +64,205 @@ class Crop: w : int width of the cropped image. """ + def __init__(self, i, j, h, w): self.i = i self.j = j self.h = h self.w = w - def __call__(self, *args): - return [img.crop((self.j, self.i, self.j + self.w, self.i + self.h)) for img in args] + def __call__(self, img): + return img.crop((self.j, self.i, self.j + self.w, self.i + self.h)) -class Pad: + +class Crop(TupleMixin, SingleCrop): """ - Constant padding + Crops multiple images at the given coordinates. Attributes ---------- - padding : int or tuple - padding on each border. If a single int is provided this is used to pad all borders. - If tuple of length 2 is provided this is the padding on left/right and top/bottom respectively. - If a tuple of length 4 is provided this is the padding for the left, top, right and bottom borders respectively. - - fill : int - pixel fill value for constant fill. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. - This value is only used when the padding_mode is constant + i : int + upper pixel coordinate. + j : int + left pixel coordinate. + h : int + height of the cropped image. + w : int + width of the cropped image. """ - def __init__(self, padding, fill=0): - self.padding = padding - self.fill = fill - def __call__(self, *args): - return [VF.pad(img, self.padding, self.fill, padding_mode='constant') for img in args] + pass + -class AutoLevel16to8: +class SingleAutoLevel16to8: """Converts a 16-bit image to 8-bit representation using "auto-level" + This transform assumes that the input image is gray-scaled. + + To auto-level, we calculate the maximum and the minimum of the image, and + consider such a range should be mapped to the [0,255] range of the + destination image. + + """ + + def __call__(self, img): + imin, imax = img.getextrema() + irange = imax - imin + return PIL.Image.fromarray( + numpy.round( + 255.0 * (numpy.array(img).astype(float) - imin) / irange + ).astype("uint8"), + ).convert("L") + + +class AutoLevel16to8(TupleMixin, SingleAutoLevel16to8): + """Converts multiple 16-bit images to 8-bit representations using "auto-level" + This transform assumes that the input images are gray-scaled. To auto-level, we calculate the maximum and the minimum of the image, and consider such a range should be mapped to the [0,255] range of the destination image. """ - def _process_one(self, img): - return Image.fromarray(bob.core.convert(img, 'uint8', (0,255), - img.getextrema())) - def __call__(self, *args): - return [self._process_one(img) for img in args] + pass + -class ToRGB: +class SingleToRGB: """Converts from any input format to RGB, using an ADAPTIVE conversion. This transform takes the input image and converts it to RGB using - py:method:`Image.Image.convert`, with `mode='RGB'` and using all other + py:method:`PIL.Image.Image.convert`, with `mode='RGB'` and using all other defaults. This may be aggressive if applied to 16-bit images without further considerations. """ - def __call__(self, *args): - return [img.convert(mode="RGB") for img in args] -class ToTensor: - """Converts :py:class:`PIL.Image.Image` to :py:class:`torch.Tensor` """ - def __call__(self, *args): - return [VF.to_tensor(img) for img in args] + def __call__(self, img): + return img.convert(mode="RGB") -# Augmentations +class ToRGB(TupleMixin, SingleToRGB): + """Converts from any input format to RGB, using an ADAPTIVE conversion. -class RandomHFlip: + This transform takes the input image and converts it to RGB using + py:method:`PIL.Image.Image.convert`, with `mode='RGB'` and using all other + defaults. This may be aggressive if applied to 16-bit images without + further considerations. """ - Flips horizontally - Attributes - ---------- - prob : float - probability at which imgage is flipped. Defaults to ``0.5`` - """ - def __init__(self, prob = 0.5): - self.prob = prob + pass - def __call__(self, *args): - if random.random() < self.prob: - return [VF.hflip(img) for img in args] +class RandomHorizontalFlip(torchvision.transforms.RandomHorizontalFlip): + """Randomly flips all input images horizontally""" + + def __call__(self, *args): + if random.random() < self.p: + return [ + torchvision.transforms.functional.hflip(img) for img in args + ] else: return args -class RandomVFlip: - """ - Flips vertically - - Attributes - ---------- - prob : float - probability at which imgage is flipped. Defaults to ``0.5`` - """ - def __init__(self, prob = 0.5): - self.prob = prob +class RandomVerticalFlip(torchvision.transforms.RandomVerticalFlip): + """Randomly flips all input images vertically""" def __call__(self, *args): - if random.random() < self.prob: - return [VF.vflip(img) for img in args] - + if random.random() < self.p: + return [ + torchvision.transforms.functional.vflip(img) for img in args + ] else: return args -class RandomRotation: - """ - Rotates by degree - - Attributes - ---------- - degree_range : tuple - range of degrees in which image and ground truth are rotated. Defaults to ``(-15, +15)`` - prob : float - probability at which imgage is rotated. Defaults to ``0.5`` - """ - def __init__(self, degree_range = (-15, +15), prob = 0.5): - self.prob = prob - self.degree_range = degree_range +class RandomRotation(torchvision.transforms.RandomRotation): + """Randomly rotates all input images by the same amount - def __call__(self, *args): - if random.random() < self.prob: - degree = random.randint(*self.degree_range) - return [VF.rotate(img, degree, resample = Image.BILINEAR) for img in args] - else: - return args + Unlike the current torchvision implementation, we also accept a probability + for applying the rotation. -class ColorJitter(object): - """ - Randomly change the brightness, contrast, saturation and hue - Attributes + Parameters ---------- - brightness : float - how much to jitter brightness. brightness_factor - is chosen uniformly from ``[max(0, 1 - brightness), 1 + brightness]``. - contrast : float - how much to jitter contrast. contrast_factor - is chosen uniformly from ``[max(0, 1 - contrast), 1 + contrast]``. - saturation : float - how much to jitter saturation. saturation_factor - is chosen uniformly from ``[max(0, 1 - saturation), 1 + saturation]``. - hue : float - how much to jitter hue. hue_factor is chosen uniformly from - ``[-hue, hue]``. Should be >=0 and <= 0.5 - prob : float - probability at which the operation is applied - """ - def __init__(self, brightness=0.3, contrast=0.3, saturation=0.02, hue=0.02, prob=0.5): - self.brightness = brightness - self.contrast = contrast - self.saturation = saturation - self.hue = hue - self.prob = prob - - @staticmethod - def get_params(brightness, contrast, saturation, hue): - transforms = [] - if brightness > 0: - brightness_factor = random.uniform(max(0, 1 - brightness), 1 + brightness) - transforms.append(Lambda(lambda img: VF.adjust_brightness(img, brightness_factor))) - if contrast > 0: - contrast_factor = random.uniform(max(0, 1 - contrast), 1 + contrast) - transforms.append(Lambda(lambda img: VF.adjust_contrast(img, contrast_factor))) + p : :py:class:`float`, Optional + probability at which the operation is applied - if saturation > 0: - saturation_factor = random.uniform(max(0, 1 - saturation), 1 + saturation) - transforms.append(Lambda(lambda img: VF.adjust_saturation(img, saturation_factor))) + **kwargs : dict + passed to parent. Notice that, if not set, we use the following + defaults here for the underlying transform from torchvision: - if hue > 0: - hue_factor = random.uniform(-hue, hue) - transforms.append(Lambda(lambda img: VF.adjust_hue(img, hue_factor))) + * ``degrees``: 15 + * ``resample``: ``PIL.Image.BILINEAR`` - random.shuffle(transforms) - transform = TorchVisionCompose(transforms) + """ - return transform + def __init__(self, p=0.5, **kwargs): + kwargs.setdefault("degrees", 15) + kwargs.setdefault("resample", PIL.Image.BILINEAR) + super(RandomRotation, self).__init__(**kwargs) + self.p = p def __call__(self, *args): - if random.random() < self.prob: - transform = self.get_params(self.brightness, self.contrast, - self.saturation, self.hue) - trans_img = transform(args[0]) - return [trans_img, *args[1:]] + # applies **the same** rotation to all inputs (data and ground-truth) + if random.random() < self.p: + angle = self.get_params(self.degrees) + return [ + torchvision.transforms.functional.rotate( + img, angle, self.resample, self.expand, self.center + ) + for img in args + ] else: return args + def __repr__(self): + retval = super(RandomRotation, self).__repr__() + return retval.replace("(", f"(p={self.p},", 1) -class RandomResizedCrop: - """Crop to random size and aspect ratio. - A crop of random size of the original size and a random aspect ratio of - the original aspect ratio is made. This crop is finally resized to - given size. This is popularly used to train the Inception networks. - Attributes - ---------- - size : int - expected output size of each edge - scale : tuple - range of size of the origin size cropped. Defaults to ``(0.08, 1.0)`` - ratio : tuple - range of aspect ratio of the origin aspect ratio cropped. Defaults to ``(3. / 4., 4. / 3.)`` - interpolation : - Defaults to ``PIL.Image.BILINEAR`` - prob : float - probability at which the operation is applied. Defaults to ``0.5`` - """ +class ColorJitter(torchvision.transforms.ColorJitter): + """Randomly applies a color jitter transformation on the **first** image - def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR, prob = 0.5): - if isinstance(size, tuple): - self.size = size - else: - self.size = (size, size) - if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): - warnings.warn("range should be of kind (min, max)") - - self.interpolation = interpolation - self.scale = scale - self.ratio = ratio - self.prob = prob - - @staticmethod - def get_params(img, scale, ratio): - area = img.size[0] * img.size[1] - - for attempt in range(10): - target_area = random.uniform(*scale) * area - log_ratio = (math.log(ratio[0]), math.log(ratio[1])) - aspect_ratio = math.exp(random.uniform(*log_ratio)) - - w = int(round(math.sqrt(target_area * aspect_ratio))) - h = int(round(math.sqrt(target_area / aspect_ratio))) - - if w <= img.size[0] and h <= img.size[1]: - i = random.randint(0, img.size[1] - h) - j = random.randint(0, img.size[0] - w) - return i, j, h, w - - # Fallback to central crop - in_ratio = img.size[0] / img.size[1] - if (in_ratio < min(ratio)): - w = img.size[0] - h = w / min(ratio) - elif (in_ratio > max(ratio)): - h = img.size[1] - w = h * max(ratio) - else: # whole image - w = img.size[0] - h = img.size[1] - i = (img.size[1] - h) // 2 - j = (img.size[0] - w) // 2 - return i, j, h, w + Notice this transform extension, unlike others in this module, only affects + the first image passed as input argument. Unlike the current torchvision + implementation, we also accept a probability for applying the jitter. - def __call__(self, *args): - if random.random() < self.prob: - imgs = [] - for img in args: - i, j, h, w = self.get_params(img, self.scale, self.ratio) - img = VF.resized_crop(img, i, j, h, w, self.size, self.interpolation) - imgs.append(img) - return imgs - else: - return args - def __repr__(self): - interpolate_str = _pil_interpolation_to_str[self.interpolation] - format_string = self.__class__.__name__ + '(size={0}'.format(self.size) - format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) - format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) - format_string += ', interpolation={0})'.format(interpolate_str) - return format_string + Parameters + ---------- + p : :py:class:`float`, Optional + probability at which the operation is applied -class Resize: - """Resize to given size. + **kwargs : dict + passed to parent. Notice that, if not set, we use the following + defaults here for the underlying transform from torchvision: + + * ``brightness``: 0.3 + * ``contrast``: 0.3 + * ``saturation``: 0.02 + * ``hue``: 0.02 - Attributes - ---------- - size : tuple or int - Desired output size. If size is a sequence like - (h, w), output size will be matched to this. If size is an int, - smaller edge of the image will be matched to this number. - i.e, if height > width, then image will be rescaled to - (size * height / width, size) - interpolation : int - Desired interpolation. Default is``PIL.Image.BILINEAR`` """ - def __init__(self, size, interpolation=Image.BILINEAR): - assert isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2) - self.size = size - self.interpolation = interpolation + def __init__(self, p=0.5, **kwargs): + kwargs.setdefault("brightness", 0.3) + kwargs.setdefault("contrast", 0.3) + kwargs.setdefault("saturation", 0.02) + kwargs.setdefault("hue", 0.02) + super(ColorJitter, self).__init__(**kwargs) + self.p = p def __call__(self, *args): - return [VF.resize(img, self.size, self.interpolation) for img in args] + if random.random() < self.p: + # applies color jitter only to the input image not ground-truth + return [super(ColorJitter, self).__call__(args[0]), *args[1:]] + else: + return args def __repr__(self): - interpolate_str = _pil_interpolation_to_str[self.interpolation] - return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str) + retval = super(ColorJitter, self).__repr__() + return retval.replace("(", f"(p={self.p},", 1) diff --git a/bob/ip/binseg/data/utils.py b/bob/ip/binseg/data/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..2d1439a63e774d7270e76ca9b1fd3f030d6aec72 --- /dev/null +++ b/bob/ip/binseg/data/utils.py @@ -0,0 +1,288 @@ +#!/usr/bin/env python +# coding=utf-8 + + +"""Common utilities""" + +import contextlib + +import PIL.Image +import PIL.ImageOps +import PIL.ImageChops + +import torch +import torch.utils.data + +from .transforms import Compose, ToTensor + + +def invert_mode1_image(img): + """Inverts a binary PIL image (mode == ``"1"``)""" + + return PIL.ImageOps.invert(img.convert("RGB")).convert( + mode="1", dither=None + ) + + +def subtract_mode1_images(img1, img2): + """Returns a new image that represents ``img1 - img2``""" + + return PIL.ImageChops.subtract(img1, img2) + + +def overlayed_image( + img, + label, + mask=None, + label_color=(0, 255, 0), + mask_color=(0, 0, 255), + alpha=0.4, +): + """Creates an image showing existing labels and masko + + This function creates a new representation of the input image ``img`` + overlaying a green mask for labelled objects, and a red mask for parts of + the image that should be ignored (negative mask). By looking at this + representation, it shall be possible to verify if the dataset/loader is + yielding images correctly. + + + Parameters + ---------- + + img : PIL.Image.Image + An RGB PIL image that represents the original image for analysis + + label : PIL.Image.Image + A PIL image in any mode that represents the labelled elements in the + image. In case of images in mode "L" or "1", white pixels represent + the labelled object. Black-er pixels represent background. + + mask : py:class:`PIL.Image.Image`, Optional + A PIL image in mode "1" that represents the mask for the image. White + pixels indicate where content should be used, black pixels, content to + be ignored. + + label_color : py:class:`tuple`, Optional + A tuple with three integer entries indicating the RGB color to be used + for labels. Only used if ``label.mode`` is "1" or "L". + + mask_color : py:class:`tuple`, Optional + A tuple with three integer entries indicating the RGB color to be used + for the mask-negative (black parts in the original mask). + + alpha : py:class:`float`, Optional + A float that indicates how much of blending should be performed between + the label, mask and the original image. + + + Returns + ------- + + image : PIL.Image.Image + A new image overlaying the original image, object labels (in green) and + what is to be considered parts to be **masked-out** (i.e. a + representation of a negative of the mask). + + """ + + # creates a representation of labels, in RGB format, with the right color + if label.mode in ("1", "L"): + label_colored = PIL.ImageOps.colorize( + label.convert("L"), (0, 0, 0), label_color + ) + else: + # user has already passed an RGB version of the labels, just compose + label_colored = label + + # blend image and label together - first blend to get vessels drawn with a + # slight "label_color" tone on top, then composite with original image, to + # avoid loosing brightness. + retval = PIL.Image.blend(img, label_colored, alpha) + if label.mode == "1": + composite_mask = invert_mode1_image(label) + else: + composite_mask = PIL.ImageOps.invert(label.convert("L")) + retval = PIL.Image.composite(img, retval, composite_mask) + + # creates a representation of the mask negative with the right color + if mask is not None: + antimask_colored = PIL.ImageOps.colorize( + mask.convert("L"), mask_color, (0, 0, 0) + ) + tmp = PIL.Image.blend(retval, antimask_colored, alpha) + retval = PIL.Image.composite(retval, tmp, mask) + + return retval + + +class SampleListDataset(torch.utils.data.Dataset): + """PyTorch dataset wrapper around Sample lists + + A transform object can be passed that will be applied to the image, ground + truth and mask (if present). + + It supports indexing such that dataset[i] can be used to get ith sample. + + + Attributes + ---------- + + transforms : list + An accessor to the list of transforms to be applied (excluding the last + transform, which is fixed). Notice that, after setting, a last transform + (:py:class:`bob.ip.binseg.data.transforms.ToTensor`) is always applied + - you do not need to add that. + + + Parameters + ---------- + + samples : list + A list of :py:class:`bob.ip.binseg.data.sample.Sample` objects + + transforms : :py:class:`list`, Optional + a list of transformations to be applied to **both** image and + ground-truth data. Notice a last transform + (:py:class:`bob.ip.binseg.data.transforms.ToTensor`) is always applied + - you do not need to add that. + + """ + + def __init__(self, samples, transforms=[]): + + self._samples = samples + self.transforms = transforms + + @property + def transforms(self): + return self._transforms.transforms[:-1] + + @transforms.setter + def transforms(self, l): + self._transforms = Compose(l + [ToTensor()]) + + def copy(self, transforms=None): + """Returns a deep copy of itself, optionally resetting transforms + + Parameters + ---------- + + transforms : :py:class:`list`, Optional + An optional list of transforms to set in the copy. If not + specified, use ``self.transforms``. + """ + + return SampleListDataset(self._samples, transforms or self.transforms) + + def __len__(self): + """ + + Returns + ------- + + size : int + size of the dataset + + """ + return len(self._samples) + + def __getitem__(self, key): + """ + + Parameters + ---------- + + key : int, slice + + Returns + ------- + + sample : list + The sample data: ``[key, image[, gt[, mask]]]`` + + """ + + if isinstance(key, slice): + return [self[k] for k in range(*key.indices(len(self)))] + else: # we try it as an int + item = self._samples[key] + data = item.data # triggers data loading + + retval = [data["data"]] + if "label" in data: + retval.append(data["label"]) + if "mask" in data: + retval.append(data["mask"]) + + if self._transforms: + retval = self._transforms(*retval) + + return [item.key] + retval + + +class SSLDataset(torch.utils.data.Dataset): + """PyTorch dataset wrapper around labelled and unlabelled sample lists + + Yields elements of the form: + + .. code-block:: text + + [key, image, ground-truth, [mask,] unlabelled-key, unlabelled-image] + + The size of the dataset is the same as the labelled dataset. + + Indexing works by selecting the right element on the labelled dataset, and + randomly picking another one from the unlabelled dataset + + Parameters + ---------- + + labelled : :py:class:`torch.utils.data.Dataset` + Labelled dataset (**must** have "mask" and "label" entries for every + sample) + + unlabelled : :py:class:`torch.utils.data.Dataset` + Unlabelled dataset (**may** have "mask" and "label" entries for every + sample, but are ignored) + + """ + + def __init__(self, labelled, unlabelled): + self.labelled = labelled + self.unlabelled = unlabelled + + def __len__(self): + """ + + Returns + ------- + + size : int + size of the dataset + + """ + + return len(self.labelled) + + def __getitem__(self, index): + """ + + Parameters + ---------- + index : int + The index for the element to pick + + Returns + ------- + + sample : list + The sample data: ``[key, image, gt, [mask, ]unlab-key, unlab-image]`` + + """ + + retval = self.labelled[index] + # gets one an unlabelled sample randomly to follow the labelled sample + unlab = self.unlabelled[torch.randint(len(self.unlabelled), ())] + # only interested in key and data + return retval + unlab[:2] diff --git a/bob/ip/binseg/engine/__init__.py b/bob/ip/binseg/engine/__init__.py index 2ca5e07cb73f0bdddcb863ef497955964087e301..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644 --- a/bob/ip/binseg/engine/__init__.py +++ b/bob/ip/binseg/engine/__init__.py @@ -1,3 +0,0 @@ -# see https://docs.python.org/3/library/pkgutil.html -from pkgutil import extend_path -__path__ = extend_path(__path__, __name__) \ No newline at end of file diff --git a/bob/ip/binseg/engine/adabound.py b/bob/ip/binseg/engine/adabound.py index e220db5809f96d482d93059f4ee2f2bae1aec8bd..683bd76f4cf11412780bc5b78a2fa6d687707534 100644 --- a/bob/ip/binseg/engine/adabound.py +++ b/bob/ip/binseg/engine/adabound.py @@ -1,46 +1,70 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -""" -https://github.com/Luolc/AdaBound/blob/master/adabound/adabound.py - -@inproceedings{Luo2019AdaBound, - author = {Luo, Liangchen and Xiong, Yuanhao and Liu, Yan and Sun, Xu}, - title = {Adaptive Gradient Methods with Dynamic Bound of Learning Rate}, - booktitle = {Proceedings of the 7th International Conference on Learning Representations}, - month = {May}, - year = {2019}, - address = {New Orleans, Louisiana} -} """ +Implementation of the `AdaBound optimizer +<https://github.com/Luolc/AdaBound/blob/master/adabound/adabound.py>`:: + + @inproceedings{Luo2019AdaBound, + author = {Luo, Liangchen and Xiong, Yuanhao and Liu, Yan and Sun, Xu}, + title = {Adaptive Gradient Methods with Dynamic Bound of Learning Rate}, + booktitle = {Proceedings of the 7th International Conference on Learning Representations}, + month = {May}, + year = {2019}, + address = {New Orleans, Louisiana} + } + +""" + import math import torch -from torch.optim import Optimizer +import torch.optim -class AdaBound(Optimizer): - """Implements AdaBound algorithm. - It has been proposed in `Adaptive Gradient Methods with Dynamic Bound of Learning Rate`_. - +class AdaBound(torch.optim.Optimizer): + """Implements the AdaBound algorithm. + Parameters ---------- - params (iterable): iterable of parameters to optimize or dicts defining - parameter groups - lr (float, optional): Adam learning rate (default: 1e-3) - betas (Tuple[float, float], optional): coefficients used for computing - running averages of gradient and its square (default: (0.9, 0.999)) - final_lr (float, optional): final (SGD) learning rate (default: 0.1) - gamma (float, optional): convergence speed of the bound functions (default: 1e-3) - eps (float, optional): term added to the denominator to improve - numerical stability (default: 1e-8) - weight_decay (float, optional): weight decay (L2 penalty) (default: 0) - amsbound (boolean, optional): whether to use the AMSBound variant of this algorithm - .. Adaptive Gradient Methods with Dynamic Bound of Learning Rate: - https://openreview.net/forum?id=Bkg3g2R9FX + + params : list + Iterable of parameters to optimize or dicts defining parameter groups + + lr : :obj:`float`, optional + Adam learning rate + + betas : :obj:`tuple`, optional + Coefficients (as a 2-tuple of floats) used for computing running + averages of gradient and its square + + final_lr : :obj:`float`, optional + Final (SGD) learning rate + + gamma : :obj:`float`, optional + Convergence speed of the bound functions + + eps : :obj:`float`, optional + Term added to the denominator to improve numerical stability + + weight_decay : :obj:`float`, optional + Weight decay (L2 penalty) + + amsbound : :obj:`bool`, optional + Whether to use the AMSBound variant of this algorithm + """ - def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), final_lr=0.1, gamma=1e-3, - eps=1e-8, weight_decay=0, amsbound=False): + def __init__( + self, + params, + lr=1e-3, + betas=(0.9, 0.999), + final_lr=0.1, + gamma=1e-3, + eps=1e-8, + weight_decay=0, + amsbound=False, + ): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: @@ -53,60 +77,71 @@ class AdaBound(Optimizer): raise ValueError("Invalid final learning rate: {}".format(final_lr)) if not 0.0 <= gamma < 1.0: raise ValueError("Invalid gamma parameter: {}".format(gamma)) - defaults = dict(lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, eps=eps, - weight_decay=weight_decay, amsbound=amsbound) + defaults = dict( + lr=lr, + betas=betas, + final_lr=final_lr, + gamma=gamma, + eps=eps, + weight_decay=weight_decay, + amsbound=amsbound, + ) super(AdaBound, self).__init__(params, defaults) - self.base_lrs = list(map(lambda group: group['lr'], self.param_groups)) + self.base_lrs = list(map(lambda group: group["lr"], self.param_groups)) def __setstate__(self, state): super(AdaBound, self).__setstate__(state) for group in self.param_groups: - group.setdefault('amsbound', False) + group.setdefault("amsbound", False) def step(self, closure=None): """Performs a single optimization step. - + Parameters ---------- - closure (callable, optional): A closure that reevaluates the model and returns the loss. + + closure : :obj:`callable`, optional + A closure that reevaluates the model and returns the loss. + """ loss = None if closure is not None: loss = closure() for group, base_lr in zip(self.param_groups, self.base_lrs): - for p in group['params']: + for p in group["params"]: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( - 'Adam does not support sparse gradients, please consider SparseAdam instead') - amsbound = group['amsbound'] + "Adam does not support sparse gradients, please consider SparseAdam instead" + ) + amsbound = group["amsbound"] state = self.state[p] # State initialization if len(state) == 0: - state['step'] = 0 + state["step"] = 0 # Exponential moving average of gradient values - state['exp_avg'] = torch.zeros_like(p.data) + state["exp_avg"] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values - state['exp_avg_sq'] = torch.zeros_like(p.data) + state["exp_avg_sq"] = torch.zeros_like(p.data) if amsbound: # Maintains max of all exp. moving avg. of sq. grad. values - state['max_exp_avg_sq'] = torch.zeros_like(p.data) + state["max_exp_avg_sq"] = torch.zeros_like(p.data) - exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] + exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] if amsbound: - max_exp_avg_sq = state['max_exp_avg_sq'] - beta1, beta2 = group['betas'] + max_exp_avg_sq = state["max_exp_avg_sq"] + beta1, beta2 = group["betas"] - state['step'] += 1 + state["step"] += 1 - if group['weight_decay'] != 0: - grad = grad.add(group['weight_decay'], p.data) + if group["weight_decay"] != 0: + grad = grad.add(group["weight_decay"], p.data) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) @@ -115,19 +150,19 @@ class AdaBound(Optimizer): # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient - denom = max_exp_avg_sq.sqrt().add_(group['eps']) + denom = max_exp_avg_sq.sqrt().add_(group["eps"]) else: - denom = exp_avg_sq.sqrt().add_(group['eps']) + denom = exp_avg_sq.sqrt().add_(group["eps"]) - bias_correction1 = 1 - beta1 ** state['step'] - bias_correction2 = 1 - beta2 ** state['step'] - step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 + bias_correction1 = 1 - beta1 ** state["step"] + bias_correction2 = 1 - beta2 ** state["step"] + step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1 # Applies bounds on actual learning rate # lr_scheduler cannot affect final_lr, this is a workaround to apply lr decay - final_lr = group['final_lr'] * group['lr'] / base_lr - lower_bound = final_lr * (1 - 1 / (group['gamma'] * state['step'] + 1)) - upper_bound = final_lr * (1 + 1 / (group['gamma'] * state['step'])) + final_lr = group["final_lr"] * group["lr"] / base_lr + lower_bound = final_lr * (1 - 1 / (group["gamma"] * state["step"] + 1)) + upper_bound = final_lr * (1 + 1 / (group["gamma"] * state["step"])) step_size = torch.full_like(denom, step_size) step_size.div_(denom).clamp_(lower_bound, upper_bound).mul_(exp_avg) @@ -135,29 +170,53 @@ class AdaBound(Optimizer): return loss -class AdaBoundW(Optimizer): - """Implements AdaBound algorithm with Decoupled Weight Decay (arxiv.org/abs/1711.05101) - It has been proposed in `Adaptive Gradient Methods with Dynamic Bound of Learning Rate`_. - + +class AdaBoundW(torch.optim.Optimizer): + """Implements AdaBound algorithm with Decoupled Weight Decay + (See https://arxiv.org/abs/1711.05101) + Parameters ---------- - params (iterable): iterable of parameters to optimize or dicts defining - parameter groups - lr (float, optional): Adam learning rate (default: 1e-3) - betas (Tuple[float, float], optional): coefficients used for computing - running averages of gradient and its square (default: (0.9, 0.999)) - final_lr (float, optional): final (SGD) learning rate (default: 0.1) - gamma (float, optional): convergence speed of the bound functions (default: 1e-3) - eps (float, optional): term added to the denominator to improve - numerical stability (default: 1e-8) - weight_decay (float, optional): weight decay (L2 penalty) (default: 0) - amsbound (boolean, optional): whether to use the AMSBound variant of this algorithm - .. Adaptive Gradient Methods with Dynamic Bound of Learning Rate: - https://openreview.net/forum?id=Bkg3g2R9FX + + params : list + Iterable of parameters to optimize or dicts defining parameter groups + + lr : :obj:`float`, optional + Adam learning rate + + betas : :obj:`tuple`, optional + Coefficients (as a 2-tuple of floats) used for computing running + averages of gradient and its square + + final_lr : :obj:`float`, optional + Final (SGD) learning rate + + gamma : :obj:`float`, optional + Convergence speed of the bound functions + + eps : :obj:`float`, optional + Term added to the denominator to improve numerical stability + + weight_decay : :obj:`float`, optional + Weight decay (L2 penalty) + + amsbound : :obj:`bool`, optional + Whether to use the AMSBound variant of this algorithm + """ - def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), final_lr=0.1, gamma=1e-3, - eps=1e-8, weight_decay=0, amsbound=False): + def __init__( + self, + params, + lr=1e-3, + betas=(0.9, 0.999), + final_lr=0.1, + gamma=1e-3, + eps=1e-8, + weight_decay=0, + amsbound=False, + ): + if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: @@ -170,57 +229,69 @@ class AdaBoundW(Optimizer): raise ValueError("Invalid final learning rate: {}".format(final_lr)) if not 0.0 <= gamma < 1.0: raise ValueError("Invalid gamma parameter: {}".format(gamma)) - defaults = dict(lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, eps=eps, - weight_decay=weight_decay, amsbound=amsbound) + defaults = dict( + lr=lr, + betas=betas, + final_lr=final_lr, + gamma=gamma, + eps=eps, + weight_decay=weight_decay, + amsbound=amsbound, + ) super(AdaBoundW, self).__init__(params, defaults) - self.base_lrs = list(map(lambda group: group['lr'], self.param_groups)) + self.base_lrs = list(map(lambda group: group["lr"], self.param_groups)) def __setstate__(self, state): super(AdaBoundW, self).__setstate__(state) for group in self.param_groups: - group.setdefault('amsbound', False) + group.setdefault("amsbound", False) def step(self, closure=None): """Performs a single optimization step. - + Parameters ---------- - closure (callable, optional): A closure that reevaluates the model and returns the loss. + + closure : :obj:`callable`, optional + A closure that reevaluates the model and returns the loss. + """ + loss = None if closure is not None: loss = closure() for group, base_lr in zip(self.param_groups, self.base_lrs): - for p in group['params']: + for p in group["params"]: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( - 'Adam does not support sparse gradients, please consider SparseAdam instead') - amsbound = group['amsbound'] + "Adam does not support sparse gradients, please consider SparseAdam instead" + ) + amsbound = group["amsbound"] state = self.state[p] # State initialization if len(state) == 0: - state['step'] = 0 + state["step"] = 0 # Exponential moving average of gradient values - state['exp_avg'] = torch.zeros_like(p.data) + state["exp_avg"] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values - state['exp_avg_sq'] = torch.zeros_like(p.data) + state["exp_avg_sq"] = torch.zeros_like(p.data) if amsbound: # Maintains max of all exp. moving avg. of sq. grad. values - state['max_exp_avg_sq'] = torch.zeros_like(p.data) + state["max_exp_avg_sq"] = torch.zeros_like(p.data) - exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] + exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] if amsbound: - max_exp_avg_sq = state['max_exp_avg_sq'] - beta1, beta2 = group['betas'] + max_exp_avg_sq = state["max_exp_avg_sq"] + beta1, beta2 = group["betas"] - state['step'] += 1 + state["step"] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) @@ -229,27 +300,28 @@ class AdaBoundW(Optimizer): # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient - denom = max_exp_avg_sq.sqrt().add_(group['eps']) + denom = max_exp_avg_sq.sqrt().add_(group["eps"]) else: - denom = exp_avg_sq.sqrt().add_(group['eps']) + denom = exp_avg_sq.sqrt().add_(group["eps"]) - bias_correction1 = 1 - beta1 ** state['step'] - bias_correction2 = 1 - beta2 ** state['step'] - step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 + bias_correction1 = 1 - beta1 ** state["step"] + bias_correction2 = 1 - beta2 ** state["step"] + step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1 # Applies bounds on actual learning rate - # lr_scheduler cannot affect final_lr, this is a workaround to apply lr decay - final_lr = group['final_lr'] * group['lr'] / base_lr - lower_bound = final_lr * (1 - 1 / (group['gamma'] * state['step'] + 1)) - upper_bound = final_lr * (1 + 1 / (group['gamma'] * state['step'])) + # lr_scheduler cannot affect final_lr, this is a workaround to + # apply lr decay + final_lr = group["final_lr"] * group["lr"] / base_lr + lower_bound = final_lr * (1 - 1 / (group["gamma"] * state["step"] + 1)) + upper_bound = final_lr * (1 + 1 / (group["gamma"] * state["step"])) step_size = torch.full_like(denom, step_size) step_size.div_(denom).clamp_(lower_bound, upper_bound).mul_(exp_avg) - if group['weight_decay'] != 0: - decayed_weights = torch.mul(p.data, group['weight_decay']) + if group["weight_decay"] != 0: + decayed_weights = torch.mul(p.data, group["weight_decay"]) p.data.add_(-step_size) p.data.sub_(decayed_weights) else: p.data.add_(-step_size) - return loss \ No newline at end of file + return loss diff --git a/bob/ip/binseg/engine/evaluator.py b/bob/ip/binseg/engine/evaluator.py new file mode 100644 index 0000000000000000000000000000000000000000..07a7c86f8874dd0af50763d578a91b0a6b8a9f27 --- /dev/null +++ b/bob/ip/binseg/engine/evaluator.py @@ -0,0 +1,437 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- + +"""Defines functionality for the evaluation of predictions""" + +import os + +import PIL +import numpy +import pandas +from tqdm import tqdm + +import torch +import torchvision.transforms.functional as VF + +import h5py + +from ..utils.metric import base_metrics + +import logging + +logger = logging.getLogger(__name__) + + +def _posneg(pred, gt, threshold): + """Calculates true and false positives and negatives""" + + gt = gt.byte() # byte tensor + + # threshold + binary_pred = torch.gt(pred, threshold).byte() + + # equals and not-equals + equals = torch.eq(binary_pred, gt).type(torch.uint8) # tensor + notequals = torch.ne(binary_pred, gt).type(torch.uint8) # tensor + + # true positives + tp_tensor = gt * binary_pred + + # false positives + fp_tensor = torch.eq((binary_pred + tp_tensor), 1) + + # true negatives + tn_tensor = equals - tp_tensor + + # false negatives + fn_tensor = notequals - fp_tensor.type(torch.uint8) + + return tp_tensor, fp_tensor, tn_tensor, fn_tensor + + +def _sample_metrics(pred, gt, bins): + """ + Calculates metrics on one single sample and saves it to disk + + + Parameters + ---------- + + pred : torch.Tensor + pixel-wise predictions + + gt : torch.Tensor + ground-truth (annotations) + + bins : int + number of bins to use for threshold analysis. The step size is + calculated from this by dividing ``1.0/bins``. + + + Returns + ------- + + metrics : pandas.DataFrame + + A pandas dataframe with the following columns: + + * threshold: float + * precision: float + * recall: float + * specificity: float + * accuracy: float + * jaccard: float + * f1_score: float + + """ + + step_size = 1.0 / bins + data = [] + + for index, threshold in enumerate(numpy.arange(0.0, 1.0, step_size)): + + tp_tensor, fp_tensor, tn_tensor, fn_tensor = _posneg( + pred, gt, threshold + ) + + # calc metrics from scalars + tp_count = torch.sum(tp_tensor).item() + fp_count = torch.sum(fp_tensor).item() + tn_count = torch.sum(tn_tensor).item() + fn_count = torch.sum(fn_tensor).item() + ( + precision, + recall, + specificity, + accuracy, + jaccard, + f1_score, + ) = base_metrics(tp_count, fp_count, tn_count, fn_count) + + data.append( + [ + index, + threshold, + precision, + recall, + specificity, + accuracy, + jaccard, + f1_score, + ] + ) + + return pandas.DataFrame( + data, + columns=( + "index", + "threshold", + "precision", + "recall", + "specificity", + "accuracy", + "jaccard", + "f1_score", + ), + ) + + +def _sample_analysis( + img, + pred, + gt, + threshold, + tp_color=(0, 255, 0), # (128,128,128) Gray + fp_color=(0, 0, 255), # (70, 240, 240) Cyan + fn_color=(255, 0, 0), # (245, 130, 48) Orange + overlay=True, +): + """Visualizes true positives, false positives and false negatives + + + Parameters + ---------- + + img : torch.Tensor + original image + + pred : torch.Tensor + pixel-wise predictions + + gt : torch.Tensor + ground-truth (annotations) + + threshold : float + The threshold to be used while analyzing this image's probability map + + tp_color : tuple + RGB value for true positives + + fp_color : tuple + RGB value for false positives + + fn_color : tuple + RGB value for false negatives + + overlay : :py:class:`bool`, Optional + If set to ``True`` (which is the default), then overlay annotations on + top of the image. Otherwise, represent data on a black canvas. + + + Returns + ------- + + figure : PIL.Image.Image + + A PIL image that contains the overlayed analysis of true-positives + (TP), false-positives (FP) and false negatives (FN). + + """ + + tp_tensor, fp_tensor, tn_tensor, fn_tensor = _posneg(pred, gt, threshold) + + # change to PIL representation + tp_pil = VF.to_pil_image(tp_tensor.float()) + tp_pil_colored = PIL.ImageOps.colorize(tp_pil, (0, 0, 0), tp_color) + + fp_pil = VF.to_pil_image(fp_tensor.float()) + fp_pil_colored = PIL.ImageOps.colorize(fp_pil, (0, 0, 0), fp_color) + + fn_pil = VF.to_pil_image(fn_tensor.float()) + fn_pil_colored = PIL.ImageOps.colorize(fn_pil, (0, 0, 0), fn_color) + + tp_pil_colored.paste(fp_pil_colored, mask=fp_pil) + tp_pil_colored.paste(fn_pil_colored, mask=fn_pil) + + if overlay: + img = VF.to_pil_image(img) # PIL Image + # using blend here, to fade original image being overlayed, or + # its brightness may obfuscate colors from the vessel map + tp_pil_colored = PIL.Image.blend(img, tp_pil_colored, 0.5) + + return tp_pil_colored + + +def run( + dataset, + name, + predictions_folder, + output_folder=None, + overlayed_folder=None, + threshold=None, +): + """ + Runs inference and calculates metrics + + + Parameters + --------- + + dataset : py:class:`torch.utils.data.Dataset` + a dataset to iterate on + + name : str + the local name of this dataset (e.g. ``train``, or ``test``), to be + used when saving metrics files. + + predictions_folder : str + folder where predictions for the dataset images has been previously + stored + + output_folder : :py:class:`str`, Optional + folder where to store results. If not provided, then do not store any + analysis (useful for quickly calculating overlay thresholds) + + overlayed_folder : :py:class:`str`, Optional + if not ``None``, then it should be the name of a folder where to store + overlayed versions of the images and ground-truths + + threshold : :py:class:`float`, Optional + if ``overlayed_folder``, then this should be threshold (floating point) + to apply to prediction maps to decide on positives and negatives for + overlaying analysis (graphical output). This number should come from + the training set or a separate validation set. Using a test set value + may bias your analysis. This number is also used to print the a priori + F1-score on the evaluated set. + + + Returns + ------- + + threshold : float + Threshold to achieve the highest possible F1-score for this dataset + + """ + + # Collect overall metrics + bins = 100 # number of thresholds to analyse for + data = {} + + for sample in tqdm(dataset): + stem = sample[0] + image = sample[1] + gt = sample[2] + pred_fullpath = os.path.join(predictions_folder, stem + ".hdf5") + with h5py.File(pred_fullpath, "r") as f: + pred = f["array"][:] + pred = torch.from_numpy(pred) + if stem in data: + raise RuntimeError( + f"{stem} entry already exists in data. Cannot overwrite." + ) + data[stem] = _sample_metrics(pred, gt, bins) + + if overlayed_folder is not None: + overlay_image = _sample_analysis( + image, pred, gt, threshold=threshold, overlay=True + ) + fullpath = os.path.join(overlayed_folder, f"{stem}.png") + tqdm.write(f"Saving {fullpath}...") + os.makedirs(os.path.dirname(fullpath), exist_ok=True) + overlay_image.save(fullpath) + + # Merges all dataframes together + df_metrics = pandas.concat(data.values()) + + # Report and Averages + avg_metrics = df_metrics.groupby("index").mean() + std_metrics = df_metrics.groupby("index").std() + + # Uncomment below for F1-score calculation based on average precision and + # metrics instead of F1-scores of individual images. This method is in line + # with Maninis et. al. (2016) + # + # avg_metrics["f1_score"] = \ + # (2* avg_metrics["precision"]*avg_metrics["recall"])/ \ + # (avg_metrics["precision"]+avg_metrics["recall"]) + + avg_metrics["std_pr"] = std_metrics["precision"] + avg_metrics["pr_upper"] = avg_metrics["precision"] + std_metrics["precision"] + avg_metrics["pr_lower"] = avg_metrics["precision"] - std_metrics["precision"] + avg_metrics["std_re"] = std_metrics["recall"] + avg_metrics["re_upper"] = avg_metrics["recall"] + std_metrics["recall"] + avg_metrics["re_lower"] = avg_metrics["recall"] - std_metrics["recall"] + avg_metrics["std_f1"] = std_metrics["f1_score"] + + maxf1 = avg_metrics["f1_score"].max() + maxf1_index = avg_metrics["f1_score"].idxmax() + maxf1_threshold = avg_metrics["threshold"][maxf1_index] + + logger.info( + f"Maximum F1-score of {maxf1:.5f}, achieved at " + f"threshold {maxf1_threshold:.3f} (chosen *a posteriori*)" + ) + + if threshold is not None: + + # get the closest possible threshold we have + index = int(round(bins * threshold)) + f1_a_priori = avg_metrics["f1_score"][index] + actual_threshold = avg_metrics["threshold"][index] + + logger.info( + f"F1-score of {f1_a_priori:.5f}, at threshold " + f"{actual_threshold:.3f} (chosen *a priori*)" + ) + + if output_folder is not None: + logger.info(f"Output folder: {output_folder}") + os.makedirs(output_folder, exist_ok=True) + metrics_path = os.path.join(output_folder, f"{name}.csv") + logger.info( + f"Saving averages over all input images at {metrics_path}..." + ) + avg_metrics.to_csv(metrics_path) + + return maxf1_threshold + + +def compare_annotators(baseline, other, name, output_folder, + overlayed_folder=None): + """ + Compares annotations on the **same** dataset + + + Parameters + --------- + + baseline : py:class:`torch.utils.data.Dataset` + a dataset to iterate on, containing the baseline annotations + + other : py:class:`torch.utils.data.Dataset` + a second dataset, with the same samples as ``baseline``, but annotated + by a different annotator than in the first dataset. + + name : str + the local name of this dataset (e.g. ``train-second-annotator``, or + ``test-second-annotator``), to be used when saving metrics files. + + output_folder : str + folder where to store results + + overlayed_folder : :py:class:`str`, Optional + if not ``None``, then it should be the name of a folder where to store + overlayed versions of the images and ground-truths + + """ + + logger.info(f"Output folder: {output_folder}") + os.makedirs(output_folder, exist_ok=True) + + # Collect overall metrics + data = {} + + for baseline_sample, other_sample in tqdm( + list(zip(baseline, other)), desc="samples", leave=False, disable=None, + ): + stem = baseline_sample[0] + image = baseline_sample[1] + gt = baseline_sample[2] + pred = other_sample[2] # works as a prediction + if stem in data: + raise RuntimeError( + f"{stem} entry already exists in data. " f"Cannot overwrite." + ) + data[stem] = _sample_metrics(pred, gt, 2) + + if overlayed_folder is not None: + overlay_image = _sample_analysis( + image, pred, gt, threshold=0.5, overlay=True + ) + fullpath = os.path.join(overlayed_folder, "second-annotator", + f"{stem}.png") + tqdm.write(f"Saving {fullpath}...") + os.makedirs(os.path.dirname(fullpath), exist_ok=True) + overlay_image.save(fullpath) + + # Merges all dataframes together + df_metrics = pandas.concat(data.values()) + df_metrics.drop(0, inplace=True) + + # Report and Averages + avg_metrics = df_metrics.groupby("index").mean() + std_metrics = df_metrics.groupby("index").std() + + # Uncomment below for F1-score calculation based on average precision and + # {name} instead of F1-scores of individual images. This method is in line + # with Maninis et. al. (2016) + # + # avg_metrics["f1_score"] = \ + # (2* avg_metrics["precision"]*avg_metrics["recall"])/ \ + # (avg_metrics["precision"]+avg_metrics["recall"]) + + avg_metrics["std_pr"] = std_metrics["precision"] + avg_metrics["pr_upper"] = avg_metrics["precision"] + std_metrics["precision"] + avg_metrics["pr_lower"] = avg_metrics["precision"] - std_metrics["precision"] + avg_metrics["std_re"] = std_metrics["recall"] + avg_metrics["re_upper"] = avg_metrics["recall"] + std_metrics["recall"] + avg_metrics["re_lower"] = avg_metrics["recall"] - std_metrics["recall"] + avg_metrics["std_f1"] = std_metrics["f1_score"] + + metrics_path = os.path.join(output_folder, "second-annotator", f"{name}.csv") + os.makedirs(os.path.dirname(metrics_path), exist_ok=True) + logger.info(f"Saving averages over all input images at {metrics_path}...") + avg_metrics.to_csv(metrics_path) + + maxf1 = avg_metrics["f1_score"].max() + logger.info(f"F1-score of {maxf1:.5f} (second annotator; threshold=0.5)") diff --git a/bob/ip/binseg/engine/inferencer.py b/bob/ip/binseg/engine/inferencer.py deleted file mode 100644 index e76153c045fc69cabffa1e5ea7d70efacbd510a6..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/engine/inferencer.py +++ /dev/null @@ -1,280 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -import os -import logging -import time -import datetime -import numpy as np -import torch -import pandas as pd -import torchvision.transforms.functional as VF -from tqdm import tqdm - -import bob.io.base - -from bob.ip.binseg.utils.metric import SmoothedValue, base_metrics -from bob.ip.binseg.utils.plot import precision_recall_f1iso_confintval -from bob.ip.binseg.utils.summary import summary - - - -def batch_metrics(predictions, ground_truths, names, output_folder, logger): - """ - Calculates metrics on the batch and saves it to disc - - Parameters - ---------- - predictions : :py:class:`torch.Tensor` - tensor with pixel-wise probabilities - ground_truths : :py:class:`torch.Tensor` - tensor with binary ground-truth - names : list - list of file names - output_folder : str - output path - logger : :py:class:`logging.Logger` - python logger - - Returns - ------- - list - list containing batch metrics: ``[name, threshold, precision, recall, specificity, accuracy, jaccard, f1_score]`` - """ - step_size = 0.01 - batch_metrics = [] - - for j in range(predictions.size()[0]): - # ground truth byte - gts = ground_truths[j].byte() - - file_name = "{}.csv".format(names[j]) - logger.info("saving {}".format(file_name)) - - with open (os.path.join(output_folder,file_name), "w+") as outfile: - - outfile.write("threshold, precision, recall, specificity, accuracy, jaccard, f1_score\n") - - for threshold in np.arange(0.0,1.0,step_size): - # threshold - binary_pred = torch.gt(predictions[j], threshold).byte() - - # equals and not-equals - equals = torch.eq(binary_pred, gts).type(torch.uint8) # tensor - notequals = torch.ne(binary_pred, gts).type(torch.uint8) # tensor - - # true positives - tp_tensor = (gts * binary_pred ) # tensor - tp_count = torch.sum(tp_tensor).item() # scalar - - # false positives - fp_tensor = torch.eq((binary_pred + tp_tensor), 1) - fp_count = torch.sum(fp_tensor).item() - - # true negatives - tn_tensor = equals - tp_tensor - tn_count = torch.sum(tn_tensor).item() - - # false negatives - fn_tensor = notequals - fp_tensor.type(torch.uint8) - fn_count = torch.sum(fn_tensor).item() - - # calc metrics - metrics = base_metrics(tp_count, fp_count, tn_count, fn_count) - - # write to disk - outfile.write("{:.2f},{:.5f},{:.5f},{:.5f},{:.5f},{:.5f},{:.5f} \n".format(threshold, *metrics)) - - batch_metrics.append([names[j],threshold, *metrics ]) - - - return batch_metrics - - -def save_probability_images(predictions, names, output_folder, logger): - """ - Saves probability maps as image in the same format as the test image - - Parameters - ---------- - predictions : :py:class:`torch.Tensor` - tensor with pixel-wise probabilities - names : list - list of file names - output_folder : str - output path - logger : :py:class:`logging.Logger` - python logger - """ - images_subfolder = os.path.join(output_folder,'images') - for j in range(predictions.size()[0]): - img = VF.to_pil_image(predictions.cpu().data[j]) - filename = '{}.png'.format(names[j].split(".")[0]) - fullpath = os.path.join(images_subfolder, filename) - logger.info("saving {}".format(fullpath)) - fulldir = os.path.dirname(fullpath) - if not os.path.exists(fulldir): os.makedirs(fulldir) - img.save(fullpath) - -def save_hdf(predictions, names, output_folder, logger): - """ - Saves probability maps as image in the same format as the test image - - Parameters - ---------- - predictions : :py:class:`torch.Tensor` - tensor with pixel-wise probabilities - names : list - list of file names - output_folder : str - output path - logger : :py:class:`logging.Logger` - python logger - """ - hdf5_subfolder = os.path.join(output_folder,'hdf5') - if not os.path.exists(hdf5_subfolder): os.makedirs(hdf5_subfolder) - for j in range(predictions.size()[0]): - img = predictions.cpu().data[j].squeeze(0).numpy() - filename = '{}.hdf5'.format(names[j].split(".")[0]) - fullpath = os.path.join(hdf5_subfolder, filename) - logger.info("saving {}".format(filename)) - fulldir = os.path.dirname(fullpath) - if not os.path.exists(fulldir): os.makedirs(fulldir) - bob.io.base.save(img, fullpath) - -def do_inference( - model, - data_loader, - device, - output_folder = None -): - - """ - Run inference and calculate metrics - - Parameters - --------- - model : :py:class:`torch.nn.Module` - neural network model (e.g. DRIU, HED, UNet) - data_loader : py:class:`torch.torch.utils.data.DataLoader` - device : str - device to use ``'cpu'`` or ``'cuda'`` - output_folder : str - """ - logger = logging.getLogger("bob.ip.binseg.engine.inference") - logger.info("Start evaluation") - logger.info("Output folder: {}, Device: {}".format(output_folder, device)) - results_subfolder = os.path.join(output_folder,'results') - os.makedirs(results_subfolder,exist_ok=True) - - model.eval().to(device) - # Sigmoid for probabilities - sigmoid = torch.nn.Sigmoid() - - # Setup timers - start_total_time = time.time() - times = [] - - # Collect overall metrics - metrics = [] - - for samples in tqdm(data_loader): - names = samples[0] - images = samples[1].to(device) - ground_truths = samples[2].to(device) - with torch.no_grad(): - start_time = time.perf_counter() - - outputs = model(images) - - # necessary check for hed architecture that uses several outputs - # for loss calculation instead of just the last concatfuse block - if isinstance(outputs,list): - outputs = outputs[-1] - - probabilities = sigmoid(outputs) - - batch_time = time.perf_counter() - start_time - times.append(batch_time) - logger.info("Batch time: {:.5f} s".format(batch_time)) - - b_metrics = batch_metrics(probabilities, ground_truths, names,results_subfolder, logger) - metrics.extend(b_metrics) - - # Create probability images - save_probability_images(probabilities, names, output_folder, logger) - # save hdf5 - save_hdf(probabilities, names, output_folder, logger) - - # DataFrame - df_metrics = pd.DataFrame(metrics,columns= \ - ["name", - "threshold", - "precision", - "recall", - "specificity", - "accuracy", - "jaccard", - "f1_score"]) - - # Report and Averages - metrics_file = "Metrics.csv".format(model.name) - metrics_path = os.path.join(results_subfolder, metrics_file) - logger.info("Saving average over all input images: {}".format(metrics_file)) - - avg_metrics = df_metrics.groupby('threshold').mean() - std_metrics = df_metrics.groupby('threshold').std() - - # Uncomment below for F1-score calculation based on average precision and metrics instead of - # F1-scores of individual images. This method is in line with Maninis et. al. (2016) - #avg_metrics["f1_score"] = (2* avg_metrics["precision"]*avg_metrics["recall"])/ \ - # (avg_metrics["precision"]+avg_metrics["recall"]) - - avg_metrics["std_pr"] = std_metrics["precision"] - avg_metrics["pr_upper"] = avg_metrics['precision'] + avg_metrics["std_pr"] - avg_metrics["pr_lower"] = avg_metrics['precision'] - avg_metrics["std_pr"] - avg_metrics["std_re"] = std_metrics["recall"] - avg_metrics["re_upper"] = avg_metrics['recall'] + avg_metrics["std_re"] - avg_metrics["re_lower"] = avg_metrics['recall'] - avg_metrics["std_re"] - avg_metrics["std_f1"] = std_metrics["f1_score"] - - avg_metrics.to_csv(metrics_path) - maxf1 = avg_metrics['f1_score'].max() - optimal_f1_threshold = avg_metrics['f1_score'].idxmax() - - logger.info("Highest F1-score of {:.5f}, achieved at threshold {}".format(maxf1, optimal_f1_threshold)) - - # Plotting - np_avg_metrics = avg_metrics.to_numpy().T - fig_name = "precision_recall.pdf" - logger.info("saving {}".format(fig_name)) - fig = precision_recall_f1iso_confintval([np_avg_metrics[0]],[np_avg_metrics[1]],[np_avg_metrics[7]],[np_avg_metrics[8]],[np_avg_metrics[10]],[np_avg_metrics[11]], [model.name,None], title=output_folder) - fig_filename = os.path.join(results_subfolder, fig_name) - fig.savefig(fig_filename) - - # Report times - total_inference_time = str(datetime.timedelta(seconds=int(sum(times)))) - average_batch_inference_time = np.mean(times) - total_evalution_time = str(datetime.timedelta(seconds=int(time.time() - start_total_time ))) - - logger.info("Average batch inference time: {:.5f}s".format(average_batch_inference_time)) - - times_file = "Times.txt" - logger.info("saving {}".format(times_file)) - - with open (os.path.join(results_subfolder,times_file), "w+") as outfile: - date = datetime.datetime.now() - outfile.write("Date: {} \n".format(date.strftime("%Y-%m-%d %H:%M:%S"))) - outfile.write("Total evaluation run-time: {} \n".format(total_evalution_time)) - outfile.write("Average batch inference time: {} \n".format(average_batch_inference_time)) - outfile.write("Total inference time: {} \n".format(total_inference_time)) - - # Save model summary - summary_file = 'ModelSummary.txt' - logger.info("saving {}".format(summary_file)) - - with open (os.path.join(results_subfolder,summary_file), "w+") as outfile: - summary(model,outfile) - - - diff --git a/bob/ip/binseg/engine/predicter.py b/bob/ip/binseg/engine/predicter.py deleted file mode 100644 index ebd09ac5e84d4f9a81a20f72c3919f42071fb73d..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/engine/predicter.py +++ /dev/null @@ -1,93 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -import os -import logging -import time -import datetime -import numpy as np -import torch -import torchvision.transforms.functional as VF -from tqdm import tqdm - -from bob.ip.binseg.utils.summary import summary -from bob.ip.binseg.engine.inferencer import save_probability_images -from bob.ip.binseg.engine.inferencer import save_hdf - - -def do_predict( - model, - data_loader, - device, - output_folder = None -): - - """ - Run inference and calculate metrics - - Parameters - --------- - model : :py:class:`torch.nn.Module` - neural network model (e.g. DRIU, HED, UNet) - data_loader : py:class:`torch.torch.utils.data.DataLoader` - device : str - device to use ``'cpu'`` or ``'cuda'`` - output_folder : str - """ - logger = logging.getLogger("bob.ip.binseg.engine.inference") - logger.info("Start evaluation") - logger.info("Output folder: {}, Device: {}".format(output_folder, device)) - results_subfolder = os.path.join(output_folder,'results') - os.makedirs(results_subfolder,exist_ok=True) - - model.eval().to(device) - # Sigmoid for probabilities - sigmoid = torch.nn.Sigmoid() - - # Setup timers - start_total_time = time.time() - times = [] - - for samples in tqdm(data_loader): - names = samples[0] - images = samples[1].to(device) - with torch.no_grad(): - start_time = time.perf_counter() - - outputs = model(images) - - # necessary check for hed architecture that uses several outputs - # for loss calculation instead of just the last concatfuse block - if isinstance(outputs,list): - outputs = outputs[-1] - - probabilities = sigmoid(outputs) - - batch_time = time.perf_counter() - start_time - times.append(batch_time) - logger.info("Batch time: {:.5f} s".format(batch_time)) - - # Create probability images - save_probability_images(probabilities, names, output_folder, logger) - # Save hdf5 - save_hdf(probabilities, names, output_folder, logger) - - - # Report times - total_inference_time = str(datetime.timedelta(seconds=int(sum(times)))) - average_batch_inference_time = np.mean(times) - total_evalution_time = str(datetime.timedelta(seconds=int(time.time() - start_total_time ))) - - logger.info("Average batch inference time: {:.5f}s".format(average_batch_inference_time)) - - times_file = "Times.txt" - logger.info("saving {}".format(times_file)) - - with open (os.path.join(results_subfolder,times_file), "w+") as outfile: - date = datetime.datetime.now() - outfile.write("Date: {} \n".format(date.strftime("%Y-%m-%d %H:%M:%S"))) - outfile.write("Total evaluation run-time: {} \n".format(total_evalution_time)) - outfile.write("Average batch inference time: {} \n".format(average_batch_inference_time)) - outfile.write("Total inference time: {} \n".format(total_inference_time)) - - diff --git a/bob/ip/binseg/engine/predictor.py b/bob/ip/binseg/engine/predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..4e4640f05b82bef935fd6a70db03c82ba9e1e98f --- /dev/null +++ b/bob/ip/binseg/engine/predictor.py @@ -0,0 +1,173 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- + +import os +import time +import datetime + +import PIL +import numpy +from tqdm import tqdm + +import torch +import torchvision.transforms.functional as VF + +import h5py + +from ..data.utils import overlayed_image + +import logging +logger = logging.getLogger(__name__) + + +def _save_hdf5(stem, prob, output_folder): + """ + Saves prediction maps as image in the same format as the test image + + + Parameters + ---------- + stem : str + the name of the file without extension on the original dataset + + prob : PIL.Image.Image + Monochrome Image with prediction maps + + output_folder : str + path where to store predictions + + """ + + fullpath = os.path.join(output_folder, f"{stem}.hdf5") + tqdm.write(f"Saving {fullpath}...") + os.makedirs(os.path.dirname(fullpath), exist_ok=True) + with h5py.File(fullpath, 'w') as f: + data = prob.cpu().squeeze(0).numpy() + f.create_dataset("array", data=data, compression="gzip", + compression_opts=9) + +def _save_image(stem, extension, data, output_folder): + """Saves a PIL image into a file + + Parameters + ---------- + + stem : str + the name of the file without extension on the original dataset + + extension : str + an extension for the file to be saved (e.g. ``.png``) + + data : PIL.Image.Image + RGB image with the original image, preloaded + + output_folder : str + path where to store results + + """ + + fullpath = os.path.join(output_folder, stem + extension) + tqdm.write(f"Saving {fullpath}...") + os.makedirs(os.path.dirname(fullpath), exist_ok=True) + data.save(fullpath) + + +def _save_overlayed_png(stem, image, prob, output_folder): + """Overlays prediction predictions vessel tree with original test image + + + Parameters + ---------- + + stem : str + the name of the file without extension on the original dataset + + image : torch.Tensor + Tensor with RGB input image + + prob : torch.Tensor + Tensor with 1-D prediction map + + output_folder : str + path where to store results + + """ + + image = VF.to_pil_image(image) + prob = VF.to_pil_image(prob.cpu()) + _save_image(stem, '.png', overlayed_image(image, prob), output_folder) + + +def run(model, data_loader, device, output_folder, overlayed_folder): + """ + Runs inference on input data, outputs HDF5 files with predictions + + Parameters + --------- + model : :py:class:`torch.nn.Module` + neural network model (e.g. driu, hed, unet) + + data_loader : py:class:`torch.torch.utils.data.DataLoader` + + device : str + device to use ``cpu`` or ``cuda:0`` + + output_folder : str + folder where to store output prediction maps (HDF5 files) and model + summary + + overlayed_folder : str + folder where to store output images (PNG files) + + """ + + logger.info(f"Output folder: {output_folder}") + os.makedirs(output_folder, exist_ok=True) + + logger.info(f"Device: {device}") + model.eval().to(device) + # Sigmoid for predictions + sigmoid = torch.nn.Sigmoid() + + # Setup timers + start_total_time = time.time() + times = [] + len_samples = [] + + for samples in tqdm( + data_loader, desc="batches", leave=False, disable=None, + ): + + names = samples[0] + images = samples[1].to(device) + + with torch.no_grad(): + + start_time = time.perf_counter() + outputs = model(images) + + # necessary check for HED architecture that uses several outputs + # for loss calculation instead of just the last concatfuse block + if isinstance(outputs, list): + outputs = outputs[-1] + + predictions = sigmoid(outputs) + + batch_time = time.perf_counter() - start_time + times.append(batch_time) + len_samples.append(len(images)) + + for stem, img, prob in zip(names, images, predictions): + _save_hdf5(stem, prob, output_folder) + if overlayed_folder is not None: + _save_overlayed_png(stem, img, prob, overlayed_folder) + + # report operational summary + total_time = datetime.timedelta(seconds=int(time.time() - start_total_time)) + logger.info(f"Total time: {total_time}") + + average_batch_time = numpy.mean(times) + logger.info(f"Average batch time: {average_batch_time:g}s") + + average_image_time = numpy.sum(numpy.array(times) * len_samples) / float(sum(len_samples)) + logger.info(f"Average image time: {average_image_time:g}s") diff --git a/bob/ip/binseg/engine/ssltrainer.py b/bob/ip/binseg/engine/ssltrainer.py index 382431176fc33e4bf98e3cc38d4440c6f532c30d..2448782cc6b1b00965a4974af13f58e36a0dd0fc 100644 --- a/bob/ip/binseg/engine/ssltrainer.py +++ b/bob/ip/binseg/engine/ssltrainer.py @@ -1,126 +1,166 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -import os -import logging +import os +import csv import time import datetime +import distutils.version + +import numpy +import pandas import torch -import pandas as pd from tqdm import tqdm -import numpy as np from bob.ip.binseg.utils.metric import SmoothedValue from bob.ip.binseg.utils.plot import loss_curve +import logging +logger = logging.getLogger(__name__) + +PYTORCH_GE_110 = (distutils.version.StrictVersion(torch.__version__) >= "1.1.0") + + def sharpen(x, T): - temp = x**(1/T) + temp = x ** (1 / T) return temp / temp.sum(dim=1, keepdim=True) -def mix_up(alpha, input, target, unlabeled_input, unlabled_target): + +def mix_up(alpha, input, target, unlabelled_input, unlabled_target): """Applies mix up as described in [MIXMATCH_19]. - + Parameters ---------- alpha : float + input : :py:class:`torch.Tensor` + target : :py:class:`torch.Tensor` - unlabeled_input : :py:class:`torch.Tensor` + + unlabelled_input : :py:class:`torch.Tensor` + unlabled_target : :py:class:`torch.Tensor` - + + Returns ------- + list + """ - # TODO: + # TODO: with torch.no_grad(): - l = np.random.beta(alpha, alpha) # Eq (8) - l = max(l, 1 - l) # Eq (9) + l = numpy.random.beta(alpha, alpha) # Eq (8) + l = max(l, 1 - l) # Eq (9) # Shuffle and concat. Alg. 1 Line: 12 - w_inputs = torch.cat([input,unlabeled_input],0) - w_targets = torch.cat([target,unlabled_target],0) - idx = torch.randperm(w_inputs.size(0)) # get random index - - # Apply MixUp to labeled data and entries from W. Alg. 1 Line: 13 - input_mixedup = l * input + (1 - l) * w_inputs[idx[len(input):]] - target_mixedup = l * target + (1 - l) * w_targets[idx[len(target):]] - - # Apply MixUp to unlabeled data and entries from W. Alg. 1 Line: 14 - unlabeled_input_mixedup = l * unlabeled_input + (1 - l) * w_inputs[idx[:len(unlabeled_input)]] - unlabled_target_mixedup = l * unlabled_target + (1 - l) * w_targets[idx[:len(unlabled_target)]] - return input_mixedup, target_mixedup, unlabeled_input_mixedup, unlabled_target_mixedup + w_inputs = torch.cat([input, unlabelled_input], 0) + w_targets = torch.cat([target, unlabled_target], 0) + idx = torch.randperm(w_inputs.size(0)) # get random index + + # Apply MixUp to labelled data and entries from W. Alg. 1 Line: 13 + input_mixedup = l * input + (1 - l) * w_inputs[idx[len(input) :]] + target_mixedup = l * target + (1 - l) * w_targets[idx[len(target) :]] + + # Apply MixUp to unlabelled data and entries from W. Alg. 1 Line: 14 + unlabelled_input_mixedup = ( + l * unlabelled_input + (1 - l) * w_inputs[idx[: len(unlabelled_input)]] + ) + unlabled_target_mixedup = ( + l * unlabled_target + (1 - l) * w_targets[idx[: len(unlabled_target)]] + ) + return ( + input_mixedup, + target_mixedup, + unlabelled_input_mixedup, + unlabled_target_mixedup, + ) def square_rampup(current, rampup_length=16): """slowly ramp-up ``lambda_u`` - + Parameters ---------- + current : int current epoch - rampup_length : int, optional + + rampup_length : :obj:`int`, optional how long to ramp up, by default 16 - + Returns ------- - float + + factor : float ramp up factor """ + if rampup_length == 0: return 1.0 else: - current = np.clip((current/ float(rampup_length))**2, 0.0, 1.0) + current = numpy.clip((current / float(rampup_length)) ** 2, 0.0, 1.0) return float(current) + def linear_rampup(current, rampup_length=16): """slowly ramp-up ``lambda_u`` - + Parameters ---------- current : int current epoch - rampup_length : int, optional + + rampup_length : :obj:`int`, optional how long to ramp up, by default 16 - + Returns ------- - float + + factor: float ramp up factor + """ if rampup_length == 0: return 1.0 else: - current = np.clip(current / rampup_length, 0.0, 1.0) + current = numpy.clip(current / rampup_length, 0.0, 1.0) return float(current) -def guess_labels(unlabeled_images, model): + +def guess_labels(unlabelled_images, model): """ Calculate the average predictions by 2 augmentations: horizontal and vertical flips + Parameters ---------- - unlabeled_images : :py:class:`torch.Tensor` - shape: ``[n,c,h,w]`` + + unlabelled_images : :py:class:`torch.Tensor` + ``[n,c,h,w]`` + target : :py:class:`torch.Tensor` - + Returns ------- - :py:class:`torch.Tensor` - shape: ``[n,c,h,w]``. + + shape : :py:class:`torch.Tensor` + ``[n,c,h,w]`` + """ with torch.no_grad(): - guess1 = torch.sigmoid(model(unlabeled_images)).unsqueeze(0) + guess1 = torch.sigmoid(model(unlabelled_images)).unsqueeze(0) # Horizontal flip and unsqueeze to work with batches (increase flip dimension by 1) - hflip = torch.sigmoid(model(unlabeled_images.flip(2))).unsqueeze(0) - guess2 = hflip.flip(3) + hflip = torch.sigmoid(model(unlabelled_images.flip(2))).unsqueeze(0) + guess2 = hflip.flip(3) # Vertical flip and unsqueeze to work with batches (increase flip dimension by 1) - vflip = torch.sigmoid(model(unlabeled_images.flip(3))).unsqueeze(0) + vflip = torch.sigmoid(model(unlabelled_images.flip(3))).unsqueeze(0) guess3 = vflip.flip(4) # Concat - concat = torch.cat([guess1,guess2,guess3],0) - avg_guess = torch.mean(concat,0) + concat = torch.cat([guess1, guess2, guess3], 0) + avg_guess = torch.mean(concat, 0) return avg_guess -def do_ssltrain( + +def run( model, data_loader, optimizer, @@ -131,41 +171,79 @@ def do_ssltrain( device, arguments, output_folder, - rampup_length + rampup_length, ): - """ - Train model and save to disk. - + """ + Fits an FCN model using semi-supervised learning and saves it to disk. + Parameters ---------- - model : :py:class:`torch.nn.Module` - Network (e.g. DRIU, HED, UNet) + + model : :py:class:`torch.nn.Module` + Network (e.g. driu, hed, unet) + data_loader : :py:class:`torch.utils.data.DataLoader` + optimizer : :py:mod:`torch.optim` + criterion : :py:class:`torch.nn.modules.loss._Loss` loss function + scheduler : :py:mod:`torch.optim` learning rate scheduler + checkpointer : :py:class:`bob.ip.binseg.utils.checkpointer.DetectronCheckpointer` checkpointer + checkpoint_period : int - save a checkpoint every n epochs - device : str - device to use ``'cpu'`` or ``'cuda'`` + save a checkpoint every ``n`` epochs. If set to ``0`` (zero), then do + not save intermediary checkpoints + + device : str + device to use ``'cpu'`` or ``cuda:0`` + arguments : dict - start end end epochs - output_folder : str + start and end epochs + + output_folder : str output path - rampup_Length : int + + rampup_length : int rampup epochs + """ - logger = logging.getLogger("bob.ip.binseg.engine.trainer") - logger.info("Start training") + start_epoch = arguments["epoch"] max_epoch = arguments["max_epoch"] - # Logg to file - with open (os.path.join(output_folder,"{}_trainlog.csv".format(model.name)), "a+",1) as outfile: + if not os.path.exists(output_folder): + logger.debug(f"Creating output directory '{output_folder}'...") + os.makedirs(output_folder) + + # Log to file + logfile_name = os.path.join(output_folder, "trainlog.csv") + + if arguments["epoch"] == 0 and os.path.exists(logfile_name): + logger.info(f"Truncating {logfile_name} - training is restarting...") + os.unlink(logfile_name) + + logfile_fields = ( + "epoch", + "total-time", + "eta", + "average-loss", + "median-loss", + "median-labelled-loss", + "median-unlabelled-loss", + "learning-rate", + "gpu-memory-megabytes", + ) + with open(logfile_name, "a+", newline="") as logfile: + logwriter = csv.DictWriter(logfile, fieldnames=logfile_fields) + + if arguments["epoch"] == 0: + logwriter.writeheader() + for state in optimizer.state.values(): for k, v in state.items(): if isinstance(v, torch.Tensor): @@ -174,102 +252,97 @@ def do_ssltrain( model.train().to(device) # Total training timer start_training_time = time.time() + for epoch in range(start_epoch, max_epoch): - scheduler.step() + if not PYTORCH_GE_110: scheduler.step() losses = SmoothedValue(len(data_loader)) - labeled_loss = SmoothedValue(len(data_loader)) - unlabeled_loss = SmoothedValue(len(data_loader)) + labelled_loss = SmoothedValue(len(data_loader)) + unlabelled_loss = SmoothedValue(len(data_loader)) epoch = epoch + 1 arguments["epoch"] = epoch - + # Epoch time start_epoch_time = time.time() - for samples in tqdm(data_loader): - # labeled + for samples in tqdm(data_loader, desc="batches", leave=False, + disable=None,): + + # data forwarding on the existing network + + # labelled images = samples[1].to(device) ground_truths = samples[2].to(device) - unlabeled_images = samples[4].to(device) - # labeled outputs + unlabelled_images = samples[4].to(device) + # labelled outputs outputs = model(images) - unlabeled_outputs = model(unlabeled_images) - # guessed unlabeled outputs - unlabeled_ground_truths = guess_labels(unlabeled_images, model) - #unlabeled_ground_truths = sharpen(unlabeled_ground_truths,0.5) - #images, ground_truths, unlabeled_images, unlabeled_ground_truths = mix_up(0.75, images, ground_truths, unlabeled_images, unlabeled_ground_truths) - ramp_up_factor = square_rampup(epoch,rampup_length=rampup_length) - - loss, ll, ul = criterion(outputs, ground_truths, unlabeled_outputs, unlabeled_ground_truths, ramp_up_factor) + unlabelled_outputs = model(unlabelled_images) + # guessed unlabelled outputs + unlabelled_ground_truths = guess_labels(unlabelled_images, model) + # unlabelled_ground_truths = sharpen(unlabelled_ground_truths,0.5) + # images, ground_truths, unlabelled_images, unlabelled_ground_truths = mix_up(0.75, images, ground_truths, unlabelled_images, unlabelled_ground_truths) + + # loss evaluation and learning (backward step) + ramp_up_factor = square_rampup(epoch, rampup_length=rampup_length) + + loss, ll, ul = criterion( + outputs, + ground_truths, + unlabelled_outputs, + unlabelled_ground_truths, + ramp_up_factor, + ) optimizer.zero_grad() loss.backward() optimizer.step() losses.update(loss) - labeled_loss.update(ll) - unlabeled_loss.update(ul) - logger.debug("batch loss: {}".format(loss.item())) + labelled_loss.update(ll) + unlabelled_loss.update(ul) + logger.debug(f"batch loss: {loss.item()}") + + if PYTORCH_GE_110: scheduler.step() - if epoch % checkpoint_period == 0: - checkpointer.save("model_{:03d}".format(epoch), **arguments) + if checkpoint_period and (epoch % checkpoint_period == 0): + checkpointer.save(f"model_{epoch:03d}", **arguments) - if epoch == max_epoch: + if epoch >= max_epoch: checkpointer.save("model_final", **arguments) + # computes ETA (estimated time-of-arrival; end of training) taking + # into consideration previous epoch performance epoch_time = time.time() - start_epoch_time - - eta_seconds = epoch_time * (max_epoch - epoch) - eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) - - outfile.write(("{epoch}, " - "{avg_loss:.6f}, " - "{median_loss:.6f}, " - "{median_labeled_loss}," - "{median_unlabeled_loss}," - "{lr:.6f}, " - "{memory:.0f}" - "\n" - ).format( - eta=eta_string, - epoch=epoch, - avg_loss=losses.avg, - median_loss=losses.median, - median_labeled_loss = labeled_loss.median, - median_unlabeled_loss = unlabeled_loss.median, - lr=optimizer.param_groups[0]["lr"], - memory = (torch.cuda.max_memory_allocated() / 1024.0 / 1024.0) if torch.cuda.is_available() else .0, - ) - ) - logger.info(("eta: {eta}, " - "epoch: {epoch}, " - "avg. loss: {avg_loss:.6f}, " - "median loss: {median_loss:.6f}, " - "labeled loss: {median_labeled_loss}, " - "unlabeled loss: {median_unlabeled_loss}, " - "lr: {lr:.6f}, " - "max mem: {memory:.0f}" - ).format( - eta=eta_string, - epoch=epoch, - avg_loss=losses.avg, - median_loss=losses.median, - median_labeled_loss = labeled_loss.median, - median_unlabeled_loss = unlabeled_loss.median, - lr=optimizer.param_groups[0]["lr"], - memory = (torch.cuda.max_memory_allocated() / 1024.0 / 1024.0) if torch.cuda.is_available() else .0 - ) - ) + current_time = time.time() - start_training_time + logdata = ( + ("epoch", f"{epoch}"), + ( + "total-time", + f"{datetime.timedelta(seconds=int(current_time))}", + ), + ("eta", f"{datetime.timedelta(seconds=int(eta_seconds))}"), + ("average-loss", f"{losses.avg:.6f}"), + ("median-loss", f"{losses.median:.6f}"), + ("median-labelled-loss", f"{labelled_loss.median:.6f}"), + ("median-unlabelled-loss", f"{unlabelled_loss.median:.6f}"), + ("learning-rate", f"{optimizer.param_groups[0]['lr']:.6f}"), + ( + "gpu-memory-megabytes", + f"{torch.cuda.max_memory_allocated()/(1024.0*1024.0)}" + if torch.cuda.is_available() + else "0.0", + ), + ) + logwriter.writerow(dict(k for k in logdata)) + logger.info("|".join([f"{k}: {v}" for (k, v) in logdata])) total_training_time = time.time() - start_training_time - total_time_str = str(datetime.timedelta(seconds=total_training_time)) logger.info( - "Total training time: {} ({:.4f} s / epoch)".format( - total_time_str, total_training_time / (max_epoch) - )) - - log_plot_file = os.path.join(output_folder,"{}_trainlog.pdf".format(model.name)) - logdf = pd.read_csv(os.path.join(output_folder,"{}_trainlog.csv".format(model.name)),header=None, names=["avg. loss", "median loss", "labeled loss", "unlabeled loss", "lr","max memory"]) - fig = loss_curve(logdf,output_folder) - logger.info("saving {}".format(log_plot_file)) - fig.savefig(log_plot_file) - \ No newline at end of file + f"Total training time: {datetime.timedelta(seconds=total_training_time)} ({(total_training_time/max_epoch):.4f}s in average per epoch)" + ) + + # plots a version of the CSV trainlog into a PDF + logdf = pandas.read_csv(logfile_name, header=0, names=logfile_fields) + fig = loss_curve(logdf) + figurefile_name = os.path.join(output_folder, "trainlog.pdf") + logger.info(f"Saving {figurefile_name}") + fig.savefig(figurefile_name) diff --git a/bob/ip/binseg/engine/trainer.py b/bob/ip/binseg/engine/trainer.py index e083ec852491e82d2abee84421e1f14d20966a2a..d5591526fc149248f950e69694443335c85728a0 100644 --- a/bob/ip/binseg/engine/trainer.py +++ b/bob/ip/binseg/engine/trainer.py @@ -1,19 +1,28 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -import os -import logging +import os +import csv import time +import shutil import datetime +import distutils.version + import torch -import pandas as pd from tqdm import tqdm -from bob.ip.binseg.utils.metric import SmoothedValue -from bob.ip.binseg.utils.plot import loss_curve +from ..utils.metric import SmoothedValue +from ..utils.summary import summary +from ..utils.resources import cpu_constants, gpu_constants, cpu_log, gpu_log + +import logging + +logger = logging.getLogger(__name__) + +PYTORCH_GE_110 = distutils.version.StrictVersion(torch.__version__) >= "1.1.0" -def do_train( +def run( model, data_loader, optimizer, @@ -23,40 +32,111 @@ def do_train( checkpoint_period, device, arguments, - output_folder + output_folder, ): - """ - Train model and save to disk. - + """ + Fits an FCN model using supervised learning and save it to disk. + + This method supports periodic checkpointing and the output of a + CSV-formatted log with the evolution of some figures during training. + + Parameters ---------- - model : :py:class:`torch.nn.Module` + + model : :py:class:`torch.nn.Module` Network (e.g. DRIU, HED, UNet) + data_loader : :py:class:`torch.utils.data.DataLoader` + optimizer : :py:mod:`torch.optim` + criterion : :py:class:`torch.nn.modules.loss._Loss` loss function + scheduler : :py:mod:`torch.optim` learning rate scheduler + checkpointer : :py:class:`bob.ip.binseg.utils.checkpointer.DetectronCheckpointer` - checkpointer + checkpointer implementation + checkpoint_period : int - save a checkpoint every n epochs - device : str - device to use ``'cpu'`` or ``'cuda'`` + save a checkpoint every ``n`` epochs. If set to ``0`` (zero), then do + not save intermediary checkpoints + + device : str + device to use ``'cpu'`` or ``cuda:0`` + arguments : dict - start end end epochs - output_folder : str + start and end epochs + + output_folder : str output path """ - logger = logging.getLogger("bob.ip.binseg.engine.trainer") - logger.info("Start training") + start_epoch = arguments["epoch"] max_epoch = arguments["max_epoch"] - # Logg to file - with open (os.path.join(output_folder,"{}_trainlog.csv".format(model.name)), "a+") as outfile: - + if device != "cpu": + # asserts we do have a GPU + assert bool(gpu_constants()), ( + f"Device set to '{device}', but cannot " + f"find a GPU (maybe nvidia-smi is not installed?)" + ) + + os.makedirs(output_folder, exist_ok=True) + + # Save model summary + summary_path = os.path.join(output_folder, "model_summary.txt") + logger.info(f"Saving model summary at {summary_path}...") + with open(summary_path, "wt") as f: + r, n = summary(model) + logger.info(f"Model has {n} parameters...") + f.write(r) + + # write static information to a CSV file + static_logfile_name = os.path.join(output_folder, "constants.csv") + if os.path.exists(static_logfile_name): + backup = static_logfile_name + "~" + if os.path.exists(backup): + os.unlink(backup) + shutil.move(static_logfile_name, backup) + with open(static_logfile_name, "w", newline="") as f: + logdata = cpu_constants() + if device != "cpu": + logdata += gpu_constants() + logdata += (("model_size", n),) + logwriter = csv.DictWriter(f, fieldnames=[k[0] for k in logdata]) + logwriter.writeheader() + logwriter.writerow(dict(k for k in logdata)) + + # Log continous information to (another) file + logfile_name = os.path.join(output_folder, "trainlog.csv") + + if arguments["epoch"] == 0 and os.path.exists(logfile_name): + backup = logfile_name + "~" + if os.path.exists(backup): + os.unlink(backup) + shutil.move(logfile_name, backup) + + logfile_fields = ( + "epoch", + "total_time", + "eta", + "average_loss", + "median_loss", + "learning_rate", + ) + logfile_fields += tuple([k[0] for k in cpu_log()]) + if device != "cpu": + logfile_fields += tuple([k[0] for k in gpu_log()]) + + with open(logfile_name, "a+", newline="") as logfile: + logwriter = csv.DictWriter(logfile, fieldnames=logfile_fields) + + if arguments["epoch"] == 0: + logwriter.writeheader() + model.train().to(device) for state in optimizer.state.values(): for k, v in state.items(): @@ -65,86 +145,78 @@ def do_train( # Total training timer start_training_time = time.time() - for epoch in range(start_epoch, max_epoch): - scheduler.step() + for epoch in tqdm( + range(start_epoch, max_epoch), + desc="epoch", + leave=False, + disable=None, + ): + if not PYTORCH_GE_110: + scheduler.step() losses = SmoothedValue(len(data_loader)) epoch = epoch + 1 arguments["epoch"] = epoch - + # Epoch time start_epoch_time = time.time() - for samples in tqdm(data_loader): + # progress bar only on interactive jobs + for samples in tqdm( + data_loader, desc="batch", leave=False, disable=None + ): + # data forwarding on the existing network images = samples[1].to(device) ground_truths = samples[2].to(device) masks = None if len(samples) == 4: masks = samples[-1].to(device) - + outputs = model(images) - + + # loss evaluation and learning (backward step) loss = criterion(outputs, ground_truths, masks) optimizer.zero_grad() loss.backward() optimizer.step() losses.update(loss) - logger.debug("batch loss: {}".format(loss.item())) + logger.debug(f"batch loss: {loss.item()}") + + if PYTORCH_GE_110: + scheduler.step() - if epoch % checkpoint_period == 0: - checkpointer.save("model_{:03d}".format(epoch), **arguments) + if checkpoint_period and (epoch % checkpoint_period == 0): + checkpointer.save(f"model_{epoch:03d}", **arguments) - if epoch == max_epoch: + if epoch >= max_epoch: checkpointer.save("model_final", **arguments) + # computes ETA (estimated time-of-arrival; end of training) taking + # into consideration previous epoch performance epoch_time = time.time() - start_epoch_time - - eta_seconds = epoch_time * (max_epoch - epoch) - eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) - - outfile.write(("{epoch}, " - "{avg_loss:.6f}, " - "{median_loss:.6f}, " - "{lr:.6f}, " - "{memory:.0f}" - "\n" - ).format( - eta=eta_string, - epoch=epoch, - avg_loss=losses.avg, - median_loss=losses.median, - lr=optimizer.param_groups[0]["lr"], - memory = (torch.cuda.max_memory_allocated() / 1024.0 / 1024.0) if torch.cuda.is_available() else .0, - ) - ) - logger.info(("eta: {eta}, " - "epoch: {epoch}, " - "avg. loss: {avg_loss:.6f}, " - "median loss: {median_loss:.6f}, " - "lr: {lr:.6f}, " - "max mem: {memory:.0f}" - ).format( - eta=eta_string, - epoch=epoch, - avg_loss=losses.avg, - median_loss=losses.median, - lr=optimizer.param_groups[0]["lr"], - memory = (torch.cuda.max_memory_allocated() / 1024.0 / 1024.0) if torch.cuda.is_available() else .0 - ) - ) - + current_time = time.time() - start_training_time + + logdata = ( + ("epoch", f"{epoch}"), + ( + "total_time", + f"{datetime.timedelta(seconds=int(current_time))}", + ), + ("eta", f"{datetime.timedelta(seconds=int(eta_seconds))}"), + ("average_loss", f"{losses.avg:.6f}"), + ("median_loss", f"{losses.median:.6f}"), + ("learning_rate", f"{optimizer.param_groups[0]['lr']:.6f}"), + ) + cpu_log() + if device != 'cpu': + logdata += gpu_log() + + logwriter.writerow(dict(k for k in logdata)) + logfile.flush() + tqdm.write("|".join([f"{k}: {v}" for (k, v) in logdata[:4]])) total_training_time = time.time() - start_training_time - total_time_str = str(datetime.timedelta(seconds=total_training_time)) logger.info( - "Total training time: {} ({:.4f} s / epoch)".format( - total_time_str, total_training_time / (max_epoch) - )) - - log_plot_file = os.path.join(output_folder,"{}_trainlog.pdf".format(model.name)) - logdf = pd.read_csv(os.path.join(output_folder,"{}_trainlog.csv".format(model.name)),header=None, names=["avg. loss", "median loss","lr","max memory"]) - fig = loss_curve(logdf,output_folder) - logger.info("saving {}".format(log_plot_file)) - fig.savefig(log_plot_file) + f"Total training time: {datetime.timedelta(seconds=total_training_time)} ({(total_training_time/max_epoch):.4f}s in average per epoch)" + ) diff --git a/bob/ip/binseg/modeling/__init__.py b/bob/ip/binseg/modeling/__init__.py index 2ca5e07cb73f0bdddcb863ef497955964087e301..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644 --- a/bob/ip/binseg/modeling/__init__.py +++ b/bob/ip/binseg/modeling/__init__.py @@ -1,3 +0,0 @@ -# see https://docs.python.org/3/library/pkgutil.html -from pkgutil import extend_path -__path__ = extend_path(__path__, __name__) \ No newline at end of file diff --git a/bob/ip/binseg/modeling/backbones/__init__.py b/bob/ip/binseg/modeling/backbones/__init__.py index 2ca5e07cb73f0bdddcb863ef497955964087e301..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644 --- a/bob/ip/binseg/modeling/backbones/__init__.py +++ b/bob/ip/binseg/modeling/backbones/__init__.py @@ -1,3 +0,0 @@ -# see https://docs.python.org/3/library/pkgutil.html -from pkgutil import extend_path -__path__ = extend_path(__path__, __name__) \ No newline at end of file diff --git a/bob/ip/binseg/modeling/backbones/mobilenetv2.py b/bob/ip/binseg/modeling/backbones/mobilenetv2.py index 9f1ae8f5a10ee04835efc7c40b9746f335505b31..9e6cd245a00bc5a95fef118acc26b87f136e437b 100644 --- a/bob/ip/binseg/modeling/backbones/mobilenetv2.py +++ b/bob/ip/binseg/modeling/backbones/mobilenetv2.py @@ -1,30 +1,30 @@ #!/usr/bin/env python # vim: set fileencoding=utf-8 : -# Adopted from https://github.com/tonylins/pytorch-mobilenet-v2/ by @tonylins +# Adopted from https://github.com/tonylins/pytorch-mobilenet-v2/ by @tonylins # Ji Lin under Apache License 2.0 -import torch.nn as nn +import torch.nn import math def conv_bn(inp, oup, stride): - return nn.Sequential( - nn.Conv2d(inp, oup, 3, stride, 1, bias=False), - nn.BatchNorm2d(oup), - nn.ReLU6(inplace=True) + return torch.nn.Sequential( + torch.nn.Conv2d(inp, oup, 3, stride, 1, bias=False), + torch.nn.BatchNorm2d(oup), + torch.nn.ReLU6(inplace=True), ) def conv_1x1_bn(inp, oup): - return nn.Sequential( - nn.Conv2d(inp, oup, 1, 1, 0, bias=False), - nn.BatchNorm2d(oup), - nn.ReLU6(inplace=True) + return torch.nn.Sequential( + torch.nn.Conv2d(inp, oup, 1, 1, 0, bias=False), + torch.nn.BatchNorm2d(oup), + torch.nn.ReLU6(inplace=True), ) -class InvertedResidual(nn.Module): +class InvertedResidual(torch.nn.Module): def __init__(self, inp, oup, stride, expand_ratio): super(InvertedResidual, self).__init__() self.stride = stride @@ -34,28 +34,32 @@ class InvertedResidual(nn.Module): self.use_res_connect = self.stride == 1 and inp == oup if expand_ratio == 1: - self.conv = nn.Sequential( + self.conv = torch.nn.Sequential( # dw - nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), - nn.BatchNorm2d(hidden_dim), - nn.ReLU6(inplace=True), + torch.nn.Conv2d( + hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False + ), + torch.nn.BatchNorm2d(hidden_dim), + torch.nn.ReLU6(inplace=True), # pw-linear - nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), - nn.BatchNorm2d(oup), + torch.nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), + torch.nn.BatchNorm2d(oup), ) else: - self.conv = nn.Sequential( + self.conv = torch.nn.Sequential( # pw - nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), - nn.BatchNorm2d(hidden_dim), - nn.ReLU6(inplace=True), + torch.nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), + torch.nn.BatchNorm2d(hidden_dim), + torch.nn.ReLU6(inplace=True), # dw - nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), - nn.BatchNorm2d(hidden_dim), - nn.ReLU6(inplace=True), + torch.nn.Conv2d( + hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False + ), + torch.nn.BatchNorm2d(hidden_dim), + torch.nn.ReLU6(inplace=True), # pw-linear - nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), - nn.BatchNorm2d(oup), + torch.nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), + torch.nn.BatchNorm2d(oup), ) def forward(self, x): @@ -65,14 +69,21 @@ class InvertedResidual(nn.Module): return self.conv(x) -class MobileNetV2(nn.Module): - def __init__(self, n_class=1000, input_size=224, width_mult=1., return_features = None, m2u=True): +class MobileNetV2(torch.nn.Module): + def __init__( + self, + n_class=1000, + input_size=224, + width_mult=1.0, + return_features=None, + m2u=True, + ): super(MobileNetV2, self).__init__() - self.return_features = return_features - self.m2u = m2u + self.return_features = return_features + self.m2u = m2u block = InvertedResidual input_channel = 32 - last_channel = 1280 + #last_channel = 1280 interverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], @@ -80,34 +91,38 @@ class MobileNetV2(nn.Module): [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], - #[6, 160, 3, 2], - #[6, 320, 1, 1], + # [6, 160, 3, 2], + # [6, 320, 1, 1], ] # building first layer assert input_size % 32 == 0 input_channel = int(input_channel * width_mult) - #self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel + # self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel self.features = [conv_bn(3, input_channel, 2)] # building inverted residual blocks for t, c, n, s in interverted_residual_setting: output_channel = int(c * width_mult) for i in range(n): if i == 0: - self.features.append(block(input_channel, output_channel, s, expand_ratio=t)) + self.features.append( + block(input_channel, output_channel, s, expand_ratio=t) + ) else: - self.features.append(block(input_channel, output_channel, 1, expand_ratio=t)) + self.features.append( + block(input_channel, output_channel, 1, expand_ratio=t) + ) input_channel = output_channel # building last several layers - #self.features.append(conv_1x1_bn(input_channel, self.last_channel)) - # make it nn.Sequential - self.features = nn.Sequential(*self.features) + # self.features.append(conv_1x1_bn(input_channel, self.last_channel)) + # make it torch.nn.Sequential + self.features = torch.nn.Sequential(*self.features) # building classifier - #self.classifier = nn.Sequential( - # nn.Dropout(0.2), - # nn.Linear(self.last_channel, n_class), - #) + # self.classifier = torch.nn.Sequential( + # torch.nn.Dropout(0.2), + # torch.nn.Linear(self.last_channel, n_class), + # ) self._initialize_weights() @@ -117,7 +132,7 @@ class MobileNetV2(nn.Module): outputs.append(x.shape[2:4]) if self.m2u: outputs.append(x) - for index,m in enumerate(self.features): + for index, m in enumerate(self.features): x = m(x) # extract layers if index in self.return_features: @@ -126,15 +141,15 @@ class MobileNetV2(nn.Module): def _initialize_weights(self): for m in self.modules(): - if isinstance(m, nn.Conv2d): + if isinstance(m, torch.nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels - m.weight.data.normal_(0, math.sqrt(2. / n)) + m.weight.data.normal_(0, math.sqrt(2.0 / n)) if m.bias is not None: m.bias.data.zero_() - elif isinstance(m, nn.BatchNorm2d): + elif isinstance(m, torch.nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() - elif isinstance(m, nn.Linear): + elif isinstance(m, torch.nn.Linear): n = m.weight.size(1) m.weight.data.normal_(0, 0.01) - m.bias.data.zero_() \ No newline at end of file + m.bias.data.zero_() diff --git a/bob/ip/binseg/modeling/backbones/resnet.py b/bob/ip/binseg/modeling/backbones/resnet.py index 5881652e571c94cd0aff20082a90986feffa96db..445c4ba715cb756a0c90ad688d493e6e0d3f2535 100644 --- a/bob/ip/binseg/modeling/backbones/resnet.py +++ b/bob/ip/binseg/modeling/backbones/resnet.py @@ -1,28 +1,25 @@ -# Adapted from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py +# Adapted from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py # resnet50_trained_on_SIN_and_IN_then_finetuned_on_IN : https://github.com/rgeirhos/texture-vs-shap import torch.nn as nn import torch.utils.model_zoo as model_zoo -__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', - 'resnet152'] - - model_urls = { - 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', - 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', - 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', - 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', - 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', - 'resnet50_trained_on_SIN_and_IN_then_finetuned_on_IN': 'https://bitbucket.org/robert_geirhos/texture-vs-shape-pretrained-models/raw/60b770e128fffcbd8562a3ab3546c1a735432d03/resnet50_finetune_60_epochs_lr_decay_after_30_start_resnet50_train_45_epochs_combined_IN_SF-ca06340c.pth.tar', + "resnet18": "https://download.pytorch.org/models/resnet18-5c106cde.pth", + "resnet34": "https://download.pytorch.org/models/resnet34-333f7ec4.pth", + "resnet50": "https://download.pytorch.org/models/resnet50-19c8e357.pth", + "resnet101": "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth", + "resnet152": "https://download.pytorch.org/models/resnet152-b121ed2d.pth", + "resnet50_trained_on_SIN_and_IN_then_finetuned_on_IN": "https://bitbucket.org/robert_geirhos/texture-vs-shape-pretrained-models/raw/60b770e128fffcbd8562a3ab3546c1a735432d03/resnet50_finetune_60_epochs_lr_decay_after_30_start_resnet50_train_45_epochs_combined_IN_SF-ca06340c.pth.tar", } def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" - return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, - padding=1, bias=False) + return nn.Conv2d( + in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False, + ) def conv1x1(in_planes, out_planes, stride=1): @@ -101,20 +98,18 @@ class Bottleneck(nn.Module): class ResNet(nn.Module): - def __init__(self, block, layers, return_features, zero_init_residual=False): """ Generic ResNet network with layer return. Attributes ---------- return_features: list of length 5 - layers to return. + layers to return. """ super(ResNet, self).__init__() self.inplanes = 64 self.return_features = return_features - self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, - bias=False) + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) @@ -123,13 +118,20 @@ class ResNet(nn.Module): self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) - - self.features = [self.conv1, self.bn1, self.relu, self.maxpool - ,self.layer1,self.layer2,self.layer3,self.layer4] + self.features = [ + self.conv1, + self.bn1, + self.relu, + self.maxpool, + self.layer1, + self.layer2, + self.layer3, + self.layer4, + ] for m in self.modules(): if isinstance(m, nn.Conv2d): - nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) @@ -164,7 +166,7 @@ class ResNet(nn.Module): outputs = [] # hw of input, needed for DRIU and HED outputs.append(x.shape[2:4]) - for index,m in enumerate(self.features): + for index, m in enumerate(self.features): x = m(x) # extract layers if index in self.return_features: @@ -179,7 +181,7 @@ def resnet18(pretrained=False, **kwargs): """ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: - model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) + model.load_state_dict(model_zoo.load_url(model_urls["resnet18"])) return model @@ -190,7 +192,7 @@ def resnet34(pretrained=False, **kwargs): """ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) if pretrained: - model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) + model.load_state_dict(model_zoo.load_url(model_urls["resnet34"])) return model @@ -201,9 +203,10 @@ def resnet50(pretrained=False, **kwargs): """ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: - model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) + model.load_state_dict(model_zoo.load_url(model_urls["resnet50"])) return model + def shaperesnet50(pretrained=False, **kwargs): """Constructs a ResNet-50 model, pretrained on Stylized-ImageNe and ImageNet and fine-tuned on ImageNet. Args: @@ -211,9 +214,14 @@ def shaperesnet50(pretrained=False, **kwargs): """ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: - model.load_state_dict(model_zoo.load_url(model_urls['resnet50_trained_on_SIN_and_IN_then_finetuned_on_IN'])) + model.load_state_dict( + model_zoo.load_url( + model_urls["resnet50_trained_on_SIN_and_IN_then_finetuned_on_IN"] + ) + ) return model + def resnet101(pretrained=False, **kwargs): """Constructs a ResNet-101 model. Args: @@ -221,9 +229,10 @@ def resnet101(pretrained=False, **kwargs): """ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) if pretrained: - model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) + model.load_state_dict(model_zoo.load_url(model_urls["resnet101"])) return model + def resnet152(pretrained=False, **kwargs): """Constructs a ResNet-152 model. Args: @@ -231,5 +240,5 @@ def resnet152(pretrained=False, **kwargs): """ model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) if pretrained: - model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) - return model \ No newline at end of file + model.load_state_dict(model_zoo.load_url(model_urls["resnet152"])) + return model diff --git a/bob/ip/binseg/modeling/backbones/vgg.py b/bob/ip/binseg/modeling/backbones/vgg.py index 85a375805d5182309101067e6163e651deebc44b..e3909fcbb2096f3c91a1b8e3f359dae42365f22b 100644 --- a/bob/ip/binseg/modeling/backbones/vgg.py +++ b/bob/ip/binseg/modeling/backbones/vgg.py @@ -1,32 +1,25 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -# Adapted from https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py +# Adapted from https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py import torch.nn as nn import torch.utils.model_zoo as model_zoo -__all__ = [ - 'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', - 'vgg19_bn', 'vgg19', -] - - model_urls = { - 'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth', - 'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth', - 'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth', - 'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth', - 'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth', - 'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth', - 'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth', - 'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth', + "vgg11": "https://download.pytorch.org/models/vgg11-bbd30ac9.pth", + "vgg13": "https://download.pytorch.org/models/vgg13-c768596a.pth", + "vgg16": "https://download.pytorch.org/models/vgg16-397923af.pth", + "vgg19": "https://download.pytorch.org/models/vgg19-dcbb9e9d.pth", + "vgg11_bn": "https://download.pytorch.org/models/vgg11_bn-6002323d.pth", + "vgg13_bn": "https://download.pytorch.org/models/vgg13_bn-abd245e5.pth", + "vgg16_bn": "https://download.pytorch.org/models/vgg16_bn-6c64b313.pth", + "vgg19_bn": "https://download.pytorch.org/models/vgg19_bn-c79401a0.pth", } class VGG(nn.Module): - def __init__(self, features, return_features, init_weights=True): super(VGG, self).__init__() self.features = features @@ -38,7 +31,7 @@ class VGG(nn.Module): outputs = [] # hw of input, needed for DRIU and HED outputs.append(x.shape[2:4]) - for index,m in enumerate(self.features): + for index, m in enumerate(self.features): x = m(x) # extract layers if index in self.return_features: @@ -48,7 +41,7 @@ class VGG(nn.Module): def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): - nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): @@ -63,7 +56,7 @@ def make_layers(cfg, batch_norm=False): layers = [] in_channels = 3 for v in cfg: - if v == 'M': + if v == "M": layers.append(nn.MaxPool2d(kernel_size=2, stride=2)) else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) @@ -75,11 +68,52 @@ def make_layers(cfg, batch_norm=False): return nn.Sequential(*layers) -cfg = { - 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], - 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], - 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], - 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], +_cfg = { + "A": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"], + "B": [64, 64, "M", 128, 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"], + "D": [ + 64, + 64, + "M", + 128, + 128, + "M", + 256, + 256, + 256, + "M", + 512, + 512, + 512, + "M", + 512, + 512, + 512, + "M", + ], + "E": [ + 64, + 64, + "M", + 128, + 128, + "M", + 256, + 256, + 256, + 256, + "M", + 512, + 512, + 512, + 512, + "M", + 512, + 512, + 512, + 512, + "M", + ], } @@ -89,10 +123,10 @@ def vgg11(pretrained=False, **kwargs): pretrained (bool): If True, returns a model pre-trained on ImageNet """ if pretrained: - kwargs['init_weights'] = False - model = VGG(make_layers(cfg['A']), **kwargs) + kwargs["init_weights"] = False + model = VGG(make_layers(_cfg["A"]), **kwargs) if pretrained: - model.load_state_dict(model_zoo.load_url(model_urls['vgg11'])) + model.load_state_dict(model_zoo.load_url(model_urls["vgg11"])) return model @@ -102,10 +136,10 @@ def vgg11_bn(pretrained=False, **kwargs): pretrained (bool): If True, returns a model pre-trained on ImageNet """ if pretrained: - kwargs['init_weights'] = False - model = VGG(make_layers(cfg['A'], batch_norm=True), **kwargs) + kwargs["init_weights"] = False + model = VGG(make_layers(_cfg["A"], batch_norm=True), **kwargs) if pretrained: - model.load_state_dict(model_zoo.load_url(model_urls['vgg11_bn'])) + model.load_state_dict(model_zoo.load_url(model_urls["vgg11_bn"])) return model @@ -115,10 +149,10 @@ def vgg13(pretrained=False, **kwargs): pretrained (bool): If True, returns a model pre-trained on ImageNet """ if pretrained: - kwargs['init_weights'] = False - model = VGG(make_layers(cfg['B']), **kwargs) + kwargs["init_weights"] = False + model = VGG(make_layers(_cfg["B"]), **kwargs) if pretrained: - model.load_state_dict(model_zoo.load_url(model_urls['vgg13'])) + model.load_state_dict(model_zoo.load_url(model_urls["vgg13"])) return model @@ -128,10 +162,10 @@ def vgg13_bn(pretrained=False, **kwargs): pretrained (bool): If True, returns a model pre-trained on ImageNet """ if pretrained: - kwargs['init_weights'] = False - model = VGG(make_layers(cfg['B'], batch_norm=True), **kwargs) + kwargs["init_weights"] = False + model = VGG(make_layers(_cfg["B"], batch_norm=True), **kwargs) if pretrained: - model.load_state_dict(model_zoo.load_url(model_urls['vgg13_bn'])) + model.load_state_dict(model_zoo.load_url(model_urls["vgg13_bn"])) return model @@ -141,10 +175,10 @@ def vgg16(pretrained=False, **kwargs): pretrained (bool): If True, returns a model pre-trained on ImageNet """ if pretrained: - kwargs['init_weights'] = False - model = VGG(make_layers(cfg['D']), **kwargs) + kwargs["init_weights"] = False + model = VGG(make_layers(_cfg["D"]), **kwargs) if pretrained: - model.load_state_dict(model_zoo.load_url(model_urls['vgg16']),strict=False) + model.load_state_dict(model_zoo.load_url(model_urls["vgg16"]), strict=False) return model @@ -154,10 +188,10 @@ def vgg16_bn(pretrained=False, **kwargs): pretrained (bool): If True, returns a model pre-trained on ImageNet """ if pretrained: - kwargs['init_weights'] = False - model = VGG(make_layers(cfg['D'], batch_norm=True), **kwargs) + kwargs["init_weights"] = False + model = VGG(make_layers(_cfg["D"], batch_norm=True), **kwargs) if pretrained: - model.load_state_dict(model_zoo.load_url(model_urls['vgg16_bn'])) + model.load_state_dict(model_zoo.load_url(model_urls["vgg16_bn"])) return model @@ -167,10 +201,10 @@ def vgg19(pretrained=False, **kwargs): pretrained (bool): If True, returns a model pre-trained on ImageNet """ if pretrained: - kwargs['init_weights'] = False - model = VGG(make_layers(cfg['E']), **kwargs) + kwargs["init_weights"] = False + model = VGG(make_layers(_cfg["E"]), **kwargs) if pretrained: - model.load_state_dict(model_zoo.load_url(model_urls['vgg19'])) + model.load_state_dict(model_zoo.load_url(model_urls["vgg19"])) return model @@ -180,8 +214,8 @@ def vgg19_bn(pretrained=False, **kwargs): pretrained (bool): If True, returns a model pre-trained on ImageNet """ if pretrained: - kwargs['init_weights'] = False - model = VGG(make_layers(cfg['E'], batch_norm=True), **kwargs) + kwargs["init_weights"] = False + model = VGG(make_layers(_cfg["E"], batch_norm=True), **kwargs) if pretrained: - model.load_state_dict(model_zoo.load_url(model_urls['vgg19_bn'])) - return model \ No newline at end of file + model.load_state_dict(model_zoo.load_url(model_urls["vgg19_bn"])) + return model diff --git a/bob/ip/binseg/modeling/driu.py b/bob/ip/binseg/modeling/driu.py index 466d4eb0942dcbc5e8f7f26a4ce2ca8db52d6f38..c63dc843a7a267fd9a2f1f6bbc7dd20b4cd1a2a1 100644 --- a/bob/ip/binseg/modeling/driu.py +++ b/bob/ip/binseg/modeling/driu.py @@ -2,79 +2,99 @@ # -*- coding: utf-8 -*- import torch -from torch import nn +import torch.nn from collections import OrderedDict from bob.ip.binseg.modeling.backbones.vgg import vgg16 -from bob.ip.binseg.modeling.make_layers import conv_with_kaiming_uniform,convtrans_with_kaiming_uniform, UpsampleCropBlock +from bob.ip.binseg.modeling.make_layers import ( + conv_with_kaiming_uniform, + convtrans_with_kaiming_uniform, + UpsampleCropBlock, +) -class ConcatFuseBlock(nn.Module): - """ - Takes in four feature maps with 16 channels each, concatenates them - and applies a 1x1 convolution with 1 output channel. + +class ConcatFuseBlock(torch.nn.Module): + """ + Takes in four feature maps with 16 channels each, concatenates them + and applies a 1x1 convolution with 1 output channel. """ + def __init__(self): super().__init__() - self.conv = conv_with_kaiming_uniform(4*16,1,1,1,0) - - def forward(self,x1,x2,x3,x4): - x_cat = torch.cat([x1,x2,x3,x4],dim=1) + self.conv = conv_with_kaiming_uniform(4 * 16, 1, 1, 1, 0) + + def forward(self, x1, x2, x3, x4): + + x_cat = torch.cat([x1, x2, x3, x4], dim=1) x = self.conv(x_cat) - return x - -class DRIU(nn.Module): + return x + + +class DRIU(torch.nn.Module): """ DRIU head module - Based on paper by `Maninis et al. (2016)`_ + + Based on paper by [MANINIS-2016]_. + Parameters ---------- in_channels_list : list number of channels for each feature map that is returned from backbone """ + def __init__(self, in_channels_list=None): super(DRIU, self).__init__() - in_conv_1_2_16, in_upsample2, in_upsample_4, in_upsample_8 = in_channels_list + (in_conv_1_2_16, in_upsample2, in_upsample_4, in_upsample_8,) = in_channels_list - self.conv1_2_16 = nn.Conv2d(in_conv_1_2_16, 16, 3, 1, 1) + self.conv1_2_16 = torch.nn.Conv2d(in_conv_1_2_16, 16, 3, 1, 1) # Upsample layers self.upsample2 = UpsampleCropBlock(in_upsample2, 16, 4, 2, 0) self.upsample4 = UpsampleCropBlock(in_upsample_4, 16, 8, 4, 0) self.upsample8 = UpsampleCropBlock(in_upsample_8, 16, 16, 8, 0) - + # Concat and Fuse self.concatfuse = ConcatFuseBlock() - def forward(self,x): + def forward(self, x): """ + Parameters ---------- + x : list - list of tensors as returned from the backbone network. - First element: height and width of input image. - Remaining elements: feature maps for each feature level. + list of tensors as returned from the backbone network. First + element: height and width of input image. Remaining elements: + feature maps for each feature level. Returns ------- - :py:class:`torch.Tensor` + + tensor : :py:class:`torch.Tensor` + """ hw = x[0] - conv1_2_16 = self.conv1_2_16(x[1]) # conv1_2_16 - upsample2 = self.upsample2(x[2], hw) # side-multi2-up - upsample4 = self.upsample4(x[3], hw) # side-multi3-up - upsample8 = self.upsample8(x[4], hw) # side-multi4-up + conv1_2_16 = self.conv1_2_16(x[1]) # conv1_2_16 + upsample2 = self.upsample2(x[2], hw) # side-multi2-up + upsample4 = self.upsample4(x[3], hw) # side-multi3-up + upsample8 = self.upsample8(x[4], hw) # side-multi4-up out = self.concatfuse(conv1_2_16, upsample2, upsample4, upsample8) return out + def build_driu(): - """ + """ Adds backbone and head together Returns ------- - :py:class:torch.nn.Module + + module : :py:class:`torch.nn.Module` + """ - backbone = vgg16(pretrained=False, return_features = [3, 8, 14, 22]) + backbone = vgg16(pretrained=False, return_features=[3, 8, 14, 22]) driu_head = DRIU([64, 128, 256, 512]) - model = nn.Sequential(OrderedDict([("backbone", backbone), ("head", driu_head)])) - model.name = "DRIU" - return model \ No newline at end of file + model = torch.nn.Sequential( + OrderedDict([("backbone", backbone), ("head", driu_head)]) + ) + model.name = "driu" + return model diff --git a/bob/ip/binseg/modeling/driubn.py b/bob/ip/binseg/modeling/driubn.py index 6043fcd6257b73712572002d1895fca84ca7e69f..fd834353eedd5a15e7fa017b97e517966f2a740c 100644 --- a/bob/ip/binseg/modeling/driubn.py +++ b/bob/ip/binseg/modeling/driubn.py @@ -2,56 +2,66 @@ # -*- coding: utf-8 -*- import torch -from torch import nn +import torch.nn from collections import OrderedDict from bob.ip.binseg.modeling.backbones.vgg import vgg16_bn -from bob.ip.binseg.modeling.make_layers import conv_with_kaiming_uniform,convtrans_with_kaiming_uniform, UpsampleCropBlock +from bob.ip.binseg.modeling.make_layers import ( + conv_with_kaiming_uniform, + convtrans_with_kaiming_uniform, + UpsampleCropBlock, +) -class ConcatFuseBlock(nn.Module): - """ - Takes in four feature maps with 16 channels each, concatenates them - and applies a 1x1 convolution with 1 output channel. + +class ConcatFuseBlock(torch.nn.Module): + """ + Takes in four feature maps with 16 channels each, concatenates them + and applies a 1x1 convolution with 1 output channel. """ + def __init__(self): super().__init__() - self.conv = nn.Sequential( - conv_with_kaiming_uniform(4*16,1,1,1,0) - ,nn.BatchNorm2d(1) + self.conv = torch.nn.Sequential( + conv_with_kaiming_uniform(4 * 16, 1, 1, 1, 0), torch.nn.BatchNorm2d(1) ) - def forward(self,x1,x2,x3,x4): - x_cat = torch.cat([x1,x2,x3,x4],dim=1) + + def forward(self, x1, x2, x3, x4): + x_cat = torch.cat([x1, x2, x3, x4], dim=1) x = self.conv(x_cat) - return x - -class DRIU(nn.Module): + return x + + +class DRIU(torch.nn.Module): """ DRIU head module - Based on paper by `Maninis et al. (2016)`_ + + Based on paper by [MANINIS-2016]_. + Parameters ---------- in_channels_list : list number of channels for each feature map that is returned from backbone """ + def __init__(self, in_channels_list=None): super(DRIU, self).__init__() in_conv_1_2_16, in_upsample2, in_upsample_4, in_upsample_8 = in_channels_list - self.conv1_2_16 = nn.Conv2d(in_conv_1_2_16, 16, 3, 1, 1) + self.conv1_2_16 = torch.nn.Conv2d(in_conv_1_2_16, 16, 3, 1, 1) # Upsample layers self.upsample2 = UpsampleCropBlock(in_upsample2, 16, 4, 2, 0) self.upsample4 = UpsampleCropBlock(in_upsample_4, 16, 8, 4, 0) self.upsample8 = UpsampleCropBlock(in_upsample_8, 16, 16, 8, 0) - + # Concat and Fuse self.concatfuse = ConcatFuseBlock() - def forward(self,x): + def forward(self, x): """ Parameters ---------- x : list list of tensors as returned from the backbone network. - First element: height and width of input image. + First element: height and width of input image. Remaining elements: feature maps for each feature level. Returns @@ -59,24 +69,29 @@ class DRIU(nn.Module): :py:class:`torch.Tensor` """ hw = x[0] - conv1_2_16 = self.conv1_2_16(x[1]) # conv1_2_16 - upsample2 = self.upsample2(x[2], hw) # side-multi2-up - upsample4 = self.upsample4(x[3], hw) # side-multi3-up - upsample8 = self.upsample8(x[4], hw) # side-multi4-up + conv1_2_16 = self.conv1_2_16(x[1]) # conv1_2_16 + upsample2 = self.upsample2(x[2], hw) # side-multi2-up + upsample4 = self.upsample4(x[3], hw) # side-multi3-up + upsample8 = self.upsample8(x[4], hw) # side-multi4-up out = self.concatfuse(conv1_2_16, upsample2, upsample4, upsample8) return out + def build_driu(): - """ + """ Adds backbone and head together Returns ------- - :py:class:torch.nn.Module + + module : :py:class:`torch.nn.Module` + """ - backbone = vgg16_bn(pretrained=False, return_features = [5, 12, 19, 29]) + backbone = vgg16_bn(pretrained=False, return_features=[5, 12, 19, 29]) driu_head = DRIU([64, 128, 256, 512]) - model = nn.Sequential(OrderedDict([("backbone", backbone), ("head", driu_head)])) - model.name = "DRIUBN" - return model \ No newline at end of file + model = torch.nn.Sequential( + OrderedDict([("backbone", backbone), ("head", driu_head)]) + ) + model.name = "driu-bn" + return model diff --git a/bob/ip/binseg/modeling/driuod.py b/bob/ip/binseg/modeling/driuod.py index cfa11973279ecba3b71401f5c87b661f77b34ae6..dbd26167eda41e196bf33a6c52eb9e0cf63bc59d 100644 --- a/bob/ip/binseg/modeling/driuod.py +++ b/bob/ip/binseg/modeling/driuod.py @@ -2,34 +2,42 @@ # -*- coding: utf-8 -*- import torch -from torch import nn +import torch.nn from collections import OrderedDict from bob.ip.binseg.modeling.backbones.vgg import vgg16 -from bob.ip.binseg.modeling.make_layers import conv_with_kaiming_uniform,convtrans_with_kaiming_uniform, UpsampleCropBlock +from bob.ip.binseg.modeling.make_layers import ( + conv_with_kaiming_uniform, + convtrans_with_kaiming_uniform, + UpsampleCropBlock, +) -class ConcatFuseBlock(nn.Module): - """ - Takes in four feature maps with 16 channels each, concatenates them - and applies a 1x1 convolution with 1 output channel. + +class ConcatFuseBlock(torch.nn.Module): + """ + Takes in four feature maps with 16 channels each, concatenates them + and applies a 1x1 convolution with 1 output channel. """ + def __init__(self): super().__init__() - self.conv = conv_with_kaiming_uniform(4*16,1,1,1,0) - - def forward(self,x1,x2,x3,x4): - x_cat = torch.cat([x1,x2,x3,x4],dim=1) + self.conv = conv_with_kaiming_uniform(4 * 16, 1, 1, 1, 0) + + def forward(self, x1, x2, x3, x4): + x_cat = torch.cat([x1, x2, x3, x4], dim=1) x = self.conv(x_cat) - return x - -class DRIUOD(nn.Module): + return x + + +class DRIUOD(torch.nn.Module): """ DRIU head module - + Parameters ---------- in_channels_list : list number of channels for each feature map that is returned from backbone """ + def __init__(self, in_channels_list=None): super(DRIUOD, self).__init__() in_upsample2, in_upsample_4, in_upsample_8, in_upsample_16 = in_channels_list @@ -40,17 +48,16 @@ class DRIUOD(nn.Module): self.upsample8 = UpsampleCropBlock(in_upsample_8, 16, 16, 8, 0) self.upsample16 = UpsampleCropBlock(in_upsample_16, 16, 32, 16, 0) - # Concat and Fuse self.concatfuse = ConcatFuseBlock() - def forward(self,x): + def forward(self, x): """ Parameters ---------- x : list list of tensors as returned from the backbone network. - First element: height and width of input image. + First element: height and width of input image. Remaining elements: feature maps for each feature level. Returns @@ -59,23 +66,27 @@ class DRIUOD(nn.Module): """ hw = x[0] upsample2 = self.upsample2(x[1], hw) # side-multi2-up - upsample4 = self.upsample4(x[2], hw) # side-multi3-up - upsample8 = self.upsample8(x[3], hw) # side-multi4-up + upsample4 = self.upsample4(x[2], hw) # side-multi3-up + upsample8 = self.upsample8(x[3], hw) # side-multi4-up upsample16 = self.upsample16(x[4], hw) # side-multi5-up - out = self.concatfuse(upsample2, upsample4, upsample8,upsample16) + out = self.concatfuse(upsample2, upsample4, upsample8, upsample16) return out + def build_driuod(): - """ + """ Adds backbone and head together Returns ------- - :py:class:torch.nn.Module + module : :py:class:`torch.nn.Module` + """ - backbone = vgg16(pretrained=False, return_features = [8, 14, 22,29]) - driu_head = DRIUOD([128, 256, 512,512]) + backbone = vgg16(pretrained=False, return_features=[8, 14, 22, 29]) + driu_head = DRIUOD([128, 256, 512, 512]) - model = nn.Sequential(OrderedDict([("backbone", backbone), ("head", driu_head)])) - model.name = "DRIUOD" - return model \ No newline at end of file + model = torch.nn.Sequential( + OrderedDict([("backbone", backbone), ("head", driu_head)]) + ) + model.name = "driu-od" + return model diff --git a/bob/ip/binseg/modeling/driupix.py b/bob/ip/binseg/modeling/driupix.py index 00e40932afc0c04f52925783fe3595fa22a7d098..eef95c9f9ac237c1f9235b7fc34f3e90752ccfeb 100644 --- a/bob/ip/binseg/modeling/driupix.py +++ b/bob/ip/binseg/modeling/driupix.py @@ -2,54 +2,66 @@ # -*- coding: utf-8 -*- import torch -from torch import nn +import torch.nn from collections import OrderedDict from bob.ip.binseg.modeling.backbones.vgg import vgg16 -from bob.ip.binseg.modeling.make_layers import conv_with_kaiming_uniform,convtrans_with_kaiming_uniform, UpsampleCropBlock +from bob.ip.binseg.modeling.make_layers import ( + conv_with_kaiming_uniform, + convtrans_with_kaiming_uniform, + UpsampleCropBlock, +) -class ConcatFuseBlock(nn.Module): - """ - Takes in four feature maps with 16 channels each, concatenates them - and applies a 1x1 convolution with 1 output channel. + +class ConcatFuseBlock(torch.nn.Module): + """ + Takes in four feature maps with 16 channels each, concatenates them + and applies a 1x1 convolution with 1 output channel. """ + def __init__(self): super().__init__() - self.conv = conv_with_kaiming_uniform(4*16,1,1,1,0) - - def forward(self,x1,x2,x3,x4): - x_cat = torch.cat([x1,x2,x3,x4],dim=1) + self.conv = conv_with_kaiming_uniform(4 * 16, 1, 1, 1, 0) + + def forward(self, x1, x2, x3, x4): + x_cat = torch.cat([x1, x2, x3, x4], dim=1) x = self.conv(x_cat) - return x - -class DRIUPIX(nn.Module): + return x + + +class DRIUPIX(torch.nn.Module): """ DRIUPIX head module. DRIU with pixelshuffle instead of ConvTrans2D - + Parameters ---------- in_channels_list : list number of channels for each feature map that is returned from backbone """ + def __init__(self, in_channels_list=None): super(DRIUPIX, self).__init__() in_conv_1_2_16, in_upsample2, in_upsample_4, in_upsample_8 = in_channels_list - self.conv1_2_16 = nn.Conv2d(in_conv_1_2_16, 16, 3, 1, 1) + self.conv1_2_16 = torch.nn.Conv2d(in_conv_1_2_16, 16, 3, 1, 1) # Upsample layers self.upsample2 = UpsampleCropBlock(in_upsample2, 16, 4, 2, 0, pixelshuffle=True) - self.upsample4 = UpsampleCropBlock(in_upsample_4, 16, 8, 4, 0, pixelshuffle=True) - self.upsample8 = UpsampleCropBlock(in_upsample_8, 16, 16, 8, 0, pixelshuffle=True) - + self.upsample4 = UpsampleCropBlock( + in_upsample_4, 16, 8, 4, 0, pixelshuffle=True + ) + self.upsample8 = UpsampleCropBlock( + in_upsample_8, 16, 16, 8, 0, pixelshuffle=True + ) + # Concat and Fuse self.concatfuse = ConcatFuseBlock() - def forward(self,x): + def forward(self, x): """ Parameters ---------- x : list list of tensors as returned from the backbone network. - First element: height and width of input image. + First element: height and width of input image. Remaining elements: feature maps for each feature level. Returns @@ -57,24 +69,28 @@ class DRIUPIX(nn.Module): :py:class:`torch.Tensor` """ hw = x[0] - conv1_2_16 = self.conv1_2_16(x[1]) # conv1_2_16 - upsample2 = self.upsample2(x[2], hw) # side-multi2-up - upsample4 = self.upsample4(x[3], hw) # side-multi3-up - upsample8 = self.upsample8(x[4], hw) # side-multi4-up + conv1_2_16 = self.conv1_2_16(x[1]) # conv1_2_16 + upsample2 = self.upsample2(x[2], hw) # side-multi2-up + upsample4 = self.upsample4(x[3], hw) # side-multi3-up + upsample8 = self.upsample8(x[4], hw) # side-multi4-up out = self.concatfuse(conv1_2_16, upsample2, upsample4, upsample8) return out + def build_driupix(): - """ + """ Adds backbone and head together Returns ------- - :py:class:torch.nn.Module + module : :py:class:`torch.nn.Module` + """ - backbone = vgg16(pretrained=False, return_features = [3, 8, 14, 22]) + backbone = vgg16(pretrained=False, return_features=[3, 8, 14, 22]) driu_head = DRIUPIX([64, 128, 256, 512]) - model = nn.Sequential(OrderedDict([("backbone", backbone), ("head", driu_head)])) - model.name = "DRIUPIX" - return model \ No newline at end of file + model = torch.nn.Sequential( + OrderedDict([("backbone", backbone), ("head", driu_head)]) + ) + model.name = "driu-pix" + return model diff --git a/bob/ip/binseg/modeling/hed.py b/bob/ip/binseg/modeling/hed.py index fa44366e4e75dce1059a130e83f78e7884922501..db42515c78c137b93153df9f33d17e7a3a3bd7a1 100644 --- a/bob/ip/binseg/modeling/hed.py +++ b/bob/ip/binseg/modeling/hed.py @@ -2,82 +2,101 @@ # -*- coding: utf-8 -*- import torch -from torch import nn +import torch.nn from collections import OrderedDict from bob.ip.binseg.modeling.backbones.vgg import vgg16 -from bob.ip.binseg.modeling.make_layers import conv_with_kaiming_uniform, convtrans_with_kaiming_uniform, UpsampleCropBlock +from bob.ip.binseg.modeling.make_layers import ( + conv_with_kaiming_uniform, + convtrans_with_kaiming_uniform, + UpsampleCropBlock, +) -class ConcatFuseBlock(nn.Module): - """ - Takes in five feature maps with one channel each, concatenates thems - and applies a 1x1 convolution with 1 output channel. + +class ConcatFuseBlock(torch.nn.Module): + """ + Takes in five feature maps with one channel each, concatenates thems + and applies a 1x1 convolution with 1 output channel. """ + def __init__(self): super().__init__() - self.conv = conv_with_kaiming_uniform(5,1,1,1,0) - - def forward(self,x1,x2,x3,x4,x5): - x_cat = torch.cat([x1,x2,x3,x4,x5],dim=1) + self.conv = conv_with_kaiming_uniform(5, 1, 1, 1, 0) + + def forward(self, x1, x2, x3, x4, x5): + x_cat = torch.cat([x1, x2, x3, x4, x5], dim=1) x = self.conv(x_cat) - return x - -class HED(nn.Module): + return x + + +class HED(torch.nn.Module): """ HED head module - + Parameters ---------- in_channels_list : list number of channels for each feature map that is returned from backbone """ + def __init__(self, in_channels_list=None): super(HED, self).__init__() - in_conv_1_2_16, in_upsample2, in_upsample_4, in_upsample_8, in_upsample_16 = in_channels_list - - self.conv1_2_16 = nn.Conv2d(in_conv_1_2_16,1,3,1,1) + ( + in_conv_1_2_16, + in_upsample2, + in_upsample_4, + in_upsample_8, + in_upsample_16, + ) = in_channels_list + + self.conv1_2_16 = torch.nn.Conv2d(in_conv_1_2_16, 1, 3, 1, 1) # Upsample - self.upsample2 = UpsampleCropBlock(in_upsample2,1,4,2,0) - self.upsample4 = UpsampleCropBlock(in_upsample_4,1,8,4,0) - self.upsample8 = UpsampleCropBlock(in_upsample_8,1,16,8,0) - self.upsample16 = UpsampleCropBlock(in_upsample_16,1,32,16,0) + self.upsample2 = UpsampleCropBlock(in_upsample2, 1, 4, 2, 0) + self.upsample4 = UpsampleCropBlock(in_upsample_4, 1, 8, 4, 0) + self.upsample8 = UpsampleCropBlock(in_upsample_8, 1, 16, 8, 0) + self.upsample16 = UpsampleCropBlock(in_upsample_16, 1, 32, 16, 0) # Concat and Fuse self.concatfuse = ConcatFuseBlock() - def forward(self,x): + def forward(self, x): """ Parameters ---------- x : list list of tensors as returned from the backbone network. - First element: height and width of input image. + First element: height and width of input image. Remaining elements: feature maps for each feature level. - + Returns ------- - :py:class:`torch.Tensor` + tensor : :py:class:`torch.Tensor` """ hw = x[0] - conv1_2_16 = self.conv1_2_16(x[1]) - upsample2 = self.upsample2(x[2],hw) - upsample4 = self.upsample4(x[3],hw) - upsample8 = self.upsample8(x[4],hw) - upsample16 = self.upsample16(x[5],hw) - concatfuse = self.concatfuse(conv1_2_16,upsample2,upsample4,upsample8,upsample16) - - out = [upsample2,upsample4,upsample8,upsample16,concatfuse] + conv1_2_16 = self.conv1_2_16(x[1]) + upsample2 = self.upsample2(x[2], hw) + upsample4 = self.upsample4(x[3], hw) + upsample8 = self.upsample8(x[4], hw) + upsample16 = self.upsample16(x[5], hw) + concatfuse = self.concatfuse( + conv1_2_16, upsample2, upsample4, upsample8, upsample16 + ) + + out = [upsample2, upsample4, upsample8, upsample16, concatfuse] return out + def build_hed(): - """ + """ Adds backbone and head together Returns ------- - :py:class:torch.nn.Module + module : :py:class:`torch.nn.Module` """ - backbone = vgg16(pretrained=False, return_features = [3, 8, 14, 22, 29]) + backbone = vgg16(pretrained=False, return_features=[3, 8, 14, 22, 29]) hed_head = HED([64, 128, 256, 512, 512]) - model = nn.Sequential(OrderedDict([("backbone", backbone), ("head", hed_head)])) - model.name = "HED" - return model \ No newline at end of file + model = torch.nn.Sequential( + OrderedDict([("backbone", backbone), ("head", hed_head)]) + ) + model.name = "hed" + return model diff --git a/bob/ip/binseg/modeling/losses.py b/bob/ip/binseg/modeling/losses.py index de85a581515cb6bccb52074a68963e9978f2c72e..2f435c14cbaa3d33453a6c3b4c6d82a6d0588821 100644 --- a/bob/ip/binseg/modeling/losses.py +++ b/bob/ip/binseg/modeling/losses.py @@ -1,19 +1,40 @@ +"""Loss implementations""" + import torch from torch.nn.modules.loss import _Loss -from torch._jit_internal import weak_script_method +# Conditionally decorates a method if a decorator exists in PyTorch +# This overcomes an import error with versions of PyTorch >= 1.2, where the +# decorator ``weak_script_method`` is not anymore available. See: +# https://github.com/pytorch/pytorch/commit/10c4b98ade8349d841518d22f19a653a939e260c#diff-ee07db084d958260fd24b4b02d4f078d +# from July 4th, 2019. +try: + from torch._jit_internal import weak_script_method +except ImportError: + def weak_script_method(x): + return x class WeightedBCELogitsLoss(_Loss): - """ - Implements Equation 1 in `Maninis et al. (2016)`_. Based on ``torch.nn.modules.loss.BCEWithLogitsLoss``. + """ + Implements Equation 1 in [MANINIS-2016]_. Based on + :py:class:`torch.nn.BCEWithLogitsLoss`. + Calculate sum of weighted cross entropy loss. """ - def __init__(self, weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None): + + def __init__( + self, + weight=None, + size_average=None, + reduce=None, + reduction="mean", + pos_weight=None, + ): super(WeightedBCELogitsLoss, self).__init__(size_average, reduce, reduction) - self.register_buffer('weight', weight) - self.register_buffer('pos_weight', pos_weight) + self.register_buffer("weight", weight) + self.register_buffer("pos_weight", pos_weight) @weak_script_method def forward(self, input, target, masks=None): @@ -23,37 +44,57 @@ class WeightedBCELogitsLoss(_Loss): input : :py:class:`torch.Tensor` target : :py:class:`torch.Tensor` masks : :py:class:`torch.Tensor`, optional - + Returns ------- :py:class:`torch.Tensor` """ n, c, h, w = target.shape - num_pos = torch.sum(target, dim=[1, 2, 3]).float().reshape(n,1) # torch.Size([n, 1]) - if hasattr(masks,'dtype'): - num_mask_neg = c * h * w - torch.sum(masks, dim=[1, 2, 3]).float().reshape(n,1) # torch.Size([n, 1]) - num_neg = c * h * w - num_pos - num_mask_neg + num_pos = ( + torch.sum(target, dim=[1, 2, 3]).float().reshape(n, 1) + ) # torch.Size([n, 1]) + if hasattr(masks, "dtype"): + num_mask_neg = c * h * w - torch.sum(masks, dim=[1, 2, 3]).float().reshape( + n, 1 + ) # torch.Size([n, 1]) + num_neg = c * h * w - num_pos - num_mask_neg else: - num_neg = c * h * w - num_pos - numposnumtotal = torch.ones_like(target) * (num_pos / (num_pos + num_neg)).unsqueeze(1).unsqueeze(2) - numnegnumtotal = torch.ones_like(target) * (num_neg / (num_pos + num_neg)).unsqueeze(1).unsqueeze(2) - weight = torch.where((target <= 0.5) , numposnumtotal, numnegnumtotal) + num_neg = c * h * w - num_pos + numposnumtotal = torch.ones_like(target) * ( + num_pos / (num_pos + num_neg) + ).unsqueeze(1).unsqueeze(2) + numnegnumtotal = torch.ones_like(target) * ( + num_neg / (num_pos + num_neg) + ).unsqueeze(1).unsqueeze(2) + weight = torch.where((target <= 0.5), numposnumtotal, numnegnumtotal) + + loss = torch.nn.functional.binary_cross_entropy_with_logits( + input, target, weight=weight, reduction=self.reduction + ) + return loss - loss = torch.nn.functional.binary_cross_entropy_with_logits(input, target, weight=weight, reduction=self.reduction) - return loss class SoftJaccardBCELogitsLoss(_Loss): - """ - Implements Equation 3 in `Iglovikov et al. (2018)`_. Based on ``torch.nn.modules.loss.BCEWithLogitsLoss``. + """ + Implements Equation 3 in [IGLOVIKOV-2018]_. Based on + ``torch.nn.BCEWithLogitsLoss``. Attributes ---------- alpha : float determines the weighting of SoftJaccard and BCE. Default: ``0.7`` """ - def __init__(self, alpha=0.7, size_average=None, reduce=None, reduction='mean', pos_weight=None): - super(SoftJaccardBCELogitsLoss, self).__init__(size_average, reduce, reduction) - self.alpha = alpha + + def __init__( + self, + alpha=0.7, + size_average=None, + reduce=None, + reduction="mean", + pos_weight=None, + ): + super(SoftJaccardBCELogitsLoss, self).__init__(size_average, reduce, reduction) + self.alpha = alpha @weak_script_method def forward(self, input, target, masks=None): @@ -63,7 +104,7 @@ class SoftJaccardBCELogitsLoss(_Loss): input : :py:class:`torch.Tensor` target : :py:class:`torch.Tensor` masks : :py:class:`torch.Tensor`, optional - + Returns ------- :py:class:`torch.Tensor` @@ -72,23 +113,35 @@ class SoftJaccardBCELogitsLoss(_Loss): probabilities = torch.sigmoid(input) intersection = (probabilities * target).sum() sums = probabilities.sum() + target.sum() - - softjaccard = intersection/(sums - intersection + eps) - bceloss = torch.nn.functional.binary_cross_entropy_with_logits(input, target, weight=None, reduction=self.reduction) - loss = self.alpha * bceloss + (1 - self.alpha) * (1-softjaccard) + softjaccard = intersection / (sums - intersection + eps) + + bceloss = torch.nn.functional.binary_cross_entropy_with_logits( + input, target, weight=None, reduction=self.reduction + ) + loss = self.alpha * bceloss + (1 - self.alpha) * (1 - softjaccard) return loss class HEDWeightedBCELogitsLoss(_Loss): - """ - Implements Equation 2 in `He et al. (2015)`_. Based on ``torch.nn.modules.loss.BCEWithLogitsLoss``. + """ + Implements Equation 2 in [HE-2015]_. Based on + ``torch.nn.modules.loss.BCEWithLogitsLoss``. + Calculate sum of weighted cross entropy loss. """ - def __init__(self, weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None): + + def __init__( + self, + weight=None, + size_average=None, + reduce=None, + reduction="mean", + pos_weight=None, + ): super(HEDWeightedBCELogitsLoss, self).__init__(size_average, reduce, reduction) - self.register_buffer('weight', weight) - self.register_buffer('pos_weight', pos_weight) + self.register_buffer("weight", weight) + self.register_buffer("pos_weight", pos_weight) @weak_script_method def forward(self, inputlist, target, masks=None): @@ -106,33 +159,57 @@ class HEDWeightedBCELogitsLoss(_Loss): loss_over_all_inputs = [] for input in inputlist: n, c, h, w = target.shape - num_pos = torch.sum(target, dim=[1, 2, 3]).float().reshape(n,1) # torch.Size([n, 1]) - if hasattr(masks,'dtype'): - num_mask_neg = c * h * w - torch.sum(masks, dim=[1, 2, 3]).float().reshape(n,1) # torch.Size([n, 1]) - num_neg = c * h * w - num_pos - num_mask_neg - else: + num_pos = ( + torch.sum(target, dim=[1, 2, 3]).float().reshape(n, 1) + ) # torch.Size([n, 1]) + if hasattr(masks, "dtype"): + num_mask_neg = c * h * w - torch.sum( + masks, dim=[1, 2, 3] + ).float().reshape( + n, 1 + ) # torch.Size([n, 1]) + num_neg = c * h * w - num_pos - num_mask_neg + else: num_neg = c * h * w - num_pos # torch.Size([n, 1]) - numposnumtotal = torch.ones_like(target) * (num_pos / (num_pos + num_neg)).unsqueeze(1).unsqueeze(2) - numnegnumtotal = torch.ones_like(target) * (num_neg / (num_pos + num_neg)).unsqueeze(1).unsqueeze(2) - weight = torch.where((target <= 0.5) , numposnumtotal, numnegnumtotal) - loss = torch.nn.functional.binary_cross_entropy_with_logits(input, target, weight=weight, reduction=self.reduction) + numposnumtotal = torch.ones_like(target) * ( + num_pos / (num_pos + num_neg) + ).unsqueeze(1).unsqueeze(2) + numnegnumtotal = torch.ones_like(target) * ( + num_neg / (num_pos + num_neg) + ).unsqueeze(1).unsqueeze(2) + weight = torch.where((target <= 0.5), numposnumtotal, numnegnumtotal) + loss = torch.nn.functional.binary_cross_entropy_with_logits( + input, target, weight=weight, reduction=self.reduction + ) loss_over_all_inputs.append(loss.unsqueeze(0)) final_loss = torch.cat(loss_over_all_inputs).mean() - return final_loss + return final_loss class HEDSoftJaccardBCELogitsLoss(_Loss): - """ - Implements Equation 3 in `Iglovikov et al. (2018)`_ for the hed network. Based on ``torch.nn.modules.loss.BCEWithLogitsLoss``. + """ + + Implements Equation 3 in [IGLOVIKOV-2018]_ for the hed network. Based on + :py:class:`torch.nn.BCEWithLogitsLoss`. Attributes ---------- alpha : float determines the weighting of SoftJaccard and BCE. Default: ``0.3`` """ - def __init__(self, alpha=0.3, size_average=None, reduce=None, reduction='mean', pos_weight=None): - super(HEDSoftJaccardBCELogitsLoss, self).__init__(size_average, reduce, reduction) - self.alpha = alpha + + def __init__( + self, + alpha=0.3, + size_average=None, + reduce=None, + reduction="mean", + pos_weight=None, + ): + super(HEDSoftJaccardBCELogitsLoss, self).__init__( + size_average, reduce, reduction + ) + self.alpha = alpha @weak_script_method def forward(self, inputlist, target, masks=None): @@ -142,7 +219,7 @@ class HEDSoftJaccardBCELogitsLoss(_Loss): input : :py:class:`torch.Tensor` target : :py:class:`torch.Tensor` masks : :py:class:`torch.Tensor`, optional - + Returns ------- :py:class:`torch.Tensor` @@ -153,48 +230,63 @@ class HEDSoftJaccardBCELogitsLoss(_Loss): probabilities = torch.sigmoid(input) intersection = (probabilities * target).sum() sums = probabilities.sum() + target.sum() - - softjaccard = intersection/(sums - intersection + eps) - - bceloss = torch.nn.functional.binary_cross_entropy_with_logits(input, target, weight=None, reduction=self.reduction) - loss = self.alpha * bceloss + (1 - self.alpha) * (1-softjaccard) + + softjaccard = intersection / (sums - intersection + eps) + + bceloss = torch.nn.functional.binary_cross_entropy_with_logits( + input, target, weight=None, reduction=self.reduction + ) + loss = self.alpha * bceloss + (1 - self.alpha) * (1 - softjaccard) loss_over_all_inputs.append(loss.unsqueeze(0)) final_loss = torch.cat(loss_over_all_inputs).mean() - return loss - + return final_loss class MixJacLoss(_Loss): - """ - Attributes + """ + + Parameters ---------- + lambda_u : int determines the weighting of SoftJaccard and BCE. + """ - def __init__(self, lambda_u=100, jacalpha=0.7, size_average=None, reduce=None, reduction='mean', pos_weight=None): + + def __init__( + self, + lambda_u=100, + jacalpha=0.7, + size_average=None, + reduce=None, + reduction="mean", + pos_weight=None, + ): super(MixJacLoss, self).__init__(size_average, reduce, reduction) self.lambda_u = lambda_u self.labeled_loss = SoftJaccardBCELogitsLoss(alpha=jacalpha) self.unlabeled_loss = torch.nn.BCEWithLogitsLoss() - @weak_script_method def forward(self, input, target, unlabeled_input, unlabeled_traget, ramp_up_factor): """ Parameters ---------- + input : :py:class:`torch.Tensor` target : :py:class:`torch.Tensor` unlabeled_input : :py:class:`torch.Tensor` unlabeled_traget : :py:class:`torch.Tensor` ramp_up_factor : float - + Returns ------- + list + """ - ll = self.labeled_loss(input,target) + ll = self.labeled_loss(input, target) ul = self.unlabeled_loss(unlabeled_input, unlabeled_traget) - + loss = ll + self.lambda_u * ramp_up_factor * ul - return loss, ll, ul \ No newline at end of file + return loss, ll, ul diff --git a/bob/ip/binseg/modeling/m2u.py b/bob/ip/binseg/modeling/m2u.py index 7db86168c0b6f703546de4dca2e22539e73adeb4..8861b965e3294a472da5edf54d23d215536f8c0d 100644 --- a/bob/ip/binseg/modeling/m2u.py +++ b/bob/ip/binseg/modeling/m2u.py @@ -5,99 +5,116 @@ from collections import OrderedDict import torch -from torch import nn +import torch.nn from bob.ip.binseg.modeling.backbones.mobilenetv2 import MobileNetV2, InvertedResidual -class DecoderBlock(nn.Module): + +class DecoderBlock(torch.nn.Module): """ Decoder block: upsample and concatenate with features maps from the encoder part """ - def __init__(self,up_in_c,x_in_c,upsamplemode='bilinear',expand_ratio=0.15): + + def __init__(self, up_in_c, x_in_c, upsamplemode="bilinear", expand_ratio=0.15): super().__init__() - self.upsample = nn.Upsample(scale_factor=2,mode=upsamplemode,align_corners=False) # H, W -> 2H, 2W - self.ir1 = InvertedResidual(up_in_c+x_in_c,(x_in_c + up_in_c) // 2,stride=1,expand_ratio=expand_ratio) + self.upsample = torch.nn.Upsample( + scale_factor=2, mode=upsamplemode, align_corners=False + ) # H, W -> 2H, 2W + self.ir1 = InvertedResidual( + up_in_c + x_in_c, + (x_in_c + up_in_c) // 2, + stride=1, + expand_ratio=expand_ratio, + ) - def forward(self,up_in,x_in): + def forward(self, up_in, x_in): up_out = self.upsample(up_in) - cat_x = torch.cat([up_out, x_in] , dim=1) + cat_x = torch.cat([up_out, x_in], dim=1) x = self.ir1(cat_x) return x - -class LastDecoderBlock(nn.Module): - def __init__(self,x_in_c,upsamplemode='bilinear',expand_ratio=0.15): + + +class LastDecoderBlock(torch.nn.Module): + def __init__(self, x_in_c, upsamplemode="bilinear", expand_ratio=0.15): super().__init__() - self.upsample = nn.Upsample(scale_factor=2,mode=upsamplemode,align_corners=False) # H, W -> 2H, 2W - self.ir1 = InvertedResidual(x_in_c,1,stride=1,expand_ratio=expand_ratio) + self.upsample = torch.nn.Upsample( + scale_factor=2, mode=upsamplemode, align_corners=False + ) # H, W -> 2H, 2W + self.ir1 = InvertedResidual(x_in_c, 1, stride=1, expand_ratio=expand_ratio) - def forward(self,up_in,x_in): + def forward(self, up_in, x_in): up_out = self.upsample(up_in) - cat_x = torch.cat([up_out, x_in] , dim=1) + cat_x = torch.cat([up_out, x_in], dim=1) x = self.ir1(cat_x) return x - -class M2U(nn.Module): +class M2U(torch.nn.Module): """ M2U-Net head module - + Parameters ---------- in_channels_list : list number of channels for each feature map that is returned from backbone """ - def __init__(self, in_channels_list=None,upsamplemode='bilinear',expand_ratio=0.15): + + def __init__( + self, in_channels_list=None, upsamplemode="bilinear", expand_ratio=0.15 + ): super(M2U, self).__init__() # Decoder - self.decode4 = DecoderBlock(96,32,upsamplemode,expand_ratio) - self.decode3 = DecoderBlock(64,24,upsamplemode,expand_ratio) - self.decode2 = DecoderBlock(44,16,upsamplemode,expand_ratio) - self.decode1 = LastDecoderBlock(33,upsamplemode,expand_ratio) - - # initilaize weights + self.decode4 = DecoderBlock(96, 32, upsamplemode, expand_ratio) + self.decode3 = DecoderBlock(64, 24, upsamplemode, expand_ratio) + self.decode2 = DecoderBlock(44, 16, upsamplemode, expand_ratio) + self.decode1 = LastDecoderBlock(33, upsamplemode, expand_ratio) + + # initilaize weights self._initialize_weights() def _initialize_weights(self): for m in self.modules(): - if isinstance(m, nn.Conv2d): - nn.init.kaiming_uniform_(m.weight, a=1) + if isinstance(m, torch.nn.Conv2d): + torch.nn.init.kaiming_uniform_(m.weight, a=1) if m.bias is not None: - nn.init.constant_(m.bias, 0) - elif isinstance(m, nn.BatchNorm2d): + torch.nn.init.constant_(m.bias, 0) + elif isinstance(m, torch.nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() - - def forward(self,x): + + def forward(self, x): """ Parameters ---------- x : list list of tensors as returned from the backbone network. - First element: height and width of input image. + First element: height and width of input image. Remaining elements: feature maps for each feature level. Returns ------- - :py:class:`torch.Tensor` + tensor : :py:class:`torch.Tensor` """ - decode4 = self.decode4(x[5],x[4]) # 96, 32 - decode3 = self.decode3(decode4,x[3]) # 64, 24 - decode2 = self.decode2(decode3,x[2]) # 44, 16 - decode1 = self.decode1(decode2,x[1]) # 30, 3 - + decode4 = self.decode4(x[5], x[4]) # 96, 32 + decode3 = self.decode3(decode4, x[3]) # 64, 24 + decode2 = self.decode2(decode3, x[2]) # 44, 16 + decode1 = self.decode1(decode2, x[1]) # 30, 3 + return decode1 + def build_m2unet(): - """ + """ Adds backbone and head together Returns ------- - :py:class:torch.nn.Module + module : :py:class:`torch.nn.Module` """ - backbone = MobileNetV2(return_features = [1, 3, 6, 13], m2u=True) + backbone = MobileNetV2(return_features=[1, 3, 6, 13], m2u=True) m2u_head = M2U(in_channels_list=[16, 24, 32, 96]) - model = nn.Sequential(OrderedDict([("backbone", backbone), ("head", m2u_head)])) - model.name = "M2UNet" - return model \ No newline at end of file + model = torch.nn.Sequential( + OrderedDict([("backbone", backbone), ("head", m2u_head)]) + ) + model.name = "m2unet" + return model diff --git a/bob/ip/binseg/modeling/make_layers.py b/bob/ip/binseg/modeling/make_layers.py index 7e3984433273eaa0d7f86b3e720682c9460552f3..23704eae10913ad9235a19cde4f024587333ddac 100644 --- a/bob/ip/binseg/modeling/make_layers.py +++ b/bob/ip/binseg/modeling/make_layers.py @@ -2,76 +2,108 @@ # -*- coding: utf-8 -*- import torch -import torch.nn as nn +import torch.nn from torch.nn import Conv2d from torch.nn import ConvTranspose2d -def conv_with_kaiming_uniform(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1): + +def conv_with_kaiming_uniform( + in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1 +): conv = Conv2d( - in_channels, - out_channels, - kernel_size=kernel_size, - stride=stride, - padding=padding, - dilation=dilation, - bias= True - ) - # Caffe2 implementation uses XavierFill, which in fact - # corresponds to kaiming_uniform_ in PyTorch - nn.init.kaiming_uniform_(conv.weight, a=1) - nn.init.constant_(conv.bias, 0) + in_channels, + out_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding, + dilation=dilation, + bias=True, + ) + # Caffe2 implementation uses XavierFill, which in fact + # corresponds to kaiming_uniform_ in PyTorch + torch.nn.init.kaiming_uniform_(conv.weight, a=1) + torch.nn.init.constant_(conv.bias, 0) return conv -def convtrans_with_kaiming_uniform(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1): +def convtrans_with_kaiming_uniform( + in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1 +): conv = ConvTranspose2d( - in_channels, - out_channels, - kernel_size=kernel_size, - stride=stride, - padding=padding, - dilation=dilation, - bias= True - ) - # Caffe2 implementation uses XavierFill, which in fact - # corresponds to kaiming_uniform_ in PyTorch - nn.init.kaiming_uniform_(conv.weight, a=1) - nn.init.constant_(conv.bias, 0) + in_channels, + out_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding, + dilation=dilation, + bias=True, + ) + # Caffe2 implementation uses XavierFill, which in fact + # corresponds to kaiming_uniform_ in PyTorch + torch.nn.init.kaiming_uniform_(conv.weight, a=1) + torch.nn.init.constant_(conv.bias, 0) return conv -class UpsampleCropBlock(nn.Module): - def __init__(self, in_channels, out_channels, up_kernel_size, up_stride, up_padding, pixelshuffle=False): - """ - Combines Conv2d, ConvTransposed2d and Cropping. Simulates the caffe2 crop layer in the forward function. - Used for DRIU and HED. - - Attributes - ---------- - in_channels : number of channels of intermediate layer - out_channels : number of output channels - up_kernel_size : kernel size for transposed convolution - up_stride : stride for transposed convolution - up_padding : padding for transposed convolution - """ +class UpsampleCropBlock(torch.nn.Module): + """ + Combines Conv2d, ConvTransposed2d and Cropping. Simulates the caffe2 crop + layer in the forward function. + + Used for DRIU and HED. + + Parameters + ---------- + + in_channels : int + number of channels of intermediate layer + out_channels : int + number of output channels + up_kernel_size : int + kernel size for transposed convolution + up_stride : int + stride for transposed convolution + up_padding : int + padding for transposed convolution + + """ + + def __init__( + self, + in_channels, + out_channels, + up_kernel_size, + up_stride, + up_padding, + pixelshuffle=False, + ): super().__init__() - # NOTE: Kaiming init, replace with nn.Conv2d and nn.ConvTranspose2d to get original DRIU impl. + # NOTE: Kaiming init, replace with torch.nn.Conv2d and torch.nn.ConvTranspose2d to get original DRIU impl. self.conv = conv_with_kaiming_uniform(in_channels, out_channels, 3, 1, 1) if pixelshuffle: - self.upconv = PixelShuffle_ICNR( out_channels, out_channels, scale = up_stride) + self.upconv = PixelShuffle_ICNR(out_channels, out_channels, scale=up_stride) else: - self.upconv = convtrans_with_kaiming_uniform(out_channels, out_channels, up_kernel_size, up_stride, up_padding) - - + self.upconv = convtrans_with_kaiming_uniform( + out_channels, out_channels, up_kernel_size, up_stride, up_padding + ) + def forward(self, x, input_res): - """ - Forward pass of UpsampleBlock. Upsampled feature maps are cropped to the resolution of the input image. - Attributes + """Forward pass of UpsampleBlock. + + Upsampled feature maps are cropped to the resolution of the input + image. + + Parameters ---------- - x : input channels - input_res : tuple (h,w) - Resolution of the input image + + x : tuple + input channels + + input_res : tuple + Resolution of the input image format ``(height, width)`` + """ + img_h = input_res[0] img_w = input_res[1] x = self.conv(x) @@ -80,84 +112,93 @@ class UpsampleCropBlock(nn.Module): # height up_h = x.shape[2] h_crop = up_h - img_h - h_s = h_crop//2 + h_s = h_crop // 2 h_e = up_h - (h_crop - h_s) # width up_w = x.shape[3] - w_crop = up_w-img_w - w_s = w_crop//2 + w_crop = up_w - img_w + w_s = w_crop // 2 w_e = up_w - (w_crop - w_s) - # perform crop - # needs explicit ranges for onnx export - x = x[:,:,h_s:h_e,w_s:w_e] # crop to input size - - return x + # perform crop + # needs explicit ranges for onnx export + x = x[:, :, h_s:h_e, w_s:w_e] # crop to input size + return x def ifnone(a, b): - "`a` if `a` is not None, otherwise `b`." + "``a`` if ``a`` is not None, otherwise ``b``." return b if a is None else a -def icnr(x, scale=2, init=nn.init.kaiming_normal_): - """ - https://docs.fast.ai/layers.html#PixelShuffle_ICNR - ICNR init of `x`, with `scale` and `init` function. + +def icnr(x, scale=2, init=torch.nn.init.kaiming_normal_): + """https://docs.fast.ai/layers.html#PixelShuffle_ICNR + + ICNR init of ``x``, with ``scale`` and ``init`` function. """ - ni,nf,h,w = x.shape - ni2 = int(ni/(scale**2)) - k = init(torch.zeros([ni2,nf,h,w])).transpose(0, 1) + + ni, nf, h, w = x.shape + ni2 = int(ni / (scale ** 2)) + k = init(torch.zeros([ni2, nf, h, w])).transpose(0, 1) k = k.contiguous().view(ni2, nf, -1) - k = k.repeat(1, 1, scale**2) - k = k.contiguous().view([nf,ni,h,w]).transpose(0, 1) + k = k.repeat(1, 1, scale ** 2) + k = k.contiguous().view([nf, ni, h, w]).transpose(0, 1) x.data.copy_(k) -class PixelShuffle_ICNR(nn.Module): - """ - https://docs.fast.ai/layers.html#PixelShuffle_ICNR - Upsample by `scale` from `ni` filters to `nf` (default `ni`), using `nn.PixelShuffle`, `icnr` init, and `weight_norm`. + +class PixelShuffle_ICNR(torch.nn.Module): + """https://docs.fast.ai/layers.html#PixelShuffle_ICNR + + Upsample by ``scale`` from ``ni`` filters to ``nf`` (default ``ni``), using + ``torch.nn.PixelShuffle``, ``icnr`` init, and ``weight_norm``. """ - def __init__(self, ni:int, nf:int=None, scale:int=2): + + def __init__(self, ni: int, nf: int = None, scale: int = 2): super().__init__() nf = ifnone(nf, ni) - self.conv = conv_with_kaiming_uniform(ni, nf*(scale**2), 1) + self.conv = conv_with_kaiming_uniform(ni, nf * (scale ** 2), 1) icnr(self.conv.weight) - self.shuf = nn.PixelShuffle(scale) + self.shuf = torch.nn.PixelShuffle(scale) # Blurring over (h*w) kernel # "Super-Resolution using Convolutional Neural Networks without Any Checkerboard Artifacts" # - https://arxiv.org/abs/1806.02658 - self.pad = nn.ReplicationPad2d((1,0,1,0)) - self.blur = nn.AvgPool2d(2, stride=1) - self.relu = nn.ReLU(inplace=True) + self.pad = torch.nn.ReplicationPad2d((1, 0, 1, 0)) + self.blur = torch.nn.AvgPool2d(2, stride=1) + self.relu = torch.nn.ReLU(inplace=True) - def forward(self,x): + def forward(self, x): x = self.shuf(self.relu(self.conv(x))) x = self.blur(self.pad(x)) return x -class UnetBlock(nn.Module): + +class UnetBlock(torch.nn.Module): def __init__(self, up_in_c, x_in_c, pixel_shuffle=False, middle_block=False): super().__init__() # middle block for VGG based U-Net if middle_block: - up_out_c = up_in_c + up_out_c = up_in_c else: - up_out_c = up_in_c // 2 + up_out_c = up_in_c // 2 cat_channels = x_in_c + up_out_c inner_channels = cat_channels // 2 - + if pixel_shuffle: - self.upsample = PixelShuffle_ICNR( up_in_c, up_out_c ) + self.upsample = PixelShuffle_ICNR(up_in_c, up_out_c) else: - self.upsample = convtrans_with_kaiming_uniform( up_in_c, up_out_c, 2, 2) - self.convtrans1 = convtrans_with_kaiming_uniform( cat_channels, inner_channels, 3, 1, 1) - self.convtrans2 = convtrans_with_kaiming_uniform( inner_channels, inner_channels, 3, 1, 1) - self.relu = nn.ReLU(inplace=True) + self.upsample = convtrans_with_kaiming_uniform(up_in_c, up_out_c, 2, 2) + self.convtrans1 = convtrans_with_kaiming_uniform( + cat_channels, inner_channels, 3, 1, 1 + ) + self.convtrans2 = convtrans_with_kaiming_uniform( + inner_channels, inner_channels, 3, 1, 1 + ) + self.relu = torch.nn.ReLU(inplace=True) def forward(self, up_in, x_in): up_out = self.upsample(up_in) - cat_x = torch.cat([up_out, x_in] , dim=1) + cat_x = torch.cat([up_out, x_in], dim=1) x = self.relu(self.convtrans1(cat_x)) x = self.relu(self.convtrans2(x)) - return x \ No newline at end of file + return x diff --git a/bob/ip/binseg/modeling/resunet.py b/bob/ip/binseg/modeling/resunet.py index 38f66cddf787b8e48f8d7f8aeb50001121c229eb..cce8242ec957dc9814186ee5967b5cb3ae57b5cd 100644 --- a/bob/ip/binseg/modeling/resunet.py +++ b/bob/ip/binseg/modeling/resunet.py @@ -2,28 +2,32 @@ # -*- coding: utf-8 -*- import torch.nn as nn -import torch from collections import OrderedDict -from bob.ip.binseg.modeling.make_layers import conv_with_kaiming_uniform, convtrans_with_kaiming_uniform, PixelShuffle_ICNR, UnetBlock +from bob.ip.binseg.modeling.make_layers import ( + conv_with_kaiming_uniform, + convtrans_with_kaiming_uniform, + PixelShuffle_ICNR, + UnetBlock, +) from bob.ip.binseg.modeling.backbones.resnet import resnet50 - class ResUNet(nn.Module): """ UNet head module for ResNet backbones - + Parameters ---------- in_channels_list : list number of channels for each feature map that is returned from backbone """ + def __init__(self, in_channels_list=None, pixel_shuffle=False): super(ResUNet, self).__init__() # number of channels c_decode1, c_decode2, c_decode3, c_decode4, c_decode5 = in_channels_list # number of channels for last upsampling operation - c_decode0 = (c_decode1 + c_decode2//2)//2 + c_decode0 = (c_decode1 + c_decode2 // 2) // 2 # build layers self.decode4 = UnetBlock(c_decode5, c_decode4, pixel_shuffle) @@ -36,34 +40,35 @@ class ResUNet(nn.Module): self.decode0 = convtrans_with_kaiming_uniform(c_decode0, c_decode0, 2, 2) self.final = conv_with_kaiming_uniform(c_decode0, 1, 1) - def forward(self,x): + def forward(self, x): """ Parameters ---------- x : list list of tensors as returned from the backbone network. - First element: height and width of input image. + First element: height and width of input image. Remaining elements: feature maps for each feature level. """ # NOTE: x[0]: height and width of input image not needed in U-Net architecture - decode4 = self.decode4(x[5], x[4]) - decode3 = self.decode3(decode4, x[3]) - decode2 = self.decode2(decode3, x[2]) - decode1 = self.decode1(decode2, x[1]) + decode4 = self.decode4(x[5], x[4]) + decode3 = self.decode3(decode4, x[3]) + decode2 = self.decode2(decode3, x[2]) + decode1 = self.decode1(decode2, x[1]) decode0 = self.decode0(decode1) out = self.final(decode0) return out + def build_res50unet(): - """ + """ Adds backbone and head together Returns ------- - model : :py:class:torch.nn.Module + model : :py:class:`torch.nn.Module` """ - backbone = resnet50(pretrained=False, return_features = [2, 4, 5, 6, 7]) - unet_head = ResUNet([64, 256, 512, 1024, 2048],pixel_shuffle=False) + backbone = resnet50(pretrained=False, return_features=[2, 4, 5, 6, 7]) + unet_head = ResUNet([64, 256, 512, 1024, 2048], pixel_shuffle=False) model = nn.Sequential(OrderedDict([("backbone", backbone), ("head", unet_head)])) - model.name = "ResUNet" - return model \ No newline at end of file + model.name = "resunet" + return model diff --git a/bob/ip/binseg/modeling/unet.py b/bob/ip/binseg/modeling/unet.py index d1102592b74d2ea2c8af8ea2657ac6f1775a92d7..ac3f1d5850a066da01b20cf37620c29c2cb20e62 100644 --- a/bob/ip/binseg/modeling/unet.py +++ b/bob/ip/binseg/modeling/unet.py @@ -2,27 +2,31 @@ # -*- coding: utf-8 -*- import torch.nn as nn -import torch from collections import OrderedDict -from bob.ip.binseg.modeling.make_layers import conv_with_kaiming_uniform, convtrans_with_kaiming_uniform, PixelShuffle_ICNR, UnetBlock +from bob.ip.binseg.modeling.make_layers import ( + conv_with_kaiming_uniform, + convtrans_with_kaiming_uniform, + PixelShuffle_ICNR, + UnetBlock, +) from bob.ip.binseg.modeling.backbones.vgg import vgg16 - class UNet(nn.Module): """ UNet head module - + Parameters ---------- in_channels_list : list number of channels for each feature map that is returned from backbone """ + def __init__(self, in_channels_list=None, pixel_shuffle=False): super(UNet, self).__init__() # number of channels c_decode1, c_decode2, c_decode3, c_decode4, c_decode5 = in_channels_list - + # build layers self.decode4 = UnetBlock(c_decode5, c_decode4, pixel_shuffle, middle_block=True) self.decode3 = UnetBlock(c_decode4, c_decode3, pixel_shuffle) @@ -30,34 +34,36 @@ class UNet(nn.Module): self.decode1 = UnetBlock(c_decode2, c_decode1, pixel_shuffle) self.final = conv_with_kaiming_uniform(c_decode1, 1, 1) - def forward(self,x): + def forward(self, x): """ Parameters ---------- x : list list of tensors as returned from the backbone network. - First element: height and width of input image. + First element: height and width of input image. Remaining elements: feature maps for each feature level. """ # NOTE: x[0]: height and width of input image not needed in U-Net architecture - decode4 = self.decode4(x[5], x[4]) - decode3 = self.decode3(decode4, x[3]) - decode2 = self.decode2(decode3, x[2]) - decode1 = self.decode1(decode2, x[1]) + decode4 = self.decode4(x[5], x[4]) + decode3 = self.decode3(decode4, x[3]) + decode2 = self.decode2(decode3, x[2]) + decode1 = self.decode1(decode2, x[1]) out = self.final(decode1) return out + def build_unet(): - """ + """ Adds backbone and head together Returns ------- - model : :py:class:torch.nn.Module + module : :py:class:`torch.nn.Module` """ - backbone = vgg16(pretrained=False, return_features = [3, 8, 14, 22, 29]) + + backbone = vgg16(pretrained=False, return_features=[3, 8, 14, 22, 29]) unet_head = UNet([64, 128, 256, 512, 512], pixel_shuffle=False) model = nn.Sequential(OrderedDict([("backbone", backbone), ("head", unet_head)])) model.name = "UNet" - return model \ No newline at end of file + return model diff --git a/bob/ip/binseg/script/__init__.py b/bob/ip/binseg/script/__init__.py index 2ca5e07cb73f0bdddcb863ef497955964087e301..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644 --- a/bob/ip/binseg/script/__init__.py +++ b/bob/ip/binseg/script/__init__.py @@ -1,3 +0,0 @@ -# see https://docs.python.org/3/library/pkgutil.html -from pkgutil import extend_path -__path__ = extend_path(__path__, __name__) \ No newline at end of file diff --git a/bob/ip/binseg/script/analyze.py b/bob/ip/binseg/script/analyze.py new file mode 100644 index 0000000000000000000000000000000000000000..bd66611d635c5a31b7163c0b69eb9da1ee5e955e --- /dev/null +++ b/bob/ip/binseg/script/analyze.py @@ -0,0 +1,274 @@ +#!/usr/bin/env python +# coding=utf-8 + +import os + +import click + +from bob.extension.scripts.click_helper import ( + verbosity_option, + ConfigCommand, + ResourceOption, +) + +from .binseg import save_sh_command + +import logging + +logger = logging.getLogger(__name__) + + +@click.command( + entry_point_group="bob.ip.binseg.config", + cls=ConfigCommand, + epilog="""Examples: + +\b + 1. Re-evaluates a pre-trained M2U-Net model with DRIVE (vessel + segmentation), on the CPU, by running inference and evaluation on results + from its test set: + + $ bob binseg analyze -vv m2unet drive --weight=model.path + +""", +) +@click.option( + "--output-folder", + "-o", + help="Path where to store experiment outputs (created if does not exist)", + required=True, + type=click.Path(), + default="results", + cls=ResourceOption, +) +@click.option( + "--model", + "-m", + help="A torch.nn.Module instance implementing the network to be trained, and then evaluated", + required=True, + cls=ResourceOption, +) +@click.option( + "--dataset", + "-d", + help="A dictionary mapping string keys to " + "bob.ip.binseg.data.utils.SampleList2TorchDataset's. At least one key " + "named 'train' must be available. This dataset will be used for training " + "the network model. All other datasets will be used for prediction and " + "evaluation. Dataset descriptions include all required pre-processing, " + "including eventual data augmentation, which may be eventually excluded " + "for prediction and evaluation purposes", + required=True, + cls=ResourceOption, +) +@click.option( + "--second-annotator", + "-S", + help="A dataset or dictionary, like in --dataset, with the same " + "sample keys, but with annotations from a different annotator that is " + "going to be compared to the one in --dataset", + required=False, + default=None, + cls=ResourceOption, + show_default=True, +) +@click.option( + "--batch-size", + "-b", + help="Number of samples in every batch (this parameter affects " + "memory requirements for the network). If the number of samples in " + "the batch is larger than the total number of samples available for " + "training, this value is truncated. If this number is smaller, then " + "batches of the specified size are created and fed to the network " + "until there are no more new samples to feed (epoch is finished). " + "If the total number of training samples is not a multiple of the " + "batch-size, the last batch will be smaller than the first.", + required=True, + show_default=True, + default=1, + type=click.IntRange(min=1), + cls=ResourceOption, +) +@click.option( + "--device", + "-d", + help='A string indicating the device to use (e.g. "cpu" or "cuda:0")', + show_default=True, + required=True, + default="cpu", + cls=ResourceOption, +) +@click.option( + "--overlayed/--no-overlayed", + "-O", + help="Creates overlayed representations of the output probability maps, " + "similar to --overlayed in prediction-mode, except it includes " + "distinctive colours for true and false positives and false negatives. " + "If not set, or empty then do **NOT** output overlayed images.", + show_default=True, + default=False, + required=False, + cls=ResourceOption, +) +@click.option( + "--weight", + "-w", + help="Path or URL to pretrained model file (.pth extension)", + required=True, + cls=ResourceOption, +) +@verbosity_option(cls=ResourceOption) +@click.pass_context +def analyze( + ctx, + model, + output_folder, + batch_size, + dataset, + second_annotator, + device, + overlayed, + weight, + verbose, + **kwargs, +): + """Runs a complete evaluation from prediction to comparison + + This script is just a wrapper around the individual scripts for running + prediction and evaluating FCN models. It organises the output in a + preset way:: + +\b + └─ <output-folder>/ + ├── predictions/ #the prediction outputs for the train/test set + ├── overlayed/ #the overlayed outputs for the train/test set + ├── predictions/ #predictions overlayed on the input images + ├── analysis/ #predictions overlayed on the input images + ├ #including analysis of false positives, negatives + ├ #and true positives + └── second-annotator/ #if set, store overlayed images for the + #second annotator here + └── analysis / #the outputs of the analysis of both train/test sets + #includes second-annotator "metrics" as well, if + # configured + + N.B.: The tool is designed to prevent analysis bias and allows one to + provide separate subsets for training and evaluation. Instead of using + simple datasets, datasets for full experiment running should be + dictionaries with specific subset names: + + * ``__train__``: dataset used for training, prioritarily. It is typically + the dataset containing data augmentation pipelines. + * ``train`` (optional): a copy of the ``__train__`` dataset, without data + augmentation, that will be evaluated alongside other sets available + * ``*``: any other name, not starting with an underscore character (``_``), + will be considered a test set for evaluation. + + N.B.2: The threshold used for calculating the F1-score on the test set, or + overlay analysis (false positives, negatives and true positives overprinted + on the original image) also follows the logic above. + """ + + command_sh = os.path.join(output_folder, "command.sh") + if not os.path.exists(command_sh): + # only save if experiment has not saved yet something similar + save_sh_command(command_sh) + + + + ## Prediction + logger.info("Started prediction") + + from .predict import predict + + predictions_folder = os.path.join(output_folder, "predictions") + overlayed_folder = ( + os.path.join(output_folder, "overlayed", "predictions") + if overlayed + else None + ) + + ctx.invoke( + predict, + output_folder=predictions_folder, + model=model, + dataset=dataset, + batch_size=batch_size, + device=device, + weight=weight, + overlayed=overlayed_folder, + verbose=verbose, + ) + logger.info("Ended prediction") + + ## Evaluation + logger.info("Started evaluation") + + from .evaluate import evaluate + + overlayed_folder = ( + os.path.join(output_folder, "overlayed", "analysis") + if overlayed + else None + ) + + # choosing the overlayed_threshold + if "validation" in dataset: + threshold = "validation" + elif "train" in dataset: + threshold = "train" + else: + threshold = 0.5 + logger.info(f"Setting --threshold={threshold}...") + + analysis_folder = os.path.join(output_folder, "analysis") + ctx.invoke( + evaluate, + output_folder=analysis_folder, + predictions_folder=predictions_folder, + dataset=dataset, + second_annotator=second_annotator, + overlayed=overlayed_folder, + threshold=threshold, + verbose=verbose, + ) + + logger.info("Ended evaluation") + + ## Comparison + logger.info("Started comparison") + + # compare performances on the various sets + from .compare import compare + + systems = [] + for k, v in dataset.items(): + if k.startswith("_"): + logger.info(f"Skipping dataset '{k}' (not to be compared)") + continue + systems += [k, os.path.join(analysis_folder, f"{k}.csv")] + if second_annotator is not None: + for k, v in second_annotator.items(): + if k.startswith("_"): + logger.info(f"Skipping dataset '{k}' (not to be compared)") + continue + systems += [ + f"{k} (2nd. annot.)", + os.path.join( + analysis_folder, "second-annotator", f"{k}.csv" + ), + ] + + output_figure = os.path.join(output_folder, "comparison.pdf") + output_table = os.path.join(output_folder, "comparison.rst") + + ctx.invoke( + compare, + label_path=systems, + output_figure=output_figure, + output_table=output_table, + threshold=threshold, + verbose=verbose, + ) + + logger.info("Ended comparison") diff --git a/bob/ip/binseg/script/binseg.py b/bob/ip/binseg/script/binseg.py index 944a99953a40ed2fc4c3a0a9d07e28e8f0f21c5e..5fea88b1ffc244b4a6a55d022cbb666332de7e2b 100644 --- a/bob/ip/binseg/script/binseg.py +++ b/bob/ip/binseg/script/binseg.py @@ -3,628 +3,121 @@ """The main entry for bob ip binseg (click-based) scripts.""" - import os +import sys import time -import numpy -import collections -import pkg_resources -import glob +import tempfile +import urllib.request +import pkg_resources import click from click_plugins import with_plugins +from tqdm import tqdm -import logging -import torch - -import bob.extension -from bob.extension.scripts.click_helper import (verbosity_option, - ConfigCommand, ResourceOption, AliasedGroup) - -from bob.ip.binseg.utils.checkpointer import DetectronCheckpointer -from torch.utils.data import DataLoader -from bob.ip.binseg.engine.trainer import do_train -from bob.ip.binseg.engine.ssltrainer import do_ssltrain -from bob.ip.binseg.engine.inferencer import do_inference -from bob.ip.binseg.utils.plot import plot_overview -from bob.ip.binseg.utils.click import OptionEatAll -from bob.ip.binseg.utils.rsttable import create_overview_grid -from bob.ip.binseg.utils.plot import metricsviz, overlay,savetransformedtest -from bob.ip.binseg.utils.transformfolder import transformfolder as transfld -from bob.ip.binseg.utils.evaluate import do_eval -from bob.ip.binseg.engine.predicter import do_predict +from bob.extension.scripts.click_helper import AliasedGroup +import logging logger = logging.getLogger(__name__) -@with_plugins(pkg_resources.iter_entry_points('bob.ip.binseg.cli')) -@click.group(cls=AliasedGroup) -def binseg(): - """Binary 2D Fundus Image Segmentation Benchmark commands.""" - pass - -# Train -@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand) -@click.option( - '--output-path', - '-o', - required=True, - default="output", - cls=ResourceOption - ) -@click.option( - '--model', - '-m', - required=True, - cls=ResourceOption - ) -@click.option( - '--dataset', - '-d', - required=True, - cls=ResourceOption - ) -@click.option( - '--optimizer', - required=True, - cls=ResourceOption - ) -@click.option( - '--criterion', - required=True, - cls=ResourceOption - ) -@click.option( - '--scheduler', - required=True, - cls=ResourceOption - ) -@click.option( - '--pretrained-backbone', - '-t', - required=True, - cls=ResourceOption - ) -@click.option( - '--batch-size', - '-b', - required=True, - default=2, - cls=ResourceOption) -@click.option( - '--epochs', - '-e', - help='Number of epochs used for training', - show_default=True, - required=True, - default=1000, - cls=ResourceOption) -@click.option( - '--checkpoint-period', - '-p', - help='Number of epochs after which a checkpoint is saved', - show_default=True, - required=True, - default=100, - cls=ResourceOption) -@click.option( - '--device', - '-d', - help='A string indicating the device to use (e.g. "cpu" or "cuda:0"', - show_default=True, - required=True, - default='cpu', - cls=ResourceOption) -@click.option( - '--seed', - '-s', - help='torch random seed', - show_default=True, - required=False, - default=42, - cls=ResourceOption) - -@verbosity_option(cls=ResourceOption) -def train(model - ,optimizer - ,scheduler - ,output_path - ,epochs - ,pretrained_backbone - ,batch_size - ,criterion - ,dataset - ,checkpoint_period - ,device - ,seed - ,**kwargs): - """ Train a model """ - - if not os.path.exists(output_path): os.makedirs(output_path) - torch.manual_seed(seed) - # PyTorch dataloader - data_loader = DataLoader( - dataset = dataset - ,batch_size = batch_size - ,shuffle= True - ,pin_memory = torch.cuda.is_available() - ) - - # Checkpointer - checkpointer = DetectronCheckpointer(model, optimizer, scheduler,save_dir = output_path, save_to_disk=True) - arguments = {} - arguments["epoch"] = 0 - extra_checkpoint_data = checkpointer.load(pretrained_backbone) - arguments.update(extra_checkpoint_data) - arguments["max_epoch"] = epochs - - # Train - logger.info("Training for {} epochs".format(arguments["max_epoch"])) - logger.info("Continuing from epoch {}".format(arguments["epoch"])) - do_train(model - , data_loader - , optimizer - , criterion - , scheduler - , checkpointer - , checkpoint_period - , device - , arguments - , output_path - ) - - -# Inference -@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand) -@click.option( - '--output-path', - '-o', - required=True, - default="output", - cls=ResourceOption - ) -@click.option( - '--model', - '-m', - required=True, - cls=ResourceOption - ) -@click.option( - '--dataset', - '-d', - required=True, - cls=ResourceOption - ) -@click.option( - '--batch-size', - '-b', - required=True, - default=2, - cls=ResourceOption) -@click.option( - '--device', - '-d', - help='A string indicating the device to use (e.g. "cpu" or "cuda:0"', - show_default=True, - required=True, - default='cpu', - cls=ResourceOption) -@click.option( - '--weight', - '-w', - help='Path or URL to pretrained model', - required=False, - default=None, - cls=ResourceOption - ) -@verbosity_option(cls=ResourceOption) -def test(model - ,output_path - ,device - ,batch_size - ,dataset - ,weight - , **kwargs): - """ Run inference and evalaute the model performance """ - - # PyTorch dataloader - data_loader = DataLoader( - dataset = dataset - ,batch_size = batch_size - ,shuffle= False - ,pin_memory = torch.cuda.is_available() - ) - - # checkpointer, load last model in dir - checkpointer = DetectronCheckpointer(model, save_dir = output_path, save_to_disk=False) - checkpointer.load(weight) - do_inference(model, data_loader, device, output_path) - - - -# Plot comparison -@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand) -@click.option( - '--output-path-list', - '-l', - required=True, - help='Pass all output paths as arguments', - cls=OptionEatAll, - ) -@click.option( - '--output-path', - '-o', - required=True, - ) -@click.option( - '--title', - '-t', - required=False, - ) -@verbosity_option(cls=ResourceOption) -def compare(output_path_list, output_path, title, **kwargs): - """ Compares multiple metrics files that are stored in the format mymodel/results/Metrics.csv """ - logger.debug("Output paths: {}".format(output_path_list)) - logger.info('Plotting precision vs recall curves for {}'.format(output_path_list)) - fig = plot_overview(output_path_list,title) - if not os.path.exists(output_path): os.makedirs(output_path) - fig_filename = os.path.join(output_path, 'precision_recall_comparison.pdf') - logger.info('saving {}'.format(fig_filename)) - fig.savefig(fig_filename) - - -# Create grid table with results -@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand) -@click.option( - '--output-path', - '-o', - required=True, - ) -@verbosity_option(cls=ResourceOption) -def gridtable(output_path, **kwargs): - """ Creates an overview table in grid rst format for all Metrics.csv in the output_path - tree structure: - ├── DATABASE - ├── MODEL - ├── images - └── results +def save_sh_command(destfile): + """Records command-line to reproduce this experiment + + This function can record the current command-line used to call the script + being run. It creates an executable ``bash`` script setting up the current + working directory and activating a conda environment, if needed. It + records further information on the date and time the script was run and the + version of the package. + + + Parameters + ---------- + + destfile : str + Path leading to the file where the commands to reproduce the current + run will be recorded. This file cannot be overwritten by this + function. If needed, you should check and remove an existing file + **before** calling this function. + """ - logger.info('Creating grid for all results in {}'.format(output_path)) - create_overview_grid(output_path) - - -# Create metrics viz -@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand) -@click.option( - '--dataset', - '-d', - required=True, - cls=ResourceOption - ) -@click.option( - '--output-path', - '-o', - required=True, - ) -@verbosity_option(cls=ResourceOption) -def visualize(dataset, output_path, **kwargs): - """ Creates the following visualizations of the probabilties output maps: - overlayed: test images overlayed with prediction probabilities vessel tree - tpfnfpviz: highlights true positives, false negatives and false positives - - Required tree structure: - ├── DATABASE - ├── MODEL - ├── images - └── results + + if os.path.exists(destfile) and not overwrite: + logger.info(f"Not overwriting existing file '{destfile}'") + return + + logger.info(f"Writing command-line for reproduction at '{destfile}'...") + os.makedirs(os.path.dirname(destfile), exist_ok=True) + + with open(destfile, "wt") as f: + f.write("#!/usr/bin/env sh\n") + f.write(f"# date: {time.asctime()}\n") + version = pkg_resources.require("bob.ip.binseg")[0].version + f.write(f"# version: {version} (bob.ip.binseg)\n") + f.write(f"# platform: {sys.platform}\n") + f.write("\n") + args = [] + for k in sys.argv: + if " " in k: + args.append(f'"{k}"') + else: + args.append(k) + if os.environ.get("CONDA_DEFAULT_ENV") is not None: + f.write(f"#conda activate {os.environ['CONDA_DEFAULT_ENV']}\n") + f.write(f"#cd {os.path.realpath(os.curdir)}\n") + f.write(" ".join(args) + "\n") + os.chmod(destfile, 0o755) + + +def download_to_tempfile(url, progress=False): + """Downloads a file to a temporary named file and returns it + + Parameters + ---------- + + url : str + The URL pointing to the file to download + + progress : :py:class:`bool`, Optional + If a progress bar should be displayed for downloading the URL. + + + Returns + ------- + + f : tempfile.NamedTemporaryFile + A named temporary file that contains the downloaded URL + """ - logger.info('Creating TP, FP, FN visualizations for {}'.format(output_path)) - metricsviz(dataset=dataset, output_path=output_path) - logger.info('Creating overlay visualizations for {}'.format(output_path)) - overlay(dataset=dataset, output_path=output_path) - logger.info('Saving transformed test images {}'.format(output_path)) - savetransformedtest(dataset=dataset, output_path=output_path) - - -# SSLTrain -@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand) -@click.option( - '--output-path', - '-o', - required=True, - default="output", - cls=ResourceOption - ) -@click.option( - '--model', - '-m', - required=True, - cls=ResourceOption - ) -@click.option( - '--dataset', - '-d', - required=True, - cls=ResourceOption - ) -@click.option( - '--optimizer', - required=True, - cls=ResourceOption - ) -@click.option( - '--criterion', - required=True, - cls=ResourceOption - ) -@click.option( - '--scheduler', - required=True, - cls=ResourceOption - ) -@click.option( - '--pretrained-backbone', - '-t', - required=True, - cls=ResourceOption - ) -@click.option( - '--batch-size', - '-b', - required=True, - default=2, - cls=ResourceOption) -@click.option( - '--epochs', - '-e', - help='Number of epochs used for training', - show_default=True, - required=True, - default=1000, - cls=ResourceOption) -@click.option( - '--checkpoint-period', - '-p', - help='Number of epochs after which a checkpoint is saved', - show_default=True, - required=True, - default=100, - cls=ResourceOption) -@click.option( - '--device', - '-d', - help='A string indicating the device to use (e.g. "cpu" or "cuda:0"', - show_default=True, - required=True, - default='cpu', - cls=ResourceOption) -@click.option( - '--rampup', - '-r', - help='Ramp-up length in epochs', - show_default=True, - required=True, - default='900', - cls=ResourceOption) -@click.option( - '--seed', - '-s', - help='torch random seed', - show_default=True, - required=False, - default=42, - cls=ResourceOption) - -@verbosity_option(cls=ResourceOption) -def ssltrain(model - ,optimizer - ,scheduler - ,output_path - ,epochs - ,pretrained_backbone - ,batch_size - ,criterion - ,dataset - ,checkpoint_period - ,device - ,rampup - ,seed - ,**kwargs): - """ Train a model """ - - if not os.path.exists(output_path): os.makedirs(output_path) - torch.manual_seed(seed) - # PyTorch dataloader - data_loader = DataLoader( - dataset = dataset - ,batch_size = batch_size - ,shuffle= True - ,pin_memory = torch.cuda.is_available() - ) - - # Checkpointer - checkpointer = DetectronCheckpointer(model, optimizer, scheduler,save_dir = output_path, save_to_disk=True) - arguments = {} - arguments["epoch"] = 0 - extra_checkpoint_data = checkpointer.load(pretrained_backbone) - arguments.update(extra_checkpoint_data) - arguments["max_epoch"] = epochs - - # Train - logger.info("Training for {} epochs".format(arguments["max_epoch"])) - logger.info("Continuing from epoch {}".format(arguments["epoch"])) - do_ssltrain(model - , data_loader - , optimizer - , criterion - , scheduler - , checkpointer - , checkpoint_period - , device - , arguments - , output_path - , rampup - ) - -# Apply image transforms to a folder containing images -@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand) -@click.option( - '--source-path', - '-s', - required=True, - cls=ResourceOption - ) -@click.option( - '--target-path', - '-t', - required=True, - cls=ResourceOption - ) -@click.option( - '--transforms', - '-a', - required=True, - cls=ResourceOption - ) - -@verbosity_option(cls=ResourceOption) -def transformfolder(source_path ,target_path,transforms,**kwargs): - logger.info('Applying transforms to images in {} and saving them to {}'.format(source_path, target_path)) - transfld(source_path,target_path,transforms) - - -# Run inference and create predictions only (no ground truth available) -@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand) -@click.option( - '--output-path', - '-o', - required=True, - default="output", - cls=ResourceOption - ) -@click.option( - '--model', - '-m', - required=True, - cls=ResourceOption - ) -@click.option( - '--dataset', - '-d', - required=True, - cls=ResourceOption - ) -@click.option( - '--batch-size', - '-b', - required=True, - default=2, - cls=ResourceOption) -@click.option( - '--device', - '-d', - help='A string indicating the device to use (e.g. "cpu" or "cuda:0"', - show_default=True, - required=True, - default='cpu', - cls=ResourceOption) -@click.option( - '--weight', - '-w', - help='Path or URL to pretrained model', - required=False, - default=None, - cls=ResourceOption - ) -@verbosity_option(cls=ResourceOption) -def predict(model - ,output_path - ,device - ,batch_size - ,dataset - ,weight - , **kwargs): - """ Run inference and evalaute the model performance """ - - # PyTorch dataloader - data_loader = DataLoader( - dataset = dataset - ,batch_size = batch_size - ,shuffle= False - ,pin_memory = torch.cuda.is_available() - ) - - # checkpointer, load last model in dir - checkpointer = DetectronCheckpointer(model, save_dir = output_path, save_to_disk=False) - checkpointer.load(weight) - do_predict(model, data_loader, device, output_path) - - # Overlayed images - overlay(dataset=dataset, output_path=output_path) - - - -# Evaluate only. Runs evaluation on predicted probability maps (--prediction-folder) -@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand) -@click.option( - '--output-path', - '-o', - required=True, - default="output", - cls=ResourceOption - ) -@click.option( - '--prediction-folder', - '-p', - help = 'Path containing output probability maps', - required=True, - cls=ResourceOption - ) -@click.option( - '--prediction-extension', - '-x', - help = 'Extension (e.g. ".png") for the prediction files', - default=".png", - required=False, - cls=ResourceOption - ) -@click.option( - '--dataset', - '-d', - required=True, - cls=ResourceOption - ) -@click.option( - '--title', - required=False, - cls=ResourceOption - ) -@click.option( - '--legend', - cls=ResourceOption - ) - -@verbosity_option(cls=ResourceOption) -def evalpred( - output_path - ,prediction_folder - ,prediction_extension - ,dataset - ,title - ,legend - , **kwargs): - """ Run inference and evalaute the model performance """ - - # PyTorch dataloader - data_loader = DataLoader( - dataset = dataset - ,batch_size = 1 - ,shuffle= False - ,pin_memory = torch.cuda.is_available() - ) - - # Run eval - do_eval(prediction_folder, data_loader, output_folder = output_path, title=title, legend=legend, prediction_extension=prediction_extension) + file_size = 0 + response = urllib.request.urlopen(url) + meta = response.info() + if hasattr(meta, "getheaders"): + content_length = meta.getheaders("Content-Length") + else: + content_length = meta.get_all("Content-Length") + if content_length is not None and len(content_length) > 0: + file_size = int(content_length[0]) + progress &= bool(file_size) + + f = tempfile.NamedTemporaryFile() + + with tqdm(total=file_size, disable=not progress) as pbar: + while True: + buffer = response.read(8192) + if len(buffer) == 0: + break + f.write(buffer) + pbar.update(len(buffer)) + + f.flush() + f.seek(0) + return f + + +@with_plugins(pkg_resources.iter_entry_points("bob.ip.binseg.cli")) +@click.group(cls=AliasedGroup) +def binseg(): + """Binary 2D Image Segmentation Benchmark commands.""" diff --git a/bob/ip/binseg/script/compare.py b/bob/ip/binseg/script/compare.py new file mode 100644 index 0000000000000000000000000000000000000000..813a5cb8c392ceb2eb280d9e45a36752b01839b5 --- /dev/null +++ b/bob/ip/binseg/script/compare.py @@ -0,0 +1,203 @@ +#!/usr/bin/env python +# coding=utf-8 + +import os +import click + +from bob.extension.scripts.click_helper import ( + verbosity_option, + AliasedGroup, +) + +import pandas +import tabulate + +from ..utils.plot import precision_recall_f1iso +from ..utils.table import performance_table + +import logging +logger = logging.getLogger(__name__) + + +def _validate_threshold(t, dataset): + """Validates the user threshold selection. Returns parsed threshold.""" + + if t is None: + return t + + try: + # we try to convert it to float first + t = float(t) + if t < 0.0 or t > 1.0: + raise ValueError("Float thresholds must be within range [0.0, 1.0]") + except ValueError: + # it is a bit of text - assert dataset with name is available + if not isinstance(dataset, dict): + raise ValueError( + "Threshold should be a floating-point number " + "if your provide only a single dataset for evaluation" + ) + if t not in dataset: + raise ValueError( + f"Text thresholds should match dataset names, " + f"but {t} is not available among the datasets provided (" + f"({', '.join(dataset.keys())})" + ) + + return t + + +def _load(data, threshold=None): + """Plots comparison chart of all evaluated models + + Parameters + ---------- + + data : dict + A dict in which keys are the names of the systems and the values are + paths to ``metrics.csv`` style files. + + threshold : :py:class:`float`, :py:class:`str`, Optional + A value indicating which threshold to choose for selecting a "F1-score" + If set to ``None``, then use the maximum F1-score on that metrics file. + If set to a floating-point value, then use the F1-score that is + obtained on that particular threshold. If set to a string, it should + match one of the keys in ``data``. It then first calculate the + threshold reaching the maximum F1-score on that particular dataset and + then applies that threshold to all other sets. + + + Returns + ------- + + data : dict + A dict in which keys are the names of the systems and the values are + dictionaries that contain two keys: + + * ``df``: A :py:class:`pandas.DataFrame` with the metrics data loaded + to + * ``threshold``: A threshold to be used for summarization, depending on + the ``threshold`` parameter set on the input + + """ + + if isinstance(threshold, str): + logger.info(f"Calculating threshold from maximum F1-score at " + f"'{threshold}' dataset...") + metrics_path = data[threshold] + df = pandas.read_csv(metrics_path) + + maxf1 = df.f1_score.max() + use_threshold = df.threshold[df.f1_score.idxmax()] + logger.info(f"Dataset '*': threshold = {use_threshold:.3f}'") + + elif isinstance(threshold, float): + use_threshold = threshold + logger.info(f"Dataset '*': threshold = {use_threshold:.3f}'") + + names = [] + dfs = [] + thresholds = [] + + # loads all data + retval = {} + for name, metrics_path in data.items(): + + logger.info(f"Loading metrics from {metrics_path}...") + df = pandas.read_csv(metrics_path) + + if threshold is None: + use_threshold = df.threshold[df.f1_score.idxmax()] + logger.info(f"Dataset '{name}': threshold = {use_threshold:.3f}'") + + retval[name] = dict(df=df, threshold=use_threshold) + + return retval + + +@click.command( + epilog="""Examples: + +\b + 1. Compares system A and B, with their own pre-computed metric files: +\b + $ bob binseg compare -vv A path/to/A/metrics.csv B path/to/B/metrics.csv +""", +) +@click.argument( + 'label_path', + nargs=-1, + ) +@click.option( + "--output-figure", + "-f", + help="Path where write the output figure (any extension supported by " + "matplotlib is possible). If not provided, does not produce a figure.", + required=False, + default=None, + type=click.Path(dir_okay=False, file_okay=True), +) +@click.option( + "--table-format", + "-T", + help="The format to use for the comparison table", + show_default=True, + required=True, + default="rst", + type=click.Choice(tabulate.tabulate_formats), +) +@click.option( + "--output-table", + "-u", + help="Path where write the output table. If not provided, does not write " + "write a table to file, only to stdout.", + required=False, + default=None, + type=click.Path(dir_okay=False, file_okay=True), +) +@click.option( + "--threshold", + "-t", + help="This number is used to select which F1-score to use for " + "representing a system performance. If not set, we report the maximum " + "F1-score in the set, which is equivalent to threshold selection a " + "posteriori (biased estimator). You can either set this value to a " + "floating-point number in the range [0.0, 1.0], or to a string, naming " + "one of the systems which will be used to calculate the threshold " + "leading to the maximum F1-score and then applied to all other sets.", + default=None, + show_default=False, + required=False, +) +@verbosity_option() +def compare(label_path, output_figure, table_format, output_table, threshold, + **kwargs): + """Compares multiple systems together""" + + # hack to get a dictionary from arguments passed to input + if len(label_path) % 2 != 0: + raise click.ClickException("Input label-paths should be doubles" + " composed of name-path entries") + data = dict(zip(label_path[::2], label_path[1::2])) + + threshold = _validate_threshold(threshold, data) + + # load all data metrics + data = _load(data, threshold=threshold) + + if output_figure is not None: + output_figure = os.path.realpath(output_figure) + logger.info(f"Creating and saving plot at {output_figure}...") + os.makedirs(os.path.dirname(output_figure), exist_ok=True) + fig = precision_recall_f1iso(data, confidence=True) + fig.savefig(output_figure) + + logger.info("Tabulating performance summary...") + table = performance_table(data, table_format) + click.echo(table) + if output_table is not None: + output_table = os.path.realpath(output_table) + logger.info(f"Saving table at {output_table}...") + os.makedirs(os.path.dirname(output_table), exist_ok=True) + with open(output_table, "wt") as f: + f.write(table) diff --git a/bob/ip/binseg/script/config.py b/bob/ip/binseg/script/config.py new file mode 100644 index 0000000000000000000000000000000000000000..0ab6b4ca71493a6d20903cfcbd53fd9a1365bb9e --- /dev/null +++ b/bob/ip/binseg/script/config.py @@ -0,0 +1,193 @@ +#!/usr/bin/env python +# coding=utf-8 + +import shutil +import inspect + +import click +import pkg_resources + +from bob.extension.scripts.click_helper import ( + verbosity_option, + AliasedGroup, +) + +import logging +logger = logging.getLogger(__name__) + + +@click.group(cls=AliasedGroup) +def config(): + """Commands for listing, describing and copying configuration resources""" + pass + + +@config.command( + epilog=""" +\b +Examples: + +\b + 1. Lists all configuration resources (type: bob.ip.binseg.config) installed: + +\b + $ bob binseg config list + + +\b + 2. Lists all configuration resources and their descriptions (notice this may + be slow as it needs to load all modules once): + +\b + $ bob binseg config list -v + +""" +) +@verbosity_option() +def list(verbose): + """Lists configuration files installed""" + + entry_points = pkg_resources.iter_entry_points("bob.ip.binseg.config") + entry_points = dict([(k.name, k) for k in entry_points]) + + # all modules with configuration resources + modules = set( + k.module_name.rsplit(".", 1)[0] for k in entry_points.values() + ) + keep_modules = [] + for k in sorted(modules): + if k not in keep_modules and \ + not any(k.startswith(l) for l in keep_modules): + keep_modules.append(k) + modules = keep_modules + + # sort data entries by originating module + entry_points_by_module = {} + for k in modules: + entry_points_by_module[k] = {} + for name, ep in entry_points.items(): + if ep.module_name.startswith(k): + entry_points_by_module[k][name] = ep + + for config_type in sorted(entry_points_by_module): + + # calculates the longest config name so we offset the printing + longest_name_length = max( + len(k) for k in entry_points_by_module[config_type].keys() + ) + + # set-up printing options + print_string = " %%-%ds %%s" % (longest_name_length,) + # 79 - 4 spaces = 75 (see string above) + description_leftover = 75 - longest_name_length + + print("module: %s" % (config_type,)) + for name in sorted(entry_points_by_module[config_type]): + ep = entry_points[name] + + if verbose >= 1: + module = ep.load() + doc = inspect.getdoc(module) + if doc is not None: + summary = doc.split("\n\n")[0] + else: + summary = "<DOCSTRING NOT AVAILABLE>" + else: + summary = "" + + summary = ( + (summary[: (description_leftover - 3)] + "...") + if len(summary) > (description_leftover - 3) + else summary + ) + + print(print_string % (name, summary)) + + +@config.command( + epilog=""" +\b +Examples: + +\b + 1. Describes the DRIVE (training) dataset configuration: + +\b + $ bob binseg config describe drive + + +\b + 2. Describes the DRIVE (training) dataset configuration and lists its + contents: + +\b + $ bob binseg config describe drive -v + +""" +) +@click.argument( + "name", required=True, nargs=-1, +) +@verbosity_option() +def describe(name, verbose): + """Describes a specific configuration file""" + + entry_points = pkg_resources.iter_entry_points("bob.ip.binseg.config") + entry_points = dict([(k.name, k) for k in entry_points]) + + for k in name: + if k not in entry_points: + logger.error("Cannot find configuration resource '%s'", k) + continue + ep = entry_points[k] + print("Configuration: %s" % (ep.name,)) + print("Python Module: %s" % (ep.module_name,)) + print("") + mod = ep.load() + + if verbose >= 1: + fname = inspect.getfile(mod) + print("Contents:") + with open(fname, "r") as f: + print(f.read()) + else: #only output documentation + print("Documentation:") + print(inspect.getdoc(mod)) + + +@config.command( + epilog=""" +\b +Examples: + +\b + 1. Makes a copy of one of the stock configuration files locally, so it can be + adapted: + +\b + $ bob binseg config copy drive -vvv newdataset.py + + +""" +) +@click.argument( + "source", required=True, nargs=1, +) +@click.argument( + "destination", required=True, nargs=1, +) +@verbosity_option() +def copy(source, destination, verbose): + """Copies a specific configuration resource so it can be modified locally""" + + entry_points = pkg_resources.iter_entry_points("bob.ip.binseg.config") + entry_points = dict([(k.name, k) for k in entry_points]) + + if source not in entry_points: + logger.error("Cannot find configuration resource '%s'", source) + return 1 + ep = entry_points[source] + mod = ep.load() + src_name = inspect.getfile(mod) + logger.info('cp %s -> %s' % (src_name, destination)) + shutil.copyfile(src_name, destination) diff --git a/bob/ip/binseg/script/dataset.py b/bob/ip/binseg/script/dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..c2eb52db9cf95ad92423e63713a5922680c972ba --- /dev/null +++ b/bob/ip/binseg/script/dataset.py @@ -0,0 +1,137 @@ +#!/usr/bin/env python +# coding=utf-8 + +import os +import pkg_resources +import importlib +import click + +from bob.extension import rc +from bob.extension.scripts.click_helper import ( + verbosity_option, + AliasedGroup, +) + + +import logging +logger = logging.getLogger(__name__) + + +def _get_supported_datasets(): + """Returns a list of supported dataset names + """ + + basedir = pkg_resources.resource_filename(__name__, '') + basedir = os.path.join(os.path.dirname(basedir), 'data') + + retval = [] + for k in os.listdir(basedir): + candidate = os.path.join(basedir, k) + if os.path.isdir(candidate) and '__init__.py' in os.listdir(candidate): + retval.append(k) + return retval + +def _get_installed_datasets(): + """Returns a list of installed datasets as regular expressions + + * group(0): the name of the key for the dataset directory + * group("name"): the short name for the dataset + + """ + + import re + dataset_re = re.compile(r'^bob\.ip\.binseg\.(?P<name>[^\.]+)\.datadir$') + return [dataset_re.match(k) for k in rc.keys() if dataset_re.match(k)] + + +@click.group(cls=AliasedGroup) +def dataset(): + """Commands for listing and verifying datasets""" + pass + + +@dataset.command( + epilog="""Examples: + +\b + 1. To install a dataset, set up its data directory ("datadir"). For + example, to setup access to DRIVE files you downloaded locally at + the directory "/path/to/drive/files", do the following: +\b + $ bob config set "bob.ip.binseg.drive.datadir" "/path/to/drive/files" + + Notice this setting **is** case-sensitive. + + 2. List all raw datasets supported (and configured): + + $ bob binseg dataset list + +""", +) +@verbosity_option() +def list(**kwargs): + """Lists all supported and configured datasets""" + + supported = _get_supported_datasets() + installed = _get_installed_datasets() + installed = dict((k.group("name"), k.group(0)) for k in installed) + + click.echo("Supported datasets:") + for k in supported: + if k in installed: + click.echo(f"- {k}: {installed[k]} = \"{rc.get(installed[k])}\"") + else: + click.echo(f"* {k}: bob.ip.binseg.{k}.datadir (not set)") + + +@dataset.command( + epilog="""Examples: + + 1. Check if all files of the DRIVE dataset can be loaded: + + $ bob binseg dataset check -vv drive + + 2. Check if all files of multiple installed datasets can be loaded: + + $ bob binseg dataset check -vv drive stare + + 3. Check if all files of all installed datasets can be loaded: + + $ bob binseg dataset check +""", +) +@click.argument( + 'dataset', + nargs=-1, + ) +@click.option( + "--limit", + "-l", + help="Limit check to the first N samples in each dataset, making the " + "check sensibly faster. Set it to zero to check everything.", + required=True, + type=click.IntRange(0), + default=0, +) +@verbosity_option() +def check(dataset, limit, **kwargs): + """Checks file access on one or more datasets""" + + to_check = _get_installed_datasets() + + if dataset: #check only some + to_check = [k for k in to_check if k.group("name") in dataset] + + if not to_check: + click.echo("No configured datasets matching specifications") + click.echo("Try bob binseg dataset list --help to get help in " + "configuring a dataset") + else: + errors = 0 + for k in to_check: + click.echo(f"Checking \"{k.group('name')}\" dataset...") + module = importlib.import_module(f"...data.{k.group('name')}", + __name__) + errors += module.dataset.check(limit) + if not errors: + click.echo(f"No errors reported") diff --git a/bob/ip/binseg/script/evaluate.py b/bob/ip/binseg/script/evaluate.py new file mode 100644 index 0000000000000000000000000000000000000000..8a4b33d1a7a44991bbc827dc25f83f127fd47875 --- /dev/null +++ b/bob/ip/binseg/script/evaluate.py @@ -0,0 +1,179 @@ +#!/usr/bin/env python +# coding=utf-8 + +import os +import click + +from bob.extension.scripts.click_helper import ( + verbosity_option, + ConfigCommand, + ResourceOption, +) + +from ..engine.evaluator import run, compare_annotators + +import logging + +logger = logging.getLogger(__name__) + + +def _validate_threshold(t, dataset): + """Validates the user threshold selection. Returns parsed threshold.""" + + if t is None: + return 0.5 + + try: + # we try to convert it to float first + t = float(t) + if t < 0.0 or t > 1.0: + raise ValueError("Float thresholds must be within range [0.0, 1.0]") + except ValueError: + # it is a bit of text - assert dataset with name is available + if not isinstance(dataset, dict): + raise ValueError( + "Threshold should be a floating-point number " + "if your provide only a single dataset for evaluation" + ) + if t not in dataset: + raise ValueError( + f"Text thresholds should match dataset names, " + f"but {t} is not available among the datasets provided (" + f"({', '.join(dataset.keys())})" + ) + + return t + + +@click.command( + entry_point_group="bob.ip.binseg.config", + cls=ConfigCommand, + epilog="""Examples: + +\b + 1. Runs evaluation on an existing dataset configuration: +\b + $ bob binseg evaluate -vv drive --predictions-folder=path/to/predictions --output-folder=path/to/results +\b + 2. To run evaluation on a folder with your own images and annotations, you + must first specify resizing, cropping, etc, so that the image can be + correctly input to the model. Failing to do so will likely result in + poor performance. To figure out such specifications, you must consult + the dataset configuration used for **training** the provided model. + Once you figured this out, do the following: +\b + $ bob binseg config copy csv-dataset-example mydataset.py + # modify "mydataset.py" to your liking + $ bob binseg evaluate -vv mydataset.py --predictions-folder=path/to/predictions --output-folder=path/to/results +""", +) +@click.option( + "--output-folder", + "-o", + help="Path where to store the analysis result (created if does not exist)", + required=True, + default="results", + type=click.Path(), + cls=ResourceOption, +) +@click.option( + "--predictions-folder", + "-p", + help="Path where predictions are currently stored", + required=True, + type=click.Path(exists=True, file_okay=False, dir_okay=True), + cls=ResourceOption, +) +@click.option( + "--dataset", + "-d", + help="A torch.utils.data.dataset.Dataset instance implementing a dataset " + "to be used for evaluation purposes, possibly including all pre-processing " + "pipelines required or, optionally, a dictionary mapping string keys to " + "torch.utils.data.dataset.Dataset instances. All keys that do not start " + "with an underscore (_) will be processed.", + required=True, + cls=ResourceOption, +) +@click.option( + "--second-annotator", + "-S", + help="A dataset or dictionary, like in --dataset, with the same " + "sample keys, but with annotations from a different annotator that is " + "going to be compared to the one in --dataset. The same rules regarding " + "dataset naming conventions apply", + required=False, + default=None, + cls=ResourceOption, + show_default=True, +) +@click.option( + "--overlayed", + "-O", + help="Creates overlayed representations of the output probability maps, " + "similar to --overlayed in prediction-mode, except it includes " + "distinctive colours for true and false positives and false negatives. " + "If not set, or empty then do **NOT** output overlayed images. " + "Otherwise, the parameter represents the name of a folder where to " + "store those", + show_default=True, + default=None, + required=False, + cls=ResourceOption, +) +@click.option( + "--threshold", + "-t", + help="This number is used to define positives and negatives from " + "probability maps, and report F1-scores (a priori). It " + "should either come from the training set or a separate validation set " + "to avoid biasing the analysis. Optionally, if you provide a multi-set " + "dataset as input, this may also be the name of an existing set from " + "which the threshold will be estimated (highest F1-score) and then " + "applied to the subsequent sets. This number is also used to print " + "the test set F1-score a priori performance (default: 0.5)", + default=None, + show_default=False, + required=False, + cls=ResourceOption, +) +@verbosity_option(cls=ResourceOption) +def evaluate( + output_folder, + predictions_folder, + dataset, + second_annotator, + overlayed, + threshold, + **kwargs, +): + """Evaluates an FCN on a binary segmentation task. + """ + + threshold = _validate_threshold(threshold, dataset) + + if not isinstance(dataset, dict): + dataset = {"test": dataset} + + if second_annotator is None: + second_annotator = {} + elif not isinstance(second_annotator, dict): + second_annotator = {"test": second_annotator} + #else, second_annotator must be a dict + + if isinstance(threshold, str): + # first run evaluation for reference dataset, do not save overlays + logger.info(f"Evaluating threshold on '{threshold}' set") + threshold = run(dataset[threshold], threshold, predictions_folder) + logger.info(f"Set --threshold={threshold:.5f}") + + # now run with the + for k, v in dataset.items(): + if k.startswith("_"): + logger.info(f"Skipping dataset '{k}' (not to be evaluated)") + continue + logger.info(f"Analyzing '{k}' set...") + run(v, k, predictions_folder, output_folder, overlayed, threshold) + second = second_annotator.get(k) + if second is not None: + compare_annotators(v, second, k, output_folder, overlayed) diff --git a/bob/ip/binseg/script/experiment.py b/bob/ip/binseg/script/experiment.py new file mode 100644 index 0000000000000000000000000000000000000000..cbbfd56f0754327b6bb93abde03b4718c387d930 --- /dev/null +++ b/bob/ip/binseg/script/experiment.py @@ -0,0 +1,327 @@ +#!/usr/bin/env python +# coding=utf-8 + +import os +import shutil + +import click + +from bob.extension.scripts.click_helper import ( + verbosity_option, + ConfigCommand, + ResourceOption, +) + +from .binseg import save_sh_command + +import logging + +logger = logging.getLogger(__name__) + + +@click.command( + entry_point_group="bob.ip.binseg.config", + cls=ConfigCommand, + epilog="""Examples: + +\b + 1. Trains an M2U-Net model (VGG-16 backbone) with DRIVE (vessel + segmentation), on the CPU, for only two epochs, then runs inference and + evaluation on stock datasets, report performance as a table and a figure: + + $ bob binseg experiment -vv m2unet drive --epochs=2 + +""", +) +@click.option( + "--output-folder", + "-o", + help="Path where to store experiment outputs (created if does not exist)", + required=True, + type=click.Path(), + default="results", + cls=ResourceOption, +) +@click.option( + "--model", + "-m", + help="A torch.nn.Module instance implementing the network to be trained, and then evaluated", + required=True, + cls=ResourceOption, +) +@click.option( + "--dataset", + "-d", + help="A dictionary mapping string keys to " + "bob.ip.binseg.data.utils.SampleList2TorchDataset's. At least one key " + "named 'train' must be available. This dataset will be used for training " + "the network model. All other datasets will be used for prediction and " + "evaluation. Dataset descriptions include all required pre-processing, " + "including eventual data augmentation, which may be eventually excluded " + "for prediction and evaluation purposes", + required=True, + cls=ResourceOption, +) +@click.option( + "--second-annotator", + "-S", + help="A dataset or dictionary, like in --dataset, with the same " + "sample keys, but with annotations from a different annotator that is " + "going to be compared to the one in --dataset", + required=False, + default=None, + cls=ResourceOption, + show_default=True, +) +@click.option( + "--optimizer", + help="A torch.optim.Optimizer that will be used to train the network", + required=True, + cls=ResourceOption, +) +@click.option( + "--criterion", + help="A loss function to compute the FCN error for every sample " + "respecting the PyTorch API for loss functions (see torch.nn.modules.loss)", + required=True, + cls=ResourceOption, +) +@click.option( + "--scheduler", + help="A learning rate scheduler that drives changes in the learning " + "rate depending on the FCN state (see torch.optim.lr_scheduler)", + required=True, + cls=ResourceOption, +) +@click.option( + "--pretrained-backbone", + "-t", + help="URL of a pre-trained model file that will be used to preset " + "FCN weights (where relevant) before training starts " + "(e.g. vgg16, mobilenetv2)", + required=True, + cls=ResourceOption, +) +@click.option( + "--batch-size", + "-b", + help="Number of samples in every batch (this parameter affects " + "memory requirements for the network). If the number of samples in " + "the batch is larger than the total number of samples available for " + "training, this value is truncated. If this number is smaller, then " + "batches of the specified size are created and fed to the network " + "until there are no more new samples to feed (epoch is finished). " + "If the total number of training samples is not a multiple of the " + "batch-size, the last batch will be smaller than the first, unless " + "--drop-incomplete--batch is set, in which case this batch is not used.", + required=True, + show_default=True, + default=2, + type=click.IntRange(min=1), + cls=ResourceOption, +) +@click.option( + "--drop-incomplete-batch/--no-drop-incomplete-batch", + "-D", + help="If set, then may drop the last batch in an epoch, in case it is " + "incomplete. If you set this option, you should also consider " + "increasing the total number of epochs of training, as the total number " + "of training steps may be reduced", + required=True, + show_default=True, + default=False, + cls=ResourceOption, +) +@click.option( + "--epochs", + "-e", + help="Number of epochs (complete training set passes) to train for", + show_default=True, + required=True, + default=1000, + type=click.IntRange(min=1), + cls=ResourceOption, +) +@click.option( + "--checkpoint-period", + "-p", + help="Number of epochs after which a checkpoint is saved. " + "A value of zero will disable check-pointing. If checkpointing is " + "enabled and training stops, it is automatically resumed from the " + "last saved checkpoint if training is restarted with the same " + "configuration.", + show_default=True, + required=True, + default=0, + type=click.IntRange(min=0), + cls=ResourceOption, +) +@click.option( + "--device", + "-d", + help='A string indicating the device to use (e.g. "cpu" or "cuda:0")', + show_default=True, + required=True, + default="cpu", + cls=ResourceOption, +) +@click.option( + "--seed", + "-s", + help="Seed to use for the random number generator", + show_default=True, + required=False, + default=42, + type=click.IntRange(min=0), + cls=ResourceOption, +) +@click.option( + "--ssl/--no-ssl", + help="Switch ON/OFF semi-supervised training mode", + show_default=True, + required=True, + default=False, + cls=ResourceOption, +) +@click.option( + "--rampup", + "-r", + help="Ramp-up length in epochs (for SSL training only)", + show_default=True, + required=True, + default=900, + type=click.IntRange(min=0), + cls=ResourceOption, +) +@click.option( + "--overlayed/--no-overlayed", + "-O", + help="Creates overlayed representations of the output probability maps, " + "similar to --overlayed in prediction-mode, except it includes " + "distinctive colours for true and false positives and false negatives. " + "If not set, or empty then do **NOT** output overlayed images.", + show_default=True, + default=False, + required=False, + cls=ResourceOption, +) +@verbosity_option(cls=ResourceOption) +@click.pass_context +def experiment( + ctx, + model, + optimizer, + scheduler, + output_folder, + epochs, + pretrained_backbone, + batch_size, + drop_incomplete_batch, + criterion, + dataset, + second_annotator, + checkpoint_period, + device, + seed, + ssl, + rampup, + overlayed, + verbose, + **kwargs, +): + """Runs a complete experiment, from training, to prediction and evaluation + + This script is just a wrapper around the individual scripts for training, + running prediction, evaluating and comparing FCN model performance. It + organises the output in a preset way:: + +\b + └─ <output-folder>/ + ├── model/ #the generated model will be here + ├── predictions/ #the prediction outputs for the train/test set + ├── overlayed/ #the overlayed outputs for the train/test set + ├── predictions/ #predictions overlayed on the input images + ├── analysis/ #predictions overlayed on the input images + ├ #including analysis of false positives, negatives + ├ #and true positives + └── second-annotator/ #if set, store overlayed images for the + #second annotator here + └── analysis / #the outputs of the analysis of both train/test sets + #includes second-annotator "metrics" as well, if + # configured + + Training is performed for a configurable number of epochs, and generates at + least a final_model.pth. It may also generate a number of intermediate + checkpoints. Checkpoints are model files (.pth files) that are stored + during the training and useful to resume the procedure in case it stops + abruptly. + + N.B.: The tool is designed to prevent analysis bias and allows one to + provide separate subsets for training and evaluation. Instead of using + simple datasets, datasets for full experiment running should be + dictionaries with specific subset names: + + * ``__train__``: dataset used for training, prioritarily. It is typically + the dataset containing data augmentation pipelines. + * ``train`` (optional): a copy of the ``__train__`` dataset, without data + augmentation, that will be evaluated alongside other sets available + * ``*``: any other name, not starting with an underscore character (``_``), + will be considered a test set for evaluation. + + N.B.2: The threshold used for calculating the F1-score on the test set, or + overlay analysis (false positives, negatives and true positives overprinted + on the original image) also follows the logic above. + """ + + command_sh = os.path.join(output_folder, "command.sh") + if os.path.exists(command_sh): + backup = command_sh + '~' + if os.path.exists(backup): + os.unlink(backup) + shutil.move(command_sh, backup) + save_sh_command(command_sh) + + ## Training + logger.info("Started training") + + from .train import train + + train_output_folder = os.path.join(output_folder, "model") + + ctx.invoke( + train, + model=model, + optimizer=optimizer, + scheduler=scheduler, + output_folder=train_output_folder, + epochs=epochs, + pretrained_backbone=pretrained_backbone, + batch_size=batch_size, + drop_incomplete_batch=drop_incomplete_batch, + criterion=criterion, + dataset=dataset, + checkpoint_period=checkpoint_period, + device=device, + seed=seed, + ssl=ssl, + rampup=rampup, + verbose=verbose, + ) + logger.info("Ended training") + + from .analyze import analyze + + model_file = os.path.join(train_output_folder, "model_final.pth") + + ctx.invoke( + analyze, + model=model, + output_folder=output_folder, + batch_size=batch_size, + dataset=dataset, + second_annotator=second_annotator, + device=device, + overlayed=overlayed, + weight=model_file, + verbose=verbose, + ) diff --git a/bob/ip/binseg/script/predict.py b/bob/ip/binseg/script/predict.py new file mode 100644 index 0000000000000000000000000000000000000000..14c9cd7495d05aff04a6edd8f3e85be9ef1b6129 --- /dev/null +++ b/bob/ip/binseg/script/predict.py @@ -0,0 +1,151 @@ +#!/usr/bin/env python +# coding=utf-8 + +import os +import tempfile + +import click +import torch +from torch.utils.data import DataLoader + +from bob.extension.scripts.click_helper import ( + verbosity_option, + ConfigCommand, + ResourceOption, +) + +from ..engine.predictor import run +from ..utils.checkpointer import DetectronCheckpointer + +from .binseg import download_to_tempfile + +import logging +logger = logging.getLogger(__name__) + + +@click.command( + entry_point_group="bob.ip.binseg.config", + cls=ConfigCommand, + epilog="""Examples: + +\b + 1. Runs prediction on an existing dataset configuration: +\b + $ bob binseg predict -vv m2unet drive --weight=path/to/model_final.pth --output-folder=path/to/predictions +\b + 2. To run prediction on a folder with your own images, you must first + specify resizing, cropping, etc, so that the image can be correctly + input to the model. Failing to do so will likely result in poor + performance. To figure out such specifications, you must consult the + dataset configuration used for **training** the provided model. Once + you figured this out, do the following: +\b + $ bob binseg config copy csv-dataset-example mydataset.py + # modify "mydataset.py" to include the base path and required transforms + $ bob binseg predict -vv m2unet mydataset.py --weight=path/to/model_final.pth --output-folder=path/to/predictions +""", +) +@click.option( + "--output-folder", + "-o", + help="Path where to store the predictions (created if does not exist)", + required=True, + default="results", + cls=ResourceOption, + type=click.Path(), +) +@click.option( + "--model", + "-m", + help="A torch.nn.Module instance implementing the network to be evaluated", + required=True, + cls=ResourceOption, +) +@click.option( + "--dataset", + "-d", + help="A torch.utils.data.dataset.Dataset instance implementing a dataset " + "to be used for running prediction, possibly including all pre-processing " + "pipelines required or, optionally, a dictionary mapping string keys to " + "torch.utils.data.dataset.Dataset instances. All keys that do not start " + "with an underscore (_) will be processed.", + required=True, + cls=ResourceOption, +) +@click.option( + "--batch-size", + "-b", + help="Number of samples in every batch (this parameter affects memory requirements for the network)", + required=True, + show_default=True, + default=1, + type=click.IntRange(min=1), + cls=ResourceOption, +) +@click.option( + "--device", + "-d", + help='A string indicating the device to use (e.g. "cpu" or "cuda:0")', + show_default=True, + required=True, + default="cpu", + cls=ResourceOption, +) +@click.option( + "--weight", + "-w", + help="Path or URL to pretrained model file (.pth extension)", + required=True, + cls=ResourceOption, +) +@click.option( + "--overlayed", + "-O", + help="Creates overlayed representations of the output probability maps on " + "top of input images (store results as PNG files). If not set, or empty " + "then do **NOT** output overlayed images. Otherwise, the parameter " + "represents the name of a folder where to store those", + show_default=True, + default=None, + required=False, + cls=ResourceOption, +) +@verbosity_option(cls=ResourceOption) +def predict(output_folder, model, dataset, batch_size, device, weight, + overlayed, **kwargs): + """Predicts vessel map (probabilities) on input images""" + + dataset = dataset if isinstance(dataset, dict) else dict(test=dataset) + + if weight.startswith("http"): + logger.info(f"Temporarily downloading '{weight}'...") + f = download_to_tempfile(weight, progress=True) + weight_fullpath = os.path.abspath(f.name) + else: + weight_fullpath = os.path.abspath(weight) + + weight_path = os.path.dirname(weight_fullpath) + weight_name = os.path.basename(weight_fullpath) + checkpointer = DetectronCheckpointer(model, save_dir=weight_path, + save_to_disk=False) + checkpointer.load(weight_name) + + # clean-up the overlayed path + if overlayed is not None: + overlayed = overlayed.strip() + + for k,v in dataset.items(): + + if k.startswith("_"): + logger.info(f"Skipping dataset '{k}' (not to be evaluated)") + continue + + logger.info(f"Running inference on '{k}' set...") + + data_loader = DataLoader( + dataset=v, + batch_size=batch_size, + shuffle=False, + pin_memory=torch.cuda.is_available(), + ) + run(model, data_loader, device, output_folder, overlayed) diff --git a/bob/ip/binseg/script/train.py b/bob/ip/binseg/script/train.py new file mode 100644 index 0000000000000000000000000000000000000000..3076aae4c9796fedb8ed009aea4ee6afb89edc85 --- /dev/null +++ b/bob/ip/binseg/script/train.py @@ -0,0 +1,289 @@ +#!/usr/bin/env python +# coding=utf-8 + +import os + +import click +import torch +from torch.utils.data import DataLoader + +from bob.extension.scripts.click_helper import ( + verbosity_option, + ConfigCommand, + ResourceOption, +) + +from ..utils.checkpointer import DetectronCheckpointer + +import logging +logger = logging.getLogger(__name__) + + +@click.command( + entry_point_group="bob.ip.binseg.config", + cls=ConfigCommand, + epilog="""Examples: + +\b + 1. Trains a U-Net model (VGG-16 backbone) with DRIVE (vessel segmentation), + on a GPU (``cuda:0``): + + $ bob binseg train -vv unet drive --batch-size=4 --device="cuda:0" + + 2. Trains a HED model with HRF on a GPU (``cuda:0``): + + $ bob binseg train -vv hed hrf --batch-size=8 --device="cuda:0" + + 3. Trains a M2U-Net model on the COVD-DRIVE dataset on the CPU: + + $ bob binseg train -vv m2unet covd-drive --batch-size=8 + + 4. Trains a DRIU model with SSL on the COVD-HRF dataset on the CPU: + + $ bob binseg train -vv --ssl driu-ssl covd-drive-ssl --batch-size=1 + +""", +) +@click.option( + "--output-folder", + "-o", + help="Path where to store the generated model (created if does not exist)", + required=True, + type=click.Path(), + default="results", + cls=ResourceOption, +) +@click.option( + "--model", + "-m", + help="A torch.nn.Module instance implementing the network to be trained", + required=True, + cls=ResourceOption, +) +@click.option( + "--dataset", + "-d", + help="A torch.utils.data.dataset.Dataset instance implementing a dataset " + "to be used for training the model, possibly including all pre-processing " + "pipelines required or, optionally, a dictionary mapping string keys to " + "torch.utils.data.dataset.Dataset instances. At least one key " + "named ``train`` must be available. This dataset will be used for " + "training the network model. The dataset description must include all " + "required pre-processing, including eventual data augmentation. If a " + "dataset named ``__train__`` is available, it is used prioritarily for " + "training instead of ``train``.", + required=True, + cls=ResourceOption, +) +@click.option( + "--optimizer", + help="A torch.optim.Optimizer that will be used to train the network", + required=True, + cls=ResourceOption, +) +@click.option( + "--criterion", + help="A loss function to compute the FCN error for every sample " + "respecting the PyTorch API for loss functions (see torch.nn.modules.loss)", + required=True, + cls=ResourceOption, +) +@click.option( + "--scheduler", + help="A learning rate scheduler that drives changes in the learning " + "rate depending on the FCN state (see torch.optim.lr_scheduler)", + required=True, + cls=ResourceOption, +) +@click.option( + "--pretrained-backbone", + "-t", + help="URL of a pre-trained model file that will be used to preset " + "FCN weights (where relevant) before training starts " + "(e.g. vgg16, mobilenetv2)", + required=True, + cls=ResourceOption, +) +@click.option( + "--batch-size", + "-b", + help="Number of samples in every batch (this parameter affects " + "memory requirements for the network). If the number of samples in " + "the batch is larger than the total number of samples available for " + "training, this value is truncated. If this number is smaller, then " + "batches of the specified size are created and fed to the network " + "until there are no more new samples to feed (epoch is finished). " + "If the total number of training samples is not a multiple of the " + "batch-size, the last batch will be smaller than the first, unless " + "--drop-incomplete--batch is set, in which case this batch is not used.", + required=True, + show_default=True, + default=2, + type=click.IntRange(min=1), + cls=ResourceOption, +) +@click.option( + "--drop-incomplete-batch/--no-drop-incomplete-batch", + "-D", + help="If set, then may drop the last batch in an epoch, in case it is " + "incomplete. If you set this option, you should also consider " + "increasing the total number of epochs of training, as the total number " + "of training steps may be reduced", + required=True, + show_default=True, + default=False, + cls=ResourceOption, +) +@click.option( + "--epochs", + "-e", + help="Number of epochs (complete training set passes) to train for", + show_default=True, + required=True, + default=1000, + type=click.IntRange(min=1), + cls=ResourceOption, +) +@click.option( + "--checkpoint-period", + "-p", + help="Number of epochs after which a checkpoint is saved. " + "A value of zero will disable check-pointing. If checkpointing is " + "enabled and training stops, it is automatically resumed from the " + "last saved checkpoint if training is restarted with the same " + "configuration.", + show_default=True, + required=True, + default=0, + type=click.IntRange(min=0), + cls=ResourceOption, +) +@click.option( + "--device", + "-d", + help='A string indicating the device to use (e.g. "cpu" or "cuda:0")', + show_default=True, + required=True, + default="cpu", + cls=ResourceOption, +) +@click.option( + "--seed", + "-s", + help="Seed to use for the random number generator", + show_default=True, + required=False, + default=42, + type=click.IntRange(min=0), + cls=ResourceOption, +) +@click.option( + "--ssl/--no-ssl", + help="Switch ON/OFF semi-supervised training mode", + show_default=True, + required=True, + default=False, + cls=ResourceOption, +) +@click.option( + "--rampup", + "-r", + help="Ramp-up length in epochs (for SSL training only)", + show_default=True, + required=True, + default=900, + type=click.IntRange(min=0), + cls=ResourceOption, +) +@verbosity_option(cls=ResourceOption) +def train( + model, + optimizer, + scheduler, + output_folder, + epochs, + pretrained_backbone, + batch_size, + drop_incomplete_batch, + criterion, + dataset, + checkpoint_period, + device, + seed, + ssl, + rampup, + verbose, + **kwargs, +): + """Trains an FCN to perform binary segmentation + + Training is performed for a configurable number of epochs, and generates at + least a final_model.pth. It may also generate a number of intermediate + checkpoints. Checkpoints are model files (.pth files) that are stored + during the training and useful to resume the procedure in case it stops + abruptly. + """ + + torch.manual_seed(seed) + + use_dataset = dataset + if isinstance(dataset, dict): + if "__train__" in dataset: + logger.info("Found (dedicated) '__train__' set for training") + use_dataset = dataset["__train__"] + else: + use_dataset = dataset["train"] + + # PyTorch dataloader + data_loader = DataLoader( + dataset=use_dataset, + batch_size=batch_size, + shuffle=True, + drop_last=drop_incomplete_batch, + pin_memory=torch.cuda.is_available(), + ) + + # Checkpointer + checkpointer = DetectronCheckpointer( + model, optimizer, scheduler, save_dir=output_folder, save_to_disk=True + ) + + arguments = {} + arguments["epoch"] = 0 + extra_checkpoint_data = checkpointer.load(pretrained_backbone) + arguments.update(extra_checkpoint_data) + arguments["max_epoch"] = epochs + + logger.info("Training for {} epochs".format(arguments["max_epoch"])) + logger.info("Continuing from epoch {}".format(arguments["epoch"])) + + if not ssl: + from ..engine.trainer import run + run( + model, + data_loader, + optimizer, + criterion, + scheduler, + checkpointer, + checkpoint_period, + device, + arguments, + output_folder, + ) + + else: + from ..engine.ssltrainer import run + run( + model, + data_loader, + optimizer, + criterion, + scheduler, + checkpointer, + checkpoint_period, + device, + arguments, + output_folder, + rampup, + ) diff --git a/bob/ip/binseg/test/__init__.py b/bob/ip/binseg/test/__init__.py index 2ca5e07cb73f0bdddcb863ef497955964087e301..e4b13525b1e78beb2b5b4e9a141b3bb5fa2f4f8c 100644 --- a/bob/ip/binseg/test/__init__.py +++ b/bob/ip/binseg/test/__init__.py @@ -1,3 +1,76 @@ -# see https://docs.python.org/3/library/pkgutil.html -from pkgutil import extend_path -__path__ = extend_path(__path__, __name__) \ No newline at end of file +#!/usr/bin/env python +# coding=utf-8 + +"""Unit tests""" + +import tempfile +import logging + +logger = logging.getLogger(__name__) + +TESTDB_TMPDIR = None +_URL = ( + "http://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/_testdb.zip" +) +_RCKEY = "bob.ip.binseg.stare.datadir" + + +def teardown_package(): + global TESTDB_TMPDIR + if TESTDB_TMPDIR is not None: + logger.info(f"Removing temporary directory {TESTDB_TMPDIR.name}...") + TESTDB_TMPDIR.cleanup() + + +def _mock_test_skipper(name): + """ + Dummary decorator that does nothing + """ + import functools + + def wrapped_function(test): + @functools.wraps(test) + def wrapper(*args, **kwargs): + return test(*args, **kwargs) + + return wrapper + + return wrapped_function + + +def mock_dataset(): + global TESTDB_TMPDIR + from bob.extension import rc + + if (TESTDB_TMPDIR is not None) or (_RCKEY in rc): + logger.info("Test database already set up - not downloading") + else: + logger.info("Test database not available, downloading...") + import zipfile + import urllib.request + + # Download the file from `url` and save it locally under `file_name`: + with urllib.request.urlopen(_URL) as r, tempfile.TemporaryFile() as f: + f.write(r.read()) + f.flush() + f.seek(0) + TESTDB_TMPDIR = tempfile.TemporaryDirectory(prefix=__name__ + "-") + print(f"Creating test database at {TESTDB_TMPDIR.name}...") + logger.info(f"Creating test database at {TESTDB_TMPDIR.name}...") + with zipfile.ZipFile(f) as zf: + zf.extractall(TESTDB_TMPDIR.name) + + from ..data import stare + + if TESTDB_TMPDIR is None: + # if the user has the STARE directory ready, then we do a normal return + from .utils import rc_variable_set + + return rc["bob.ip.binseg.stare.datadir"], stare.dataset, rc_variable_set + + # else, we do a "mock" return + return ( + TESTDB_TMPDIR.name, + stare._make_dataset(TESTDB_TMPDIR.name), + _mock_test_skipper, + ) diff --git a/bob/ip/binseg/test/data/img-16bit.png b/bob/ip/binseg/test/data/img-16bit.png new file mode 100644 index 0000000000000000000000000000000000000000..1bd5c6ad984e9200e0611d492149126b628fd74d Binary files /dev/null and b/bob/ip/binseg/test/data/img-16bit.png differ diff --git a/bob/ip/binseg/test/data/iris-test.csv b/bob/ip/binseg/test/data/iris-test.csv new file mode 100644 index 0000000000000000000000000000000000000000..27d1b05a7aa70667844b74778504f3b51c624884 --- /dev/null +++ b/bob/ip/binseg/test/data/iris-test.csv @@ -0,0 +1,75 @@ +5,3,1.6,0.2,Iris-setosa +5,3.4,1.6,0.4,Iris-setosa +5.2,3.5,1.5,0.2,Iris-setosa +5.2,3.4,1.4,0.2,Iris-setosa +4.7,3.2,1.6,0.2,Iris-setosa +4.8,3.1,1.6,0.2,Iris-setosa +5.4,3.4,1.5,0.4,Iris-setosa +5.2,4.1,1.5,0.1,Iris-setosa +5.5,4.2,1.4,0.2,Iris-setosa +4.9,3.1,1.5,0.1,Iris-setosa +5,3.2,1.2,0.2,Iris-setosa +5.5,3.5,1.3,0.2,Iris-setosa +4.9,3.1,1.5,0.1,Iris-setosa +4.4,3,1.3,0.2,Iris-setosa +5.1,3.4,1.5,0.2,Iris-setosa +5,3.5,1.3,0.3,Iris-setosa +4.5,2.3,1.3,0.3,Iris-setosa +4.4,3.2,1.3,0.2,Iris-setosa +5,3.5,1.6,0.6,Iris-setosa +5.1,3.8,1.9,0.4,Iris-setosa +4.8,3,1.4,0.3,Iris-setosa +5.1,3.8,1.6,0.2,Iris-setosa +4.6,3.2,1.4,0.2,Iris-setosa +5.3,3.7,1.5,0.2,Iris-setosa +5,3.3,1.4,0.2,Iris-setosa +6.6,3,4.4,1.4,Iris-versicolor +6.8,2.8,4.8,1.4,Iris-versicolor +6.7,3,5,1.7,Iris-versicolor +6,2.9,4.5,1.5,Iris-versicolor +5.7,2.6,3.5,1,Iris-versicolor +5.5,2.4,3.8,1.1,Iris-versicolor +5.5,2.4,3.7,1,Iris-versicolor +5.8,2.7,3.9,1.2,Iris-versicolor +6,2.7,5.1,1.6,Iris-versicolor +5.4,3,4.5,1.5,Iris-versicolor +6,3.4,4.5,1.6,Iris-versicolor +6.7,3.1,4.7,1.5,Iris-versicolor +6.3,2.3,4.4,1.3,Iris-versicolor +5.6,3,4.1,1.3,Iris-versicolor +5.5,2.5,4,1.3,Iris-versicolor +5.5,2.6,4.4,1.2,Iris-versicolor +6.1,3,4.6,1.4,Iris-versicolor +5.8,2.6,4,1.2,Iris-versicolor +5,2.3,3.3,1,Iris-versicolor +5.6,2.7,4.2,1.3,Iris-versicolor +5.7,3,4.2,1.2,Iris-versicolor +5.7,2.9,4.2,1.3,Iris-versicolor +6.2,2.9,4.3,1.3,Iris-versicolor +5.1,2.5,3,1.1,Iris-versicolor +5.7,2.8,4.1,1.3,Iris-versicolor +7.2,3.2,6,1.8,Iris-virginica +6.2,2.8,4.8,1.8,Iris-virginica +6.1,3,4.9,1.8,Iris-virginica +6.4,2.8,5.6,2.1,Iris-virginica +7.2,3,5.8,1.6,Iris-virginica +7.4,2.8,6.1,1.9,Iris-virginica +7.9,3.8,6.4,2,Iris-virginica +6.4,2.8,5.6,2.2,Iris-virginica +6.3,2.8,5.1,1.5,Iris-virginica +6.1,2.6,5.6,1.4,Iris-virginica +7.7,3,6.1,2.3,Iris-virginica +6.3,3.4,5.6,2.4,Iris-virginica +6.4,3.1,5.5,1.8,Iris-virginica +6,3,4.8,1.8,Iris-virginica +6.9,3.1,5.4,2.1,Iris-virginica +6.7,3.1,5.6,2.4,Iris-virginica +6.9,3.1,5.1,2.3,Iris-virginica +5.8,2.7,5.1,1.9,Iris-virginica +6.8,3.2,5.9,2.3,Iris-virginica +6.7,3.3,5.7,2.5,Iris-virginica +6.7,3,5.2,2.3,Iris-virginica +6.3,2.5,5,1.9,Iris-virginica +6.5,3,5.2,2,Iris-virginica +6.2,3.4,5.4,2.3,Iris-virginica +5.9,3,5.1,1.8,Iris-virginica diff --git a/bob/ip/binseg/test/data/iris-train.csv b/bob/ip/binseg/test/data/iris-train.csv new file mode 100644 index 0000000000000000000000000000000000000000..82d5b134803975463f070aebe6847e7c742749d2 --- /dev/null +++ b/bob/ip/binseg/test/data/iris-train.csv @@ -0,0 +1,75 @@ +5.1,3.5,1.4,0.2,Iris-setosa +4.9,3,1.4,0.2,Iris-setosa +4.7,3.2,1.3,0.2,Iris-setosa +4.6,3.1,1.5,0.2,Iris-setosa +5,3.6,1.4,0.2,Iris-setosa +5.4,3.9,1.7,0.4,Iris-setosa +4.6,3.4,1.4,0.3,Iris-setosa +5,3.4,1.5,0.2,Iris-setosa +4.4,2.9,1.4,0.2,Iris-setosa +4.9,3.1,1.5,0.1,Iris-setosa +5.4,3.7,1.5,0.2,Iris-setosa +4.8,3.4,1.6,0.2,Iris-setosa +4.8,3,1.4,0.1,Iris-setosa +4.3,3,1.1,0.1,Iris-setosa +5.8,4,1.2,0.2,Iris-setosa +5.7,4.4,1.5,0.4,Iris-setosa +5.4,3.9,1.3,0.4,Iris-setosa +5.1,3.5,1.4,0.3,Iris-setosa +5.7,3.8,1.7,0.3,Iris-setosa +5.1,3.8,1.5,0.3,Iris-setosa +5.4,3.4,1.7,0.2,Iris-setosa +5.1,3.7,1.5,0.4,Iris-setosa +4.6,3.6,1,0.2,Iris-setosa +5.1,3.3,1.7,0.5,Iris-setosa +4.8,3.4,1.9,0.2,Iris-setosa +7,3.2,4.7,1.4,Iris-versicolor +6.4,3.2,4.5,1.5,Iris-versicolor +6.9,3.1,4.9,1.5,Iris-versicolor +5.5,2.3,4,1.3,Iris-versicolor +6.5,2.8,4.6,1.5,Iris-versicolor +5.7,2.8,4.5,1.3,Iris-versicolor +6.3,3.3,4.7,1.6,Iris-versicolor +4.9,2.4,3.3,1,Iris-versicolor +6.6,2.9,4.6,1.3,Iris-versicolor +5.2,2.7,3.9,1.4,Iris-versicolor +5,2,3.5,1,Iris-versicolor +5.9,3,4.2,1.5,Iris-versicolor +6,2.2,4,1,Iris-versicolor +6.1,2.9,4.7,1.4,Iris-versicolor +5.6,2.9,3.6,1.3,Iris-versicolor +6.7,3.1,4.4,1.4,Iris-versicolor +5.6,3,4.5,1.5,Iris-versicolor +5.8,2.7,4.1,1,Iris-versicolor +6.2,2.2,4.5,1.5,Iris-versicolor +5.6,2.5,3.9,1.1,Iris-versicolor +5.9,3.2,4.8,1.8,Iris-versicolor +6.1,2.8,4,1.3,Iris-versicolor +6.3,2.5,4.9,1.5,Iris-versicolor +6.1,2.8,4.7,1.2,Iris-versicolor +6.4,2.9,4.3,1.3,Iris-versicolor +6.3,3.3,6,2.5,Iris-virginica +5.8,2.7,5.1,1.9,Iris-virginica +7.1,3,5.9,2.1,Iris-virginica +6.3,2.9,5.6,1.8,Iris-virginica +6.5,3,5.8,2.2,Iris-virginica +7.6,3,6.6,2.1,Iris-virginica +4.9,2.5,4.5,1.7,Iris-virginica +7.3,2.9,6.3,1.8,Iris-virginica +6.7,2.5,5.8,1.8,Iris-virginica +7.2,3.6,6.1,2.5,Iris-virginica +6.5,3.2,5.1,2,Iris-virginica +6.4,2.7,5.3,1.9,Iris-virginica +6.8,3,5.5,2.1,Iris-virginica +5.7,2.5,5,2,Iris-virginica +5.8,2.8,5.1,2.4,Iris-virginica +6.4,3.2,5.3,2.3,Iris-virginica +6.5,3,5.5,1.8,Iris-virginica +7.7,3.8,6.7,2.2,Iris-virginica +7.7,2.6,6.9,2.3,Iris-virginica +6,2.2,5,1.5,Iris-virginica +6.9,3.2,5.7,2.3,Iris-virginica +5.6,2.8,4.9,2,Iris-virginica +7.7,2.8,6.7,2,Iris-virginica +6.3,2.7,4.9,1.8,Iris-virginica +6.7,3.3,5.7,2.1,Iris-virginica diff --git a/bob/ip/binseg/test/data/iris.json b/bob/ip/binseg/test/data/iris.json new file mode 100644 index 0000000000000000000000000000000000000000..1777efc361562880096b9a21b2011218c152ecac --- /dev/null +++ b/bob/ip/binseg/test/data/iris.json @@ -0,0 +1,156 @@ +{ + "train": [ + [5.1,3.5,1.4,0.2,"Iris-setosa"], + [4.9,3,1.4,0.2,"Iris-setosa"], + [4.7,3.2,1.3,0.2,"Iris-setosa"], + [4.6,3.1,1.5,0.2,"Iris-setosa"], + [5,3.6,1.4,0.2,"Iris-setosa"], + [5.4,3.9,1.7,0.4,"Iris-setosa"], + [4.6,3.4,1.4,0.3,"Iris-setosa"], + [5,3.4,1.5,0.2,"Iris-setosa"], + [4.4,2.9,1.4,0.2,"Iris-setosa"], + [4.9,3.1,1.5,0.1,"Iris-setosa"], + [5.4,3.7,1.5,0.2,"Iris-setosa"], + [4.8,3.4,1.6,0.2,"Iris-setosa"], + [4.8,3,1.4,0.1,"Iris-setosa"], + [4.3,3,1.1,0.1,"Iris-setosa"], + [5.8,4,1.2,0.2,"Iris-setosa"], + [5.7,4.4,1.5,0.4,"Iris-setosa"], + [5.4,3.9,1.3,0.4,"Iris-setosa"], + [5.1,3.5,1.4,0.3,"Iris-setosa"], + [5.7,3.8,1.7,0.3,"Iris-setosa"], + [5.1,3.8,1.5,0.3,"Iris-setosa"], + [5.4,3.4,1.7,0.2,"Iris-setosa"], + [5.1,3.7,1.5,0.4,"Iris-setosa"], + [4.6,3.6,1,0.2,"Iris-setosa"], + [5.1,3.3,1.7,0.5,"Iris-setosa"], + [4.8,3.4,1.9,0.2,"Iris-setosa"], + [7,3.2,4.7,1.4,"Iris-versicolor"], + [6.4,3.2,4.5,1.5,"Iris-versicolor"], + [6.9,3.1,4.9,1.5,"Iris-versicolor"], + [5.5,2.3,4,1.3,"Iris-versicolor"], + [6.5,2.8,4.6,1.5,"Iris-versicolor"], + [5.7,2.8,4.5,1.3,"Iris-versicolor"], + [6.3,3.3,4.7,1.6,"Iris-versicolor"], + [4.9,2.4,3.3,1,"Iris-versicolor"], + [6.6,2.9,4.6,1.3,"Iris-versicolor"], + [5.2,2.7,3.9,1.4,"Iris-versicolor"], + [5,2,3.5,1,"Iris-versicolor"], + [5.9,3,4.2,1.5,"Iris-versicolor"], + [6,2.2,4,1,"Iris-versicolor"], + [6.1,2.9,4.7,1.4,"Iris-versicolor"], + [5.6,2.9,3.6,1.3,"Iris-versicolor"], + [6.7,3.1,4.4,1.4,"Iris-versicolor"], + [5.6,3,4.5,1.5,"Iris-versicolor"], + [5.8,2.7,4.1,1,"Iris-versicolor"], + [6.2,2.2,4.5,1.5,"Iris-versicolor"], + [5.6,2.5,3.9,1.1,"Iris-versicolor"], + [5.9,3.2,4.8,1.8,"Iris-versicolor"], + [6.1,2.8,4,1.3,"Iris-versicolor"], + [6.3,2.5,4.9,1.5,"Iris-versicolor"], + [6.1,2.8,4.7,1.2,"Iris-versicolor"], + [6.4,2.9,4.3,1.3,"Iris-versicolor"], + [6.3,3.3,6,2.5,"Iris-virginica"], + [5.8,2.7,5.1,1.9,"Iris-virginica"], + [7.1,3,5.9,2.1,"Iris-virginica"], + [6.3,2.9,5.6,1.8,"Iris-virginica"], + [6.5,3,5.8,2.2,"Iris-virginica"], + [7.6,3,6.6,2.1,"Iris-virginica"], + [4.9,2.5,4.5,1.7,"Iris-virginica"], + [7.3,2.9,6.3,1.8,"Iris-virginica"], + [6.7,2.5,5.8,1.8,"Iris-virginica"], + [7.2,3.6,6.1,2.5,"Iris-virginica"], + [6.5,3.2,5.1,2,"Iris-virginica"], + [6.4,2.7,5.3,1.9,"Iris-virginica"], + [6.8,3,5.5,2.1,"Iris-virginica"], + [5.7,2.5,5,2,"Iris-virginica"], + [5.8,2.8,5.1,2.4,"Iris-virginica"], + [6.4,3.2,5.3,2.3,"Iris-virginica"], + [6.5,3,5.5,1.8,"Iris-virginica"], + [7.7,3.8,6.7,2.2,"Iris-virginica"], + [7.7,2.6,6.9,2.3,"Iris-virginica"], + [6,2.2,5,1.5,"Iris-virginica"], + [6.9,3.2,5.7,2.3,"Iris-virginica"], + [5.6,2.8,4.9,2,"Iris-virginica"], + [7.7,2.8,6.7,2,"Iris-virginica"], + [6.3,2.7,4.9,1.8,"Iris-virginica"], + [6.7,3.3,5.7,2.1,"Iris-virginica"] + ], + "test": [ + [5,3,1.6,0.2,"Iris-setosa"], + [5,3.4,1.6,0.4,"Iris-setosa"], + [5.2,3.5,1.5,0.2,"Iris-setosa"], + [5.2,3.4,1.4,0.2,"Iris-setosa"], + [4.7,3.2,1.6,0.2,"Iris-setosa"], + [4.8,3.1,1.6,0.2,"Iris-setosa"], + [5.4,3.4,1.5,0.4,"Iris-setosa"], + [5.2,4.1,1.5,0.1,"Iris-setosa"], + [5.5,4.2,1.4,0.2,"Iris-setosa"], + [4.9,3.1,1.5,0.1,"Iris-setosa"], + [5,3.2,1.2,0.2,"Iris-setosa"], + [5.5,3.5,1.3,0.2,"Iris-setosa"], + [4.9,3.1,1.5,0.1,"Iris-setosa"], + [4.4,3,1.3,0.2,"Iris-setosa"], + [5.1,3.4,1.5,0.2,"Iris-setosa"], + [5,3.5,1.3,0.3,"Iris-setosa"], + [4.5,2.3,1.3,0.3,"Iris-setosa"], + [4.4,3.2,1.3,0.2,"Iris-setosa"], + [5,3.5,1.6,0.6,"Iris-setosa"], + [5.1,3.8,1.9,0.4,"Iris-setosa"], + [4.8,3,1.4,0.3,"Iris-setosa"], + [5.1,3.8,1.6,0.2,"Iris-setosa"], + [4.6,3.2,1.4,0.2,"Iris-setosa"], + [5.3,3.7,1.5,0.2,"Iris-setosa"], + [5,3.3,1.4,0.2,"Iris-setosa"], + [6.6,3,4.4,1.4,"Iris-versicolor"], + [6.8,2.8,4.8,1.4,"Iris-versicolor"], + [6.7,3,5,1.7,"Iris-versicolor"], + [6,2.9,4.5,1.5,"Iris-versicolor"], + [5.7,2.6,3.5,1,"Iris-versicolor"], + [5.5,2.4,3.8,1.1,"Iris-versicolor"], + [5.5,2.4,3.7,1,"Iris-versicolor"], + [5.8,2.7,3.9,1.2,"Iris-versicolor"], + [6,2.7,5.1,1.6,"Iris-versicolor"], + [5.4,3,4.5,1.5,"Iris-versicolor"], + [6,3.4,4.5,1.6,"Iris-versicolor"], + [6.7,3.1,4.7,1.5,"Iris-versicolor"], + [6.3,2.3,4.4,1.3,"Iris-versicolor"], + [5.6,3,4.1,1.3,"Iris-versicolor"], + [5.5,2.5,4,1.3,"Iris-versicolor"], + [5.5,2.6,4.4,1.2,"Iris-versicolor"], + [6.1,3,4.6,1.4,"Iris-versicolor"], + [5.8,2.6,4,1.2,"Iris-versicolor"], + [5,2.3,3.3,1,"Iris-versicolor"], + [5.6,2.7,4.2,1.3,"Iris-versicolor"], + [5.7,3,4.2,1.2,"Iris-versicolor"], + [5.7,2.9,4.2,1.3,"Iris-versicolor"], + [6.2,2.9,4.3,1.3,"Iris-versicolor"], + [5.1,2.5,3,1.1,"Iris-versicolor"], + [5.7,2.8,4.1,1.3,"Iris-versicolor"], + [7.2,3.2,6,1.8,"Iris-virginica"], + [6.2,2.8,4.8,1.8,"Iris-virginica"], + [6.1,3,4.9,1.8,"Iris-virginica"], + [6.4,2.8,5.6,2.1,"Iris-virginica"], + [7.2,3,5.8,1.6,"Iris-virginica"], + [7.4,2.8,6.1,1.9,"Iris-virginica"], + [7.9,3.8,6.4,2,"Iris-virginica"], + [6.4,2.8,5.6,2.2,"Iris-virginica"], + [6.3,2.8,5.1,1.5,"Iris-virginica"], + [6.1,2.6,5.6,1.4,"Iris-virginica"], + [7.7,3,6.1,2.3,"Iris-virginica"], + [6.3,3.4,5.6,2.4,"Iris-virginica"], + [6.4,3.1,5.5,1.8,"Iris-virginica"], + [6,3,4.8,1.8,"Iris-virginica"], + [6.9,3.1,5.4,2.1,"Iris-virginica"], + [6.7,3.1,5.6,2.4,"Iris-virginica"], + [6.9,3.1,5.1,2.3,"Iris-virginica"], + [5.8,2.7,5.1,1.9,"Iris-virginica"], + [6.8,3.2,5.9,2.3,"Iris-virginica"], + [6.7,3.3,5.7,2.5,"Iris-virginica"], + [6.7,3,5.2,2.3,"Iris-virginica"], + [6.3,2.5,5,1.9,"Iris-virginica"], + [6.5,3,5.2,2,"Iris-virginica"], + [6.2,3.4,5.4,2.3,"Iris-virginica"], + [5.9,3,5.1,1.8,"Iris-virginica"] + ] +} diff --git a/bob/ip/binseg/test/test_basemetrics.py b/bob/ip/binseg/test/test_basemetrics.py index bf478ac788d038dd9038ca5d5b5cf7aa1ac7a83a..969894f5e453bfdf6fc86fe07448d8e1c8f7ece2 100644 --- a/bob/ip/binseg/test/test_basemetrics.py +++ b/bob/ip/binseg/test/test_basemetrics.py @@ -2,43 +2,47 @@ # -*- coding: utf-8 -*- import unittest -import numpy as np from bob.ip.binseg.utils.metric import base_metrics import random + class Tester(unittest.TestCase): """ Unit test for base metrics """ + def setUp(self): self.tp = random.randint(1, 100) self.fp = random.randint(1, 100) self.tn = random.randint(1, 100) self.fn = random.randint(1, 100) - + def test_precision(self): precision = base_metrics(self.tp, self.fp, self.tn, self.fn)[0] - self.assertEqual((self.tp)/(self.tp + self.fp),precision) + self.assertEqual((self.tp) / (self.tp + self.fp), precision) def test_recall(self): recall = base_metrics(self.tp, self.fp, self.tn, self.fn)[1] - self.assertEqual((self.tp)/(self.tp + self.fn),recall) + self.assertEqual((self.tp) / (self.tp + self.fn), recall) def test_specificity(self): specificity = base_metrics(self.tp, self.fp, self.tn, self.fn)[2] - self.assertEqual((self.tn)/(self.tn + self.fp),specificity) - + self.assertEqual((self.tn) / (self.tn + self.fp), specificity) + def test_accuracy(self): accuracy = base_metrics(self.tp, self.fp, self.tn, self.fn)[3] - self.assertEqual((self.tp + self.tn)/(self.tp + self.tn + self.fp + self.fn), accuracy) + self.assertEqual( + (self.tp + self.tn) / (self.tp + self.tn + self.fp + self.fn), accuracy + ) def test_jaccard(self): jaccard = base_metrics(self.tp, self.fp, self.tn, self.fn)[4] - self.assertEqual(self.tp / (self.tp+self.fp+self.fn), jaccard) + self.assertEqual(self.tp / (self.tp + self.fp + self.fn), jaccard) def test_f1(self): f1 = base_metrics(self.tp, self.fp, self.tn, self.fn)[5] - self.assertEqual((2.0 * self.tp ) / (2.0 * self.tp + self.fp + self.fn ),f1) - -if __name__ == '__main__': - unittest.main() \ No newline at end of file + self.assertEqual((2.0 * self.tp) / (2.0 * self.tp + self.fp + self.fn), f1) + + +if __name__ == "__main__": + unittest.main() diff --git a/bob/ip/binseg/test/test_batchmetrics.py b/bob/ip/binseg/test/test_batchmetrics.py index 4988cab6ea8a7ffbc907f2e580ebe46b48ad9611..09ffe250a805a00718d2cb4687ea2bbe5e49daf4 100644 --- a/bob/ip/binseg/test/test_batchmetrics.py +++ b/bob/ip/binseg/test/test_batchmetrics.py @@ -2,38 +2,45 @@ # -*- coding: utf-8 -*- import unittest -import numpy as np -from bob.ip.binseg.engine.inferencer import batch_metrics import random -import shutil, tempfile -import logging +import shutil + import torch +import pandas +import numpy + +from ..engine.evaluator import _sample_metrics + +import logging +logger = logging.getLogger(__name__) + class Tester(unittest.TestCase): """ Unit test for batch metrics """ + def setUp(self): self.tp = random.randint(1, 100) self.fp = random.randint(1, 100) self.tn = random.randint(1, 100) self.fn = random.randint(1, 100) - self.predictions = torch.rand(size=(2,1,420,420)) - self.ground_truths = torch.randint(low=0, high=2, size=(2,1,420,420)) - self.names = ['Bob','Tim'] - self.output_folder = tempfile.mkdtemp() - self.logger = logging.getLogger(__name__) - - def tearDown(self): - # Remove the temporary folder after the test - shutil.rmtree(self.output_folder) - + self.predictions = torch.rand(size=(2, 1, 420, 420)) + self.ground_truths = torch.randint(low=0, high=2, size=(2, 1, 420, 420)) + self.names = ["Bob", "Tim"] + def test_batch_metrics(self): - bm = batch_metrics(self.predictions, self.ground_truths, self.names, self.output_folder, self.logger) - self.assertEqual(len(bm),2*100) - for metric in bm: - # check whether f1 score agree - self.assertAlmostEqual(metric[-1],2*(metric[-6]*metric[-5])/(metric[-6]+metric[-5])) - -if __name__ == '__main__': - unittest.main() \ No newline at end of file + dfs = [] + for pred, gt in zip(self.predictions, self.ground_truths): + dfs.append(_sample_metrics(pred, gt, 100)) + bm = pandas.concat(dfs) + + self.assertEqual(len(bm), 2 * 100) + # check whether f1 score agree + calculated = bm.f1_score.to_numpy() + ours = (2*(bm.precision*bm.recall)/(bm.precision+bm.recall)).to_numpy() + assert numpy.isclose(calculated, ours).all() + + +if __name__ == "__main__": + unittest.main() diff --git a/bob/ip/binseg/test/test_chasedb1.py b/bob/ip/binseg/test/test_chasedb1.py new file mode 100644 index 0000000000000000000000000000000000000000..d5a980c14f2992307a53e69924cb6b7c314fc538 --- /dev/null +++ b/bob/ip/binseg/test/test_chasedb1.py @@ -0,0 +1,99 @@ +#!/usr/bin/env python +# coding=utf-8 + + +"""Tests for CHASE-DB1""" + +import os + +import numpy +import nose.tools + +from ..data.chasedb1 import dataset +from .utils import rc_variable_set, count_bw + + +def test_protocol_consistency(): + + subset = dataset.subsets("first-annotator") + nose.tools.eq_(len(subset), 2) + + assert "train" in subset + nose.tools.eq_(len(subset["train"]), 8) + for s in subset["train"]: + assert s.key.startswith("Image_") + + assert "test" in subset + nose.tools.eq_(len(subset["test"]), 20) + for s in subset["test"]: + assert s.key.startswith("Image_") + + subset = dataset.subsets("second-annotator") + nose.tools.eq_(len(subset), 2) + + assert "train" in subset + nose.tools.eq_(len(subset["train"]), 8) + for s in subset["train"]: + assert s.key.startswith("Image_") + + assert "test" in subset + nose.tools.eq_(len(subset["test"]), 20) + for s in subset["test"]: + assert s.key.startswith("Image_") + + +@rc_variable_set('bob.ip.binseg.chasedb1.datadir') +def test_loading(): + + image_size = (999, 960) + + def _check_sample(s, bw_threshold_label): + + data = s.data + assert isinstance(data, dict) + nose.tools.eq_(len(data), 2) + + assert "data" in data + nose.tools.eq_(data["data"].size, image_size) + nose.tools.eq_(data["data"].mode, "RGB") + + assert "label" in data + nose.tools.eq_(data["label"].size, image_size) + nose.tools.eq_(data["label"].mode, "1") + b, w = count_bw(data["label"]) + assert (b+w) == numpy.prod(image_size), \ + f"Counts of black + white ({b}+{w}) do not add up to total " \ + f"image size ({numpy.prod(image_size)}) at '{s.key}':label" + assert (w/b) < bw_threshold_label, \ + f"The proportion between black and white pixels " \ + f"({w}/{b}={w/b:.2f}) is larger than the allowed threshold " \ + f"of {bw_threshold_label} at '{s.key}':label - this could " \ + f"indicate a loading problem!" + + # to visualize images, uncomment the folowing code + # it should display an image with a faded background representing the + # original data, blended with green labels. + #from ..data.utils import overlayed_image + #display = overlayed_image(data["data"], data["label"]) + #display.show() + #import ipdb; ipdb.set_trace() + + return w/b + + limit = None #use this to limit testing to first images only + subset = dataset.subsets("first-annotator") + proportions = [_check_sample(s, 0.08) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, 0.10) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(proportions)}") + + subset = dataset.subsets("second-annotator") + proportions = [_check_sample(s, 0.09) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, 0.09) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(proportions)}") + + +@rc_variable_set('bob.ip.binseg.chasedb1.datadir') +def test_check(): + nose.tools.eq_(dataset.check(), 0) diff --git a/bob/ip/binseg/test/test_checkpointer.py b/bob/ip/binseg/test/test_checkpointer.py index 45a181b39a298fb0a7340ad745113543c4048b2f..52bd9ac0fafefd1d7d250bfcd87c4d3e6703ad15 100644 --- a/bob/ip/binseg/test/test_checkpointer.py +++ b/bob/ip/binseg/test/test_checkpointer.py @@ -1,8 +1,6 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -# https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/engine/trainer.py -# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from collections import OrderedDict from tempfile import TemporaryDirectory import unittest @@ -41,9 +39,7 @@ class TestCheckpointer(unittest.TestCase): trained_model = self.create_model() fresh_model = self.create_model() with TemporaryDirectory() as f: - checkpointer = Checkpointer( - trained_model, save_dir=f, save_to_disk=True - ) + checkpointer = Checkpointer(trained_model, save_dir=f, save_to_disk=True) checkpointer.save("checkpoint_file") # in the same folder @@ -51,7 +47,7 @@ class TestCheckpointer(unittest.TestCase): self.assertTrue(fresh_checkpointer.has_checkpoint()) self.assertEqual( fresh_checkpointer.get_checkpoint_file(), - os.path.join(f, "checkpoint_file.pth"), + "checkpoint_file.pth", ) _ = fresh_checkpointer.load() @@ -68,9 +64,7 @@ class TestCheckpointer(unittest.TestCase): trained_model = self.create_model() fresh_model = self.create_model() with TemporaryDirectory() as f: - checkpointer = Checkpointer( - trained_model, save_dir=f, save_to_disk=True - ) + checkpointer = Checkpointer(trained_model, save_dir=f, save_to_disk=True) checkpointer.save("checkpoint_file") # on different folders @@ -90,4 +84,4 @@ class TestCheckpointer(unittest.TestCase): if __name__ == "__main__": - unittest.main() \ No newline at end of file + unittest.main() diff --git a/bob/ip/binseg/test/test_cli.py b/bob/ip/binseg/test/test_cli.py new file mode 100644 index 0000000000000000000000000000000000000000..0b0d20af4fb3fe312afb2c95ed7acd577d737b40 --- /dev/null +++ b/bob/ip/binseg/test/test_cli.py @@ -0,0 +1,573 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""Tests for our CLI applications""" + +import os +import re +import fnmatch +import tempfile +import contextlib + +import nose.tools + +from click.testing import CliRunner + +from . import mock_dataset + +stare_datadir, stare_dataset, rc_variable_set = mock_dataset() + + +@contextlib.contextmanager +def stdout_logging(): + + ## copy logging messages to std out + import sys + import logging + import io + + buf = io.StringIO() + ch = logging.StreamHandler(buf) + ch.setFormatter(logging.Formatter("%(message)s")) + ch.setLevel(logging.INFO) + logger = logging.getLogger("bob") + logger.addHandler(ch) + yield buf + logger.removeHandler(ch) + + +def _assert_exit_0(result): + + assert ( + result.exit_code == 0 + ), f"Exit code {result.exit_code} != 0 -- Output:\n{result.output}" + + +def _check_help(entry_point): + + runner = CliRunner() + result = runner.invoke(entry_point, ["--help"]) + _assert_exit_0(result) + assert result.output.startswith("Usage:") + + +def test_main_help(): + from ..script.binseg import binseg + + _check_help(binseg) + + +def test_experiment_help(): + from ..script.experiment import experiment + + _check_help(experiment) + + +def _str_counter(substr, s): + return sum(1 for _ in re.finditer(substr, s, re.MULTILINE)) + + +def _check_experiment_stare(overlay): + + from ..script.experiment import experiment + + runner = CliRunner() + with runner.isolated_filesystem(), stdout_logging() as buf, tempfile.NamedTemporaryFile( + mode="wt" + ) as config: + + # re-write STARE dataset configuration for test + config.write("from bob.ip.binseg.data.stare import _make_dataset\n") + config.write(f"_raw = _make_dataset('{stare_datadir}')\n") + config.write( + "from bob.ip.binseg.configs.datasets.stare import _maker\n" + ) + config.write("dataset = _maker('ah', _raw)\n") + config.write("second_annotator = _maker('vk', _raw)\n") + config.flush() + + output_folder = "results" + options = [ + "m2unet", + config.name, + "-vv", + "--epochs=1", + "--batch-size=1", + f"--output-folder={output_folder}", + ] + if overlay: + options += ["--overlayed"] + result = runner.invoke(experiment, options) + _assert_exit_0(result) + + # check command-line + assert os.path.exists(os.path.join(output_folder, "command.sh")) + + # check model was saved + train_folder = os.path.join(output_folder, "model") + assert os.path.exists(os.path.join(train_folder, "model_final.pth")) + assert os.path.exists(os.path.join(train_folder, "last_checkpoint")) + assert os.path.exists(os.path.join(train_folder, "constants.csv")) + assert os.path.exists(os.path.join(train_folder, "trainlog.csv")) + assert os.path.exists(os.path.join(train_folder, "model_summary.txt")) + + # check predictions are there + predict_folder = os.path.join(output_folder, "predictions") + basedir = os.path.join(predict_folder, "stare-images") + assert os.path.exists(basedir) + nose.tools.eq_(len(fnmatch.filter(os.listdir(basedir), "*.hdf5")), 20) + + overlay_folder = os.path.join(output_folder, "overlayed", "predictions") + basedir = os.path.join(overlay_folder, "stare-images") + if overlay: + # check overlayed images are there (since we requested them) + assert os.path.exists(basedir) + nose.tools.eq_(len(fnmatch.filter(os.listdir(basedir), "*.png")), 20) + else: + assert not os.path.exists(basedir) + + # check evaluation outputs + eval_folder = os.path.join(output_folder, "analysis") + assert os.path.exists(os.path.join(eval_folder, "train.csv")) + assert os.path.exists(os.path.join(eval_folder, "test.csv")) + assert os.path.exists( + os.path.join(eval_folder, "second-annotator", "train.csv") + ) + assert os.path.exists( + os.path.join(eval_folder, "second-annotator" , "test.csv") + ) + + overlay_folder = os.path.join(output_folder, "overlayed", "analysis") + basedir = os.path.join(overlay_folder, "stare-images") + if overlay: + # check overlayed images are there (since we requested them) + assert os.path.exists(basedir) + nose.tools.eq_(len(fnmatch.filter(os.listdir(basedir), "*.png")), 20) + else: + assert not os.path.exists(basedir) + + # check overlayed images from first-to-second annotator comparisons + # are there (since we requested them) + overlay_folder = os.path.join(output_folder, "overlayed", "analysis", + "second-annotator") + basedir = os.path.join(overlay_folder, "stare-images") + if overlay: + assert os.path.exists(basedir) + nose.tools.eq_(len(fnmatch.filter(os.listdir(basedir), "*.png")), 20) + else: + assert not os.path.exists(basedir) + + # check outcomes of the comparison phase + assert os.path.exists(os.path.join(output_folder, "comparison.pdf")) + assert os.path.exists(os.path.join(output_folder, "comparison.rst")) + + keywords = { + r"^Started training$": 1, + r"^Found \(dedicated\) '__train__' set for training$": 1, + r"^Continuing from epoch 0$": 1, + r"^Saving model summary at.*$": 1, + r"^Model has.*$": 1, + r"^Saving checkpoint": 1, + r"^Ended training$": 1, + r"^Started prediction$": 1, + r"^Loading checkpoint from": 2, + r"^Ended prediction$": 1, + r"^Started evaluation$": 1, + r"^Maximum F1-score of.*\(chosen \*a posteriori\*\)$": 3, + r"^F1-score of.*\(chosen \*a priori\*\)$": 2, + r"^F1-score of.*\(second annotator; threshold=0.5\)$": 2, + r"^Ended evaluation$": 1, + r"^Started comparison$": 1, + r"^Loading metrics from": 4, + r"^Creating and saving plot at": 1, + r"^Tabulating performance summary...": 1, + r"^Saving table at": 1, + r"^Ended comparison.*$": 1, + } + buf.seek(0) + logging_output = buf.read() + for k, v in keywords.items(): + # if _str_counter(k, logging_output) != v: + # print(f"Count for string '{k}' appeared " \ + # f"({_str_counter(k, result.output)}) " \ + # f"instead of the expected {v}") + assert _str_counter(k, logging_output) == v, ( + f"Count for string '{k}' appeared " + f"({_str_counter(k, logging_output)}) " + f"instead of the expected {v}" + ) + + +@rc_variable_set("bob.ip.binseg.stare.datadir") +def test_experiment_stare_with_overlay(): + _check_experiment_stare(overlay=True) + + +@rc_variable_set("bob.ip.binseg.stare.datadir") +def test_experiment_stare_without_overlay(): + _check_experiment_stare(overlay=False) + + +def _check_train(runner): + + from ..script.train import train + + with tempfile.NamedTemporaryFile( + mode="wt" + ) as config, stdout_logging() as buf: + + # single training set configuration + config.write("from bob.ip.binseg.data.stare import _make_dataset\n") + config.write(f"_raw = _make_dataset('{stare_datadir}')\n") + config.write( + "from bob.ip.binseg.configs.datasets.stare import _maker\n" + ) + config.write("dataset = _maker('ah', _raw)['train']\n") + config.flush() + + output_folder = "results" + result = runner.invoke( + train, + [ + "m2unet", + config.name, + "-vv", + "--epochs=1", + "--batch-size=1", + f"--output-folder={output_folder}", + ], + ) + _assert_exit_0(result) + + assert os.path.exists(os.path.join(output_folder, "model_final.pth")) + assert os.path.exists(os.path.join(output_folder, "last_checkpoint")) + assert os.path.exists(os.path.join(output_folder, "constants.csv")) + assert os.path.exists(os.path.join(output_folder, "trainlog.csv")) + assert os.path.exists(os.path.join(output_folder, "model_summary.txt")) + + keywords = { + r"^Continuing from epoch 0$": 1, + r"^Saving model summary at.*$": 1, + r"^Model has.*$": 1, + rf"^Saving checkpoint to {output_folder}/model_final.pth$": 1, + r"^Total training time:": 1, + } + buf.seek(0) + logging_output = buf.read() + + for k, v in keywords.items(): + # if _str_counter(k, logging_output) != v: + # print(f"Count for string '{k}' appeared " \ + # f"({_str_counter(k, result.output)}) " \ + # f"instead of the expected {v}") + assert _str_counter(k, logging_output) == v, ( + f"Count for string '{k}' appeared " + f"({_str_counter(k, logging_output)}) " + f"instead of the expected {v}:\nOutput:\n{logging_output}" + ) + + +def _check_predict(runner): + + from ..script.predict import predict + + with tempfile.NamedTemporaryFile( + mode="wt" + ) as config, stdout_logging() as buf: + + # single training set configuration + config.write("from bob.ip.binseg.data.stare import _make_dataset\n") + config.write(f"_raw = _make_dataset('{stare_datadir}')\n") + config.write( + "from bob.ip.binseg.configs.datasets.stare import _maker\n" + ) + config.write("dataset = _maker('ah', _raw)['test']\n") + config.flush() + + output_folder = "predictions" + overlay_folder = os.path.join("overlayed", "predictions") + result = runner.invoke( + predict, + [ + "m2unet", + config.name, + "-vv", + "--batch-size=1", + "--weight=results/model_final.pth", + f"--output-folder={output_folder}", + f"--overlayed={overlay_folder}", + ], + ) + _assert_exit_0(result) + + # check predictions are there + basedir = os.path.join(output_folder, "stare-images") + assert os.path.exists(basedir) + nose.tools.eq_(len(fnmatch.filter(os.listdir(basedir), "*.hdf5")), 10) + + # check overlayed images are there (since we requested them) + basedir = os.path.join(overlay_folder, "stare-images") + assert os.path.exists(basedir) + nose.tools.eq_(len(fnmatch.filter(os.listdir(basedir), "*.png")), 10) + + keywords = { + r"^Loading checkpoint from.*$": 1, + r"^Total time:.*$": 1, + } + buf.seek(0) + logging_output = buf.read() + + for k, v in keywords.items(): + # if _str_counter(k, logging_output) != v: + # print(f"Count for string '{k}' appeared " \ + # f"({_str_counter(k, result.output)}) " \ + # f"instead of the expected {v}") + assert _str_counter(k, logging_output) == v, ( + f"Count for string '{k}' appeared " + f"({_str_counter(k, logging_output)}) " + f"instead of the expected {v}:\nOutput:\n{logging_output}" + ) + + +def _check_evaluate(runner): + + from ..script.evaluate import evaluate + + with tempfile.NamedTemporaryFile( + mode="wt" + ) as config, stdout_logging() as buf: + + # single training set configuration + config.write("from bob.ip.binseg.data.stare import _make_dataset\n") + config.write(f"_raw = _make_dataset('{stare_datadir}')\n") + config.write( + "from bob.ip.binseg.configs.datasets.stare import _maker\n" + ) + config.write("dataset = _maker('ah', _raw)['test']\n") + config.write("second_annotator = _maker('vk', _raw)['test']\n") + config.flush() + + output_folder = "evaluations" + overlay_folder = os.path.join("overlayed", "analysis") + result = runner.invoke( + evaluate, + [ + config.name, + "-vv", + f"--output-folder={output_folder}", + "--predictions-folder=predictions", + f"--overlayed={overlay_folder}", + ], + ) + _assert_exit_0(result) + + assert os.path.exists(os.path.join(output_folder, "test.csv")) + assert os.path.exists(os.path.join(output_folder, + "second-annotator", "test.csv")) + + # check overlayed images are there (since we requested them) + basedir = os.path.join(overlay_folder, "stare-images") + assert os.path.exists(basedir) + nose.tools.eq_(len(fnmatch.filter(os.listdir(basedir), "*.png")), 10) + + keywords = { + r"^Skipping dataset '__train__'": 0, + r"^Saving averages over all input images.*$": 2, + r"^Maximum F1-score of.*\(chosen \*a posteriori\*\)$": 1, + r"^F1-score of.*\(chosen \*a priori\*\)$": 1, + r"^F1-score of.*\(second annotator; threshold=0.5\)$": 1, + } + buf.seek(0) + logging_output = buf.read() + + for k, v in keywords.items(): + # if _str_counter(k, logging_output) != v: + # print(f"Count for string '{k}' appeared " \ + # f"({_str_counter(k, result.output)}) " \ + # f"instead of the expected {v}") + assert _str_counter(k, logging_output) == v, ( + f"Count for string '{k}' appeared " + f"({_str_counter(k, logging_output)}) " + f"instead of the expected {v}:\nOutput:\n{logging_output}" + ) + + +def _check_compare(runner): + + from ..script.compare import compare + + with stdout_logging() as buf: + + output_folder = "evaluations" + result = runner.invoke( + compare, + [ + "-vv", + # label - path to metrics + "test", + os.path.join(output_folder, "test.csv"), + "test (2nd. human)", + os.path.join(output_folder, "second-annotator", "test.csv"), + "--output-figure=comparison.pdf", + "--output-table=comparison.rst", + ], + ) + _assert_exit_0(result) + + assert os.path.exists("comparison.pdf") + assert os.path.exists("comparison.rst") + + keywords = { + r"^Loading metrics from": 2, + r"^Creating and saving plot at": 1, + r"^Tabulating performance summary...": 1, + r"^Saving table at": 1, + } + buf.seek(0) + logging_output = buf.read() + + for k, v in keywords.items(): + # if _str_counter(k, logging_output) != v: + # print(f"Count for string '{k}' appeared " \ + # f"({_str_counter(k, result.output)}) " \ + # f"instead of the expected {v}") + assert _str_counter(k, logging_output) == v, ( + f"Count for string '{k}' appeared " + f"({_str_counter(k, logging_output)}) " + f"instead of the expected {v}:\nOutput:\n{logging_output}" + ) + + +@rc_variable_set("bob.ip.binseg.stare.datadir") +def test_discrete_experiment_stare(): + + runner = CliRunner() + with runner.isolated_filesystem(): + _check_train(runner) + _check_predict(runner) + _check_evaluate(runner) + _check_compare(runner) + + +def test_train_help(): + from ..script.train import train + + _check_help(train) + + +def test_predict_help(): + from ..script.predict import predict + + _check_help(predict) + + +def test_evaluate_help(): + from ..script.evaluate import evaluate + + _check_help(evaluate) + + +def test_compare_help(): + from ..script.compare import compare + + _check_help(compare) + + +def test_config_help(): + from ..script.config import config + + _check_help(config) + + +def test_config_list_help(): + from ..script.config import list + + _check_help(list) + + +def test_config_list(): + from ..script.config import list + + runner = CliRunner() + result = runner.invoke(list) + _assert_exit_0(result) + assert "module: bob.ip.binseg.configs.datasets" in result.output + assert "module: bob.ip.binseg.configs.models" in result.output + + +def test_config_list_v(): + from ..script.config import list + + runner = CliRunner() + result = runner.invoke(list, ["--verbose"]) + _assert_exit_0(result) + assert "module: bob.ip.binseg.configs.datasets" in result.output + assert "module: bob.ip.binseg.configs.models" in result.output + + +def test_config_describe_help(): + from ..script.config import describe + + _check_help(describe) + + +def test_config_describe_drive(): + from ..script.config import describe + + runner = CliRunner() + result = runner.invoke(describe, ["drive"]) + _assert_exit_0(result) + assert "[DRIVE-2004]" in result.output + + +def test_config_copy_help(): + from ..script.config import copy + + _check_help(copy) + + +def test_config_copy(): + from ..script.config import copy + + runner = CliRunner() + with runner.isolated_filesystem(): + result = runner.invoke(copy, ["drive", "test.py"]) + _assert_exit_0(result) + with open("test.py") as f: + data = f.read() + assert "[DRIVE-2004]" in data + + +def test_dataset_help(): + from ..script.dataset import dataset + + _check_help(dataset) + + +def test_dataset_list_help(): + from ..script.dataset import list + + _check_help(list) + + +def test_dataset_list(): + from ..script.dataset import list + + runner = CliRunner() + result = runner.invoke(list) + _assert_exit_0(result) + assert result.output.startswith("Supported datasets:") + + +def test_dataset_check_help(): + from ..script.dataset import check + + _check_help(check) + + +def test_dataset_check(): + from ..script.dataset import check + + runner = CliRunner() + result = runner.invoke(check, ["--verbose", "--verbose", "--limit=2"]) + _assert_exit_0(result) diff --git a/bob/ip/binseg/test/test_config.py b/bob/ip/binseg/test/test_config.py new file mode 100644 index 0000000000000000000000000000000000000000..52e3a2b3258485e752cb0887b80bb72e6f05cda4 --- /dev/null +++ b/bob/ip/binseg/test/test_config.py @@ -0,0 +1,555 @@ +#!/usr/bin/env python +# coding=utf-8 + +import importlib + +import nose.tools + +import torch + +from . import mock_dataset +stare_datadir, stare_dataset, stare_variable_set = mock_dataset() +from .utils import rc_variable_set + +# we only iterate over the first N elements at most - dataset loading has +# already been checked on the individual datset tests. Here, we are only +# testing for the extra tools wrapping the dataset +N = 10 + + +@rc_variable_set("bob.ip.binseg.drive.datadir") +def test_drive(): + + def _check_subset(samples, size): + nose.tools.eq_(len(samples), size) + for s in samples: + nose.tools.eq_(len(s), 4) + assert isinstance(s[0], str) + nose.tools.eq_(s[1].shape, (3, 544, 544)) #planes, height, width + nose.tools.eq_(s[1].dtype, torch.float32) + nose.tools.eq_(s[2].shape, (1, 544, 544)) #planes, height, width + nose.tools.eq_(s[2].dtype, torch.float32) + nose.tools.eq_(s[3].shape, (1, 544, 544)) #planes, height, width + nose.tools.eq_(s[3].dtype, torch.float32) + + from ..configs.datasets.drive.default import dataset + + nose.tools.eq_(len(dataset), 3) + _check_subset(dataset["__train__"], 20) + _check_subset(dataset["train"], 20) + _check_subset(dataset["test"], 20) + + from ..configs.datasets.drive.second_annotator import dataset + + nose.tools.eq_(len(dataset), 1) + _check_subset(dataset["test"], 20) + + +@rc_variable_set("bob.ip.binseg.drive.datadir") +@stare_variable_set("bob.ip.binseg.stare.datadir") +@rc_variable_set("bob.ip.binseg.chasedb1.datadir") +@rc_variable_set("bob.ip.binseg.hrf.datadir") +@rc_variable_set("bob.ip.binseg.iostar.datadir") +def test_drive_mtest(): + + from ..configs.datasets.drive.mtest import dataset + nose.tools.eq_(len(dataset), 6) + + from ..configs.datasets.drive.default import dataset as baseline + nose.tools.eq_(dataset["train"], baseline["train"]) + nose.tools.eq_(dataset["test"], baseline["test"]) + + for subset in dataset: + for sample in dataset[subset]: + assert 3 <= len(sample) <= 4 + assert isinstance(sample[0], str) + nose.tools.eq_(sample[1].shape, (3, 544, 544)) #planes, height, width + nose.tools.eq_(sample[1].dtype, torch.float32) + nose.tools.eq_(sample[2].shape, (1, 544, 544)) + nose.tools.eq_(sample[2].dtype, torch.float32) + if len(sample) == 4: + nose.tools.eq_(sample[3].shape, (1, 544, 544)) + nose.tools.eq_(sample[3].dtype, torch.float32) + + +@rc_variable_set("bob.ip.binseg.drive.datadir") +@stare_variable_set("bob.ip.binseg.stare.datadir") +@rc_variable_set("bob.ip.binseg.chasedb1.datadir") +@rc_variable_set("bob.ip.binseg.hrf.datadir") +@rc_variable_set("bob.ip.binseg.iostar.datadir") +def test_drive_covd(): + + from ..configs.datasets.drive.covd import dataset + nose.tools.eq_(len(dataset), 3) + + from ..configs.datasets.drive.default import dataset as baseline + nose.tools.eq_(dataset["train"], baseline["train"]) + nose.tools.eq_(dataset["test"], baseline["test"]) + + # this is the only different set from the baseline + nose.tools.eq_(len(dataset["__train__"]), 53) + + for sample in dataset["__train__"]: + assert 3 <= len(sample) <= 4 + assert isinstance(sample[0], str) + nose.tools.eq_(sample[1].shape, (3, 544, 544)) #planes, height, width + nose.tools.eq_(sample[1].dtype, torch.float32) + nose.tools.eq_(sample[2].shape, (1, 544, 544)) #planes, height, width + nose.tools.eq_(sample[2].dtype, torch.float32) + if len(sample) == 4: + nose.tools.eq_(sample[3].shape, (1, 544, 544)) #planes, height, width + nose.tools.eq_(sample[3].dtype, torch.float32) + + +@rc_variable_set("bob.ip.binseg.drive.datadir") +@stare_variable_set("bob.ip.binseg.stare.datadir") +@rc_variable_set("bob.ip.binseg.chasedb1.datadir") +@rc_variable_set("bob.ip.binseg.hrf.datadir") +@rc_variable_set("bob.ip.binseg.iostar.datadir") +def test_drive_ssl(): + + from ..configs.datasets.drive.ssl import dataset + nose.tools.eq_(len(dataset), 3) + + from ..configs.datasets.drive.default import dataset as baseline + nose.tools.eq_(dataset["train"], baseline["train"]) + nose.tools.eq_(dataset["test"], baseline["test"]) + + # this is the only different set from the baseline + nose.tools.eq_(len(dataset["__train__"]), 53) + + for sample in dataset["__train__"]: + assert 5 <= len(sample) <= 6 + assert isinstance(sample[0], str) + nose.tools.eq_(sample[1].shape, (3, 544, 544)) #planes, height, width + nose.tools.eq_(sample[1].dtype, torch.float32) + nose.tools.eq_(sample[2].shape, (1, 544, 544)) #planes, height, width + nose.tools.eq_(sample[2].dtype, torch.float32) + if len(sample) == 6: + nose.tools.eq_(sample[3].shape, (1, 544, 544)) #planes, height, width + nose.tools.eq_(sample[3].dtype, torch.float32) + assert isinstance(sample[4], str) + nose.tools.eq_(sample[5].shape, (3, 544, 544)) #planes, height, width + nose.tools.eq_(sample[5].dtype, torch.float32) + else: + assert isinstance(sample[3], str) + nose.tools.eq_(sample[4].shape, (3, 544, 544)) #planes, height, width + nose.tools.eq_(sample[4].dtype, torch.float32) + + +@stare_variable_set("bob.ip.binseg.stare.datadir") +def test_stare_augmentation_manipulation(): + + # some tests to check our context management for dataset augmentation works + # adequately, with one example dataset + + # hack to allow testing on the CI + from ..configs.datasets.stare import _maker + dataset = _maker("ah", stare_dataset) + + nose.tools.eq_(len(dataset["__train__"]._transforms.transforms), + len(dataset["test"]._transforms.transforms) + 4) + + nose.tools.eq_(len(dataset["train"]._transforms.transforms), + len(dataset["test"]._transforms.transforms)) + + +@stare_variable_set("bob.ip.binseg.stare.datadir") +def test_stare(): + + def _check_subset(samples, size): + nose.tools.eq_(len(samples), size) + for s in samples: + nose.tools.eq_(len(s), 3) + assert isinstance(s[0], str) + nose.tools.eq_(s[1].shape, (3, 608, 704)) #planes, height, width + nose.tools.eq_(s[1].dtype, torch.float32) + nose.tools.eq_(s[2].shape, (1, 608, 704)) #planes, height, width + nose.tools.eq_(s[2].dtype, torch.float32) + + # hack to allow testing on the CI + from ..configs.datasets.stare import _maker + + for protocol in "ah", "vk": + dataset = _maker(protocol, stare_dataset) + nose.tools.eq_(len(dataset), 3) + _check_subset(dataset["__train__"], 10) + _check_subset(dataset["train"], 10) + _check_subset(dataset["test"], 10) + + +@rc_variable_set("bob.ip.binseg.drive.datadir") +@stare_variable_set("bob.ip.binseg.stare.datadir") +@rc_variable_set("bob.ip.binseg.chasedb1.datadir") +@rc_variable_set("bob.ip.binseg.hrf.datadir") +@rc_variable_set("bob.ip.binseg.iostar.datadir") +def test_stare_mtest(): + + from ..configs.datasets.stare.mtest import dataset + nose.tools.eq_(len(dataset), 6) + + from ..configs.datasets.stare.ah import dataset as baseline + nose.tools.eq_(dataset["train"], baseline["train"]) + nose.tools.eq_(dataset["test"], baseline["test"]) + + for subset in dataset: + for sample in dataset[subset]: + assert 3 <= len(sample) <= 4 + assert isinstance(sample[0], str) + nose.tools.eq_(sample[1].shape, (3, 608, 704)) #planes,height,width + nose.tools.eq_(sample[1].dtype, torch.float32) + nose.tools.eq_(sample[2].shape, (1, 608, 704)) #planes,height,width + nose.tools.eq_(sample[2].dtype, torch.float32) + if len(sample) == 4: + nose.tools.eq_(sample[3].shape, (1, 608, 704)) + nose.tools.eq_(sample[3].dtype, torch.float32) + + +@stare_variable_set("bob.ip.binseg.stare.datadir") +@rc_variable_set("bob.ip.binseg.drive.datadir") +@rc_variable_set("bob.ip.binseg.chasedb1.datadir") +@rc_variable_set("bob.ip.binseg.hrf.datadir") +@rc_variable_set("bob.ip.binseg.iostar.datadir") +def test_stare_covd(): + + from ..configs.datasets.stare.covd import dataset + nose.tools.eq_(len(dataset), 3) + + from ..configs.datasets.stare.ah import dataset as baseline + nose.tools.eq_(dataset["train"], baseline["train"]) + nose.tools.eq_(dataset["test"], baseline["test"]) + + # this is the only different set from the baseline + nose.tools.eq_(len(dataset["__train__"]), 63) + for sample in dataset["__train__"]: + assert 3 <= len(sample) <= 4 + assert isinstance(sample[0], str) + nose.tools.eq_(sample[1].shape, (3, 608, 704)) #planes, height, width + nose.tools.eq_(sample[1].dtype, torch.float32) + nose.tools.eq_(sample[2].shape, (1, 608, 704)) #planes, height, width + nose.tools.eq_(sample[2].dtype, torch.float32) + if len(sample) == 4: + nose.tools.eq_(sample[3].shape, (1, 608, 704)) #planes, height, width + nose.tools.eq_(sample[3].dtype, torch.float32) + + +@rc_variable_set("bob.ip.binseg.chasedb1.datadir") +def test_chasedb1(): + + def _check_subset(samples, size): + nose.tools.eq_(len(samples), size) + for s in samples: + nose.tools.eq_(len(s), 3) + assert isinstance(s[0], str) + nose.tools.eq_(s[1].shape, (3, 960, 960)) #planes, height, width + nose.tools.eq_(s[1].dtype, torch.float32) + nose.tools.eq_(s[2].shape, (1, 960, 960)) #planes, height, width + nose.tools.eq_(s[2].dtype, torch.float32) + + for m in ("first_annotator", "second_annotator"): + d = importlib.import_module(f"...configs.datasets.chasedb1.{m}", + package=__name__).dataset + nose.tools.eq_(len(d), 3) + _check_subset(d["__train__"], 8) + _check_subset(d["train"], 8) + _check_subset(d["test"], 20) + + +@rc_variable_set("bob.ip.binseg.drive.datadir") +@stare_variable_set("bob.ip.binseg.stare.datadir") +@rc_variable_set("bob.ip.binseg.chasedb1.datadir") +@rc_variable_set("bob.ip.binseg.hrf.datadir") +@rc_variable_set("bob.ip.binseg.iostar.datadir") +def test_chasedb1_mtest(): + + from ..configs.datasets.chasedb1.mtest import dataset + nose.tools.eq_(len(dataset), 6) + + from ..configs.datasets.chasedb1.first_annotator import dataset as baseline + nose.tools.eq_(dataset["train"], baseline["train"]) + nose.tools.eq_(dataset["test"], baseline["test"]) + + for subset in dataset: + for sample in dataset[subset]: + assert 3 <= len(sample) <= 4 + assert isinstance(sample[0], str) + nose.tools.eq_(sample[1].shape, (3, 960, 960)) #planes,height,width + nose.tools.eq_(sample[1].dtype, torch.float32) + nose.tools.eq_(sample[2].shape, (1, 960, 960)) #planes,height,width + nose.tools.eq_(sample[2].dtype, torch.float32) + if len(sample) == 4: + nose.tools.eq_(sample[3].shape, (1, 960, 960)) + nose.tools.eq_(sample[3].dtype, torch.float32) + + +@rc_variable_set("bob.ip.binseg.drive.datadir") +@stare_variable_set("bob.ip.binseg.stare.datadir") +@rc_variable_set("bob.ip.binseg.chasedb1.datadir") +@rc_variable_set("bob.ip.binseg.hrf.datadir") +@rc_variable_set("bob.ip.binseg.iostar.datadir") +def test_chasedb1_covd(): + + from ..configs.datasets.chasedb1.covd import dataset + nose.tools.eq_(len(dataset), 3) + + from ..configs.datasets.chasedb1.first_annotator import dataset as baseline + nose.tools.eq_(dataset["train"], baseline["train"]) + nose.tools.eq_(dataset["test"], baseline["test"]) + + # this is the only different set from the baseline + nose.tools.eq_(len(dataset["__train__"]), 65) + for sample in dataset["__train__"]: + assert 3 <= len(sample) <= 4 + assert isinstance(sample[0], str) + nose.tools.eq_(sample[1].shape, (3, 960, 960)) #planes, height, width + nose.tools.eq_(sample[1].dtype, torch.float32) + nose.tools.eq_(sample[2].shape, (1, 960, 960)) #planes, height, width + nose.tools.eq_(sample[2].dtype, torch.float32) + if len(sample) == 4: + nose.tools.eq_(sample[3].shape, (1, 960, 960)) #planes, height, width + nose.tools.eq_(sample[3].dtype, torch.float32) + + +@rc_variable_set("bob.ip.binseg.hrf.datadir") +def test_hrf(): + + def _check_subset(samples, size): + nose.tools.eq_(len(samples), size) + for s in samples: + nose.tools.eq_(len(s), 4) + assert isinstance(s[0], str) + nose.tools.eq_(s[1].shape, (3, 1168, 1648)) #planes, height, width + nose.tools.eq_(s[1].dtype, torch.float32) + nose.tools.eq_(s[2].shape, (1, 1168, 1648)) #planes, height, width + nose.tools.eq_(s[2].dtype, torch.float32) + nose.tools.eq_(s[3].shape, (1, 1168, 1648)) #planes, height, width + nose.tools.eq_(s[3].dtype, torch.float32) + + from ..configs.datasets.hrf.default import dataset + nose.tools.eq_(len(dataset), 3) + _check_subset(dataset["__train__"], 15) + _check_subset(dataset["train"], 15) + _check_subset(dataset["test"], 30) + + +@rc_variable_set("bob.ip.binseg.drive.datadir") +@stare_variable_set("bob.ip.binseg.stare.datadir") +@rc_variable_set("bob.ip.binseg.chasedb1.datadir") +@rc_variable_set("bob.ip.binseg.hrf.datadir") +@rc_variable_set("bob.ip.binseg.iostar.datadir") +def test_hrf_mtest(): + + from ..configs.datasets.hrf.mtest import dataset + nose.tools.eq_(len(dataset), 6) + + from ..configs.datasets.hrf.default import dataset as baseline + nose.tools.eq_(dataset["train"], baseline["train"]) + nose.tools.eq_(dataset["test"], baseline["test"]) + + for subset in dataset: + for sample in dataset[subset]: + assert 3 <= len(sample) <= 4 + assert isinstance(sample[0], str) + nose.tools.eq_(sample[1].shape, (3, 1168, 1648)) #planes,height,width + nose.tools.eq_(sample[1].dtype, torch.float32) + nose.tools.eq_(sample[2].shape, (1, 1168, 1648)) #planes,height,width + nose.tools.eq_(sample[2].dtype, torch.float32) + if len(sample) == 4: + nose.tools.eq_(sample[3].shape, (1, 1168, 1648)) + nose.tools.eq_(sample[3].dtype, torch.float32) + + +@rc_variable_set("bob.ip.binseg.drive.datadir") +@stare_variable_set("bob.ip.binseg.stare.datadir") +@rc_variable_set("bob.ip.binseg.chasedb1.datadir") +@rc_variable_set("bob.ip.binseg.hrf.datadir") +@rc_variable_set("bob.ip.binseg.iostar.datadir") +def test_hrf_covd(): + + from ..configs.datasets.hrf.covd import dataset + nose.tools.eq_(len(dataset), 3) + + from ..configs.datasets.hrf.default import dataset as baseline + nose.tools.eq_(dataset["train"], baseline["train"]) + nose.tools.eq_(dataset["test"], baseline["test"]) + + # this is the only different set from the baseline + nose.tools.eq_(len(dataset["__train__"]), 58) + for sample in dataset["__train__"]: + assert 3 <= len(sample) <= 4 + assert isinstance(sample[0], str) + nose.tools.eq_(sample[1].shape, (3, 1168, 1648)) #planes, height, width + nose.tools.eq_(sample[1].dtype, torch.float32) + nose.tools.eq_(sample[2].shape, (1, 1168, 1648)) #planes, height, width + nose.tools.eq_(sample[2].dtype, torch.float32) + if len(sample) == 4: + nose.tools.eq_(sample[3].shape, (1, 1168, 1648)) + nose.tools.eq_(sample[3].dtype, torch.float32) + + +@rc_variable_set("bob.ip.binseg.iostar.datadir") +def test_iostar(): + + def _check_subset(samples, size): + nose.tools.eq_(len(samples), size) + for s in samples: + nose.tools.eq_(len(s), 4) + assert isinstance(s[0], str) + nose.tools.eq_(s[1].shape, (3, 1024, 1024)) #planes, height, width + nose.tools.eq_(s[1].dtype, torch.float32) + nose.tools.eq_(s[2].shape, (1, 1024, 1024)) #planes, height, width + nose.tools.eq_(s[2].dtype, torch.float32) + nose.tools.eq_(s[3].shape, (1, 1024, 1024)) #planes, height, width + nose.tools.eq_(s[3].dtype, torch.float32) + + for m in ("vessel", "optic_disc"): + d = importlib.import_module(f"...configs.datasets.iostar.{m}", + package=__name__).dataset + nose.tools.eq_(len(d), 3) + _check_subset(d["__train__"], 20) + _check_subset(d["train"], 20) + _check_subset(d["test"], 10) + + +@rc_variable_set("bob.ip.binseg.drive.datadir") +@stare_variable_set("bob.ip.binseg.stare.datadir") +@rc_variable_set("bob.ip.binseg.chasedb1.datadir") +@rc_variable_set("bob.ip.binseg.hrf.datadir") +@rc_variable_set("bob.ip.binseg.iostar.datadir") +def test_iostar_mtest(): + + from ..configs.datasets.iostar.vessel_mtest import dataset + nose.tools.eq_(len(dataset), 6) + + from ..configs.datasets.iostar.vessel import dataset as baseline + nose.tools.eq_(dataset["train"], baseline["train"]) + nose.tools.eq_(dataset["test"], baseline["test"]) + + for subset in dataset: + for sample in dataset[subset]: + assert 3 <= len(sample) <= 4 + assert isinstance(sample[0], str) + nose.tools.eq_(sample[1].shape, (3, 1024, 1024)) #planes,height,width + nose.tools.eq_(sample[1].dtype, torch.float32) + nose.tools.eq_(sample[2].shape, (1, 1024, 1024)) #planes,height,width + nose.tools.eq_(sample[2].dtype, torch.float32) + if len(sample) == 4: + nose.tools.eq_(sample[3].shape, (1, 1024, 1024)) + nose.tools.eq_(sample[3].dtype, torch.float32) + + +@rc_variable_set("bob.ip.binseg.drive.datadir") +@stare_variable_set("bob.ip.binseg.stare.datadir") +@rc_variable_set("bob.ip.binseg.chasedb1.datadir") +@rc_variable_set("bob.ip.binseg.hrf.datadir") +@rc_variable_set("bob.ip.binseg.iostar.datadir") +def test_iostar_covd(): + + from ..configs.datasets.iostar.covd import dataset + nose.tools.eq_(len(dataset), 3) + + from ..configs.datasets.iostar.vessel import dataset as baseline + nose.tools.eq_(dataset["train"], baseline["train"]) + nose.tools.eq_(dataset["test"], baseline["test"]) + + # this is the only different set from the baseline + nose.tools.eq_(len(dataset["__train__"]), 53) + for sample in dataset["__train__"]: + assert 3 <= len(sample) <= 4 + assert isinstance(sample[0], str) + nose.tools.eq_(sample[1].shape, (3, 1024, 1024)) #planes, height, width + nose.tools.eq_(sample[1].dtype, torch.float32) + nose.tools.eq_(sample[2].shape, (1, 1024, 1024)) #planes, height, width + nose.tools.eq_(sample[2].dtype, torch.float32) + if len(sample) == 4: + nose.tools.eq_(sample[3].shape, (1, 1024, 1024)) + nose.tools.eq_(sample[3].dtype, torch.float32) + + +@rc_variable_set("bob.ip.binseg.refuge.datadir") +def test_refuge(): + + def _check_subset(samples, size): + nose.tools.eq_(len(samples), size) + for s in samples[:N]: + nose.tools.eq_(len(s), 3) + assert isinstance(s[0], str) + nose.tools.eq_(s[1].shape, (3, 1632, 1632)) #planes, height, width + nose.tools.eq_(s[1].dtype, torch.float32) + nose.tools.eq_(s[2].shape, (1, 1632, 1632)) #planes, height, width + nose.tools.eq_(s[2].dtype, torch.float32) + + for m in ("disc", "cup"): + d = importlib.import_module(f"...configs.datasets.refuge.{m}", + package=__name__).dataset + nose.tools.eq_(len(d), 4) + _check_subset(d["__train__"], 400) + _check_subset(d["train"], 400) + _check_subset(d["validation"], 400) + _check_subset(d["test"], 400) + + +@rc_variable_set("bob.ip.binseg.drishtigs1.datadir") +def test_drishtigs1(): + + def _check_subset(samples, size): + nose.tools.eq_(len(samples), size) + for s in samples[:N]: + nose.tools.eq_(len(s), 3) + assert isinstance(s[0], str) + nose.tools.eq_(s[1].shape, (3, 1760, 2048)) #planes, height, width + nose.tools.eq_(s[1].dtype, torch.float32) + nose.tools.eq_(s[2].shape, (1, 1760, 2048)) #planes, height, width + nose.tools.eq_(s[2].dtype, torch.float32) + + for m in ("disc_all", "cup_all", "disc_any", "cup_any"): + d = importlib.import_module(f"...configs.datasets.drishtigs1.{m}", + package=__name__).dataset + nose.tools.eq_(len(d), 3) + _check_subset(d["__train__"], 50) + _check_subset(d["train"], 50) + _check_subset(d["test"], 51) + + +@rc_variable_set("bob.ip.binseg.rimoner3.datadir") +def test_rimoner3(): + + def _check_subset(samples, size): + nose.tools.eq_(len(samples), size) + for s in samples[:N]: + nose.tools.eq_(len(s), 3) + assert isinstance(s[0], str) + nose.tools.eq_(s[1].shape, (3, 1440, 1088)) #planes, height, width + nose.tools.eq_(s[1].dtype, torch.float32) + nose.tools.eq_(s[2].shape, (1, 1440, 1088)) #planes, height, width + nose.tools.eq_(s[2].dtype, torch.float32) + + for m in ("disc_exp1", "cup_exp1", "disc_exp2", "cup_exp2"): + d = importlib.import_module(f"...configs.datasets.rimoner3.{m}", + package=__name__).dataset + nose.tools.eq_(len(d), 3) + _check_subset(d["__train__"], 99) + _check_subset(d["train"], 99) + _check_subset(d["test"], 60) + + +@rc_variable_set("bob.ip.binseg.drionsdb.datadir") +def test_drionsdb(): + + def _check_subset(samples, size): + nose.tools.eq_(len(samples), size) + for s in samples[:N]: + nose.tools.eq_(len(s), 3) + assert isinstance(s[0], str) + nose.tools.eq_(s[1].shape, (3, 416, 608)) #planes, height, width + nose.tools.eq_(s[1].dtype, torch.float32) + nose.tools.eq_(s[2].shape, (1, 416, 608)) #planes, height, width + nose.tools.eq_(s[2].dtype, torch.float32) + + for m in ("expert1", "expert2"): + d = importlib.import_module(f"...configs.datasets.drionsdb.{m}", + package=__name__).dataset + nose.tools.eq_(len(d), 3) + _check_subset(d["__train__"], 60) + _check_subset(d["train"], 60) + _check_subset(d["test"], 50) diff --git a/bob/ip/binseg/test/test_dataset.py b/bob/ip/binseg/test/test_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..f06d1a4ab2fe6d313af6d65ba5d81529daa6ca71 --- /dev/null +++ b/bob/ip/binseg/test/test_dataset.py @@ -0,0 +1,98 @@ +#!/usr/bin/env python +# coding=utf-8 + +"""Test code for datasets""" + +import os +import pkg_resources +import nose.tools + +from ..data.dataset import CSVDataset, JSONDataset +from ..data.sample import Sample + + +def _data_file(f): + return pkg_resources.resource_filename(__name__, os.path.join("data", f)) + + +def _raw_data_loader(context, d): + return Sample( + data=[ + float(d["sepal_length"]), + float(d["sepal_width"]), + float(d["petal_length"]), + float(d["petal_width"]), + d["species"][5:], + ], + key=(context["subset"] + str(context["order"])) + ) + + +def test_csv_loading(): + + # tests if we can build a simple CSV loader for the Iris Flower dataset + subsets = { + "train": _data_file("iris-train.csv"), + "test": _data_file("iris-train.csv") + } + + fieldnames = ( + "sepal_length", + "sepal_width", + "petal_length", + "petal_width", + "species", + ) + + dataset = CSVDataset(subsets, fieldnames, _raw_data_loader) + dataset.check() + + data = dataset.subsets() + + nose.tools.eq_(len(data["train"]), 75) + for k in data["train"]: + for f in range(4): + nose.tools.eq_(type(k.data[f]), float) + nose.tools.eq_(type(k.data[4]), str) + nose.tools.eq_(type(k.key), str) + + nose.tools.eq_(len(data["test"]), 75) + for k in data["test"]: + for f in range(4): + nose.tools.eq_(type(k.data[f]), float) + nose.tools.eq_(type(k.data[4]), str) + assert k.data[4] in ("setosa", "versicolor", "virginica") + nose.tools.eq_(type(k.key), str) + + +def test_json_loading(): + + # tests if we can build a simple JSON loader for the Iris Flower dataset + protocols = {"default": _data_file("iris.json")} + + fieldnames = ( + "sepal_length", + "sepal_width", + "petal_length", + "petal_width", + "species", + ) + + dataset = JSONDataset(protocols, fieldnames, _raw_data_loader) + dataset.check() + + data = dataset.subsets("default") + + nose.tools.eq_(len(data["train"]), 75) + for k in data["train"]: + for f in range(4): + nose.tools.eq_(type(k.data[f]), float) + nose.tools.eq_(type(k.data[4]), str) + nose.tools.eq_(type(k.key), str) + + nose.tools.eq_(len(data["test"]), 75) + for k in data["test"]: + for f in range(4): + nose.tools.eq_(type(k.data[f]), float) + nose.tools.eq_(type(k.data[4]), str) + nose.tools.eq_(type(k.key), str) diff --git a/bob/ip/binseg/test/test_drionsdb.py b/bob/ip/binseg/test/test_drionsdb.py new file mode 100644 index 0000000000000000000000000000000000000000..7508a23df9a5bc41f13a814584a431c2e9cc4a94 --- /dev/null +++ b/bob/ip/binseg/test/test_drionsdb.py @@ -0,0 +1,93 @@ +#!/usr/bin/env python +# coding=utf-8 + + +"""Tests for DRIONS-DB""" + +import os + +import numpy +import nose.tools +from nose.plugins.attrib import attr + +from ..data.drionsdb import dataset +from .utils import rc_variable_set, count_bw + + +def test_protocol_consistency(): + + for protocol in ("expert1", "expert2"): + + subset = dataset.subsets(protocol) + nose.tools.eq_(len(subset), 2) + + assert "train" in subset + nose.tools.eq_(len(subset["train"]), 60) + for s in subset["train"]: + assert s.key.startswith(os.path.join("images", "image_0")) + + assert "test" in subset + nose.tools.eq_(len(subset["test"]), 50) + for s in subset["test"]: + assert s.key.startswith(os.path.join("images", "image_")) + + +@rc_variable_set("bob.ip.binseg.drionsdb.datadir") +@attr("slow") +def test_loading(): + + image_size = (600, 400) + + def _check_sample(s, bw_threshold_label): + + data = s.data + assert isinstance(data, dict) + nose.tools.eq_(len(data), 2) + + assert "data" in data + nose.tools.eq_(data["data"].size, image_size) + nose.tools.eq_(data["data"].mode, "RGB") + + assert "label" in data + nose.tools.eq_(data["label"].size, image_size) + nose.tools.eq_(data["label"].mode, "1") + + b, w = count_bw(data["label"]) + assert (b + w) == numpy.prod(image_size), ( + f"Counts of black + white ({b}+{w}) do not add up to total " + f"image size ({numpy.prod(image_size)}) at '{s.key}':label" + ) + assert (w / b) < bw_threshold_label, ( + f"The proportion between black and white pixels " + f"({w}/{b}={w/b:.3f}) is larger than the allowed threshold " + f"of {bw_threshold_label} at '{s.key}':label - this could " + f"indicate a loading problem!" + ) + + # to visualize images, uncomment the folowing code + # it should display an image with a faded background representing the + # original data, blended with green labels. + #from ..data.utils import overlayed_image + #display = overlayed_image(data["data"], data["label"]) + #display.show() + #import ipdb; ipdb.set_trace() + + return w/b + + limit = None #use this to limit testing to first images only + subset = dataset.subsets("expert1") + proportions = [_check_sample(s, 0.046) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, 0.043) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(proportions)}") + + subset = dataset.subsets("expert2") + proportions = [_check_sample(s, 0.044) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, 0.045) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(proportions)}") + +@rc_variable_set("bob.ip.binseg.drionsdb.datadir") +@attr("slow") +def test_check(): + nose.tools.eq_(dataset.check(), 0) diff --git a/bob/ip/binseg/test/test_drishtigs1.py b/bob/ip/binseg/test/test_drishtigs1.py new file mode 100644 index 0000000000000000000000000000000000000000..17e39a2ad455b6f04ed5f9d4798d581bc4b668a1 --- /dev/null +++ b/bob/ip/binseg/test/test_drishtigs1.py @@ -0,0 +1,114 @@ +#!/usr/bin/env python +# coding=utf-8 + + +"""Tests for Drishti-GS1""" + +import os + +import numpy +import nose.tools +from nose.plugins.attrib import attr + +from ..data.drishtigs1 import dataset +from .utils import rc_variable_set, count_bw + + +def test_protocol_consistency(): + + for protocol in ("optic-disc-all", "optic-cup-all", "optic-disc-any", + "optic-cup-any"): + + subset = dataset.subsets(protocol) + nose.tools.eq_(len(subset), 2) + + assert "train" in subset + nose.tools.eq_(len(subset["train"]), 50) + for s in subset["train"]: + assert s.key.startswith(os.path.join("Drishti-GS1_files", + "Training", "Images", "drishtiGS_")) + + assert "test" in subset + nose.tools.eq_(len(subset["test"]), 51) + for s in subset["test"]: + assert s.key.startswith(os.path.join("Drishti-GS1_files", + "Test", "Images", "drishtiGS_")) + + +@rc_variable_set("bob.ip.binseg.drishtigs1.datadir") +@attr("slow") +def test_loading(): + + def _check_sample(s, bw_threshold_label): + + data = s.data + assert isinstance(data, dict) + nose.tools.eq_(len(data), 2) + + assert "data" in data + assert data["data"].size[0] > 2040, ( + f"Width ({data['data'].size[0]}) for {s.key} is smaller " + f"than 2040 pixels" + ) + assert data["data"].size[1] > 1740, ( + f"Width ({data['data'].size[1]}) for {s.key} is smaller " + f"than 1740 pixels" + ) + nose.tools.eq_(data["data"].mode, "RGB") + + assert "label" in data + #nose.tools.eq_(data["label"].size, image_size) + nose.tools.eq_(data["data"].size, data["label"].size) + nose.tools.eq_(data["label"].mode, "1") + b, w = count_bw(data["label"]) + assert (b + w) == numpy.prod(data["data"].size), ( + f"Counts of black + white ({b}+{w}) do not add up to total " + f"image size ({numpy.prod(image_size)}) at '{s.key}':label" + ) + assert (w / b) < bw_threshold_label, ( + f"The proportion between black and white pixels " + f"({w}/{b}={w/b:.3f}) is larger than the allowed threshold " + f"of {bw_threshold_label} at '{s.key}':label - this could " + f"indicate a loading problem!" + ) + + # to visualize images, uncomment the folowing code + # it should display an image with a faded background representing the + # original data, blended with green labels. + #from ..data.utils import overlayed_image + #display = overlayed_image(data["data"], data["label"]) + #display.show() + #import ipdb; ipdb.set_trace() + + return w/b + + limit = None + subset = dataset.subsets("optic-cup-all") + proportions = [_check_sample(s, 0.027) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, 0.035) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(proportions)}") + + subset = dataset.subsets("optic-disc-all") + proportions = [_check_sample(s, 0.045) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, 0.055) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(proportions)}") + + subset = dataset.subsets("optic-cup-any") + proportions = [_check_sample(s, 0.034) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, 0.047) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(proportions)}") + + subset = dataset.subsets("optic-disc-any") + proportions = [_check_sample(s, 0.052) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, 0.060) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(proportions)}") + + +@rc_variable_set("bob.ip.binseg.drishtigs1.datadir") +@attr("slow") +def test_check(): + nose.tools.eq_(dataset.check(), 0) diff --git a/bob/ip/binseg/test/test_drive.py b/bob/ip/binseg/test/test_drive.py new file mode 100644 index 0000000000000000000000000000000000000000..53c953e9fd3d2e54785129bb57c674800cd742d3 --- /dev/null +++ b/bob/ip/binseg/test/test_drive.py @@ -0,0 +1,109 @@ +#!/usr/bin/env python +# coding=utf-8 + + +"""Tests for DRIVE""" + +import os + +import numpy +import nose.tools + +from ..data.drive import dataset +from .utils import rc_variable_set, count_bw + + +def test_protocol_consistency(): + + subset = dataset.subsets("default") + nose.tools.eq_(len(subset), 2) + + assert "train" in subset + nose.tools.eq_(len(subset["train"]), 20) + for s in subset["train"]: + assert s.key.startswith(os.path.join("training", "images")) + + assert "test" in subset + nose.tools.eq_(len(subset["test"]), 20) + for s in subset["test"]: + assert s.key.startswith(os.path.join("test", "images")) + + subset = dataset.subsets("second-annotator") + nose.tools.eq_(len(subset), 1) + + assert "test" in subset + nose.tools.eq_(len(subset["test"]), 20) + for s in subset["test"]: + assert s.key.startswith(os.path.join("test", "images")) + + +@rc_variable_set('bob.ip.binseg.drive.datadir') +def test_loading(): + + image_size = (565, 584) + + def _check_sample(s, bw_threshold_label, bw_threshold_mask): + + data = s.data + assert isinstance(data, dict) + nose.tools.eq_(len(data), 3) + + assert "data" in data + nose.tools.eq_(data["data"].size, image_size) + nose.tools.eq_(data["data"].mode, "RGB") + + assert "label" in data + nose.tools.eq_(data["label"].size, image_size) + nose.tools.eq_(data["label"].mode, "1") + b, w = count_bw(data["label"]) + assert (b+w) == numpy.prod(image_size), \ + f"Counts of black + white ({b}+{w}) do not add up to total " \ + f"image size ({numpy.prod(image_size)}) at '{s.key}':label" + assert (w/b) < bw_threshold_label, \ + f"The proportion between black and white pixels in labels " \ + f"({w}/{b}={w/b:.2f}) is larger than the allowed threshold " \ + f"of {bw_threshold_label} at '{s.key}':label - this could " \ + f"indicate a loading problem!" + + assert "mask" in data + nose.tools.eq_(data["mask"].size, image_size) + nose.tools.eq_(data["mask"].mode, "1") + bm, wm = count_bw(data["mask"]) + assert (bm+wm) == numpy.prod(image_size), \ + f"Counts of black + white ({bm}+{wm}) do not add up to total " \ + f"image size ({numpy.prod(image_size)}) at '{s.key}':mask" + assert (wm/bm) > bw_threshold_mask, \ + f"The proportion between black and white pixels in masks " \ + f"({wm}/{bm}={wm/bm:.2f}) is smaller than the allowed " \ + f"threshold of {bw_threshold_mask} at '{s.key}':label - " \ + f"this could indicate a loading problem!" + + # to visualize images, uncomment the folowing code + # it should display an image with a faded background representing the + # original data, blended with green labels and blue area indicating the + # parts to be masked out. + #from ..data.utils import overlayed_image + #display = overlayed_image(data["data"], data["label"], data["mask"]) + #display.show() + #import ipdb; ipdb.set_trace() + + return w/b, wm/bm + + limit = None #use this to limit testing to first images only + subset = dataset.subsets("default") + proportions = [_check_sample(s, 0.14, 2.14) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(k[0] for k in proportions)}") + #print(f"min mask proportions = {min(k[1] for k in proportions)}") + proportions = [_check_sample(s, 0.12, 2.12) for s in subset["test"]][:limit] + #print(f"max label proportions = {max(k[0] for k in proportions)}") + #print(f"min mask proportions = {min(k[1] for k in proportions)}") + + subset = dataset.subsets("second-annotator") + proportions = [_check_sample(s, 0.12, 2.12) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(k[0] for k in proportions)}") + #print(f"min mask proportions = {min(k[1] for k in proportions)}") + + +@rc_variable_set('bob.ip.binseg.drive.datadir') +def test_check(): + nose.tools.eq_(dataset.check(), 0) diff --git a/bob/ip/binseg/test/test_hrf.py b/bob/ip/binseg/test/test_hrf.py new file mode 100644 index 0000000000000000000000000000000000000000..fdddfbbc78d79c228e1bca01e3a3ebf9dda84f65 --- /dev/null +++ b/bob/ip/binseg/test/test_hrf.py @@ -0,0 +1,96 @@ +#!/usr/bin/env python +# coding=utf-8 + + +"""Tests for HRF""" + +import os + +import numpy +import nose.tools + +from ..data.hrf import dataset +from .utils import rc_variable_set, count_bw + + +def test_protocol_consistency(): + + subset = dataset.subsets("default") + nose.tools.eq_(len(subset), 2) + + assert "train" in subset + nose.tools.eq_(len(subset["train"]), 15) + for s in subset["train"]: + assert s.key.startswith(os.path.join("images", "0")) + + assert "test" in subset + nose.tools.eq_(len(subset["test"]), 30) + for s in subset["test"]: + assert s.key.startswith("images") + + +@rc_variable_set('bob.ip.binseg.hrf.datadir') +def test_loading(): + + image_size = (3504, 2336) + + def _check_sample(s, bw_threshold_label, bw_threshold_mask): + + data = s.data + assert isinstance(data, dict) + nose.tools.eq_(len(data), 3) + + assert "data" in data + nose.tools.eq_(data["data"].size, image_size) + nose.tools.eq_(data["data"].mode, "RGB") + + assert "label" in data + nose.tools.eq_(data["label"].size, image_size) + nose.tools.eq_(data["label"].mode, "1") + b, w = count_bw(data["label"]) + assert (b+w) == numpy.prod(image_size), \ + f"Counts of black + white ({b}+{w}) do not add up to total " \ + f"image size ({numpy.prod(image_size)}) at '{s.key}':label" + assert (w/b) < bw_threshold_label, \ + f"The proportion between black and white pixels " \ + f"({w}/{b}={w/b:.2f}) is larger than the allowed threshold " \ + f"of {bw_threshold_label} at '{s.key}':label - this could " \ + f"indicate a loading problem!" + + assert "mask" in data + nose.tools.eq_(data["mask"].size, image_size) + nose.tools.eq_(data["mask"].mode, "1") + bm, wm = count_bw(data["mask"]) + assert (bm+wm) == numpy.prod(image_size), \ + f"Counts of black + white ({bm}+{wm}) do not add up to total " \ + f"image size ({numpy.prod(image_size)}) at '{s.key}':mask" + assert (wm/bm) > bw_threshold_mask, \ + f"The proportion between black and white pixels in masks " \ + f"({wm}/{bm}={wm/bm:.2f}) is smaller than the allowed " \ + f"threshold of {bw_threshold_mask} at '{s.key}':label - " \ + f"this could indicate a loading problem!" + + # to visualize images, uncomment the folowing code + # it should display an image with a faded background representing the + # original data, blended with green labels and blue area indicating the + # parts to be masked out. + #from ..data.utils import overlayed_image + #display = overlayed_image(data["data"], data["label"], data["mask"]) + #display.show() + #import ipdb; ipdb.set_trace() + + return w/b, wm/bm + + limit = None #use this to limit testing to first images only + subset = dataset.subsets("default") + proportions = [_check_sample(s, 0.12, 5.42) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(k[0] for k in proportions)}") + #print(f"min mask proportions = {min(k[1] for k in proportions)}") + proportions = [_check_sample(s, 0.12, 5.41) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(k[0] for k in proportions)}") + #print(f"min mask proportions = {min(k[1] for k in proportions)}") + + +@rc_variable_set('bob.ip.binseg.hrf.datadir') +def test_check(): + nose.tools.eq_(dataset.check(), 0) diff --git a/bob/ip/binseg/test/test_iostar.py b/bob/ip/binseg/test/test_iostar.py new file mode 100644 index 0000000000000000000000000000000000000000..9d8946b60d1160fa5b0dca95c39de7badac1a1aa --- /dev/null +++ b/bob/ip/binseg/test/test_iostar.py @@ -0,0 +1,116 @@ +#!/usr/bin/env python +# coding=utf-8 + + +"""Tests for IOSTAR""" + +import os + +import numpy +import nose.tools + +from ..data.iostar import dataset +from .utils import rc_variable_set, count_bw + + +def test_protocol_consistency(): + + subset = dataset.subsets("vessel") + nose.tools.eq_(len(subset), 2) + + assert "train" in subset + nose.tools.eq_(len(subset["train"]), 20) + for s in subset["train"]: + assert s.key.startswith(os.path.join("image", "STAR ")) + + assert "test" in subset + nose.tools.eq_(len(subset["test"]), 10) + for s in subset["test"]: + assert s.key.startswith(os.path.join("image", "STAR ")) + + subset = dataset.subsets("optic-disc") + nose.tools.eq_(len(subset), 2) + + assert "train" in subset + nose.tools.eq_(len(subset["train"]), 20) + for s in subset["train"]: + assert s.key.startswith(os.path.join("image", "STAR ")) + + assert "test" in subset + nose.tools.eq_(len(subset["test"]), 10) + for s in subset["test"]: + assert s.key.startswith(os.path.join("image", "STAR ")) + + +@rc_variable_set('bob.ip.binseg.iostar.datadir') +def test_loading(): + + image_size = (1024, 1024) + + def _check_sample(s, bw_threshold_label, bw_threshold_mask): + + data = s.data + assert isinstance(data, dict) + nose.tools.eq_(len(data), 3) + + assert "data" in data + nose.tools.eq_(data["data"].size, image_size) + nose.tools.eq_(data["data"].mode, "RGB") + + assert "label" in data + nose.tools.eq_(data["label"].size, image_size) + nose.tools.eq_(data["label"].mode, "1") + b, w = count_bw(data["label"]) + assert (b+w) == numpy.prod(image_size), \ + f"Counts of black + white ({b}+{w}) do not add up to total " \ + f"image size ({numpy.prod(image_size)}) at '{s.key}':label" + assert (w/b) < bw_threshold_label, \ + f"The proportion between black and white pixels " \ + f"({w}/{b}={w/b:.2f}) is larger than the allowed threshold " \ + f"of {bw_threshold_label} at '{s.key}':label - this could " \ + f"indicate a loading problem!" + + assert "mask" in data + nose.tools.eq_(data["mask"].size, image_size) + nose.tools.eq_(data["mask"].mode, "1") + bm, wm = count_bw(data["mask"]) + assert (bm+wm) == numpy.prod(image_size), \ + f"Counts of black + white ({bm}+{wm}) do not add up to total " \ + f"image size ({numpy.prod(image_size)}) at '{s.key}':mask" + assert (wm/bm) > bw_threshold_mask, \ + f"The proportion between black and white pixels in masks " \ + f"({wm}/{bm}={wm/bm:.2f}) is smaller than the allowed " \ + f"threshold of {bw_threshold_mask} at '{s.key}':label - " \ + f"this could indicate a loading problem!" + + # to visualize images, uncomment the folowing code + # it should display an image with a faded background representing the + # original data, blended with green labels and blue area indicating the + # parts to be masked out. + #from ..data.utils import overlayed_image + #display = overlayed_image(data["data"], data["label"], data["mask"]) + #display.show() + #import ipdb; ipdb.set_trace() + + return w/b, wm/bm + + limit = None #use this to limit testing to first images only + subset = dataset.subsets("vessel") + proportions = [_check_sample(s, 0.11, 3.19) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(k[0] for k in proportions)}") + #print(f"min mask proportions = {min(k[1] for k in proportions)}") + proportions = [_check_sample(s, 0.10, 3.27) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(k[0] for k in proportions)}") + #print(f"min mask proportions = {min(k[1] for k in proportions)}") + + subset = dataset.subsets("optic-disc") + proportions = [_check_sample(s, 0.023, 3.19) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(k[0] for k in proportions)}") + #print(f"min mask proportions = {min(k[1] for k in proportions)}") + proportions = [_check_sample(s, 0.033, 3.27) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(k[0] for k in proportions)}") + #print(f"min mask proportions = {min(k[1] for k in proportions)}") + +@rc_variable_set('bob.ip.binseg.iostar.datadir') +def test_check(): + nose.tools.eq_(dataset.check(), 0) diff --git a/bob/ip/binseg/test/test_refuge.py b/bob/ip/binseg/test/test_refuge.py new file mode 100644 index 0000000000000000000000000000000000000000..d4fac282cc210e1f04d09d74ad16d818641cae59 --- /dev/null +++ b/bob/ip/binseg/test/test_refuge.py @@ -0,0 +1,105 @@ +#!/usr/bin/env python +# coding=utf-8 + + +"""Tests for REFUGE""" + +import os + +import numpy +import nose.tools +from nose.plugins.attrib import attr + +from ..data.refuge import dataset +from .utils import rc_variable_set, count_bw + + +def test_protocol_consistency(): + + for protocol in ("optic-disc", "optic-cup"): + + subset = dataset.subsets(protocol) + nose.tools.eq_(len(subset), 3) + + assert "train" in subset + nose.tools.eq_(len(subset["train"]), 400) + for s in subset["train"]: + assert s.key.startswith("Training400") + + assert "validation" in subset + nose.tools.eq_(len(subset["validation"]), 400) + for s in subset["validation"]: + assert s.key.startswith("REFUGE-Validation400") + + assert "test" in subset + nose.tools.eq_(len(subset["test"]), 400) + for s in subset["test"]: + assert s.key.startswith("Test400") + + +@rc_variable_set("bob.ip.binseg.refuge.datadir") +@attr("slow") +def test_loading(): + + def _check_sample( + s, image_size, glaucoma_label, entries, bw_threshold_label + ): + + data = s.data + assert isinstance(data, dict) + nose.tools.eq_(len(data), entries) + + assert "data" in data + nose.tools.eq_(data["data"].size, image_size) + nose.tools.eq_(data["data"].mode, "RGB") + + assert "label" in data + nose.tools.eq_(data["label"].size, image_size) + nose.tools.eq_(data["label"].mode, "1") + b, w = count_bw(data["label"]) + assert (b + w) == numpy.prod(image_size), ( + f"Counts of black + white ({b}+{w}) do not add up to total " + f"image size ({numpy.prod(image_size)}) at '{s.key}':label" + ) + assert (w / b) < bw_threshold_label, ( + f"The proportion between black and white pixels " + f"({w}/{b}={w/b:.3f}) is larger than the allowed threshold " + f"of {bw_threshold_label} at '{s.key}':label - this could " + f"indicate a loading problem!" + ) + + if glaucoma_label: + assert "glaucoma" in data + + # to visualize images, uncomment the folowing code + # it should display an image with a faded background representing the + # original data, blended with green labels. + #from ..data.utils import overlayed_image + #display = overlayed_image(data["data"], data["label"]) + #display.show() + #import ipdb; ipdb.set_trace() + + return w/b + + limit = None #use this to limit testing to first images only + subset = dataset.subsets("optic-disc") + proportions = [_check_sample(s, (2124, 2056), True, 3, 0.029) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, (1634, 1634), False, 2, 0.043) for s in subset["validation"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, (1634, 1634), True, 3, 0.026) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(proportions)}") + + subset = dataset.subsets("optic-cup") + proportions = [_check_sample(s, (2124, 2056), True, 3, 0.018) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, (1634, 1634), False, 2, 0.030) for s in subset["validation"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, (1634, 1634), True, 3, 0.017) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(proportions)}") + + +@rc_variable_set("bob.ip.binseg.refuge.datadir") +@attr("slow") +def test_check(): + nose.tools.eq_(dataset.check(), 0) diff --git a/bob/ip/binseg/test/test_rimoner3.py b/bob/ip/binseg/test/test_rimoner3.py new file mode 100644 index 0000000000000000000000000000000000000000..e6010cf6a3dec0c9b4c5c84dc0857b92c349f174 --- /dev/null +++ b/bob/ip/binseg/test/test_rimoner3.py @@ -0,0 +1,116 @@ +#!/usr/bin/env python +# coding=utf-8 + + +"""Tests for RIM-ONE r3""" + +import os + +import numpy +import nose.tools +from nose.plugins.attrib import attr + +from ..data.rimoner3 import dataset +from .utils import rc_variable_set, count_bw + + +def test_protocol_consistency(): + + for protocol in ("optic-disc-exp1", "optic-cup-exp1", "optic-disc-exp2", + "optic-cup-exp2", "optic-disc-avg", "optic-cup-avg"): + + subset = dataset.subsets(protocol) + nose.tools.eq_(len(subset), 2) + + assert "train" in subset + nose.tools.eq_(len(subset["train"]), 99) + for s in subset["train"]: + assert "Stereo Images" in s.key + + assert "test" in subset + nose.tools.eq_(len(subset["test"]), 60) + for s in subset["test"]: + assert "Stereo Images" in s.key + + +@rc_variable_set("bob.ip.binseg.rimoner3.datadir") +@attr("slow") +def test_loading(): + + image_size = (1072, 1424) + + def _check_sample(s, bw_threshold_label): + + data = s.data + assert isinstance(data, dict) + nose.tools.eq_(len(data), 2) + + assert "data" in data + nose.tools.eq_(data["data"].size, image_size) + nose.tools.eq_(data["data"].mode, "RGB") + + assert "label" in data + nose.tools.eq_(data["label"].size, image_size) + nose.tools.eq_(data["label"].mode, "1") + b, w = count_bw(data["label"]) + assert (b+w) == numpy.prod(image_size), \ + f"Counts of black + white ({b}+{w}) do not add up to total " \ + f"image size ({numpy.prod(image_size)}) at '{s.key}':label" + assert (w/b) < bw_threshold_label, \ + f"The proportion between black and white pixels " \ + f"({w}/{b}={w/b:.2f}) is larger than the allowed threshold " \ + f"of {bw_threshold_label} at '{s.key}':label - this could " \ + f"indicate a loading problem!" + + # to visualize images, uncomment the folowing code + # it should display an image with a faded background representing the + # original data, blended with green labels. + #from ..data.utils import overlayed_image + #display = overlayed_image(data["data"], data["label"]) + #display.show() + #import ipdb; ipdb.set_trace() + + return w/b + + subset = dataset.subsets("optic-cup-exp1") + limit = None + proportions = [_check_sample(s, 0.048) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, 0.042) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(proportions)}") + + subset = dataset.subsets("optic-disc-exp1") + proportions = [_check_sample(s, 0.088) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, 0.061) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(proportions)}") + + subset = dataset.subsets("optic-cup-exp2") + proportions = [_check_sample(s, 0.039) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, 0.038) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(proportions)}") + + subset = dataset.subsets("optic-disc-exp2") + proportions = [_check_sample(s, 0.090) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, 0.065) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(proportions)}") + + subset = dataset.subsets("optic-cup-avg") + proportions = [_check_sample(s, 0.042) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, 0.040) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(proportions)}") + + subset = dataset.subsets("optic-disc-avg") + proportions = [_check_sample(s, 0.089) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, 0.063) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(proportions)}") + + +@rc_variable_set("bob.ip.binseg.rimoner3.datadir") +@attr("slow") +def test_check(): + nose.tools.eq_(dataset.check(), 0) diff --git a/bob/ip/binseg/test/test_stare.py b/bob/ip/binseg/test/test_stare.py new file mode 100644 index 0000000000000000000000000000000000000000..edc52ae1cccb0d2efa6b00d7e0469898f4c1eef5 --- /dev/null +++ b/bob/ip/binseg/test/test_stare.py @@ -0,0 +1,102 @@ +#!/usr/bin/env python +# coding=utf-8 + + +"""Tests for STARE""" + +import os + +import numpy +import nose.tools + +## special trick for CI builds +from . import mock_dataset +datadir, dataset, rc_variable_set = mock_dataset() + +from .utils import count_bw + + +def test_protocol_consistency(): + + subset = dataset.subsets("ah") + nose.tools.eq_(len(subset), 2) + + assert "train" in subset + nose.tools.eq_(len(subset["train"]), 10) + for s in subset["train"]: + assert s.key.startswith(os.path.join("stare-images", "im0")) + + assert "test" in subset + nose.tools.eq_(len(subset["test"]), 10) + for s in subset["test"]: + assert s.key.startswith(os.path.join("stare-images", "im0")) + + subset = dataset.subsets("vk") + nose.tools.eq_(len(subset), 2) + + assert "train" in subset + nose.tools.eq_(len(subset["train"]), 10) + for s in subset["train"]: + assert s.key.startswith(os.path.join("stare-images", "im0")) + + assert "test" in subset + nose.tools.eq_(len(subset["test"]), 10) + for s in subset["test"]: + assert s.key.startswith(os.path.join("stare-images", "im0")) + + +@rc_variable_set('bob.ip.binseg.stare.datadir') +def test_loading(): + + image_size = (700, 605) + + def _check_sample(s, bw_threshold_label): + + data = s.data + assert isinstance(data, dict) + nose.tools.eq_(len(data), 2) + + assert "data" in data + nose.tools.eq_(data["data"].size, image_size) + nose.tools.eq_(data["data"].mode, "RGB") + + assert "label" in data + nose.tools.eq_(data["label"].size, image_size) + nose.tools.eq_(data["label"].mode, "1") + b, w = count_bw(data["label"]) + assert (b+w) == numpy.prod(image_size), \ + f"Counts of black + white ({b}+{w}) do not add up to total " \ + f"image size ({numpy.prod(image_size)}) at '{s.key}':label" + assert (w/b) < bw_threshold_label, \ + f"The proportion between black and white pixels " \ + f"({w}/{b}={w/b:.2f}) is larger than the allowed threshold " \ + f"of {bw_threshold_label} at '{s.key}':label - this could " \ + f"indicate a loading problem!" + + # to visualize images, uncomment the folowing code + # it should display an image with a faded background representing the + # original data, blended with green labels. + #from ..data.utils import overlayed_image + #display = overlayed_image(data["data"], data["label"]) + #display.show() + #import ipdb; ipdb.set_trace() + + return w/b + + limit = None #use this to limit testing to first images only + subset = dataset.subsets("ah") + proportions = [_check_sample(s, 0.10) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, 0.12) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(proportions)}") + + subset = dataset.subsets("vk") + proportions = [_check_sample(s, 0.19) for s in subset["train"][:limit]] + #print(f"max label proportions = {max(proportions)}") + proportions = [_check_sample(s, 0.18) for s in subset["test"][:limit]] + #print(f"max label proportions = {max(proportions)}") + + +@rc_variable_set('bob.ip.binseg.stare.datadir') +def test_check(): + nose.tools.eq_(dataset.check(), 0) diff --git a/bob/ip/binseg/test/test_summary.py b/bob/ip/binseg/test/test_summary.py index 7faabf796674db6b7914d631ba41f9160c08a623..a6d9948aed57612f238ec3a1333e7148b5401cb7 100644 --- a/bob/ip/binseg/test/test_summary.py +++ b/bob/ip/binseg/test/test_summary.py @@ -1,9 +1,8 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -import torch +import os import unittest -import numpy as np from bob.ip.binseg.modeling.driu import build_driu from bob.ip.binseg.modeling.driuod import build_driuod from bob.ip.binseg.modeling.hed import build_hed @@ -11,36 +10,42 @@ from bob.ip.binseg.modeling.unet import build_unet from bob.ip.binseg.modeling.resunet import build_res50unet from bob.ip.binseg.utils.summary import summary + class Tester(unittest.TestCase): """ Unit test for model architectures - """ + """ + def test_summary_driu(self): model = build_driu() - param = summary(model) - self.assertIsInstance(param,int) + s, param = summary(model) + self.assertIsInstance(s, str) + self.assertIsInstance(param, int) - - def test__summary_driuod(self): + def test_summary_driuod(self): model = build_driuod() - param = summary(model) - self.assertIsInstance(param,int) - + s, param = summary(model) + self.assertIsInstance(s, str) + self.assertIsInstance(param, int) def test_summary_hed(self): model = build_hed() - param = summary(model) - self.assertIsInstance(param,int) + s, param = summary(model) + self.assertIsInstance(s, str) + self.assertIsInstance(param, int) def test_summary_unet(self): model = build_unet() - param = summary(model) - self.assertIsInstance(param,int) + s, param = summary(model) + self.assertIsInstance(s, str) + self.assertIsInstance(param, int) def test_summary_resunet(self): model = build_res50unet() - param = summary(model) - self.assertIsInstance(param,int) + s, param = summary(model) + self.assertIsInstance(s, str) + self.assertIsInstance(param, int) + -if __name__ == '__main__': - unittest.main() \ No newline at end of file +if __name__ == "__main__": + unittest.main() diff --git a/bob/ip/binseg/test/test_transforms.py b/bob/ip/binseg/test/test_transforms.py index 479cd79c063e8059c6048dfd0ead1f3a7062e006..e71a4a4927f1598a49037dc09a672de91845dd11 100644 --- a/bob/ip/binseg/test/test_transforms.py +++ b/bob/ip/binseg/test/test_transforms.py @@ -1,49 +1,365 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- +import os +import random + +import nose.tools +import pkg_resources + +import numpy +import PIL.Image import torch -import unittest -import numpy as np -from bob.ip.binseg.data.transforms import * - -transforms = Compose([ - RandomHFlip(prob=1) - ,RandomHFlip(prob=1) - ,RandomVFlip(prob=1) - ,RandomVFlip(prob=1) - ]) - -def create_img(): - t = torch.randn((3,42,24)) - pil = VF.to_pil_image(t) +import torchvision.transforms.functional + +from ..data.transforms import * + + +def _create_img(size): + t = torch.randn(size) + pil = torchvision.transforms.functional.to_pil_image(t) return pil -class Tester(unittest.TestCase): - """ - Unit test for random flips - """ - - def test_flips(self): - transforms = Compose([ - RandomHFlip(prob=1) - ,RandomHFlip(prob=1) - ,RandomVFlip(prob=1) - ,RandomVFlip(prob=1) - ]) - img, gt, mask = [create_img() for i in range(3)] - img_t, gt_t, mask_t = transforms(img, gt, mask) - self.assertTrue(np.all(np.array(img_t) == np.array(img))) - self.assertTrue(np.all(np.array(gt_t) == np.array(gt))) - self.assertTrue(np.all(np.array(mask_t) == np.array(mask))) - - def test_to_tensor(self): - transforms = ToTensor() - img, gt, mask = [create_img() for i in range(3)] - img_t, gt_t, mask_t = transforms(img, gt, mask) - self.assertEqual(str(img_t.dtype),"torch.float32") - self.assertEqual(str(gt_t.dtype),"torch.float32") - self.assertEqual(str(mask_t.dtype),"torch.float32") - -if __name__ == '__main__': - unittest.main() \ No newline at end of file +def test_center_crop(): + + # parameters + im_size = (3, 22, 20) # (planes, height, width) + crop_size = (10, 12) # (height, width) + + # test + bh = (im_size[1] - crop_size[0]) // 2 + bw = (im_size[2] - crop_size[1]) // 2 + idx = (slice(bh, -bh), slice(bw, -bw), slice(0, im_size[0])) + transforms = CenterCrop(crop_size) + img, gt, mask = [_create_img(im_size) for i in range(3)] + nose.tools.eq_(img.size, (im_size[2], im_size[1])) # confirms the above + img_t, gt_t, mask_t = transforms(img, gt, mask) + nose.tools.eq_( + img_t.size, (crop_size[1], crop_size[0]) + ) # confirms the above + # notice that PIL->array does array.transpose(1, 2, 0) + # so it creates an array that is (height, width, planes) + assert numpy.all(numpy.array(img_t) == numpy.array(img)[idx]) + assert numpy.all(numpy.array(gt_t) == numpy.array(gt)[idx]) + assert numpy.all(numpy.array(mask_t) == numpy.array(mask)[idx]) + + +def test_center_crop_uneven(): + + # parameters + im_size = (3, 23, 20) # (planes, height, width) + crop_size = (10, 13) # (height, width) + + # test + bh = (im_size[1] - crop_size[0]) // 2 + bw = (im_size[2] - crop_size[1]) // 2 + # when the crop size is uneven, this is what happens - notice here that the + # image height is uneven, and the crop width as well - the attributions of + # extra pixels will depend on what is uneven (original image or crop) + idx = (slice(bh, -(bh + 1)), slice((bw + 1), -bw), slice(0, im_size[0])) + transforms = CenterCrop(crop_size) + img, gt, mask = [_create_img(im_size) for i in range(3)] + nose.tools.eq_(img.size, (im_size[2], im_size[1])) # confirms the above + img_t, gt_t, mask_t = transforms(img, gt, mask) + nose.tools.eq_( + img_t.size, (crop_size[1], crop_size[0]) + ) # confirms the above + # notice that PIL->array does array.transpose(1, 2, 0) + # so it creates an array that is (height, width, planes) + assert numpy.all(numpy.array(img_t) == numpy.array(img)[idx]) + assert numpy.all(numpy.array(gt_t) == numpy.array(gt)[idx]) + assert numpy.all(numpy.array(mask_t) == numpy.array(mask)[idx]) + + +def test_pad_default(): + + # parameters + im_size = (3, 22, 20) # (planes, height, width) + pad_size = 2 + + # test + idx = ( + slice(pad_size, -pad_size), + slice(pad_size, -pad_size), + slice(0, im_size[0]), + ) + transforms = Pad(pad_size) + img, gt, mask = [_create_img(im_size) for i in range(3)] + nose.tools.eq_(img.size, (im_size[2], im_size[1])) # confirms the above + img_t, gt_t, mask_t = transforms(img, gt, mask) + # notice that PIL->array does array.transpose(1, 2, 0) + # so it creates an array that is (height, width, planes) + assert numpy.all(numpy.array(img_t)[idx] == numpy.array(img)) + assert numpy.all(numpy.array(gt_t)[idx] == numpy.array(gt)) + assert numpy.all(numpy.array(mask_t)[idx] == numpy.array(mask)) + + # checks that the border introduced with padding is all about "fill" + img_t = numpy.array(img_t) + img_t[idx] = 0 + border_size_plane = img_t[:, :, 0].size - numpy.array(img)[:, :, 0].size + nose.tools.eq_(img_t.sum(), 0) + + gt_t = numpy.array(gt_t) + gt_t[idx] = 0 + nose.tools.eq_(gt_t.sum(), 0) + + mask_t = numpy.array(mask_t) + mask_t[idx] = 0 + nose.tools.eq_(mask_t.sum(), 0) + + +def test_pad_2tuple(): + + # parameters + im_size = (3, 22, 20) # (planes, height, width) + pad_size = (1, 2) # left/right, top/bottom + fill = (3, 4, 5) + + # test + idx = ( + slice(pad_size[1], -pad_size[1]), + slice(pad_size[0], -pad_size[0]), + slice(0, im_size[0]), + ) + transforms = Pad(pad_size, fill) + img, gt, mask = [_create_img(im_size) for i in range(3)] + nose.tools.eq_(img.size, (im_size[2], im_size[1])) # confirms the above + img_t, gt_t, mask_t = transforms(img, gt, mask) + # notice that PIL->array does array.transpose(1, 2, 0) + # so it creates an array that is (height, width, planes) + assert numpy.all(numpy.array(img_t)[idx] == numpy.array(img)) + assert numpy.all(numpy.array(gt_t)[idx] == numpy.array(gt)) + assert numpy.all(numpy.array(mask_t)[idx] == numpy.array(mask)) + + # checks that the border introduced with padding is all about "fill" + img_t = numpy.array(img_t) + img_t[idx] = 0 + border_size_plane = img_t[:, :, 0].size - numpy.array(img)[:, :, 0].size + expected_sum = sum((fill[k] * border_size_plane) for k in range(3)) + nose.tools.eq_(img_t.sum(), expected_sum) + + gt_t = numpy.array(gt_t) + gt_t[idx] = 0 + nose.tools.eq_(gt_t.sum(), expected_sum) + + mask_t = numpy.array(mask_t) + mask_t[idx] = 0 + nose.tools.eq_(mask_t.sum(), expected_sum) + + +def test_pad_4tuple(): + + # parameters + im_size = (3, 22, 20) # (planes, height, width) + pad_size = (1, 2, 3, 4) # left, top, right, bottom + fill = (3, 4, 5) + + # test + idx = ( + slice(pad_size[1], -pad_size[3]), + slice(pad_size[0], -pad_size[2]), + slice(0, im_size[0]), + ) + transforms = Pad(pad_size, fill) + img, gt, mask = [_create_img(im_size) for i in range(3)] + nose.tools.eq_(img.size, (im_size[2], im_size[1])) # confirms the above + img_t, gt_t, mask_t = transforms(img, gt, mask) + # notice that PIL->array does array.transpose(1, 2, 0) + # so it creates an array that is (height, width, planes) + assert numpy.all(numpy.array(img_t)[idx] == numpy.array(img)) + assert numpy.all(numpy.array(gt_t)[idx] == numpy.array(gt)) + assert numpy.all(numpy.array(mask_t)[idx] == numpy.array(mask)) + + # checks that the border introduced with padding is all about "fill" + img_t = numpy.array(img_t) + img_t[idx] = 0 + border_size_plane = img_t[:, :, 0].size - numpy.array(img)[:, :, 0].size + expected_sum = sum((fill[k] * border_size_plane) for k in range(3)) + nose.tools.eq_(img_t.sum(), expected_sum) + + gt_t = numpy.array(gt_t) + gt_t[idx] = 0 + nose.tools.eq_(gt_t.sum(), expected_sum) + + mask_t = numpy.array(mask_t) + mask_t[idx] = 0 + nose.tools.eq_(mask_t.sum(), expected_sum) + + +def test_resize_downscale_w(): + + # parameters + im_size = (3, 22, 20) # (planes, height, width) + new_size = 10 # (smallest edge) + + # test + transforms = Resize(new_size) + img, gt, mask = [_create_img(im_size) for i in range(3)] + nose.tools.eq_(img.size, (im_size[2], im_size[1])) # confirms the above + img_t, gt_t, mask_t = transforms(img, gt, mask) + new_size = (new_size, (new_size * im_size[1]) / im_size[2]) + nose.tools.eq_(img_t.size, new_size) + nose.tools.eq_(gt_t.size, new_size) + nose.tools.eq_(mask_t.size, new_size) + + +def test_resize_downscale_hw(): + + # parameters + im_size = (3, 22, 20) # (planes, height, width) + new_size = (10, 12) # (height, width) + + # test + transforms = Resize(new_size) + img, gt, mask = [_create_img(im_size) for i in range(3)] + nose.tools.eq_(img.size, (im_size[2], im_size[1])) # confirms the above + img_t, gt_t, mask_t = transforms(img, gt, mask) + nose.tools.eq_(img_t.size, (new_size[1], new_size[0])) + nose.tools.eq_(gt_t.size, (new_size[1], new_size[0])) + nose.tools.eq_(mask_t.size, (new_size[1], new_size[0])) + + +def test_crop(): + + # parameters + im_size = (3, 22, 20) # (planes, height, width) + crop_size = (3, 2, 10, 12) # (upper, left, height, width) + + # test + idx = ( + slice(crop_size[0], crop_size[0] + crop_size[2]), + slice(crop_size[1], crop_size[1] + crop_size[3]), + slice(0, im_size[0]), + ) + transforms = Crop(*crop_size) + img, gt, mask = [_create_img(im_size) for i in range(3)] + nose.tools.eq_(img.size, (im_size[2], im_size[1])) # confirms the above + img_t, gt_t, mask_t = transforms(img, gt, mask) + # notice that PIL->array does array.transpose(1, 2, 0) + # so it creates an array that is (height, width, planes) + assert numpy.all(numpy.array(img_t) == numpy.array(img)[idx]) + assert numpy.all(numpy.array(gt_t) == numpy.array(gt)[idx]) + assert numpy.all(numpy.array(mask_t) == numpy.array(mask)[idx]) + + +def test_to_tensor(): + + transforms = ToTensor() + img, gt, mask = [_create_img((3, 5, 5)) for i in range(3)] + gt = gt.convert("1", dither=None) + mask = mask.convert("1", dither=None) + img_t, gt_t, mask_t = transforms(img, gt, mask) + nose.tools.eq_(img_t.dtype, torch.float32) + nose.tools.eq_(gt_t.dtype, torch.float32) + nose.tools.eq_(mask_t.dtype, torch.float32) + + +def test_horizontal_flip(): + + transforms = RandomHorizontalFlip(p=1) + + im_size = (3, 24, 42) # (planes, height, width) + img, gt, mask = [_create_img(im_size) for i in range(3)] + img_t, gt_t, mask_t = transforms(img, gt, mask) + + # notice that PIL->array does array.transpose(1, 2, 0) + # so it creates an array that is (height, width, planes) + assert numpy.all(numpy.flip(img_t, axis=1) == numpy.array(img)) + assert numpy.all(numpy.flip(gt_t, axis=1) == numpy.array(gt)) + assert numpy.all(numpy.flip(mask_t, axis=1) == numpy.array(mask)) + + +def test_vertical_flip(): + + transforms = RandomVerticalFlip(p=1) + + im_size = (3, 24, 42) # (planes, height, width) + img, gt, mask = [_create_img(im_size) for i in range(3)] + img_t, gt_t, mask_t = transforms(img, gt, mask) + + # notice that PIL->array does array.transpose(1, 2, 0) + # so it creates an array that is (height, width, planes) + assert numpy.all(numpy.flip(img_t, axis=0) == numpy.array(img)) + assert numpy.all(numpy.flip(gt_t, axis=0) == numpy.array(gt)) + assert numpy.all(numpy.flip(mask_t, axis=0) == numpy.array(mask)) + + +def test_rotation(): + + im_size = (3, 24, 42) # (planes, height, width) + transforms = RandomRotation(degrees=90, p=1) + img = _create_img(im_size) + + # asserts all images are rotated the same + # and they are different from the original + random.seed(42) + img1_t, img2_t, img3_t = transforms(img, img, img) + nose.tools.eq_(img1_t.size, (im_size[2], im_size[1])) + assert numpy.all(numpy.array(img1_t) == numpy.array(img2_t)) + assert numpy.all(numpy.array(img1_t) == numpy.array(img3_t)) + assert numpy.any(numpy.array(img1_t) != numpy.array(img)) + + # asserts two random transforms are not the same + (img_t2,) = transforms(img) + assert numpy.any(numpy.array(img_t2) != numpy.array(img1_t)) + + +def test_color_jitter(): + + im_size = (3, 24, 42) # (planes, height, width) + transforms = ColorJitter(p=1) + img = _create_img(im_size) + + # asserts only the first image is jittered + # and it is different from the original + # all others match the input data + random.seed(42) + img1_t, img2_t, img3_t = transforms(img, img, img) + nose.tools.eq_(img1_t.size, (im_size[2], im_size[1])) + assert numpy.any(numpy.array(img1_t) != numpy.array(img)) + assert numpy.any(numpy.array(img1_t) != numpy.array(img2_t)) + assert numpy.all(numpy.array(img2_t) == numpy.array(img3_t)) + assert numpy.all(numpy.array(img2_t) == numpy.array(img)) + + # asserts two random transforms are not the same + img1_t2, img2_t2, img3_t2 = transforms(img, img, img) + assert numpy.any(numpy.array(img1_t2) != numpy.array(img1_t)) + assert numpy.all(numpy.array(img2_t2) == numpy.array(img)) + assert numpy.all(numpy.array(img3_t2) == numpy.array(img)) + + +def test_compose(): + + transforms = Compose( + [ + RandomVerticalFlip(p=1), + RandomHorizontalFlip(p=1), + RandomVerticalFlip(p=1), + RandomHorizontalFlip(p=1), + ] + ) + + img, gt, mask = [_create_img((3, 24, 42)) for i in range(3)] + img_t, gt_t, mask_t = transforms(img, gt, mask) + assert numpy.all(numpy.array(img_t) == numpy.array(img)) + assert numpy.all(numpy.array(gt_t) == numpy.array(gt)) + assert numpy.all(numpy.array(mask_t) == numpy.array(mask)) + + +def test_16bit_autolevel(): + + path = pkg_resources.resource_filename(__name__, os.path.join("data", + "img-16bit.png")) + # the way to load a 16-bit PNG image correctly, according to: + # https://stackoverflow.com/questions/32622658/read-16-bit-png-image-file-using-python + # https://github.com/python-pillow/Pillow/issues/3011 + img = PIL.Image.fromarray(numpy.array(PIL.Image.open(path)).astype("uint16")) + nose.tools.eq_(img.mode, "I;16") + nose.tools.eq_(img.getextrema(), (0, 65281)) + + timg = SingleAutoLevel16to8()(img) + nose.tools.eq_(timg.mode, "L") + nose.tools.eq_(timg.getextrema(), (0, 255)) + #timg.show() + #import ipdb; ipdb.set_trace() diff --git a/bob/ip/binseg/test/utils.py b/bob/ip/binseg/test/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..0f2e7fcf62dc8404b88f75a15cb2ab8c96d4992a --- /dev/null +++ b/bob/ip/binseg/test/utils.py @@ -0,0 +1,56 @@ +#!/usr/bin/env python +# coding=utf-8 + + +"""Test utilities""" + + +import functools + +import numpy +import nose.plugins.skip + +import bob.extension + + +def rc_variable_set(name): + """ + Decorator that checks if a given bobrc variable is set before running + """ + + def wrapped_function(test): + @functools.wraps(test) + def wrapper(*args, **kwargs): + if name not in bob.extension.rc: + raise nose.plugins.skip.SkipTest("Bob's RC variable '%s' is not set" % name) + return test(*args, **kwargs) + + return wrapper + + return wrapped_function + + +def count_bw(b): + """Calculates totals of black and white pixels in a binary image + + + Parameters + ---------- + + b : PIL.Image.Image + A PIL image in mode "1" to be used for calculating positives and + negatives + + Returns + ------- + + black : int + Number of black pixels in the binary image + + white : int + Number of white pixels in the binary image + """ + + boolean_array = numpy.array(b) + white = boolean_array.sum() + return (boolean_array.size-white), white diff --git a/bob/ip/binseg/utils/FreeMono.ttf b/bob/ip/binseg/utils/FreeMono.ttf deleted file mode 100644 index 7485f9e4c84d5a372c81e11df2cd9f5e2eb2064a..0000000000000000000000000000000000000000 Binary files a/bob/ip/binseg/utils/FreeMono.ttf and /dev/null differ diff --git a/bob/ip/binseg/utils/__init__.py b/bob/ip/binseg/utils/__init__.py index 2ca5e07cb73f0bdddcb863ef497955964087e301..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644 --- a/bob/ip/binseg/utils/__init__.py +++ b/bob/ip/binseg/utils/__init__.py @@ -1,3 +0,0 @@ -# see https://docs.python.org/3/library/pkgutil.html -from pkgutil import extend_path -__path__ = extend_path(__path__, __name__) \ No newline at end of file diff --git a/bob/ip/binseg/utils/checkpointer.py b/bob/ip/binseg/utils/checkpointer.py index f3899e1dc2a23e6b6c8c250bebfd9a40ebc1fc93..4ae57e5c1a5f58727edc990f04e8553bc6f8de4e 100644 --- a/bob/ip/binseg/utils/checkpointer.py +++ b/bob/ip/binseg/utils/checkpointer.py @@ -1,23 +1,22 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -# Adapted from https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/engine/trainer.py # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. -import logging import torch import os from bob.ip.binseg.utils.model_serialization import load_state_dict from bob.ip.binseg.utils.model_zoo import cache_url +import logging +logger = logging.getLogger(__name__) + + class Checkpointer: - """Adapted from `maskrcnn-benchmark`_ under MIT license - - Returns - ------- - [type] - [description] + """Adapted from `maskrcnn-benchmark + <https://github.com/facebookresearch/maskrcnn-benchmark>`_ under MIT license """ + def __init__( self, model, @@ -25,16 +24,12 @@ class Checkpointer: scheduler=None, save_dir="", save_to_disk=None, - logger=None, ): self.model = model self.optimizer = optimizer self.scheduler = scheduler self.save_dir = save_dir self.save_to_disk = save_to_disk - if logger is None: - logger = logging.getLogger(__name__) - self.logger = logger def save(self, name, **kwargs): if not self.save_dir: @@ -51,10 +46,11 @@ class Checkpointer: data["scheduler"] = self.scheduler.state_dict() data.update(kwargs) - save_file = os.path.join(self.save_dir, "{}.pth".format(name)) - self.logger.info("Saving checkpoint to {}".format(save_file)) + dest_filename = f"{name}.pth" + save_file = os.path.join(self.save_dir, dest_filename) + logger.info(f"Saving checkpoint to {save_file}") torch.save(data, save_file) - self.tag_last_checkpoint(save_file) + self.tag_last_checkpoint(dest_filename) def load(self, f=None): if self.has_checkpoint(): @@ -62,16 +58,16 @@ class Checkpointer: f = self.get_checkpoint_file() if not f: # no checkpoint could be found - self.logger.warn("No checkpoint found. Initializing model from scratch") + logger.warn("No checkpoint found. Initializing model from scratch") return {} - self.logger.info("Loading checkpoint from {}".format(f)) checkpoint = self._load_file(f) self._load_model(checkpoint) + actual_file = os.path.join(self.save_dir, f) if "optimizer" in checkpoint and self.optimizer: - self.logger.info("Loading optimizer from {}".format(f)) + logger.info(f"Loading optimizer from {actual_file}") self.optimizer.load_state_dict(checkpoint.pop("optimizer")) if "scheduler" in checkpoint and self.scheduler: - self.logger.info("Loading scheduler from {}".format(f)) + logger.info(f"Loading scheduler from {actual_file}") self.scheduler.load_state_dict(checkpoint.pop("scheduler")) # return any further checkpoint data @@ -99,7 +95,9 @@ class Checkpointer: f.write(last_filename) def _load_file(self, f): - return torch.load(f, map_location=torch.device("cpu")) + actual_file = os.path.join(self.save_dir, f) + logger.info(f"Loading checkpoint from {actual_file}") + return torch.load(actual_file, map_location=torch.device("cpu")) def _load_model(self, checkpoint): load_state_dict(self.model, checkpoint.pop("model")) @@ -113,10 +111,9 @@ class DetectronCheckpointer(Checkpointer): scheduler=None, save_dir="", save_to_disk=None, - logger=None, ): super(DetectronCheckpointer, self).__init__( - model, optimizer, scheduler, save_dir, save_to_disk, logger + model, optimizer, scheduler, save_dir, save_to_disk ) def _load_file(self, f): @@ -124,10 +121,10 @@ class DetectronCheckpointer(Checkpointer): if f.startswith("http"): # if the file is a url path, download it and cache it cached_f = cache_url(f) - self.logger.info("url {} cached in {}".format(f, cached_f)) + logger.info(f"url {f} cached in {cached_f}") f = cached_f # load checkpoint loaded = super(DetectronCheckpointer, self)._load_file(f) if "model" not in loaded: loaded = dict(model=loaded) - return loaded \ No newline at end of file + return loaded diff --git a/bob/ip/binseg/utils/click.py b/bob/ip/binseg/utils/click.py deleted file mode 100644 index 8b8294d97f869167f0908f22c4521c6fcda1a243..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/utils/click.py +++ /dev/null @@ -1,53 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - - - -import click - -class OptionEatAll(click.Option): - """ - Allows for *args and **kwargs to be passed to click - https://stackoverflow.com/questions/48391777/nargs-equivalent-for-options-in-click - """ - - def __init__(self, *args, **kwargs): - self.save_other_options = kwargs.pop('save_other_options', True) - nargs = kwargs.pop('nargs', -1) - assert nargs == -1, 'nargs, if set, must be -1 not {}'.format(nargs) - super(OptionEatAll, self).__init__(*args, **kwargs) - self._previous_parser_process = None - self._eat_all_parser = None - - def add_to_parser(self, parser, ctx): - - def parser_process(value, state): - # method to hook to the parser.process - done = False - value = [value] - if self.save_other_options: - # grab everything up to the next option - while state.rargs and not done: - for prefix in self._eat_all_parser.prefixes: - if state.rargs[0].startswith(prefix): - done = True - if not done: - value.append(state.rargs.pop(0)) - else: - # grab everything remaining - value += state.rargs - state.rargs[:] = [] - value = tuple(value) - - # call the actual process - self._previous_parser_process(value, state) - - retval = super(OptionEatAll, self).add_to_parser(parser, ctx) - for name in self.opts: - our_parser = parser._long_opt.get(name) or parser._short_opt.get(name) - if our_parser: - self._eat_all_parser = our_parser - self._previous_parser_process = our_parser.process - our_parser.process = parser_process - break - return retval \ No newline at end of file diff --git a/bob/ip/binseg/utils/evaluate.py b/bob/ip/binseg/utils/evaluate.py deleted file mode 100644 index 99259f412be8f00e7b2ea2572ba654689a4cf92d..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/utils/evaluate.py +++ /dev/null @@ -1,194 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- -# only use to evaluate 2nd human annotator -# -import os -import logging -import time -import datetime -import numpy as np -import torch -import pandas as pd -import torchvision.transforms.functional as VF -from tqdm import tqdm - -from bob.ip.binseg.utils.metric import SmoothedValue, base_metrics -from bob.ip.binseg.utils.plot import precision_recall_f1iso, precision_recall_f1iso_confintval -from bob.ip.binseg.utils.summary import summary -from PIL import Image -from torchvision.transforms.functional import to_tensor - - -def batch_metrics(predictions, ground_truths, names, output_folder, logger): - """ - Calculates metrics on the batch and saves it to disc - - Parameters - ---------- - predictions : :py:class:`torch.Tensor` - tensor with pixel-wise probabilities - ground_truths : :py:class:`torch.Tensor` - tensor with binary ground-truth - names : list - list of file names - output_folder : str - output path - logger : :py:class:`logging.Logger` - python logger - - Returns - ------- - list - list containing batch metrics: ``[name, threshold, precision, recall, specificity, accuracy, jaccard, f1_score]`` - """ - step_size = 0.01 - batch_metrics = [] - - for j in range(predictions.size()[0]): - # ground truth byte - gts = ground_truths[j].byte() - - file_name = "{}.csv".format(names[j]) - logger.info("saving {}".format(file_name)) - - with open (os.path.join(output_folder,file_name), "w+") as outfile: - - outfile.write("threshold, precision, recall, specificity, accuracy, jaccard, f1_score\n") - - for threshold in np.arange(0.0,1.0,step_size): - # threshold - binary_pred = torch.gt(predictions[j], threshold).byte() - - # equals and not-equals - equals = torch.eq(binary_pred, gts) # tensor - notequals = torch.ne(binary_pred, gts) # tensor - - # true positives - tp_tensor = (gts * binary_pred ) # tensor - tp_count = torch.sum(tp_tensor).item() # scalar - - # false positives - fp_tensor = torch.eq((binary_pred + tp_tensor), 1) - fp_count = torch.sum(fp_tensor).item() - - # true negatives - tn_tensor = equals - tp_tensor - tn_count = torch.sum(tn_tensor).item() - - # false negatives - fn_tensor = notequals - fp_tensor - fn_count = torch.sum(fn_tensor).item() - - # calc metrics - metrics = base_metrics(tp_count, fp_count, tn_count, fn_count) - - # write to disk - outfile.write("{:.2f},{:.5f},{:.5f},{:.5f},{:.5f},{:.5f},{:.5f} \n".format(threshold, *metrics)) - - batch_metrics.append([names[j],threshold, *metrics ]) - - - return batch_metrics - - - -def do_eval( - prediction_folder, - data_loader, - output_folder = None, - title = '2nd human', - legend = '2nd human', - prediction_extension = None, -): - - """ - Calculate metrics on saved prediction images (needs batch_size = 1 !) - - Parameters - --------- - model : :py:class:`torch.nn.Module` - neural network model (e.g. DRIU, HED, UNet) - data_loader : py:class:`torch.torch.utils.data.DataLoader` - device : str - device to use ``'cpu'`` or ``'cuda'`` - output_folder : str - """ - logger = logging.getLogger("bob.ip.binseg.engine.evaluate") - logger.info("Start evaluation") - logger.info("Prediction folder {}".format(prediction_folder)) - results_subfolder = os.path.join(output_folder,'results') - os.makedirs(results_subfolder,exist_ok=True) - - - # Collect overall metrics - metrics = [] - num_images = len(data_loader) - for samples in tqdm(data_loader): - names = samples[0] - images = samples[1] - ground_truths = samples[2] - - if prediction_extension is None: - pred_file = os.path.join(prediction_folder,names[0]) - else: - pred_file = os.path.join(prediction_folder,os.path.splitext(names[0])[0] + '.png') - probabilities = Image.open(pred_file) - probabilities = probabilities.convert(mode='L') - probabilities = to_tensor(probabilities) - - - b_metrics = batch_metrics(probabilities, ground_truths, names,results_subfolder, logger) - metrics.extend(b_metrics) - - - - # DataFrame - df_metrics = pd.DataFrame(metrics,columns= \ - ["name", - "threshold", - "precision", - "recall", - "specificity", - "accuracy", - "jaccard", - "f1_score"]) - - # Report and Averages - metrics_file = "Metrics.csv" - metrics_path = os.path.join(results_subfolder, metrics_file) - logger.info("Saving average over all input images: {}".format(metrics_file)) - - avg_metrics = df_metrics.groupby('threshold').mean() - std_metrics = df_metrics.groupby('threshold').std() - - # Uncomment below for F1-score calculation based on average precision and metrics instead of - # F1-scores of individual images. This method is in line with Maninis et. al. (2016) - #avg_metrics["f1_score"] = (2* avg_metrics["precision"]*avg_metrics["recall"])/ \ - # (avg_metrics["precision"]+avg_metrics["recall"]) - - - avg_metrics["std_pr"] = std_metrics["precision"] - avg_metrics["pr_upper"] = avg_metrics['precision'] + avg_metrics["std_pr"] - avg_metrics["pr_lower"] = avg_metrics['precision'] - avg_metrics["std_pr"] - avg_metrics["std_re"] = std_metrics["recall"] - avg_metrics["re_upper"] = avg_metrics['recall'] + avg_metrics["std_re"] - avg_metrics["re_lower"] = avg_metrics['recall'] - avg_metrics["std_re"] - avg_metrics["std_f1"] = std_metrics["f1_score"] - - avg_metrics.to_csv(metrics_path) - maxf1 = avg_metrics['f1_score'].max() - optimal_f1_threshold = avg_metrics['f1_score'].idxmax() - - logger.info("Highest F1-score of {:.5f}, achieved at threshold {}".format(maxf1, optimal_f1_threshold)) - - # Plotting - #print(avg_metrics) - np_avg_metrics = avg_metrics.to_numpy().T - fig_name = "precision_recall.pdf" - logger.info("saving {}".format(fig_name)) - fig = precision_recall_f1iso_confintval([np_avg_metrics[0]],[np_avg_metrics[1]],[np_avg_metrics[7]],[np_avg_metrics[8]],[np_avg_metrics[10]],[np_avg_metrics[11]], [legend ,None], title=title) - fig_filename = os.path.join(results_subfolder, fig_name) - fig.savefig(fig_filename) - - - diff --git a/bob/ip/binseg/utils/metric.py b/bob/ip/binseg/utils/metric.py index bcb91511f533a8ed69843487ef8cbe793e42a925..903836f6ef17b231ecb942efc4156c3408cff885 100644 --- a/bob/ip/binseg/utils/metric.py +++ b/bob/ip/binseg/utils/metric.py @@ -1,7 +1,6 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -from collections import defaultdict from collections import deque import torch @@ -27,10 +26,11 @@ class SmoothedValue: d = torch.tensor(list(self.deque)) return d.mean().item() + def base_metrics(tp, fp, tn, fn): """ Calculates Precision, Recall (=Sensitivity), Specificity, Accuracy, Jaccard and F1-score (Dice) - + Parameters ---------- @@ -39,7 +39,7 @@ def base_metrics(tp, fp, tn, fn): True positives fp : float - False positives + False positives tn : float True negatives @@ -52,13 +52,36 @@ def base_metrics(tp, fp, tn, fn): ------- metrics : list - + """ - precision = tp / (tp + fp + ( (tp+fp) == 0) ) - recall = tp / (tp + fn + ( (tp+fn) == 0) ) - specificity = tn / (fp + tn + ( (fp+tn) == 0) ) - accuracy = (tp + tn) / (tp+fp+fn+tn) - jaccard = tp / (tp+fp+fn + ( (tp+fp+fn) == 0) ) - f1_score = (2.0 * tp ) / (2.0 * tp + fp + fn + ( (2.0 * tp + fp + fn) == 0) ) - #f1_score = (2.0 * precision * recall) / (precision + recall) - return [precision, recall, specificity, accuracy, jaccard, f1_score] \ No newline at end of file + precision = tp / (tp + fp + ((tp + fp) == 0)) + recall = tp / (tp + fn + ((tp + fn) == 0)) + specificity = tn / (fp + tn + ((fp + tn) == 0)) + accuracy = (tp + tn) / (tp + fp + fn + tn) + jaccard = tp / (tp + fp + fn + ((tp + fp + fn) == 0)) + f1_score = (2.0 * tp) / (2.0 * tp + fp + fn + ((2.0 * tp + fp + fn) == 0)) + # f1_score = (2.0 * precision * recall) / (precision + recall) + return [precision, recall, specificity, accuracy, jaccard, f1_score] + + +def auc(precision, recall): + """Calculates the area under the precision-recall curve (AUC) + + .. todo:: Integrate this to metrics reporting in compare.py + """ + + rec_unique, rec_unique_ndx = numpy.unique(recall, return_index=True) + + prec_unique = precision[rec_unique_ndx] + + if rec_unique.shape[0] > 1: + prec_interp = numpy.interp( + numpy.arange(0, 1, 0.01), + rec_unique, + prec_unique, + left=0.0, + right=0.0, + ) + return prec_interp.sum() * 0.01 + + return 0.0 diff --git a/bob/ip/binseg/utils/model_serialization.py b/bob/ip/binseg/utils/model_serialization.py index 84ff2491ea85751cc0b0910d278f035e9571f0eb..4c84e84f7e57364c128cc88c0116c8aec5e2bcc5 100644 --- a/bob/ip/binseg/utils/model_serialization.py +++ b/bob/ip/binseg/utils/model_serialization.py @@ -1,10 +1,14 @@ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # https://github.com/facebookresearch/maskrcnn-benchmark + from collections import OrderedDict + import logging +logger = logging.getLogger(__name__) import torch + def align_and_update_state_dicts(model_state_dict, loaded_state_dict): """ Strategy: suppose that the models that we will create will have prefixes appended @@ -38,14 +42,13 @@ def align_and_update_state_dicts(model_state_dict, loaded_state_dict): max_size = max([len(key) for key in current_keys]) if current_keys else 1 max_size_loaded = max([len(key) for key in loaded_keys]) if loaded_keys else 1 log_str_template = "{: <{}} loaded from {: <{}} of shape {}" - logger = logging.getLogger(__name__) for idx_new, idx_old in enumerate(idxs.tolist()): if idx_old == -1: continue key = current_keys[idx_new] key_old = loaded_keys[idx_old] model_state_dict[key] = loaded_state_dict[key_old] - logger.info( + logger.debug( log_str_template.format( key, max_size, @@ -75,4 +78,4 @@ def load_state_dict(model, loaded_state_dict): align_and_update_state_dicts(model_state_dict, loaded_state_dict) # use strict loading - model.load_state_dict(model_state_dict) \ No newline at end of file + model.load_state_dict(model_state_dict) diff --git a/bob/ip/binseg/utils/model_zoo.py b/bob/ip/binseg/utils/model_zoo.py index 8bc7c931e0e05d682e03cc52c22413c2f185965e..2eb98f552f1654043b5bf4a03ae4e4627a65c944 100644 --- a/bob/ip/binseg/utils/model_zoo.py +++ b/bob/ip/binseg/utils/model_zoo.py @@ -5,19 +5,15 @@ # https://github.com/pytorch/pytorch/blob/master/torch/hub.py # https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/utils/checkpoint.py -import errno import hashlib import os import re import shutil import sys import tempfile -import torch -import warnings -import zipfile from urllib.request import urlopen from urllib.parse import urlparse -from tqdm import tqdm +from tqdm import tqdm modelurls = { "vgg11": "https://download.pytorch.org/models/vgg11-bbd30ac9.pth", @@ -33,15 +29,19 @@ modelurls = { "resnet50": "https://download.pytorch.org/models/resnet50-19c8e357.pth", "resnet101": "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth", "resnet152": "https://download.pytorch.org/models/resnet152-b121ed2d.pth", - "resnet50_SIN_IN": "https://bitbucket.org/robert_geirhos/texture-vs-shape-pretrained-models/raw/60b770e128fffcbd8562a3ab3546c1a735432d03/resnet50_finetune_60_epochs_lr_decay_after_30_start_resnet50_train_45_epochs_combined_IN_SF-ca06340c.pth.tar", - "mobilenetv2": "https://dl.dropboxusercontent.com/s/4nie4ygivq04p8y/mobilenet_v2.pth.tar", - } + #"resnet50_SIN_IN": "https://bitbucket.org/robert_geirhos/texture-vs-shape-pretrained-models/raw/60b770e128fffcbd8562a3ab3546c1a735432d03/resnet50_finetune_60_epochs_lr_decay_after_30_start_resnet50_train_45_epochs_combined_IN_SF-ca06340c.pth.tar", + "resnet50_SIN_IN": "http://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/resnet50_finetune_60_epochs_lr_decay_after_30_start_resnet50_train_45_epochs_combined_IN_SF-ca06340c.pth.tar", + #"mobilenetv2": "https://dl.dropboxusercontent.com/s/4nie4ygivq04p8y/mobilenet_v2.pth.tar", + "mobilenetv2": "http://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/mobilenet_v2.pth.tar", +} +"""URLs of pre-trained models (backbones)""" -def _download_url_to_file(url, dst, hash_prefix, progress): + +def download_url_to_file(url, dst, hash_prefix, progress): file_size = None u = urlopen(url) meta = u.info() - if hasattr(meta, 'getheaders'): + if hasattr(meta, "getheaders"): content_length = meta.getheaders("Content-Length") else: content_length = meta.get_all("Content-Length") @@ -65,16 +65,21 @@ def _download_url_to_file(url, dst, hash_prefix, progress): f.close() if hash_prefix is not None: digest = sha256.hexdigest() - if digest[:len(hash_prefix)] != hash_prefix: - raise RuntimeError('invalid hash value (expected "{}", got "{}")' - .format(hash_prefix, digest)) + if digest[: len(hash_prefix)] != hash_prefix: + raise RuntimeError( + 'invalid hash value (expected "{}", got "{}")'.format( + hash_prefix, digest + ) + ) shutil.move(f.name, dst) finally: f.close() if os.path.exists(f.name): os.remove(f.name) -HASH_REGEX = re.compile(r'-([a-f0-9]*)\.') + +HASH_REGEX = re.compile(r"-([a-f0-9]*)\.") + def cache_url(url, model_dir=None, progress=True): r"""Loads the Torch serialized object at the given URL. @@ -99,13 +104,13 @@ def cache_url(url, model_dir=None, progress=True): os.makedirs(model_dir) parts = urlparse(url) filename = os.path.basename(parts.path) - + cached_file = os.path.join(model_dir, filename) if not os.path.exists(cached_file): sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file)) hash_prefix = HASH_REGEX.search(filename) if hash_prefix is not None: hash_prefix = hash_prefix.group(1) - _download_url_to_file(url, cached_file, hash_prefix, progress=progress) - - return cached_file \ No newline at end of file + download_url_to_file(url, cached_file, hash_prefix, progress=progress) + + return cached_file diff --git a/bob/ip/binseg/utils/plot.py b/bob/ip/binseg/utils/plot.py index de1d531d8bdab9db1f2263f4221157a3cca24912..9be1b0edec5f4ddd298df6561a48ac1009b3deab 100644 --- a/bob/ip/binseg/utils/plot.py +++ b/bob/ip/binseg/utils/plot.py @@ -1,454 +1,271 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -import numpy as np -import os -import csv -import pandas as pd -import PIL -from PIL import Image,ImageFont, ImageDraw -import torchvision.transforms.functional as VF -import torch - -def precision_recall_f1iso(precision, recall, names, title=None): - """ - Author: Andre Anjos (andre.anjos@idiap.ch). +import contextlib +from itertools import cycle - Creates a precision-recall plot of the given data. - The plot will be annotated with F1-score iso-lines (in which the F1-score - maintains the same value) +import numpy +import pandas - Parameters - ---------- - precision : :py:class:`numpy.ndarray` or :py:class:`list` - A list of 1D np arrays containing the Y coordinates of the plot, or - the precision, or a 2D np array in which the rows correspond to each - of the system's precision coordinates. - recall : :py:class:`numpy.ndarray` or :py:class:`list` - A list of 1D np arrays containing the X coordinates of the plot, or - the recall, or a 2D np array in which the rows correspond to each - of the system's recall coordinates. - names : :py:class:`list` - An iterable over the names of each of the systems along the rows of - ``precision`` and ``recall`` - title : :py:class:`str`, optional - A title for the plot. If not set, omits the title +import matplotlib +matplotlib.use("agg") - Returns - ------- - matplotlib.figure.Figure - A matplotlib figure you can save or display - """ - import matplotlib - matplotlib.use('agg') - import matplotlib.pyplot as plt - from itertools import cycle - fig, ax1 = plt.subplots(1) - lines = ["-","--","-.",":"] - linecycler = cycle(lines) - for p, r, n in zip(precision, recall, names): - # Plots only from the point where recall reaches its maximum, otherwise, we - # don't see a curve... - i = r.argmax() - pi = p[i:] - ri = r[i:] - valid = (pi+ri) > 0 - f1 = 2 * (pi[valid]*ri[valid]) / (pi[valid]+ri[valid]) - # optimal point along the curve - argmax = f1.argmax() - opi = pi[argmax] - ori = ri[argmax] - # Plot Recall/Precision as threshold changes - ax1.plot(ri[pi>0], pi[pi>0], next(linecycler), label='[F={:.4f}] {}'.format(f1.max(), n),) - ax1.plot(ori,opi, marker='o', linestyle=None, markersize=3, color='black') - ax1.grid(linestyle='--', linewidth=1, color='gray', alpha=0.2) - if len(names) > 1: - plt.legend(loc='lower left', framealpha=0.5) - ax1.set_xlabel('Recall') - ax1.set_ylabel('Precision') - ax1.set_xlim([0.0, 1.0]) - ax1.set_ylim([0.0, 1.0]) - if title is not None: ax1.set_title(title) - # Annotates plot with F1-score iso-lines - ax2 = ax1.twinx() - f_scores = np.linspace(0.1, 0.9, num=9) - tick_locs = [] - tick_labels = [] - for f_score in f_scores: - x = np.linspace(0.01, 1) - y = f_score * x / (2 * x - f_score) - l, = plt.plot(x[y >= 0], y[y >= 0], color='green', alpha=0.1) - tick_locs.append(y[-1]) - tick_labels.append('%.1f' % f_score) - ax2.tick_params(axis='y', which='both', pad=0, right=False, left=False) - ax2.set_ylabel('iso-F', color='green', alpha=0.3) - ax2.set_ylim([0.0, 1.0]) - ax2.yaxis.set_label_coords(1.015, 0.97) - ax2.set_yticks(tick_locs) #notice these are invisible - for k in ax2.set_yticklabels(tick_labels): - k.set_color('green') - k.set_alpha(0.3) - k.set_size(8) - # we should see some of axes 1 axes - ax1.spines['right'].set_visible(False) - ax1.spines['top'].set_visible(False) - ax1.spines['left'].set_position(('data', -0.015)) - ax1.spines['bottom'].set_position(('data', -0.015)) - # we shouldn't see any of axes 2 axes - ax2.spines['right'].set_visible(False) - ax2.spines['top'].set_visible(False) - ax2.spines['left'].set_visible(False) - ax2.spines['bottom'].set_visible(False) - plt.tight_layout() - return fig +import matplotlib.pyplot as plt + +import logging +logger = logging.getLogger(__name__) -def precision_recall_f1iso_confintval(precision, recall, pr_upper, pr_lower, re_upper, re_lower, names, title=None): - """ - Author: Andre Anjos (andre.anjos@idiap.ch). - Creates a precision-recall plot of the given data. - The plot will be annotated with F1-score iso-lines (in which the F1-score - maintains the same value) +@contextlib.contextmanager +def _precision_recall_canvas(title=None): + """Generates a canvas to draw precision-recall curves + + Works like a context manager, yielding a figure and an axes set in which + the precision-recall curves should be added to. The figure already + contains F1-ISO lines and is preset to a 0-1 square region. Once the + context is finished, ``fig.tight_layout()`` is called. + Parameters ---------- - precision : :py:class:`numpy.ndarray` or :py:class:`list` - A list of 1D np arrays containing the Y coordinates of the plot, or - the precision, or a 2D np array in which the rows correspond to each - of the system's precision coordinates. - recall : :py:class:`numpy.ndarray` or :py:class:`list` - A list of 1D np arrays containing the X coordinates of the plot, or - the recall, or a 2D np array in which the rows correspond to each - of the system's recall coordinates. - names : :py:class:`list` - An iterable over the names of each of the systems along the rows of - ``precision`` and ``recall`` - title : :py:class:`str`, optional - A title for the plot. If not set, omits the title - Returns - ------- - matplotlib.figure.Figure - A matplotlib figure you can save or display + title : :py:class:`str`, Optional + Optional title to add to this plot + + + Yields + ------ + + figure : matplotlib.figure.Figure + The figure that should be finally returned to the user + + axes : matplotlib.figure.Axes + An axis set where to precision-recall plots should be added to + """ - import matplotlib - matplotlib.use('agg') - import matplotlib.pyplot as plt - from itertools import cycle - fig, ax1 = plt.subplots(1) - lines = ["-","--","-.",":"] - colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', - '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', - '#bcbd22', '#17becf'] - colorcycler = cycle(colors) - linecycler = cycle(lines) - for p, r, pu, pl, ru, rl, n in zip(precision, recall, pr_upper, pr_lower, re_upper, re_lower, names): - # Plots only from the point where recall reaches its maximum, otherwise, we - # don't see a curve... - i = r.argmax() - pi = p[i:] - ri = r[i:] - pui = pu[i:] - pli = pl[i:] - rui = ru[i:] - rli = rl[i:] - valid = (pi+ri) > 0 - f1 = 2 * (pi[valid]*ri[valid]) / (pi[valid]+ri[valid]) - # optimal point along the curve - argmax = f1.argmax() - opi = pi[argmax] - ori = ri[argmax] - # Plot Recall/Precision as threshold changes - ax1.plot(ri[pi>0], pi[pi>0], next(linecycler), label='[F={:.4f}] {}'.format(f1.max(), n),) - ax1.plot(ori,opi, marker='o', linestyle=None, markersize=3, color='black') - # Plot confidence - # Upper bound - #ax1.plot(r95ui[p95ui>0], p95ui[p95ui>0]) - # Lower bound - #ax1.plot(r95li[p95li>0], p95li[p95li>0]) - # create the limiting polygon - vert_x = np.concatenate((rui[pui>0], rli[pli>0][::-1])) - vert_y = np.concatenate((pui[pui>0], pli[pli>0][::-1])) - # hacky workaround to plot 2nd human - if np.isclose(np.mean(rui), rui[1], rtol=1e-05): - print('found human') - p = plt.Polygon(np.column_stack((vert_x, vert_y)), facecolor='none', alpha=.2, edgecolor=next(colorcycler),lw=2) - else: - p = plt.Polygon(np.column_stack((vert_x, vert_y)), facecolor=next(colorcycler), alpha=.2, edgecolor='none',lw=.2) - ax1.add_artist(p) - - ax1.grid(linestyle='--', linewidth=1, color='gray', alpha=0.2) - if len(names) > 1: - plt.legend(loc='lower left', framealpha=0.5) - ax1.set_xlabel('Recall') - ax1.set_ylabel('Precision') - ax1.set_xlim([0.0, 1.0]) - ax1.set_ylim([0.0, 1.0]) - if title is not None: ax1.set_title(title) + + fig, axes1 = plt.subplots(1) + + # Names and bounds + axes1.set_xlabel("Recall") + axes1.set_ylabel("Precision") + axes1.set_xlim([0.0, 1.0]) + axes1.set_ylim([0.0, 1.0]) + + if title is not None: + axes1.set_title(title) + + axes1.grid(linestyle="--", linewidth=1, color="gray", alpha=0.2) + axes2 = axes1.twinx() + # Annotates plot with F1-score iso-lines - ax2 = ax1.twinx() - f_scores = np.linspace(0.1, 0.9, num=9) + f_scores = numpy.linspace(0.1, 0.9, num=9) tick_locs = [] tick_labels = [] for f_score in f_scores: - x = np.linspace(0.01, 1) + x = numpy.linspace(0.01, 1) y = f_score * x / (2 * x - f_score) - l, = plt.plot(x[y >= 0], y[y >= 0], color='green', alpha=0.1) + (l,) = plt.plot(x[y >= 0], y[y >= 0], color="green", alpha=0.1) tick_locs.append(y[-1]) - tick_labels.append('%.1f' % f_score) - ax2.tick_params(axis='y', which='both', pad=0, right=False, left=False) - ax2.set_ylabel('iso-F', color='green', alpha=0.3) - ax2.set_ylim([0.0, 1.0]) - ax2.yaxis.set_label_coords(1.015, 0.97) - ax2.set_yticks(tick_locs) #notice these are invisible - for k in ax2.set_yticklabels(tick_labels): - k.set_color('green') + tick_labels.append("%.1f" % f_score) + axes2.tick_params(axis="y", which="both", pad=0, right=False, left=False) + axes2.set_ylabel("iso-F", color="green", alpha=0.3) + axes2.set_ylim([0.0, 1.0]) + axes2.yaxis.set_label_coords(1.015, 0.97) + axes2.set_yticks(tick_locs) # notice these are invisible + for k in axes2.set_yticklabels(tick_labels): + k.set_color("green") k.set_alpha(0.3) k.set_size(8) + # we should see some of axes 1 axes - ax1.spines['right'].set_visible(False) - ax1.spines['top'].set_visible(False) - ax1.spines['left'].set_position(('data', -0.015)) - ax1.spines['bottom'].set_position(('data', -0.015)) + axes1.spines["right"].set_visible(False) + axes1.spines["top"].set_visible(False) + axes1.spines["left"].set_position(("data", -0.015)) + axes1.spines["bottom"].set_position(("data", -0.015)) + # we shouldn't see any of axes 2 axes - ax2.spines['right'].set_visible(False) - ax2.spines['top'].set_visible(False) - ax2.spines['left'].set_visible(False) - ax2.spines['bottom'].set_visible(False) + axes2.spines["right"].set_visible(False) + axes2.spines["top"].set_visible(False) + axes2.spines["left"].set_visible(False) + axes2.spines["bottom"].set_visible(False) + + # yield execution, lets user draw precision-recall plots, and the legend + # before tighteneing the layout + yield fig, axes1 + plt.tight_layout() - return fig -def loss_curve(df, title): - """ Creates a loss curve given a Dataframe with column names: - ``['avg. loss', 'median loss','lr','max memory']`` +def precision_recall_f1iso(data, confidence=True): + """Creates a precision-recall plot with confidence intervals + + This function creates and returns a Matplotlib figure with a + precision-recall plot containing shaded confidence intervals (standard + deviation on the precision-recall measurements). The plot will be + annotated with F1-score iso-lines (in which the F1-score maintains the same + value). + + This function specially supports "second-annotator" entries by plotting a + line showing the comparison between the default annotator being analyzed + and a second "opinion". Second annotator dataframes contain a single + entry (threshold=0.5), given the nature of the binary map comparisons. + Parameters ---------- - df : :py:class:`pandas.DataFrame` - Returns - ------- - matplotlib.figure.Figure - """ - import matplotlib - matplotlib.use('agg') - import matplotlib.pyplot as plt - ax1 = df.plot(y="median loss", grid=True) - ax1.set_title(title) - ax1.set_ylabel('median loss') - ax1.grid(linestyle='--', linewidth=1, color='gray', alpha=0.2) - ax2 = df['lr'].plot(secondary_y=True,legend=True,grid=True,) - ax2.set_ylabel('lr') - ax1.set_xlabel('epoch') - plt.tight_layout() - fig = ax1.get_figure() - return fig + data : dict + A dictionary in which keys are strings defining plot labels and values + are dictionaries with two entries: + * ``df``: :py:class:`pandas.DataFrame` -def read_metricscsv(file): - """ - Read precision and recall from csv file + A dataframe that is produced by our evaluator engine, indexed by + integer "thresholds", containing the following columns: ``threshold`` + (sorted ascending), ``precision``, ``recall``, ``pr_upper`` (upper + precision bounds), ``pr_lower`` (lower precision bounds), + ``re_upper`` (upper recall bounds), ``re_lower`` (lower recall + bounds). - Parameters - ---------- - file : str - path to file + * ``threshold``: :py:class:`list` + + A threshold to graph with a dot for each set. Specific + threshold values do not affect "second-annotator" dataframes. + + confidence : :py:class:`bool`, Optional + If set, draw confidence intervals for each line, using ``*_upper`` and + ``*_lower`` entries. - Returns - ------- - :py:class:`numpy.ndarray` - :py:class:`numpy.ndarray` - """ - with open (file, "r") as infile: - metricsreader = csv.reader(infile) - # skip header row - next(metricsreader) - precision = [] - recall = [] - pr_upper = [] - pr_lower = [] - re_upper = [] - re_lower = [] - for row in metricsreader: - precision.append(float(row[1])) - recall.append(float(row[2])) - pr_upper.append(float(row[8])) - pr_lower.append(float(row[9])) - re_upper.append(float(row[11])) - re_lower.append(float(row[12])) - return np.array(precision), np.array(recall), np.array(pr_upper), np.array(pr_lower), np.array(re_upper), np.array(re_lower) - - -def plot_overview(outputfolders,title): - """ - Plots comparison chart of all trained models - Parameters - ---------- - outputfolder : list - list containing output paths of all evaluated models (e.g. ``['DRIVE/model1', 'DRIVE/model2']``) - title : str - title of plot Returns ------- - matplotlib.figure.Figure + + figure : matplotlib.figure.Figure + A matplotlib figure you can save or display (uses an ``agg`` backend) + """ - precisions = [] - recalls = [] - pr_ups = [] - pr_lows = [] - re_ups = [] - re_lows = [] - names = [] - params = [] - for folder in outputfolders: - # metrics - metrics_path = os.path.join(folder,'results/Metrics.csv') - pr, re, pr_upper, pr_lower, re_upper, re_lower = read_metricscsv(metrics_path) - precisions.append(pr) - recalls.append(re) - pr_ups.append(pr_upper) - pr_lows.append(pr_lower) - re_ups.append(re_upper) - re_lows.append(re_lower) - modelname = folder.split('/')[-1] - name = '{} '.format(modelname) - names.append(name) - #title = folder.split('/')[-4] - fig = precision_recall_f1iso_confintval(precisions,recalls, pr_ups, pr_lows, re_ups, re_lows, names,title) + + lines = ["-", "--", "-.", ":"] + colors = [ + "#1f77b4", + "#ff7f0e", + "#2ca02c", + "#d62728", + "#9467bd", + "#8c564b", + "#e377c2", + "#7f7f7f", + "#bcbd22", + "#17becf", + ] + colorcycler = cycle(colors) + linecycler = cycle(lines) + + with _precision_recall_canvas(title=None) as (fig, axes): + + legend = [] + + for name, value in data.items(): + + df = value["df"] + threshold = value["threshold"] + + # plots only from the point where recall reaches its maximum, + # otherwise, we don't see a curve... + max_recall = df["recall"].idxmax() + pi = df.precision[max_recall:] + ri = df.recall[max_recall:] + + valid = (pi + ri) > 0 + f1 = 2 * (pi[valid] * ri[valid]) / (pi[valid] + ri[valid]) + + # optimal point along the curve + bins = len(df) + index = int(round(bins*threshold)) + index = min(index, len(df)-1) #avoids out of range indexing + + # plots Recall/Precision as threshold changes + label = f"{name} (F1={df.f1_score[index]:.4f})" + color = next(colorcycler) + + if len(df) == 1: + # plot black dot for F1-score at select threshold + marker, = axes.plot(df.recall[index], df.precision[index], + marker="*", markersize=6, color=color, alpha=0.8, + linestyle="None") + line, = axes.plot(df.recall[index], df.precision[index], + linestyle="None", color=color, alpha=0.2) + legend.append(([marker, line], label)) + else: + # line first, so marker gets on top + style = next(linecycler) + line, = axes.plot(ri[pi > 0], pi[pi > 0], color=color, + linestyle=style) + marker, = axes.plot(df.recall[index], df.precision[index], + marker="o", linestyle=style, markersize=4, + color=color, alpha=0.8) + legend.append(([marker, line], label)) + + if confidence: + + pui = df.pr_upper[max_recall:] + pli = df.pr_lower[max_recall:] + rui = df.re_upper[max_recall:] + rli = df.re_lower[max_recall:] + + # Plot confidence + # Upper bound + # create the limiting polygon + vert_x = numpy.concatenate((rui[pui > 0], rli[pli > 0][::-1])) + vert_y = numpy.concatenate((pui[pui > 0], pli[pli > 0][::-1])) + + # hacky workaround to plot 2nd human + if len(df) == 1: #binary system, very likely + logger.warning("Found 2nd human annotator - patching...") + p, = axes.plot(vert_x, vert_y, color=color, alpha=0.1, lw=3) + else: + p = plt.Polygon( + numpy.column_stack((vert_x, vert_y)), + facecolor=color, + alpha=0.2, + edgecolor="none", + lw=0.2, + ) + legend[-1][0].append(p) + axes.add_artist(p) + + if len(label) > 1: + axes.legend([tuple(k[0]) for k in legend], [k[1] for k in legend], + loc="lower left", fancybox=True, framealpha=0.7) + return fig -def metricsviz(dataset - ,output_path - ,tp_color= (0,255,0) # (128,128,128) Gray - ,fp_color = (0, 0, 255) # (70, 240, 240) Cyan - ,fn_color = (255, 0, 0) # (245, 130, 48) Orange - ,overlayed=True): - """ Visualizes true positives, false positives and false negatives - Default colors TP: Gray, FP: Cyan, FN: Orange + +def loss_curve(df): + """Creates a loss curve in a Matplotlib figure. Parameters ---------- - dataset : :py:class:`torch.utils.data.Dataset` - output_path : str - path where results and probability output images are stored. E.g. ``'DRIVE/MODEL'`` - tp_color : tuple - RGB values, by default (128,128,128) - fp_color : tuple - RGB values, by default (70, 240, 240) - fn_color : tuple - RGB values, by default (245, 130, 48) - """ - for sample in dataset: - # get sample - name = sample[0] - img = VF.to_pil_image(sample[1]) # PIL Image - gt = sample[2].byte() # byte tensor - - # read metrics - metrics = pd.read_csv(os.path.join(output_path,'results','Metrics.csv')) - optimal_threshold = metrics['threshold'][metrics['f1_score'].idxmax()] - - # read probability output - pred = Image.open(os.path.join(output_path,'images',name)) - pred = pred.convert(mode='L') - pred = VF.to_tensor(pred) - binary_pred = torch.gt(pred, optimal_threshold).byte() - - # calc metrics - # equals and not-equals - equals = torch.eq(binary_pred, gt) # tensor - notequals = torch.ne(binary_pred, gt) # tensor - # true positives - tp_tensor = (gt * binary_pred ) # tensor - tp_pil = VF.to_pil_image(tp_tensor.float()) - tp_pil_colored = PIL.ImageOps.colorize(tp_pil, (0,0,0), tp_color) - # false positives - fp_tensor = torch.eq((binary_pred + tp_tensor), 1) - fp_pil = VF.to_pil_image(fp_tensor.float()) - fp_pil_colored = PIL.ImageOps.colorize(fp_pil, (0,0,0), fp_color) - # false negatives - fn_tensor = notequals - fp_tensor - fn_pil = VF.to_pil_image(fn_tensor.float()) - fn_pil_colored = PIL.ImageOps.colorize(fn_pil, (0,0,0), fn_color) - - # paste together - tp_pil_colored.paste(fp_pil_colored,mask=fp_pil) - tp_pil_colored.paste(fn_pil_colored,mask=fn_pil) - - if overlayed: - tp_pil_colored = PIL.Image.blend(img, tp_pil_colored, 0.4) - img_metrics = pd.read_csv(os.path.join(output_path,'results',name+'.csv')) - f1 = img_metrics[' f1_score'].max() - # add f1-score - fnt_size = tp_pil_colored.size[1]//25 - draw = ImageDraw.Draw(tp_pil_colored) - fnt = ImageFont.truetype('FreeMono.ttf', fnt_size) - draw.text((0, 0),"F1: {:.4f}".format(f1),(255,255,255),font=fnt) - - # save to disk - overlayed_path = os.path.join(output_path,'tpfnfpviz') - fullpath = os.path.join(overlayed_path, name) - fulldir = os.path.dirname(fullpath) - if not os.path.exists(fulldir): os.makedirs(fulldir) - tp_pil_colored.save(fullpath) - - -def overlay(dataset, output_path): - """Overlays prediction probabilities vessel tree with original test image. + df : :py:class:`pandas.DataFrame` + A dataframe containing, at least, "epoch", "median-loss" and + "learning-rate" columns, that will be plotted. - Parameters - ---------- - dataset : :py:class:`torch.utils.data.Dataset` - output_path : str - path where results and probability output images are stored. E.g. ``'DRIVE/MODEL'`` - """ + Returns + ------- - for sample in dataset: - # get sample - name = sample[0] - img = VF.to_pil_image(sample[1]) # PIL Image - - # read probability output - pred = Image.open(os.path.join(output_path,'images',name)).convert(mode='L') - # color and overlay - pred_green = PIL.ImageOps.colorize(pred, (0,0,0), (0,255,0)) - overlayed = PIL.Image.blend(img, pred_green, 0.4) - - # add f1-score - #fnt_size = overlayed.size[1]//25 - #draw = ImageDraw.Draw(overlayed) - #fnt = ImageFont.truetype('FreeMono.ttf', fnt_size) - #draw.text((0, 0),"F1: {:.4f}".format(f1),(255,255,255),font=fnt) - # save to disk - overlayed_path = os.path.join(output_path,'overlayed') - fullpath = os.path.join(overlayed_path, name) - fulldir = os.path.dirname(fullpath) - if not os.path.exists(fulldir): os.makedirs(fulldir) - overlayed.save(fullpath) - - -def savetransformedtest(dataset, output_path): - """Save the test images as they are fed into the neural network. - Makes it easier to create overlay animations (e.g. slide) + figure : matplotlib.figure.Figure + A figure, that may be saved or displayed - Parameters - ---------- - dataset : :py:class:`torch.utils.data.Dataset` - output_path : str - path where results and probability output images are stored. E.g. ``'DRIVE/MODEL'`` """ - for sample in dataset: - # get sample - name = sample[0] - img = VF.to_pil_image(sample[1]) # PIL Image - - # save to disk - testimg_path = os.path.join(output_path,'transformedtestimages') - fullpath = os.path.join(testimg_path, name) - fulldir = os.path.dirname(fullpath) - if not os.path.exists(fulldir): os.makedirs(fulldir) - img.save(fullpath) + ax1 = df.plot(x="epoch", y="median-loss", grid=True) + ax1.set_ylabel("Median Loss") + ax1.grid(linestyle="--", linewidth=1, color="gray", alpha=0.2) + ax2 = df["learning-rate"].plot(secondary_y=True, legend=True, grid=True,) + ax2.set_ylabel("Learning Rate") + ax1.set_xlabel("Epoch") + plt.tight_layout() + fig = ax1.get_figure() + return fig diff --git a/bob/ip/binseg/utils/resources.py b/bob/ip/binseg/utils/resources.py new file mode 100644 index 0000000000000000000000000000000000000000..ea64657ca7f4f1dea3684fc0499eb269a8ffe2e4 --- /dev/null +++ b/bob/ip/binseg/utils/resources.py @@ -0,0 +1,220 @@ +#!/usr/bin/env python +# vim: set fileencoding=utf-8 : + +"""Tools for interacting with the running computer or GPU""" + +import os +import subprocess +import shutil + +import psutil + +import logging + +logger = logging.getLogger(__name__) + +_nvidia_smi = shutil.which("nvidia-smi") +"""Location of the nvidia-smi program, if one exists""" + + +GB = float(2 ** 30) +"""The number of bytes in a gigabyte""" + + +def run_nvidia_smi(query, rename=None): + """Returns GPU information from query + + For a comprehensive list of options and help, execute ``nvidia-smi + --help-query-gpu`` on a host with a GPU + + + Parameters + ---------- + + query : list + A list of query strings as defined by ``nvidia-smi --help-query-gpu`` + + rename : :py:class:`list`, Optional + A list of keys to yield in the return value for each entry above. It + gives you the opportunity to rewrite some key names for convenience. + This list, if provided, must be of the same length as ``query``. + + + Returns + ------- + + data : :py:class:`tuple`, None + An ordered dictionary (organized as 2-tuples) containing the queried + parameters (``rename`` versions). If ``nvidia-smi`` is not available, + returns ``None``. Percentage information is left alone, + memory information is transformed to gigabytes (floating-point). + + """ + + if _nvidia_smi is not None: + + if rename is None: + rename = query + else: + assert len(rename) == len(query) + + values = subprocess.getoutput( + "%s --query-gpu=%s --format=csv,noheader" + % (_nvidia_smi, ",".join(query)) + ) + values = [k.strip() for k in values.split(",")] + t_values = [] + for k in values: + if k.endswith("%"): + t_values.append(float(k[:-1].strip())) + elif k.endswith("MiB"): + t_values.append(float(k[:-3].strip()) / 1024) + else: + t_values.append(k) #unchanged + return tuple(zip(rename, t_values)) + + +def gpu_constants(): + """Returns GPU (static) information using nvidia-smi + + See :py:func:`run_nvidia_smi` for operational details. + + Returns + ------- + + data : :py:class:`tuple`, None + If ``nvidia-smi`` is not available, returns ``None``, otherwise, we + return an ordered dictionary (organized as 2-tuples) containing the + following ``nvidia-smi`` query information: + + * ``gpu_name``, as ``gpu_name`` (:py:class:`str`) + * ``driver_version``, as ``gpu_driver_version`` (:py:class:`str`) + * ``memory.total``, as ``gpu_memory_total`` (transformed to gigabytes, + :py:class:`float`) + + """ + + return run_nvidia_smi( + ("gpu_name", "driver_version", "memory.total"), + ("gpu_name", "gpu_driver_version", "gpu_memory_total"), + ) + + +def gpu_log(): + """Returns GPU information about current non-static status using nvidia-smi + + See :py:func:`run_nvidia_smi` for operational details. + + Returns + ------- + + data : :py:class:`tuple`, None + If ``nvidia-smi`` is not available, returns ``None``, otherwise, we + return an ordered dictionary (organized as 2-tuples) containing the + following ``nvidia-smi`` query information: + + * ``memory.used``, as ``gpu_memory_used`` (transformed to gigabytes, + :py:class:`float`) + * ``memory.free``, as ``gpu_memory_free`` (transformed to gigabytes, + :py:class:`float`) + * ``utilization.memory``, as ``gpu_memory_percent``, + (:py:class:`float`, in percent) + * ``utilization.gpu``, as ``gpu_utilization``, + (:py:class:`float`, in percent) + + """ + + return run_nvidia_smi( + ("memory.used", "memory.free", "utilization.memory", "utilization.gpu"), + ( + "gpu_memory_used", + "gpu_memory_free", + "gpu_memory_percent", + "gpu_percent", + ), + ) + + +_CLUSTER = [] +"""List of processes currently being monitored""" + + +def cpu_constants(): + """Returns static CPU information about the current system. + + + Returns + ------- + + data : tuple + An ordered dictionary (organized as 2-tuples) containing these entries: + + 0. ``cpu_memory_total`` (:py:class:`float`): total memory available, + in gigabytes + 1. ``cpu_count`` (:py:class:`int`): number of logical CPUs available + + """ + + return ( + ("cpu_memory_total", psutil.virtual_memory().total / GB), + ("cpu_count", psutil.cpu_count(logical=True)), + ) + + +def cpu_log(): + """Returns process (+child) information using ``psutil``. + + This call examines the current process plus any spawn child and returns the + combined resource usage summary for the process group. + + + Returns + ------- + + data : tuple + An ordered dictionary (organized as 2-tuples) containing these entries: + + 0. ``cpu_memory_used`` (:py:class:`float`): total memory used from + the system, in gigabytes + 1. ``cpu_rss`` (:py:class:`float`): RAM currently used by + process and children, in gigabytes + 2. ``cpu_vms`` (:py:class:`float`): total memory (RAM + swap) currently + used by process and children, in gigabytes + 3. ``cpu_percent`` (:py:class:`float`): percentage of the total CPU + used by this process and children (recursively) since last call + (first time called should be ignored). This number depends on the + number of CPUs in the system and can be greater than 100% + 4. ``cpu_processes`` (:py:class:`int`): total number of processes + including self and children (recursively) + 5. ``cpu_open_files`` (:py:class:`int`): total number of open files by + self and children + + """ + + global _CLUSTER + if (not _CLUSTER) or (_CLUSTER[0] != psutil.Process()): # initialization + this = psutil.Process() + _CLUSTER = [this] + this.children(recursive=True) + # touch cpu_percent() at least once for all + [k.cpu_percent(interval=None) for k in _CLUSTER] + else: + # check all cluster components and update process list + # done so we can keep the cpu_percent() initialization + children = _CLUSTER[0].children() + stored_children = set(_CLUSTER[1:]) + current_children = set(_CLUSTER[0].children()) + keep_children = stored_children - current_children + new_children = current_children - stored_children + [k.cpu_percent(interval=None) for k in new_children] + _CLUSTER = _CLUSTER[:1] + list(keep_children) + list(new_children) + + memory_info = [k.memory_info() for k in _CLUSTER] + + return ( + ("cpu_memory_used", psutil.virtual_memory().used / GB), + ("cpu_rss", sum([k.rss for k in memory_info]) / GB), + ("cpu_vms", sum([k.vms for k in memory_info]) / GB), + ("cpu_percent", sum(k.cpu_percent(interval=None) for k in _CLUSTER)), + ("cpu_processes", len(_CLUSTER)), + ("cpu_open_files", sum(len(k.open_files()) for k in _CLUSTER)), + ) diff --git a/bob/ip/binseg/utils/rsttable.py b/bob/ip/binseg/utils/rsttable.py deleted file mode 100644 index fdc17982f8bfcdb1643baf3aff57a988352f3561..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/utils/rsttable.py +++ /dev/null @@ -1,55 +0,0 @@ -import pandas as pd -from tabulate import tabulate -import os -from pathlib import Path - -def get_paths(output_path, filename): - """ - Parameters - ---------- - output_path : str - path in which to look for files - filename : str - - Returns - ------- - list - list of file paths - """ - datadir = Path(output_path) - file_paths = sorted(list(datadir.glob('**/{}'.format(filename)))) - file_paths = [f.as_posix() for f in file_paths] - return file_paths - - -def create_overview_grid(output_path): - """ Reads all Metrics.csv in a certain output path and pivots them to a rst grid table""" - filename = 'Metrics.csv' - metrics = get_paths(output_path,filename) - f1s = [] - stds = [] - models = [] - databases = [] - for m in metrics: - metrics = pd.read_csv(m) - maxf1 = metrics['f1_score'].max() - idmaxf1 = metrics['f1_score'].idxmax() - std = metrics['std_f1'][idmaxf1] - stds.append(std) - f1s.append(maxf1) - model = m.split('/')[-3] - models.append(model) - database = m.split('/')[-4] - databases.append(database) - df = pd.DataFrame() - df['database'] = databases - df['model'] = models - df['f1'] = f1s - df['std'] = stds - pivot = df.pivot(index='database',columns='model',values='f1') - pivot2 = df.pivot(index='database',columns='model',values='std') - - with open (os.path.join(output_path,'Metrics_overview.rst'), "w+") as outfile: - outfile.write(tabulate(pivot,headers=pivot.columns, tablefmt="grid")) - with open (os.path.join(output_path,'Metrics_overview_std.rst'), "w+") as outfile: - outfile.write(tabulate(pivot2,headers=pivot2.columns, tablefmt="grid")) \ No newline at end of file diff --git a/bob/ip/binseg/utils/summary.py b/bob/ip/binseg/utils/summary.py index 127c5e66a3d7c97629ef95acebccb4f138ba43b6..7788cb7a98e0a09c09801be207232ac7ce2754e6 100644 --- a/bob/ip/binseg/utils/summary.py +++ b/bob/ip/binseg/utils/summary.py @@ -1,63 +1,64 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -# Adapted from https://github.com/pytorch/pytorch/issues/2001#issuecomment-405675488 +# Adapted from https://github.com/pytorch/pytorch/issues/2001#issuecomment-405675488 import sys -import logging from functools import reduce from torch.nn.modules.module import _addindent -from bob.ip.binseg.modeling.driu import build_driu -def summary(model, file=sys.stderr): - """Counts the number of paramters in each layers - +def summary(model): + """Counts the number of parameters in each model layer + Parameters ---------- + model : :py:class:`torch.nn.Module` - + model to summarize + Returns ------- - int + + repr : str + a multiline string representation of the network + + nparam : int number of parameters + """ + def repr(model): + # We treat the extra repr like the sub-module, one item per line extra_lines = [] extra_repr = model.extra_repr() # empty string will be split into list [''] if extra_repr: - extra_lines = extra_repr.split('\n') + extra_lines = extra_repr.split("\n") child_lines = [] total_params = 0 for key, module in model._modules.items(): mod_str, num_params = repr(module) mod_str = _addindent(mod_str, 2) - child_lines.append('(' + key + '): ' + mod_str) + child_lines.append("(" + key + "): " + mod_str) total_params += num_params lines = extra_lines + child_lines for name, p in model._parameters.items(): - if hasattr(p,'dtype'): + if hasattr(p, "dtype"): total_params += reduce(lambda x, y: x * y, p.shape) - main_str = model._get_name() + '(' + main_str = model._get_name() + "(" if lines: # simple one-liner info, which most builtin Modules will use if len(extra_lines) == 1 and not child_lines: main_str += extra_lines[0] else: - main_str += '\n ' + '\n '.join(lines) + '\n' + main_str += "\n " + "\n ".join(lines) + "\n" - main_str += ')' - if file is sys.stderr: - main_str += ', \033[92m{:,}\033[0m params'.format(total_params) - else: - main_str += ', {:,} params'.format(total_params) + main_str += ")" + main_str += ", {:,} params".format(total_params) return main_str, total_params - string, count = repr(model) - if file is not None: - print(string, file=file) - return count \ No newline at end of file + return repr(model) diff --git a/bob/ip/binseg/utils/table.py b/bob/ip/binseg/utils/table.py new file mode 100644 index 0000000000000000000000000000000000000000..5feb27f8c54fd3f2a747eb649eb0690d028dfd89 --- /dev/null +++ b/bob/ip/binseg/utils/table.py @@ -0,0 +1,79 @@ +#!/usr/bin/env python +# coding=utf-8 + + +import tabulate + + +def performance_table(data, fmt): + """Tables result comparison in a given format + + + Parameters + ---------- + + data : dict + A dictionary in which keys are strings defining plot labels and values + are dictionaries with two entries: + + * ``df``: :py:class:`pandas.DataFrame` + + A dataframe that is produced by our evaluator engine, indexed by + integer "thresholds", containing the following columns: ``threshold`` + (sorted ascending), ``precision``, ``recall``, ``pr_upper`` (upper + precision bounds), ``pr_lower`` (lower precision bounds), + ``re_upper`` (upper recall bounds), ``re_lower`` (lower recall + bounds). + + * ``threshold``: :py:class:`list` + + A threshold to graph with a dot for each set. Specific + threshold values do not affect "second-annotator" dataframes. + + + fmt : str + One of the formats supported by tabulate. + + + Returns + ------- + + table : str + A table in a specific format + + """ + + headers = [ + "Dataset", + "T", + "F1", + "F1\nstd", + "P", + "R", + "F1\nmax", + "P\nmax", + "R\nmax", + ] + + table = [] + for k, v in data.items(): + entry = [k, v["threshold"], ] + + # statistics based on the "assigned" threshold (a priori, less biased) + bins = len(v["df"]) + index = int(round(bins*v["threshold"])) + index = min(index, len(v["df"])-1) #avoids out of range indexing + entry.append(v["df"].f1_score[index]) + entry.append(v["df"].std_f1[index]) + entry.append(v["df"].precision[index]) + entry.append(v["df"].recall[index]) + + # statistics based on the best threshold (a posteriori, biased) + entry.append(v["df"].f1_score.max()) + f1max_idx = v["df"].f1_score.idxmax() + entry.append(v["df"].precision[f1max_idx]) + entry.append(v["df"].recall[f1max_idx]) + + table.append(entry) + + return tabulate.tabulate(table, headers, tablefmt=fmt, floatfmt=".3f") diff --git a/bob/ip/binseg/utils/transformfolder.py b/bob/ip/binseg/utils/transformfolder.py deleted file mode 100644 index 9308d64705adeba36ae0edefc7f07b3f56b8069f..0000000000000000000000000000000000000000 --- a/bob/ip/binseg/utils/transformfolder.py +++ /dev/null @@ -1,27 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- -from pathlib import Path,PurePosixPath -from PIL import Image -from torchvision.transforms.functional import to_pil_image - -def transformfolder(source_path, target_path, transforms): - """Applies a set of transfroms on an image folder - - Parameters - ---------- - source_path : str - [description] - target_path : str - [description] - transforms : [type] - transform function - """ - source_path = Path(source_path) - target_path = Path(target_path) - file_paths = sorted(list(source_path.glob('*?.*'))) - for f in file_paths: - timg_path = PurePosixPath(target_path).joinpath(f.name) - img = Image.open(f).convert(mode='1', dither=None) - img, _ = transforms(img,img) - img = to_pil_image(img) - img.save(str(timg_path)) \ No newline at end of file diff --git a/conda/meta.yaml b/conda/meta.yaml index 1a7c95acb6da05634579c283c8de6248c82a7677..4685c1b569c4be237642cdfcb5da41f1b8d77d58 100644 --- a/conda/meta.yaml +++ b/conda/meta.yaml @@ -25,32 +25,30 @@ requirements: host: - python {{ python }} - setuptools {{ setuptools }} - - torchvision {{ torchvision }} # [linux] - - pytorch {{ pytorch }} # [linux] - numpy {{ numpy }} + - h5py {{ h5py }} + - pytorch {{ pytorch }} # [linux] + - torchvision {{ torchvision }} # [linux] - bob.extension run: - python - setuptools + - {{ pin_compatible('numpy') }} - {{ pin_compatible('pytorch') }} # [linux] - {{ pin_compatible('torchvision') }} # [linux] - - {{ pin_compatible('numpy') }} - - pandas - matplotlib + - pandas + - pillow + - psutil + - h5py - tqdm - tabulate - - bob.core test: imports: - {{ name }} commands: - # test commands ("script" entry-points) from your package here - - bob binseg --help - - bob binseg train --help - - bob binseg test --help - - bob binseg compare --help - - nosetests --with-coverage --cover-package={{ name }} -sv {{ name }} + - nosetests --with-coverage --cover-package={{ name }} --cover-erase --cover-html-dir={{ project_dir }}/sphinx/coverage --cover-html --cover-xml-file={{ project_dir }}/coverage.xml --cover-xml -sv {{ name }} - sphinx-build -aEW {{ project_dir }}/doc {{ project_dir }}/sphinx - sphinx-build -aEb doctest {{ project_dir }}/doc sphinx - conda inspect linkages -p $PREFIX {{ name }} # [not win] @@ -61,15 +59,8 @@ test: - coverage - sphinx - sphinx_rtd_theme - - bob.db.drive - - bob.db.stare - - bob.db.chasedb1 - - bob.db.hrf - - bob.db.drionsdb - - bob.db.rimoner3 - - bob.db.drishtigs1 - - bob.db.refuge - - bob.db.iostar + - sphinxcontrib-programoutput + - graphviz about: summary: Binary Segmentation Benchmark Package for Bob diff --git a/develop.cfg b/develop.cfg index 9229bdf942a37e259b48ae2e724027d8b228f214..0bc61a9ea2ad1c927e7929eaf7f711c715a2e5a8 100644 --- a/develop.cfg +++ b/develop.cfg @@ -4,10 +4,6 @@ [buildout] parts = scripts eggs = bob.ip.binseg - bob.db.drive - bob.db.stare - bob.db.chasedb1 - bob.db.hrf bob.db.drionsdb bob.db.rimoner3 bob.db.drishtigs1 @@ -16,11 +12,7 @@ eggs = bob.ip.binseg extensions = bob.buildout mr.developer auto-checkout = * -develop = src/bob.db.drive - src/bob.db.stare - src/bob.db.chasedb1 - src/bob.db.hrf - src/bob.db.drionsdb +develop = src/bob.db.drionsdb src/bob.db.rimoner3 src/bob.db.drishtigs1 src/bob.db.refuge @@ -33,10 +25,6 @@ verbose = true newest = false [sources] -bob.db.drive = git git@gitlab.idiap.ch:bob/bob.db.drive -bob.db.stare = git git@gitlab.idiap.ch:bob/bob.db.stare -bob.db.chasedb1 = git git@gitlab.idiap.ch:bob/bob.db.chasedb1 -bob.db.hrf = git git@gitlab.idiap.ch:bob/bob.db.hrf bob.db.drionsdb = git git@gitlab.idiap.ch:bob/bob.db.drionsdb bob.db.rimoner3 = git git@gitlab.idiap.ch:bob/bob.db.rimoner3 bob.db.drishtigs1 = git git@gitlab.idiap.ch:bob/bob.db.drishtigs1 diff --git a/doc/_templates/config.rst b/doc/_templates/config.rst new file mode 100644 index 0000000000000000000000000000000000000000..a287392f705f1c10adec86c2e2e5a1b0b1c9cb24 --- /dev/null +++ b/doc/_templates/config.rst @@ -0,0 +1,2 @@ +{% include "autosummary/module.rst" %} +.. literalinclude:: ../../../../{{ fullname.replace(".", "/") }}.py diff --git a/doc/acknowledgements.rst b/doc/acknowledgements.rst index 7dde8b5d62beb777bc0145af8ad5cbdbae53ebff..9783907ffca7da96f7dc391994894e079c11d1be 100644 --- a/doc/acknowledgements.rst +++ b/doc/acknowledgements.rst @@ -1,39 +1,17 @@ .. -*- coding: utf-8 -*- + .. _bob.ip.binseg.acknowledgements: -================ -Acknowledgements -================ +================== + Acknowledgements +================== This packages utilizes code from the following packages: -* The model-checkpointer is based on the Checkpointer in maskrcnn_benchmark by:: - - @misc{massa2018mrcnn, - author = {Massa, Francisco and Girshick, Ross}, - title = {{maskrcnn-benchmark: Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch}}, - year = {2018}, - howpublished = {\url{https://github.com/facebookresearch/maskrcnn-benchmark}}, - note = {Accessed: 2019.05.01} - } - -* The AdaBound optimizer code by:: - - @inproceedings{Luo2019AdaBound, - author = {Luo, Liangchen and Xiong, Yuanhao and Liu, Yan and Sun, Xu}, - title = {Adaptive Gradient Methods with Dynamic Bound of Learning Rate}, - booktitle = {Proceedings of the 7th International Conference on Learning Representations}, - month = {May}, - year = {2019}, - address = {New Orleans, Louisiana} - } +* The model-checkpointer is based on the implementation in + `maskrcnn-benchmark`_ by [MASSA-2018]_ +* The AdaBound optimizer code was sourced from [LUO-2019]_ +* The MobileNetV2 backbone is based on [LIN-2018]_ -* The MobileNetV2 backbone is based on an implementation by:: - @misc{tonylins, - author = {Ji Lin}, - title = {pytorch-mobilenet-v2}, - year = {2018} - howpublished = {\url{https://github.com/tonylins/pytorch-mobilenet-v2}}, - note = {Accessed: 2019.05.01} - } +.. include:: links.rst diff --git a/doc/api.rst b/doc/api.rst index 1eade48273e9a1117484ac0d14a7df6b510b5e3d..8d145ad5534429edf24cc0be8286449ab86f93a9 100644 --- a/doc/api.rst +++ b/doc/api.rst @@ -1,50 +1,187 @@ .. -*- coding: utf-8 -*- -.. _bob.ip.binseg.api: -============ - Python API -============ +===================================== + Application Program Interface (API) +===================================== -This section lists all the functionality available in this library allowing to -run binary-segmentation benchmarks. +.. To update these lists, run the following command on the root of the package: +.. find bob -name '*.py' | sed -e 's#/#.#g;s#.py$##g;s#.__init__##g' | sort +.. You may apply further filtering to update only one of the subsections below -PyTorch bob.db Dataset -====================== -.. automodule:: bob.ip.binseg.data.binsegdataset +Data Manipulation +----------------- -PyTorch ImageFolder Dataset -=========================== -.. automodule:: bob.ip.binseg.data.imagefolder +.. autosummary:: + :toctree: api/data -.. automodule:: bob.ip.binseg.data.imagefolderinference + bob.ip.binseg.data.dataset + bob.ip.binseg.data.loader + bob.ip.binseg.data.sample + bob.ip.binseg.data.utils + bob.ip.binseg.data.transforms -Transforms -========== -.. note:: - All transforms work with :py:class:`PIL.Image.Image` objects. We make heavy use of the - `torchvision package`_ -.. automodule:: bob.ip.binseg.data.transforms +Datasets +-------- -Losses +.. autosummary:: + :toctree: api/dataset + + bob.ip.binseg.data.drive + bob.ip.binseg.data.stare + bob.ip.binseg.data.chasedb1 + bob.ip.binseg.data.hrf + bob.ip.binseg.data.iostar + bob.ip.binseg.data.refuge + bob.ip.binseg.data.drishtigs1 + bob.ip.binseg.data.rimoner3 + bob.ip.binseg.data.drionsdb + + +Engines +------- + +.. autosummary:: + :toctree: api/engine + + bob.ip.binseg.engine + bob.ip.binseg.engine.trainer + bob.ip.binseg.engine.ssltrainer + bob.ip.binseg.engine.predictor + bob.ip.binseg.engine.evaluator + bob.ip.binseg.engine.adabound + + +Neural Network Models +--------------------- + +.. autosummary:: + :toctree: api/modeling + + bob.ip.binseg.modeling + bob.ip.binseg.modeling.backbones + bob.ip.binseg.modeling.backbones.mobilenetv2 + bob.ip.binseg.modeling.backbones.resnet + bob.ip.binseg.modeling.backbones.vgg + bob.ip.binseg.modeling.driu + bob.ip.binseg.modeling.driubn + bob.ip.binseg.modeling.driuod + bob.ip.binseg.modeling.driupix + bob.ip.binseg.modeling.hed + bob.ip.binseg.modeling.losses + bob.ip.binseg.modeling.m2u + bob.ip.binseg.modeling.make_layers + bob.ip.binseg.modeling.resunet + bob.ip.binseg.modeling.unet + + +Toolbox +------- + +.. autosummary:: + :toctree: api/utils + + bob.ip.binseg.utils + bob.ip.binseg.utils.checkpointer + bob.ip.binseg.utils.metric + bob.ip.binseg.utils.model_serialization + bob.ip.binseg.utils.model_zoo + bob.ip.binseg.utils.plot + bob.ip.binseg.utils.table + bob.ip.binseg.utils.summary + + +.. _bob.ip.binseg.configs: + +Preset Configurations +--------------------- + +Preset configurations for baseline systems + +This module contains preset configurations for baseline FCN architectures and +datasets. + + +Models ====== -.. automodule:: bob.ip.binseg.modeling.losses -Training -======== -.. automodule:: bob.ip.binseg.engine.trainer +.. autosummary:: + :toctree: api/configs/models + :template: config.rst -Checkpointer -============ -.. automodule:: bob.ip.binseg.utils.checkpointer + bob.ip.binseg.configs.models.driu + bob.ip.binseg.configs.models.driu_bn + bob.ip.binseg.configs.models.driu_bn_ssl + bob.ip.binseg.configs.models.driu_od + bob.ip.binseg.configs.models.driu_ssl + bob.ip.binseg.configs.models.hed + bob.ip.binseg.configs.models.m2unet + bob.ip.binseg.configs.models.m2unet_ssl + bob.ip.binseg.configs.models.resunet + bob.ip.binseg.configs.models.unet -Inference and Evaluation -======================== -.. automodule:: bob.ip.binseg.engine.inferencer -Plotting +.. _bob.ip.binseg.configs.datasets: + +Datasets ======== -.. automodule:: bob.ip.binseg.utils.plot -.. include:: links.rst +.. automodule:: bob.ip.binseg.configs.datasets + +.. autosummary:: + :toctree: api/configs/datasets + :template: config.rst + + bob.ip.binseg.configs.datasets.csv + + bob.ip.binseg.configs.datasets.chasedb1.first_annotator + bob.ip.binseg.configs.datasets.chasedb1.second_annotator + bob.ip.binseg.configs.datasets.chasedb1.xtest + bob.ip.binseg.configs.datasets.chasedb1.mtest + bob.ip.binseg.configs.datasets.chasedb1.covd + bob.ip.binseg.configs.datasets.chasedb1.ssl + + bob.ip.binseg.configs.datasets.drive.default + bob.ip.binseg.configs.datasets.drive.second_annotator + bob.ip.binseg.configs.datasets.drive.xtest + bob.ip.binseg.configs.datasets.drive.mtest + bob.ip.binseg.configs.datasets.drive.covd + bob.ip.binseg.configs.datasets.drive.ssl + + bob.ip.binseg.configs.datasets.hrf.default + bob.ip.binseg.configs.datasets.hrf.xtest + bob.ip.binseg.configs.datasets.hrf.mtest + bob.ip.binseg.configs.datasets.hrf.default_fullres + bob.ip.binseg.configs.datasets.hrf.covd + bob.ip.binseg.configs.datasets.hrf.ssl + + bob.ip.binseg.configs.datasets.iostar.vessel + bob.ip.binseg.configs.datasets.iostar.vessel_xtest + bob.ip.binseg.configs.datasets.iostar.vessel_mtest + bob.ip.binseg.configs.datasets.iostar.optic_disc + bob.ip.binseg.configs.datasets.iostar.covd + bob.ip.binseg.configs.datasets.iostar.ssl + + bob.ip.binseg.configs.datasets.stare.ah + bob.ip.binseg.configs.datasets.stare.vk + bob.ip.binseg.configs.datasets.stare.xtest + bob.ip.binseg.configs.datasets.stare.mtest + bob.ip.binseg.configs.datasets.stare.covd + bob.ip.binseg.configs.datasets.stare.ssl + + bob.ip.binseg.configs.datasets.refuge.cup + bob.ip.binseg.configs.datasets.refuge.disc + + bob.ip.binseg.configs.datasets.rimoner3.cup_exp1 + bob.ip.binseg.configs.datasets.rimoner3.cup_exp2 + bob.ip.binseg.configs.datasets.rimoner3.disc_exp1 + bob.ip.binseg.configs.datasets.rimoner3.disc_exp2 + + bob.ip.binseg.configs.datasets.drishtigs1.cup_all + bob.ip.binseg.configs.datasets.drishtigs1.cup_any + bob.ip.binseg.configs.datasets.drishtigs1.disc_all + bob.ip.binseg.configs.datasets.drishtigs1.disc_any + + bob.ip.binseg.configs.datasets.drionsdb.expert1 + bob.ip.binseg.configs.datasets.drionsdb.expert2 diff --git a/doc/benchmarkresults.rst b/doc/benchmarkresults.rst deleted file mode 100644 index 2f391611db75358ffeb809058e5bf2242a474b93..0000000000000000000000000000000000000000 --- a/doc/benchmarkresults.rst +++ /dev/null @@ -1,30 +0,0 @@ -.. -*- coding: utf-8 -*- -.. _bob.ip.binseg.benchmarkresults: - - -================== -Benchmark Results -================== - -F1 Scores -=========== - -* Benchmark results for models: DRIU, HED, M2UNet and U-Net. -* Models are trained and tested on the same dataset using the train-test split as indicated in :ref:`bob.ip.binseg.datasets` -* Standard-deviations across all test images are indicated in brakets - -+--------------------------------------------+------------------------------------------------+---------------------------------------------+-------------------------------------------+----------------------------------------------+---------------------------------------------+ -| F1 (std) | :ref:`bob.ip.binseg.configs.datasets.chasedb1` | :ref:`bob.ip.binseg.configs.datasets.drive` | :ref:`bob.ip.binseg.configs.datasets.hrf` | :ref:`bob.ip.binseg.configs.datasets.iostar` | :ref:`bob.ip.binseg.configs.datasets.stare` | -+--------------------------------------------+------------------------------------------------+---------------------------------------------+-------------------------------------------+----------------------------------------------+---------------------------------------------+ -| :ref:`bob.ip.binseg.configs.models.driu` | `0.810 (0.021) <driu_chasedb1.pth_>`_ | `0.820 (0.014) <driu_drive.pth_>`_ | `0.783 (0.055) <driu_hrf.pth_>`_ | `0.825 (0.020) <driu_iostar.pth_>`_ | `0.827 (0.037) <driu_stare.pth_>`_ | -+--------------------------------------------+------------------------------------------------+---------------------------------------------+-------------------------------------------+----------------------------------------------+---------------------------------------------+ -| :ref:`bob.ip.binseg.configs.models.hed` | 0.810 (0.022) | 0.817 (0.013) | 0.783 (0.058) | 0.825 (0.020) | 0.823 (0.037) | -+--------------------------------------------+------------------------------------------------+---------------------------------------------+-------------------------------------------+----------------------------------------------+---------------------------------------------+ -| :ref:`bob.ip.binseg.configs.models.m2unet` | `0.802 (0.019) <m2unet_chasedb1.pth_>`_ | `0.803 (0.014) <m2unet_drive.pth_>`_ | `0.780 (0.057) <m2unet_hrf.pth_>`_ | `0.817 (0.020) <m2unet_iostar.pth_>`_ | `0.815 (0.041) <m2unet_stare.pth_>`_ | -+--------------------------------------------+------------------------------------------------+---------------------------------------------+-------------------------------------------+----------------------------------------------+---------------------------------------------+ -| :ref:`bob.ip.binseg.configs.models.unet` | 0.812 (0.020) | 0.822 (0.015) | 0.788 (0.051) | 0.818 (0.019) | 0.829 (0.042) | -+--------------------------------------------+------------------------------------------------+---------------------------------------------+-------------------------------------------+----------------------------------------------+---------------------------------------------+ - - - -.. include:: links.rst diff --git a/doc/cli.rst b/doc/cli.rst new file mode 100644 index 0000000000000000000000000000000000000000..588cc997c85333e3fd2cf948dd9bd650f26b8a8e --- /dev/null +++ b/doc/cli.rst @@ -0,0 +1,182 @@ +.. -*- coding: utf-8 -*- + +.. _bob.ip.binseg.cli: + +============================== + Command-Line Interface (CLI) +============================== + +This package provides a single entry point for all of its applications using +:ref:`Bob's unified CLI mechanism <bob.extension.cli>`. A list of available +applications can be retrieved using: + +.. command-output:: bob binseg --help + + +Setup +----- + +A CLI application to list and check installed (raw) datasets. + +.. _bob.ip.binseg.cli.dataset: + +.. command-output:: bob binseg dataset --help + + +List available datasets +======================= + +Lists supported and configured raw datasets. + +.. _bob.ip.binseg.cli.dataset.list: + +.. command-output:: bob binseg dataset list --help + + +Check available datasets +======================== + +Checks if we can load all files listed for a given dataset (all subsets in all +protocols). + +.. _bob.ip.binseg.cli.dataset.check: + +.. command-output:: bob binseg dataset check --help + + +Preset Configuration Resources +------------------------------ + +A CLI application allows one to list, inspect and copy available configuration +resources exported by this package. + +.. _bob.ip.binseg.cli.config: + +.. command-output:: bob binseg config --help + + +.. _bob.ip.binseg.cli.config.list: + +Listing Resources +================= + +.. command-output:: bob binseg config list --help + + +.. _bob.ip.binseg.cli.config.list.all: + +Available Resources +=================== + +Here is a list of all resources currently exported. + +.. command-output:: bob binseg config list -v + + +.. _bob.ip.binseg.cli.config.describe: + +Describing a Resource +===================== + +.. command-output:: bob binseg config describe --help + + +.. _bob.ip.binseg.cli.config.copy: + +Copying a Resource +================== + +You may use this command to locally copy a resource file so you can change it. + +.. command-output:: bob binseg config copy --help + + +.. _bob.ip.binseg.cli.combined: + +Running and Analyzing Experiments +--------------------------------- + +These applications run a combined set of steps in one go. They work well with +our preset :ref:`configuration resources <bob.ip.binseg.cli.config.list.all>`. + + +.. _bob.ip.binseg.cli.experiment: + +Running a Full Experiment Cycle +=============================== + +This command can run training, prediction, evaluation and comparison from a +single, multi-step application. + +.. command-output:: bob binseg experiment --help + + +.. _bob.ip.binseg.cli.analyze: + +Running Complete Experiment Analysis +==================================== + +This command can run prediction, evaluation and comparison from a +single, multi-step application. + +.. command-output:: bob binseg analyze --help + + +.. _bob.ip.binseg.cli.single: + +Single-Step Applications +------------------------ + +These applications allow finer control over the experiment cycle. They also +work well with our preset :ref:`configuration resources +<bob.ip.binseg.cli.config.list.all>`, but allow finer control on the input +datasets. + + +.. _bob.ip.binseg.cli.train: + +Training FCNs +============= + +Training creates of a new PyTorch_ model. This model can be used for +evaluation tests or for inference. + +.. command-output:: bob binseg train --help + + +.. _bob.ip.binseg.cli.predict: + +Prediction with FCNs +==================== + +Inference takes as input a PyTorch_ model and generates output probabilities as +HDF5 files. The probability map has the same size as the input and indicates, +from 0 to 1 (floating-point number), the probability of a vessel in that pixel, +from less probable (0.0) to more probable (1.0). + +.. command-output:: bob binseg predict --help + + +.. _bob.ip.binseg.cli.evaluate: + +FCN Performance Evaluation +========================== + +Evaluation takes inference results and compares it to ground-truth, generating +a series of analysis figures which are useful to understand model performance. + +.. command-output:: bob binseg evaluate --help + + +.. _bob.ip.binseg.cli.compare: + +Performance Comparison +====================== + +Performance comparison takes the performance evaluation results and generate +combined figures and tables that compare results of multiple systems. + +.. command-output:: bob binseg compare --help + + +.. include:: links.rst diff --git a/doc/conf.py b/doc/conf.py index d64d7794ac7eaa26cc5ea7cb49728aa892946210..c822aa64808f039d7f956fef3044cada9fcd8d62 100644 --- a/doc/conf.py +++ b/doc/conf.py @@ -23,9 +23,15 @@ extensions = [ 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'sphinx.ext.mathjax', + 'sphinxcontrib.programoutput', #'matplotlib.sphinxext.plot_directive' ] +# This allows sphinxcontrib-programoutput to work in buildout mode +candidate_binpath = os.path.join(os.path.dirname(os.path.realpath(os.curdir)), 'bin') +if os.path.exists(candidate_binpath): + os.environ['PATH'] = candidate_binpath + os.pathsep + os.environ.get('PATH', '') + # Be picky about warnings nitpicky = True @@ -96,7 +102,12 @@ release = distribution.version # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. -exclude_patterns = ['links.rst'] +exclude_patterns = [ + 'links.rst', + 'api/modules.rst', + 'api/bob.rst', + 'api/bob.ip.rst', + ] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None @@ -236,25 +247,12 @@ else: intersphinx_mapping['torch'] = ('https://pytorch.org/docs/stable/', None) intersphinx_mapping['PIL'] = ('http://pillow.readthedocs.io/en/stable', None) intersphinx_mapping['pandas'] = ('https://pandas.pydata.org/pandas-docs/stable/',None) -# We want to remove all private (i.e. _. or __.__) members -# that are not in the list of accepted functions -accepted_private_functions = ['__array__'] - - -def member_function_test(app, what, name, obj, skip, options): - # test if we have a private function - if len(name) > 1 and name[0] == '_': - # test if this private function should be allowed - if name not in accepted_private_functions: - # omit privat functions that are not in the list of accepted private functions - return skip - else: - # test if the method is documented - if not hasattr(obj, '__doc__') or not obj.__doc__: - return skip - return False - - -def setup(app): - app.connect('autodoc-skip-member', member_function_test) - \ No newline at end of file + +# Figures out the major click version we use +import pkg_resources +click_version = pkg_resources.require('click')[0].version.split('.')[0] +click_version += '.x' +intersphinx_mapping['click'] = ('https://click.palletsprojects.com/en/%s/' % (click_version,),None) + +# Add our private index (for extras and fixes) +intersphinx_mapping['extras'] = ('', 'extras.inv') diff --git a/doc/configs.rst b/doc/configs.rst deleted file mode 100644 index e25e66c6afc3e2fc629c915f25475d101f81033c..0000000000000000000000000000000000000000 --- a/doc/configs.rst +++ /dev/null @@ -1,208 +0,0 @@ -.. -*- coding: utf-8 -*- -.. _bob.ip.binseg.configs: - -=============== -Configs -=============== - -Dataset Configs -=============== - -.. _bob.ip.binseg.configs.datasets.imagefolder: - -ImageFolder ----------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/imagefolder.py - -.. _bob.ip.binseg.configs.datasets.imagefoldertest: - -ImageFolderTest ----------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/imagefoldertest.py - -.. _bob.ip.binseg.configs.datasets.imagefolderinference: - -ImageFolderInference ---------------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/imagefolderinference.py - -.. _bob.ip.binseg.configs.datasets.chasedb1: - -CHASEDB1 ----------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/chasedb1.py - -CHASEDB1TEST ----------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/chasedb1test.py - -.. _bob.ip.binseg.configs.datasets.covd-drive: - -COVD-DRIVE ----------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/starechasedb1iostarhrf544.py - -.. _bob.ip.binseg.configs.datasets.covd-drive_ssl: - -COVD-DRIVE_SSL ----------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/starechasedb1iostarhrf544ssldrive.py - - -.. _bob.ip.binseg.configs.datasets.covd-stare: - -COVD-STARE ----------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivechasedb1iostarhrf608.py - -.. _bob.ip.binseg.configs.datasets.covd-stare_ssl: - -COVD-STARE_SSL ----------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivechasedb1iostarhrf608sslstare.py - - -.. _bob.ip.binseg.configs.datasets.covd-iostar: - -COVD-IOSTARVESSEL ----------------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivestarechasedb1hrf1024.py - -.. _bob.ip.binseg.configs.datasets.covd-iostar_ssl: - -COVD-IOSTARVESSEL_SSL ----------------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivestarechasedb1hrf1024ssliostar.py - - -.. _bob.ip.binseg.configs.datasets.covd-hrf: - -COVD-HRF ----------------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivestarechasedb1iostar1168.py - -.. _bob.ip.binseg.configs.datasets.covd-hrf_ssl: - -COVD-HRF_SSL ----------------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivestarechasedb1iostar1168sslhrf.py - - -.. _bob.ip.binseg.configs.datasets.covd-chasedb1: - -COVD-CHASEDB1 ----------------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivestareiostarhrf960.py - -.. _bob.ip.binseg.configs.datasets.covd-chasedb1_ssl: - -COVD-CHASEDB1_SSL ----------------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivestareiostarhrf960.py - - -.. _bob.ip.binseg.configs.datasets.drive: - -DRIVE ----------------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/drive.py - - -DRIVETEST ----------------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/drivetest.py - - -.. _bob.ip.binseg.configs.datasets.hrf: - -HRF ----------------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/hrf1168.py - -HRFTEST ----------------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/hrftest.py - - - -.. _bob.ip.binseg.configs.datasets.iostar: - -IOSTARVESSEL ----------------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/iostarvessel.py - -IOSTARVESSELTEST ----------------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/iostarvesseltest.py - - - -.. _bob.ip.binseg.configs.datasets.stare: - -STARE ----------------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/stare.py - -STARETEST ----------------------- -.. literalinclude:: ../bob/ip/binseg/configs/datasets/staretest.py - - - -Model Configs -============== - -.. _bob.ip.binseg.configs.models.driu: - -DRIU ------ -.. literalinclude:: ../bob/ip/binseg/configs/models/driu.py - - -.. _bob.ip.binseg.configs.models.driubn: - -DRIUBN ------- -.. literalinclude:: ../bob/ip/binseg/configs/models/driubn.py - - -.. _bob.ip.binseg.configs.models.hed: - -HED ------ -.. literalinclude:: ../bob/ip/binseg/configs/models/hed.py - - -.. _bob.ip.binseg.configs.models.m2unet: - -M2UNet ------- -.. literalinclude:: ../bob/ip/binseg/configs/models/m2unet.py - - -.. _bob.ip.binseg.configs.models.unet: - -UNet ------ -.. literalinclude:: ../bob/ip/binseg/configs/models/unet.py - - -.. _bob.ip.binseg.configs.models.driussl: - -DRIUSSL --------- -.. literalinclude:: ../bob/ip/binseg/configs/models/driussl.py - -.. _bob.ip.binseg.configs.models.driubnssl: - -DRIUBNSSL ---------- -.. literalinclude:: ../bob/ip/binseg/configs/models/driubnssl.py - - -.. _bob.ip.binseg.configs.models.m2unetssl: - -M2UNetSSL ---------- -.. literalinclude:: ../bob/ip/binseg/configs/models/m2unetssl.py - diff --git a/doc/covdresults.rst b/doc/covdresults.rst deleted file mode 100644 index bf2305f41fc0d8dfbb6fc379af11702d51b5e6da..0000000000000000000000000000000000000000 --- a/doc/covdresults.rst +++ /dev/null @@ -1,84 +0,0 @@ -.. -*- coding: utf-8 -*- -.. _bob.ip.binseg.covdresults: - - -========================== -COVD- and COVD-SLL Results -========================== - -In addition to the M2U-Net architecture, we also evaluated the larger DRIU network and a variation of it -that contains batch normalization (DRIU BN) on COVD- and COVD-SSL. Perhaps surprisingly, for the -majority of combinations, the performance of the DRIU variants are roughly equal or worse than the M2U-Net. -We anticipate that one reason for this could be overparameterization of large VGG16 models -that are pretrained on ImageNet. - -F1 Scores -=========== - -Comparison of F1-micro-scores (std) of DRIU and M2U-Net on COVD- and COVD-SSL. -Standard deviation across test-images in brackets. - -+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ -| F1 score | :ref:`bob.ip.binseg.configs.models.driu`/:ref:`bob.ip.binseg.configs.models.driussl` | :ref:`bob.ip.binseg.configs.models.driubn`/:ref:`bob.ip.binseg.configs.models.driubnssl` | :ref:`bob.ip.binseg.configs.models.m2unet`/:ref:`bob.ip.binseg.configs.models.m2unetssl` | -+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-drive` | 0.788 (0.018) | 0.797 (0.019) | `0.789 (0.018) <m2unet_covd-drive.pth>`_ | -+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-drive_ssl` | 0.785 (0.018) | 0.783 (0.019) | `0.791 (0.014) <m2unet_covd-drive_ssl.pth>`_ | -+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-stare` | 0.778 (0.117) | 0.778 (0.122) | `0.812 (0.046) <m2unet_covd-stare.pth>`_ | -+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-stare_ssl` | 0.788 (0.102) | 0.811 (0.074) | `0.820 (0.044) <m2unet_covd-stare_ssl.pth>`_ | -+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-chasedb1` | 0.796 (0.027) | 0.791 (0.025) | `0.788 (0.024) <m2unet_covd-chasedb1.pth>`_ | -+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-chasedb1_ssl` | 0.796 (0.024) | 0.798 (0.025) | `0.799 (0.026) <m2unet_covd-chasedb1_ssl.pth>`_ | -+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-hrf` | 0.799 (0.044) | 0.800 (0.045) | `0.802 (0.045) <m2unet_covd-hrf.pth>`_ | -+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-hrf_ssl` | 0.799 (0.044) | 0.784 (0.048) | `0.797 (0.044) <m2unet_covd-hrf_ssl.pth>`_ | -+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-iostar` | 0.791 (0.021) | 0.777 (0.032) | `0.793 (0.015) <m2unet_covd-iostar.pth>`_ | -+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ -| :ref:`bob.ip.binseg.configs.datasets.covd-iostar_ssl` | 0.797 (0.017) | 0.811 (0.074) | `0.785 (0.018) <m2unet_covd-iostar_ssl.pth>`_ | -+---------------------------------------------------------+--------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+ - -M2U-Net Precision vs. Recall Curves -=================================== -Precision vs. recall curves for each evaluated dataset. -Note that here the F1-score is calculated on a macro level (see paper for more details). - -.. figure:: img/pr_CHASEDB1.png - :scale: 50 % - :align: center - :alt: model comparisons - - CHASE_DB1: Precision vs Recall curve and F1 scores - -.. figure:: img/pr_DRIVE.png - :scale: 50 % - :align: center - :alt: model comparisons - - DRIVE: Precision vs Recall curve and F1 scores - -.. figure:: img/pr_HRF.png - :scale: 50 % - :align: center - :alt: model comparisons - - HRF: Precision vs Recall curve and F1 scores - -.. figure:: img/pr_IOSTARVESSEL.png - :scale: 50 % - :align: center - :alt: model comparisons - - IOSTAR: Precision vs Recall curve and F1 scores - -.. figure:: img/pr_STARE.png - :scale: 50 % - :align: center - :alt: model comparisons - - STARE: Precision vs Recall curve and F1 scores - diff --git a/doc/datasets.rst b/doc/datasets.rst index 5b82d3b12f8909a414055a17a3360c73d8449e1e..a1fb29e04e27da12f0d508f15be1a498ff589c70 100644 --- a/doc/datasets.rst +++ b/doc/datasets.rst @@ -1,64 +1,129 @@ .. -*- coding: utf-8 -*- -.. _bob.ip.binseg.datasets: - -================== -Supported Datasets -================== - -+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+ -| # | Name | H x W | # imgs | Train | Test | Mask | Vessel | OD | Cup | Train-Test split reference | -+=====+===============+=============+========+=======+======+======+========+=====+=====+============================+ -| 1 | Drive_ | 584 x 565 | 40 | 20 | 20 | x | x | | | `Staal et al. (2004)`_ | -+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+ -| 2 | STARE_ | 605 x 700 | 20 | 10 | 10 | | x | | | `Maninis et al. (2016)`_ | -+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+ -| 3 | CHASEDB1_ | 960 x 999 | 28 | 8 | 20 | | x | | | `Fraz et al. (2012)`_ | -+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+ -| 4 | HRF_ | 2336 x 3504 | 45 | 15 | 30 | x | x | | | `Orlando et al. (2016)`_ | -+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+ -| 5 | IOSTAR_ | 1024 x 1024 | 30 | 20 | 10 | x | x | x | | `Meyer et al. (2017)`_ | -+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+ -| 6 | DRIONS-DB_ | 400 x 600 | 110 | 60 | 50 | | | x | | `Maninis et al. (2016)`_ | -+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+ -| 7 | RIM-ONEr3_ | 1424 x 1072 | 159 | 99 | 60 | | | x | x | `Maninis et al. (2016)`_ | -+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+ -| 8 | Drishti-GS1_ | varying | 101 | 50 | 51 | | | x | x | `Sivaswamy et al. (2014)`_ | -+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+ -| 9 | REFUGE_ train | 2056 x 2124 | 400 | 400 | | | | x | x | REFUGE_ | -+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+ -| 9 | REFUGE_ val | 1634 x 1634 | 400 | | 400 | | | x | x | REFUGE_ | -+-----+---------------+-------------+--------+-------+------+------+--------+-----+-----+----------------------------+ - - -Add-on: Folder-based Dataset -============================ - -For quick experimentation we also provide a PyTorch class that works with the following -dataset folder structure for images and ground-truth (gt): - -.. code-block:: bash - - root - |- images - |- gt -the file names should have the same stem. Currently all image formats that can be read via PIL are supported. Additionally we support hdf5 binary files. - -For training a new dataset config needs to be created. You can copy the template :ref:`bob.ip.binseg.configs.datasets.imagefolder` and amend accordingly, -e.g. the full path of the dataset and if necessary any preprocessing steps such as resizing, cropping, padding etc.. - -Training can then be started with - -.. code-block:: bash - - bob binseg train M2UNet /path/to/myimagefolderconfig.py -b 4 -d cuda -o /my/output/path -vv - -Similary for testing, a test dataset config needs to be created. You can copy the template :ref:`bob.ip.binseg.configs.datasets.imagefoldertest` and amend accordingly. - -Testing can then be started with +.. _bob.ip.binseg.datasets: -.. code-block:: bash +==================== + Supported Datasets +==================== + +Here is a list of currently support datasets in this package, alongside notable +properties. Each dataset name is linked to the current location where raw data +can be downloaded. We include the reference of the data split protocols used +to generate iterators for training and testing. + + +.. list-table:: + + * - Dataset + - Reference + - H x W + - Samples + - Mask + - Vessel + - OD + - Cup + - Split Reference + - Train + - Test + * - DRIVE_ + - [DRIVE-2004]_ + - 584 x 565 + - 40 + - x + - x + - + - + - [DRIVE-2004]_ + - 20 + - 20 + * - STARE_ + - [STARE-2000]_ + - 605 x 700 + - 20 + - + - x + - + - + - [MANINIS-2016]_ + - 10 + - 10 + * - CHASE-DB1_ + - [CHASEDB1-2012]_ + - 960 x 999 + - 28 + - + - x + - + - + - [CHASEDB1-2012]_ + - 8 + - 20 + * - HRF_ + - [HRF-2013]_ + - 2336 x 3504 + - 45 + - x + - x + - + - + - [ORLANDO-2017]_ + - 15 + - 30 + * - IOSTAR_ + - [IOSTAR-2016]_ + - 1024 x 1024 + - 30 + - x + - x + - x + - + - [MEYER-2017]_ + - 20 + - 10 + * - DRIONS-DB_ + - [DRIONSDB-2008]_ + - 400 x 600 + - 110 + - + - + - x + - + - [MANINIS-2016]_ + - 60 + - 50 + * - `RIM-ONE r3`_ + - [RIMONER3-2015]_ + - 1424 x 1072 + - 159 + - + - + - x + - x + - [MANINIS-2016]_ + - 99 + - 60 + * - Drishti-GS1_ + - [DRISHTIGS1-2014]_ + - varying + - 101 + - + - + - x + - x + - [DRISHTIGS1-2014]_ + - 50 + - 51 + * - REFUGE_ + - [REFUGE-2018]_ + - 2056 x 2124 (1634 x 1634) + - 1200 + - + - + - x + - x + - [REFUGE-2018]_ + - 400 (+400) + - 400 - bob binseg test M2UNet /path/to/myimagefoldertestconfig.py -b 2 -d cuda -o /my/output/path -vv .. include:: links.rst diff --git a/doc/evaluation.rst b/doc/evaluation.rst index 2fb923a00978a3a6aa172722697472f77c94a118..0368ad6ddd23ab5c231a0e3c29fe8f88f9c0e51b 100644 --- a/doc/evaluation.rst +++ b/doc/evaluation.rst @@ -1,111 +1,97 @@ .. -*- coding: utf-8 -*- -.. _bob.ip.binseg.evaluation: -========== -Evaluation -========== +.. _bob.ip.binseg.eval: -To evaluate trained models use use ``bob binseg test`` followed by -the model config, the dataset config and the path to the pretrained -model via the argument ``-w``. +========================== + Inference and Evaluation +========================== -Alternatively point to the output folder used during training via -the ``-o`` argument. The Checkpointer will load the model as indicated -in the file: ``last_checkpoint``. +This guides explains how to run inference or a complete evaluation using +command-line tools. Inference produces probability maps for input images, +while evaluation will analyze such output against existing annotations and +produce performance figures. -Use ``bob binseg test --help`` for more information. -E.g. run inference on model M2U-Net on the DRIVE test set: +Inference +--------- -.. code-block:: bash +You may use one of your trained models (or :ref:`one of ours +<bob.ip.binseg.models>` to run inference on existing datasets or your own +dataset. In inference (or prediction) mode, we input data, the trained model, +and output HDF5 files containing the prediction outputs for every input image. +Each HDF5 file contains a single object with a 2-dimensional matrix of floating +point numbers indicating the vessel probability (``[0.0,1.0]``) for each pixel +in the input image. - # Point directly to saved model via -w argument: - bob binseg test M2UNet DRIVETEST -o /outputfolder/for/results -w /direct/path/to/weight/model_final.pth - # Use training output path (requries last_checkpoint file to be present) - # The evaluation results will be stored in the same folder - bob binseg test M2UNet DRIVETEST -o /DRIVE/M2UNet/output +Inference on an existing dataset +================================ + +To run inference, use the sub-command :ref:`predict +<bob.ip.binseg.cli.predict>` to run prediction on an existing dataset: + +.. code-block:: sh + + $ bob binseg predict -vv <model> -w <path/to/model.pth> <dataset> -Outputs -======== -The inference run generates the following output files: + +Replace ``<model>`` and ``<dataset>`` by the appropriate :ref:`configuration +files <bob.ip.binseg.configs>`. Replace ``<path/to/model.pth>`` to a path +leading to the pre-trained model, or URL pointing to a pre-trained model (e.g. +:ref:`one of ours <bob.ip.binseg.models>`). + + +Inference on a custom dataset +============================= + +If you would like to test your own data against one of the pre-trained models, +you need to instantiate :py:mod:`A CSV-based configuration +<bob.ip.binseg.configs.datasets.csv>` + +Read the appropriate module documentation for details. .. code-block:: bash - . - ├── images # the predicted probabilities as grayscale images in .png format - ├── hdf5 # the predicted probabilties in hdf5 format - ├── last_checkpoint # text file that keeps track of the last checkpoint - ├── M2UNet_trainlog.csv # training log - ├── M2UNet_trainlog.pdf # training log plot - ├── model_*.pth # model checkpoints - └── results - ├── image*.jpg.csv # evaluation metrics for each image - ├── Metrics.csv # average evaluation metrics - ├── ModelSummary.txt # model summary and parameter count - ├── precision_recall.pdf # precision vs recall plot - └── Times.txt # inference times - -Inference Only Mode -==================== - -If you wish to run inference only on a folder containing images, use the ``predict`` function in combination with a :ref:`bob.ip.binseg.configs.datasets.imagefolderinference` config. E.g.: + $ bob binseg config copy csv-dataset-example mydataset.py + # edit mydataset.py to your liking + $ bob binseg predict -vv <model> -w <path/to/model.pth> ./mydataset.py + + +Inference typically consumes less resources than training, but you may speed +things up using ``--device='cuda:0'`` in case you have a GPU. + + +Evaluation +---------- + +In evaluation, we input an **annotated** dataset and predictions to generate +performance summaries that help analysis of a trained model. Evaluation is +done using the :ref:`evaluate command `<bob.ip.binseg.cli.evaluate>` followed +by the model and the annotated dataset configuration, and the path to the +pretrained weights via the ``--weight`` argument. + +Use ``bob binseg evaluate --help`` for more information. + +E.g. run inference on predictions from the DRIVE test set, do the following: .. code-block:: bash - bob binseg predict M2UNet /path/to/myinferencedatasetconfig.py -b 1 -d cpu -o /my/output/path -w /path/to/pretrained/weight/model_final.pth -vv + # Point directly to saved model via -w argument: + bob binseg evaluate -vv drive-test -p /predictions/folder -o /eval/results/folder + +If available, you may use the option ``--second-annotator`` to -Pretrained Models + +Comparing Systems ================= -Due to storage limitations we only provide weights of a subset -of all evaluated models: - - - -+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+ -| | DRIU | M2UNet | -+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+ -| DRIVE | `DRIU_DRIVE.pth`_ | `M2UNet_DRIVE.pth <m2unet_drive.pth_>`_ | -+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+ -| COVD-DRIVE | | `M2UNet_COVD-DRIVE.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-DRIVE.pth>`_ | -+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+ -| COVD-DRIVE SSL | | `M2UNet_COVD-DRIVE_SSL.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-DRIVE_SSL.pth>`_ | -+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+ -| STARE | DRIU_STARE.pth_ | `M2UNet_STARE.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_STARE.pth>`_ | -+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+ -| COVD-STARE | | `M2UNet_COVD-STARE.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-STARE.pth>`_ | -+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+ -| COVD-STARE SSL | | `M2UNet_COVD-STARE_SSL.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-STARE_SSL.pth>`_ | -+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+ -| CHASE_DB1 | DRIU_CHASEDB1.pth_ | `M2UNet_CHASEDB1.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_CHASEDB1.pth>`_ | -+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+ -| COVD-CHASE_DB1 | | `M2UNet_COVD-CHASEDB1.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-CHASEDB1.pth>`_ | -+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+ -| COVD-CHASE_DB1 SSL | | `M2UNet_COVD-CHASEDB1_SSL.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-CHASEDB1_SSL.pth>`_ | -+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+ -| IOSTARVESSEL | DRIU_IOSTAR.pth_ | `M2UNet_IOSTARVESSEL.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_IOSTARVESSEL.pth>`_ | -+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+ -| COVD-IOSTAR | | `M2UNet_COVD-IOSTAR.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-IOSTAR.pth>`_ | -+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+ -| COVD-IOSTAR SSL | | `M2UNet_COVD-IOSTAR_SSL.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-IOSTAR_SSL.pth>`_ | -+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+ -| HRF | DRIU_HRF.pth_ | `M2UNet_HRF1168.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_HRF1168.pth>`_ | -+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+ -| COVD-HRF | | `M2UNet_COVD-HRF.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-HRF.pth>`_ | -+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+ -| COVD-HRF SSL | | `M2UNet_COVD-HRF_SSL.pth <https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-HRF_SSL.pth>`_ | -+--------------------+--------------------+--------------------------------------------------------------------------------------------------------------------------------+ - - - -To run evaluation of pretrained models pass url as ``-w`` argument. E.g.: +To compare multiple systems together and generate combined plots and tables, +use the :ref:`compare command <bob.ip.binseg.cli.compare>`. Use ``--help`` for +a quick guide. .. code-block:: bash - bob binseg test DRIU DRIVETEST -o Evaluation_DRIU_DRIVE -w https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_DRIVE.pth - bob binseg test M2UNet DRIVETEST -o Evaluation_M2UNet_DRIVE -w https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_DRIVE.pth - + $ bob binseg compare -vv A A/metrics.csv B B/metrics.csv .. include:: links.rst diff --git a/doc/experiment.rst b/doc/experiment.rst new file mode 100644 index 0000000000000000000000000000000000000000..9050af004419e2ca7fb3a2d41a72c245bcc448eb --- /dev/null +++ b/doc/experiment.rst @@ -0,0 +1,192 @@ +.. -*- coding: utf-8 -*- + +.. _bob.ip.binseg.experiment: + +============================== + Running complete experiments +============================== + +We provide an :ref:`aggregator command called "experiment" +<bob.ip.binseg.cli.experiment>` that runs training, followed by prediction, +evaluation and comparison. After running, you will be able to find results +from model fitting, prediction, evaluation and comparison under a single output +directory. + +For example, to train a Mobile V2 U-Net architecture on the STARE dataset, +evaluate both train and test set performances, output prediction maps and +overlay analysis, together with a performance curve, run the following: + +.. code-block:: sh + + $ bob binseg experiment -vv m2unet stare --batch-size=16 --overlayed + # check results in the "results" folder + +You may run the system on a GPU by using the ``--device=cuda:0`` option. + + +Using your own dataset +====================== + +To use your own dataset, we recommend you read our instructions at +:py:mod:`bob.ip.binseg.configs.datasets.csv`, and setup one or more CSV file +describing input data and ground-truth (segmentation maps), and potential test +data. Then, prepare a configuration file by copying our configuration example +and edit it to apply the required transforms to your input data. Once you are +happy with the result, use it in place of one of our datasets: + +.. code-block:: sh + + $ bob binseg config copy csv-dataset-example mydataset.py + # edit mydataset following instructions + $ bob binseg train ... mydataset.py ... + + +Baseline Benchmarks +=================== + +The following table describes recommended batch sizes for 24Gb of RAM GPU +card, for supervised training of baselines. Use it like this: + +.. code-block:: sh + + # change <model> and <dataset> by one of items bellow + $ bob binseg experiment -vv <model> <dataset> --batch-size=<see-table> --device="cuda:0" + # check results in the "results" folder + +.. list-table:: + + * - **Models / Datasets** + - :py:mod:`drive <bob.ip.binseg.configs.datasets.drive.default>` + - :py:mod:`stare <bob.ip.binseg.configs.datasets.stare.ah>` + - :py:mod:`chasedb1 <bob.ip.binseg.configs.datasets.chasedb1.first_annotator>` + - :py:mod:`iostar-vessel <bob.ip.binseg.configs.datasets.iostar.vessel>` + - :py:mod:`hrf <bob.ip.binseg.configs.datasets.hrf.default>` + * - :py:mod:`unet <bob.ip.binseg.configs.models.unet>` + - 4 + - 2 + - 2 + - 2 + - 1 + * - :py:mod:`hed <bob.ip.binseg.configs.models.hed>` + - 8 + - 4 + - 4 + - 4 + - 1 + * - :py:mod:`driu <bob.ip.binseg.configs.models.driu>` / :py:mod:`driu-bn <bob.ip.binseg.configs.models.driu_bn>` + - 8 + - 5 + - 4 + - 4 + - 1 + * - :py:mod:`m2unet <bob.ip.binseg.configs.models.m2unet>` + - 16 + - 6 + - 6 + - 6 + - 1 + + +.. tip:: + + Instead of the default configurations, you can pass the full path of your + customized dataset and model files. You may :ref:`copy any of the existing + configuration resources <bob.ip.binseg.cli.config.copy>` and change them + locally. Once you're happy, you may use the newly created files directly on + your command line. For example, suppose you wanted to slightly change the + DRIVE pre-processing pipeline. You could do the following: + + .. code-block:: bash + + $ bob binseg config copy drive my_drive_remix.py + # edit my_drive_remix.py to your needs + $ bob binseg train -vv <model> ./my_drive_remix.py + + +.. _bob.ip.binseg.gridtk-tip: + +.. tip:: + + If you are at Idiap, you may install the package ``gridtk`` (``conda install + gridtk``) on your environment, and submit the job like this: + + .. code-block:: sh + + $ jman submit --queue=gpu --memory=24G --name=myjob -- bob binseg train --device='cuda:0' ... #paste the rest of the command-line + +.. _bob.ip.binseg.baseline-script: + +The :download:`following shell script <scripts/baselines.sh>` can run the +various baselines described above and place results in a single directory: + +.. literalinclude:: scripts/baselines.sh + :language: bash + +You will find results obtained running these baselines :ref:`further in this +guide <bob.ip.binseg.results.baselines>`. + + +Combined Vessel Dataset (COVD) +============================== + +The following table describes recommended batch sizes for 24Gb of RAM GPU card, +for supervised training of COVD- systems. Use it like this: + +.. code-block:: sh + + # change <model> and <dataset> by one of items bellow + $ bob binseg train -vv <model> <dataset> --batch-size=<see-table> --device="cuda:0" + +.. list-table:: + + * - **Models / Datasets** + - :py:mod:`drive-covd <bob.ip.binseg.configs.datasets.drive.covd>` + - :py:mod:`stare-covd <bob.ip.binseg.configs.datasets.stare.covd>` + - :py:mod:`chasedb1-covd <bob.ip.binseg.configs.datasets.chasedb1.covd>` + - :py:mod:`iostar-vessel-covd <bob.ip.binseg.configs.datasets.iostar.covd>` + - :py:mod:`hrf-covd <bob.ip.binseg.configs.datasets.hrf.covd>` + * - :py:mod:`driu <bob.ip.binseg.configs.models.driu>` / :py:mod:`driu-bn <bob.ip.binseg.configs.models.driu_bn>` + - 4 + - 4 + - 2 + - 2 + - 2 + * - :py:mod:`m2unet <bob.ip.binseg.configs.models.m2unet>` + - 8 + - 4 + - 4 + - 4 + - 4 + + +Combined Vessel Dataset (COVD) and Semi-Supervised Learning (SSL) +================================================================= + +The following table describes recommended batch sizes for 24Gb of RAM GPU +card, for semi-supervised learning of COVD- systems. Use it like this: + +.. code-block:: sh + + # change <model> and <dataset> by one of items bellow + $ bob binseg train -vv --ssl <model> <dataset> --batch-size=<see-table> --device="cuda:0" + +.. list-table:: + + * - **Models / Datasets** + - :py:mod:`drive-ssl <bob.ip.binseg.configs.datasets.drive.ssl>` + - :py:mod:`stare-ssl <bob.ip.binseg.configs.datasets.stare.ssl>` + - :py:mod:`chasedb1-ssl <bob.ip.binseg.configs.datasets.chasedb1.ssl>` + - :py:mod:`iostar-vessel-ssl <bob.ip.binseg.configs.datasets.iostar.ssl>` + - :py:mod:`hrf-ssl <bob.ip.binseg.configs.datasets.hrf.ssl>` + * - :py:mod:`driu-ssl <bob.ip.binseg.configs.models.driu_ssl>` / :py:mod:`driu-bn-ssl <bob.ip.binseg.configs.models.driu_bn_ssl>` + - 4 + - 4 + - 2 + - 1 + - 1 + * - :py:mod:`m2unet-ssl <bob.ip.binseg.configs.models.m2unet_ssl>` + - 4 + - 4 + - 2 + - 2 + - 2 diff --git a/doc/extra-intersphinx.txt b/doc/extra-intersphinx.txt index 37f700a78ecad7bea22172702e640797d7136a17..ac988bdf8417d99a3c45236479862b18684c79f5 100644 --- a/doc/extra-intersphinx.txt +++ b/doc/extra-intersphinx.txt @@ -1,2 +1,2 @@ torch -torchvision \ No newline at end of file +torchvision diff --git a/doc/extras.inv b/doc/extras.inv new file mode 100644 index 0000000000000000000000000000000000000000..55baaba61aa2392fa690178e23d9dbea964b8fc4 Binary files /dev/null and b/doc/extras.inv differ diff --git a/doc/extras.txt b/doc/extras.txt new file mode 100644 index 0000000000000000000000000000000000000000..4bd227b7d23d3ad0c631ffc5a285e08378c44468 --- /dev/null +++ b/doc/extras.txt @@ -0,0 +1,20 @@ +# Sphinx inventory version 2 +# Project: extras +# Version: stable +# The remainder of this file is compressed using zlib. +torch.optim.optimizer.Optimizer py:class 1 https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer - +torch.nn.Module py:class 1 https://pytorch.org/docs/stable/nn.html?highlight=module#torch.nn.Module - +torch.nn.modules.module.Module py:class 1 https://pytorch.org/docs/stable/nn.html?highlight=module#torch.nn.Module - +torch.utils.data.dataset.Dataset py:class 1 https://pytorch.org/docs/stable/data.html?highlight=dataset#torch.utils.data.Dataset - +unittest.case.TestCase py:class 1 https://docs.python.org/3/library/unittest.html?highlight=testcase#unittest.TestCase - +click.core.Option py:class 1 https://click.palletsprojects.com/en/7.x/api/#click.Option - +torchvision.transforms.transforms.ColorJitter py:class 1 https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.ColorJitter - +torchvision.transforms.transforms.RandomRotation py:class 1 https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.RandomRotation - +torchvision.transforms.transforms.RandomVerticalFlip py:class 1 https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.RandomVerticalFlip - +torchvision.transforms.transforms.RandomHorizontalFlip py:class 1 https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.RandomHorizontalFlip - +torchvision.transforms.transforms.Compose py:class 1 https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.Compose - +torchvision.transforms.transforms.ToTensor py:class 1 https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.ToTensor - +torchvision.transforms.transforms.Resize py:class 1 https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.Resize - +torchvision.transforms.transforms.Pad py:class 1 https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.Pad - +torchvision.transforms.transforms.CenterCrop py:class 1 https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.CenterCrop - +torchvision.transforms py:module 1 https://pytorch.org/docs/stable/torchvision/transforms.html - diff --git a/doc/framework.dot b/doc/framework.dot new file mode 100644 index 0000000000000000000000000000000000000000..50bfce5a2ff0030ee75c0138efd884c4e8f3228b --- /dev/null +++ b/doc/framework.dot @@ -0,0 +1,60 @@ +digraph framework { + + graph [ + rankdir=LR, + ]; + edge [ + fontname=Helvetica, + fontsize=12, + fontcolor=blue, + minlen=2, + labeldistance=2.5, + ]; + + node [ + fontname=Helvetica, + fontsize=12, + fontcolor=black, + shape=record, + style="filled,rounded", + fillcolor=grey92, + ]; + + dataset [ + label="<train>\nTraining\n\n|<test>\nTest\n\n", + fillcolor=yellow, + style="filled", + ]; + + {rank = min; dataset;} + + subgraph cluster_experiment { + label=<<b>experiment</b>>; + shape=record; + style="filled,rounded"; + fillcolor=white; + train; + + subgraph cluster_analyze { + label=<<b>analyze</b>>; + predict; + evaluate; + compare; + } + } + + figure, table [ + fillcolor=lightblue, + style="filled", + ]; + {rank = max; figure; table; } + + dataset:train -> train [headlabel="sample + label",labelangle=30]; + dataset:test -> predict [headlabel="sample",labelangle=30]; + train -> predict [headlabel="model"]; + dataset:test -> evaluate [headlabel="label"]; + predict -> evaluate [headlabel="probabilities ",labelangle=-30]; + evaluate -> compare [headlabel="metrics"]; + compare -> figure; + compare -> table; +} diff --git a/doc/index.rst b/doc/index.rst index c9d3853ae3eaaf8c1b4d837cb268fdef12dba6c7..b08fd5b7d3b0308bf39828076d4ee814971e1104 100644 --- a/doc/index.rst +++ b/doc/index.rst @@ -15,7 +15,7 @@ Please use the BibTeX reference below to cite this work: .. code:: bibtex @misc{laibacher_anjos_2019, - title = {On the Evaluation and Real-World Usage Scenarios of Deep Vessel Segmentation for Funduscopy}, + title = {On the Evaluation and Real-World Usage Scenarios of Deep Vessel Segmentation for Retinography}, author = {Tim Laibacher and Andr\'e Anjos}, year = {2019}, eprint = {1909.03856}, @@ -26,30 +26,37 @@ Please use the BibTeX reference below to cite this work: Additional Material -=================== +------------------- The additional material referred to in the paper can be found under -:ref:`bob.ip.binseg.covdresults` and :download:`here </additionalresults.pdf>` +:ref:`bob.ip.binseg.results` and :download:`here </additionalresults.pdf>` -Users Guide -=========== +.. todolist:: + + +User Guide +---------- .. toctree:: :maxdepth: 2 setup + usage + results/index + acknowledgements + references datasets - training - evaluation - benchmarkresults - covdresults - configs - plotting - visualization + cli api - acknowledgements -.. todolist:: + +Indices and tables +------------------ + +* :ref:`genindex` +* :ref:`modindex` +* :ref:`search` + .. include:: links.rst diff --git a/doc/links.rst b/doc/links.rst index 12e8c5d3e7d6f2f144f888b8d2c3a2dde515e406..ce2c72d68eb7f9a94b4704b39e30cbb3da111552 100644 --- a/doc/links.rst +++ b/doc/links.rst @@ -4,85 +4,77 @@ .. _idiap: http://www.idiap.ch .. _bob: http://www.idiap.ch/software/bob -.. _installation: https://www.idiap.ch/software/bob/docs/bob/docs/stable/bob/bob/doc/install.html +.. _installation: https://www.idiap.ch/software/bob/install .. _mailing list: https://www.idiap.ch/software/bob/discuss -.. _torchvision package: https://github.com/pytorch/vision - -.. DRIVE - -.. _drive: https://doi.org/10.1109/TMI.2004.825627 -.. _staal et al. (2004): https://doi.org/10.1109/TMI.2004.825627 - -.. STARE - -.. _stare: https://doi.org/10.1109/42.845178 -.. _maninis et al. (2016): https://doi.org/10.1007/978-3-319-46723-8_17 - -.. HRF - -.. _hrf: http://dx.doi.org/10.1155/2013/154860 -.. _orlando et al. (2016): https://doi.org/10.1109/TBME.2016.2535311 - -.. IOSTAR - -.. _iostar: https://doi.org/10.1109/TMI.2016.2587062 -.. _meyer et al. (2017): https://doi.org/10.1007/978-3-319-59876-5_56 - -.. CHASEDB1 - -.. _chasedb1: https://doi.org/10.1109/TBME.2012.2205687 -.. _fraz et al. (2012): https://doi.org/10.1109/TBME.2012.2205687 - -.. DRIONSDB - -.. _drions-db: http://dx.doi.org/10.1016/j.artmed.2008.04.005 -.. _maninis et al. (2016): https://doi.org/10.1007/978-3-319-46723-8_17 - -.. RIM-ONE r3 - -.. _rim-oner3: https://dspace5.zcu.cz/bitstream/11025/29670/1/Fumero.pdf -.. _maninis et al. (2016): https://doi.org/10.1007/978-3-319-46723-8_17 - -.. Drishti-GS1 - -.. _drishti-gs1: https://doi.org/10.1109/ISBI.2014.6867807 -.. _sivaswamy et al. (2014): https://doi.org/10.1109/ISBI.2014.6867807 - -.. REFUGE - -.. _refuge: http://ai.baidu.com/broad/download?dataset=gon - -.. OtherPapers - -.. _Iglovikov et al. (2018): http://openaccess.thecvf.com/content_cvpr_2018_workshops/w4/html/Iglovikov_TernausNetV2_Fully_Convolutional_CVPR_2018_paper.html -.. _He et al. (2015): https://doi.org/10.1109/ICCV.2015.164 +.. _pytorch: https://pytorch.org +.. _tabulate: https://pypi.org/project/tabulate/ +.. _our paper: https://arxiv.org/abs/1909.03856 + +.. Raw data websites +.. _drive: https://www.isi.uu.nl/Research/Databases/DRIVE/ +.. _stare: http://cecas.clemson.edu/~ahoover/stare/ +.. _hrf: https://www5.cs.fau.de/research/data/fundus-images/ +.. _iostar: http://www.retinacheck.org/datasets +.. _chase-db1: https://blogs.kingston.ac.uk/retinal/chasedb1/ +.. _drions-db: http://www.ia.uned.es/~ejcarmona/DRIONS-DB.html +.. _rim-one r3: http://medimrg.webs.ull.es/research/downloads/ +.. _drishti-gs1: http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php +.. _refuge: https://refuge.grand-challenge.org/Details/ .. Software Tools - .. _maskrcnn-benchmark: https://github.com/facebookresearch/maskrcnn-benchmark .. Pretrained models -.. _driu_chasedb1.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_CHASEDB1.pth -.. _driu_drive.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_DRIVE.pth -.. _driu_hrf.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_HRF1168.pth -.. _driu_stare.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_STARE.pth -.. _driu_iostar.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_IOSTARVESSEL.pth +.. _baselines_driu_drive: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/driu/drive/model.pth +.. _baselines_hed_drive: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/hed/drive/model.pth +.. _baselines_m2unet_drive: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/m2unet/drive/model.pth +.. _baselines_unet_drive: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/unet/drive/model.pth +.. _baselines_driu_stare: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/driu/stare/model.pth +.. _baselines_hed_stare: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/hed/stare/model.pth +.. _baselines_m2unet_stare: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/m2unet/stare/model.pth +.. _baselines_unet_stare: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/unet/stare/model.pth +.. _baselines_driu_chase: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/driu/chasedb1/model.pth +.. _baselines_hed_chase: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/hed/chasedb1/model.pth +.. _baselines_m2unet_chase: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/m2unet/chasedb1/model.pth +.. _baselines_unet_chase: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/unet/chasedb1/model.pth +.. _baselines_driu_hrf: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/driu/hrf/model.pth +.. _baselines_hed_hrf: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/hed/hrf/model.pth +.. _baselines_m2unet_hrf: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/m2unet/hrf/model.pth +.. _baselines_unet_hrf: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/unet/hrf/model.pth +.. _baselines_driu_iostar: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/driu/iostar-vessel/model.pth +.. _baselines_hed_iostar: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/hed/iostar-vessel/model.pth +.. _baselines_m2unet_iostar: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/m2unet/iostar-vessel/model.pth +.. _baselines_unet_iostar: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/baselines/unet/iostar-vessel/model.pth -.. _m2unet_chasedb1.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_CHASEDB1.pth + +.. DRIVE +.. _driu_drive.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_DRIVE.pth .. _m2unet_drive.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_DRIVE.pth -.. _m2unet_hrf.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_HRF1168.pth -.. _m2unet_stare.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_STARE.pth -.. _m2unet_iostar.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_IOSTARVESSEL.pth .. _m2unet_covd-drive.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-DRIVE.pth .. _m2unet_covd-drive_ssl.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-DRIVE_SSL.pth + +.. STARE +.. _driu_stare.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_STARE.pth +.. _m2unet_stare.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_STARE.pth .. _m2unet_covd-stare.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-STARE.pth .. _m2unet_covd-stare_ssl.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-STARE_SSL.pth -.. _m2unet_covd-chaesdb1.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-CHASEDB1.pth -.. _m2unet_covd-chaesdb1_ssl.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-CHASEDB1_SSL.pth -.. _m2unet_covd-hrf.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-HRF.pth -.. _m2unet_covd-hrf_ssl.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-HRF_SSL.pth + +.. CHASE-DB1 +.. _driu_chasedb1.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_CHASEDB1.pth +.. _m2unet_chasedb1.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_CHASEDB1.pth +.. _m2unet_covd-chasedb1.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-CHASEDB1.pth +.. _m2unet_covd-chasedb1_ssl.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-CHASEDB1_SSL.pth + +.. IOSTAR +.. _driu_iostar.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_IOSTARVESSEL.pth +.. _m2unet_iostar.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_IOSTARVESSEL.pth .. _m2unet_covd-iostar.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-IOSTAR.pth .. _m2unet_covd-iostar_ssl.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-IOSTAR_SSL.pth +.. HRF +.. _driu_hrf.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/DRIU_HRF1168.pth +.. _m2unet_hrf.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_HRF1168.pth +.. _m2unet_covd-hrf.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-HRF.pth +.. _m2unet_covd-hrf_ssl.pth: https://www.idiap.ch/software/bob/data/bob/bob.ip.binseg/master/M2UNet_COVD-HRF_SSL.pth diff --git a/doc/models.rst b/doc/models.rst new file mode 100644 index 0000000000000000000000000000000000000000..168b2414ad72cc730220315ca08ef6cb0a38411a --- /dev/null +++ b/doc/models.rst @@ -0,0 +1,65 @@ +.. -*- coding: utf-8 -*- + +.. _bob.ip.binseg.models: + +=================== + Pretrained Models +=================== + +We offer the following pre-trained models allowing inference and score +reproduction of our results. Due to storage limitations we only provide +weights of a subset of all evaluated models. + + +.. list-table:: + + * - **Datasets / Models** + - :py:mod:`driu <bob.ip.binseg.configs.models.driu>` + - :py:mod:`m2unet <bob.ip.binseg.configs.models.m2unet>` + * - :py:mod:`drive <bob.ip.binseg.configs.datasets.drive.default>` + - driu_drive.pth_ + - m2unet_drive.pth_ + * - :py:mod:`drive-drive <bob.ip.binseg.configs.datasets.drive.covd>` + - + - m2unet_covd-drive.pth_ + * - :py:mod:`drive-ssl <bob.ip.binseg.configs.datasets.drive.ssl>` + - + - m2unet_covd-drive_ssl.pth_ + * - :py:mod:`stare <bob.ip.binseg.configs.datasets.stare.ah>` + - driu_stare.pth_ + - m2unet_stare.pth_ + * - :py:mod:`stare-covd <bob.ip.binseg.configs.datasets.stare.covd>` + - + - m2unet_covd-stare.pth_ + * - :py:mod:`stare-ssl <bob.ip.binseg.configs.datasets.stare.ssl>` + - + - m2unet_covd-stare_ssl.pth_ + * - :py:mod:`chasedb1 <bob.ip.binseg.configs.datasets.chasedb1.first_annotator>` + - driu_chasedb1.pth_ + - m2unet_chasedb1.pth_ + * - :py:mod:`chasedb1-covd <bob.ip.binseg.configs.datasets.chasedb1.covd>` + - + - m2unet_covd-chasedb1.pth_ + * - :py:mod:`chasedb1-ssl <bob.ip.binseg.configs.datasets.chasedb1.ssl>` + - + - m2unet_covd-chasedb1_ssl.pth_ + * - :py:mod:`iostar-vessel <bob.ip.binseg.configs.datasets.iostar.vessel>` + - driu_iostar.pth_ + - m2unet_iostar.pth_ + * - :py:mod:`iostar-vessel-covd <bob.ip.binseg.configs.datasets.iostar.covd>` + - + - m2unet_covd-iostar.pth_ + * - :py:mod:`iostar-vessel-ssl <bob.ip.binseg.configs.datasets.iostar.ssl>` + - + - m2unet_covd-iostar_ssl.pth_ + * - :py:mod:`hrf <bob.ip.binseg.configs.datasets.hrf.default>` + - driu_hrf.pth_ + - m2unet_hrf.pth_ + * - :py:mod:`hrf-covd <bob.ip.binseg.configs.datasets.hrf.covd>` + - + - m2unet_covd-hrf.pth_ + * - :py:mod:`hrf-ssl <bob.ip.binseg.configs.datasets.hrf.ssl>` + - + - m2unet_covd-hrf_ssl.pth_ + +.. include:: links.rst diff --git a/doc/nitpick-exceptions.txt b/doc/nitpick-exceptions.txt index bd53da1a83ba588f4c110926093fc88ba0016501..8f6fe3b338c959f4f3113d1280c57228351a8c0a 100644 --- a/doc/nitpick-exceptions.txt +++ b/doc/nitpick-exceptions.txt @@ -1,6 +1,2 @@ -py:class torch.nn.modules.module.Module py:class torch.nn.modules.loss._Loss -py:class torch.utils.data.dataset.Dataset py:class Module -py:mod bob.db.base -py:obj list diff --git a/doc/plotting.rst b/doc/plotting.rst deleted file mode 100644 index f05ee42d12572211ffe4037a1c7d706283042a63..0000000000000000000000000000000000000000 --- a/doc/plotting.rst +++ /dev/null @@ -1,20 +0,0 @@ -.. -*- coding: utf-8 -*- -.. _bob.ip.binseg.plotting: - -======== -Plotting -======== - -Precision vs recall curves for each evaluation run are generated by default and -stored in the ``results`` subfolder of the model output directory. - -To generate a comparison chart of various models use the ``compare`` command -and pass as arguments the output paths of the models you would like to plot. - -E.g.: - -.. code-block:: bash - - bob binseg compare -o myoutput -l myoutput/DRIVE/M2U-Net myoutput/DRIVE/U-Net myoutput/DRIVE/HED -t MyPlotTitle - -Use ``bob binseg compare --help`` for more information. diff --git a/doc/references.rst b/doc/references.rst new file mode 100644 index 0000000000000000000000000000000000000000..6b942813843865e8d8e9cc87d15952c3a3ad3af4 --- /dev/null +++ b/doc/references.rst @@ -0,0 +1,106 @@ +.. coding=utf-8 + +============ + References +============ + +.. [STARE-2000] *A. D. Hoover, V. Kouznetsova and M. Goldbaum*, **Locating blood + vessels in retinal images by piecewise threshold probing of a matched filter + response**, in IEEE Transactions on Medical Imaging, vol. 19, no. 3, pp. + 203-210, March 2000. https://doi.org/10.1109/42.845178 + +.. [DRIVE-2004] *J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever and B. + van Ginneken*, **Ridge-based vessel segmentation in color images of the + retina**, in IEEE Transactions on Medical Imaging, vol. 23, no. 4, pp. + 501-509, April 2004. https://doi.org/10.1109/TMI.2004.825627 + +.. [CHASEDB1-2012] *M. M. Fraz et al.*, **An Ensemble Classification-Based + Approach Applied to Retinal Blood Vessel Segmentation**, in IEEE + Transactions on Biomedical Engineering, vol. 59, no. 9, pp. 2538-2548, Sept. + 2012. https://doi.org/10.1109/TBME.2012.2205687 + +.. [HRF-2013] *A. Budai, R. Bock, A. Maier, J. Hornegger, and G. Michelson*, + **Robust Vessel Segmentation in Fundus Images**, in International Journal of + Biomedical Imaging, vol. 2013, p. 11, 2013. + http://dx.doi.org/10.1155/2013/154860 + +.. [IOSTAR-2016] *J. Zhang, B. Dashtbozorg, E. Bekkers, J. P. W. Pluim, R. Duits + and B. M. ter Haar Romeny*, **Robust Retinal Vessel Segmentation via Locally + Adaptive Derivative Frames in Orientation Scores**, in IEEE Transactions on + Medical Imaging, vol. 35, no. 12, pp. 2631-2644, Dec. 2016. + https://doi.org/10.1109/TMI.2016.2587062 + +.. [DRIONSDB-2008] *Enrique J. Carmona, Mariano Rincón, Julián GarcÃa-Feijoó, José + M. MartÃnez-de-la-Casa*, **Identification of the optic nerve head with + genetic algorithms**, in Artificial Intelligence in Medicine, Volume 43, + Issue 3, pp. 243-259, 2008. http://dx.doi.org/10.1016/j.artmed.2008.04.005 + +.. [RIMONER3-2015] *F. Fumero, J. Sigut, S. AlayoÌn, M. GonzaÌlez-HernaÌndez, M. + GonzaÌlez de la Rosa*, **Interactive Tool and Database for Optic Disc and Cup + Segmentation of Stereo and Monocular Retinal Fundus Images**, Conference on + Computer Graphics, Visualization and Computer Vision, 2015. + https://dspace5.zcu.cz/bitstream/11025/29670/1/Fumero.pdf + +.. [DRISHTIGS1-2014] *J. Sivaswamy, S. R. Krishnadas, G. Datt Joshi, M. Jain and + A. U. Syed Tabish*, **Drishti-GS: Retinal image dataset for optic nerve + head (ONH) segmentation**, 2014 IEEE 11th International Symposium on + Biomedical Imaging (ISBI), Beijing, 2014, pp. 53-56. + https://doi.org/10.1109/ISBI.2014.6867807 + +.. [REFUGE-2018] https://refuge.grand-challenge.org/Details/ + +.. [MANINIS-2016] *K.-K. Maninis, J. Pont-Tuset, P. Arbeláez, and L. Van Gool*, + **Deep Retinal Image Understanding**, in Medical Image Computing and + Computer-Assisted Intervention – MICCAI 2016, Cham, 2016, pp. 140–148. + https://doi.org/10.1007/978-3-319-46723-8_17 + +.. [ORLANDO-2017] *J. I. Orlando, E. Prokofyeva and M. B. Blaschko*, **A + Discriminatively Trained Fully Connected Conditional Random Field Model for + Blood Vessel Segmentation in Fundus Images**, in IEEE Transactions on + Biomedical Engineering, vol. 64, no. 1, pp. 16-27, Jan. 2017. + https://doi.org/10.1109/TBME.2016.2535311 + +.. [MEYER-2017] *M. I. Meyer, P. Costa, A. Galdran, A. M. Mendonça, and A. + Campilho*, **A Deep Neural Network for Vessel Segmentation of Scanning Laser + Ophthalmoscopy Images**, in Image Analysis and Recognition, vol. 10317, F. + Karray, A. Campilho, and F. Cheriet, Eds. Cham: Springer International + Publishing, 2017, pp. 507–515. https://doi.org/10.1007/978-3-319-59876-5_56 + +.. [IGLOVIKOV-2018] *V. Iglovikov, S. Seferbekov, A. Buslaev and A. Shvets*, + **TernausNetV2: Fully Convolutional Network for Instance Segmentation**, + 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition + Workshops (CVPRW), Salt Lake City, UT, 2018, pp. 228-2284. + https://doi.org/10.1109/CVPRW.2018.00042 + +.. [HE-2015] *S. Xie and Z. Tu*, **Holistically-Nested Edge Detection**, 2015 + IEEE International Conference on Computer Vision (ICCV), Santiago, 2015, pp. + 1395-1403. https://doi.org/10.1109/ICCV.2015.164 + +.. [LUO-2019] *L. Luo, Y. Xiong, Y. Liu, and X. Sun*, **Adaptive Gradient + Methods with Dynamic Bound of Learning Rate**, Proceedings of the 7th + International Conference on Learning Representations (ICLR), Feb. 2019. + https://arxiv.org/abs/1902.09843v1 + +.. [MASSA-2018] *F. Massa and R. Girshick*, **maskrcnn-benchmark: Fast, modular + reference implementation of Instance Segmentation and Object Detection + algorithms in PyTorch**. 2018. Last accessed: 21.03.2020. + https://github.com/facebookresearch/maskrcnn-benchmark + +.. [LIN-2018] *J. Lin*, **pytorch-mobilenet-v2: A PyTorch implementation of + MobileNetV2**, 2018. Last accessed: 21.03.2020. + https://github.com/tonylins/pytorch-mobilenet-v2 + +.. [XIE-2015] *S. Xie and Z. Tu*, **Holistically-Nested Edge Detection**, 2015 + IEEE International Conference on Computer Vision (ICCV), Santiago, 2015, pp. + 1395-1403. https://doi.org/10.1109/ICCV.2015.164 + +.. [RONNEBERGER-2015] *O. Ronneberger, P. Fischer, T. Brox*, **U-Net: + Convolutional Networks for Biomedical Image Segmentation**, 2015. + https://arxiv.org/abs/1505.04597 + +.. [ZHANG-2017] *Z. Zhang, Q. Liu, Y. Wang*, **Road Extraction by Deep Residual + U-Net**, 2017. https://arxiv.org/abs/1711.10684 + +.. [SANDLER-2018] *M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C.h Chen*, + **MobileNetV2: Inverted Residuals and Linear Bottlenecks**, 2018. + https://arxiv.org/abs/1801.04381 diff --git a/doc/results/baselines/chasedb1.pdf b/doc/results/baselines/chasedb1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..3139798feaa762bc1c9a11e8a6716a5ae21e9a63 Binary files /dev/null and b/doc/results/baselines/chasedb1.pdf differ diff --git a/doc/results/baselines/chasedb1.png b/doc/results/baselines/chasedb1.png new file mode 100644 index 0000000000000000000000000000000000000000..0f760b2a097c2b42fa0e067a5a9920d0a525788c Binary files /dev/null and b/doc/results/baselines/chasedb1.png differ diff --git a/doc/results/baselines/drive.pdf b/doc/results/baselines/drive.pdf new file mode 100644 index 0000000000000000000000000000000000000000..3fba78c86bf8c0f20d8ac2612b87a67cdad0b20b Binary files /dev/null and b/doc/results/baselines/drive.pdf differ diff --git a/doc/results/baselines/drive.png b/doc/results/baselines/drive.png new file mode 100644 index 0000000000000000000000000000000000000000..9ecae7f663dde499a0cd3999e0aeaecf17aab778 Binary files /dev/null and b/doc/results/baselines/drive.png differ diff --git a/doc/results/baselines/hrf.pdf b/doc/results/baselines/hrf.pdf new file mode 100644 index 0000000000000000000000000000000000000000..03bd6092d55df80b9f35c04e23caec13828d80f3 Binary files /dev/null and b/doc/results/baselines/hrf.pdf differ diff --git a/doc/results/baselines/hrf.png b/doc/results/baselines/hrf.png new file mode 100644 index 0000000000000000000000000000000000000000..1608a3e7fdcab0bac4321b85945eb6766abb5827 Binary files /dev/null and b/doc/results/baselines/hrf.png differ diff --git a/doc/results/baselines/index.rst b/doc/results/baselines/index.rst new file mode 100644 index 0000000000000000000000000000000000000000..ce5361fbe43cf1da75b49bcdf03a673f3efce830 --- /dev/null +++ b/doc/results/baselines/index.rst @@ -0,0 +1,136 @@ +.. -*- coding: utf-8 -*- + +.. _bob.ip.binseg.results.baselines: + +=================== + Baseline Results +=================== + +F1 Scores (micro-level) +----------------------- + +* Benchmark results for models: DRIU, HED, M2U-Net and U-Net. +* Models are trained and tested on the same dataset (**numbers in bold** + indicate number of parameters per model). Models are trained for a fixed + number of 1000 epochs, with a learning rate of 0.001 until epoch 900 and then + 0.0001 until the end of the training. +* Database and model resource configuration links (table top row and left + column) are linked to the originating configuration files used to obtain + these results. +* Check `our paper`_ for details on the calculation of the F1 Score and standard + deviations (in parentheses). +* Single performance numbers correspond to *a priori* performance indicators, + where the threshold is previously selected on the training set +* You can cross check the analysis numbers provided in this table by + downloading this software package, the raw data, and running ``bob binseg + analyze`` providing the model URL as ``--weight`` parameter. +* For comparison purposes, we provide "second-annotator" performances on the + same test set, where available. + + +.. list-table:: + :header-rows: 2 + + * - + - + - :py:mod:`driu <bob.ip.binseg.configs.models.driu>` + - :py:mod:`hed <bob.ip.binseg.configs.models.hed>` + - :py:mod:`m2unet <bob.ip.binseg.configs.models.m2unet>` + - :py:mod:`unet <bob.ip.binseg.configs.models.unet>` + * - Dataset + - 2nd. Annot. + - 15M + - 14.7M + - 0.55M + - 25.8M + * - :py:mod:`drive <bob.ip.binseg.configs.datasets.drive.default>` + - 0.788 (0.021) + - `0.819 (0.016) <baselines_driu_drive_>`_ + - `0.806 (0.015) <baselines_hed_drive_>`_ + - `0.804 (0.014) <baselines_m2unet_drive_>`_ + - `0.823 (0.015) <baselines_unet_drive_>`_ + * - :py:mod:`stare <bob.ip.binseg.configs.datasets.stare.ah>` + - 0.759 (0.028) + - `0.824 (0.037) <baselines_driu_stare_>`_ + - `0.810 (0.045) <baselines_hed_stare_>`_ + - `0.811 (0.039) <baselines_m2unet_stare_>`_ + - `0.828 (0.041) <baselines_unet_stare_>`_ + * - :py:mod:`chasedb1 <bob.ip.binseg.configs.datasets.chasedb1.first_annotator>` + - 0.768 (0.023) + - `0.811 (0.018) <baselines_driu_chase_>`_ + - `0.806 (0.021) <baselines_hed_chase_>`_ + - `0.801 (0.018) <baselines_m2unet_chase_>`_ + - `0.802 (0.015) <baselines_unet_chase_>`_ + * - :py:mod:`hrf <bob.ip.binseg.configs.datasets.hrf.default>` + - + - `0.802 (0.039) <baselines_driu_hrf_>`_ + - `0.793 (0.041) <baselines_hed_hrf_>`_ + - `0.796 (0.043) <baselines_m2unet_hrf_>`_ + - `0.798 (0.038) <baselines_unet_hrf_>`_ + * - :py:mod:`iostar-vessel <bob.ip.binseg.configs.datasets.iostar.vessel>` + - + - `0.825 (0.021) <baselines_driu_iostar_>`_ + - `0.822 (0.023) <baselines_hed_iostar_>`_ + - `0.817 (0.021) <baselines_m2unet_iostar_>`_ + - `0.818 (0.019) <baselines_unet_iostar_>`_ + + +Precision-Recall (PR) Curves +---------------------------- + +Next, you will find the PR plots showing confidence intervals, for the various +models explored, on a per dataset arrangement. All curves correspond to test +set performances. Single performance figures (F1-micro scores) correspond to +its average value across all test set images, for a fixed threshold set to +``0.5``. + +.. list-table:: + + * - .. figure:: drive.png + :align: center + :scale: 50% + :alt: Model comparisons for drive datasets + + :py:mod:`drive <bob.ip.binseg.configs.datasets.drive.default>`: PR curve and F1 scores at T=0.5 (:download:`pdf <drive.pdf>`) + - .. figure:: stare.png + :align: center + :scale: 50% + :alt: Model comparisons for stare datasets + + :py:mod:`stare <bob.ip.binseg.configs.datasets.stare.ah>`: PR curve and F1 scores at T=0.5 (:download:`pdf <stare.pdf>`) + * - .. figure:: chasedb1.png + :align: center + :scale: 50% + :alt: Model comparisons for chasedb1 datasets + + :py:mod:`chasedb1 <bob.ip.binseg.configs.datasets.chasedb1.first_annotator>`: PR curve and F1 scores at T=0.5 (:download:`pdf <chasedb1.pdf>`) + - .. figure:: hrf.png + :align: center + :scale: 50% + :alt: Model comparisons for hrf datasets + + :py:mod:`hrf <bob.ip.binseg.configs.datasets.hrf.default>`: PR curve and F1 scores at T=0.5 (:download:`pdf <hrf.pdf>`) + * - .. figure:: iostar-vessel.png + :align: center + :scale: 50% + :alt: Model comparisons for iostar-vessel datasets + + :py:mod:`iostar-vessel <bob.ip.binseg.configs.datasets.iostar.vessel>`: PR curve and F1 scores at T=0.5 (:download:`pdf <iostar-vessel.pdf>`) + - + + +Remarks +------- + +* There seems to be no clear winner as confidence intervals based on the + standard deviation overlap substantially between the different models, and + across different datasets. +* There seems to be almost no effect on the number of parameters on + performance. U-Net, the largest model, is not a clear winner through all + baseline benchmarks +* Where second annotator labels exist, model performance and variability seems + on par with such annotations. One possible exception is for CHASE-DB1, where + models show consistently less variability than the second annotator. + Unfortunately, this cannot be conclusive. + +.. include:: ../../links.rst diff --git a/doc/results/baselines/iostar-vessel.pdf b/doc/results/baselines/iostar-vessel.pdf new file mode 100644 index 0000000000000000000000000000000000000000..141ea565273373311ca3960cdb994ba2f2c6f58c Binary files /dev/null and b/doc/results/baselines/iostar-vessel.pdf differ diff --git a/doc/results/baselines/iostar-vessel.png b/doc/results/baselines/iostar-vessel.png new file mode 100644 index 0000000000000000000000000000000000000000..7da4802492e1eac053166080e5b19090c2499f59 Binary files /dev/null and b/doc/results/baselines/iostar-vessel.png differ diff --git a/doc/results/baselines/stare.pdf b/doc/results/baselines/stare.pdf new file mode 100644 index 0000000000000000000000000000000000000000..8bafd654a22dac56458355e048ede26ce4ce7cd1 Binary files /dev/null and b/doc/results/baselines/stare.pdf differ diff --git a/doc/results/baselines/stare.png b/doc/results/baselines/stare.png new file mode 100644 index 0000000000000000000000000000000000000000..7a632af2907d4c0f4d48d23072dcc97c189cf83f Binary files /dev/null and b/doc/results/baselines/stare.png differ diff --git a/doc/results/covd/index.rst b/doc/results/covd/index.rst new file mode 100644 index 0000000000000000000000000000000000000000..844d9b963871fd3afcf2495d260d6778a758b3f6 --- /dev/null +++ b/doc/results/covd/index.rst @@ -0,0 +1,122 @@ +.. -*- coding: utf-8 -*- + +.. _bob.ip.binseg.results.covd: + +.. todo:: + + This section is outdated and needs re-factoring. + + +============================ + COVD- and COVD-SLL Results +============================ + +In addition to the M2U-Net architecture, we also evaluated the larger DRIU +network and a variation of it that contains batch normalization (DRIU+BN) on +COVD- (Combined Vessel Dataset from all training data minus target test set) +and COVD-SSL (COVD- and Semi-Supervised Learning). Perhaps surprisingly, for +the majority of combinations, the performance of the DRIU variants are roughly +equal or worse to the ones obtained with the much smaller M2U-Net. We +anticipate that one reason for this could be overparameterization of large +VGG-16 models that are pretrained on ImageNet. + + +F1 Scores +--------- + +Comparison of F1 Scores (micro-level and standard deviation) of DRIU and +M2U-Net on COVD- and COVD-SSL. Standard deviation across test-images in +brackets. + +.. list-table:: + :header-rows: 1 + + * - F1 score + - :py:mod:`DRIU <bob.ip.binseg.configs.models.driu>`/:py:mod:`DRIU@SSL <bob.ip.binseg.configs.models.driu_ssl>` + - :py:mod:`DRIU+BN <bob.ip.binseg.configs.models.driu_bn>`/:py:mod:`DRIU+BN@SSL <bob.ip.binseg.configs.models.driu_bn_ssl>` + - :py:mod:`M2U-Net <bob.ip.binseg.configs.models.m2unet>`/:py:mod:`M2U-Net@SSL <bob.ip.binseg.configs.models.m2unet_ssl>` + * - :py:mod:`COVD-DRIVE <bob.ip.binseg.configs.datasets.drive.covd>` + - 0.788 (0.018) + - 0.797 (0.019) + - `0.789 (0.018) <m2unet_covd-drive.pth>`_ + * - :py:mod:`COVD-DRIVE+SSL <bob.ip.binseg.configs.datasets.drive.ssl>` + - 0.785 (0.018) + - 0.783 (0.019) + - `0.791 (0.014) <m2unet_covd-drive_ssl.pth>`_ + * - :py:mod:`COVD-STARE <bob.ip.binseg.configs.datasets.stare.covd>` + - 0.778 (0.117) + - 0.778 (0.122) + - `0.812 (0.046) <m2unet_covd-stare.pth>`_ + * - :py:mod:`COVD-STARE+SSL <bob.ip.binseg.configs.datasets.stare.ssl>` + - 0.788 (0.102) + - 0.811 (0.074) + - `0.820 (0.044) <m2unet_covd-stare_ssl.pth>`_ + * - :py:mod:`COVD-CHASEDB1 <bob.ip.binseg.configs.datasets.chasedb1.covd>` + - 0.796 (0.027) + - 0.791 (0.025) + - `0.788 (0.024) <m2unet_covd-chasedb1.pth>`_ + * - :py:mod:`COVD-CHASEDB1+SSL <bob.ip.binseg.configs.datasets.chasedb1.ssl>` + - 0.796 (0.024) + - 0.798 (0.025) + - `0.799 (0.026) <m2unet_covd-chasedb1_ssl.pth>`_ + * - :py:mod:`COVD-HRF <bob.ip.binseg.configs.datasets.hrf.covd>` + - 0.799 (0.044) + - 0.800 (0.045) + - `0.802 (0.045) <m2unet_covd-hrf.pth>`_ + * - :py:mod:`COVD-HRF+SSL <bob.ip.binseg.configs.datasets.hrf.ssl>` + - 0.799 (0.044) + - 0.784 (0.048) + - `0.797 (0.044) <m2unet_covd-hrf_ssl.pth>`_ + * - :py:mod:`COVD-IOSTAR-VESSEL <bob.ip.binseg.configs.datasets.iostar.covd>` + - 0.791 (0.021) + - 0.777 (0.032) + - `0.793 (0.015) <m2unet_covd-iostar.pth>`_ + * - :py:mod:`COVD-IOSTAR-VESSEL+SSL <bob.ip.binseg.configs.datasets.iostar.ssl>` + - 0.797 (0.017) + - 0.811 (0.074) + - `0.785 (0.018) <m2unet_covd-iostar_ssl.pth>`_ + + +M2U-Net Precision vs. Recall Curves +----------------------------------- + +Precision vs. recall curves for each evaluated dataset. Note that here the +F1-score is calculated on a macro level (see paper for more details). + +.. figure:: pr_CHASEDB1.png + :scale: 50 % + :align: center + :alt: model comparisons + + CHASE_DB1: Precision vs Recall curve and F1 scores + +.. figure:: pr_DRIVE.png + :scale: 50 % + :align: center + :alt: model comparisons + + DRIVE: Precision vs Recall curve and F1 scores + +.. figure:: pr_HRF.png + :scale: 50 % + :align: center + :alt: model comparisons + + HRF: Precision vs Recall curve and F1 scores + +.. figure:: pr_IOSTARVESSEL.png + :scale: 50 % + :align: center + :alt: model comparisons + + IOSTAR: Precision vs Recall curve and F1 scores + +.. figure:: pr_STARE.png + :scale: 50 % + :align: center + :alt: model comparisons + + STARE: Precision vs Recall curve and F1 scores + + +.. include:: ../../links.rst diff --git a/doc/img/pr_CHASEDB1.png b/doc/results/covd/pr_CHASEDB1.png similarity index 100% rename from doc/img/pr_CHASEDB1.png rename to doc/results/covd/pr_CHASEDB1.png diff --git a/doc/img/pr_DRIVE.png b/doc/results/covd/pr_DRIVE.png similarity index 100% rename from doc/img/pr_DRIVE.png rename to doc/results/covd/pr_DRIVE.png diff --git a/doc/img/pr_HRF.png b/doc/results/covd/pr_HRF.png similarity index 100% rename from doc/img/pr_HRF.png rename to doc/results/covd/pr_HRF.png diff --git a/doc/img/pr_IOSTARVESSEL.png b/doc/results/covd/pr_IOSTARVESSEL.png similarity index 100% rename from doc/img/pr_IOSTARVESSEL.png rename to doc/results/covd/pr_IOSTARVESSEL.png diff --git a/doc/img/pr_STARE.png b/doc/results/covd/pr_STARE.png similarity index 100% rename from doc/img/pr_STARE.png rename to doc/results/covd/pr_STARE.png diff --git a/doc/results/index.rst b/doc/results/index.rst new file mode 100644 index 0000000000000000000000000000000000000000..f2d7e2ac8de271a3745b1de154d0b848ef70806b --- /dev/null +++ b/doc/results/index.rst @@ -0,0 +1,23 @@ +.. -*- coding: utf-8 -*- + +.. _bob.ip.binseg.results: + +========= + Results +========= + +This section summarizes results that can be obtained with this package, and +were presented in our paper. We organize the result section in two parts, for +covering baseline results (training and testing on the same dataset) and +results using our Combined Vessel Dataset minus target dataset (COVD-) training +strategy. + +.. toctree:: + :maxdepth: 2 + + baselines/index + xtest/index + covd/index + + +.. include:: ../links.rst diff --git a/doc/results/xtest/driu-chasedb1.pdf b/doc/results/xtest/driu-chasedb1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..bb28aafb8479d2f07336a7dfdcdd16fa148f5117 Binary files /dev/null and b/doc/results/xtest/driu-chasedb1.pdf differ diff --git a/doc/results/xtest/driu-chasedb1.png b/doc/results/xtest/driu-chasedb1.png new file mode 100644 index 0000000000000000000000000000000000000000..be26e9f8e8b140aaca692c417892abb515a180f4 Binary files /dev/null and b/doc/results/xtest/driu-chasedb1.png differ diff --git a/doc/results/xtest/driu-drive.pdf b/doc/results/xtest/driu-drive.pdf new file mode 100644 index 0000000000000000000000000000000000000000..1f9fc10b1ffa612f6f889666598620f1007ef03f Binary files /dev/null and b/doc/results/xtest/driu-drive.pdf differ diff --git a/doc/results/xtest/driu-drive.png b/doc/results/xtest/driu-drive.png new file mode 100644 index 0000000000000000000000000000000000000000..fba68683bf3a43a19a0a99c2f2f63d3f5d219473 Binary files /dev/null and b/doc/results/xtest/driu-drive.png differ diff --git a/doc/results/xtest/driu-hrf.pdf b/doc/results/xtest/driu-hrf.pdf new file mode 100644 index 0000000000000000000000000000000000000000..01d78c98e041d4db603bce19ad549811b3cc3a81 Binary files /dev/null and b/doc/results/xtest/driu-hrf.pdf differ diff --git a/doc/results/xtest/driu-hrf.png b/doc/results/xtest/driu-hrf.png new file mode 100644 index 0000000000000000000000000000000000000000..0cbd94c9f9c9ffa71f5f513cd8f997070bc979ee Binary files /dev/null and b/doc/results/xtest/driu-hrf.png differ diff --git a/doc/results/xtest/driu-iostar-vessel.pdf b/doc/results/xtest/driu-iostar-vessel.pdf new file mode 100644 index 0000000000000000000000000000000000000000..db822d0f5c53d1579b8c71f3e339eefe2519e582 Binary files /dev/null and b/doc/results/xtest/driu-iostar-vessel.pdf differ diff --git a/doc/results/xtest/driu-iostar-vessel.png b/doc/results/xtest/driu-iostar-vessel.png new file mode 100644 index 0000000000000000000000000000000000000000..5842c71646109aecb0456cb20f99783b3b3bda0d Binary files /dev/null and b/doc/results/xtest/driu-iostar-vessel.png differ diff --git a/doc/results/xtest/driu-stare.pdf b/doc/results/xtest/driu-stare.pdf new file mode 100644 index 0000000000000000000000000000000000000000..f44d12dafca83b3e2d3af52a48244ad1bd43365c Binary files /dev/null and b/doc/results/xtest/driu-stare.pdf differ diff --git a/doc/results/xtest/driu-stare.png b/doc/results/xtest/driu-stare.png new file mode 100644 index 0000000000000000000000000000000000000000..6573b820be3e2402e732c45d1c106f0abb103aef Binary files /dev/null and b/doc/results/xtest/driu-stare.png differ diff --git a/doc/results/xtest/index.rst b/doc/results/xtest/index.rst new file mode 100644 index 0000000000000000000000000000000000000000..e65c9e9997e8dca62e0a6fcfd0bea45bae11906d --- /dev/null +++ b/doc/results/xtest/index.rst @@ -0,0 +1,241 @@ +.. -*- coding: utf-8 -*- + +.. _bob.ip.binseg.results.xtest: + +========================== + Cross-Database (X-)Tests +========================== + +F1 Scores (micro-level) +----------------------- + +* Models are trained and tested on the same dataset (numbers in parenthesis + indicate number of parameters per model), and then evaluated across the test + sets of other databases. X-tested datasets therefore represent *unseen* + data and can be a good proxy for generalisation analysis. +* Each table row indicates a base trained model and each column the databases + the model was tested against. The native performance (intra-database) is + marked **in bold**. Thresholds are chosen *a priori* on the training set of + the database used to generate the model being cross-tested. Hence, the + threshold used for all experiments in a same row is always the same. +* You can cross check the analysis numbers provided in this table by + downloading this software package, the raw data, and running ``bob binseg + analyze`` providing the model URL as ``--weight`` parameter, and then the + ``-xtest`` resource variant of the dataset the model was trained on. For + example, to run cross-evaluation tests for the DRIVE dataset, use the + configuration resource :py:mod:`drive-xtest + <bob.ip.binseg.configs.datasets.drive.xtest>`. +* We only show results for DRIU (~15.4 million parameters) and M2U-Net (~550 + thousand parameters) as these models seem to represent the performance + extremes according to our :ref:`baseline analysis + <bob.ip.binseg.results.baselines>`. You may run analysis on the other models + by downloading them from our website (via the ``--weight`` parameter on the + :ref:`analyze script <bob.ip.binseg.cli.analyze>`). This script may help you + in this task, provided you created a directory structure as suggested by + :ref:`our baseline script <bob.ip.binseg.baseline-script>`: + + .. literalinclude:: ../../scripts/xtest.sh + :language: bash + + +DRIU +==== + + +.. list-table:: + :header-rows: 2 + + * - + - drive + - stare + - chasedb1 + - hrf + - iostar-vessel + * - Model / W x H + - 544 x 544 + - 704 x 608 + - 960 x 960 + - 1648 x 1168 + - 1024 x 1024 + * - :py:mod:`drive <bob.ip.binseg.configs.datasets.drive.default>` (`model <baselines_driu_drive_>`_) + - **0.819 (0.016)** + - 0.759 (0.151) + - 0.321 (0.068) + - 0.711 (0.067) + - 0.493 (0.049) + * - :py:mod:`stare <bob.ip.binseg.configs.datasets.stare.ah>` (`model <baselines_driu_stare_>`_) + - 0.733 (0.037) + - **0.824 (0.037)** + - 0.491 (0.094) + - 0.773 (0.051) + - 0.469 (0.055) + * - :py:mod:`chasedb1 <bob.ip.binseg.configs.datasets.chasedb1.first_annotator>` (`model <baselines_driu_chase_>`_) + - 0.730 (0.023) + - 0.730 (0.101) + - **0.811 (0.018)** + - 0.779 (0.043) + - 0.774 (0.019) + * - :py:mod:`hrf <bob.ip.binseg.configs.datasets.hrf.default>` (`model <baselines_driu_hrf_>`_) + - 0.702 (0.038) + - 0.641 (0.160) + - 0.600 (0.072) + - **0.802 (0.039)** + - 0.546 (0.078) + * - :py:mod:`iostar-vessel <bob.ip.binseg.configs.datasets.iostar.vessel>` (`model <baselines_driu_iostar_>`_) + - 0.758 (0.019) + - 0.724 (0.115) + - 0.777 (0.032) + - 0.727 (0.059) + - **0.825 (0.021)** + + +Next, you will find the PR plots showing confidence intervals, for the various +cross-tests explored, on a per cross-tested model arrangement. All curves +correspond to test set performances. Single performance figures (F1-micro +scores) correspond to its average value across all test set images, for a fixed +threshold set *a priori* on the training set of dataset used for creating the +model. + +.. list-table:: + + * - .. figure:: driu-drive.png + :align: center + :scale: 40% + :alt: X-tests for a DRIU model based on DRIVE + + :py:mod:`drive <bob.ip.binseg.configs.datasets.drive.xtest>`: DRIU model X-tested (:download:`pdf <driu-drive.pdf>`) + - .. figure:: driu-stare.png + :align: center + :scale: 40% + :alt: X-tests for a DRIU model based on STARE + + :py:mod:`stare <bob.ip.binseg.configs.datasets.stare.xtest>`: DRIU model X-tested (:download:`pdf <driu-stare.pdf>`) + * - .. figure:: driu-chasedb1.png + :align: center + :scale: 40% + :alt: X-tests for a DRIU model based on CHASE-DB1 + + :py:mod:`chasedb1 <bob.ip.binseg.configs.datasets.chasedb1.xtest>`: DRIU model X-tested (:download:`pdf <driu-chasedb1.pdf>`) + - .. figure:: driu-hrf.png + :align: center + :scale: 40% + :alt: X-tests for a DRIU model based on HRF + + :py:mod:`hrf <bob.ip.binseg.configs.datasets.hrf.xtest>`: DRIU model X-tested (:download:`pdf <driu-hrf.pdf>`) + * - .. figure:: driu-iostar-vessel.png + :align: center + :scale: 40% + :alt: X-tests for a DRIU model based on IOSTAR (vessel) + + :py:mod:`iostar-vessel <bob.ip.binseg.configs.datasets.iostar.vessel_xtest>`: DRIU model X-tested (:download:`pdf <driu-iostar-vessel.pdf>`) + - + + +M2U-Net +======= + + +.. list-table:: + :header-rows: 2 + + * - + - drive + - stare + - chasedb1 + - hrf + - iostar-vessel + * - Model / W x H + - 544 x 544 + - 704 x 608 + - 960 x 960 + - 1648 x 1168 + - 1024 x 1024 + * - :py:mod:`drive <bob.ip.binseg.configs.datasets.drive.default>` (`model <baselines_m2unet_drive_>`_) + - **0.804 (0.014)** + - 0.736 (0.144) + - 0.548 (0.055) + - 0.744 (0.058) + - 0.722 (0.036) + * - :py:mod:`stare <bob.ip.binseg.configs.datasets.stare.ah>` (`model <baselines_m2unet_stare_>`_) + - 0.715 (0.031) + - **0.811 (0.039)** + - 0.632 (0.033) + - 0.765 (0.049) + - 0.673 (0.033) + * - :py:mod:`chasedb1 <bob.ip.binseg.configs.datasets.chasedb1.first_annotator>` (`model <baselines_m2unet_chase_>`_) + - 0.677 (0.027) + - 0.695 (0.099) + - **0.801 (0.018)** + - 0.763 (0.040) + - 0.761 (0.018) + * - :py:mod:`hrf <bob.ip.binseg.configs.datasets.hrf.default>` (`model <baselines_m2unet_hrf_>`_) + - 0.591 (0.071) + - 0.460 (0.230) + - 0.332 (0.108) + - **0.796 (0.043)** + - 0.419 (0.088) + * - :py:mod:`iostar-vessel <bob.ip.binseg.configs.datasets.iostar.vessel>` (`model <baselines_m2unet_iostar_>`_) + - 0.743 (0.019) + - 0.745 (0.076) + - 0.771 (0.030) + - 0.749 (0.052) + - **0.817 (0.021)** + + +Next, you will find the PR plots showing confidence intervals, for the various +cross-tests explored, on a per cross-tested model arrangement. All curves +correspond to test set performances. Single performance figures (F1-micro +scores) correspond to its average value across all test set images, for a fixed +threshold set *a priori* on the training set of dataset used for creating the +model. + +.. list-table:: + + * - .. figure:: m2unet-drive.png + :align: center + :scale: 40% + :alt: X-tests for a M2U-Net model based on DRIVE + + :py:mod:`drive <bob.ip.binseg.configs.datasets.drive.xtest>`: M2U-Net model X-tested (:download:`pdf <m2unet-drive.pdf>`) + - .. figure:: m2unet-stare.png + :align: center + :scale: 40% + :alt: X-tests for a M2U-Net model based on STARE + + :py:mod:`stare <bob.ip.binseg.configs.datasets.stare.xtest>`: M2U-Net model X-tested (:download:`pdf <m2unet-stare.pdf>`) + * - .. figure:: m2unet-chasedb1.png + :align: center + :scale: 40% + :alt: X-tests for a M2U-Net model based on CHASE-DB1 + + :py:mod:`chasedb1 <bob.ip.binseg.configs.datasets.chasedb1.xtest>`: M2U-Net model X-tested (:download:`pdf <m2unet-chasedb1.pdf>`) + - .. figure:: m2unet-hrf.png + :align: center + :scale: 40% + :alt: X-tests for a M2U-Net model based on HRF + + :py:mod:`hrf <bob.ip.binseg.configs.datasets.hrf.xtest>`: M2U-Net model X-tested (:download:`pdf <m2unet-hrf.pdf>`) + * - .. figure:: m2unet-iostar-vessel.png + :align: center + :scale: 40% + :alt: X-tests for a M2U-Net model based on IOSTAR (vessel) + + :py:mod:`iostar-vessel <bob.ip.binseg.configs.datasets.iostar.vessel_xtest>`: M2U-Net model X-tested (:download:`pdf <m2unet-iostar-vessel.pdf>`) + - + + + +Remarks +------- + +* For each row, the peak performance is always obtained in an intra-database + test (training and testing on the same database). Conversely, we observe a + performance degradation (albeit not catastrophic in most cases) for all other + datasets in the cross test. +* X-test performance on a model created from HRF suggests a strong bias, as + performance does not generalize well for other (unseen) datasets. +* Models generated from CHASE-DB1 and IOSTAR (vessel) seem to generalize quite + well to unseen data, when compared to the relatively poor generalization + capabilites of models generated from HRF or DRIVE. + +.. include:: ../../links.rst diff --git a/doc/results/xtest/m2unet-chasedb1.pdf b/doc/results/xtest/m2unet-chasedb1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..22368ff4c89b9968a63a2c937ba1945f1dc881ec Binary files /dev/null and b/doc/results/xtest/m2unet-chasedb1.pdf differ diff --git a/doc/results/xtest/m2unet-chasedb1.png b/doc/results/xtest/m2unet-chasedb1.png new file mode 100644 index 0000000000000000000000000000000000000000..f7fbaffad64fd42012f2394e412b7f4183ba2f05 Binary files /dev/null and b/doc/results/xtest/m2unet-chasedb1.png differ diff --git a/doc/results/xtest/m2unet-drive.pdf b/doc/results/xtest/m2unet-drive.pdf new file mode 100644 index 0000000000000000000000000000000000000000..e8090cecb4c178646e0a0bb51da5b3a89f0b1548 Binary files /dev/null and b/doc/results/xtest/m2unet-drive.pdf differ diff --git a/doc/results/xtest/m2unet-drive.png b/doc/results/xtest/m2unet-drive.png new file mode 100644 index 0000000000000000000000000000000000000000..0b628ddfab5d6dc678d5f665f4e4eb3c7edec1fd Binary files /dev/null and b/doc/results/xtest/m2unet-drive.png differ diff --git a/doc/results/xtest/m2unet-hrf.pdf b/doc/results/xtest/m2unet-hrf.pdf new file mode 100644 index 0000000000000000000000000000000000000000..73d400cf279864de7fb3d372824606c2cdba79aa Binary files /dev/null and b/doc/results/xtest/m2unet-hrf.pdf differ diff --git a/doc/results/xtest/m2unet-hrf.png b/doc/results/xtest/m2unet-hrf.png new file mode 100644 index 0000000000000000000000000000000000000000..ab4bcb45f2fa74bd6fa3b6a575723d71160a5c32 Binary files /dev/null and b/doc/results/xtest/m2unet-hrf.png differ diff --git a/doc/results/xtest/m2unet-iostar-vessel.pdf b/doc/results/xtest/m2unet-iostar-vessel.pdf new file mode 100644 index 0000000000000000000000000000000000000000..6a59bc6ea23d7d17d54d08db8c8735b54445aae0 Binary files /dev/null and b/doc/results/xtest/m2unet-iostar-vessel.pdf differ diff --git a/doc/results/xtest/m2unet-iostar-vessel.png b/doc/results/xtest/m2unet-iostar-vessel.png new file mode 100644 index 0000000000000000000000000000000000000000..df9cc400f92f759f752161788e28a31826c17c94 Binary files /dev/null and b/doc/results/xtest/m2unet-iostar-vessel.png differ diff --git a/doc/results/xtest/m2unet-stare.pdf b/doc/results/xtest/m2unet-stare.pdf new file mode 100644 index 0000000000000000000000000000000000000000..127f8d2abbc8aafd33fcbdcd4cc9613bea15b3b0 Binary files /dev/null and b/doc/results/xtest/m2unet-stare.pdf differ diff --git a/doc/results/xtest/m2unet-stare.png b/doc/results/xtest/m2unet-stare.png new file mode 100644 index 0000000000000000000000000000000000000000..e80cd25d1bce4604f62358d7d01bdfb1d4f67c6d Binary files /dev/null and b/doc/results/xtest/m2unet-stare.png differ diff --git a/doc/scripts/baselines.sh b/doc/scripts/baselines.sh new file mode 100755 index 0000000000000000000000000000000000000000..6f82b1aff351acd0a217a5e84221110483a75b4b --- /dev/null +++ b/doc/scripts/baselines.sh @@ -0,0 +1,46 @@ +#!/usr/bin/env bash + +# Runs all of our baselines + +# set output directory and location of "bob" executable +OUTDIR=/path/to/output/diretory +BOB=/path/to/bob/execuble + +# run <modelconfig> <dbconfig> <batchsize> [<device> [<queue>]] +function run() { + local device="cpu" + [ $# -gt 3 ] && device="${4}" + + local cmd=(${BOB} binseg experiment) + cmd+=("-vv" "--device=${device}" ${1} ${2}) + cmd+=("--batch-size=${3}" "--output-folder=${OUTDIR}/${1}/${2}") + + # notice this assumes gridtk is installed + [ $# -gt 4 ] && cmd=(jman submit "--memory=24G" "--queue=${5}" -- "${cmd[@]}") + + "${cmd[@]}" +} + +# run/submit all baselines +# comment out from "sgpu/gpu" to run locally +# comment out from "cuda:0" to run on CPU +run m2unet stare 6 #cuda:0 #sgpu +run hed stare 4 #cuda:0 #sgpu +run driu stare 5 #cuda:0 #sgpu +run unet stare 2 #cuda:0 #sgpu +run m2unet drive 16 #cuda:0 #sgpu +run hed drive 8 #cuda:0 #sgpu +run driu drive 8 #cuda:0 #sgpu +run unet drive 4 #cuda:0 #sgpu +run m2unet iostar-vessel 6 #cuda:0 #sgpu +run hed iostar-vessel 4 #cuda:0 #sgpu +run driu iostar-vessel 4 #cuda:0 #sgpu +run unet iostar-vessel 2 #cuda:0 #sgpu +run m2unet chasedb1 6 #cuda:0 #sgpu +run hed chasedb1 4 #cuda:0 #sgpu +run driu chasedb1 4 #cuda:0 #sgpu +run unet chasedb1 2 #cuda:0 #sgpu +run m2unet hrf 1 #cuda:0 #gpu +run hed hrf 1 #cuda:0 #gpu +run driu hrf 1 #cuda:0 #gpu +run unet hrf 1 #cuda:0 #gpu diff --git a/doc/scripts/xtest.sh b/doc/scripts/xtest.sh new file mode 100755 index 0000000000000000000000000000000000000000..6a198c98e5e3a53f57f39f25d17f1277c98a5977 --- /dev/null +++ b/doc/scripts/xtest.sh @@ -0,0 +1,14 @@ +#!/usr/bin/env bash + +# Runs cross database tests + +BOB=$HOME/work/bob/bob.ip.binseg/bin/bob + +for d in drive stare chasedb1 iostar-vessel hrf; do + for m in driu hed m2unet unet; do + cmd=(${BOB} binseg analyze -vv ${m} "${d}-xtest") + cmd+=("--weight=${m}/${d}/model/model_final.pth") + cmd+=("--output-folder=${m}/${d}/xtest") + "${cmd[@]}" + done +done diff --git a/doc/setup.rst b/doc/setup.rst index 1200aac25c1074e9dc4695e0d78debdbcc995e5c..0955a905bc559e98a74106f1e6415425ebf7cc74 100644 --- a/doc/setup.rst +++ b/doc/setup.rst @@ -1,104 +1,72 @@ .. -*- coding: utf-8 -*- .. _bob.ip.binseg.setup: -========= -Setup -========= +======= + Setup +======= -Bob.ip.binseg -============= +Complete Bob's `installation`_ instructions. Then, to install this package, do +this: -Complete bob's `installation`_ instructions. Then, to install this -package - -.. code-block:: bash - - conda install bob.ip.binseg - -Datasets -======== +.. code-block:: sh -The package supports a range of retina fundus datasets but does not install the `bob.db` -APIs by default, nor does it include the datasets. + $ conda activate <myenv> + (<myenv>) $ conda install bob.ip.binseg -To setup a datasets: +.. note:: -1. Download the dataset from the authors website -2. Install the corresponding bob.db package via ``conda install bob.db.<database>``. E.g. to install the DRIVE API run ``conda install bob.db.drive`` -3. :ref:`datasetpathsetup` -4. :ref:`dsconsistency` + The value ``<myenv>`` should correspond to the name of the environment where + you initially installed your Bob packages. -+------------+----------------------------------------------------------------------+---------------------+ -| Dataset | Website | `bob.db` package | -+------------+----------------------------------------------------------------------+---------------------+ -| STARE | http://cecas.clemson.edu/~ahoover/stare/ | `bob.db.stare` | -+------------+----------------------------------------------------------------------+---------------------+ -| DRIVE | https://www.isi.uu.nl/Research/Databases/DRIVE/ | `bob.db.drive` | -+------------+----------------------------------------------------------------------+---------------------+ -| DRIONS | http://www.ia.uned.es/~ejcarmona/DRIONS-DB.html | `bob.db.drionsdb` | -+------------+----------------------------------------------------------------------+---------------------+ -| RIM-ONE | http://medimrg.webs.ull.es/research/downloads/ | `bob.db.rimoner3` | -+------------+----------------------------------------------------------------------+---------------------+ -| CHASE-DB1 | https://blogs.kingston.ac.uk/retinal/chasedb1/ | `bob.db.chasedb` | -+------------+----------------------------------------------------------------------+---------------------+ -| HRF | https://www5.cs.fau.de/research/data/fundus-images/ | `bob.db.hrf` | -+------------+----------------------------------------------------------------------+---------------------+ -| Drishti-GS | http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php | `bob.db.drishtigs1` | -+------------+----------------------------------------------------------------------+---------------------+ -| IOSTAR | http://www.retinacheck.org/datasets | `bob.db.iostar` | -+------------+----------------------------------------------------------------------+---------------------+ -| REFUGE | https://refuge.grand-challenge.org/Details/ | `bob.db.refuge` | -+------------+----------------------------------------------------------------------+---------------------+ -.. _datasetpathsetup: +Datasets +-------- -Set up dataset paths -===================== +The package supports a range of retina fundus datasets, but does not include +the raw data itself, which you must procure. -For each dataset that you are planning to use, set the datadir to -the path where it is stored. E.g.: +To setup a dataset, do the following: -.. code-block:: bash +1. Download the dataset from the authors website (see + :ref:`bob.ip.binseg.datasets` for download links and details), unpack it and + store the directory leading to the uncompressed directory structure. - bob config set bob.db.drive.datadir "/path/to/drivedataset/" + .. warning:: -To check your current setup + Our dataset connectors expect you provide "root" paths of raw datasets as + you unpack them in their **pristine** state. Changing the location of + files within a dataset distribution will likely cause execution errors. -.. code-block:: bash +2. For each dataset that you are planning to use, set the ``datadir`` to the + root path where it is stored. E.g.: - bob config show + .. code-block:: sh -This should result in an output similar to the following: + (<myenv>) $ bob config set bob.ip.binseg.drive.datadir "/path/to/drive" -.. code-block:: bash + To check supported raw datasets and your current setup, do the following: - { - "bob.db.chasedb1.datadir": "/idiap/resource/database/CHASE-DB11/", - "bob.db.drionsdb.datadir": "/idiap/resource/database/DRIONS", - "bob.db.drishtigs1.datadir": "/idiap/resource/database/Drishti-GS1/", - "bob.db.drive.datadir": "/idiap/resource/database/DRIVE", - "bob.db.hrf.datadir": "/idiap/resource/database/HRF", - "bob.db.iostar.datadir": "/idiap/resource/database/IOSTAR/IOSTAR Vessel Segmentation Dataset/", - "bob.db.refuge.datadir": "/idiap/resource/database/REFUGE", - "bob.db.rimoner3.datadir": "/idiap/resource/database/RIM-ONE/RIM-ONE r3", - "bob.db.stare.datadir": "/idiap/resource/database/STARE" - } + .. code-block:: sh + (<myenv>) $ bob binseg dataset list + Supported datasets: + - drive: bob.ip.binseg.drive.datadir = "/Users/andre/work/bob/dbs/drive" + * stare: bob.ip.binseg.stare.datadir (not set) -.. _dsconsistency: + This command will show the set location for each configured dataset, and + the variable names for each supported dataset which has not yet been setup. -Test dataset consitency -======================== +3. To check whether the downloaded version is consistent with the structure + that is expected by this package, run ``bob binseg dataset check + <dataset>``, where ``<dataset>`` should be replaced by the + dataset programmatic name. E.g., to check DRIVE files, use: -To check whether the downloaded version is consistent with -the structure that is expected by our ``bob.db`` packages -run ``bob_dbmanage.py datasettocheck checkfiles`` -E.g.: + .. code-block:: sh -.. code-block:: sh + (<myenv>) $ bob binseg dataset check drive + ... - conda activate your-conda-env-with-bob.ip.binseg - bob_dbmanage.py drive checkfiles - > checkfiles completed sucessfully + If there are problems on the current file organisation, this procedure + should detect and highlight which files are missing (cannot be loaded). .. include:: links.rst diff --git a/doc/training.rst b/doc/training.rst index 5e5c83a4ada67722c274039429bd4731d844c72c..254cac14cfafcaf6f67698c2d41d62096c204d14 100644 --- a/doc/training.rst +++ b/doc/training.rst @@ -1,325 +1,21 @@ .. -*- coding: utf-8 -*- -.. _bob.ip.binseg.training: - - -======== -Training -======== - -To replicate our results use ``bob binseg train`` followed by the model config -and the dataset config. Use ``bob binseg train --help`` for more information. - -.. note:: - - We strongly advice training with a GPU (using ``-d cuda``). Depending on the available GPU - memory you might have to adjust your batch size (``-b``). - -Default Dataset configs -======================= - -1. Vessel: - -* CHASEDB1 -* CHASEDB1TEST -* COVD-DRIVE -* COVD-DRIVE_SSL -* COVD-STARE -* COVD-STARE_SSL -* COVD-IOSTARVESSEL -* COVD-IOSTARVESSEL_SSL -* COVD-HRF -* COVD-HRF_SSL -* COVD-CHASEDB1 -* COVD-CHASEDB1_SSL -* DRIVE -* DRIVETEST -* HRF -* HRFTEST -* IOSTARVESSEL -* IOSTARVESSELTEST -* STARE -* STARETEST - -2. Optic Disc and Cup - -* DRIONSDB -* DRIONSDBTEST -* DRISHTIGS1OD -* DRISHTIGS1ODTEST -* DRISHTIGS1CUP -* DRISHTIGS1CUPTEST -* IOSTAROD -* IOSTARODTEST -* REFUGECUP -* REFUGECUPTEST -* REFUGEOD -* REFUGEODTEST -* RIMONER3CUP -* RIMONER3CUPTEST -* RIMONER3OD -* RIMONER3ODTEST - -Default Model configs -===================== - -* DRIU -* DRIUBN -* DRIUSSL -* DRIUBNSSL -* DRIUOD -* HED -* M2UNet -* M2UNetSSL -* UNet - - -Baseline Benchmarks -=================== - -.. code-block:: bash - - #!/bin/bash - # set output directory - outputroot=`pwd`"/output" - mkdir -p $outputroot - - #### Global config #### - m2u=M2UNet - hed=HED - driu=DRIU - unet=UNet - m2ussl=M2UNetSSL - driussl=DRIUSSL - - #### CHASE_DB 1 #### - dataset=CHASEDB1 - output=$outputroot"/"$dataset - mkdir -p $output - # batch sizes - b_m2u=6 - b_hed=4 - b_driu=4 - b_unet=2 - # Train - bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv - bob binseg train $hed $dataset -b $b_hed -d cuda -o $output"/"$hed -vv - bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv - bob binseg train $unet $dataset -b $b_unet -d cuda -o $output"/"$unet -vv - - #### DRIVE #### - dataset=DRIVE - output=$outputroot"/"$dataset - mkdir -p $output - # model configs - b_m2u=16 - b_hed=8 - b_driu=8 - b_unet=4 - # Train - bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv - bob binseg train $hed $dataset -b $b_hed -d cuda -o $output"/"$hed -vv - bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv - bob binseg train $unet $dataset -b $b_unet -d cuda -o $output"/"$unet -vv - - #### HRF #### - dataset=HRF - output=$outputroot"/"$dataset - mkdir -p $output - # model configs - b_m2u=1 - b_hed=1 - b_driu=1 - b_unet=1 - # Train - bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv - bob binseg train $hed $dataset -b $b_hed -d cuda -o $output"/"$hed -vv - bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv - bob binseg train $unet $dataset -b $b_unet -d cuda -o $output"/"$unet -vv - #### IOSTAR VESSEL #### - dataset=IOSTARVESSEL - output=$outputroot"/"$dataset - mkdir -p $output - # model configs - b_m2u=6 - b_hed=4 - b_driu=4 - b_unet=2 - # Train - bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv - bob binseg train $hed $dataset -b $b_hed -d cuda -o $output"/"$hed -vv - bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv - bob binseg train $unet $dataset -b $b_unet -d cuda -o $output"/"$unet -vv - - #### STARE #### - dataset=STARE - output=$outputroot"/"$dataset - mkdir -p $output - # model configs - b_m2u=6 - b_hed=4 - b_driu=5 - b_unet=2 - # Train - bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv - bob binseg train $hed $dataset -b $b_hed -d cuda -o $output"/"$hed -vv - bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv - bob binseg train $unet $dataset -b $b_unet -d cuda -o $output"/"$unet -vv - - -Combined Vessel Dataset (COVD) and Semi-Supervised Learning (SSL) -================================================================= - -COVD-: - -.. code-block:: bash - - ### COVD-DRIVE #### - dataset=COVD-DRIVE - output=$outputroot"/"$dataset - mkdir -p $output - # model configs - driu=DRIU - m2u=M2UNet - b_driu=4 - b_m2u=8 - # Train - bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv - bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv - - ### COVD-STARE #### - dataset=COVD-STARE - output=$outputroot"/"$dataset - mkdir -p $output - # model configs - driu=DRIU - m2u=M2UNet - b_driu=4 - b_m2u=4 - # Train - bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv - bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv - - ### COVD-IOSTAR #### - dataset=COVD-IOSTARVESSEL - output=$outputroot"/"$dataset - mkdir -p $output - # model configs - driu=DRIU - m2u=M2UNet - b_driu=2 - b_m2u=4 - # Train - bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv - bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv - - ### COVD-CHASEDB1 #### - dataset=COVD-CHASEDB1 - output=$outputroot"/"$dataset - mkdir -p $output - # model configs - driu=DRIU - m2u=M2UNet - b_driu=2 - b_m2u=4 - # Train - bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv - bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv - - ### COVD-HRF #### - dataset=COVD-HRF - output=$outputroot"/"$dataset - mkdir -p $output - # model configs - driu=DRIU - m2u=M2UNet - b_driu=2 - b_m2u=4 - # Train - bob binseg train $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv - bob binseg train $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv - - -COVD-SSL: - -.. code-block:: bash - - ### COVD-DRIVE_SSL #### - dataset=COVD-DRIVE_SSL - output=$outputroot"/"$dataset - mkdir -p $output - # model configs - driu=DRIUSSL - m2u=M2UNetSSL - b_driu=4 - b_m2u=4 - # Train - bob binseg ssltrain $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv - bob binseg ssltrain $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv - - ### COVD-STARE_SSL #### - dataset=COVD-STARE_SSL - output=$outputroot"/"$dataset - mkdir -p $output - # model configs - driu=DRIUSSL - m2u=M2UNetSSL - b_driu=4 - b_m2u=4 - # Train - bob binseg ssltrain $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv - bob binseg ssltrain $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv - - ### COVD-IOSTAR_SSL #### - dataset=COVD-IOSTARVESSEL_SSL - output=$outputroot"/"$dataset - mkdir -p $output - # model configs - driu=DRIUSSL - m2u=M2UNetSSL - b_driu=1 - b_m2u=2 - # Train - bob binseg ssltrain $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv - bob binseg ssltrain $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv - - ### COVD-CHASEDB1_SSL #### - dataset=COVD-CHASEDB1_SSL - output=$outputroot"/"$dataset - mkdir -p $output - # model configs - driu=DRIUSSL - m2u=M2UNetSSL - b_driu=2 - b_m2u=2 - # Train - bob binseg ssltrain $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv - bob binseg ssltrain $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv - - - ### COVD-HRF_SSL #### - dataset=COVD-HRF_SSL - output=$outputroot"/"$dataset - mkdir -p $output - # model configs - driu=DRIUSSL - m2u=M2UNetSSL - b_driu=1 - b_m2u=2 - # Train - bob binseg ssltrain $driu $dataset -b $b_driu -d cuda -o $output"/"$driu -vv - bob binseg ssltrain $m2u $dataset -b $b_m2u -d cuda -o $output"/"$m2u -vv - -Using your own configs -====================== +.. _bob.ip.binseg.training: -Instead of the default configs you can pass the full path of your -customized dataset and model config (both in PyTorch format). -The default configs are stored under ``bob.ip.binseg/bob/ip/binseg/configs/``. +========== + Training +========== -.. code-block:: bash +To train a new FCN, use the command-line interface (CLI) application ``bob +binseg train``, available on your prompt. To use this CLI, you must define the +input dataset that will be used to train the FCN, as well as the type of model +that will be trained. You may issue ``bob binseg train --help`` for a help +message containing more detailed instructions. - bob binseg train /path/to/model/config.py /path/to/dataset/config.py +.. tip:: + We strongly advice training with a GPU (using ``--device="cuda:0"``). + Depending on the available GPU memory you might have to adjust your batch + size (``--batch``). diff --git a/doc/usage.rst b/doc/usage.rst new file mode 100644 index 0000000000000000000000000000000000000000..b63cd4378782167b0c91b194167f30da1add4360 --- /dev/null +++ b/doc/usage.rst @@ -0,0 +1,68 @@ +.. -*- coding: utf-8 -*- + +.. _bob.ip.binseg.usage: + +======= + Usage +======= + +This package supports a fully reproducible research experimentation cycle for +semantic binary segmentation with support for the following activities: + +* Training: Images are fed to a Fully Convolutional Deep Neural Network (FCN), + that is trained to reconstruct annotations (pre-segmented binary maps), + automatically, via error back propagation. The objective of this phase is to + produce an FCN model. +* Inference (prediction): The FCN is used to generate vessel map predictions +* Evaluation: Vessel map predictions are used evaluate FCN performance against + provided annotations, or visualize prediction results overlayed on + the original raw images. +* Comparison: Use evaluation results to compare performance as you like. + +Whereas we provide :ref:`command-line interfaces (CLI) +<bob.ip.binseg.cli.single>` that implement each of the phases above, we also +provide command aggregators that can :ref:`run all of the phases +<bob.ip.binseg.cli.combined>`. Both interfaces are configurable using +:ref:`Bob's extensible configuration framework <bob.extension.framework>`. In +essence, each command-line option may be provided as a variable with the same +name in a Python file. Each file may combine any number of variables that are +pertinent to an application. + +.. tip:: + + For reproducibility, we recommend you stick to configuration files when + parameterizing our CLI. Notice some of the options in the CLI interface + (e.g. ``--dataset``) cannot be passed via the actual command-line as it + may require complex Python types that cannot be synthetized in a single + input parameter. + + +The following flowchart represents the various experiment phases and output +results that can be produced for each of our CLI interfaces (rounded white +rectangles). Processing subproducts (marked in blue), are stored on disk by +the end of each step. + +.. graphviz:: framework.dot + :caption: Framework actions and CLI + + +We provide a number of :ref:`preset configuration files +<bob.ip.binseg.cli.config.list.all>` that can be used in one or more of the +activities described in this section. Our command-line framework allows you to +refer to these preset configuration files using special names (a.k.a. +"resources"), that procure and load these for you automatically. Aside preset +configuration files, you may also create your own to extend existing baseline +experiments by :ref:`locally copying <bob.ip.binseg.cli.config.copy>` and +modifying one of our configuration resources. + + +.. toctree:: + :maxdepth: 2 + + experiment + training + models + evaluation + + +.. include:: links.rst diff --git a/doc/visualization.rst b/doc/visualization.rst deleted file mode 100644 index 56728e9562003c676dab0a5d51ca4640b12df1e8..0000000000000000000000000000000000000000 --- a/doc/visualization.rst +++ /dev/null @@ -1,30 +0,0 @@ -.. -*- coding: utf-8 -*- -.. _bob.ip.binseg.visualization: - -============= -Visualization -============= - -Two visualization are generated via the ``bob binseg visualize`` command: - -1. Visualizations of true positives, false positives and false negatives -overlayed over the test images -2. Visualizations of the probability map outputs overlayed over the test images - -The following directory structure is expected: - -.. code-block:: bash - - ├── DATABASE - ├── MODEL - ├── images - └── results - -Example to generate visualization for outputs for the DRIVE dataset: - -.. code-block:: bash - - # Visualizations are stored in the same output folder. - bob binseg visualize DRIVETEST -o /DRIVE/M2UNet/output - -Use ``bob binseg visualize --help`` for more information. diff --git a/requirements.txt b/requirements.txt index 82b7843aa0e051bad5f22858752465620aca6772..706cd10addac90fafe7f8720b1e2d7aacde87445 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,10 +1,12 @@ -setuptools -numpy bob.extension +matplotlib +numpy +pandas +h5py +pillow +psutil +setuptools +tabulate torch torchvision -pandas -matplotlib tqdm -tabulate -bob.core diff --git a/setup.py b/setup.py index 8a7dd13d8cb3f4ce5e7730167eccbc9db5f49405..bff45cf36196001418a51894c65f90f82d3066e2 100644 --- a/setup.py +++ b/setup.py @@ -1,10 +1,6 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - from setuptools import setup, dist dist.Distribution(dict(setup_requires=["bob.extension"])) - from bob.extension.utils import load_requirements, find_packages install_requires = load_requirements() @@ -33,63 +29,94 @@ setup( entry_points={ # main entry for bob binseg cli "bob.cli": ["binseg = bob.ip.binseg.script.binseg:binseg"], - # bob hed sub-commands + # bob binseg sub-commands "bob.ip.binseg.cli": [ - "train = bob.ip.binseg.script.binseg:train", - "test = bob.ip.binseg.script.binseg:test", - "compare = bob.bin.binseg.script.binseg:compare", - "gridtable = bob.ip.binseg.script.binseg:testcheckpoints", - "visualize = bob.ip.binseg.script.binseg:visualize", + "config = bob.ip.binseg.script.config:config", + "dataset = bob.ip.binseg.script.dataset:dataset", + "train = bob.ip.binseg.script.train:train", + "predict = bob.ip.binseg.script.predict:predict", + "evaluate = bob.ip.binseg.script.evaluate:evaluate", + "compare = bob.ip.binseg.script.compare:compare", + "analyze = bob.ip.binseg.script.analyze:analyze", + "experiment = bob.ip.binseg.script.experiment:experiment", ], # bob train configurations "bob.ip.binseg.config": [ - "DRIU = bob.ip.binseg.configs.models.driu", - "DRIUBN = bob.ip.binseg.configs.models.driubn", - "DRIUSSL = bob.ip.binseg.configs.models.driussl", - "DRIUBNSSL = bob.ip.binseg.configs.models.driubnssl", - "DRIUOD = bob.ip.binseg.configs.models.driuod", - "HED = bob.ip.binseg.configs.models.hed", - "M2UNet = bob.ip.binseg.configs.models.m2unet", - "M2UNetSSL = bob.ip.binseg.configs.models.m2unetssl", - "UNet = bob.ip.binseg.configs.models.unet", - "ResUNet = bob.ip.binseg.configs.models.resunet", - "IMAGEFOLDER = bob.ip.binseg.configs.datasets.imagefolder", - "CHASEDB1 = bob.ip.binseg.configs.datasets.chasedb1", - "CHASEDB1TEST = bob.ip.binseg.configs.datasets.chasedb1test", - "COVD-DRIVE = bob.ip.binseg.configs.datasets.starechasedb1iostarhrf544", - "COVD-DRIVE_SSL = bob.ip.binseg.configs.datasets.starechasedb1iostarhrf544ssldrive", - "COVD-STARE = bob.ip.binseg.configs.datasets.drivechasedb1iostarhrf608", - "COVD-STARE_SSL = bob.ip.binseg.configs.datasets.drivechasedb1iostarhrf608sslstare", - "COVD-IOSTARVESSEL = bob.ip.binseg.configs.datasets.drivestarechasedb1hrf1024", - "COVD-IOSTARVESSEL_SSL = bob.ip.binseg.configs.datasets.drivestarechasedb1hrf1024ssliostar", - "COVD-HRF = bob.ip.binseg.configs.datasets.drivestarechasedb1iostar1168", - "COVD-HRF_SSL = bob.ip.binseg.configs.datasets.drivestarechasedb1iostar1168sslhrf", - "COVD-CHASEDB1 = bob.ip.binseg.configs.datasets.drivestareiostarhrf960", - "COVD-CHASEDB1_SSL = bob.ip.binseg.configs.datasets.drivestareiostarhrf960sslchase", - "DRIONSDB = bob.ip.binseg.configs.datasets.drionsdb", - "DRIONSDBTEST = bob.ip.binseg.configs.datasets.drionsdbtest", - "DRISHTIGS1OD = bob.ip.binseg.configs.datasets.dristhigs1od", - "DRISHTIGS1ODTEST = bob.ip.binseg.configs.datasets.dristhigs1odtest", - "DRISHTIGS1CUP = bob.ip.binseg.configs.datasets.dristhigs1cup", - "DRISHTIGS1CUPTEST = bob.ip.binseg.configs.datasets.dristhigs1cuptest", - "DRIVE = bob.ip.binseg.configs.datasets.drive", - "DRIVETEST = bob.ip.binseg.configs.datasets.drivetest", - "HRF = bob.ip.binseg.configs.datasets.hrf1168", - "HRFTEST = bob.ip.binseg.configs.datasets.hrftest", - "IOSTAROD = bob.ip.binseg.configs.datasets.iostarod", - "IOSTARODTEST = bob.ip.binseg.configs.datasets.iostarodtest", - "IOSTARVESSEL = bob.ip.binseg.configs.datasets.iostarvessel", - "IOSTARVESSELTEST = bob.ip.binseg.configs.datasets.iostarvesseltest", - "REFUGECUP = bob.ip.binseg.configs.datasets.refugecup", - "REFUGECUPTEST = bob.ip.binseg.configs.datasets.refugecuptest", - "REFUGEOD = bob.ip.binseg.configs.datasets.refugeod", - "REFUGEODTEST = bob.ip.binseg.configs.datasets.refugeodtest", - "RIMONER3CUP = bob.ip.binseg.configs.datasets.rimoner3cup", - "RIMONER3CUPTEST = bob.ip.binseg.configs.datasets.rimoner3cuptest", - "RIMONER3OD = bob.ip.binseg.configs.datasets.rimoner3od", - "RIMONER3ODTEST = bob.ip.binseg.configs.datasets.rimoner3odtest", - "STARE = bob.ip.binseg.configs.datasets.stare", - "STARETEST = bob.ip.binseg.configs.datasets.staretest", + + # models + "driu = bob.ip.binseg.configs.models.driu", + "driu-bn = bob.ip.binseg.configs.models.driu_bn", + "driu-ssl = bob.ip.binseg.configs.models.driu_ssl", + "driu-bn-ssl = bob.ip.binseg.configs.models.driu_bn_ssl", + "driu-od = bob.ip.binseg.configs.models.driu_od", + "hed = bob.ip.binseg.configs.models.hed", + "m2unet = bob.ip.binseg.configs.models.m2unet", + "m2unet-ssl = bob.ip.binseg.configs.models.m2unet_ssl", + "unet = bob.ip.binseg.configs.models.unet", + "resunet = bob.ip.binseg.configs.models.resunet", + + # example datasets + "csv-dataset-example = bob.ip.binseg.configs.datasets.csv", + + # drive dataset + "drive = bob.ip.binseg.configs.datasets.drive.default", + "drive-2nd = bob.ip.binseg.configs.datasets.drive.second_annotator", + "drive-xtest = bob.ip.binseg.configs.datasets.drive.xtest", + "drive-mtest = bob.ip.binseg.configs.datasets.drive.mtest", + "drive-covd = bob.ip.binseg.configs.datasets.drive.covd", + "drive-ssl = bob.ip.binseg.configs.datasets.drive.ssl", + + # stare dataset + "stare = bob.ip.binseg.configs.datasets.stare.ah", + "stare-2nd = bob.ip.binseg.configs.datasets.stare.vk", + "stare-xtest = bob.ip.binseg.configs.datasets.stare.xtest", + "stare-mtest = bob.ip.binseg.configs.datasets.stare.mtest", + "stare-covd = bob.ip.binseg.configs.datasets.stare.covd", + "stare-ssl = bob.ip.binseg.configs.datasets.stare.ssl", + + # iostar + "iostar-vessel = bob.ip.binseg.configs.datasets.iostar.vessel", + "iostar-vessel-xtest = bob.ip.binseg.configs.datasets.iostar.vessel_xtest", + "iostar-vessel-mtest = bob.ip.binseg.configs.datasets.iostar.vessel_mtest", + "iostar-disc = bob.ip.binseg.configs.datasets.iostar.optic_disc", + "iostar-vessel-covd = bob.ip.binseg.configs.datasets.iostar.covd", + "iostar-vessel-ssl = bob.ip.binseg.configs.datasets.iostar.ssl", + + # hrf + "hrf = bob.ip.binseg.configs.datasets.hrf.default", + "hrf-xtest = bob.ip.binseg.configs.datasets.hrf.xtest", + "hrf-mtest = bob.ip.binseg.configs.datasets.hrf.mtest", + "hrf-highres = bob.ip.binseg.configs.datasets.hrf.default_fullres", + "hrf-covd = bob.ip.binseg.configs.datasets.hrf.covd", + "hrf-ssl = bob.ip.binseg.configs.datasets.hrf.ssl", + + # chase-db1 + "chasedb1 = bob.ip.binseg.configs.datasets.chasedb1.first_annotator", + "chasedb1-2nd = bob.ip.binseg.configs.datasets.chasedb1.second_annotator", + "chasedb1-xtest = bob.ip.binseg.configs.datasets.chasedb1.xtest", + "chasedb1-mtest = bob.ip.binseg.configs.datasets.chasedb1.mtest", + "chasedb1-covd = bob.ip.binseg.configs.datasets.chasedb1.covd", + "chasedb1-ssl = bob.ip.binseg.configs.datasets.chasedb1.ssl", + + # drionsdb + "drionsdb = bob.ip.binseg.configs.datasets.drionsdb.expert1", + "drionsdb-2nd = bob.ip.binseg.configs.datasets.drionsdb.expert2", + + # drishti-gs1 + "drishtigs1-disc = bob.ip.binseg.configs.datasets.drishtigs1.disc_all", + "drishtigs1-cup = bob.ip.binseg.configs.datasets.drishtigs1.cup_all", + "drishtigs1-disc-any = bob.ip.binseg.configs.datasets.drishtigs1.disc_any", + "drishtigs1-cup-any = bob.ip.binseg.configs.datasets.drishtigs1.cup_any", + + # refuge + "refuge-cup = bob.ip.binseg.configs.datasets.refuge.cup", + "refuge-disc = bob.ip.binseg.configs.datasets.refuge.disc", + + # rim one r3 + "rimoner3-cup = bob.ip.binseg.configs.datasets.rimoner3.cup_exp1", + "rimoner3-disc = bob.ip.binseg.configs.datasets.rimoner3.disc_exp1", + "rimoner3-cup-2nd = bob.ip.binseg.configs.datasets.rimoner3.cup_exp2", + "rimoner3-disc-2nd = bob.ip.binseg.configs.datasets.rimoner3.disc_exp2", ], }, # check classifiers, add and remove as you see fit @@ -97,7 +124,7 @@ setup( # don't remove the Bob framework unless it's not a bob package classifiers=[ "Framework :: Bob", - "Development Status :: 4 - Beta", + "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "License :: OSI Approved :: GNU General Public License v3 (GPLv3)", "Natural Language :: English",