From 5e3dbf1ef613af79dc7f5c333a031c1c96ce580f Mon Sep 17 00:00:00 2001 From: Andre Anjos <andre.dos.anjos@gmail.com> Date: Tue, 5 May 2020 21:25:45 +0200 Subject: [PATCH] [utils.metric] Implement proper AUC for our RecallxPrecision curves --- bob/ip/binseg/utils/metric.py | 51 +++++++++++++++++++++++++++-------- 1 file changed, 40 insertions(+), 11 deletions(-) diff --git a/bob/ip/binseg/utils/metric.py b/bob/ip/binseg/utils/metric.py index 903836f6..b49f4ede 100644 --- a/bob/ip/binseg/utils/metric.py +++ b/bob/ip/binseg/utils/metric.py @@ -2,6 +2,7 @@ # -*- coding: utf-8 -*- from collections import deque +import numpy import torch @@ -64,24 +65,52 @@ def base_metrics(tp, fp, tn, fn): return [precision, recall, specificity, accuracy, jaccard, f1_score] -def auc(precision, recall): +def auc(x, y): """Calculates the area under the precision-recall curve (AUC) - .. todo:: Integrate this to metrics reporting in compare.py - """ + This function requires a minimum of 2 points and will use the trapezoidal + method to calculate the area under a curve bound between ``[0.0, 1.0]``. + It interpolates missing points if required. The input ``x`` should be + continuously increasing or decreasing. + - rec_unique, rec_unique_ndx = numpy.unique(recall, return_index=True) + Parameters + ---------- - prec_unique = precision[rec_unique_ndx] + x : numpy.ndarray + A 1D numpy array containing continuously increasing or decreasing + values for the X coordinate. + + y : numpy.ndarray + A 1D numpy array containing the Y coordinates of the X values provided + in ``x``. + + """ - if rec_unique.shape[0] > 1: - prec_interp = numpy.interp( - numpy.arange(0, 1, 0.01), - rec_unique, - prec_unique, + assert len(x) == len(y) + + dx = numpy.diff(x) + if numpy.any(dx < 0): + if numpy.all(dx <= 0): + # invert direction + x = x[::-1] + y = y[::-1] + else: + raise ValueError("x is neither increasing nor decreasing " + ": {}.".format(x)) + + # avoids repeated sums for every y + y_unique, y_unique_ndx = numpy.unique(y, return_index=True) + x_unique = x[y_unique_ndx] + + if y_unique.shape[0] > 1: + x_interp = numpy.interp( + numpy.arange(0, 1, 0.001), + y_unique, + x_unique, left=0.0, right=0.0, ) - return prec_interp.sum() * 0.01 + return x_interp.sum() * 0.001 return 0.0 -- GitLab