From 1c136bc1810b6eed0dc4694eb9240319f063fd6d Mon Sep 17 00:00:00 2001 From: Andre Anjos <andre.dos.anjos@gmail.com> Date: Wed, 13 May 2020 18:02:53 +0200 Subject: [PATCH] [test.test_config] Fix config tests after db remodelling --- bob/ip/binseg/test/test_config.py | 190 +++++++++++++++--------------- 1 file changed, 98 insertions(+), 92 deletions(-) diff --git a/bob/ip/binseg/test/test_config.py b/bob/ip/binseg/test/test_config.py index 52e3a2b3..2d6cc499 100644 --- a/bob/ip/binseg/test/test_config.py +++ b/bob/ip/binseg/test/test_config.py @@ -34,8 +34,9 @@ def test_drive(): from ..configs.datasets.drive.default import dataset - nose.tools.eq_(len(dataset), 3) + nose.tools.eq_(len(dataset), 4) _check_subset(dataset["__train__"], 20) + _check_subset(dataset["__valid__"], 20) _check_subset(dataset["train"], 20) _check_subset(dataset["test"], 20) @@ -53,7 +54,7 @@ def test_drive(): def test_drive_mtest(): from ..configs.datasets.drive.mtest import dataset - nose.tools.eq_(len(dataset), 6) + nose.tools.eq_(len(dataset), 10) from ..configs.datasets.drive.default import dataset as baseline nose.tools.eq_(dataset["train"], baseline["train"]) @@ -80,25 +81,24 @@ def test_drive_mtest(): def test_drive_covd(): from ..configs.datasets.drive.covd import dataset - nose.tools.eq_(len(dataset), 3) + nose.tools.eq_(len(dataset), 4) from ..configs.datasets.drive.default import dataset as baseline - nose.tools.eq_(dataset["train"], baseline["train"]) + nose.tools.eq_(dataset["train"], dataset["__valid__"]) nose.tools.eq_(dataset["test"], baseline["test"]) - # this is the only different set from the baseline - nose.tools.eq_(len(dataset["__train__"]), 53) - - for sample in dataset["__train__"]: - assert 3 <= len(sample) <= 4 - assert isinstance(sample[0], str) - nose.tools.eq_(sample[1].shape, (3, 544, 544)) #planes, height, width - nose.tools.eq_(sample[1].dtype, torch.float32) - nose.tools.eq_(sample[2].shape, (1, 544, 544)) #planes, height, width - nose.tools.eq_(sample[2].dtype, torch.float32) - if len(sample) == 4: - nose.tools.eq_(sample[3].shape, (1, 544, 544)) #planes, height, width - nose.tools.eq_(sample[3].dtype, torch.float32) + for key in ("__train__", "train"): + nose.tools.eq_(len(dataset[key]), 123) + for sample in dataset["__train__"]: + assert 3 <= len(sample) <= 4 + assert isinstance(sample[0], str) + nose.tools.eq_(sample[1].shape, (3, 544, 544)) #planes, height, width + nose.tools.eq_(sample[1].dtype, torch.float32) + nose.tools.eq_(sample[2].shape, (1, 544, 544)) #planes, height, width + nose.tools.eq_(sample[2].dtype, torch.float32) + if len(sample) == 4: + nose.tools.eq_(sample[3].shape, (1, 544, 544)) + nose.tools.eq_(sample[3].dtype, torch.float32) @rc_variable_set("bob.ip.binseg.drive.datadir") @@ -109,15 +109,16 @@ def test_drive_covd(): def test_drive_ssl(): from ..configs.datasets.drive.ssl import dataset - nose.tools.eq_(len(dataset), 3) - - from ..configs.datasets.drive.default import dataset as baseline - nose.tools.eq_(dataset["train"], baseline["train"]) - nose.tools.eq_(dataset["test"], baseline["test"]) + nose.tools.eq_(len(dataset), 4) - # this is the only different set from the baseline - nose.tools.eq_(len(dataset["__train__"]), 53) + from ..configs.datasets.drive.covd import dataset as covd + nose.tools.eq_(dataset["train"], covd["train"]) + nose.tools.eq_(dataset["train"], dataset["__valid__"]) + nose.tools.eq_(dataset["test"], covd["test"]) + nose.tools.eq_(dataset["__valid__"], covd["__valid__"]) + # these are the only different from the baseline + nose.tools.eq_(len(dataset["__train__"]), 123) for sample in dataset["__train__"]: assert 5 <= len(sample) <= 6 assert isinstance(sample[0], str) @@ -172,7 +173,7 @@ def test_stare(): for protocol in "ah", "vk": dataset = _maker(protocol, stare_dataset) - nose.tools.eq_(len(dataset), 3) + nose.tools.eq_(len(dataset), 4) _check_subset(dataset["__train__"], 10) _check_subset(dataset["train"], 10) _check_subset(dataset["test"], 10) @@ -186,7 +187,7 @@ def test_stare(): def test_stare_mtest(): from ..configs.datasets.stare.mtest import dataset - nose.tools.eq_(len(dataset), 6) + nose.tools.eq_(len(dataset), 10) from ..configs.datasets.stare.ah import dataset as baseline nose.tools.eq_(dataset["train"], baseline["train"]) @@ -213,24 +214,25 @@ def test_stare_mtest(): def test_stare_covd(): from ..configs.datasets.stare.covd import dataset - nose.tools.eq_(len(dataset), 3) + nose.tools.eq_(len(dataset), 4) from ..configs.datasets.stare.ah import dataset as baseline - nose.tools.eq_(dataset["train"], baseline["train"]) + nose.tools.eq_(dataset["train"], dataset["__valid__"]) nose.tools.eq_(dataset["test"], baseline["test"]) - # this is the only different set from the baseline - nose.tools.eq_(len(dataset["__train__"]), 63) - for sample in dataset["__train__"]: - assert 3 <= len(sample) <= 4 - assert isinstance(sample[0], str) - nose.tools.eq_(sample[1].shape, (3, 608, 704)) #planes, height, width - nose.tools.eq_(sample[1].dtype, torch.float32) - nose.tools.eq_(sample[2].shape, (1, 608, 704)) #planes, height, width - nose.tools.eq_(sample[2].dtype, torch.float32) - if len(sample) == 4: - nose.tools.eq_(sample[3].shape, (1, 608, 704)) #planes, height, width - nose.tools.eq_(sample[3].dtype, torch.float32) + # these are the only different sets from the baseline + for key in ("__train__", "train"): + nose.tools.eq_(len(dataset[key]), 143) + for sample in dataset[key]: + assert 3 <= len(sample) <= 4 + assert isinstance(sample[0], str) + nose.tools.eq_(sample[1].shape, (3, 608, 704)) #planes, height, width + nose.tools.eq_(sample[1].dtype, torch.float32) + nose.tools.eq_(sample[2].shape, (1, 608, 704)) #planes, height, width + nose.tools.eq_(sample[2].dtype, torch.float32) + if len(sample) == 4: + nose.tools.eq_(sample[3].shape, (1, 608, 704)) + nose.tools.eq_(sample[3].dtype, torch.float32) @rc_variable_set("bob.ip.binseg.chasedb1.datadir") @@ -249,8 +251,9 @@ def test_chasedb1(): for m in ("first_annotator", "second_annotator"): d = importlib.import_module(f"...configs.datasets.chasedb1.{m}", package=__name__).dataset - nose.tools.eq_(len(d), 3) + nose.tools.eq_(len(d), 4) _check_subset(d["__train__"], 8) + _check_subset(d["__valid__"], 8) _check_subset(d["train"], 8) _check_subset(d["test"], 20) @@ -263,7 +266,7 @@ def test_chasedb1(): def test_chasedb1_mtest(): from ..configs.datasets.chasedb1.mtest import dataset - nose.tools.eq_(len(dataset), 6) + nose.tools.eq_(len(dataset), 10) from ..configs.datasets.chasedb1.first_annotator import dataset as baseline nose.tools.eq_(dataset["train"], baseline["train"]) @@ -290,24 +293,25 @@ def test_chasedb1_mtest(): def test_chasedb1_covd(): from ..configs.datasets.chasedb1.covd import dataset - nose.tools.eq_(len(dataset), 3) + nose.tools.eq_(len(dataset), 4) from ..configs.datasets.chasedb1.first_annotator import dataset as baseline - nose.tools.eq_(dataset["train"], baseline["train"]) + nose.tools.eq_(dataset["train"], dataset["__valid__"]) nose.tools.eq_(dataset["test"], baseline["test"]) - # this is the only different set from the baseline - nose.tools.eq_(len(dataset["__train__"]), 65) - for sample in dataset["__train__"]: - assert 3 <= len(sample) <= 4 - assert isinstance(sample[0], str) - nose.tools.eq_(sample[1].shape, (3, 960, 960)) #planes, height, width - nose.tools.eq_(sample[1].dtype, torch.float32) - nose.tools.eq_(sample[2].shape, (1, 960, 960)) #planes, height, width - nose.tools.eq_(sample[2].dtype, torch.float32) - if len(sample) == 4: - nose.tools.eq_(sample[3].shape, (1, 960, 960)) #planes, height, width - nose.tools.eq_(sample[3].dtype, torch.float32) + # these are the only different sets from the baseline + for key in ("__train__", "train"): + nose.tools.eq_(len(dataset[key]), 135) + for sample in dataset[key]: + assert 3 <= len(sample) <= 4 + assert isinstance(sample[0], str) + nose.tools.eq_(sample[1].shape, (3, 960, 960)) #planes, height, width + nose.tools.eq_(sample[1].dtype, torch.float32) + nose.tools.eq_(sample[2].shape, (1, 960, 960)) #planes, height, width + nose.tools.eq_(sample[2].dtype, torch.float32) + if len(sample) == 4: + nose.tools.eq_(sample[3].shape, (1, 960, 960)) + nose.tools.eq_(sample[3].dtype, torch.float32) @rc_variable_set("bob.ip.binseg.hrf.datadir") @@ -326,7 +330,7 @@ def test_hrf(): nose.tools.eq_(s[3].dtype, torch.float32) from ..configs.datasets.hrf.default import dataset - nose.tools.eq_(len(dataset), 3) + nose.tools.eq_(len(dataset), 4) _check_subset(dataset["__train__"], 15) _check_subset(dataset["train"], 15) _check_subset(dataset["test"], 30) @@ -340,7 +344,7 @@ def test_hrf(): def test_hrf_mtest(): from ..configs.datasets.hrf.mtest import dataset - nose.tools.eq_(len(dataset), 6) + nose.tools.eq_(len(dataset), 10) from ..configs.datasets.hrf.default import dataset as baseline nose.tools.eq_(dataset["train"], baseline["train"]) @@ -367,24 +371,25 @@ def test_hrf_mtest(): def test_hrf_covd(): from ..configs.datasets.hrf.covd import dataset - nose.tools.eq_(len(dataset), 3) + nose.tools.eq_(len(dataset), 4) from ..configs.datasets.hrf.default import dataset as baseline - nose.tools.eq_(dataset["train"], baseline["train"]) + nose.tools.eq_(dataset["train"], dataset["__valid__"]) nose.tools.eq_(dataset["test"], baseline["test"]) - # this is the only different set from the baseline - nose.tools.eq_(len(dataset["__train__"]), 58) - for sample in dataset["__train__"]: - assert 3 <= len(sample) <= 4 - assert isinstance(sample[0], str) - nose.tools.eq_(sample[1].shape, (3, 1168, 1648)) #planes, height, width - nose.tools.eq_(sample[1].dtype, torch.float32) - nose.tools.eq_(sample[2].shape, (1, 1168, 1648)) #planes, height, width - nose.tools.eq_(sample[2].dtype, torch.float32) - if len(sample) == 4: - nose.tools.eq_(sample[3].shape, (1, 1168, 1648)) - nose.tools.eq_(sample[3].dtype, torch.float32) + # these are the only different sets from the baseline + for key in ("__train__", "train"): + nose.tools.eq_(len(dataset[key]), 118) + for sample in dataset[key]: + assert 3 <= len(sample) <= 4 + assert isinstance(sample[0], str) + nose.tools.eq_(sample[1].shape, (3, 1168, 1648)) + nose.tools.eq_(sample[1].dtype, torch.float32) + nose.tools.eq_(sample[2].shape, (1, 1168, 1648)) + nose.tools.eq_(sample[2].dtype, torch.float32) + if len(sample) == 4: + nose.tools.eq_(sample[3].shape, (1, 1168, 1648)) + nose.tools.eq_(sample[3].dtype, torch.float32) @rc_variable_set("bob.ip.binseg.iostar.datadir") @@ -405,7 +410,7 @@ def test_iostar(): for m in ("vessel", "optic_disc"): d = importlib.import_module(f"...configs.datasets.iostar.{m}", package=__name__).dataset - nose.tools.eq_(len(d), 3) + nose.tools.eq_(len(d), 4) _check_subset(d["__train__"], 20) _check_subset(d["train"], 20) _check_subset(d["test"], 10) @@ -419,7 +424,7 @@ def test_iostar(): def test_iostar_mtest(): from ..configs.datasets.iostar.vessel_mtest import dataset - nose.tools.eq_(len(dataset), 6) + nose.tools.eq_(len(dataset), 10) from ..configs.datasets.iostar.vessel import dataset as baseline nose.tools.eq_(dataset["train"], baseline["train"]) @@ -446,24 +451,25 @@ def test_iostar_mtest(): def test_iostar_covd(): from ..configs.datasets.iostar.covd import dataset - nose.tools.eq_(len(dataset), 3) + nose.tools.eq_(len(dataset), 4) from ..configs.datasets.iostar.vessel import dataset as baseline - nose.tools.eq_(dataset["train"], baseline["train"]) + nose.tools.eq_(dataset["train"], dataset["__valid__"]) nose.tools.eq_(dataset["test"], baseline["test"]) - # this is the only different set from the baseline - nose.tools.eq_(len(dataset["__train__"]), 53) - for sample in dataset["__train__"]: - assert 3 <= len(sample) <= 4 - assert isinstance(sample[0], str) - nose.tools.eq_(sample[1].shape, (3, 1024, 1024)) #planes, height, width - nose.tools.eq_(sample[1].dtype, torch.float32) - nose.tools.eq_(sample[2].shape, (1, 1024, 1024)) #planes, height, width - nose.tools.eq_(sample[2].dtype, torch.float32) - if len(sample) == 4: - nose.tools.eq_(sample[3].shape, (1, 1024, 1024)) - nose.tools.eq_(sample[3].dtype, torch.float32) + # these are the only different sets from the baseline + for key in ("__train__", "train"): + nose.tools.eq_(len(dataset[key]), 133) + for sample in dataset[key]: + assert 3 <= len(sample) <= 4 + assert isinstance(sample[0], str) + nose.tools.eq_(sample[1].shape, (3, 1024, 1024)) + nose.tools.eq_(sample[1].dtype, torch.float32) + nose.tools.eq_(sample[2].shape, (1, 1024, 1024)) + nose.tools.eq_(sample[2].dtype, torch.float32) + if len(sample) == 4: + nose.tools.eq_(sample[3].shape, (1, 1024, 1024)) + nose.tools.eq_(sample[3].dtype, torch.float32) @rc_variable_set("bob.ip.binseg.refuge.datadir") @@ -482,7 +488,7 @@ def test_refuge(): for m in ("disc", "cup"): d = importlib.import_module(f"...configs.datasets.refuge.{m}", package=__name__).dataset - nose.tools.eq_(len(d), 4) + nose.tools.eq_(len(d), 5) _check_subset(d["__train__"], 400) _check_subset(d["train"], 400) _check_subset(d["validation"], 400) @@ -505,7 +511,7 @@ def test_drishtigs1(): for m in ("disc_all", "cup_all", "disc_any", "cup_any"): d = importlib.import_module(f"...configs.datasets.drishtigs1.{m}", package=__name__).dataset - nose.tools.eq_(len(d), 3) + nose.tools.eq_(len(d), 4) _check_subset(d["__train__"], 50) _check_subset(d["train"], 50) _check_subset(d["test"], 51) @@ -527,7 +533,7 @@ def test_rimoner3(): for m in ("disc_exp1", "cup_exp1", "disc_exp2", "cup_exp2"): d = importlib.import_module(f"...configs.datasets.rimoner3.{m}", package=__name__).dataset - nose.tools.eq_(len(d), 3) + nose.tools.eq_(len(d), 4) _check_subset(d["__train__"], 99) _check_subset(d["train"], 99) _check_subset(d["test"], 60) @@ -549,7 +555,7 @@ def test_drionsdb(): for m in ("expert1", "expert2"): d = importlib.import_module(f"...configs.datasets.drionsdb.{m}", package=__name__).dataset - nose.tools.eq_(len(d), 3) + nose.tools.eq_(len(d), 4) _check_subset(d["__train__"], 60) _check_subset(d["train"], 60) _check_subset(d["test"], 50) -- GitLab