diff --git a/doc/plot/iris_lda_roc.py b/doc/plot/iris_lda_roc.py index bd352e83f5e6d76a97f857ab7f6da929127663b3..0c0a8aa42f518dfb161d0b80c8b738bd7e9d714d 100644 --- a/doc/plot/iris_lda_roc.py +++ b/doc/plot/iris_lda_roc.py @@ -9,7 +9,7 @@ import bob.db.iris import bob.learn.linear import bob.measure import numpy -from matplotlib import pyplot +import matplotlib.pyplot as plt # Training is a 3-step thing data = bob.db.iris.data() @@ -26,8 +26,9 @@ negatives = numpy.vstack([output["setosa"], output["versicolor"]])[:, 0] positives = output["virginica"][:, 0] # Plot ROC curve -bob.measure.plot.roc(negatives, positives) -pyplot.xlabel("False Virginica Acceptance (%)") -pyplot.ylabel("False Virginica Rejection (%)") -pyplot.title("ROC Curve for Virginica Classification") -pyplot.grid() +fpr, fnr = bob.measure.roc(negatives, positives, n_points=2000) +plt.plot(100 * fpr, 100 * fnr) +plt.xlabel("False Virginica Acceptance (%)") +plt.ylabel("False Virginica Rejection (%)") +plt.title("ROC Curve for Virginica Classification") +plt.grid()