diff --git a/doc/example.rst b/doc/example.rst index 9dfe886768463c093ce35a21d74d4c6072bb5aeb..4cbd3f28a58ac47afd78727ad68ec9d2955d00c2 100644 --- a/doc/example.rst +++ b/doc/example.rst @@ -46,7 +46,7 @@ linear discriminant model to distinguish the species from each other. Training a :py:class:`bob.learn.linear.Machine` with LDA ---------------------------------------------------------- +======================================================== Creating a :py:class:`bob.learn.linear.Machine` to perform Linear Discriminant Analysis on the Iris dataset involves using the :py:class:`bob.learn.linear.FisherLDATrainer`: @@ -72,7 +72,7 @@ A few things should be noted: For this example, we just discard this information. Looking at the first LDA component ----------------------------------- +================================== To reproduce Fisher's results, we must pass the data through the created machine: @@ -117,7 +117,7 @@ You should see an image like this: Measuring performance ---------------------- +===================== You can measure the performance of the system on classifying, say, *Iris Virginica* as compared to the other two variants. We can use the functions in :ref:`bob.measure <bob.measure>` for that purpose. diff --git a/doc/install.rst b/doc/install.rst index 653bc976481d9cb47d7b36163ada3c8fef569dd3..d60baf20ab38385593b6faff970bc36ea4d1a103 100644 --- a/doc/install.rst +++ b/doc/install.rst @@ -1,8 +1,8 @@ .. _bob.install: -*************************** +=========================== Installation instructions -*************************** +=========================== By now you should know that Bob is made of several :ref:`bob.packages`. There is no single package that installs all Bob packages because that would just take too much space. diff --git a/doc/plot/iris_lda_roc.py b/doc/plot/iris_lda_roc.py index f5aeccea13c6faadcb3407666995d57b9771b017..bd352e83f5e6d76a97f857ab7f6da929127663b3 100644 --- a/doc/plot/iris_lda_roc.py +++ b/doc/plot/iris_lda_roc.py @@ -1,6 +1,6 @@ #!/usr/bin/env python # Andre Anjos <andre.anjos@idiap.ch> -# Sat 24 Mar 2012 18:51:21 CET +# Sat 24 Mar 2012 18:51:21 CET """Computes an ROC curve for the Iris Flower Recognition using Linear Discriminant Analysis and Bob. """ @@ -18,11 +18,12 @@ machine, eigen_values = trainer.train(data.values()) # A simple way to forward the data output = {} -for key in data.keys(): output[key] = machine(data[key]) +for key, value in data.items(): + output[key] = machine(value) # Performance -negatives = numpy.vstack([output['setosa'], output['versicolor']])[:,0] -positives = output['virginica'][:,0] +negatives = numpy.vstack([output["setosa"], output["versicolor"]])[:, 0] +positives = output["virginica"][:, 0] # Plot ROC curve bob.measure.plot.roc(negatives, positives) @@ -30,4 +31,3 @@ pyplot.xlabel("False Virginica Acceptance (%)") pyplot.ylabel("False Virginica Rejection (%)") pyplot.title("ROC Curve for Virginica Classification") pyplot.grid() -pyplot.axis([0, 5, 0, 15]) #xmin, xmax, ymin, ymax