
Project ANR-15-CE39-0010-01

Online Diarization Enhanced by recent Speaker
identification and Structured prediction Approaches

ODESSA

Final scientific report

1 Summary

ODESSA focuses on the detection and interception of cyber-crime and terrorism
involving voice over Internet protocol (VoIP) communications. VoIP is used to
describe the transmission technology for delivering voice communications using
packet-switched networks and related protocols. A plethora of different VoIP
software applications are now available, and a good number of them are free, e.g.
Skype, Google+ Hangouts, iCall and Viber. Such tools can be used to spread
terrorist ideologies, to recruit new members and to prepare, plan and coordinate
terrorist attacks. The ability to detect and intercept such communications is thus
an opportunity to stem the rise of cyber-criminality. The goal of the project is to
provide an online speaker diarization system that help detect and recognize the
speakers of interest.

Therefore, in this project3, Idiap has contributed to several components of
such online diarization system:

• Collected the first database of multi-party speech data over Internet tele-
phony, soon to be publicly available. We have used GotoMeeting VoIP
recording application to record online communications between 14 pairs
of people. We have also annotated the speech in each conversation. The
database and the annotations will be publicly available for download and
a database interface for the use with pyannote.audio speech diarization
framework [1] is already available1.

• Contributed to the state of the art pyannote.audio framework2 for speech
diarization. Based on PyTorch machine learning framework, this framework
provides a set of trainable end-to-end neural building blocks that can be
combined and jointly optimized to build speaker diarization pipelines.

• Evaluated state of the art diarization systems in cross-database scenario to
understand how well such systems perform under ‘unseen’ testing condi-
tions. In a realistic scenario, a diarization system is typically trained and
fine tuned on one set of data but is deployed in another environment with
different test data. We conducted such tests by training and evaluating
such system across several public databases.

1https://github.com/pyannote/pyannote-db-odessa-ip
2https://github.com/pyannote/pyannote-audio

1

https://github.com/pyannote/pyannote-db-odessa-ip
https://github.com/pyannote/pyannote-audio

• Contributed to the low-latency speaker spotting problem. Related to se-
curity and intelligence applications, the task involves the spotting, as soon
as possible, of known speakers in multi-speaker audio streams. This prob-
lem is an extension of the diarization and automated speaker verification
(ASV) problems with an additional restriction on the amount of time that
the system has for a decision about the current speaker’s identity.

• The datasets, experiments, source code, and the documentation of this
project are made publicly available3 to facilitate the research in this area
further.

3https://gitlab.idiap.ch/odessa/bob.pyannote

2

https://gitlab.idiap.ch/odessa/bob.pyannote

2 Database

The data collection for ODESSA VoIP database was carried out using Idiap’s
GotoMeeting recording application. The devices used in the meetings are PCs.
All the meeting material is stored in MPEG4 and WAV audio formats. Only
voices of the speakers were recorded. The duration of each conversation is 2
minutes maximum.

The database contains 42 conversations in English between 2 speakers. The
total number of speakers is 14. All participants have signed consent form by
agreeing for the collected data to be used for research purposes. The conversation
scenario includes the two speakers reading scripted lines from the script prepared
in advance. There is no cross talk between speakers. Each of the speakers used
a PC to connect. Each recording session is a brief transcribed VoIP conversation
between two speakers. The session manager used third PC to record the session
while muting himself.

All audio files are manually annotated by Idiap and the ground truth is stored
in Text and RTTM formats. The annotations include the beginnings and ends of
the speech for each speaker with local and global speaker IDs. Each transcribed
reference is associated with its corresponding session, so that the database could
also be used for speech diarization, speech recognition, speaker recognition, and
low=latency speaker spotting tasks.

3 Diarization framework

voice
activity
detection speaker

change
detection

overlapped
speech
detection

feature
extraction

speaker
embedding

clustering
resegmen-

tation

Figure 1: pyannote.audio provides a collection of modules that can be jointly
optimized to build a speaker diarization pipeline.

Speaker diarization is the task of partitioning an audio stream into homoge-
neous temporal segments according to the identity of the speaker. As depicted
in Figure 1, this is usually addressed by putting together a collection of building
blocks, each tackling a specific task (e.g. voice activity detection, clustering, or
re-segmentation).

pyannote.audio2 provides a unified framework to train (usually recurrent) neu-
ral networks for several speaker diarization sub-modules, including voice activity
detection [2], speaker change detection [1], overlapped speech detection [3], and
even re-segmentation [4].

Because processing long audio files of variable lengths is neither practical nor
efficient, pyannote.
audio relies on shorter fixed-length sub-sequences. At training time, fixed-length
sub-sequences are drawn randomly from the training set to form mini-batches,
increasing training samples variability (data augmentation) and training time
(shorter sequences). At test time, audio files are processed using overlapping
sliding windows of the same length as used in training. For each time step t,

3

this results in several overlapping sequences of K-dimensional prediction scores,
which are averaged to obtain the final score of each class.

pyannote.audio provides a collection of command line tools for training, val-
idation, and application of modules listed in Figure 1. Reproducible research is
facilitated by the systematic use of pyannote.metrics [5] and configuration files,
while strict enforcement of train/dev/eval split with pyannote.database ensures
machine learning good practices.

It also comes with a collection of pre-trained models for voice activity detec-
tion, speaker change detection, overlapped speech detection, and speaker embed-
ding. While speaker embeddings were trained and tested on VoxCeleb [6], all
other models (including the full diarization pipeline) were trained, tuned, and
tested on three different datasets, covering a wide range of domains: meetings
for AMI [7], broadcast news for ETAPE [8], and up to 11 different domains for
DIHARD [9].

4 Assessment of cross database diarization

The goal of this study was to study3 the effect of using different publicly available
datasets for training different parts of diarization pipeline. We have chosen sev-
eral popular databases for training, including AMI dataset [7], CallHomeSRE4 a
NIST SRE 2000 CallHome subset (the R65 8 1 folder), CallHome5 of CABank
corpora, REPERE corpus [10], ESTER corpus [11], Librispeech [12], and Odessa6.
An open source toolkit pyannote.audio 2 was used throughout the training and
evaluation.

The following data collections were used for training voice activity detection
(VAD), speaker change detection (SCD), and speaker embeddings (EMB), as well
as, to select best performing models on validation sets and selection of hyper-
parameters:

1. CallHomeSRE, subset of NIST SRE 2000 of different language speakers,
which was used as a standalone database for training.

2. CallHome English subset from CABank corpora, which was used for train-
ing, validation (development subset), and the selection of hyper-parameters
(development subset).

3. SmallMeta — a smaller collection of databases, including CallHomeSRE
(full database), CallHome (train subset), LibriSpeech (other-train subset),
and AMI (train subset). This collection was used for training different
models of diarization pipeline.

4. LargeMeta — a larger collection of databases, including SmallMeta plus
REPERE (train subsets of phase 1 and 2), ESTER (train subsets of version
1 and 2), and LibriSpeech (clean-train subset). This collection was used for
training different models of diarization pipeline.

5. AMI corpus, which was used for models validation (development subset)
and the selection of hyper-parameters (development subset).

4https://catalog.ldc.upenn.edu/LDC2001S97
5https://ca.talkbank.org/browser/index.php?url=CallHome/eng/
6https://github.com/pyannote/pyannote-db-odessa-ip

4

https://catalog.ldc.upenn.edu/LDC2001S97
https://ca.talkbank.org/browser/index.php?url=CallHome/eng/
https://github.com/pyannote/pyannote-db-odessa-ip

VAD, SCD, and EMB models were trained using pyannote.audio on the above
databases for 1000 epochs and, for each model, the best epochs were selected based
on the validation using either CallHome or AMI databases. The hyper-parameters
for the diarization were selected using the Ruiqing Yin et al. [4] approach on
development sets of either CallHome or AMI databases, i.e., the same sets that
were use in validation.

4.1 Cross-database evaluation results

Evaluation of speaker diarization pipelines in terms of diarization error rate are
shown in Table 1.

Table 1: Evaluation of speaker diarization system in terms of diarization error
rate (%) in cross-database scenario.

Evaluated on Subset Models trained on Validated on DER (%)

AMI development CallHome AMI 53.21
AMI development CallHomeSRE AMI 54.44
AMI development SmallMeta AMI 49.50
AMI development LargeMeta AMI 47.04
AMI development CallHome CallHome 62.51
AMI development CallHomeSRE CallHome 59.52
AMI development SmallMeta CallHome 66.20
AMI development LargeMeta CallHome 69.34
AMI test CallHome AMI 52.66
AMI test CallHomeSRE AMI 50.08
AMI test SmallMeta AMI 47.01
AMI test LargeMeta AMI 45.09
AMI test CallHome CallHome 58.45
AMI test CallHomeSRE CallHome 55.64
AMI test SmallMeta CallHome 62.66
AMI test LargeMeta CallHome 67.74
CallHome development CallHome AMI 63.25
CallHome development CallHomeSRE AMI 58.12
CallHome development SmallMeta AMI 51.24
CallHome development LargeMeta AMI 58.12
CallHome development CallHome CallHome 36.85
CallHome development CallHomeSRE CallHome 39.68
CallHome development SmallMeta CallHome 39.11
CallHome development LargeMeta CallHome 33.07
CallHome test CallHome AMI 57.81
CallHome test CallHomeSRE AMI 59.13
CallHome test SmallMeta AMI 55.98
CallHome test LargeMeta AMI 62.16
CallHome test CallHome CallHome 43.79
CallHome test CallHomeSRE CallHome 45.25
CallHome test SmallMeta CallHome 47.49
CallHome test LargeMeta CallHome 44.79
ODESSA test CallHome AMI 65.69
ODESSA test CallHomeSRE AMI 58.97
ODESSA test SmallMeta AMI 80.54
ODESSA test LargeMeta AMI 78.87
ODESSA test CallHome CallHome 63.65
ODESSA test CallHomeSRE CallHome 66.73
ODESSA test SmallMeta CallHome 80.38
ODESSA test LargeMeta CallHome 79.86

Since ODESSA database is small in size, the whole database is treated as

5

latency

target starts

speaking

at time t*

system triggers the alarm at tθ

detection threshold θ

call monitoring starts at t=0 call ends

Figure 2: Low-latency speaker spotting systems aim at detecting a target speaker
with the lowest possible latency.

one Test set. Therefore, in all experiments with ODESSA database, the models
trained on other databases were used. Additional results of diarization system
trained on AMI and VoxCeleb databases and evaluated on ODESSA database are
shown in Table 2. From this table, we can note the importance of which database
is used for tuning the hyper-parameters of the diarization system, as the DER
values are significantly smaller when the parameters are tuned and tested on the
same ODESSA database.

Table 2: Evaluation of speaker diarization pipelines in terms of diarization error
rate (%) for ODESSA database when using differently trained SAD, SCD, and
EMB models.

SAD model SCD model EMB model Hyper-params DER (%)

AMI AMI AMI AMI 40.2
AMI AMI VoxCeleb AMI 36.8
AMI AMI AMI ODESSA 15.6
AMI AMI VoxCeleb ODESSA 15.9

5 Low-latency speaker spotting

An automatic speaker verification (ASV) system is usually tasked with determin-
ing whether or not an audio sequence contains a given speaker [13]. Almost all
work in the area involves offline processing [14, 15, 16, 17], whereas many prac-
tical applications require some form of online processing. This report presents
the still ongoing work to develop a somewhat different system. In the proposed
task, the ASV system is required to determine whether or not an audio sequence
contains a given speaker as quickly as possible.

The motivation relates to the needs of the security services. These involve the
rapid and efficient detection of known speakers from high volume audio streams.
In such cases, rapid detection is needed in order to facilitate rapid reaction or re-
sponse to potentially hostile intent; the first step subsequent to detection involves
a security agent listening immediately to the audio stream.

In this application the cost of missing known speakers is high and the available
resources to support human listening are limited. In this sense, the appropriate
metric for the assessment of solutions is similar to that used in the majority

6

of related research [18], namely the cost of detection (Cdet). Here though, the
emphasis on low-latency necessitates a two-dimensional metric which combines
the cost of detection with the detection lag.

The minimisation of the detection lag has implications on the manner in which
an audio sequence is processed. Contrary to the majority of related research, the
low-latency speaker spotting task implies processing at a segmental level. While
shorter segments will allow for detection with shorter lags, the associated reduc-
tion in data will naturally degrade reliability [19]. Furthermore, in our application
there is also potential for multiple, competing speakers. Here too, then, there are
differences between the existing research and the low-latency speaker spotting
task. Solutions will likely combine ASV technology with some form of speaker
diarization.

While speaker diarization has also reached a certain level of maturity, there
are differences between the usual approach and that needed for our application.
While diarization is typically performed at the segmental level, most approaches
cluster segments across an entire audio recording. The modest amount of work
which has looked at on-line or low-latency speaker segmentation and speaker
diarization is, however, well-suited to our task.

5.1 Problem definition

The low latency speaker spotting (LLSS) task is illustrated in Figure 2. It illus-
trates the sequence of an audio stream (e.g. an intercepted telephone conversa-
tion) during which a known, target speaker (for which example speech data is
available) is active during the indicated segments. The target is active from time
t∗ but is detected only at time tθ. The goal of the LLSS task is to detect the
activity of the target speaker as soon as possible, i.e. to minimise the detection
latency tθ − t∗.

An LLSS system should thus output regular log-likelihood estimates (blue
profile in Figure 2) according to:

Λ(t) = ln f(at0|H0)− ln f(at0|H1)

where at0 is the audio from time t = 0 to time t and f() is a conditional probability
density given hypothesis H0 or H1, namely that the target speaker is either active
in the audio segment or not. Given a detection threshold θ, a perfect LLSS system
should then return Λ(t) < θ for t < t∗ and Λ(t) ≥ θ for t ≥ t∗.

In practice estimates of the log-likelihood ratio need not be produced period-
ically, but can be produced at arbitrary instances, leading to piecewise constant
functions Λ : R+ 7→ R.

5.2 Evaluation metrics

An ideal LLSS system would trigger an alarm as soon as the target speaker starts
speaking. In practice, this is not feasible as a certain amount of speech from the
target speaker is needed before being able to recognize them.

For instance, in Figure 2, the alarm is triggered at tθ ≈ 150s while the target
speaker starts speaking at t∗ ≈ 100s, leading to an absolute latency δ of approxi-
mately 50s. Different values of θ lead to different latencies. Low values of θ lead
to the alarm being triggered too early (in which case latency is arbitrarily set to
0). High values of θ lead to the alarm not being triggered at all. In between,

7

latency increases monotonically with θ. More precisely, the absolute latency is
defined as

δθ = max(tθ − t∗, 0) (1)

where t∗ is the time when target starts speaking and tθ is the time when the alarm
is first triggered (arbitrarily set to T ∗, the last time speech has been detected, in
case it is never triggered):

tθ =

arg min
t∈R+

Λ(t) > θ if ∃t ∈ R+, Λ(t) > θ

T ∗ otherwise
(2)

However, this definition may lead to arbitrarily high latency in case a first
(possibly short) utterance of the target speaker is missed and the second utterance
happens long after. A more realistic alternative metric is the speaker latency,
defined as the actual duration of speech uttered by the target speaker in the
[t∗, tθ] time range.

Depending on the final application, we might want to evaluate the detection
performance of a LLSS system at a given application-driven latency δ. In this
fixed latency scenario, the system is expected to trigger an alarm during the
[0, t∗ + δ] time range. Only those scores are considered to evaluate the detection
performance of the system:

λδ = max
t∈[0,t∗+δ]

Λ(t) (3)

Depending on the value of the detection threshold θ, the system will trigger
an alarm if λδ ≥ θ or will not if λδ < θ. Standard speaker recognition metrics
can then be reported, including false alarm rate FARδ(θ), false rejection rate
FRRδ(θ), equal error rate EERδ, and detection cost Cδdet(θ):

Cδdet(θ) = Cmiss × Ptarget × FRRδ(θ) + (4)

Cfalse alarm × (1− Ptarget)× FARδ(θ)

In a variable latency scenario, one may also let the system use whichever la-
tency gives the best detection performance (i.e. δ = ∞). As depicted in the
rightmost plot of Figure 4, detection performance and detection latency are then
two complementary (and possibly contradictory) metrics. The average detection
latency increases monotonically with θ, while the detection cost reaches its mini-
mum value for a specific value of θ. Therefore, one may rely on such Cdet = f(δ)
curves to compare different systems.

5.3 Experimental protocol

The evaluation of LLSS solutions requires a large database of multi-speaker audio
recordings and ground-truth speaker and segment level annotations. While sev-
eral multi-speaker databases exist (e.g. the SITW database [20]), the Augmented
Multi-party Interaction (AMI) meeting corpus [21] is the only publicly available
database provided with speaker and segment annotations. Consequently, it was
adopted for all experimental work reported in this project.

Despite the use of a standard database, it was necessary to design new proto-
cols to support the development and evaluation of LLSS solutions. Nonetheless,

8

Table 3: LLSS protocol details: number of speakers, number of enrolled models,
and number of target and non-target trials in AMI database.

Subset # speakers # models # target # non-target
Train 127 - - -
Dev. 22 89 771 3857
Eval. 24 106 994 5366

online

speaker

diarization

speaker #1

speaker #nt

speaker #2

scoring

scoring

scoring

max

score s1
t

score snt
t

score s2
t

score st

audio

stream

up to

time t

enrollmentenrollment

data target

model

Figure 3: Common architecture of all baselines.

the standard full-corpus7 training, development and evaluation partition is still
respected. Training data is used exclusively for background modelling. Speaker
disjoint development and evaluation sets are both partitioned into enrollment and
test subsets and are furthermore split into shorter 10-minute sub-sessions. Enroll-
ment data is used to train target speaker models. The single file containing the
greatest amount of speech per target speaker was split into 60-second segments,
with different speaker models being learned from each. While the splitting of au-
dio files in this way is not ideal, it serves to maximize the number and variability
of trials and to provide for better generalised diarization.

A single LLSS trial is similar in nature to a classical ASV trial; it involves
an enrolled target model, a test sub-session, and a trial class (target/non-target).
Target trials for a given speaker are defined by using all the test sub-sessions in
which the target speaker is active. Remaining sub-sessions correspond to non-
target trials. The protocol described above results in the number of speakers,
models target and non-target trials illustrated in Table 3.

5.4 Baselines

In this section, we describe several baseline solutions to the LLSS task, that all
share a common architecture depicted in Figure 3. At any time t, online speaker
diarization provides a set of nt speaker clusters {cti}1≤i≤nt

. The scoring backend
is then used to obtain the score (or likelihood-ratio) sti for all speech in each
cluster cti with respect to the target speaker model ω∗. The final score at time t
is defined as the maximum score over all clusters: st = max1≤i≤nt s

t
i.

Speaker diarization should benefit the LLSS task by providing it with pure
speaker segments and accumulating all previous speech from the current speaker
before the comparison with the target. Let Ct = {c} be the set of speaker clusters

7groups.inf.ed.ac.uk/ami/corpus

9

groups.inf.ed.ac.uk/ami/corpus

1s 3s 10s 1min 3min
Fixed speaker latency

0%

10%

20%

30%

40%

50%

EER GMM-UBM
w/o diarization
diarization
oracle diarization

1s 3s 10s 1min 3min
Fixed speaker latency

0%

10%

20%

30%

40%

50%

EER i-vector

1s 3s 10s 1min 3min
Fixed speaker latency

0%

10%

20%

30%

40%

50%

EER Neural embedding

1s 3s 10s 1min 3min
Fixed speaker latency

0%

10%

20%

30%

40%

50%

EER Best systems
GMM-UBM w/o diarization
Embedding with diarization

1s 3s 10s 1min 3min
Variable speaker latency

0

0.2

0.4

0.6

0.8

1.0
Cdet

Cmiss = 100 / Cfa = 1 / Ptarget = 0.01
GMM-UBM w/o diarization
Embedding with diarization

Figure 4: Influence of the detection latency on the detection performance (EER
or Cdet) for AMI database.

resulting of an online speaker diarization system at time t and σ(c, ω∗) the score
or likelihood-ratio for all speech belonging to a cluster c relative to the target
speaker model ω∗. Then Λ̃(t) = maxc∈Ct

σ(c, ω∗).
We compare two online speaker diarization modules. They both rely on an

initial LSTM-based voice activity detector [1]. The first online diarization module
does not perform any clustering: it just relies on a 3s sliding window (with a 1s
shift) and creates a new cluster at each step. It is therefore denoted as “with-
out diarization” in the rest of the report. The actual “automatic diarization”
system is based on i-vectors [17] and sequential clustering of the same sliding
window using the cosine similarity and an empirically optimized threshold to as-
sign segments to existing clusters, or to create new ones. Speaker clusters are
represented by i-vectors extracted from the averaged sufficient statistics of their
respective segments. The system uses 19 MFCC coefficients as frontend, a uni-
versal background model (UBM) of 256 components and a T matrix of rank 100,
both learned on the training data. We also report results using “oracle diariza-
tion” in order to estimate the impact of diarization errors on the overall LLSS
systems.

We use three different backends for speaker modeling and comparison: GMM-
UBM, i-vector, and neural embedding.

GMM-UBM. This backend is a standard, 256-component Gaussian mixture
model with universal background model (GMM-UBM) [14], maximum a posteriori
(MAP) speaker enrollment, and log-likelihood ratio scoring.

i-vector. This backend is an i-vector system [17] with a T matrix of dimension
100 and cosine similarity scoring between target speaker and test i-vectors. Both
GMM-UBM and i-vector systems share the same MFCC frontend and UBM as
the automatic diarization system.

Neural embedding. This backend is based on the neural speaker embedding
approach introduced in [22] and further improved in [23]. In a nutshell, an
LSTM-based neural network is trained to project 3.2s speech sequences into a
192-dimensional space, using the triplet loss paradigm. Implementation details
are identical to the ones used in [24]. The target (resp. cluster) model is the
sum all embeddings extracted from a sliding window with a 0.8s shift over the
enrollment data (resp. cluster). Resulting vectors are compared directly using the
cosine distance.

10

Table 4: Equal error rate (%) at fixed speaker latency for AMI database

Backend Diar. 3s 10s 30s 1min
GMM 31.0 12.0 6.3 4.4
UBM X 29.6 19.2 14.3 12.2
Neural 23.5 10.0 7.4 6.2

embedding X 17.7 9.0 7.2 6.0

5.5 Low-latency speaker spotting results for AMI dataset

Leftmost plots in Figure 4 display the evolution of the EER on the test set as
a function of the fixed speaker latency, for each combination of diarization and
backend configurations. Whichever the backend, the same general trends can
be observed: for very low latencies up to a few (tens of) seconds, a diarization
system brings a clear benefit. This advantage is much more pronounced for the
oracle configuration, showing room for improvement of the automatic diarization
system: it indeed presents a diarization error rate of 44.2% using a standard collar
of 250ms, with a 60.1% purity and 65.1% coverage. Finally, the differences vanish
when considering latencies above one minute – but we believe that this latency
level is far beyond the use case needs.

Table 4 details the EER figures for the two best performing backends and
for typical latency values: at 3s and 10s latencies, the neural embedding with
automatic diarization performs best at 17.7% and 9.0% respectively; the GMM-
UBM system without diarization then takes the lead at 30s.

A measure of the variable speaker latency is shown in the rightmost plot of
Figure 4 where Cdet is reported with usual costs from the NIST evaluations.
Obviously, selecting the system with minimal Cdet is not a winning strategy in a
LLSS task; instead one needs to carefully balance between both performance and
latency constraints, e.g. selecting the lowest average latency for an admissible
cost.

5.6 Low-latency speaker spotting results for ODESSA database

Since ODESSA database is smaller than AMI in size, the database is treated as
one Test set. Therefore, in all experiments with ODESSA database, the models
trained on other databases were used. Also, to train the hyper-parameters of the
‘Yin2018’ diarization system, AMI’s Train set was used. This approach reflects
the practical scenario on evaluating the system on ‘unseen’ data.

The same low-latency speaker spotting system was applied to ODESSA database
as for AMI dataset (see Section 5.5. Table 5 shows the EER for the two systems
with neural embeddings trained on AMI and VoxCeleb database, since neural
embeddings based system performed the best for the shorter speaker latencies
in Table 4. Also, since ODESSA database contains shorter conversations, the
speaker latency for which we have computed EER values ranges from 1s to 15s.
From the Table 5, we can note how it is challenging for current state of the art
systems to generalize on the unseen data, since the EER values are significantly
higher for ODESSA compared to the values obtained on the Test set of the same
database the system was trained on as in Table 4.

11

Table 5: EER for different latencies of segmental LLSS system computed on
ODESSA database.

Embeddings 1s 3s 5s 10s 15s

AMI 78.51 72.93 48.43 33.59 31.09
VoxCeleb 78.83 72.62 50.23 34.66 31.80

6 Reproducible research

The datasets, experiments, source code, and the documentation to reproduce the
experiments of this project are available on GitLab3.

The reproducibility is also facilitated by using pyannote.audio open source
framework that relies on the use of pyannote.metrics [5] and configuration files,
while strict enforcement of train/dev/eval split with pyannote.database ensures
machine learning good practices.

AMI, CallHome, CallHomeSRE, REPERE, ESTER, and the in-house created
databases are all publicly available and have the corresponding pyannote pack-
ages available for them (see the project documentation3). The cross-database
evaluation3, the proposed LLSS protocol8, and corresponding evaluation met-
rics pyannote.metrics [5] are available as open-source software Python packages.
Finally, the code for the baselines is available for public use.

7 Conclusions

This report describes ODESSA project and Idiap’s contributions to each essential
parts of the project. The database of VoIP data was collected and contributions
were made to the work on diarization (based on open source pyannote.audio

framework), including the cross-database evaluations, and low-latency speaker
spotting.

References

[1] R. Yin, H. Bredin, and C. Barras, “Speaker Change Detection in Broad-
cast TV Using Bidirectional Long Short-Term Memory Networks,” in Proc.
Interspeech 2017, 2017.

[2] G. Gelly and J.-L. Gauvain, “Optimization of RNN-Based Speech Activ-
ity Detection,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 26, pp. 646–656, March 2018.

[3] L. Bullock, H. Bredin, and L. P. Garcia-Perera, “Overlap-Aware Resegmen-
tation for Speaker Diarization.” Submitted to ICASSP 2020.

[4] R. Yin, H. Bredin, and C. Barras, “Neural Speech Turn Segmentation and
Affinity Propagation for Speaker Diarization,” in Proc. Interspeech 2018,
pp. 1393–1397, 2018.

8https://gitlab.eurecom.fr/odessa/llss

12

https://gitlab.eurecom.fr/odessa/llss

[5] H. Bredin, “pyannote.metrics: a toolkit for reproducible evaluation, diagnos-
tic, and error analysis of speaker diarization systems,” in Proc. Interspeech
2017, (Stockholm, Sweden), August 2017.

[6] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep speaker recog-
nition,” in Proc. InterSpeech 2018, 2018.

[7] J. Carletta, “Unleashing the killer corpus: experiences in creating the
multi-everything AMI Meeting Corpus,” Language Resources and Evalua-
tion, vol. 41, no. 2, 2007.

[8] G. Gravier, G. Adda, N. Paulson, M. Carré, A. Giraudel, and O. Galib-
ert, “The ETAPE Corpus for the Evaluation of Speech-based TV Content
Processing in the French Language,” in Proc. LREC 2012, 2012.

[9] N. Ryant, K. Church, C. Cieri, A. Cristia, J. Du, S. Ganapathy, and M. Liber-
man, “The Second DIHARD Diarization Challenge: Dataset, Task, and
Baselines,” in Proc. Interspeech 2019, pp. 978–982, 2019.

[10] A. Giraudel, M. Carré, V. Mapelli, J. Kahn, O. Galibert, and L. Quintard,
“The REPERE corpus : a multimodal corpus for person recognition,” in
Proceedings of the Eighth International Conference on Language Resources
and Evaluation (LREC’12), (Istanbul, Turkey), pp. 1102–1107, European
Languages Resources Association (ELRA), May 2012.

[11] S. Galliano, E. Geoffrois, G. Gravier, J. f. Bonastre, D. Mostefa, and
K. Choukri, “Corpus description of the ester evaluation campaign for the
rich transcription of french broadcast news,” in In Proceedings of the 5th in-
ternational Conference on Language Resources and Evaluation (LREC 2006,
pp. 315–320, 2006.

[12] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An
asr corpus based on public domain audio books,” 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5206–
5210, 2015.

[13] T. Kinnunen and H. Li, “An overview of text-independent speaker recogni-
tion: From features to supervectors,” Speech Communication, vol. 52, no. 1,
pp. 12–40, 2010.

[14] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification using
adapted Gaussian mixture models,” Digital Signal Processing, vol. 10, no. 1-
3, pp. 19–41, 2000.

[15] W. M. Campbell, D. E. Sturim, and D. A. Reynolds, “Support vector ma-
chines using gmm supervectors for speaker verification,” IEEE Signal Pro-
cessing Letters, vol. 13, pp. 308–311, May 2006.

[16] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, “Joint factor analysis
versus eigenchannels in speaker recognition,” IEEE Trans. on Audio, Speech,
and Language Proc., vol. 15, pp. 1435–1447, May 2007.

[17] N. Dehak, P. Kenny, R. Dehak, P. Ouellet, and P. Dumouchel, “Front-end
factor analysis for speaker verification,” IEEE Trans. on Audio, Speech and
Language Proc., vol. 19, pp. 788–798, 2011.

13

[18] M. A. Przybocki, A. F. Martin, and A. N. Le, “NIST speaker recognition
evaluation chronicles - part 2,” in Proc. Odyssey, pp. 1–6, June 2006.

[19] A. Sarkar, D. Matrouf, P.-M. Bousquet, and J.-F. Bonastre, “Study of the
effect of i-vector modeling on short and mismatch utterance duration for
speaker verification,” in Proc. Interspeech, 2012.

[20] M. McLaren, L. Ferrer, D. Castan, and A. Lawson, “The 2016 speakers in
the wild speaker recognition evaluation,” in Proc. Interspeech, pp. 823–827,
2016.

[21] J. Carletta, “Unleashing the killer corpus: experiences in creating the multi-
everything ami meeting corpus,” Language Resources and Evaluation, vol. 41,
no. 2, pp. 181–190, 2007.

[22] H. Bredin, “TristouNet: Triplet Loss for Speaker Turn Embedding,” in Proc.
IEEE ICASSP, March 2017.

[23] G. Gelly and J.-L. Gauvain, “Spoken Language Identification using LSTM-
based Angular Proximity,” in Proc. Interspeech, August 2017.

[24] G. Wisniewski, H. Bredin, G. Gelly, and C. Barras, “Combining Speaker
Turn Embedding and Incremental Structure Prediction for Low-Latency
Speaker Diarization,” in Proc. Interspeech, August 2017.

14

	Summary
	Database
	Diarization framework
	Assessment of cross database diarization
	Cross-database evaluation results

	Low-latency speaker spotting
	Problem definition
	Evaluation metrics
	Experimental protocol
	Baselines
	Low-latency speaker spotting results for AMI dataset
	Low-latency speaker spotting results for ODESSA database

	Reproducible research
	Conclusions

