diff --git a/bob/__init__.py b/bob/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..edbb4090fca046b19d22d3982711084621bff3be --- /dev/null +++ b/bob/__init__.py @@ -0,0 +1,4 @@ +# see https://docs.python.org/3/library/pkgutil.html +from pkgutil import extend_path + +__path__ = extend_path(__path__, __name__) diff --git a/bob/bio/__init__.py b/bob/bio/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..edbb4090fca046b19d22d3982711084621bff3be --- /dev/null +++ b/bob/bio/__init__.py @@ -0,0 +1,4 @@ +# see https://docs.python.org/3/library/pkgutil.html +from pkgutil import extend_path + +__path__ = extend_path(__path__, __name__) diff --git a/bob/bio/facexzoo/LICENSE.txt b/bob/bio/facexzoo/LICENSE.txt new file mode 100644 index 0000000000000000000000000000000000000000..dd7083a25926383c625969899052dc2d5bf7bf55 --- /dev/null +++ b/bob/bio/facexzoo/LICENSE.txt @@ -0,0 +1,915 @@ +Copyright [2020] JD.com, Inc., JD AI + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. + +---------------------------------------------------------------------------------------------------------- + +From PyTorch: + +Copyright (c) 2016- Facebook, Inc (Adam Paszke) +Copyright (c) 2014- Facebook, Inc (Soumith Chintala) +Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert) +Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu) +Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu) +Copyright (c) 2011-2013 NYU (Clement Farabet) +Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston) +Copyright (c) 2006 Idiap Research Institute (Samy Bengio) +Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz) + +From Caffe2: + +Copyright (c) 2016-present, Facebook Inc. All rights reserved. + +All contributions by Facebook: +Copyright (c) 2016 Facebook Inc. + +All contributions by Google: +Copyright (c) 2015 Google Inc. +All rights reserved. + +All contributions by Yangqing Jia: +Copyright (c) 2015 Yangqing Jia +All rights reserved. + +All contributions from Caffe: +Copyright(c) 2013, 2014, 2015, the respective contributors +All rights reserved. + +All other contributions: +Copyright(c) 2015, 2016 the respective contributors +All rights reserved. + +Caffe2 uses a copyright model similar to Caffe: each contributor holds +copyright over their contributions to Caffe2. The project versioning records +all such contribution and copyright details. If a contributor wants to further +mark their specific copyright on a particular contribution, they should +indicate their copyright solely in the commit message of the change when it is +committed. + +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + +3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America + and IDIAP Research Institute nor the names of its contributors may be + used to endorse or promote products derived from this software without + specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +---------------------------------------------------------------------------------------------------------- + +From insightface: + +MIT License + +Copyright (c) 2018 Jiankang Deng and Jia Guo + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. + +---------------------------------------------------------------------------------------------------------- + +From ghostnet: + +Copyright (c) 2020. Huawei Technologies Co., Ltd. + All rights reserved. + + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright 2020 Huawei Technologies Co., Ltd. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + +---------------------------------------------------------------------------------------------------------- + +From HRNet: + +MIT License + +Copyright (c) 2019 Microsoft Corporation + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. + +---------------------------------------------------------------------------------------------------------- + +From InsightFace_Pytorch: + +MIT License + +Copyright (c) 2018 TreB1eN + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. + +---------------------------------------------------------------------------------------------------------- + +From pytorch-adacos: + +MIT License + +Copyright (c) 2019 Takato Kimura + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. + +---------------------------------------------------------------------------------------------------------- + +From CurricularFace: + +MIT License + +Copyright (c) 2020 HuangYG123 + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. + +---------------------------------------------------------------------------------------------------------- + +From Pytorch_Retinaface: + +MIT License + +Copyright (c) 2019 + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. + +---------------------------------------------------------------------------------------------------------- + +From chainercv: + +The MIT License + +Copyright (c) 2017 Preferred Networks, Inc. + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +---------------------------------------------------------------------------------------------------------- + +From PRNet: + +MIT License + +Copyright (c) 2018 Yao Feng + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. + +---------------------------------------------------------------------------------------------------------- + +From EfficientNet-PyTorch: + + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + +---------------------------------------------------------------------------------------------------------- + +From ResNeSt: + + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/bob/bio/facexzoo/Readme.md b/bob/bio/facexzoo/Readme.md new file mode 100644 index 0000000000000000000000000000000000000000..6f0901bbf0b5bca38bc016ec92790541211e57e8 --- /dev/null +++ b/bob/bio/facexzoo/Readme.md @@ -0,0 +1,2 @@ +Part of the scripts are taken from FaceXZoo reposiroty which is licensed under Apache 2. +For more details please check the [LICENSE](LICENSE.txt) file. \ No newline at end of file diff --git a/bob/bio/facexzoo/__init__.py b/bob/bio/facexzoo/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/backbones/AttentionNets.py b/bob/bio/facexzoo/backbones/AttentionNets.py new file mode 100644 index 0000000000000000000000000000000000000000..addfd7ee106b034fd191d9477bb4a3c79e2900fd --- /dev/null +++ b/bob/bio/facexzoo/backbones/AttentionNets.py @@ -0,0 +1,240 @@ +""" +@author: Jun Wang +@date: 20201019 +@contact: jun21wangustc@gmail.com +""" + +# based on: +# https://github.com/tengshaofeng/ResidualAttentionNetwork-pytorch/tree/master/Residual-Attention-Network/model + +import torch +import torch.nn as nn +from torch.nn import init +import functools +from torch.autograd import Variable +import numpy as np + +class Flatten(nn.Module): + def forward(self, x): + return x.reshape(x.size(0), -1) + +class ResidualBlock(nn.Module): + def __init__(self, input_channels, output_channels, stride=1): + super(ResidualBlock, self).__init__() + self.input_channels = input_channels + self.output_channels = output_channels + self.stride = stride + self.bn1 = nn.BatchNorm2d(input_channels) + self.relu = nn.ReLU(inplace=True) + self.conv1 = nn.Conv2d(input_channels, output_channels//4, 1, 1, bias = False) + self.bn2 = nn.BatchNorm2d(output_channels//4) + self.relu = nn.ReLU(inplace=True) + self.conv2 = nn.Conv2d(output_channels//4, output_channels//4, 3, stride, padding = 1, bias = False) + self.bn3 = nn.BatchNorm2d(output_channels//4) + self.relu = nn.ReLU(inplace=True) + self.conv3 = nn.Conv2d(output_channels//4, output_channels, 1, 1, bias = False) + self.conv4 = nn.Conv2d(input_channels, output_channels , 1, stride, bias = False) + def forward(self, x): + residual = x + out = self.bn1(x) + out1 = self.relu(out) + out = self.conv1(out1) + out = self.bn2(out) + out = self.relu(out) + out = self.conv2(out) + out = self.bn3(out) + out = self.relu(out) + out = self.conv3(out) + if (self.input_channels != self.output_channels) or (self.stride !=1 ): + residual = self.conv4(out1) + out += residual + return out + +class AttentionModule_stage1(nn.Module): + # input size is 56*56 + def __init__(self, in_channels, out_channels, size1=(56, 56), size2=(28, 28), size3=(14, 14)): + super(AttentionModule_stage1, self).__init__() + self.first_residual_blocks = ResidualBlock(in_channels, out_channels) + self.trunk_branches = nn.Sequential( + ResidualBlock(in_channels, out_channels), + ResidualBlock(in_channels, out_channels) + ) + self.mpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.softmax1_blocks = ResidualBlock(in_channels, out_channels) + self.skip1_connection_residual_block = ResidualBlock(in_channels, out_channels) + self.mpool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.softmax2_blocks = ResidualBlock(in_channels, out_channels) + self.skip2_connection_residual_block = ResidualBlock(in_channels, out_channels) + self.mpool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.softmax3_blocks = nn.Sequential( + ResidualBlock(in_channels, out_channels), + ResidualBlock(in_channels, out_channels) + ) + self.interpolation3 = nn.UpsamplingBilinear2d(size=size3) + self.softmax4_blocks = ResidualBlock(in_channels, out_channels) + self.interpolation2 = nn.UpsamplingBilinear2d(size=size2) + self.softmax5_blocks = ResidualBlock(in_channels, out_channels) + self.interpolation1 = nn.UpsamplingBilinear2d(size=size1) + self.softmax6_blocks = nn.Sequential( + nn.BatchNorm2d(out_channels), + nn.ReLU(inplace=True), + nn.Conv2d(out_channels, out_channels , kernel_size = 1, stride = 1, bias = False), + nn.BatchNorm2d(out_channels), + nn.ReLU(inplace=True), + nn.Conv2d(out_channels, out_channels , kernel_size = 1, stride = 1, bias = False), + nn.Sigmoid() + ) + self.last_blocks = ResidualBlock(in_channels, out_channels) + def forward(self, x): + x = self.first_residual_blocks(x) + out_trunk = self.trunk_branches(x) + out_mpool1 = self.mpool1(x) + out_softmax1 = self.softmax1_blocks(out_mpool1) + out_skip1_connection = self.skip1_connection_residual_block(out_softmax1) + out_mpool2 = self.mpool2(out_softmax1) + out_softmax2 = self.softmax2_blocks(out_mpool2) + out_skip2_connection = self.skip2_connection_residual_block(out_softmax2) + out_mpool3 = self.mpool3(out_softmax2) + out_softmax3 = self.softmax3_blocks(out_mpool3) + # + out_interp3 = self.interpolation3(out_softmax3) + out_softmax2 + # print(out_skip2_connection.data) + # print(out_interp3.data) + out = out_interp3 + out_skip2_connection + out_softmax4 = self.softmax4_blocks(out) + out_interp2 = self.interpolation2(out_softmax4) + out_softmax1 + out = out_interp2 + out_skip1_connection + out_softmax5 = self.softmax5_blocks(out) + out_interp1 = self.interpolation1(out_softmax5) + out_trunk + out_softmax6 = self.softmax6_blocks(out_interp1) + out = (1 + out_softmax6) * out_trunk + out_last = self.last_blocks(out) + + return out_last + + +class AttentionModule_stage2(nn.Module): + # input image size is 28*28 + def __init__(self, in_channels, out_channels, size1=(28, 28), size2=(14, 14)): + super(AttentionModule_stage2, self).__init__() + self.first_residual_blocks = ResidualBlock(in_channels, out_channels) + self.trunk_branches = nn.Sequential( + ResidualBlock(in_channels, out_channels), + ResidualBlock(in_channels, out_channels) + ) + self.mpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.softmax1_blocks = ResidualBlock(in_channels, out_channels) + self.skip1_connection_residual_block = ResidualBlock(in_channels, out_channels) + self.mpool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.softmax2_blocks = nn.Sequential( + ResidualBlock(in_channels, out_channels), + ResidualBlock(in_channels, out_channels) + ) + self.interpolation2 = nn.UpsamplingBilinear2d(size=size2) + self.softmax3_blocks = ResidualBlock(in_channels, out_channels) + self.interpolation1 = nn.UpsamplingBilinear2d(size=size1) + self.softmax4_blocks = nn.Sequential( + nn.BatchNorm2d(out_channels), + nn.ReLU(inplace=True), + nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=1, bias=False), + nn.BatchNorm2d(out_channels), + nn.ReLU(inplace=True), + nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=1, bias=False), + nn.Sigmoid() + ) + self.last_blocks = ResidualBlock(in_channels, out_channels) + def forward(self, x): + x = self.first_residual_blocks(x) + out_trunk = self.trunk_branches(x) + out_mpool1 = self.mpool1(x) + out_softmax1 = self.softmax1_blocks(out_mpool1) + out_skip1_connection = self.skip1_connection_residual_block(out_softmax1) + out_mpool2 = self.mpool2(out_softmax1) + out_softmax2 = self.softmax2_blocks(out_mpool2) + out_interp2 = self.interpolation2(out_softmax2) + out_softmax1 + # print(out_skip2_connection.data) + # print(out_interp3.data) + out = out_interp2 + out_skip1_connection + out_softmax3 = self.softmax3_blocks(out) + out_interp1 = self.interpolation1(out_softmax3) + out_trunk + out_softmax4 = self.softmax4_blocks(out_interp1) + out = (1 + out_softmax4) * out_trunk + out_last = self.last_blocks(out) + return out_last + +class AttentionModule_stage3(nn.Module): + # input image size is 14*14 + def __init__(self, in_channels, out_channels, size1=(14, 14)): + super(AttentionModule_stage3, self).__init__() + self.first_residual_blocks = ResidualBlock(in_channels, out_channels) + self.trunk_branches = nn.Sequential( + ResidualBlock(in_channels, out_channels), + ResidualBlock(in_channels, out_channels) + ) + self.mpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.softmax1_blocks = nn.Sequential( + ResidualBlock(in_channels, out_channels), + ResidualBlock(in_channels, out_channels) + ) + self.interpolation1 = nn.UpsamplingBilinear2d(size=size1) + self.softmax2_blocks = nn.Sequential( + nn.BatchNorm2d(out_channels), + nn.ReLU(inplace=True), + nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=1, bias=False), + nn.BatchNorm2d(out_channels), + nn.ReLU(inplace=True), + nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=1, bias=False), + nn.Sigmoid() + ) + self.last_blocks = ResidualBlock(in_channels, out_channels) + def forward(self, x): + x = self.first_residual_blocks(x) + out_trunk = self.trunk_branches(x) + out_mpool1 = self.mpool1(x) + out_softmax1 = self.softmax1_blocks(out_mpool1) + out_interp1 = self.interpolation1(out_softmax1) + out_trunk + out_softmax2 = self.softmax2_blocks(out_interp1) + out = (1 + out_softmax2) * out_trunk + out_last = self.last_blocks(out) + return out_last + +class ResidualAttentionNet(nn.Module): + def __init__(self, stage1_modules, stage2_modules, stage3_modules, feat_dim, out_h, out_w): + super(ResidualAttentionNet, self).__init__() + self.conv1 = nn.Sequential( + nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias = False), + nn.BatchNorm2d(64), + nn.ReLU(inplace=True) + ) + attention_modules = [] + + attention_modules.append(ResidualBlock(64, 256)) + # stage 1 + for i in range(stage1_modules): + attention_modules.append(AttentionModule_stage1(256, 256)) + + attention_modules.append(ResidualBlock(256, 512, 2)) + # stage2 + for i in range(stage2_modules): + attention_modules.append(AttentionModule_stage2(512, 512)) + + attention_modules.append(ResidualBlock(512, 1024, 2)) + # stage3 + for i in range(stage3_modules): + attention_modules.append(AttentionModule_stage3(1024, 1024)) + + # final residual + attention_modules.append(ResidualBlock(1024, 2048, 2)) + attention_modules.append(ResidualBlock(2048, 2048)) + attention_modules.append(ResidualBlock(2048, 2048)) + self.attention_body = nn.Sequential(*attention_modules) + # output layer + self.output_layer = nn.Sequential( + Flatten(), + nn.Linear(2048 * out_h * out_w, feat_dim, False), + nn.BatchNorm1d(feat_dim)) + def forward(self, x): + out = self.conv1(x) + out = self.attention_body(out) + out = self.output_layer(out) + return out diff --git a/bob/bio/facexzoo/backbones/EfficientNets.py b/bob/bio/facexzoo/backbones/EfficientNets.py new file mode 100644 index 0000000000000000000000000000000000000000..19fb8813af1d608ae85ca4de094c1d58ffdd99aa --- /dev/null +++ b/bob/bio/facexzoo/backbones/EfficientNets.py @@ -0,0 +1,1038 @@ +""" +@author: Jun Wang +@date: 20201019 +@contact: jun21wangustc@gmail.com +""" + +# based on: +# Github repo: https://github.com/lukemelas/EfficientNet-PyTorch + +import re +import math +import collections +from functools import partial +import torch +from torch import nn +from torch.nn import functional as F +from torch.utils import model_zoo +from torch.nn import Sequential, BatchNorm1d, BatchNorm2d, Dropout, Module, Linear + + +################################################################################ +### Help functions for model architecture +################################################################################ + +# GlobalParams and BlockArgs: Two namedtuples +# Swish and MemoryEfficientSwish: Two implementations of the method +# round_filters and round_repeats: +# Functions to calculate params for scaling model width and depth ! ! ! +# get_width_and_height_from_size and calculate_output_image_size +# drop_connect: A structural design +# get_same_padding_conv2d: +# Conv2dDynamicSamePadding +# Conv2dStaticSamePadding +# get_same_padding_maxPool2d: +# MaxPool2dDynamicSamePadding +# MaxPool2dStaticSamePadding +# It's an additional function, not used in EfficientNet, +# but can be used in other model (such as EfficientDet). + +# Parameters for the entire model (stem, all blocks, and head) +GlobalParams = collections.namedtuple('GlobalParams', [ + 'width_coefficient', 'depth_coefficient', 'image_size', 'dropout_rate', + 'num_classes', 'batch_norm_momentum', 'batch_norm_epsilon', + 'drop_connect_rate', 'depth_divisor', 'min_depth', 'include_top']) + +# Parameters for an individual model block +BlockArgs = collections.namedtuple('BlockArgs', [ + 'num_repeat', 'kernel_size', 'stride', 'expand_ratio', + 'input_filters', 'output_filters', 'se_ratio', 'id_skip']) + +# Set GlobalParams and BlockArgs's defaults +GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields) +BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields) + + +# An ordinary implementation of Swish function +class Swish(nn.Module): + def forward(self, x): + return x * torch.sigmoid(x) + + +# A memory-efficient implementation of Swish function +class SwishImplementation(torch.autograd.Function): + @staticmethod + def forward(ctx, i): + result = i * torch.sigmoid(i) + ctx.save_for_backward(i) + return result + + @staticmethod + def backward(ctx, grad_output): + i = ctx.saved_tensors[0] + sigmoid_i = torch.sigmoid(i) + return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i))) + +class MemoryEfficientSwish(nn.Module): + def forward(self, x): + return SwishImplementation.apply(x) + + +def round_filters(filters, global_params): + """Calculate and round number of filters based on width multiplier. + Use width_coefficient, depth_divisor and min_depth of global_params. + + Args: + filters (int): Filters number to be calculated. + global_params (namedtuple): Global params of the model. + + Returns: + new_filters: New filters number after calculating. + """ + multiplier = global_params.width_coefficient + if not multiplier: + return filters + # TODO: modify the params names. + # maybe the names (width_divisor,min_width) + # are more suitable than (depth_divisor,min_depth). + divisor = global_params.depth_divisor + min_depth = global_params.min_depth + filters *= multiplier + min_depth = min_depth or divisor # pay attention to this line when using min_depth + # follow the formula transferred from official TensorFlow implementation + new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor) + if new_filters < 0.9 * filters: # prevent rounding by more than 10% + new_filters += divisor + return int(new_filters) + + +def round_repeats(repeats, global_params): + """Calculate module's repeat number of a block based on depth multiplier. + Use depth_coefficient of global_params. + + Args: + repeats (int): num_repeat to be calculated. + global_params (namedtuple): Global params of the model. + + Returns: + new repeat: New repeat number after calculating. + """ + multiplier = global_params.depth_coefficient + if not multiplier: + return repeats + # follow the formula transferred from official TensorFlow implementation + return int(math.ceil(multiplier * repeats)) + + +def drop_connect(inputs, p, training): + """Drop connect. + + Args: + input (tensor: BCWH): Input of this structure. + p (float: 0.0~1.0): Probability of drop connection. + training (bool): The running mode. + + Returns: + output: Output after drop connection. + """ + assert 0 <= p <= 1, 'p must be in range of [0,1]' + + if not training: + return inputs + + batch_size = inputs.shape[0] + keep_prob = 1 - p + + # generate binary_tensor mask according to probability (p for 0, 1-p for 1) + random_tensor = keep_prob + random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device) + binary_tensor = torch.floor(random_tensor) + + output = inputs / keep_prob * binary_tensor + return output + + +def get_width_and_height_from_size(x): + """Obtain height and width from x. + + Args: + x (int, tuple or list): Data size. + + Returns: + size: A tuple or list (H,W). + """ + if isinstance(x, int): + return x, x + if isinstance(x, list) or isinstance(x, tuple): + return x + else: + raise TypeError() + + +def calculate_output_image_size(input_image_size, stride): + """Calculates the output image size when using Conv2dSamePadding with a stride. + Necessary for static padding. Thanks to mannatsingh for pointing this out. + + Args: + input_image_size (int, tuple or list): Size of input image. + stride (int, tuple or list): Conv2d operation's stride. + + Returns: + output_image_size: A list [H,W]. + """ + if input_image_size is None: + return None + image_height, image_width = get_width_and_height_from_size(input_image_size) + stride = stride if isinstance(stride, int) else stride[0] + image_height = int(math.ceil(image_height / stride)) + image_width = int(math.ceil(image_width / stride)) + return [image_height, image_width] + + +# Note: +# The following 'SamePadding' functions make output size equal ceil(input size/stride). +# Only when stride equals 1, can the output size be the same as input size. +# Don't be confused by their function names ! ! ! + +def get_same_padding_conv2d(image_size=None): + """Chooses static padding if you have specified an image size, and dynamic padding otherwise. + Static padding is necessary for ONNX exporting of models. + + Args: + image_size (int or tuple): Size of the image. + + Returns: + Conv2dDynamicSamePadding or Conv2dStaticSamePadding. + """ + if image_size is None: + return Conv2dDynamicSamePadding + else: + return partial(Conv2dStaticSamePadding, image_size=image_size) + + +class Conv2dDynamicSamePadding(nn.Conv2d): + """2D Convolutions like TensorFlow, for a dynamic image size. + The padding is operated in forward function by calculating dynamically. + """ + + # Tips for 'SAME' mode padding. + # Given the following: + # i: width or height + # s: stride + # k: kernel size + # d: dilation + # p: padding + # Output after Conv2d: + # o = floor((i+p-((k-1)*d+1))/s+1) + # If o equals i, i = floor((i+p-((k-1)*d+1))/s+1), + # => p = (i-1)*s+((k-1)*d+1)-i + + def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True): + super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias) + self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2 + + def forward(self, x): + ih, iw = x.size()[-2:] + kh, kw = self.weight.size()[-2:] + sh, sw = self.stride + oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) # change the output size according to stride ! ! ! + pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) + pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) + if pad_h > 0 or pad_w > 0: + x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]) + return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) + + +class Conv2dStaticSamePadding(nn.Conv2d): + """2D Convolutions like TensorFlow's 'SAME' mode, with the given input image size. + The padding mudule is calculated in construction function, then used in forward. + """ + + # With the same calculation as Conv2dDynamicSamePadding + + def __init__(self, in_channels, out_channels, kernel_size, stride=1, image_size=None, **kwargs): + super().__init__(in_channels, out_channels, kernel_size, stride, **kwargs) + self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2 + + # Calculate padding based on image size and save it + assert image_size is not None + ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size + kh, kw = self.weight.size()[-2:] + sh, sw = self.stride + oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) + pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) + pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) + if pad_h > 0 or pad_w > 0: + self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, + pad_h // 2, pad_h - pad_h // 2)) + else: + self.static_padding = nn.Identity() + + def forward(self, x): + x = self.static_padding(x) + x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) + return x + + +def get_same_padding_maxPool2d(image_size=None): + """Chooses static padding if you have specified an image size, and dynamic padding otherwise. + Static padding is necessary for ONNX exporting of models. + + Args: + image_size (int or tuple): Size of the image. + + Returns: + MaxPool2dDynamicSamePadding or MaxPool2dStaticSamePadding. + """ + if image_size is None: + return MaxPool2dDynamicSamePadding + else: + return partial(MaxPool2dStaticSamePadding, image_size=image_size) + + +class MaxPool2dDynamicSamePadding(nn.MaxPool2d): + """2D MaxPooling like TensorFlow's 'SAME' mode, with a dynamic image size. + The padding is operated in forward function by calculating dynamically. + """ + + def __init__(self, kernel_size, stride, padding=0, dilation=1, return_indices=False, ceil_mode=False): + super().__init__(kernel_size, stride, padding, dilation, return_indices, ceil_mode) + self.stride = [self.stride] * 2 if isinstance(self.stride, int) else self.stride + self.kernel_size = [self.kernel_size] * 2 if isinstance(self.kernel_size, int) else self.kernel_size + self.dilation = [self.dilation] * 2 if isinstance(self.dilation, int) else self.dilation + + def forward(self, x): + ih, iw = x.size()[-2:] + kh, kw = self.kernel_size + sh, sw = self.stride + oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) + pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) + pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) + if pad_h > 0 or pad_w > 0: + x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]) + return F.max_pool2d(x, self.kernel_size, self.stride, self.padding, + self.dilation, self.ceil_mode, self.return_indices) + +class MaxPool2dStaticSamePadding(nn.MaxPool2d): + """2D MaxPooling like TensorFlow's 'SAME' mode, with the given input image size. + The padding mudule is calculated in construction function, then used in forward. + """ + + def __init__(self, kernel_size, stride, image_size=None, **kwargs): + super().__init__(kernel_size, stride, **kwargs) + self.stride = [self.stride] * 2 if isinstance(self.stride, int) else self.stride + self.kernel_size = [self.kernel_size] * 2 if isinstance(self.kernel_size, int) else self.kernel_size + self.dilation = [self.dilation] * 2 if isinstance(self.dilation, int) else self.dilation + + # Calculate padding based on image size and save it + assert image_size is not None + ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size + kh, kw = self.kernel_size + sh, sw = self.stride + oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) + pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) + pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) + if pad_h > 0 or pad_w > 0: + self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2)) + else: + self.static_padding = nn.Identity() + + def forward(self, x): + x = self.static_padding(x) + x = F.max_pool2d(x, self.kernel_size, self.stride, self.padding, + self.dilation, self.ceil_mode, self.return_indices) + return x + + +################################################################################ +### Helper functions for loading model params +################################################################################ + +# BlockDecoder: A Class for encoding and decoding BlockArgs +# efficientnet_params: A function to query compound coefficient +# get_model_params and efficientnet: +# Functions to get BlockArgs and GlobalParams for efficientnet +# url_map and url_map_advprop: Dicts of url_map for pretrained weights +# load_pretrained_weights: A function to load pretrained weights + +class BlockDecoder(object): + """Block Decoder for readability, + straight from the official TensorFlow repository. + """ + + @staticmethod + def _decode_block_string(block_string): + """Get a block through a string notation of arguments. + + Args: + block_string (str): A string notation of arguments. + Examples: 'r1_k3_s11_e1_i32_o16_se0.25_noskip'. + + Returns: + BlockArgs: The namedtuple defined at the top of this file. + """ + assert isinstance(block_string, str) + + ops = block_string.split('_') + options = {} + for op in ops: + splits = re.split(r'(\d.*)', op) + if len(splits) >= 2: + key, value = splits[:2] + options[key] = value + + # Check stride + assert (('s' in options and len(options['s']) == 1) or + (len(options['s']) == 2 and options['s'][0] == options['s'][1])) + + return BlockArgs( + num_repeat=int(options['r']), + kernel_size=int(options['k']), + stride=[int(options['s'][0])], + expand_ratio=int(options['e']), + input_filters=int(options['i']), + output_filters=int(options['o']), + se_ratio=float(options['se']) if 'se' in options else None, + id_skip=('noskip' not in block_string)) + + @staticmethod + def _encode_block_string(block): + """Encode a block to a string. + + Args: + block (namedtuple): A BlockArgs type argument. + + Returns: + block_string: A String form of BlockArgs. + """ + args = [ + 'r%d' % block.num_repeat, + 'k%d' % block.kernel_size, + 's%d%d' % (block.strides[0], block.strides[1]), + 'e%s' % block.expand_ratio, + 'i%d' % block.input_filters, + 'o%d' % block.output_filters + ] + if 0 < block.se_ratio <= 1: + args.append('se%s' % block.se_ratio) + if block.id_skip is False: + args.append('noskip') + return '_'.join(args) + + @staticmethod + def decode(string_list): + """Decode a list of string notations to specify blocks inside the network. + + Args: + string_list (list[str]): A list of strings, each string is a notation of block. + + Returns: + blocks_args: A list of BlockArgs namedtuples of block args. + """ + assert isinstance(string_list, list) + blocks_args = [] + for block_string in string_list: + blocks_args.append(BlockDecoder._decode_block_string(block_string)) + return blocks_args + + @staticmethod + def encode(blocks_args): + """Encode a list of BlockArgs to a list of strings. + + Args: + blocks_args (list[namedtuples]): A list of BlockArgs namedtuples of block args. + + Returns: + block_strings: A list of strings, each string is a notation of block. + """ + block_strings = [] + for block in blocks_args: + block_strings.append(BlockDecoder._encode_block_string(block)) + return block_strings + + +def efficientnet_params(model_name): + """Map EfficientNet model name to parameter coefficients. + + Args: + model_name (str): Model name to be queried. + + Returns: + params_dict[model_name]: A (width,depth,res,dropout) tuple. + """ + """ + params_dict = { + # Coefficients: width,depth,res,dropout + 'efficientnet-b0': (1.0, 1.0, 224, 0.2), + 'efficientnet-b1': (1.0, 1.1, 240, 0.2), + 'efficientnet-b2': (1.1, 1.2, 260, 0.3), + 'efficientnet-b3': (1.2, 1.4, 300, 0.3), + 'efficientnet-b4': (1.4, 1.8, 380, 0.4), + 'efficientnet-b5': (1.6, 2.2, 456, 0.4), + 'efficientnet-b6': (1.8, 2.6, 528, 0.5), + 'efficientnet-b7': (2.0, 3.1, 600, 0.5), + 'efficientnet-b8': (2.2, 3.6, 672, 0.5), + 'efficientnet-l2': (4.3, 5.3, 800, 0.5), + } + """ + params_dict = { + # Coefficients: width,depth,res,dropout + 'efficientnet-b0': (1.0, 1.0, 112, 0.2), + 'efficientnet-b1': (1.0, 1.1, 112, 0.2), + 'efficientnet-b2': (1.1, 1.2, 112, 0.3), + 'efficientnet-b3': (1.2, 1.4, 112, 0.3), + 'efficientnet-b4': (1.4, 1.8, 112, 0.4), + 'efficientnet-b5': (1.6, 2.2, 112, 0.4), + 'efficientnet-b6': (1.8, 2.6, 112, 0.5), + 'efficientnet-b7': (2.0, 3.1, 112, 0.5), + 'efficientnet-b8': (2.2, 3.6, 112, 0.5), + 'efficientnet-l2': (4.3, 5.3, 112, 0.5), + } + return params_dict[model_name] + + +def efficientnet(width_coefficient=None, depth_coefficient=None, image_size=None, + dropout_rate=0.2, drop_connect_rate=0.2, num_classes=1000, include_top=True): + """Create BlockArgs and GlobalParams for efficientnet model. + + Args: + width_coefficient (float) + depth_coefficient (float) + image_size (int) + dropout_rate (float) + drop_connect_rate (float) + num_classes (int) + + Meaning as the name suggests. + + Returns: + blocks_args, global_params. + """ + + # Blocks args for the whole model(efficientnet-b0 by default) + # It will be modified in the construction of EfficientNet Class according to model + blocks_args = [ + 'r1_k3_s11_e1_i32_o16_se0.25', + 'r2_k3_s22_e6_i16_o24_se0.25', + 'r2_k5_s22_e6_i24_o40_se0.25', + 'r3_k3_s22_e6_i40_o80_se0.25', + 'r3_k5_s11_e6_i80_o112_se0.25', + 'r4_k5_s22_e6_i112_o192_se0.25', + 'r1_k3_s11_e6_i192_o320_se0.25', + ] + blocks_args = BlockDecoder.decode(blocks_args) + + global_params = GlobalParams( + width_coefficient=width_coefficient, + depth_coefficient=depth_coefficient, + image_size=image_size, + dropout_rate=dropout_rate, + + num_classes=num_classes, + batch_norm_momentum=0.99, + batch_norm_epsilon=1e-3, + drop_connect_rate=drop_connect_rate, + depth_divisor=8, + min_depth=None, + include_top=include_top, + ) + + return blocks_args, global_params + + +def get_model_params(model_name, override_params): + """Get the block args and global params for a given model name. + + Args: + model_name (str): Model's name. + override_params (dict): A dict to modify global_params. + + Returns: + blocks_args, global_params + """ + if model_name.startswith('efficientnet'): + w, d, s, p = efficientnet_params(model_name) + # note: all models have drop connect rate = 0.2 + blocks_args, global_params = efficientnet( + width_coefficient=w, depth_coefficient=d, dropout_rate=p, image_size=s) + else: + raise NotImplementedError('model name is not pre-defined: {}'.format(model_name)) + if override_params: + # ValueError will be raised here if override_params has fields not included in global_params. + global_params = global_params._replace(**override_params) + return blocks_args, global_params + + +# train with Standard methods +# check more details in paper(EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks) +url_map = { + 'efficientnet-b0': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth', + 'efficientnet-b1': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b1-f1951068.pth', + 'efficientnet-b2': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b2-8bb594d6.pth', + 'efficientnet-b3': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b3-5fb5a3c3.pth', + 'efficientnet-b4': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b4-6ed6700e.pth', + 'efficientnet-b5': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b5-b6417697.pth', + 'efficientnet-b6': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b6-c76e70fd.pth', + 'efficientnet-b7': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b7-dcc49843.pth', +} + +# train with Adversarial Examples(AdvProp) +# check more details in paper(Adversarial Examples Improve Image Recognition) +url_map_advprop = { + 'efficientnet-b0': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b0-b64d5a18.pth', + 'efficientnet-b1': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b1-0f3ce85a.pth', + 'efficientnet-b2': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b2-6e9d97e5.pth', + 'efficientnet-b3': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b3-cdd7c0f4.pth', + 'efficientnet-b4': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b4-44fb3a87.pth', + 'efficientnet-b5': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b5-86493f6b.pth', + 'efficientnet-b6': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b6-ac80338e.pth', + 'efficientnet-b7': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b7-4652b6dd.pth', + 'efficientnet-b8': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b8-22a8fe65.pth', +} + +# TODO: add the petrained weights url map of 'efficientnet-l2' + + +def load_pretrained_weights(model, model_name, weights_path=None, load_fc=True, advprop=False): + """Loads pretrained weights from weights path or download using url. + + Args: + model (Module): The whole model of efficientnet. + model_name (str): Model name of efficientnet. + weights_path (None or str): + str: path to pretrained weights file on the local disk. + None: use pretrained weights downloaded from the Internet. + load_fc (bool): Whether to load pretrained weights for fc layer at the end of the model. + advprop (bool): Whether to load pretrained weights + trained with advprop (valid when weights_path is None). + """ + if isinstance(weights_path, str): + state_dict = torch.load(weights_path) + else: + # AutoAugment or Advprop (different preprocessing) + url_map_ = url_map_advprop if advprop else url_map + state_dict = model_zoo.load_url(url_map_[model_name]) + + if load_fc: + ret = model.load_state_dict(state_dict, strict=False) + assert not ret.missing_keys, 'Missing keys when loading pretrained weights: {}'.format(ret.missing_keys) + else: + state_dict.pop('_fc.weight') + state_dict.pop('_fc.bias') + ret = model.load_state_dict(state_dict, strict=False) + assert set(ret.missing_keys) == set( + ['_fc.weight', '_fc.bias']), 'Missing keys when loading pretrained weights: {}'.format(ret.missing_keys) + assert not ret.unexpected_keys, 'Missing keys when loading pretrained weights: {}'.format(ret.unexpected_keys) + + print('Loaded pretrained weights for {}'.format(model_name)) + +class Flatten(Module): + def forward(self, input): + return input.reshape(input.size(0), -1) + +######################################### backbone ################################################################## + +VALID_MODELS = ( + 'efficientnet-b0', 'efficientnet-b1', 'efficientnet-b2', 'efficientnet-b3', + 'efficientnet-b4', 'efficientnet-b5', 'efficientnet-b6', 'efficientnet-b7', + 'efficientnet-b8', + + # Support the construction of 'efficientnet-l2' without pretrained weights + 'efficientnet-l2' +) + + +class MBConvBlock(nn.Module): + """Mobile Inverted Residual Bottleneck Block. + + Args: + block_args (namedtuple): BlockArgs, defined in utils.py. + global_params (namedtuple): GlobalParam, defined in utils.py. + image_size (tuple or list): [image_height, image_width]. + + References: + [1] https://arxiv.org/abs/1704.04861 (MobileNet v1) + [2] https://arxiv.org/abs/1801.04381 (MobileNet v2) + [3] https://arxiv.org/abs/1905.02244 (MobileNet v3) + """ + + def __init__(self, block_args, global_params, image_size=None): + super().__init__() + self._block_args = block_args + self._bn_mom = 1 - global_params.batch_norm_momentum # pytorch's difference from tensorflow + self._bn_eps = global_params.batch_norm_epsilon + self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) + self.id_skip = block_args.id_skip # whether to use skip connection and drop connect + + # Expansion phase (Inverted Bottleneck) + inp = self._block_args.input_filters # number of input channels + oup = self._block_args.input_filters * self._block_args.expand_ratio # number of output channels + if self._block_args.expand_ratio != 1: + Conv2d = get_same_padding_conv2d(image_size=image_size) + self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) + self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) + # image_size = calculate_output_image_size(image_size, 1) <-- this wouldn't modify image_size + + # Depthwise convolution phase + k = self._block_args.kernel_size + s = self._block_args.stride + Conv2d = get_same_padding_conv2d(image_size=image_size) + self._depthwise_conv = Conv2d( + in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise + kernel_size=k, stride=s, bias=False) + self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) + image_size = calculate_output_image_size(image_size, s) + + # Squeeze and Excitation layer, if desired + if self.has_se: + Conv2d = get_same_padding_conv2d(image_size=(1, 1)) + num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio)) + self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1) + self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1) + + # Pointwise convolution phase + final_oup = self._block_args.output_filters + Conv2d = get_same_padding_conv2d(image_size=image_size) + self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) + self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) + self._swish = MemoryEfficientSwish() + + def forward(self, inputs, drop_connect_rate=None): + """MBConvBlock's forward function. + + Args: + inputs (tensor): Input tensor. + drop_connect_rate (bool): Drop connect rate (float, between 0 and 1). + + Returns: + Output of this block after processing. + """ + + # Expansion and Depthwise Convolution + x = inputs + if self._block_args.expand_ratio != 1: + x = self._expand_conv(inputs) + x = self._bn0(x) + x = self._swish(x) + + x = self._depthwise_conv(x) + x = self._bn1(x) + x = self._swish(x) + + # Squeeze and Excitation + if self.has_se: + x_squeezed = F.adaptive_avg_pool2d(x, 1) + x_squeezed = self._se_reduce(x_squeezed) + x_squeezed = self._swish(x_squeezed) + x_squeezed = self._se_expand(x_squeezed) + x = torch.sigmoid(x_squeezed) * x + + # Pointwise Convolution + x = self._project_conv(x) + x = self._bn2(x) + + # Skip connection and drop connect + input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters + if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters: + # The combination of skip connection and drop connect brings about stochastic depth. + if drop_connect_rate: + x = drop_connect(x, p=drop_connect_rate, training=self.training) + x = x + inputs # skip connection + return x + + def set_swish(self, memory_efficient=True): + """Sets swish function as memory efficient (for training) or standard (for export). + + Args: + memory_efficient (bool): Whether to use memory-efficient version of swish. + """ + self._swish = MemoryEfficientSwish() if memory_efficient else Swish() + + +class EfficientNet(nn.Module): + """EfficientNet model. + Most easily loaded with the .from_name or .from_pretrained methods. + + Args: + blocks_args (list[namedtuple]): A list of BlockArgs to construct blocks. + global_params (namedtuple): A set of GlobalParams shared between blocks. + + References: + [1] https://arxiv.org/abs/1905.11946 (EfficientNet) + + Example: + + + import torch + >>> from efficientnet.model import EfficientNet + >>> inputs = torch.rand(1, 3, 224, 224) + >>> model = EfficientNet.from_pretrained('efficientnet-b0') + >>> model.eval() + >>> outputs = model(inputs) + """ + + def __init__(self, out_h, out_w, feat_dim, blocks_args=None, global_params=None): + super().__init__() + assert isinstance(blocks_args, list), 'blocks_args should be a list' + assert len(blocks_args) > 0, 'block args must be greater than 0' + self._global_params = global_params + self._blocks_args = blocks_args + + # Batch norm parameters + bn_mom = 1 - self._global_params.batch_norm_momentum + bn_eps = self._global_params.batch_norm_epsilon + + # Get stem static or dynamic convolution depending on image size + image_size = global_params.image_size + Conv2d = get_same_padding_conv2d(image_size=image_size) + + # Stem + in_channels = 3 # rgb + out_channels = round_filters(32, self._global_params) # number of output channels + #self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False) + self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=1, bias=False) + self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps) + image_size = calculate_output_image_size(image_size, 2) + + # Build blocks + self._blocks = nn.ModuleList([]) + for block_args in self._blocks_args: + + # Update block input and output filters based on depth multiplier. + block_args = block_args._replace( + input_filters=round_filters(block_args.input_filters, self._global_params), + output_filters=round_filters(block_args.output_filters, self._global_params), + num_repeat=round_repeats(block_args.num_repeat, self._global_params) + ) + + # The first block needs to take care of stride and filter size increase. + self._blocks.append(MBConvBlock(block_args, self._global_params, image_size=image_size)) + image_size = calculate_output_image_size(image_size, block_args.stride) + if block_args.num_repeat > 1: # modify block_args to keep same output size + block_args = block_args._replace(input_filters=block_args.output_filters, stride=1) + for _ in range(block_args.num_repeat - 1): + self._blocks.append(MBConvBlock(block_args, self._global_params, image_size=image_size)) + # image_size = calculate_output_image_size(image_size, block_args.stride) # stride = 1 + + # Head + in_channels = block_args.output_filters # output of final block + out_channels = round_filters(1280, self._global_params) + #out_channels = round_filters(512, self._global_params) + Conv2d = get_same_padding_conv2d(image_size=image_size) + self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False) + self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps) + + # Final linear layer + self._avg_pooling = nn.AdaptiveAvgPool2d(1) + self._dropout = nn.Dropout(self._global_params.dropout_rate) + self._fc = nn.Linear(out_channels, self._global_params.num_classes) + self._swish = MemoryEfficientSwish() + self.output_layer = Sequential( + BatchNorm2d(1280), + #BatchNorm2d(512), + Dropout(self._global_params.dropout_rate), + Flatten(), + Linear(1280 * out_h * out_w, feat_dim), + #Linear(512 * out_h * out_w, feat_dim), + BatchNorm1d(feat_dim)) + + + def set_swish(self, memory_efficient=True): + """Sets swish function as memory efficient (for training) or standard (for export). + + Args: + memory_efficient (bool): Whether to use memory-efficient version of swish. + + """ + self._swish = MemoryEfficientSwish() if memory_efficient else Swish() + for block in self._blocks: + block.set_swish(memory_efficient) + + def extract_endpoints(self, inputs): + """Use convolution layer to extract features + from reduction levels i in [1, 2, 3, 4, 5]. + + Args: + inputs (tensor): Input tensor. + + Returns: + Dictionary of last intermediate features + with reduction levels i in [1, 2, 3, 4, 5]. + Example: + >>> import torch + >>> from efficientnet.model import EfficientNet + >>> inputs = torch.rand(1, 3, 224, 224) + >>> model = EfficientNet.from_pretrained('efficientnet-b0') + >>> endpoints = model.extract_endpoints(inputs) + >>> print(endpoints['reduction_1'].shape) # torch.Size([1, 16, 112, 112]) + >>> print(endpoints['reduction_2'].shape) # torch.Size([1, 24, 56, 56]) + >>> print(endpoints['reduction_3'].shape) # torch.Size([1, 40, 28, 28]) + >>> print(endpoints['reduction_4'].shape) # torch.Size([1, 112, 14, 14]) + >>> print(endpoints['reduction_5'].shape) # torch.Size([1, 1280, 7, 7]) + """ + endpoints = dict() + + # Stem + x = self._swish(self._bn0(self._conv_stem(inputs))) + prev_x = x + + # Blocks + for idx, block in enumerate(self._blocks): + drop_connect_rate = self._global_params.drop_connect_rate + if drop_connect_rate: + drop_connect_rate *= float(idx) / len(self._blocks) # scale drop connect_rate + x = block(x, drop_connect_rate=drop_connect_rate) + if prev_x.size(2) > x.size(2): + endpoints['reduction_{}'.format(len(endpoints)+1)] = prev_x + prev_x = x + + # Head + x = self._swish(self._bn1(self._conv_head(x))) + endpoints['reduction_{}'.format(len(endpoints)+1)] = x + + return endpoints + + def extract_features(self, inputs): + """use convolution layer to extract feature . + + Args: + inputs (tensor): Input tensor. + + Returns: + Output of the final convolution + layer in the efficientnet model. + """ + # Stem + x = self._swish(self._bn0(self._conv_stem(inputs))) + # Blocks + for idx, block in enumerate(self._blocks): + drop_connect_rate = self._global_params.drop_connect_rate + if drop_connect_rate: + drop_connect_rate *= float(idx) / len(self._blocks) # scale drop connect_rate + x = block(x, drop_connect_rate=drop_connect_rate) + + # Head + x = self._swish(self._bn1(self._conv_head(x))) + + return x + + def forward(self, inputs): + """EfficientNet's forward function. + Calls extract_features to extract features, applies final linear layer, and returns logits. + + Args: + inputs (tensor): Input tensor. + + Returns: + Output of this model after processing. + """ + # Convolution layers + x = self.extract_features(inputs) + ''' + # Pooling and final linear layer + x = self._avg_pooling(x) + if self._global_params.include_top: + x = x.flatten(start_dim=1) + x = self._dropout(x) + #x = self._fc(x) + ''' + x = self.output_layer(x) + return x + + @classmethod + def from_name(cls, model_name, in_channels=3, **override_params): + """create an efficientnet model according to name. + + Args: + model_name (str): Name for efficientnet. + in_channels (int): Input data's channel number. + override_params (other key word params): + Params to override model's global_params. + Optional key: + 'width_coefficient', 'depth_coefficient', + 'image_size', 'dropout_rate', + 'num_classes', 'batch_norm_momentum', + 'batch_norm_epsilon', 'drop_connect_rate', + 'depth_divisor', 'min_depth' + + Returns: + An efficientnet model. + """ + cls._check_model_name_is_valid(model_name) + blocks_args, global_params = get_model_params(model_name, override_params) + model = cls(blocks_args, global_params) + model._change_in_channels(in_channels) + return model + + @classmethod + def from_pretrained(cls, model_name, weights_path=None, advprop=False, + in_channels=3, num_classes=1000, **override_params): + """create an efficientnet model according to name. + + Args: + model_name (str): Name for efficientnet. + weights_path (None or str): + str: path to pretrained weights file on the local disk. + None: use pretrained weights downloaded from the Internet. + advprop (bool): + Whether to load pretrained weights + trained with advprop (valid when weights_path is None). + in_channels (int): Input data's channel number. + num_classes (int): + Number of categories for classification. + It controls the output size for final linear layer. + override_params (other key word params): + Params to override model's global_params. + Optional key: + 'width_coefficient', 'depth_coefficient', + 'image_size', 'dropout_rate', + 'batch_norm_momentum', + 'batch_norm_epsilon', 'drop_connect_rate', + 'depth_divisor', 'min_depth' + + Returns: + A pretrained efficientnet model. + """ + model = cls.from_name(model_name, num_classes=num_classes, **override_params) + load_pretrained_weights(model, model_name, weights_path=weights_path, load_fc=(num_classes == 1000), advprop=advprop) + model._change_in_channels(in_channels) + return model + + @classmethod + def get_image_size(cls, model_name): + """Get the input image size for a given efficientnet model. + + Args: + model_name (str): Name for efficientnet. + + Returns: + Input image size (resolution). + """ + cls._check_model_name_is_valid(model_name) + _, _, res, _ = efficientnet_params(model_name) + return res + + @classmethod + def _check_model_name_is_valid(cls, model_name): + """Validates model name. + + Args: + model_name (str): Name for efficientnet. + + Returns: + bool: Is a valid name or not. + """ + if model_name not in VALID_MODELS: + raise ValueError('model_name should be one of: ' + ', '.join(VALID_MODELS)) + + def _change_in_channels(self, in_channels): + """Adjust model's first convolution layer to in_channels, if in_channels not equals 3. + + Args: + in_channels (int): Input data's channel number. + """ + if in_channels != 3: + Conv2d = get_same_padding_conv2d(image_size=self._global_params.image_size) + out_channels = round_filters(32, self._global_params) + self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False) + diff --git a/bob/bio/facexzoo/backbones/GhostNet.py b/bob/bio/facexzoo/backbones/GhostNet.py new file mode 100644 index 0000000000000000000000000000000000000000..d96462084720b0e9bd96f2c70f85db4db07a6610 --- /dev/null +++ b/bob/bio/facexzoo/backbones/GhostNet.py @@ -0,0 +1,248 @@ +""" +@author: Jun Wang +@date: 20210121 +@contact: jun21wangustc@gmail.com +""" + +# based on: +# https://github.com/huawei-noah/ghostnet/blob/master/ghostnet_pytorch/ghostnet.py + +# 2020.06.09-Changed for building GhostNet +# Huawei Technologies Co., Ltd. <foss@huawei.com> +""" +Creates a GhostNet Model as defined in: +GhostNet: More Features from Cheap Operations By Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, Chang Xu. +https://arxiv.org/abs/1911.11907 +Modified from https://github.com/d-li14/mobilenetv3.pytorch and https://github.com/rwightman/pytorch-image-models +""" +import math +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.nn import Sequential, BatchNorm2d, Dropout, Module, Linear, BatchNorm1d + +__all__ = ['ghost_net'] + + +class Flatten(Module): + def forward(self, input): + return input.reshape(input.size(0), -1) + +def _make_divisible(v, divisor, min_value=None): + """ + This function is taken from the original tf repo. + It ensures that all layers have a channel number that is divisible by 8 + It can be seen here: + https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py + """ + if min_value is None: + min_value = divisor + new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) + # Make sure that round down does not go down by more than 10%. + if new_v < 0.9 * v: + new_v += divisor + return new_v + + +def hard_sigmoid(x, inplace: bool = False): + if inplace: + return x.add_(3.).clamp_(0., 6.).div_(6.) + else: + return F.relu6(x + 3.) / 6. + + +class SqueezeExcite(nn.Module): + def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None, + act_layer=nn.ReLU, gate_fn=hard_sigmoid, divisor=4, **_): + super(SqueezeExcite, self).__init__() + self.gate_fn = gate_fn + reduced_chs = _make_divisible((reduced_base_chs or in_chs) * se_ratio, divisor) + self.avg_pool = nn.AdaptiveAvgPool2d(1) + self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True) + self.act1 = act_layer(inplace=True) + self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True) + + def forward(self, x): + x_se = self.avg_pool(x) + x_se = self.conv_reduce(x_se) + x_se = self.act1(x_se) + x_se = self.conv_expand(x_se) + x = x * self.gate_fn(x_se) + return x + + +class ConvBnAct(nn.Module): + def __init__(self, in_chs, out_chs, kernel_size, + stride=1, act_layer=nn.ReLU): + super(ConvBnAct, self).__init__() + self.conv = nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size//2, bias=False) + self.bn1 = nn.BatchNorm2d(out_chs) + self.act1 = act_layer(inplace=True) + + def forward(self, x): + x = self.conv(x) + x = self.bn1(x) + x = self.act1(x) + return x + + +class GhostModule(nn.Module): + def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True): + super(GhostModule, self).__init__() + self.oup = oup + init_channels = math.ceil(oup / ratio) + new_channels = init_channels*(ratio-1) + + self.primary_conv = nn.Sequential( + nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size//2, bias=False), + nn.BatchNorm2d(init_channels), + nn.ReLU(inplace=True) if relu else nn.Sequential(), + ) + + self.cheap_operation = nn.Sequential( + nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size//2, groups=init_channels, bias=False), + nn.BatchNorm2d(new_channels), + nn.ReLU(inplace=True) if relu else nn.Sequential(), + ) + + def forward(self, x): + x1 = self.primary_conv(x) + x2 = self.cheap_operation(x1) + out = torch.cat([x1,x2], dim=1) + return out[:,:self.oup,:,:] + + +class GhostBottleneck(nn.Module): + """ Ghost bottleneck w/ optional SE""" + + def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3, + stride=1, act_layer=nn.ReLU, se_ratio=0.): + super(GhostBottleneck, self).__init__() + has_se = se_ratio is not None and se_ratio > 0. + self.stride = stride + + # Point-wise expansion + self.ghost1 = GhostModule(in_chs, mid_chs, relu=True) + + # Depth-wise convolution + if self.stride > 1: + self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size, stride=stride, + padding=(dw_kernel_size-1)//2, + groups=mid_chs, bias=False) + self.bn_dw = nn.BatchNorm2d(mid_chs) + + # Squeeze-and-excitation + if has_se: + self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio) + else: + self.se = None + + # Point-wise linear projection + self.ghost2 = GhostModule(mid_chs, out_chs, relu=False) + + # shortcut + if (in_chs == out_chs and self.stride == 1): + self.shortcut = nn.Sequential() + else: + self.shortcut = nn.Sequential( + nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride=stride, + padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False), + nn.BatchNorm2d(in_chs), + nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), + nn.BatchNorm2d(out_chs), + ) + + + def forward(self, x): + residual = x + + # 1st ghost bottleneck + x = self.ghost1(x) + + # Depth-wise convolution + if self.stride > 1: + x = self.conv_dw(x) + x = self.bn_dw(x) + + # Squeeze-and-excitation + if self.se is not None: + x = self.se(x) + + # 2nd ghost bottleneck + x = self.ghost2(x) + + x += self.shortcut(residual) + return x + + +class GhostNet(nn.Module): + def __init__(self, width=1.0, drop_ratio=0.2, feat_dim=512, out_h=7, out_w=7): + super(GhostNet, self).__init__() + # setting of inverted residual blocks + self.cfgs = [ + # k, t, c, SE, s + # stage1 + [[3, 16, 16, 0, 1]], + # stage2 + [[3, 48, 24, 0, 2]], + [[3, 72, 24, 0, 1]], + # stage3 + [[5, 72, 40, 0.25, 2]], + [[5, 120, 40, 0.25, 1]], + # stage4 + [[3, 240, 80, 0, 2]], + [[3, 200, 80, 0, 1], + [3, 184, 80, 0, 1], + [3, 184, 80, 0, 1], + [3, 480, 112, 0.25, 1], + [3, 672, 112, 0.25, 1] + ], + # stage5 + [[5, 672, 160, 0.25, 2]], + [[5, 960, 160, 0, 1], + [5, 960, 160, 0.25, 1], + [5, 960, 160, 0, 1], + [5, 960, 160, 0.25, 1] + ] + ] + + # building first layer + output_channel = _make_divisible(16 * width, 4) + #self.conv_stem = nn.Conv2d(3, output_channel, 3, 2, 1, bias=False) + self.conv_stem = nn.Conv2d(3, output_channel, 3, 1, 1, bias=False) + self.bn1 = nn.BatchNorm2d(output_channel) + self.act1 = nn.ReLU(inplace=True) + input_channel = output_channel + + # building inverted residual blocks + stages = [] + block = GhostBottleneck + for cfg in self.cfgs: + layers = [] + for k, exp_size, c, se_ratio, s in cfg: + output_channel = _make_divisible(c * width, 4) + hidden_channel = _make_divisible(exp_size * width, 4) + layers.append(block(input_channel, hidden_channel, output_channel, k, s, + se_ratio=se_ratio)) + input_channel = output_channel + stages.append(nn.Sequential(*layers)) + + output_channel = _make_divisible(exp_size * width, 4) + stages.append(nn.Sequential(ConvBnAct(input_channel, output_channel, 1))) + input_channel = output_channel + + self.blocks = nn.Sequential(*stages) + + self.output_layer = Sequential(BatchNorm2d(960), + Dropout(drop_ratio), + Flatten(), + Linear(960 * out_h * out_w, feat_dim), # for eye + BatchNorm1d(feat_dim)) + + def forward(self, x): + x = self.conv_stem(x) + x = self.bn1(x) + x = self.act1(x) + x = self.blocks(x) + x = self.output_layer(x) + return x diff --git a/bob/bio/facexzoo/backbones/HRNet.py b/bob/bio/facexzoo/backbones/HRNet.py new file mode 100644 index 0000000000000000000000000000000000000000..46b2d3afd6de37aede837e9cc56158658845c225 --- /dev/null +++ b/bob/bio/facexzoo/backbones/HRNet.py @@ -0,0 +1,527 @@ +""" +@author: Hanbin Dai, Jun Wang +@date: 20201020 +@contact: daihanbin.ac@gmail.com, jun21wangustc@gmail.com +""" + +# based on: +# https://github.com/HRNet/HRNet-Image-Classification/blob/master/lib/models/cls_hrnet.py + +import os +import logging +import functools + +import numpy as np + +import torch +import torch.nn as nn +import torch._utils +import torch.nn.functional as F +from torch.nn import Sequential, Module, Linear, BatchNorm1d + +BN_MOMENTUM = 0.1 +logger = logging.getLogger(__name__) + +class Flatten(Module): + def forward(self, x): + return x.reshape(x.size(0), -1) + +def conv3x3(in_planes, out_planes, stride=1): + """3x3 convolution with padding""" + return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, + padding=1, bias=False) + + +class BasicBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, stride=1, downsample=None): + super(BasicBlock, self).__init__() + self.conv1 = conv3x3(inplanes, planes, stride) + self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) + self.relu = nn.ReLU(inplace=True) + self.conv2 = conv3x3(planes, planes) + self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1, downsample=None): + super(Bottleneck, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) + self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, + padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) + self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, + bias=False) + self.bn3 = nn.BatchNorm2d(planes * self.expansion, + momentum=BN_MOMENTUM) + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + +class HighResolutionModule(nn.Module): + def __init__(self, num_branches, blocks, num_blocks, num_inchannels, + num_channels, fuse_method, multi_scale_output=True): + super(HighResolutionModule, self).__init__() + self._check_branches( + num_branches, blocks, num_blocks, num_inchannels, num_channels) + + self.num_inchannels = num_inchannels + self.fuse_method = fuse_method + self.num_branches = num_branches + + self.multi_scale_output = multi_scale_output + + self.branches = self._make_branches( + num_branches, blocks, num_blocks, num_channels) + self.fuse_layers = self._make_fuse_layers() + self.relu = nn.ReLU(False) + + def _check_branches(self, num_branches, blocks, num_blocks, + num_inchannels, num_channels): + if num_branches != len(num_blocks): + error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format( + num_branches, len(num_blocks)) + logger.error(error_msg) + raise ValueError(error_msg) + + if num_branches != len(num_channels): + error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format( + num_branches, len(num_channels)) + logger.error(error_msg) + raise ValueError(error_msg) + + if num_branches != len(num_inchannels): + error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format( + num_branches, len(num_inchannels)) + logger.error(error_msg) + raise ValueError(error_msg) + + def _make_one_branch(self, branch_index, block, num_blocks, num_channels, + stride=1): + downsample = None + if stride != 1 or \ + self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.num_inchannels[branch_index], + num_channels[branch_index] * block.expansion, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(num_channels[branch_index] * block.expansion, + momentum=BN_MOMENTUM), + ) + + layers = [] + layers.append(block(self.num_inchannels[branch_index], + num_channels[branch_index], stride, downsample)) + self.num_inchannels[branch_index] = \ + num_channels[branch_index] * block.expansion + for i in range(1, num_blocks[branch_index]): + layers.append(block(self.num_inchannels[branch_index], + num_channels[branch_index])) + + return nn.Sequential(*layers) + + def _make_branches(self, num_branches, block, num_blocks, num_channels): + branches = [] + + for i in range(num_branches): + branches.append( + self._make_one_branch(i, block, num_blocks, num_channels)) + + return nn.ModuleList(branches) + + def _make_fuse_layers(self): + if self.num_branches == 1: + return None + + num_branches = self.num_branches + num_inchannels = self.num_inchannels + fuse_layers = [] + for i in range(num_branches if self.multi_scale_output else 1): + fuse_layer = [] + for j in range(num_branches): + if j > i: + fuse_layer.append(nn.Sequential( + nn.Conv2d(num_inchannels[j], + num_inchannels[i], + 1, + 1, + 0, + bias=False), + nn.BatchNorm2d(num_inchannels[i], + momentum=BN_MOMENTUM), + nn.Upsample(scale_factor=2**(j-i), mode='nearest'))) + elif j == i: + fuse_layer.append(None) + else: + conv3x3s = [] + for k in range(i-j): + if k == i - j - 1: + num_outchannels_conv3x3 = num_inchannels[i] + conv3x3s.append(nn.Sequential( + nn.Conv2d(num_inchannels[j], + num_outchannels_conv3x3, + 3, 2, 1, bias=False), + nn.BatchNorm2d(num_outchannels_conv3x3, + momentum=BN_MOMENTUM))) + else: + num_outchannels_conv3x3 = num_inchannels[j] + conv3x3s.append(nn.Sequential( + nn.Conv2d(num_inchannels[j], + num_outchannels_conv3x3, + 3, 2, 1, bias=False), + nn.BatchNorm2d(num_outchannels_conv3x3, + momentum=BN_MOMENTUM), + nn.ReLU(False))) + fuse_layer.append(nn.Sequential(*conv3x3s)) + fuse_layers.append(nn.ModuleList(fuse_layer)) + + return nn.ModuleList(fuse_layers) + + def get_num_inchannels(self): + return self.num_inchannels + + def forward(self, x): + if self.num_branches == 1: + return [self.branches[0](x[0])] + + for i in range(self.num_branches): + x[i] = self.branches[i](x[i]) + + x_fuse = [] + for i in range(len(self.fuse_layers)): + y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) + for j in range(1, self.num_branches): + if i == j: + y = y + x[j] + else: + y = y + self.fuse_layers[i][j](x[j]) + x_fuse.append(self.relu(y)) + + return x_fuse + + +blocks_dict = { + 'BASIC': BasicBlock, + 'BOTTLENECK': Bottleneck +} + + +class HighResolutionNet(nn.Module): + + def __init__(self, cfg, **kwargs): + super(HighResolutionNet, self).__init__() + + self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, + bias=False) + self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) + #self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) + self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False) + + self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) + self.relu = nn.ReLU(inplace=True) + + self.stage1_cfg = cfg['MODEL']['EXTRA']['STAGE1'] + num_channels = self.stage1_cfg['NUM_CHANNELS'][0] + block = blocks_dict[self.stage1_cfg['BLOCK']] + num_blocks = self.stage1_cfg['NUM_BLOCKS'][0] + self.layer1 = self._make_layer(block, 64, num_channels, num_blocks) + stage1_out_channel = block.expansion*num_channels + + self.stage2_cfg = cfg['MODEL']['EXTRA']['STAGE2'] + num_channels = self.stage2_cfg['NUM_CHANNELS'] + block = blocks_dict[self.stage2_cfg['BLOCK']] + num_channels = [ + num_channels[i] * block.expansion for i in range(len(num_channels))] + self.transition1 = self._make_transition_layer( + [stage1_out_channel], num_channels) + self.stage2, pre_stage_channels = self._make_stage( + self.stage2_cfg, num_channels) + + self.stage3_cfg = cfg['MODEL']['EXTRA']['STAGE3'] + num_channels = self.stage3_cfg['NUM_CHANNELS'] + block = blocks_dict[self.stage3_cfg['BLOCK']] + num_channels = [ + num_channels[i] * block.expansion for i in range(len(num_channels))] + self.transition2 = self._make_transition_layer( + pre_stage_channels, num_channels) + self.stage3, pre_stage_channels = self._make_stage( + self.stage3_cfg, num_channels) + + self.stage4_cfg = cfg['MODEL']['EXTRA']['STAGE4'] + num_channels = self.stage4_cfg['NUM_CHANNELS'] + block = blocks_dict[self.stage4_cfg['BLOCK']] + num_channels = [ + num_channels[i] * block.expansion for i in range(len(num_channels))] + self.transition3 = self._make_transition_layer( + pre_stage_channels, num_channels) + self.stage4, pre_stage_channels = self._make_stage( + self.stage4_cfg, num_channels, multi_scale_output=True) + + # Classification Head + self.incre_modules, self.downsamp_modules, \ + self.final_layer = self._make_head(pre_stage_channels) + + #self.classifier = nn.Linear(2048, 1000) + self.output_layer = Sequential(Flatten(), + Linear(2048 * cfg['MODEL']['out_h'] * cfg['MODEL']['out_w'], + cfg['MODEL']['feat_dim'], False), + BatchNorm1d(512)) + + def _make_head(self, pre_stage_channels): + head_block = Bottleneck + head_channels = [32, 64, 128, 256] + + # Increasing the #channels on each resolution + # from C, 2C, 4C, 8C to 128, 256, 512, 1024 + incre_modules = [] + for i, channels in enumerate(pre_stage_channels): + incre_module = self._make_layer(head_block, + channels, + head_channels[i], + 1, + stride=1) + incre_modules.append(incre_module) + incre_modules = nn.ModuleList(incre_modules) + + # downsampling modules + downsamp_modules = [] + for i in range(len(pre_stage_channels)-1): + in_channels = head_channels[i] * head_block.expansion + out_channels = head_channels[i+1] * head_block.expansion + + downsamp_module = nn.Sequential( + nn.Conv2d(in_channels=in_channels, + out_channels=out_channels, + kernel_size=3, + stride=2, + padding=1), + nn.BatchNorm2d(out_channels, momentum=BN_MOMENTUM), + nn.ReLU(inplace=True) + ) + + downsamp_modules.append(downsamp_module) + downsamp_modules = nn.ModuleList(downsamp_modules) + + final_layer = nn.Sequential( + nn.Conv2d( + in_channels=head_channels[3] * head_block.expansion, + out_channels=2048, + kernel_size=1, + stride=1, + padding=0 + ), + nn.BatchNorm2d(2048, momentum=BN_MOMENTUM), + nn.ReLU(inplace=True) + ) + + return incre_modules, downsamp_modules, final_layer + + def _make_transition_layer( + self, num_channels_pre_layer, num_channels_cur_layer): + num_branches_cur = len(num_channels_cur_layer) + num_branches_pre = len(num_channels_pre_layer) + + transition_layers = [] + for i in range(num_branches_cur): + if i < num_branches_pre: + if num_channels_cur_layer[i] != num_channels_pre_layer[i]: + transition_layers.append(nn.Sequential( + nn.Conv2d(num_channels_pre_layer[i], + num_channels_cur_layer[i], + 3, + 1, + 1, + bias=False), + nn.BatchNorm2d( + num_channels_cur_layer[i], momentum=BN_MOMENTUM), + nn.ReLU(inplace=True))) + else: + transition_layers.append(None) + else: + conv3x3s = [] + for j in range(i+1-num_branches_pre): + inchannels = num_channels_pre_layer[-1] + outchannels = num_channels_cur_layer[i] \ + if j == i-num_branches_pre else inchannels + conv3x3s.append(nn.Sequential( + nn.Conv2d( + inchannels, outchannels, 3, 2, 1, bias=False), + nn.BatchNorm2d(outchannels, momentum=BN_MOMENTUM), + nn.ReLU(inplace=True))) + transition_layers.append(nn.Sequential(*conv3x3s)) + + return nn.ModuleList(transition_layers) + + def _make_layer(self, block, inplanes, planes, blocks, stride=1): + downsample = None + if stride != 1 or inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), + ) + + layers = [] + layers.append(block(inplanes, planes, stride, downsample)) + inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(inplanes, planes)) + + return nn.Sequential(*layers) + + def _make_stage(self, layer_config, num_inchannels, + multi_scale_output=True): + num_modules = layer_config['NUM_MODULES'] + num_branches = layer_config['NUM_BRANCHES'] + num_blocks = layer_config['NUM_BLOCKS'] + num_channels = layer_config['NUM_CHANNELS'] + block = blocks_dict[layer_config['BLOCK']] + fuse_method = layer_config['FUSE_METHOD'] + + modules = [] + for i in range(num_modules): + # multi_scale_output is only used last module + if not multi_scale_output and i == num_modules - 1: + reset_multi_scale_output = False + else: + reset_multi_scale_output = True + + modules.append( + HighResolutionModule(num_branches, + block, + num_blocks, + num_inchannels, + num_channels, + fuse_method, + reset_multi_scale_output) + ) + num_inchannels = modules[-1].get_num_inchannels() + + return nn.Sequential(*modules), num_inchannels + + def forward(self, x): + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + x = self.conv2(x) + x = self.bn2(x) + x = self.relu(x) + x = self.layer1(x) + + x_list = [] + for i in range(self.stage2_cfg['NUM_BRANCHES']): + if self.transition1[i] is not None: + x_list.append(self.transition1[i](x)) + else: + x_list.append(x) + y_list = self.stage2(x_list) + + x_list = [] + for i in range(self.stage3_cfg['NUM_BRANCHES']): + if self.transition2[i] is not None: + x_list.append(self.transition2[i](y_list[-1])) + else: + x_list.append(y_list[i]) + y_list = self.stage3(x_list) + + x_list = [] + for i in range(self.stage4_cfg['NUM_BRANCHES']): + if self.transition3[i] is not None: + x_list.append(self.transition3[i](y_list[-1])) + else: + x_list.append(y_list[i]) + y_list = self.stage4(x_list) + + # Classification Head + y = self.incre_modules[0](y_list[0]) + for i in range(len(self.downsamp_modules)): + y = self.incre_modules[i+1](y_list[i+1]) + \ + self.downsamp_modules[i](y) + + y = self.final_layer(y) + ''' + if torch._C._get_tracing_state(): + y = y.flatten(start_dim=2).mean(dim=2) + else: + y = F.avg_pool2d(y, kernel_size=y.size() + [2:]).view(y.size(0), -1) + + y = self.classifier(y) + ''' + y = self.output_layer(y) + return y + + def init_weights(self, pretrained='',): + logger.info('=> init weights from normal distribution') + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_( + m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, nn.BatchNorm2d): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + if os.path.isfile(pretrained): + pretrained_dict = torch.load(pretrained) + logger.info('=> loading pretrained model {}'.format(pretrained)) + model_dict = self.state_dict() + pretrained_dict = {k: v for k, v in pretrained_dict.items() + if k in model_dict.keys()} + for k, _ in pretrained_dict.items(): + logger.info( + '=> loading {} pretrained model {}'.format(k, pretrained)) + model_dict.update(pretrained_dict) + self.load_state_dict(model_dict) + + +def get_cls_net(config, **kwargs): + model = HighResolutionNet(config, **kwargs) + model.init_weights() + return model + diff --git a/bob/bio/facexzoo/backbones/LightCNN.py b/bob/bio/facexzoo/backbones/LightCNN.py new file mode 100644 index 0000000000000000000000000000000000000000..851882a6b59f169547ce6ac1b7faa19983cefa01 --- /dev/null +++ b/bob/bio/facexzoo/backbones/LightCNN.py @@ -0,0 +1,200 @@ +''' + implement Light CNN + @author: Alfred Xiang Wu + @date: 2017.07.04 +''' + +import math +import torch +import torch.nn as nn +import torch.nn.functional as F + +class Flatten(nn.Module): + def forward(self, input): + return input.reshape(input.size(0), -1) + +class mfm(nn.Module): + def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, type=1): + super(mfm, self).__init__() + self.out_channels = out_channels + if type == 1: + self.filter = nn.Conv2d(in_channels, 2*out_channels, kernel_size=kernel_size, stride=stride, padding=padding) + else: + self.filter = nn.Linear(in_channels, 2*out_channels) + + def forward(self, x): + x = self.filter(x) + out = torch.split(x, self.out_channels, 1) + return torch.max(out[0], out[1]) + +class group(nn.Module): + def __init__(self, in_channels, out_channels, kernel_size, stride, padding): + super(group, self).__init__() + self.conv_a = mfm(in_channels, in_channels, 1, 1, 0) + self.conv = mfm(in_channels, out_channels, kernel_size, stride, padding) + + def forward(self, x): + x = self.conv_a(x) + x = self.conv(x) + return x + +class resblock(nn.Module): + def __init__(self, in_channels, out_channels): + super(resblock, self).__init__() + self.conv1 = mfm(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + self.conv2 = mfm(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + + def forward(self, x): + res = x + out = self.conv1(x) + out = self.conv2(out) + out = out + res + return out + +class network_9layers(nn.Module): + def __init__(self, num_classes=79077): + super(network_9layers, self).__init__() + self.features = nn.Sequential( + mfm(1, 48, 5, 1, 2), + nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True), + group(48, 96, 3, 1, 1), + nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True), + group(96, 192, 3, 1, 1), + nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True), + group(192, 128, 3, 1, 1), + group(128, 128, 3, 1, 1), + nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True), + ) + self.fc1 = mfm(8*8*128, 256, type=0) + self.fc2 = nn.Linear(256, num_classes) + + def forward(self, x): + x = self.features(x) + x = x.view(x.size(0), -1) + x = self.fc1(x) + x = F.dropout(x, training=self.training) + out = self.fc2(x) + return out, x + +class network_29layers(nn.Module): + def __init__(self, block, layers, num_classes=79077): + super(network_29layers, self).__init__() + #self.conv1 = mfm(1, 48, 5, 1, 2) + self.conv1 = mfm(3, 48, 5, 1, 2) + self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) + self.block1 = self._make_layer(block, layers[0], 48, 48) + self.group1 = group(48, 96, 3, 1, 1) + self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) + self.block2 = self._make_layer(block, layers[1], 96, 96) + self.group2 = group(96, 192, 3, 1, 1) + self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) + self.block3 = self._make_layer(block, layers[2], 192, 192) + self.group3 = group(192, 128, 3, 1, 1) + self.block4 = self._make_layer(block, layers[3], 128, 128) + self.group4 = group(128, 128, 3, 1, 1) + self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) + self.fc = mfm(8*8*128, 256, type=0) + self.fc2 = nn.Linear(256, num_classes) + + def _make_layer(self, block, num_blocks, in_channels, out_channels): + layers = [] + for i in range(0, num_blocks): + layers.append(block(in_channels, out_channels)) + return nn.Sequential(*layers) + + def forward(self, x): + x = self.conv1(x) + x = self.pool1(x) + + x = self.block1(x) + x = self.group1(x) + x = self.pool2(x) + + x = self.block2(x) + x = self.group2(x) + x = self.pool3(x) + + x = self.block3(x) + x = self.group3(x) + x = self.block4(x) + x = self.group4(x) + x = self.pool4(x) + + x = x.view(x.size(0), -1) + fc = self.fc(x) + fc = F.dropout(fc, training=self.training) + out = self.fc2(fc) + return out, fc + + +class network_29layers_v2(nn.Module): + def __init__(self, block, layers, drop_ratio, out_h, out_w, feat_dim): + super(network_29layers_v2, self).__init__() + #self.conv1 = mfm(1, 48, 5, 1, 2) + self.conv1 = mfm(3, 48, 5, 1, 2) + self.block1 = self._make_layer(block, layers[0], 48, 48) + self.group1 = group(48, 96, 3, 1, 1) + self.block2 = self._make_layer(block, layers[1], 96, 96) + self.group2 = group(96, 192, 3, 1, 1) + self.block3 = self._make_layer(block, layers[2], 192, 192) + self.group3 = group(192, 128, 3, 1, 1) + self.block4 = self._make_layer(block, layers[3], 128, 128) + self.group4 = group(128, 128, 3, 1, 1) + #self.fc = nn.Linear(8*8*128, 256) + #self.fc2 = nn.Linear(256, num_classes, bias=False) + self.output_layer = nn.Sequential(nn.BatchNorm2d(128), + nn.Dropout(drop_ratio), + Flatten(), + nn.Linear(128 * out_h * out_w, feat_dim), + nn.BatchNorm1d(feat_dim)) + + def _make_layer(self, block, num_blocks, in_channels, out_channels): + layers = [] + for i in range(0, num_blocks): + layers.append(block(in_channels, out_channels)) + return nn.Sequential(*layers) + + def forward(self, x): + x = self.conv1(x) + x = F.max_pool2d(x, 2) + F.avg_pool2d(x, 2) + + x = self.block1(x) + x = self.group1(x) + x = F.max_pool2d(x, 2) + F.avg_pool2d(x, 2) + + x = self.block2(x) + x = self.group2(x) + x = F.max_pool2d(x, 2) + F.avg_pool2d(x, 2) + + x = self.block3(x) + x = self.group3(x) + x = self.block4(x) + x = self.group4(x) + x = F.max_pool2d(x, 2) + F.avg_pool2d(x, 2) # 7*7 + + #x = x.view(x.size(0), -1) + #fc = self.fc(x) + #x = F.dropout(fc, training=self.training) + #out = self.fc2(x) + #return out, fc + x = self.output_layer(x) + return x + + +def LightCNN_9Layers(drop_ratio, out_h, out_w, feat_dim): + model = network_9layers(drop_ratio, out_h, out_w, feat_dim) + return model + +def LightCNN_29Layers(drop_ratio, out_h, out_w, feat_dim): + model = network_29layers(resblock, [1, 2, 3, 4], drop_ratio, out_h, out_w, feat_dim) + return model + +def LightCNN_29Layers_v2(drop_ratio, out_h, out_w, feat_dim): + model = network_29layers_v2(resblock, [1, 2, 3, 4], drop_ratio, out_h, out_w, feat_dim) + return model + +def LightCNN(depth, drop_ratio, out_h, out_w, feat_dim): + if depth == 9: + return LightCNN_9Layers(drop_ratio, out_h, out_w, feat_dim) + elif depth == 29: + return LightCNN_29Layers_v2(drop_ratio, out_h, out_w, feat_dim) diff --git a/bob/bio/facexzoo/backbones/MobileFaceNets.py b/bob/bio/facexzoo/backbones/MobileFaceNets.py new file mode 100644 index 0000000000000000000000000000000000000000..2785fc4d817a3e50b861b28f59c20841c3d0d24c --- /dev/null +++ b/bob/bio/facexzoo/backbones/MobileFaceNets.py @@ -0,0 +1,101 @@ +""" +@author: Jun Wang +@date: 20201019 +@contact: jun21wangustc@gmail.com +""" + +# based on: +# https://github.com/TreB1eN/InsightFace_Pytorch/blob/master/model.py + +from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Sequential, Module +import torch + +class Flatten(Module): + def forward(self, input): + return input.view(input.size(0), -1) + +class Conv_block(Module): + def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1): + super(Conv_block, self).__init__() + self.conv = Conv2d(in_c, out_channels=out_c, kernel_size=kernel, groups=groups, stride=stride, padding=padding, bias=False) + self.bn = BatchNorm2d(out_c) + self.prelu = PReLU(out_c) + def forward(self, x): + x = self.conv(x) + x = self.bn(x) + x = self.prelu(x) + return x + +class Linear_block(Module): + def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1): + super(Linear_block, self).__init__() + self.conv = Conv2d(in_c, out_channels=out_c, kernel_size=kernel, groups=groups, stride=stride, padding=padding, bias=False) + self.bn = BatchNorm2d(out_c) + def forward(self, x): + x = self.conv(x) + x = self.bn(x) + return x + +class Depth_Wise(Module): + def __init__(self, in_c, out_c, residual = False, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=1): + super(Depth_Wise, self).__init__() + self.conv = Conv_block(in_c, out_c=groups, kernel=(1, 1), padding=(0, 0), stride=(1, 1)) + self.conv_dw = Conv_block(groups, groups, groups=groups, kernel=kernel, padding=padding, stride=stride) + self.project = Linear_block(groups, out_c, kernel=(1, 1), padding=(0, 0), stride=(1, 1)) + self.residual = residual + def forward(self, x): + if self.residual: + short_cut = x + x = self.conv(x) + x = self.conv_dw(x) + x = self.project(x) + if self.residual: + output = short_cut + x + else: + output = x + return output + +class Residual(Module): + def __init__(self, c, num_block, groups, kernel=(3, 3), stride=(1, 1), padding=(1, 1)): + super(Residual, self).__init__() + modules = [] + for _ in range(num_block): + modules.append(Depth_Wise(c, c, residual=True, kernel=kernel, padding=padding, stride=stride, groups=groups)) + self.model = Sequential(*modules) + def forward(self, x): + return self.model(x) + +class MobileFaceNet(Module): + def __init__(self, embedding_size, out_h, out_w): + super(MobileFaceNet, self).__init__() + self.conv1 = Conv_block(3, 64, kernel=(3, 3), stride=(2, 2), padding=(1, 1)) + self.conv2_dw = Conv_block(64, 64, kernel=(3, 3), stride=(1, 1), padding=(1, 1), groups=64) + self.conv_23 = Depth_Wise(64, 64, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=128) + self.conv_3 = Residual(64, num_block=4, groups=128, kernel=(3, 3), stride=(1, 1), padding=(1, 1)) + self.conv_34 = Depth_Wise(64, 128, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=256) + self.conv_4 = Residual(128, num_block=6, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1)) + self.conv_45 = Depth_Wise(128, 128, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=512) + self.conv_5 = Residual(128, num_block=2, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1)) + self.conv_6_sep = Conv_block(128, 512, kernel=(1, 1), stride=(1, 1), padding=(0, 0)) + #self.conv_6_dw = Linear_block(512, 512, groups=512, kernel=(7,7), stride=(1, 1), padding=(0, 0)) + #self.conv_6_dw = Linear_block(512, 512, groups=512, kernel=(4,7), stride=(1, 1), padding=(0, 0)) + self.conv_6_dw = Linear_block(512, 512, groups=512, kernel=(out_h, out_w), stride=(1, 1), padding=(0, 0)) + self.conv_6_flatten = Flatten() + self.linear = Linear(512, embedding_size, bias=False) + self.bn = BatchNorm1d(embedding_size) + + def forward(self, x): + out = self.conv1(x) + out = self.conv2_dw(out) + out = self.conv_23(out) + out = self.conv_3(out) + out = self.conv_34(out) + out = self.conv_4(out) + out = self.conv_45(out) + out = self.conv_5(out) + out = self.conv_6_sep(out) + out = self.conv_6_dw(out) + out = self.conv_6_flatten(out) + out = self.linear(out) + out = self.bn(out) + return out diff --git a/bob/bio/facexzoo/backbones/ReXNets.py b/bob/bio/facexzoo/backbones/ReXNets.py new file mode 100644 index 0000000000000000000000000000000000000000..5bc87b41e7767835a3e0256074d9f20d7e5101c8 --- /dev/null +++ b/bob/bio/facexzoo/backbones/ReXNets.py @@ -0,0 +1,195 @@ +""" +@author: Jun Wang +@date: 20210322 +@contact: jun21wangustc@gmail.com +""" + +# based on: +# https://github.com/clovaai/rexnet/blob/master/rexnetv1.py +""" +ReXNet +Copyright (c) 2020-present NAVER Corp. +MIT license +""" + +import torch +import torch.nn as nn +from math import ceil + +class Flatten(nn.Module): + def forward(self, input): + return input.reshape(input.size(0), -1) + +# Memory-efficient Siwsh using torch.jit.script borrowed from the code in (https://twitter.com/jeremyphoward/status/1188251041835315200) +# Currently use memory-efficient Swish as default: +USE_MEMORY_EFFICIENT_SWISH = True + +if USE_MEMORY_EFFICIENT_SWISH: + @torch.jit.script + def swish_fwd(x): + return x.mul(torch.sigmoid(x)) + + + @torch.jit.script + def swish_bwd(x, grad_output): + x_sigmoid = torch.sigmoid(x) + return grad_output * (x_sigmoid * (1. + x * (1. - x_sigmoid))) + + + class SwishJitImplementation(torch.autograd.Function): + @staticmethod + def forward(ctx, x): + ctx.save_for_backward(x) + return swish_fwd(x) + + @staticmethod + def backward(ctx, grad_output): + x = ctx.saved_tensors[0] + return swish_bwd(x, grad_output) + + + def swish(x, inplace=False): + return SwishJitImplementation.apply(x) + +else: + def swish(x, inplace=False): + return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid()) + + +class Swish(nn.Module): + def __init__(self, inplace=True): + super(Swish, self).__init__() + self.inplace = inplace + + def forward(self, x): + return swish(x, self.inplace) + + +def ConvBNAct(out, in_channels, channels, kernel=1, stride=1, pad=0, + num_group=1, active=True, relu6=False): + out.append(nn.Conv2d(in_channels, channels, kernel, + stride, pad, groups=num_group, bias=False)) + out.append(nn.BatchNorm2d(channels)) + if active: + out.append(nn.ReLU6(inplace=True) if relu6 else nn.ReLU(inplace=True)) + + +def ConvBNSwish(out, in_channels, channels, kernel=1, stride=1, pad=0, num_group=1): + out.append(nn.Conv2d(in_channels, channels, kernel, + stride, pad, groups=num_group, bias=False)) + out.append(nn.BatchNorm2d(channels)) + out.append(Swish()) + + +class SE(nn.Module): + def __init__(self, in_channels, channels, se_ratio=12): + super(SE, self).__init__() + self.avg_pool = nn.AdaptiveAvgPool2d(1) + self.fc = nn.Sequential( + nn.Conv2d(in_channels, channels // se_ratio, kernel_size=1, padding=0), + nn.BatchNorm2d(channels // se_ratio), + nn.ReLU(inplace=True), + nn.Conv2d(channels // se_ratio, channels, kernel_size=1, padding=0), + nn.Sigmoid() + ) + + def forward(self, x): + y = self.avg_pool(x) + y = self.fc(y) + return x * y + + +class LinearBottleneck(nn.Module): + def __init__(self, in_channels, channels, t, stride, use_se=True, se_ratio=12, + **kwargs): + super(LinearBottleneck, self).__init__(**kwargs) + self.use_shortcut = stride == 1 and in_channels <= channels + self.in_channels = in_channels + self.out_channels = channels + + out = [] + if t != 1: + dw_channels = in_channels * t + ConvBNSwish(out, in_channels=in_channels, channels=dw_channels) + else: + dw_channels = in_channels + + ConvBNAct(out, in_channels=dw_channels, channels=dw_channels, kernel=3, stride=stride, pad=1, + num_group=dw_channels, active=False) + + if use_se: + out.append(SE(dw_channels, dw_channels, se_ratio)) + + out.append(nn.ReLU6()) + ConvBNAct(out, in_channels=dw_channels, channels=channels, active=False, relu6=True) + self.out = nn.Sequential(*out) + + def forward(self, x): + out = self.out(x) + if self.use_shortcut: + out[:, 0:self.in_channels] += x + + return out + +class ReXNetV1(nn.Module): + def __init__(self, input_ch=16, final_ch=180, width_mult=1.0, depth_mult=1.0, + use_se=True, se_ratio=12, out_h=7, out_w=7, feat_dim=512, + dropout_ratio=0.2, bn_momentum=0.9): + super(ReXNetV1, self).__init__() + + layers = [1, 2, 2, 3, 3, 5] + strides = [1, 2, 2, 2, 1, 2] + use_ses = [False, False, True, True, True, True] + + layers = [ceil(element * depth_mult) for element in layers] + strides = sum([[element] + [1] * (layers[idx] - 1) + for idx, element in enumerate(strides)], []) + if use_se: + use_ses = sum([[element] * layers[idx] for idx, element in enumerate(use_ses)], []) + else: + use_ses = [False] * sum(layers[:]) + ts = [1] * layers[0] + [6] * sum(layers[1:]) + + self.depth = sum(layers[:]) * 3 + stem_channel = 32 / width_mult if width_mult < 1.0 else 32 + inplanes = input_ch / width_mult if width_mult < 1.0 else input_ch + + features = [] + in_channels_group = [] + channels_group = [] + + # The following channel configuration is a simple instance to make each layer become an expand layer. + for i in range(self.depth // 3): + if i == 0: + in_channels_group.append(int(round(stem_channel * width_mult))) + channels_group.append(int(round(inplanes * width_mult))) + else: + in_channels_group.append(int(round(inplanes * width_mult))) + inplanes += final_ch / (self.depth // 3 * 1.0) + channels_group.append(int(round(inplanes * width_mult))) + + #ConvBNSwish(features, 3, int(round(stem_channel * width_mult)), kernel=3, stride=2, pad=1) + ConvBNSwish(features, 3, int(round(stem_channel * width_mult)), kernel=3, stride=1, pad=1) + + for block_idx, (in_c, c, t, s, se) in enumerate(zip(in_channels_group, channels_group, ts, strides, use_ses)): + features.append(LinearBottleneck(in_channels=in_c, + channels=c, + t=t, + stride=s, + use_se=se, se_ratio=se_ratio)) + + #pen_channels = int(1280 * width_mult) + pen_channels = int(512 * width_mult) + ConvBNSwish(features, c, pen_channels) + + #features.append(nn.AdaptiveAvgPool2d(1)) + self.features = nn.Sequential(*features) + self.output_layer = nn.Sequential(nn.BatchNorm2d(512), + nn.Dropout(dropout_ratio), + Flatten(), + nn.Linear(512 * out_h * out_w, feat_dim), + nn.BatchNorm1d(feat_dim)) + def forward(self, x): + x = self.features(x) + x = self.output_layer(x) + return x diff --git a/bob/bio/facexzoo/backbones/Readme.md b/bob/bio/facexzoo/backbones/Readme.md new file mode 100644 index 0000000000000000000000000000000000000000..e1f78b98db4ea17caa1651f92ab898563edd7dea --- /dev/null +++ b/bob/bio/facexzoo/backbones/Readme.md @@ -0,0 +1,3 @@ +# Source: +- https://github.com/JDAI-CV/FaceX-Zoo/tree/main/backbone +- https://gitlab.idiap.ch/bob/bob.learn.pytorch/-/tree/master/bob/learn/pytorch/architectures/facexzoo \ No newline at end of file diff --git a/bob/bio/facexzoo/backbones/RepVGG.py b/bob/bio/facexzoo/backbones/RepVGG.py new file mode 100644 index 0000000000000000000000000000000000000000..afa46ccf57c1959da72e75f9bd173bf4fb55bcea --- /dev/null +++ b/bob/bio/facexzoo/backbones/RepVGG.py @@ -0,0 +1,312 @@ +""" +@author: Jun Wang +@date: 20210910 +@contact: jun21wangustc@gmail.com +""" + +# based on: +# https://github.com/DingXiaoH/RepVGG/edit/main/repvgg.py + +import torch.nn as nn +import numpy as np +import torch +import copy + +class Flatten(nn.Module): + def forward(self, input): + return input.reshape(input.size(0), -1) + +def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1): + result = nn.Sequential() + result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels, + kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False)) + result.add_module('bn', nn.BatchNorm2d(num_features=out_channels)) + return result + +class RepVGGBlock(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, + stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False): + super(RepVGGBlock, self).__init__() + self.deploy = deploy + self.groups = groups + self.in_channels = in_channels + + assert kernel_size == 3 + assert padding == 1 + + padding_11 = padding - kernel_size // 2 + + self.nonlinearity = nn.ReLU() + ''' + if use_se: + self.se = SEBlock(out_channels, internal_neurons=out_channels // 16) + else: + self.se = nn.Identity() + ''' + self.se = nn.Identity() + + if deploy: + self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, + padding=padding, dilation=dilation, groups=groups, bias=True, padding_mode=padding_mode) + + else: + self.rbr_identity = nn.BatchNorm2d(num_features=in_channels) if out_channels == in_channels and stride == 1 else None + self.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups) + self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=padding_11, groups=groups) + #print('RepVGG Block, identity = ', self.rbr_identity) + + + def forward(self, inputs): + if hasattr(self, 'rbr_reparam'): + return self.nonlinearity(self.se(self.rbr_reparam(inputs))) + + if self.rbr_identity is None: + id_out = 0 + else: + id_out = self.rbr_identity(inputs) + + return self.nonlinearity(self.se(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)) + + + # Optional. This improves the accuracy and facilitates quantization. + # 1. Cancel the original weight decay on rbr_dense.conv.weight and rbr_1x1.conv.weight. + # 2. Use like this. + # loss = criterion(....) + # for every RepVGGBlock blk: + # loss += weight_decay_coefficient * 0.5 * blk.get_cust_L2() + # optimizer.zero_grad() + # loss.backward() + def get_custom_L2(self): + K3 = self.rbr_dense.conv.weight + K1 = self.rbr_1x1.conv.weight + t3 = (self.rbr_dense.bn.weight / ((self.rbr_dense.bn.running_var + self.rbr_dense.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach() + t1 = (self.rbr_1x1.bn.weight / ((self.rbr_1x1.bn.running_var + self.rbr_1x1.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach() + + l2_loss_circle = (K3 ** 2).sum() - (K3[:, :, 1:2, 1:2] ** 2).sum() # The L2 loss of the "circle" of weights in 3x3 kernel. Use regular L2 on them. + eq_kernel = K3[:, :, 1:2, 1:2] * t3 + K1 * t1 # The equivalent resultant central point of 3x3 kernel. + l2_loss_eq_kernel = (eq_kernel ** 2 / (t3 ** 2 + t1 ** 2)).sum() # Normalize for an L2 coefficient comparable to regular L2. + return l2_loss_eq_kernel + l2_loss_circle + + + +# This func derives the equivalent kernel and bias in a DIFFERENTIABLE way. +# You can get the equivalent kernel and bias at any time and do whatever you want, + # for example, apply some penalties or constraints during training, just like you do to the other models. +# May be useful for quantization or pruning. + def get_equivalent_kernel_bias(self): + kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense) + kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1) + kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity) + return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid + + def _pad_1x1_to_3x3_tensor(self, kernel1x1): + if kernel1x1 is None: + return 0 + else: + return torch.nn.functional.pad(kernel1x1, [1,1,1,1]) + + def _fuse_bn_tensor(self, branch): + if branch is None: + return 0, 0 + if isinstance(branch, nn.Sequential): + kernel = branch.conv.weight + running_mean = branch.bn.running_mean + running_var = branch.bn.running_var + gamma = branch.bn.weight + beta = branch.bn.bias + eps = branch.bn.eps + else: + assert isinstance(branch, nn.BatchNorm2d) + if not hasattr(self, 'id_tensor'): + input_dim = self.in_channels // self.groups + kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32) + for i in range(self.in_channels): + kernel_value[i, i % input_dim, 1, 1] = 1 + self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device) + kernel = self.id_tensor + running_mean = branch.running_mean + running_var = branch.running_var + gamma = branch.weight + beta = branch.bias + eps = branch.eps + std = (running_var + eps).sqrt() + t = (gamma / std).reshape(-1, 1, 1, 1) + return kernel * t, beta - running_mean * gamma / std + + def switch_to_deploy(self): + if hasattr(self, 'rbr_reparam'): + return + kernel, bias = self.get_equivalent_kernel_bias() + self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.conv.in_channels, out_channels=self.rbr_dense.conv.out_channels, + kernel_size=self.rbr_dense.conv.kernel_size, stride=self.rbr_dense.conv.stride, + padding=self.rbr_dense.conv.padding, dilation=self.rbr_dense.conv.dilation, groups=self.rbr_dense.conv.groups, bias=True) + self.rbr_reparam.weight.data = kernel + self.rbr_reparam.bias.data = bias + for para in self.parameters(): + para.detach_() + self.__delattr__('rbr_dense') + self.__delattr__('rbr_1x1') + if hasattr(self, 'rbr_identity'): + self.__delattr__('rbr_identity') + if hasattr(self, 'id_tensor'): + self.__delattr__('id_tensor') + self.deploy = True + + + +class RepVGG(nn.Module): + + def __init__(self, num_blocks, width_multiplier, feat_dim=512, out_h=7, out_w=7, override_groups_map=None, deploy=False, use_se=False): + super(RepVGG, self).__init__() + + assert len(width_multiplier) == 4 + + self.deploy = deploy + self.override_groups_map = override_groups_map or dict() + self.use_se = use_se + + assert 0 not in self.override_groups_map + + self.in_planes = min(64, int(64 * width_multiplier[0])) + + #self.stage0 = RepVGGBlock(in_channels=3, out_channels=self.in_planes, kernel_size=3, stride=2, padding=1, deploy=self.deploy, use_se=self.use_se) + self.stage0 = RepVGGBlock(in_channels=3, out_channels=self.in_planes, kernel_size=3, stride=1, padding=1, deploy=self.deploy, use_se=self.use_se) + self.cur_layer_idx = 1 + self.stage1 = self._make_stage(int(64 * width_multiplier[0]), num_blocks[0], stride=2) + self.stage2 = self._make_stage(int(128 * width_multiplier[1]), num_blocks[1], stride=2) + self.stage3 = self._make_stage(int(256 * width_multiplier[2]), num_blocks[2], stride=2) + self.stage4 = self._make_stage(int(512 * width_multiplier[3]), num_blocks[3], stride=2) + self.output_layer = nn.Sequential(nn.BatchNorm2d(int(512*width_multiplier[3])), + Flatten(), + nn.Linear(int(512 * width_multiplier[3]) * out_h * out_w, feat_dim), # for eye + nn.BatchNorm1d(feat_dim)) + def _make_stage(self, planes, num_blocks, stride): + strides = [stride] + [1]*(num_blocks-1) + blocks = [] + for stride in strides: + cur_groups = self.override_groups_map.get(self.cur_layer_idx, 1) + blocks.append(RepVGGBlock(in_channels=self.in_planes, out_channels=planes, kernel_size=3, + stride=stride, padding=1, groups=cur_groups, deploy=self.deploy, use_se=self.use_se)) + self.in_planes = planes + self.cur_layer_idx += 1 + return nn.Sequential(*blocks) + + def forward(self, x): + out = self.stage0(x) + out = self.stage1(out) + out = self.stage2(out) + out = self.stage3(out) + out = self.stage4(out) + out = self.output_layer(out) + return out + +optional_groupwise_layers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26] +g2_map = {l: 2 for l in optional_groupwise_layers} +g4_map = {l: 4 for l in optional_groupwise_layers} + +def create_RepVGG_A0(deploy=False): + return RepVGG(num_blocks=[2, 4, 14, 1], + width_multiplier=[0.75, 0.75, 0.75, 2.5], override_groups_map=None, deploy=deploy) + +def create_RepVGG_A1(deploy=False): + return RepVGG(num_blocks=[2, 4, 14, 1], + width_multiplier=[1, 1, 1, 2.5], override_groups_map=None, deploy=deploy) + +def create_RepVGG_A2(deploy=False): + return RepVGG(num_blocks=[2, 4, 14, 1], + width_multiplier=[1.5, 1.5, 1.5, 2.75], override_groups_map=None, deploy=deploy) + +def create_RepVGG_B0(deploy=False): + return RepVGG(num_blocks=[4, 6, 16, 1], + width_multiplier=[1, 1, 1, 2.5], override_groups_map=None, deploy=deploy) + +def create_RepVGG_B1(deploy=False): + return RepVGG(num_blocks=[4, 6, 16, 1], + width_multiplier=[2, 2, 2, 4], override_groups_map=None, deploy=deploy) + +def create_RepVGG_B1g2(deploy=False): + return RepVGG(num_blocks=[4, 6, 16, 1], + width_multiplier=[2, 2, 2, 4], override_groups_map=g2_map, deploy=deploy) + +def create_RepVGG_B1g4(deploy=False): + return RepVGG(num_blocks=[4, 6, 16, 1], + width_multiplier=[2, 2, 2, 4], override_groups_map=g4_map, deploy=deploy) + + +def create_RepVGG_B2(deploy=False): + return RepVGG(num_blocks=[4, 6, 16, 1], + width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=None, deploy=deploy) + +def create_RepVGG_B2g2(deploy=False): + return RepVGG(num_blocks=[4, 6, 16, 1], + width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=g2_map, deploy=deploy) + +def create_RepVGG_B2g4(deploy=False): + return RepVGG(num_blocks=[4, 6, 16, 1], + width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=g4_map, deploy=deploy) + + +def create_RepVGG_B3(deploy=False): + return RepVGG(num_blocks=[4, 6, 16, 1], + width_multiplier=[3, 3, 3, 5], override_groups_map=None, deploy=deploy) + +def create_RepVGG_B3g2(deploy=False): + return RepVGG(num_blocks=[4, 6, 16, 1], + width_multiplier=[3, 3, 3, 5], override_groups_map=g2_map, deploy=deploy) + +def create_RepVGG_B3g4(deploy=False): + return RepVGG(num_blocks=[4, 6, 16, 1], + width_multiplier=[3, 3, 3, 5], override_groups_map=g4_map, deploy=deploy) + +def create_RepVGG_D2se(deploy=False): + return RepVGG(num_blocks=[8, 14, 24, 1], + width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=None, deploy=deploy, use_se=True) + + +func_dict = { +'RepVGG-A0': create_RepVGG_A0, +'RepVGG-A1': create_RepVGG_A1, +'RepVGG-A2': create_RepVGG_A2, +'RepVGG-B0': create_RepVGG_B0, +'RepVGG-B1': create_RepVGG_B1, +'RepVGG-B1g2': create_RepVGG_B1g2, +'RepVGG-B1g4': create_RepVGG_B1g4, +'RepVGG-B2': create_RepVGG_B2, +'RepVGG-B2g2': create_RepVGG_B2g2, +'RepVGG-B2g4': create_RepVGG_B2g4, +'RepVGG-B3': create_RepVGG_B3, +'RepVGG-B3g2': create_RepVGG_B3g2, +'RepVGG-B3g4': create_RepVGG_B3g4, +'RepVGG-D2se': create_RepVGG_D2se, # Updated at April 25, 2021. This is not reported in the CVPR paper. +} +def get_RepVGG_func_by_name(name): + return func_dict[name] + + + +# Use this for converting a RepVGG model or a bigger model with RepVGG as its component +# Use like this +# model = create_RepVGG_A0(deploy=False) +# train model or load weights +# repvgg_model_convert(model, save_path='repvgg_deploy.pth') +# If you want to preserve the original model, call with do_copy=True + +# ====================== for using RepVGG as the backbone of a bigger model, e.g., PSPNet, the pseudo code will be like +# train_backbone = create_RepVGG_B2(deploy=False) +# train_backbone.load_state_dict(torch.load('RepVGG-B2-train.pth')) +# train_pspnet = build_pspnet(backbone=train_backbone) +# segmentation_train(train_pspnet) +# deploy_pspnet = repvgg_model_convert(train_pspnet) +# segmentation_test(deploy_pspnet) +# ===================== example_pspnet.py shows an example + +def repvgg_model_convert(model:torch.nn.Module, save_path=None, do_copy=True): + if do_copy: + model = copy.deepcopy(model) + for module in model.modules(): + if hasattr(module, 'switch_to_deploy'): + module.switch_to_deploy() + if save_path is not None: + torch.save(model.state_dict(), save_path) + return model diff --git a/bob/bio/facexzoo/backbones/ResNets.py b/bob/bio/facexzoo/backbones/ResNets.py new file mode 100644 index 0000000000000000000000000000000000000000..5a76e7e78eed77ed509f44f7120c6edcc1f235b1 --- /dev/null +++ b/bob/bio/facexzoo/backbones/ResNets.py @@ -0,0 +1,142 @@ +""" +@author: Jun Wang +@date: 20201019 +@contact: jun21wangustc@gmail.com +""" + +# based on: +# https://github.com/TreB1eN/InsightFace_Pytorch/blob/master/model.py + +from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, ReLU, Sigmoid, Dropout2d, Dropout, AvgPool2d, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module, Parameter +import torch.nn.functional as F +import torch +from collections import namedtuple + + +class Flatten(Module): + def forward(self, input): + return input.view(input.size(0), -1) + +class SEModule(Module): + def __init__(self, channels, reduction): + super(SEModule, self).__init__() + self.avg_pool = AdaptiveAvgPool2d(1) + self.fc1 = Conv2d( + channels, channels // reduction, kernel_size=1, padding=0 ,bias=False) + self.relu = ReLU(inplace=True) + self.fc2 = Conv2d( + channels // reduction, channels, kernel_size=1, padding=0 ,bias=False) + self.sigmoid = Sigmoid() + + def forward(self, x): + module_input = x + x = self.avg_pool(x) + x = self.fc1(x) + x = self.relu(x) + x = self.fc2(x) + x = self.sigmoid(x) + return module_input * x + +class bottleneck_IR(Module): + def __init__(self, in_channel, depth, stride): + super(bottleneck_IR, self).__init__() + if in_channel == depth: + self.shortcut_layer = MaxPool2d(1, stride) + else: + self.shortcut_layer = Sequential( + Conv2d(in_channel, depth, (1, 1), stride ,bias=False), BatchNorm2d(depth)) + self.res_layer = Sequential( + BatchNorm2d(in_channel), + Conv2d(in_channel, depth, (3, 3), (1, 1), 1 ,bias=False), PReLU(depth), + Conv2d(depth, depth, (3, 3), stride, 1 ,bias=False), BatchNorm2d(depth)) + + def forward(self, x): + shortcut = self.shortcut_layer(x) + res = self.res_layer(x) + return res + shortcut + +class bottleneck_IR_SE(Module): + def __init__(self, in_channel, depth, stride): + super(bottleneck_IR_SE, self).__init__() + if in_channel == depth: + self.shortcut_layer = MaxPool2d(1, stride) + else: + self.shortcut_layer = Sequential( + Conv2d(in_channel, depth, (1, 1), stride ,bias=False), + BatchNorm2d(depth)) + self.res_layer = Sequential( + BatchNorm2d(in_channel), + Conv2d(in_channel, depth, (3,3), (1,1),1 ,bias=False), + PReLU(depth), + Conv2d(depth, depth, (3,3), stride, 1 ,bias=False), + BatchNorm2d(depth), + SEModule(depth,16) + ) + def forward(self,x): + shortcut = self.shortcut_layer(x) + res = self.res_layer(x) + return res + shortcut + +class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])): + '''A named tuple describing a ResNet block.''' + +def get_block(in_channel, depth, num_units, stride = 2): + return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units-1)] + +def get_blocks(num_layers): + if num_layers == 50: + blocks = [ + get_block(in_channel=64, depth=64, num_units = 3), + get_block(in_channel=64, depth=128, num_units=4), + get_block(in_channel=128, depth=256, num_units=14), + get_block(in_channel=256, depth=512, num_units=3) + ] + elif num_layers == 100: + blocks = [ + get_block(in_channel=64, depth=64, num_units=3), + get_block(in_channel=64, depth=128, num_units=13), + get_block(in_channel=128, depth=256, num_units=30), + get_block(in_channel=256, depth=512, num_units=3) + ] + elif num_layers == 152: + blocks = [ + get_block(in_channel=64, depth=64, num_units=3), + get_block(in_channel=64, depth=128, num_units=8), + get_block(in_channel=128, depth=256, num_units=36), + get_block(in_channel=256, depth=512, num_units=3) + ] + return blocks + +#class Backbone(Module): +class Resnet(Module): + def __init__(self, num_layers, drop_ratio, mode='ir', feat_dim=512, out_h=7, out_w=7): + super(Resnet, self).__init__() + assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152' + assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se' + blocks = get_blocks(num_layers) + if mode == 'ir': + unit_module = bottleneck_IR + elif mode == 'ir_se': + unit_module = bottleneck_IR_SE + self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1 ,bias=False), + BatchNorm2d(64), + PReLU(64)) + self.output_layer = Sequential(BatchNorm2d(512), + Dropout(drop_ratio), + Flatten(), + Linear(512 * out_h * out_w, feat_dim), # for eye + BatchNorm1d(feat_dim)) + modules = [] + for block in blocks: + for bottleneck in block: + modules.append( + unit_module(bottleneck.in_channel, + bottleneck.depth, + bottleneck.stride)) + self.body = Sequential(*modules) + + def forward(self,x): + x = self.input_layer(x) + x = self.body(x) + x = self.output_layer(x) + return x diff --git a/bob/bio/facexzoo/backbones/Swin_Transformer.py b/bob/bio/facexzoo/backbones/Swin_Transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..15cf70b58d40655de03dac34fd2d5ca556805a0e --- /dev/null +++ b/bob/bio/facexzoo/backbones/Swin_Transformer.py @@ -0,0 +1,592 @@ +# -------------------------------------------------------- +# Swin Transformer +# Copyright (c) 2021 Microsoft +# Licensed under The MIT License [see LICENSE for details] +# Written by Ze Liu +# -------------------------------------------------------- + +import torch +import torch.nn as nn +import torch.utils.checkpoint as checkpoint +from timm.models.layers import DropPath, to_2tuple, trunc_normal_ + +class Flatten(nn.Module): + def forward(self, input): + return input.view(input.size(0), -1) + + +class Mlp(nn.Module): + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x + + +def window_partition(x, window_size): + """ + Args: + x: (B, H, W, C) + window_size (int): window size + + Returns: + windows: (num_windows*B, window_size, window_size, C) + """ + B, H, W, C = x.shape + x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + return windows + + +def window_reverse(windows, window_size, H, W): + """ + Args: + windows: (num_windows*B, window_size, window_size, C) + window_size (int): Window size + H (int): Height of image + W (int): Width of image + + Returns: + x: (B, H, W, C) + """ + B = int(windows.shape[0] / (H * W / window_size / window_size)) + x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) + return x + + +class WindowAttention(nn.Module): + r""" Window based multi-head self attention (W-MSA) module with relative position bias. + It supports both of shifted and non-shifted window. + + Args: + dim (int): Number of input channels. + window_size (tuple[int]): The height and width of the window. + num_heads (int): Number of attention heads. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set + attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 + proj_drop (float, optional): Dropout ratio of output. Default: 0.0 + """ + + def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): + + super().__init__() + self.dim = dim + self.window_size = window_size # Wh, Ww + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = qk_scale or head_dim ** -0.5 + + # define a parameter table of relative position bias + self.relative_position_bias_table = nn.Parameter( + torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(self.window_size[0]) + coords_w = torch.arange(self.window_size[1]) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += self.window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 + relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + self.register_buffer("relative_position_index", relative_position_index) + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + trunc_normal_(self.relative_position_bias_table, std=.02) + self.softmax = nn.Softmax(dim=-1) + + def forward(self, x, mask=None): + """ + Args: + x: input features with shape of (num_windows*B, N, C) + mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None + """ + B_, N, C = x.shape + qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) + + q = q * self.scale + attn = (q @ k.transpose(-2, -1)) + + relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + attn = attn + relative_position_bias.unsqueeze(0) + + if mask is not None: + nW = mask.shape[0] + attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) + attn = attn.view(-1, self.num_heads, N, N) + attn = self.softmax(attn) + else: + attn = self.softmax(attn) + + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B_, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + def extra_repr(self) -> str: + return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}' + + def flops(self, N): + # calculate flops for 1 window with token length of N + flops = 0 + # qkv = self.qkv(x) + flops += N * self.dim * 3 * self.dim + # attn = (q @ k.transpose(-2, -1)) + flops += self.num_heads * N * (self.dim // self.num_heads) * N + # x = (attn @ v) + flops += self.num_heads * N * N * (self.dim // self.num_heads) + # x = self.proj(x) + flops += N * self.dim * self.dim + return flops + + +class SwinTransformerBlock(nn.Module): + r""" Swin Transformer Block. + + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resulotion. + num_heads (int): Number of attention heads. + window_size (int): Window size. + shift_size (int): Shift size for SW-MSA. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float, optional): Stochastic depth rate. Default: 0.0 + act_layer (nn.Module, optional): Activation layer. Default: nn.GELU + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, + mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., + act_layer=nn.GELU, norm_layer=nn.LayerNorm): + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.num_heads = num_heads + self.window_size = window_size + self.shift_size = shift_size + self.mlp_ratio = mlp_ratio + if min(self.input_resolution) <= self.window_size: + # if window size is larger than input resolution, we don't partition windows + self.shift_size = 0 + self.window_size = min(self.input_resolution) + assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" + + self.norm1 = norm_layer(dim) + self.attn = WindowAttention( + dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, + qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) + + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) + + if self.shift_size > 0: + # calculate attention mask for SW-MSA + H, W = self.input_resolution + img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 + h_slices = (slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None)) + w_slices = (slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None)) + cnt = 0 + for h in h_slices: + for w in w_slices: + img_mask[:, h, w, :] = cnt + cnt += 1 + + mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 + mask_windows = mask_windows.view(-1, self.window_size * self.window_size) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) + else: + attn_mask = None + + self.register_buffer("attn_mask", attn_mask) + + def forward(self, x): + H, W = self.input_resolution + B, L, C = x.shape + assert L == H * W, "input feature has wrong size" + + shortcut = x + x = self.norm1(x) + x = x.view(B, H, W, C) + + # cyclic shift + if self.shift_size > 0: + shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) + else: + shifted_x = x + + # partition windows + x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C + x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C + + # W-MSA/SW-MSA + attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C + + # merge windows + attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) + shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C + + # reverse cyclic shift + if self.shift_size > 0: + x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) + else: + x = shifted_x + x = x.view(B, H * W, C) + + # FFN + x = shortcut + self.drop_path(x) + x = x + self.drop_path(self.mlp(self.norm2(x))) + + return x + + def extra_repr(self) -> str: + return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ + f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" + + def flops(self): + flops = 0 + H, W = self.input_resolution + # norm1 + flops += self.dim * H * W + # W-MSA/SW-MSA + nW = H * W / self.window_size / self.window_size + flops += nW * self.attn.flops(self.window_size * self.window_size) + # mlp + flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio + # norm2 + flops += self.dim * H * W + return flops + + +class PatchMerging(nn.Module): + r""" Patch Merging Layer. + + Args: + input_resolution (tuple[int]): Resolution of input feature. + dim (int): Number of input channels. + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): + super().__init__() + self.input_resolution = input_resolution + self.dim = dim + self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) + self.norm = norm_layer(4 * dim) + + def forward(self, x): + """ + x: B, H*W, C + """ + H, W = self.input_resolution + B, L, C = x.shape + assert L == H * W, "input feature has wrong size" + assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." + + x = x.view(B, H, W, C) + + x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C + x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C + x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C + x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C + x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C + x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C + + x = self.norm(x) + x = self.reduction(x) + + return x + + def extra_repr(self) -> str: + return f"input_resolution={self.input_resolution}, dim={self.dim}" + + def flops(self): + H, W = self.input_resolution + flops = H * W * self.dim + flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim + return flops + + +class BasicLayer(nn.Module): + """ A basic Swin Transformer layer for one stage. + + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + window_size (int): Local window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + """ + + def __init__(self, dim, input_resolution, depth, num_heads, window_size, + mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., + drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): + + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.depth = depth + self.use_checkpoint = use_checkpoint + + # build blocks + self.blocks = nn.ModuleList([ + SwinTransformerBlock(dim=dim, input_resolution=input_resolution, + num_heads=num_heads, window_size=window_size, + shift_size=0 if (i % 2 == 0) else window_size // 2, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, qk_scale=qk_scale, + drop=drop, attn_drop=attn_drop, + drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, + norm_layer=norm_layer) + for i in range(depth)]) + + # patch merging layer + if downsample is not None: + self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) + else: + self.downsample = None + + def forward(self, x): + for blk in self.blocks: + if self.use_checkpoint: + x = checkpoint.checkpoint(blk, x) + else: + x = blk(x) + if self.downsample is not None: + x = self.downsample(x) + return x + + def extra_repr(self) -> str: + return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" + + def flops(self): + flops = 0 + for blk in self.blocks: + flops += blk.flops() + if self.downsample is not None: + flops += self.downsample.flops() + return flops + + +class PatchEmbed(nn.Module): + r""" Image to Patch Embedding + + Args: + img_size (int): Image size. Default: 224. + patch_size (int): Patch token size. Default: 4. + in_chans (int): Number of input image channels. Default: 3. + embed_dim (int): Number of linear projection output channels. Default: 96. + norm_layer (nn.Module, optional): Normalization layer. Default: None + """ + + def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] + self.img_size = img_size + self.patch_size = patch_size + self.patches_resolution = patches_resolution + self.num_patches = patches_resolution[0] * patches_resolution[1] + + self.in_chans = in_chans + self.embed_dim = embed_dim + + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) + if norm_layer is not None: + self.norm = norm_layer(embed_dim) + else: + self.norm = None + + def forward(self, x): + B, C, H, W = x.shape + # FIXME look at relaxing size constraints + assert H == self.img_size[0] and W == self.img_size[1], \ + f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C + if self.norm is not None: + x = self.norm(x) + return x + + def flops(self): + Ho, Wo = self.patches_resolution + flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) + if self.norm is not None: + flops += Ho * Wo * self.embed_dim + return flops + + +class SwinTransformer(nn.Module): + r""" Swin Transformer + A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - + https://arxiv.org/pdf/2103.14030 + + Args: + img_size (int | tuple(int)): Input image size. Default 224 + patch_size (int | tuple(int)): Patch size. Default: 4 + in_chans (int): Number of input image channels. Default: 3 + num_classes (int): Number of classes for classification head. Default: 1000 + embed_dim (int): Patch embedding dimension. Default: 96 + depths (tuple(int)): Depth of each Swin Transformer layer. + num_heads (tuple(int)): Number of attention heads in different layers. + window_size (int): Window size. Default: 7 + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None + drop_rate (float): Dropout rate. Default: 0 + attn_drop_rate (float): Attention dropout rate. Default: 0 + drop_path_rate (float): Stochastic depth rate. Default: 0.1 + norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. + ape (bool): If True, add absolute position embedding to the patch embedding. Default: False + patch_norm (bool): If True, add normalization after patch embedding. Default: True + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False + """ + + def __init__(self, img_size=224, patch_size=4, in_chans=3, + embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], + window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, + drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, + norm_layer=nn.LayerNorm, ape=False, patch_norm=True, + use_checkpoint=False, **kwargs): + super().__init__() + + self.num_layers = len(depths) + self.embed_dim = embed_dim + self.ape = ape + self.patch_norm = patch_norm + self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) + self.mlp_ratio = mlp_ratio + + # split image into non-overlapping patches + self.patch_embed = PatchEmbed( + img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, + norm_layer=norm_layer if self.patch_norm else None) + num_patches = self.patch_embed.num_patches + patches_resolution = self.patch_embed.patches_resolution + self.patches_resolution = patches_resolution + + # absolute position embedding + if self.ape: + self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) + trunc_normal_(self.absolute_pos_embed, std=.02) + + self.pos_drop = nn.Dropout(p=drop_rate) + + # stochastic depth + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule + + # build layers + self.layers = nn.ModuleList() + for i_layer in range(self.num_layers): + layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer), + input_resolution=(patches_resolution[0] // (2 ** i_layer), + patches_resolution[1] // (2 ** i_layer)), + depth=depths[i_layer], + num_heads=num_heads[i_layer], + window_size=window_size, + mlp_ratio=self.mlp_ratio, + qkv_bias=qkv_bias, qk_scale=qk_scale, + drop=drop_rate, attn_drop=attn_drop_rate, + drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], + norm_layer=norm_layer, + downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, + use_checkpoint=use_checkpoint) + self.layers.append(layer) + + #self.norm = norm_layer(self.num_features) + #self.avgpool = nn.AdaptiveAvgPool1d(1) + self.output_layer = nn.Sequential(norm_layer(self.num_features), + Flatten(), + nn.Linear(49*768, 512), + nn.BatchNorm1d(512)) + + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'absolute_pos_embed'} + + @torch.jit.ignore + def no_weight_decay_keywords(self): + return {'relative_position_bias_table'} + + def forward_features(self, x): + x = self.patch_embed(x) + if self.ape: + x = x + self.absolute_pos_embed + x = self.pos_drop(x) + + for layer in self.layers: + x = layer(x) + + #x = self.norm(x) # B L C --> [128, 49, 768] + #x = self.avgpool(x.transpose(1, 2)) # B C 1 --> [128, 768, 1] + #x = torch.flatten(x, 1) + x = self.output_layer(x) + return x + + def forward(self, x): + x = self.forward_features(x) #[128,768] + return x + ''' + def flops(self): + flops = 0 + flops += self.patch_embed.flops() + for i, layer in enumerate(self.layers): + flops += layer.flops() + flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers) + flops += self.num_features * self.num_classes + return flops + ''' diff --git a/bob/bio/facexzoo/backbones/TF_NAS.py b/bob/bio/facexzoo/backbones/TF_NAS.py new file mode 100644 index 0000000000000000000000000000000000000000..e8a6738f9de4fb5ee49dea10dbfe0a95b6c2b04e --- /dev/null +++ b/bob/bio/facexzoo/backbones/TF_NAS.py @@ -0,0 +1,492 @@ +""" +@author: Yibo Hu, Jun Wang +@date: 20201019 +@contact: jun21wangustc@gmail.com +""" + +import sys +import torch +import torch.nn as nn +import torch.nn.functional as F +from collections import OrderedDict + + +def channel_shuffle(x, groups): + assert groups > 1 + batchsize, num_channels, height, width = x.size() + assert (num_channels % groups == 0) + channels_per_group = num_channels // groups + # reshape + x = x.view(batchsize, groups, channels_per_group, height, width) + # transpose + x = torch.transpose(x, 1, 2).contiguous() + # flatten + x = x.view(batchsize, -1, height, width) + return x + + +def get_same_padding(kernel_size): + if isinstance(kernel_size, tuple): + assert len(kernel_size) == 2, 'invalid kernel size: {}'.format(kernel_size) + p1 = get_same_padding(kernel_size[0]) + p2 = get_same_padding(kernel_size[1]) + return p1, p2 + assert isinstance(kernel_size, int), 'kernel size should be either `int` or `tuple`' + assert kernel_size % 2 > 0, 'kernel size should be odd number' + return kernel_size // 2 + + +class Swish(nn.Module): + def __init__(self, inplace=False): + super(Swish, self).__init__() + self.inplace = inplace + + def forward(self, x): + if self.inplace: + return x.mul_(x.sigmoid()) + else: + return x * x.sigmoid() + + +class HardSwish(nn.Module): + def __init__(self, inplace=False): + super(HardSwish, self).__init__() + self.inplace = inplace + + def forward(self, x): + if self.inplace: + return x.mul_(F.relu6(x + 3., inplace=True) / 6.) + else: + return x * F.relu6(x + 3.) /6. + + +class BasicLayer(nn.Module): + + def __init__( + self, + in_channels, + out_channels, + use_bn=True, + affine = True, + act_func='relu6', + ops_order='weight_bn_act'): + super(BasicLayer, self).__init__() + + self.in_channels = in_channels + self.out_channels = out_channels + self.use_bn = use_bn + self.affine = affine + self.act_func = act_func + self.ops_order = ops_order + + """ add modules """ + # batch norm + if self.use_bn: + if self.bn_before_weight: + self.bn = nn.BatchNorm2d(in_channels, affine=affine, track_running_stats=affine) + else: + self.bn = nn.BatchNorm2d(out_channels, affine=affine, track_running_stats=affine) + else: + self.bn = None + # activation + if act_func == 'relu': + if self.ops_list[0] == 'act': + self.act = nn.ReLU(inplace=False) + else: + self.act = nn.ReLU(inplace=True) + elif act_func == 'relu6': + if self.ops_list[0] == 'act': + self.act = nn.ReLU6(inplace=False) + else: + self.act = nn.ReLU6(inplace=True) + elif act_func == 'swish': + if self.ops_list[0] == 'act': + self.act = Swish(inplace=False) + else: + self.act = Swish(inplace=True) + elif act_func == 'h-swish': + if self.ops_list[0] == 'act': + self.act = HardSwish(inplace=False) + else: + self.act = HardSwish(inplace=True) + else: + self.act = None + + @property + def ops_list(self): + return self.ops_order.split('_') + + @property + def bn_before_weight(self): + for op in self.ops_list: + if op == 'bn': + return True + elif op == 'weight': + return False + raise ValueError('Invalid ops_order: %s' % self.ops_order) + + def weight_call(self, x): + raise NotImplementedError + + def forward(self, x): + for op in self.ops_list: + if op == 'weight': + x = self.weight_call(x) + elif op == 'bn': + if self.bn is not None: + x = self.bn(x) + elif op == 'act': + if self.act is not None: + x = self.act(x) + else: + raise ValueError('Unrecognized op: %s' % op) + return x + + +class ConvLayer(BasicLayer): + + def __init__( + self, + in_channels, + out_channels, + kernel_size=3, + stride=1, + groups=1, + has_shuffle=False, + bias=False, + use_bn=True, + affine=True, + act_func='relu6', + ops_order='weight_bn_act'): + super(ConvLayer, self).__init__( + in_channels, + out_channels, + use_bn, + affine, + act_func, + ops_order) + + self.kernel_size = kernel_size + self.stride = stride + self.groups = groups + self.has_shuffle = has_shuffle + self.bias = bias + + padding = get_same_padding(self.kernel_size) + self.conv = nn.Conv2d( + in_channels, + out_channels, + kernel_size=self.kernel_size, + stride=self.stride, + padding=padding, + groups=self.groups, + bias=self.bias) + + def weight_call(self, x): + x = self.conv(x) + if self.has_shuffle and self.groups > 1: + x = channel_shuffle(x, self.groups) + return x + + +class LinearLayer(nn.Module): + + def __init__( + self, + in_features, + out_features, + bias=True, + use_bn=False, + affine=False, + act_func=None, + ops_order='weight_bn_act'): + super(LinearLayer, self).__init__() + + self.in_features = in_features + self.out_features = out_features + self.bias = bias + self.use_bn = use_bn + self.affine = affine + self.act_func = act_func + self.ops_order = ops_order + + """ add modules """ + # batch norm + if self.use_bn: + if self.bn_before_weight: + self.bn = nn.BatchNorm1d(in_features, affine=affine, track_running_stats=affine) + else: + self.bn = nn.BatchNorm1d(out_features, affine=affine, track_running_stats=affine) + else: + self.bn = None + # activation + if act_func == 'relu': + if self.ops_list[0] == 'act': + self.act = nn.ReLU(inplace=False) + else: + self.act = nn.ReLU(inplace=True) + elif act_func == 'relu6': + if self.ops_list[0] == 'act': + self.act = nn.ReLU6(inplace=False) + else: + self.act = nn.ReLU6(inplace=True) + elif act_func == 'tanh': + self.act = nn.Tanh() + elif act_func == 'sigmoid': + self.act = nn.Sigmoid() + else: + self.act = None + # linear + self.linear = nn.Linear(self.in_features, self.out_features, self.bias) + + @property + def ops_list(self): + return self.ops_order.split('_') + + @property + def bn_before_weight(self): + for op in self.ops_list: + if op == 'bn': + return True + elif op == 'weight': + return False + raise ValueError('Invalid ops_order: %s' % self.ops_order) + + def forward(self, x): + for op in self.ops_list: + if op == 'weight': + x = self.linear(x) + elif op == 'bn': + if self.bn is not None: + x = self.bn(x) + elif op == 'act': + if self.act is not None: + x = self.act(x) + else: + raise ValueError('Unrecognized op: %s' % op) + return x + + +class MBInvertedResBlock(nn.Module): + + def __init__( + self, + in_channels, + mid_channels, + se_channels, + out_channels, + kernel_size=3, + stride=1, + groups=1, + has_shuffle=False, + bias=False, + use_bn=True, + affine=True, + act_func='relu6'): + super(MBInvertedResBlock, self).__init__() + + self.in_channels = in_channels + self.mid_channels = mid_channels + self.se_channels = se_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.stride = stride + self.groups = groups + self.has_shuffle = has_shuffle + self.bias = bias + self.use_bn = use_bn + self.affine = affine + self.act_func = act_func + + # inverted bottleneck + if mid_channels > in_channels: + inverted_bottleneck = OrderedDict([ + ('conv', nn.Conv2d(in_channels, mid_channels, 1, 1, 0, groups=groups, bias=bias)), + ]) + if use_bn: + inverted_bottleneck['bn'] = nn.BatchNorm2d(mid_channels, affine=affine, track_running_stats=affine) + if act_func == 'relu': + inverted_bottleneck['act'] = nn.ReLU(inplace=True) + elif act_func == 'relu6': + inverted_bottleneck['act'] = nn.ReLU6(inplace=True) + elif act_func == 'swish': + inverted_bottleneck['act'] = Swish(inplace=True) + elif act_func == 'h-swish': + inverted_bottleneck['act'] = HardSwish(inplace=True) + self.inverted_bottleneck = nn.Sequential(inverted_bottleneck) + else: + self.inverted_bottleneck = None + self.mid_channels = in_channels + mid_channels = in_channels + + # depthwise convolution + padding = get_same_padding(self.kernel_size) + depth_conv = OrderedDict([ + ('conv', + nn.Conv2d( + mid_channels, + mid_channels, + kernel_size, + stride, + padding, + groups=mid_channels, + bias=bias)), + ]) + if use_bn: + depth_conv['bn'] = nn.BatchNorm2d(mid_channels, affine=affine, track_running_stats=affine) + if act_func == 'relu': + depth_conv['act'] = nn.ReLU(inplace=True) + elif act_func == 'relu6': + depth_conv['act'] = nn.ReLU6(inplace=True) + elif act_func == 'swish': + depth_conv['act'] = Swish(inplace=True) + elif act_func == 'h-swish': + depth_conv['act'] = HardSwish(inplace=True) + self.depth_conv = nn.Sequential(depth_conv) + + # se model + if se_channels > 0: + squeeze_excite = OrderedDict([ + ('conv_reduce', nn.Conv2d(mid_channels, se_channels, 1, 1, 0, groups=groups, bias=True)), + ]) + if act_func == 'relu': + squeeze_excite['act'] = nn.ReLU(inplace=True) + elif act_func == 'relu6': + squeeze_excite['act'] = nn.ReLU6(inplace=True) + elif act_func == 'swish': + squeeze_excite['act'] = Swish(inplace=True) + elif act_func == 'h-swish': + squeeze_excite['act'] = HardSwish(inplace=True) + squeeze_excite['conv_expand'] = nn.Conv2d(se_channels, mid_channels, 1, 1, 0, groups=groups, bias=True) + self.squeeze_excite = nn.Sequential(squeeze_excite) + else: + self.squeeze_excite = None + self.se_channels = 0 + + # pointwise linear + point_linear = OrderedDict([ + ('conv', nn.Conv2d(mid_channels, out_channels, 1, 1, 0, groups=groups, bias=bias)), + ]) + if use_bn: + point_linear['bn'] = nn.BatchNorm2d(out_channels, affine=affine, track_running_stats=affine) + self.point_linear = nn.Sequential(point_linear) + + # residual flag + self.has_residual = (in_channels == out_channels) and (stride == 1) + + def forward(self, x): + res = x + + if self.inverted_bottleneck is not None: + x = self.inverted_bottleneck(x) + if self.has_shuffle and self.groups > 1: + x = channel_shuffle(x, self.groups) + + x = self.depth_conv(x) + if self.squeeze_excite is not None: + x_se = F.adaptive_avg_pool2d(x, 1) + x = x * torch.sigmoid(self.squeeze_excite(x_se)) + + x = self.point_linear(x) + if self.has_shuffle and self.groups > 1: + x = channel_shuffle(x, self.groups) + + if self.has_residual: + x += res + + return x + +class Flatten(nn.Module): + def forward(self, x): + return x.reshape(x.size(0), -1) + + +class TF_NAS_A(nn.Module): + def __init__(self, out_h, out_w, feat_dim, drop_ratio=0.0): + super(TF_NAS_A, self).__init__() + self.drop_ratio = drop_ratio + + self.first_stem = ConvLayer(3, 32, kernel_size=3, stride=1, act_func='relu') + self.second_stem = MBInvertedResBlock(32, 32, 8, 16, kernel_size=3, stride=1, act_func='relu') + self.stage1 = nn.Sequential( + MBInvertedResBlock(16, 83, 32, 24, kernel_size=3, stride=2, act_func='relu'), + MBInvertedResBlock(24, 128, 0, 24, kernel_size=5, stride=1, act_func='relu'), + ) + self.stage2 = nn.Sequential( + MBInvertedResBlock(24, 138, 48, 40, kernel_size=3, stride=2, act_func='swish'), + MBInvertedResBlock(40, 297, 0, 40, kernel_size=3, stride=1, act_func='swish'), + MBInvertedResBlock(40, 170, 80, 40, kernel_size=5, stride=1, act_func='swish'), + ) + self.stage3 = nn.Sequential( + MBInvertedResBlock(40, 248, 80, 80, kernel_size=5, stride=2, act_func='swish'), + MBInvertedResBlock(80, 500, 0, 80, kernel_size=3, stride=1, act_func='swish'), + MBInvertedResBlock(80, 424, 0, 80, kernel_size=3, stride=1, act_func='swish'), + MBInvertedResBlock(80, 477, 0, 80, kernel_size=3, stride=1, act_func='swish'), + ) + self.stage4 = nn.Sequential( + MBInvertedResBlock(80, 504, 160, 112, kernel_size=3, stride=1, act_func='swish'), + MBInvertedResBlock(112, 796, 0, 112, kernel_size=3, stride=1, act_func='swish'), + MBInvertedResBlock(112, 723, 224, 112, kernel_size=3, stride=1, act_func='swish'), + MBInvertedResBlock(112, 555, 224, 112, kernel_size=3, stride=1, act_func='swish'), + ) + self.stage5 = nn.Sequential( + MBInvertedResBlock(112, 813, 0, 192, kernel_size=3, stride=2, act_func='swish'), + MBInvertedResBlock(192, 1370, 0, 192, kernel_size=3, stride=1, act_func='swish'), + MBInvertedResBlock(192, 1138, 384, 192, kernel_size=3, stride=1, act_func='swish'), + MBInvertedResBlock(192, 1359, 384, 192, kernel_size=3, stride=1, act_func='swish'), + ) + self.stage6 = nn.Sequential( + MBInvertedResBlock(192, 1203, 384, 320, kernel_size=5, stride=1, act_func='swish'), + ) + self.feature_mix_layer = ConvLayer(320, 1280, kernel_size=1, stride=1, act_func='none') + self.output_layer = nn.Sequential( + nn.Dropout(self.drop_ratio), + Flatten(), + nn.Linear(1280 * out_h * out_w, feat_dim), + nn.BatchNorm1d(feat_dim)) + + self._initialization() + + def forward(self, x): + x = self.first_stem(x) + x = self.second_stem(x) + for block in self.stage1: + x = block(x) + for block in self.stage2: + x = block(x) + for block in self.stage3: + x = block(x) + for block in self.stage4: + x = block(x) + for block in self.stage5: + x = block(x) + for block in self.stage6: + x = block(x) + x = self.feature_mix_layer(x) + x = self.output_layer(x) + return x + + def _initialization(self): + for m in self.modules(): + if isinstance(m, nn.Conv2d): + if m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.Linear): + if m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.BatchNorm2d): + if m.weight is not None: + nn.init.constant_(m.weight, 1) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + +if __name__ == '__main__': + x = torch.rand((2,3,112,112)) + net = TF_NAS_A(7, 7, 512, drop_ratio=0.0) + + x = x.cuda() + net = net.cuda() + + out = net(x) + print(out.size()) diff --git a/bob/bio/facexzoo/backbones/__init__.py b/bob/bio/facexzoo/backbones/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..0487c5de8615241b4a6b8dafd66bc3246661a955 --- /dev/null +++ b/bob/bio/facexzoo/backbones/__init__.py @@ -0,0 +1 @@ +from .models import FaceXZooModelFactory diff --git a/bob/bio/facexzoo/backbones/backbone_conf.yaml b/bob/bio/facexzoo/backbones/backbone_conf.yaml new file mode 100644 index 0000000000000000000000000000000000000000..b3023dc570569cd95f1823c26646f351a9911d2a --- /dev/null +++ b/bob/bio/facexzoo/backbones/backbone_conf.yaml @@ -0,0 +1,285 @@ +MobileFaceNet: + feat_dim: 512 + #out_h: 4 + out_h: 7 + out_w: 7 + +# ResNet: +# depth: 152 +# drop_ratio: 0.4 +# net_mode: ir_se +# feat_dim: 512 +# out_h: 7 +# out_w: 7 + +# according to the log of model: +ResNet50_ir: + depth: 50 + drop_ratio: 0.4 + net_mode: ir + feat_dim: 512 + out_h: 7 + out_w: 7 + +# according to the log of model: +ResNet152_irse: + depth: 152 + drop_ratio: 0.4 + net_mode: ir_se + feat_dim: 512 + out_h: 7 + out_w: 7 + + +EfficientNet_B0: + width: 1.0 + depth: 1.0 + image_size: 110 + drop_ratio: 0.2 + out_h: 7 + out_w: 7 + feat_dim: 512 + +HRNet: + NAME: cls_hrnet + out_h: 7 + out_w: 7 + feat_dim: 512 + IMAGE_SIZE: + - 112 + - 112 + EXTRA: + STAGE1: + NUM_MODULES: 1 + NUM_RANCHES: 1 + BLOCK: BOTTLENECK + NUM_BLOCKS: + - 4 + NUM_CHANNELS: + - 64 + FUSE_METHOD: SUM + STAGE2: + NUM_MODULES: 1 + NUM_BRANCHES: 2 + BLOCK: BASIC + NUM_BLOCKS: + - 4 + - 4 + NUM_CHANNELS: + - 18 + - 36 + FUSE_METHOD: SUM + STAGE3: + NUM_MODULES: 4 + NUM_BRANCHES: 3 + BLOCK: BASIC + NUM_BLOCKS: + - 4 + - 4 + - 4 + NUM_CHANNELS: + - 18 + - 36 + - 72 + FUSE_METHOD: SUM + STAGE4: + NUM_MODULES: 3 + NUM_BRANCHES: 4 + BLOCK: BASIC + NUM_BLOCKS: + - 4 + - 4 + - 4 + - 4 + NUM_CHANNELS: + - 18 + - 36 + - 72 + - 144 + FUSE_METHOD: SUM + +GhostNet: + width: 1.0 + drop_ratio: 0.2 + out_h: 7 + out_w: 7 + feat_dim: 512 + +# AttentionNet: +# stage1_modules: 1 +# stage2_modules: 2 +# stage3_modules: 3 +# feat_dim: 512 +# out_h: 7 +# out_w: 7 + +# https://github.com/JDAI-CV/FaceX-Zoo/issues/96#issuecomment-929808352 +AttentionNet56: + #AttentionNet: + stage1_modules: 1 + stage2_modules: 1 + stage3_modules: 1 + feat_dim: 512 + out_h: 7 + out_w: 7 + +# https://github.com/JDAI-CV/FaceX-Zoo/issues/96#issuecomment-929808352 +AttentionNet92: + #AttentionNet: + stage1_modules: 1 + stage2_modules: 2 + stage3_modules: 3 + feat_dim: 512 + out_h: 7 + out_w: 7 + +TF_NAS_A: + feat_dim: 512 + drop_ratio: 0.2 + out_h: 7 + out_w: 7 + +ResNeSt50: + depth: 50 + drop_ratio: 0.4 + feat_dim: 512 + out_h: 7 + out_w: 7 + +ReXNet_1: + input_ch: 16 + final_ch: 180 + width_mult: 1.0 + depth_mult: 1.0 + use_se: 0 + se_ratio: 12 + out_h: 7 + out_w: 7 + feat_dim: 512 + dropout_ratio: 0.2 + + +LightCNN29: + depth: 29 + out_h: 7 + out_w: 7 + feat_dim: 512 + dropout_ratio: 0.2 + +# RepVGG: +# blocks1: 4 +# blocks2: 6 +# blocks3: 16 +# blocks4: 1 +# width1: 2 +# width2: 2 +# width3: 2 +# width4: 4 +# out_h: 7 +# out_w: 7 +# feat_dim: 512 + +# according to the log of model: +RepVGG_A0: + blocks1: 2 + blocks2: 4 + blocks3: 14 + blocks4: 1 + width1: 0.75 + width2: 0.75 + width3: 0.75 + width4: 2.5 + out_h: 7 + out_w: 7 + feat_dim: 512 + +# according to the log of model: +RepVGG_B0: + blocks1: 4 + blocks2: 6 + blocks3: 16 + blocks4: 1 + width1: 1 + width2: 1 + width3: 1 + width4: 2.5 + out_h: 7 + out_w: 7 + feat_dim: 512 + +# according to the log of model: +RepVGG_B1: + blocks1: 4 + blocks2: 6 + blocks3: 16 + blocks4: 1 + width1: 2 + width2: 2 + width3: 2 + width4: 4 + out_h: 7 + out_w: 7 + feat_dim: 512 + + +# SwinTransformer: +# img_size: 224 +# patch_size: 4 +# in_chans: 3 +# embed_dim: 96 +# depths: +# - 2 +# - 2 +# - 18 +# - 2 +# num_heads: +# - 3 +# - 6 +# - 12 +# - 24 +# window_size: 7 +# mlp_ratio: 4.0 +# drop_rate: 0.0 +# drop_path_rate: 0.3 + + +# according to the log of model: +SwinTransformer_S: + img_size: 224 + patch_size: 4 + in_chans: 3 + embed_dim: 96 + depths: + - 2 + - 2 + - 18 + - 2 + num_heads: + - 3 + - 6 + - 12 + - 24 + window_size: 7 + mlp_ratio: 4.0 + drop_rate: 0.0 + drop_path_rate: 0.3 + +SwinTransformer_T: + img_size: 224 + patch_size: 4 + in_chans: 3 + embed_dim: 96 + depths: + - 2 + - 2 + - 6 + - 2 + num_heads: + - 3 + - 6 + - 12 + - 24 + window_size: 7 + mlp_ratio: 4.0 + drop_rate: 0.0 + drop_path_rate: 0.2 \ No newline at end of file diff --git a/bob/bio/facexzoo/backbones/backbone_def.py b/bob/bio/facexzoo/backbones/backbone_def.py new file mode 100644 index 0000000000000000000000000000000000000000..1ccd916bb04b73772830e44da472dcb17dbf9036 --- /dev/null +++ b/bob/bio/facexzoo/backbones/backbone_def.py @@ -0,0 +1,243 @@ +# https://github.com/JDAI-CV/FaceX-Zoo/blob/main/backbone/backbone_def.py + +""" +@author: Jun Wang +@date: 20201019 +@contact: jun21wangustc@gmail.com +""" + +import sys +import yaml + +from .ResNets import Resnet +from .MobileFaceNets import MobileFaceNet +from .EfficientNets import EfficientNet +from .EfficientNets import efficientnet +from .HRNet import HighResolutionNet +from .GhostNet import GhostNet +from .AttentionNets import ResidualAttentionNet +from .TF_NAS import TF_NAS_A +from .resnest.resnest import ResNeSt +from .ReXNets import ReXNetV1 +from .LightCNN import LightCNN +from .RepVGG import RepVGG +from .Swin_Transformer import SwinTransformer + + + +class BackboneFactory: + """Factory to produce backbone according the backbone_conf.yaml. + + Attributes: + backbone_type(str): which backbone will produce. + backbone_param(dict): parsed params and it's value. + """ + def __init__(self, backbone_type, backbone_conf_file): + self.backbone_type = backbone_type + with open(backbone_conf_file) as f: + backbone_conf = yaml.safe_load(f) + self.backbone_param = backbone_conf[backbone_type] + print('backbone param:') + print(self.backbone_param) + + def get_backbone(self): + + if self.backbone_type == 'MobileFaceNet': + feat_dim = self.backbone_param['feat_dim'] # dimension of the output features, e.g. 512. + out_h = self.backbone_param['out_h'] # height of the feature map before the final features. + out_w = self.backbone_param['out_w'] # width of the feature map before the final features. + backbone = MobileFaceNet(feat_dim, out_h, out_w) + elif self.backbone_type == 'ResNet50_ir': + depth = self.backbone_param['depth'] # depth of the ResNet, e.g. 50, 100, 152. + drop_ratio = self.backbone_param['drop_ratio'] # drop out ratio. + net_mode = self.backbone_param['net_mode'] # 'ir' for improved by resnt, 'ir_se' for SE-ResNet. + feat_dim = self.backbone_param['feat_dim'] # dimension of the output features, e.g. 512. + out_h = self.backbone_param['out_h'] # height of the feature map before the final features. + out_w = self.backbone_param['out_w'] # width of the feature map before the final features. + backbone = Resnet(depth, drop_ratio, net_mode, feat_dim, out_h, out_w) + elif self.backbone_type == 'ResNet152_irse': + depth = self.backbone_param['depth'] # depth of the ResNet, e.g. 50, 100, 152. + drop_ratio = self.backbone_param['drop_ratio'] # drop out ratio. + net_mode = self.backbone_param['net_mode'] # 'ir' for improved by resnt, 'ir_se' for SE-ResNet. + feat_dim = self.backbone_param['feat_dim'] # dimension of the output features, e.g. 512. + out_h = self.backbone_param['out_h'] # height of the feature map before the final features. + out_w = self.backbone_param['out_w'] # width of the feature map before the final features. + backbone = Resnet(depth, drop_ratio, net_mode, feat_dim, out_h, out_w) + elif self.backbone_type == 'HRNet': + config = {} + config['MODEL'] = self.backbone_param + backbone = HighResolutionNet(config) + elif self.backbone_type == 'EfficientNet_B0': + width = self.backbone_param['width'] # width for EfficientNet, e.g. 1.0, 1.2, 1.4, ... + depth = self.backbone_param['depth'] # depth for EfficientNet, e.g. 1.0, 1.2, 1.4, ... + image_size = self.backbone_param['image_size'] # input image size, e.g. 112. + drop_ratio = self.backbone_param['drop_ratio'] # drop out ratio. + out_h = self.backbone_param['out_h'] # height of the feature map before the final features. + out_w = self.backbone_param['out_w'] # width of the feature map before the final features. + feat_dim = self.backbone_param['feat_dim'] # dimension of the output features, e.g. 512. + blocks_args, global_params = efficientnet( + width_coefficient=width, depth_coefficient=depth, + dropout_rate=drop_ratio, image_size=image_size) + backbone = EfficientNet(out_h, out_w, feat_dim, blocks_args, global_params) + elif self.backbone_type == 'TF_NAS_A': + drop_ratio = self.backbone_param['drop_ratio'] # drop out ratio. + out_h = self.backbone_param['out_h'] # height of the feature map before the final features. + out_w = self.backbone_param['out_w'] # width of the feature map before the final features. + feat_dim = self.backbone_param['feat_dim'] # dimension of the output features, e.g. 512. + backbone = TF_NAS_A(out_h, out_w, feat_dim, drop_ratio) + elif self.backbone_type == 'GhostNet': + width = self.backbone_param['width'] + drop_ratio = self.backbone_param['drop_ratio'] # drop out ratio. + feat_dim = self.backbone_param['feat_dim'] # dimension of the output features, e.g. 512. + out_h = self.backbone_param['out_h'] # height of the feature map before the final features. + out_w = self.backbone_param['out_w'] # width of the feature map before the final feature + backbone = GhostNet(width, drop_ratio, feat_dim, out_h, out_w) + elif self.backbone_type == 'AttentionNet56': + stage1_modules = self.backbone_param['stage1_modules'] # the number of attention modules in stage1. + stage2_modules = self.backbone_param['stage2_modules'] # the number of attention modules in stage2. + stage3_modules = self.backbone_param['stage3_modules'] # the number of attention modules in stage3. + feat_dim = self.backbone_param['feat_dim'] # dimension of the output features, e.g. 512. + out_h = self.backbone_param['out_h'] # height of the feature map before the final features. + out_w = self.backbone_param['out_w'] # width of the feature map before the final features. + backbone = ResidualAttentionNet( + stage1_modules, stage2_modules, stage3_modules, + feat_dim, out_h, out_w) + elif self.backbone_type == 'AttentionNet92': + stage1_modules = self.backbone_param['stage1_modules'] # the number of attention modules in stage1. + stage2_modules = self.backbone_param['stage2_modules'] # the number of attention modules in stage2. + stage3_modules = self.backbone_param['stage3_modules'] # the number of attention modules in stage3. + feat_dim = self.backbone_param['feat_dim'] # dimension of the output features, e.g. 512. + out_h = self.backbone_param['out_h'] # height of the feature map before the final features. + out_w = self.backbone_param['out_w'] # width of the feature map before the final features. + backbone = ResidualAttentionNet( + stage1_modules, stage2_modules, stage3_modules, + feat_dim, out_h, out_w) + elif self.backbone_type == 'ResNeSt50': + depth = self.backbone_param['depth'] # depth of the ResNet, e.g. 50, 100, 152. + drop_ratio = self.backbone_param['drop_ratio'] # drop out ratio. + feat_dim = self.backbone_param['feat_dim'] # dimension of the output features, e.g. 512. + out_h = self.backbone_param['out_h'] # height of the feature map before the final features. + out_w = self.backbone_param['out_w'] # width of the feature map before the final features. + backbone = ResNeSt(depth, drop_ratio, feat_dim, out_h, out_w) + elif self.backbone_type == 'ReXNet_1': + input_ch = self.backbone_param['input_ch'] + final_ch = self.backbone_param['final_ch'] + width_mult = self.backbone_param['width_mult'] + depth_mult = self.backbone_param['depth_mult'] + use_se = True if self.backbone_param['use_se']==1 else False + se_ratio = self.backbone_param['se_ratio'] + out_h = self.backbone_param['out_h'] + out_w = self.backbone_param['out_w'] + feat_dim = self.backbone_param['feat_dim'] + dropout_ratio = self.backbone_param['dropout_ratio'] + backbone = ReXNetV1(input_ch, final_ch, width_mult, depth_mult, use_se, se_ratio, + out_h, out_w, feat_dim, dropout_ratio) + elif self.backbone_type == 'LightCNN29': + depth = self.backbone_param['depth'] + out_h = self.backbone_param['out_h'] + out_w = self.backbone_param['out_w'] + feat_dim = self.backbone_param['feat_dim'] + drop_ratio = self.backbone_param['dropout_ratio'] + backbone = LightCNN(depth, drop_ratio, out_h, out_w, feat_dim) + elif self.backbone_type == 'RepVGG_A0': + blocks1 = self.backbone_param['blocks1'] + blocks2 = self.backbone_param['blocks2'] + blocks3 = self.backbone_param['blocks3'] + blocks4 = self.backbone_param['blocks4'] + width1 = self.backbone_param['width1'] + width2 = self.backbone_param['width2'] + width3 = self.backbone_param['width3'] + width4 = self.backbone_param['width4'] + out_h = self.backbone_param['out_h'] + out_w = self.backbone_param['out_w'] + feat_dim = self.backbone_param['feat_dim'] + backbone = RepVGG([blocks1, blocks2, blocks3, blocks4], + [width1, width2, width3, width4], + feat_dim, out_h, out_w) + elif self.backbone_type == 'RepVGG_B0': + blocks1 = self.backbone_param['blocks1'] + blocks2 = self.backbone_param['blocks2'] + blocks3 = self.backbone_param['blocks3'] + blocks4 = self.backbone_param['blocks4'] + width1 = self.backbone_param['width1'] + width2 = self.backbone_param['width2'] + width3 = self.backbone_param['width3'] + width4 = self.backbone_param['width4'] + out_h = self.backbone_param['out_h'] + out_w = self.backbone_param['out_w'] + feat_dim = self.backbone_param['feat_dim'] + backbone = RepVGG([blocks1, blocks2, blocks3, blocks4], + [width1, width2, width3, width4], + feat_dim, out_h, out_w) + elif self.backbone_type == 'RepVGG_B1': + blocks1 = self.backbone_param['blocks1'] + blocks2 = self.backbone_param['blocks2'] + blocks3 = self.backbone_param['blocks3'] + blocks4 = self.backbone_param['blocks4'] + width1 = self.backbone_param['width1'] + width2 = self.backbone_param['width2'] + width3 = self.backbone_param['width3'] + width4 = self.backbone_param['width4'] + out_h = self.backbone_param['out_h'] + out_w = self.backbone_param['out_w'] + feat_dim = self.backbone_param['feat_dim'] + backbone = RepVGG([blocks1, blocks2, blocks3, blocks4], + [width1, width2, width3, width4], + feat_dim, out_h, out_w) + + elif self.backbone_type == 'SwinTransformer_S': + img_size = self.backbone_param['img_size'] + patch_size= self.backbone_param['patch_size'] + in_chans = self.backbone_param['in_chans'] + embed_dim = self.backbone_param['embed_dim'] + depths = self.backbone_param['depths'] + num_heads = self.backbone_param['num_heads'] + window_size = self.backbone_param['window_size'] + mlp_ratio = self.backbone_param['mlp_ratio'] + drop_rate = self.backbone_param['drop_rate'] + drop_path_rate = self.backbone_param['drop_path_rate'] + backbone = SwinTransformer(img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim, + depths=depths, + num_heads=num_heads, + window_size=window_size, + mlp_ratio=mlp_ratio, + qkv_bias=True, + qk_scale=None, + drop_rate=drop_rate, + drop_path_rate=drop_path_rate, + ape=False, + patch_norm=True, + use_checkpoint=False) + + elif self.backbone_type == 'SwinTransformer_T': + img_size = self.backbone_param['img_size'] + patch_size= self.backbone_param['patch_size'] + in_chans = self.backbone_param['in_chans'] + embed_dim = self.backbone_param['embed_dim'] + depths = self.backbone_param['depths'] + num_heads = self.backbone_param['num_heads'] + window_size = self.backbone_param['window_size'] + mlp_ratio = self.backbone_param['mlp_ratio'] + drop_rate = self.backbone_param['drop_rate'] + drop_path_rate = self.backbone_param['drop_path_rate'] + backbone = SwinTransformer(img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim, + depths=depths, + num_heads=num_heads, + window_size=window_size, + mlp_ratio=mlp_ratio, + qkv_bias=True, + qk_scale=None, + drop_rate=drop_rate, + drop_path_rate=drop_path_rate, + ape=False, + patch_norm=True, + use_checkpoint=False) + else: + pass + return backbone diff --git a/bob/bio/facexzoo/backbones/models.py b/bob/bio/facexzoo/backbones/models.py new file mode 100644 index 0000000000000000000000000000000000000000..1f1b1910bfe9bf2f21138993430a9703b8f58b4e --- /dev/null +++ b/bob/bio/facexzoo/backbones/models.py @@ -0,0 +1,70 @@ +# https://gitlab.idiap.ch/bob/bob.learn.pytorch/-/blob/master/bob/learn/pytorch/architectures/facexzoo/models.py + +import pkg_resources +from bob.extension.download import get_file +from bob.extension import rc +# from bob.learn.pytorch.architectures.facexzoo.backbone_def import BackboneFactory +from bob.bio.facexzoo.backbones.backbone_def import BackboneFactory + +# def_backbone_conf = pkg_resources.resource_filename( 'bob.learn.pytorch', 'architectures/facexzoo/backbone_conf.yaml') +def_backbone_conf = pkg_resources.resource_filename( 'bob.bio.facexzoo', 'backbones/backbone_conf.yaml') + +info = { + 'AttentionNet': ['AttentionNet-f4c6f908.pt.tar.gz','49e435d8d9c075a4f613336090eac242'], + 'ResNeSt':['ResNeSt-e8b132d4.pt.tar.gz','51eef17ef7c17d1b22bbc13022393f31'], + 'MobileFaceNet': ['MobileFaceNet-ca475a8d.pt.tar.gz', 'e5fc0ae59d1a290b58a297b37f015e11'], + 'ResNet': ['ResNet-e07e7fa1.pt.tar.gz','13596dfeeb7f40c4b746ad2f0b271c36'], + 'EfficientNet':['EfficientNet-5aed534e.pt.tar.gz','31c827017fe2029c1ab57371c8e5abf4'], + 'TF-NAS':['TF-NAS-709d8562.pt.tar.gz','f96fe2683970140568a17c09fff24fab'], + 'HRNet':['HRNet-edc4da11.pt.tar.gz','5ed9920e004af440b623339a7008a758'], + 'ReXNet':['ReXNet-7c45620c.pt.tar.gz','b24cf257a25486c52fde5626007b324b'], + 'GhostNet':['GhostNet-5f026295.pt.tar.gz','9edb8327c62b62197ad023f21bd865bc'] + } + +class FaceXZooModelFactory(): + def __init__(self, arch='MobileFaceNet', head='MV-Softmax', backbone_conf= def_backbone_conf, info=info): + self.arch = arch + self.head = head + self.backbone_conf = backbone_conf + self.info=info + + #assert(self.arch in self.info.keys()) + + def get_model(self): + return BackboneFactory(self.arch, self.backbone_conf).get_backbone() + + def get_checkpoint_name(self): + #return self.info[self.arch][0] + + if self.head == 'MV-Softmax': + checkpoint_name = self.arch + else: + checkpoint_name = self.head + + return checkpoint_name + + def get_facexzoo_file(self): + ''' + # + urls = [ + "https://www.idiap.ch/software/bob/data/bob/bob.learn.pytorch/facexzoomodels/{}".format(self.info[self.arch][0]), + "http://www.idiap.ch/software/bob/data/bob/bob.learn.pytorch/facexzoomodels/{}".format(self.info[self.arch][0]), + ] + + return get_file( + self.info[self.arch][0], + urls, + cache_subdir="data/pytorch/{}/".format(self.info[self.arch][0]), + file_hash=self.info[self.arch][1], + extract=True, + ) + ''' + import os + # root_dir = os.path.dirname(os.getcwd()) + root_dir = rc.get("facexzoo.checkpoints.directory") + if self.head == 'MV-Softmax': + model_path = f'{root_dir}/models/backbones/{self.arch}/Epoch_17.pt' + else: + model_path = f'{root_dir}/models/heads/{self.head}/Epoch_17.pt' + + return model_path \ No newline at end of file diff --git a/bob/bio/facexzoo/backbones/resnest/__init__.py b/bob/bio/facexzoo/backbones/resnest/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..2acf216b90720c266e9582ab16b4204a8a072a25 --- /dev/null +++ b/bob/bio/facexzoo/backbones/resnest/__init__.py @@ -0,0 +1,2 @@ +from .resnest import * +from .ablation import * diff --git a/bob/bio/facexzoo/backbones/resnest/ablation.py b/bob/bio/facexzoo/backbones/resnest/ablation.py new file mode 100644 index 0000000000000000000000000000000000000000..00743ccdcf8c909b262c37476488c92ba947fde5 --- /dev/null +++ b/bob/bio/facexzoo/backbones/resnest/ablation.py @@ -0,0 +1,106 @@ +##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +## Created by: Hang Zhang +## Email: zhanghang0704@gmail.com +## Copyright (c) 2020 +## +## LICENSE file in the root directory of this source tree +##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +"""ResNeSt ablation study models""" + +import torch +from .resnet import ResNet, Bottleneck + +__all__ = ['resnest50_fast_1s1x64d', 'resnest50_fast_2s1x64d', 'resnest50_fast_4s1x64d', + 'resnest50_fast_1s2x40d', 'resnest50_fast_2s2x40d', 'resnest50_fast_4s2x40d', + 'resnest50_fast_1s4x24d'] + +_url_format = 'https://s3.us-west-1.wasabisys.com/resnest/torch/{}-{}.pth' + +_model_sha256 = {name: checksum for checksum, name in [ + ('d8fbf808', 'resnest50_fast_1s1x64d'), + ('44938639', 'resnest50_fast_2s1x64d'), + ('f74f3fc3', 'resnest50_fast_4s1x64d'), + ('32830b84', 'resnest50_fast_1s2x40d'), + ('9d126481', 'resnest50_fast_2s2x40d'), + ('41d14ed0', 'resnest50_fast_4s2x40d'), + ('d4a4f76f', 'resnest50_fast_1s4x24d'), + ]} + +def short_hash(name): + if name not in _model_sha256: + raise ValueError('Pretrained model for {name} is not available.'.format(name=name)) + return _model_sha256[name][:8] + +resnest_model_urls = {name: _url_format.format(name, short_hash(name)) for + name in _model_sha256.keys() +} + +def resnest50_fast_1s1x64d(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [3, 4, 6, 3], + radix=1, groups=1, bottleneck_width=64, + deep_stem=True, stem_width=32, avg_down=True, + avd=True, avd_first=True, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest50_fast_1s1x64d'], progress=True, check_hash=True)) + return model + +def resnest50_fast_2s1x64d(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [3, 4, 6, 3], + radix=2, groups=1, bottleneck_width=64, + deep_stem=True, stem_width=32, avg_down=True, + avd=True, avd_first=True, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest50_fast_2s1x64d'], progress=True, check_hash=True)) + return model + +def resnest50_fast_4s1x64d(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [3, 4, 6, 3], + radix=4, groups=1, bottleneck_width=64, + deep_stem=True, stem_width=32, avg_down=True, + avd=True, avd_first=True, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest50_fast_4s1x64d'], progress=True, check_hash=True)) + return model + +def resnest50_fast_1s2x40d(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [3, 4, 6, 3], + radix=1, groups=2, bottleneck_width=40, + deep_stem=True, stem_width=32, avg_down=True, + avd=True, avd_first=True, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest50_fast_1s2x40d'], progress=True, check_hash=True)) + return model + +def resnest50_fast_2s2x40d(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [3, 4, 6, 3], + radix=2, groups=2, bottleneck_width=40, + deep_stem=True, stem_width=32, avg_down=True, + avd=True, avd_first=True, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest50_fast_2s2x40d'], progress=True, check_hash=True)) + return model + +def resnest50_fast_4s2x40d(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [3, 4, 6, 3], + radix=4, groups=2, bottleneck_width=40, + deep_stem=True, stem_width=32, avg_down=True, + avd=True, avd_first=True, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest50_fast_4s2x40d'], progress=True, check_hash=True)) + return model + +def resnest50_fast_1s4x24d(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [3, 4, 6, 3], + radix=1, groups=4, bottleneck_width=24, + deep_stem=True, stem_width=32, avg_down=True, + avd=True, avd_first=True, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest50_fast_1s4x24d'], progress=True, check_hash=True)) + return model diff --git a/bob/bio/facexzoo/backbones/resnest/resnest.py b/bob/bio/facexzoo/backbones/resnest/resnest.py new file mode 100644 index 0000000000000000000000000000000000000000..dcc673957a1e816f7b73931cab18f63ceefdcd11 --- /dev/null +++ b/bob/bio/facexzoo/backbones/resnest/resnest.py @@ -0,0 +1,60 @@ +""" +@author: Jun Wang +@date: 20210301 +@contact: jun21wangustc@gmail.com +""" + +# based on: +# https://github.com/zhanghang1989/ResNeSt/blob/master/resnest/torch/resnest.py + +import torch +import torch.nn as nn +from .resnet import ResNet, Bottleneck + +class Flatten(nn.Module): + def forward(self, input): + return input.view(input.size(0), -1) + +def l2_norm(input,axis=1): + norm = torch.norm(input,2,axis,True) + output = torch.div(input, norm) + return output + +class ResNeSt(nn.Module): + def __init__(self, num_layers, drop_ratio, feat_dim, out_h=7, out_w=7): + super(ResNeSt, self).__init__() + self.input_layer = nn.Sequential(nn.Conv2d(3, 64, (3, 3), 1, 1 ,bias=False), + nn.BatchNorm2d(64), + nn.PReLU(64)) + self.output_layer = nn.Sequential(nn.BatchNorm2d(2048), + nn.Dropout(drop_ratio), + Flatten(), + nn.Linear(2048 * out_h * out_w, feat_dim), + nn.BatchNorm1d(feat_dim)) + if num_layers == 50: + self.body = ResNet(Bottleneck, [3, 4, 6, 3], + radix=2, groups=1, bottleneck_width=64, + deep_stem=True, stem_width=32, avg_down=True, + avd=True, avd_first=False) + elif num_layers == 101: + self.body = ResNet(Bottleneck, [3, 4, 23, 3], + radix=2, groups=1, bottleneck_width=64, + deep_stem=True, stem_width=64, avg_down=True, + avd=True, avd_first=False) + elif num_layers == 200: + self.body = ResNet(Bottleneck, [3, 24, 36, 3], + radix=2, groups=1, bottleneck_width=64, + deep_stem=True, stem_width=64, avg_down=True, + avd=True, avd_first=False) + elif num_layers == 269: + self.body = ResNet(Bottleneck, [3, 30, 48, 8], + radix=2, groups=1, bottleneck_width=64, + deep_stem=True, stem_width=64, avg_down=True, + avd=True, avd_first=False) + else: + pass + def forward(self, x): + x = self.input_layer(x) + x = self.body(x) + x = self.output_layer(x) + return l2_norm(x) diff --git a/bob/bio/facexzoo/backbones/resnest/resnet.py b/bob/bio/facexzoo/backbones/resnest/resnet.py new file mode 100644 index 0000000000000000000000000000000000000000..1ae6083a388cf3eb7b8a73197e13fb783fdce8fe --- /dev/null +++ b/bob/bio/facexzoo/backbones/resnest/resnet.py @@ -0,0 +1,310 @@ +##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +## Created by: Hang Zhang +## Email: zhanghang0704@gmail.com +## Copyright (c) 2020 +## +## LICENSE file in the root directory of this source tree +##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +"""ResNet variants""" +import math +import torch +import torch.nn as nn + +from .splat import SplAtConv2d + +__all__ = ['ResNet', 'Bottleneck'] + +class DropBlock2D(object): + def __init__(self, *args, **kwargs): + raise NotImplementedError + +class GlobalAvgPool2d(nn.Module): + def __init__(self): + """Global average pooling over the input's spatial dimensions""" + super(GlobalAvgPool2d, self).__init__() + + def forward(self, inputs): + return nn.functional.adaptive_avg_pool2d(inputs, 1).view(inputs.size(0), -1) + +class Bottleneck(nn.Module): + """ResNet Bottleneck + """ + # pylint: disable=unused-argument + expansion = 4 + def __init__(self, inplanes, planes, stride=1, downsample=None, + radix=1, cardinality=1, bottleneck_width=64, + avd=False, avd_first=False, dilation=1, is_first=False, + rectified_conv=False, rectify_avg=False, + norm_layer=None, dropblock_prob=0.0, last_gamma=False): + super(Bottleneck, self).__init__() + group_width = int(planes * (bottleneck_width / 64.)) * cardinality + self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False) + self.bn1 = norm_layer(group_width) + self.dropblock_prob = dropblock_prob + self.radix = radix + self.avd = avd and (stride > 1 or is_first) + self.avd_first = avd_first + + if self.avd: + self.avd_layer = nn.AvgPool2d(3, stride, padding=1) + stride = 1 + + if dropblock_prob > 0.0: + self.dropblock1 = DropBlock2D(dropblock_prob, 3) + if radix == 1: + self.dropblock2 = DropBlock2D(dropblock_prob, 3) + self.dropblock3 = DropBlock2D(dropblock_prob, 3) + + if radix >= 1: + self.conv2 = SplAtConv2d( + group_width, group_width, kernel_size=3, + stride=stride, padding=dilation, + dilation=dilation, groups=cardinality, bias=False, + radix=radix, rectify=rectified_conv, + rectify_avg=rectify_avg, + norm_layer=norm_layer, + dropblock_prob=dropblock_prob) + elif rectified_conv: + from rfconv import RFConv2d + self.conv2 = RFConv2d( + group_width, group_width, kernel_size=3, stride=stride, + padding=dilation, dilation=dilation, + groups=cardinality, bias=False, + average_mode=rectify_avg) + self.bn2 = norm_layer(group_width) + else: + self.conv2 = nn.Conv2d( + group_width, group_width, kernel_size=3, stride=stride, + padding=dilation, dilation=dilation, + groups=cardinality, bias=False) + self.bn2 = norm_layer(group_width) + + self.conv3 = nn.Conv2d( + group_width, planes * 4, kernel_size=1, bias=False) + self.bn3 = norm_layer(planes*4) + + if last_gamma: + from torch.nn.init import zeros_ + zeros_(self.bn3.weight) + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + self.dilation = dilation + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + if self.dropblock_prob > 0.0: + out = self.dropblock1(out) + out = self.relu(out) + + if self.avd and self.avd_first: + out = self.avd_layer(out) + + out = self.conv2(out) + if self.radix == 0: + out = self.bn2(out) + if self.dropblock_prob > 0.0: + out = self.dropblock2(out) + out = self.relu(out) + + if self.avd and not self.avd_first: + out = self.avd_layer(out) + + out = self.conv3(out) + out = self.bn3(out) + if self.dropblock_prob > 0.0: + out = self.dropblock3(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + +class ResNet(nn.Module): + """ResNet Variants + + Parameters + ---------- + block : Block + Class for the residual block. Options are BasicBlockV1, BottleneckV1. + layers : list of int + Numbers of layers in each block + classes : int, default 1000 + Number of classification classes. + dilated : bool, default False + Applying dilation strategy to pretrained ResNet yielding a stride-8 model, + typically used in Semantic Segmentation. + norm_layer : object + Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`; + for Synchronized Cross-GPU BachNormalization). + + Reference: + + - He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. + + - Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions." + """ + # pylint: disable=unused-variable + def __init__(self, block, layers, radix=1, groups=1, bottleneck_width=64, + num_classes=1000, dilated=False, dilation=1, + deep_stem=False, stem_width=64, avg_down=False, + rectified_conv=False, rectify_avg=False, + avd=False, avd_first=False, + final_drop=0.0, dropblock_prob=0, + last_gamma=False, norm_layer=nn.BatchNorm2d): + self.cardinality = groups + self.bottleneck_width = bottleneck_width + # ResNet-D params + self.inplanes = stem_width*2 if deep_stem else 64 + self.avg_down = avg_down + self.last_gamma = last_gamma + # ResNeSt params + self.radix = radix + self.avd = avd + self.avd_first = avd_first + + super(ResNet, self).__init__() + self.rectified_conv = rectified_conv + self.rectify_avg = rectify_avg + if rectified_conv: + from rfconv import RFConv2d + conv_layer = RFConv2d + else: + conv_layer = nn.Conv2d + conv_kwargs = {'average_mode': rectify_avg} if rectified_conv else {} + ''' + if deep_stem: + self.conv1 = nn.Sequential( + conv_layer(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False, **conv_kwargs), + norm_layer(stem_width), + nn.ReLU(inplace=True), + conv_layer(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs), + norm_layer(stem_width), + nn.ReLU(inplace=True), + conv_layer(stem_width, stem_width*2, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs), + ) + else: + self.conv1 = conv_layer(3, 64, kernel_size=7, stride=2, padding=3, + bias=False, **conv_kwargs) + self.bn1 = norm_layer(self.inplanes) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + ''' + #self.layer1 = self._make_layer(block, 64, layers[0], norm_layer=norm_layer, is_first=False) + self.layer1 = self._make_layer(block, 64, layers[0], stride=2, norm_layer=norm_layer, is_first=False) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2, norm_layer=norm_layer) + if dilated or dilation == 4: + self.layer3 = self._make_layer(block, 256, layers[2], stride=1, + dilation=2, norm_layer=norm_layer, + dropblock_prob=dropblock_prob) + self.layer4 = self._make_layer(block, 512, layers[3], stride=1, + dilation=4, norm_layer=norm_layer, + dropblock_prob=dropblock_prob) + elif dilation==2: + self.layer3 = self._make_layer(block, 256, layers[2], stride=2, + dilation=1, norm_layer=norm_layer, + dropblock_prob=dropblock_prob) + self.layer4 = self._make_layer(block, 512, layers[3], stride=1, + dilation=2, norm_layer=norm_layer, + dropblock_prob=dropblock_prob) + else: + self.layer3 = self._make_layer(block, 256, layers[2], stride=2, + norm_layer=norm_layer, + dropblock_prob=dropblock_prob) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2, + norm_layer=norm_layer, + dropblock_prob=dropblock_prob) + ''' + self.avgpool = GlobalAvgPool2d() + self.drop = nn.Dropout(final_drop) if final_drop > 0.0 else None + self.fc = nn.Linear(512 * block.expansion, num_classes) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2. / n)) + elif isinstance(m, norm_layer): + m.weight.data.fill_(1) + m.bias.data.zero_() + ''' + def _make_layer(self, block, planes, blocks, stride=1, dilation=1, norm_layer=None, + dropblock_prob=0.0, is_first=True): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + down_layers = [] + if self.avg_down: + if dilation == 1: + down_layers.append(nn.AvgPool2d(kernel_size=stride, stride=stride, + ceil_mode=True, count_include_pad=False)) + else: + down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, + ceil_mode=True, count_include_pad=False)) + down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=1, bias=False)) + else: + down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False)) + down_layers.append(norm_layer(planes * block.expansion)) + downsample = nn.Sequential(*down_layers) + + layers = [] + if dilation == 1 or dilation == 2: + layers.append(block(self.inplanes, planes, stride, downsample=downsample, + radix=self.radix, cardinality=self.cardinality, + bottleneck_width=self.bottleneck_width, + avd=self.avd, avd_first=self.avd_first, + dilation=1, is_first=is_first, rectified_conv=self.rectified_conv, + rectify_avg=self.rectify_avg, + norm_layer=norm_layer, dropblock_prob=dropblock_prob, + last_gamma=self.last_gamma)) + elif dilation == 4: + layers.append(block(self.inplanes, planes, stride, downsample=downsample, + radix=self.radix, cardinality=self.cardinality, + bottleneck_width=self.bottleneck_width, + avd=self.avd, avd_first=self.avd_first, + dilation=2, is_first=is_first, rectified_conv=self.rectified_conv, + rectify_avg=self.rectify_avg, + norm_layer=norm_layer, dropblock_prob=dropblock_prob, + last_gamma=self.last_gamma)) + else: + raise RuntimeError("=> unknown dilation size: {}".format(dilation)) + + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes, + radix=self.radix, cardinality=self.cardinality, + bottleneck_width=self.bottleneck_width, + avd=self.avd, avd_first=self.avd_first, + dilation=dilation, rectified_conv=self.rectified_conv, + rectify_avg=self.rectify_avg, + norm_layer=norm_layer, dropblock_prob=dropblock_prob, + last_gamma=self.last_gamma)) + + return nn.Sequential(*layers) + + def forward(self, x): + ''' + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + x = self.maxpool(x) + ''' + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + ''' + x = self.avgpool(x) + #x = x.view(x.size(0), -1) + x = torch.flatten(x, 1) + if self.drop: + x = self.drop(x) + x = self.fc(x) + ''' + return x diff --git a/bob/bio/facexzoo/backbones/resnest/splat.py b/bob/bio/facexzoo/backbones/resnest/splat.py new file mode 100644 index 0000000000000000000000000000000000000000..c3f21b19ac75534521b9a0eae957e8ee454f1cd4 --- /dev/null +++ b/bob/bio/facexzoo/backbones/resnest/splat.py @@ -0,0 +1,99 @@ +"""Split-Attention""" + +import torch +from torch import nn +import torch.nn.functional as F +from torch.nn import Conv2d, Module, Linear, BatchNorm2d, ReLU +from torch.nn.modules.utils import _pair + +__all__ = ['SplAtConv2d'] + +class SplAtConv2d(Module): + """Split-Attention Conv2d + """ + def __init__(self, in_channels, channels, kernel_size, stride=(1, 1), padding=(0, 0), + dilation=(1, 1), groups=1, bias=True, + radix=2, reduction_factor=4, + rectify=False, rectify_avg=False, norm_layer=None, + dropblock_prob=0.0, **kwargs): + super(SplAtConv2d, self).__init__() + padding = _pair(padding) + self.rectify = rectify and (padding[0] > 0 or padding[1] > 0) + self.rectify_avg = rectify_avg + inter_channels = max(in_channels*radix//reduction_factor, 32) + self.radix = radix + self.cardinality = groups + self.channels = channels + self.dropblock_prob = dropblock_prob + if self.rectify: + from rfconv import RFConv2d + self.conv = RFConv2d(in_channels, channels*radix, kernel_size, stride, padding, dilation, + groups=groups*radix, bias=bias, average_mode=rectify_avg, **kwargs) + else: + self.conv = Conv2d(in_channels, channels*radix, kernel_size, stride, padding, dilation, + groups=groups*radix, bias=bias, **kwargs) + self.use_bn = norm_layer is not None + if self.use_bn: + self.bn0 = norm_layer(channels*radix) + self.relu = ReLU(inplace=True) + self.fc1 = Conv2d(channels, inter_channels, 1, groups=self.cardinality) + if self.use_bn: + self.bn1 = norm_layer(inter_channels) + self.fc2 = Conv2d(inter_channels, channels*radix, 1, groups=self.cardinality) + if dropblock_prob > 0.0: + self.dropblock = DropBlock2D(dropblock_prob, 3) + self.rsoftmax = rSoftMax(radix, groups) + + def forward(self, x): + x = self.conv(x) + if self.use_bn: + x = self.bn0(x) + if self.dropblock_prob > 0.0: + x = self.dropblock(x) + x = self.relu(x) + + batch, rchannel = x.shape[:2] + if self.radix > 1: + if torch.__version__ < '1.5': + splited = torch.split(x, int(rchannel//self.radix), dim=1) + else: + splited = torch.split(x, rchannel//self.radix, dim=1) + gap = sum(splited) + else: + gap = x + gap = F.adaptive_avg_pool2d(gap, 1) + gap = self.fc1(gap) + + if self.use_bn: + gap = self.bn1(gap) + gap = self.relu(gap) + + atten = self.fc2(gap) + atten = self.rsoftmax(atten).view(batch, -1, 1, 1) + + if self.radix > 1: + if torch.__version__ < '1.5': + attens = torch.split(atten, int(rchannel//self.radix), dim=1) + else: + attens = torch.split(atten, rchannel//self.radix, dim=1) + out = sum([att*split for (att, split) in zip(attens, splited)]) + else: + out = atten * x + return out.contiguous() + +class rSoftMax(nn.Module): + def __init__(self, radix, cardinality): + super().__init__() + self.radix = radix + self.cardinality = cardinality + + def forward(self, x): + batch = x.size(0) + if self.radix > 1: + x = x.view(batch, self.cardinality, self.radix, -1).transpose(1, 2) + x = F.softmax(x, dim=1) + x = x.reshape(batch, -1) + else: + x = torch.sigmoid(x) + return x + diff --git a/bob/bio/facexzoo/config/attention_net.py b/bob/bio/facexzoo/config/attention_net.py new file mode 100644 index 0000000000000000000000000000000000000000..fe7d9cb088f872ec3130cde40933c8367e373fa6 --- /dev/null +++ b/bob/bio/facexzoo/config/attention_net.py @@ -0,0 +1,15 @@ +from bob.bio.face.embeddings.pytorch import AttentionNet +from bob.bio.face.utils import lookup_config_from_database + + +annotation_type, fixed_positions, memory_demanding = lookup_config_from_database( + locals().get("database") +) + + +def load(annotation_type, fixed_positions=None, memory_demanding=False): + return AttentionNet(annotation_type, fixed_positions, memory_demanding) + + +pipeline = load(annotation_type, fixed_positions, memory_demanding) + diff --git a/bob/bio/facexzoo/config/efficient_net.py b/bob/bio/facexzoo/config/efficient_net.py new file mode 100644 index 0000000000000000000000000000000000000000..d521ecc049e7f617fd966438a9644ea04d7bdc5b --- /dev/null +++ b/bob/bio/facexzoo/config/efficient_net.py @@ -0,0 +1,15 @@ +from bob.bio.face.embeddings.pytorch import EfficientNet +from bob.bio.face.utils import lookup_config_from_database + + +annotation_type, fixed_positions, memory_demanding = lookup_config_from_database( + locals().get("database") +) + + +def load(annotation_type, fixed_positions=None, memory_demanding=False): + return EfficientNet(annotation_type, fixed_positions, memory_demanding) + + +pipeline = load(annotation_type, fixed_positions, memory_demanding) + diff --git a/bob/bio/facexzoo/config/ghost_net.py b/bob/bio/facexzoo/config/ghost_net.py new file mode 100644 index 0000000000000000000000000000000000000000..8ed58ea4ad305d81af3652b0fe4a7d0f61b6aea5 --- /dev/null +++ b/bob/bio/facexzoo/config/ghost_net.py @@ -0,0 +1,15 @@ +from bob.bio.face.embeddings.pytorch import GhostNet +from bob.bio.face.utils import lookup_config_from_database + + +annotation_type, fixed_positions, memory_demanding = lookup_config_from_database( + locals().get("database") +) + + +def load(annotation_type, fixed_positions=None, memory_demanding=False): + return GhostNet(annotation_type, fixed_positions, memory_demanding) + + +pipeline = load(annotation_type, fixed_positions, memory_demanding) + diff --git a/bob/bio/facexzoo/config/hr_net.py b/bob/bio/facexzoo/config/hr_net.py new file mode 100644 index 0000000000000000000000000000000000000000..eb330256030d270f5ee8998fb8ac86e2f24433e7 --- /dev/null +++ b/bob/bio/facexzoo/config/hr_net.py @@ -0,0 +1,15 @@ +from bob.bio.face.embeddings.pytorch import HRNet +from bob.bio.face.utils import lookup_config_from_database + + +annotation_type, fixed_positions, memory_demanding = lookup_config_from_database( + locals().get("database") +) + + +def load(annotation_type, fixed_positions=None, memory_demanding=False): + return HRNet(annotation_type, fixed_positions, memory_demanding) + + +pipeline = load(annotation_type, fixed_positions, memory_demanding) + diff --git a/bob/bio/facexzoo/config/mobile_facenet.py b/bob/bio/facexzoo/config/mobile_facenet.py new file mode 100644 index 0000000000000000000000000000000000000000..cfc3f98bd074ddf599e9b96dd977975d858f0ae5 --- /dev/null +++ b/bob/bio/facexzoo/config/mobile_facenet.py @@ -0,0 +1,15 @@ +from bob.bio.face.embeddings.pytorch import MobileFaceNet +from bob.bio.face.utils import lookup_config_from_database + + +annotation_type, fixed_positions, memory_demanding = lookup_config_from_database( + locals().get("database") +) + + +def load(annotation_type, fixed_positions=None, memory_demanding=False): + return MobileFaceNet(annotation_type, fixed_positions, memory_demanding) + + +pipeline = load(annotation_type, fixed_positions, memory_demanding) + diff --git a/bob/bio/facexzoo/config/resne_st.py b/bob/bio/facexzoo/config/resne_st.py new file mode 100644 index 0000000000000000000000000000000000000000..116d9a6394ebcc4f8f1435cd363367e8d9a0189f --- /dev/null +++ b/bob/bio/facexzoo/config/resne_st.py @@ -0,0 +1,15 @@ +from bob.bio.face.embeddings.pytorch import ResNeSt +from bob.bio.face.utils import lookup_config_from_database + + +annotation_type, fixed_positions, memory_demanding = lookup_config_from_database( + locals().get("database") +) + + +def load(annotation_type, fixed_positions=None, memory_demanding=False): + return ResNeSt(annotation_type, fixed_positions, memory_demanding) + + +pipeline = load(annotation_type, fixed_positions, memory_demanding) + diff --git a/bob/bio/facexzoo/config/rex_net.py b/bob/bio/facexzoo/config/rex_net.py new file mode 100644 index 0000000000000000000000000000000000000000..e8cc81c6dc8cf323eb9d7ea5a6db945049b5bf98 --- /dev/null +++ b/bob/bio/facexzoo/config/rex_net.py @@ -0,0 +1,15 @@ +from bob.bio.face.embeddings.pytorch import ReXNet +from bob.bio.face.utils import lookup_config_from_database + + +annotation_type, fixed_positions, memory_demanding = lookup_config_from_database( + locals().get("database") +) + + +def load(annotation_type, fixed_positions=None, memory_demanding=False): + return ReXNet(annotation_type, fixed_positions, memory_demanding) + + +pipeline = load(annotation_type, fixed_positions, memory_demanding) + diff --git a/bob/bio/facexzoo/config/tf_nas.py b/bob/bio/facexzoo/config/tf_nas.py new file mode 100644 index 0000000000000000000000000000000000000000..000caa7d8fed7e89757e30ffaf2213fc91bd44bc --- /dev/null +++ b/bob/bio/facexzoo/config/tf_nas.py @@ -0,0 +1,15 @@ +from bob.bio.face.embeddings.pytorch import TF_NAS +from bob.bio.face.utils import lookup_config_from_database + + +annotation_type, fixed_positions, memory_demanding = lookup_config_from_database( + locals().get("database") +) + + +def load(annotation_type, fixed_positions=None, memory_demanding=False): + return TF_NAS(annotation_type, fixed_positions, memory_demanding) + + +pipeline = load(annotation_type, fixed_positions, memory_demanding) + diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet56/.gitkeep b/bob/bio/facexzoo/models/backbones/AttentionNet56/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..eb3651de373f9a80020fe29bb41f5f1dfefd813a --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_agedb.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16.pt | 0.9811666666666667 | 0.0024222477062879537 | +| Epoch_17_batch_5999.pt | 0.9811666666666667 | 0.002318071782780554 | +| Epoch_15_batch_5999.pt | 0.9808333333333333 | 0.0023339946152888865 | +| Epoch_15.pt | 0.9806666666666668 | 0.002238826853289986 | +| Epoch_13_batch_2999.pt | 0.9806666666666667 | 0.002411392712690075 | +| Epoch_14_batch_2999.pt | 0.9805000000000001 | 0.002460176647276053 | +| Epoch_15_batch_2999.pt | 0.9803333333333333 | 0.002380476142847622 | +| Epoch_12_batch_2999.pt | 0.9801666666666667 | 0.0022966696231771513 | +| Epoch_16_batch_2999.pt | 0.9801666666666667 | 0.0023498095536174015 | +| Epoch_16_batch_5999.pt | 0.9801666666666667 | 0.0024400212506664135 | +| Epoch_17_batch_2999.pt | 0.9800000000000001 | 0.002208289657150194 | +| Epoch_14.pt | 0.9798333333333333 | 0.0019945914523351368 | +| Epoch_11.pt | 0.9796666666666667 | 0.00216310248154797 | +| Epoch_14_batch_5999.pt | 0.9796666666666667 | 0.0024444444444444466 | +| Epoch_17.pt | 0.9796666666666665 | 0.002301368353023107 | +| Epoch_13_batch_5999.pt | 0.9795 | 0.002208988372452335 | +| Epoch_13.pt | 0.9791666666666666 | 0.0022532555322970224 | +| Epoch_11_batch_2999.pt | 0.9785 | 0.002010005835013944 | +| Epoch_10_batch_2999.pt | 0.9783333333333335 | 0.002033667246413678 | +| Epoch_10.pt | 0.9781666666666669 | 0.0019633996718969203 | +| Epoch_11_batch_5999.pt | 0.9778333333333332 | 0.0019412672455173456 | +| Epoch_10_batch_5999.pt | 0.9768333333333334 | 0.0020253029037286853 | +| Epoch_12_batch_5999.pt | 0.9768333333333332 | 0.00218651873935049 | +| Epoch_12.pt | 0.9766666666666666 | 0.0018592445034090477 | +| Epoch_7_batch_2999.pt | 0.9731666666666667 | 0.0016564501684306187 | +| Epoch_8.pt | 0.9731666666666667 | 0.002965334698907227 | +| Epoch_8_batch_5999.pt | 0.9728333333333335 | 0.003268348017796163 | +| Epoch_9_batch_5999.pt | 0.9724999999999999 | 0.0025489043882120995 | +| Epoch_6_batch_5999.pt | 0.9716666666666665 | 0.0027102913150334395 | +| Epoch_5_batch_5999.pt | 0.9708333333333334 | 0.0027470522922391394 | +| Epoch_6.pt | 0.9701666666666668 | 0.002923404914871749 | +| Epoch_8_batch_2999.pt | 0.9696666666666667 | 0.0020608041101101574 | +| Epoch_7_batch_5999.pt | 0.9693333333333334 | 0.003124969135650052 | +| Epoch_9_batch_2999.pt | 0.9693333333333334 | 0.002888888888888889 | +| Epoch_5.pt | 0.9691666666666666 | 0.0028246052930858143 | +| Epoch_6_batch_2999.pt | 0.9686666666666668 | 0.0022194427061598054 | +| Epoch_5_batch_2999.pt | 0.9683333333333334 | 0.002908056072956086 | +| Epoch_3_batch_2999.pt | 0.9678333333333334 | 0.002855036701673244 | +| Epoch_9.pt | 0.9665000000000001 | 0.0033742854753467154 | +| Epoch_4.pt | 0.9658333333333333 | 0.0033724556023947082 | +| Epoch_4_batch_5999.pt | 0.9654999999999999 | 0.0026533230969465705 | +| Epoch_4_batch_2999.pt | 0.9650000000000001 | 0.003191423692521133 | +| Epoch_3_batch_5999.pt | 0.9636666666666667 | 0.0034318767136623336 | +| Epoch_2_batch_5999.pt | 0.961 | 0.003173968190463492 | +| Epoch_3.pt | 0.9603333333333334 | 0.0036834632120557377 | +| Epoch_2.pt | 0.9586666666666666 | 0.004380089632094897 | +| Epoch_2_batch_2999.pt | 0.9555 | 0.002778333277788891 | +| Epoch_1_batch_5999.pt | 0.9451666666666666 | 0.003253203549323857 | +| Epoch_1.pt | 0.9403333333333332 | 0.003863408589047492 | +| Epoch_1_batch_2999.pt | 0.9273333333333333 | 0.0047544650878521425 | +| Epoch_7.pt | 0.9211666666666666 | 0.003881341883268571 | +| Epoch_0.pt | 0.8788333333333332 | 0.006206577554358891 | +| Epoch_0_batch_5999.pt | 0.8743333333333332 | 0.007540835333758729 | +| Epoch_0_batch_2999.pt | 0.6866666666666666 | 0.006075654717552141 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..9306a9d00bb6a0533a7b55591e69260aa26799af --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_calfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_2999.pt | 0.9565000000000001 | 0.003820429165989819 | +| Epoch_11.pt | 0.9561666666666667 | 0.003352261075899024 | +| Epoch_13_batch_5999.pt | 0.9561666666666667 | 0.0037354656608920606 | +| Epoch_11_batch_5999.pt | 0.9560000000000001 | 0.0036951753662924263 | +| Epoch_13.pt | 0.9560000000000001 | 0.003661612678507579 | +| Epoch_15_batch_5999.pt | 0.9560000000000001 | 0.003567687635111632 | +| Epoch_17_batch_5999.pt | 0.9560000000000001 | 0.0038184089505421334 | +| Epoch_16_batch_5999.pt | 0.9559999999999998 | 0.0036531738272830294 | +| Epoch_13_batch_2999.pt | 0.9558333333333333 | 0.003670452590924213 | +| Epoch_15_batch_2999.pt | 0.9558333333333333 | 0.003670452590924213 | +| Epoch_15.pt | 0.9558333333333333 | 0.0037863464914197212 | +| Epoch_17.pt | 0.9558333333333333 | 0.003695592971013915 | +| Epoch_14_batch_5999.pt | 0.9556666666666667 | 0.003777777777777784 | +| Epoch_17_batch_2999.pt | 0.9556666666666667 | 0.0036021255727660788 | +| Epoch_10_batch_5999.pt | 0.9555 | 0.003583656316193365 | +| Epoch_11_batch_2999.pt | 0.9553333333333333 | 0.003741657386773944 | +| Epoch_12_batch_2999.pt | 0.9553333333333333 | 0.003807075933113742 | +| Epoch_12_batch_5999.pt | 0.9551666666666666 | 0.0038606114784648245 | +| Epoch_16.pt | 0.9550000000000001 | 0.003865006029094689 | +| Epoch_14_batch_2999.pt | 0.9548333333333334 | 0.003994208770670823 | +| Epoch_14.pt | 0.9548333333333334 | 0.003663719354177233 | +| Epoch_10_batch_2999.pt | 0.9548333333333332 | 0.003860611478464824 | +| Epoch_10.pt | 0.9548333333333332 | 0.003900379848548468 | +| Epoch_12.pt | 0.9545 | 0.00418735604138028 | +| Epoch_7_batch_2999.pt | 0.9501666666666667 | 0.004703885969055426 | +| Epoch_9_batch_5999.pt | 0.9501666666666667 | 0.003195772670726596 | +| Epoch_7_batch_5999.pt | 0.95 | 0.0040292143032152825 | +| Epoch_9_batch_2999.pt | 0.95 | 0.0037433067839828904 | +| Epoch_8.pt | 0.9495000000000001 | 0.003913020367320065 | +| Epoch_8_batch_2999.pt | 0.9491666666666667 | 0.0038429830234491657 | +| Epoch_6_batch_2999.pt | 0.9486666666666667 | 0.004192880503136264 | +| Epoch_4_batch_2999.pt | 0.9483333333333335 | 0.004044505494044734 | +| Epoch_6_batch_5999.pt | 0.9481666666666667 | 0.003986474044646721 | +| Epoch_6.pt | 0.9480000000000001 | 0.0036413265795942097 | +| Epoch_5_batch_5999.pt | 0.9478333333333333 | 0.004267664813801918 | +| Epoch_5_batch_2999.pt | 0.9466666666666667 | 0.004346134936801763 | +| Epoch_8_batch_5999.pt | 0.9465 | 0.0037552432480269307 | +| Epoch_4_batch_5999.pt | 0.9461666666666668 | 0.0031822229981377063 | +| Epoch_4.pt | 0.9458333333333334 | 0.003289057803470151 | +| Epoch_3_batch_5999.pt | 0.944 | 0.0031544599036840808 | +| Epoch_3_batch_2999.pt | 0.9433333333333334 | 0.003333333333333324 | +| Epoch_5.pt | 0.9433333333333334 | 0.004097575314352386 | +| Epoch_9.pt | 0.9428333333333333 | 0.004513696577099908 | +| Epoch_2_batch_5999.pt | 0.9406666666666668 | 0.003984538017120241 | +| Epoch_3.pt | 0.9406666666666667 | 0.003929942040850531 | +| Epoch_2.pt | 0.9395000000000001 | 0.004157768276015032 | +| Epoch_2_batch_2999.pt | 0.9381666666666668 | 0.0038606114784648167 | +| Epoch_1.pt | 0.9321666666666666 | 0.003913020367320074 | +| Epoch_1_batch_5999.pt | 0.93 | 0.0030932024237944602 | +| Epoch_1_batch_2999.pt | 0.9145 | 0.0033797691498344776 | +| Epoch_7.pt | 0.9099999999999999 | 0.005061351988413502 | +| Epoch_0_batch_5999.pt | 0.8826666666666668 | 0.005001234415523066 | +| Epoch_0.pt | 0.8808333333333334 | 0.004369153942451501 | +| Epoch_0_batch_2999.pt | 0.7048333333333333 | 0.009439377725880656 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..3fdf437aefa4e5ce82b6f54aed4c492e2b1b4205 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_cplfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14.pt | 0.8918333333333333 | 0.005094477765552005 | +| Epoch_17.pt | 0.8915000000000001 | 0.006067775641416538 | +| Epoch_14_batch_2999.pt | 0.8911666666666667 | 0.005415170733603339 | +| Epoch_16_batch_5999.pt | 0.8911666666666667 | 0.005426557920468327 | +| Epoch_13_batch_2999.pt | 0.8906666666666668 | 0.006005141829720733 | +| Epoch_13_batch_5999.pt | 0.8906666666666666 | 0.005943146275696148 | +| Epoch_15_batch_2999.pt | 0.8906666666666666 | 0.005989703098641574 | +| Epoch_15.pt | 0.8901666666666668 | 0.005990991179149072 | +| Epoch_16_batch_2999.pt | 0.89 | 0.005643744488533468 | +| Epoch_16.pt | 0.8898333333333334 | 0.005267240943842783 | +| Epoch_14_batch_5999.pt | 0.8896666666666668 | 0.005836242660741736 | +| Epoch_17_batch_2999.pt | 0.8896666666666666 | 0.005481731726019566 | +| Epoch_13.pt | 0.8895 | 0.0059992283454408345 | +| Epoch_17_batch_5999.pt | 0.8893333333333334 | 0.00603590082468492 | +| Epoch_15_batch_5999.pt | 0.8889999999999999 | 0.005922336876105083 | +| Epoch_12_batch_2999.pt | 0.8873333333333335 | 0.00563389214848321 | +| Epoch_12.pt | 0.8871666666666667 | 0.005627588567621101 | +| Epoch_12_batch_5999.pt | 0.8861666666666667 | 0.005842849380986033 | +| Epoch_11.pt | 0.8853333333333332 | 0.004998765279645333 | +| Epoch_10_batch_2999.pt | 0.8851666666666667 | 0.005580223014261071 | +| Epoch_10.pt | 0.8846666666666666 | 0.005470459388929409 | +| Epoch_11_batch_2999.pt | 0.8843333333333334 | 0.005785251576419916 | +| Epoch_11_batch_5999.pt | 0.8833333333333334 | 0.0056382730917178955 | +| Epoch_10_batch_5999.pt | 0.8826666666666666 | 0.005715476066494082 | +| Epoch_9_batch_5999.pt | 0.8656666666666666 | 0.005283330412430552 | +| Epoch_7_batch_5999.pt | 0.8620000000000001 | 0.005453507196359127 | +| Epoch_6_batch_5999.pt | 0.8608333333333332 | 0.00489551318890227 | +| Epoch_8_batch_5999.pt | 0.8591666666666666 | 0.00490810616967884 | +| Epoch_9_batch_2999.pt | 0.8581666666666667 | 0.007480220832549239 | +| Epoch_4_batch_5999.pt | 0.8575000000000002 | 0.005399188324915262 | +| Epoch_8_batch_2999.pt | 0.8548333333333333 | 0.005202385492715321 | +| Epoch_6_batch_2999.pt | 0.8536666666666667 | 0.006688851974796629 | +| Epoch_8.pt | 0.8536666666666667 | 0.006439653391485378 | +| Epoch_4_batch_2999.pt | 0.8535 | 0.006188649506641129 | +| Epoch_7_batch_2999.pt | 0.8505 | 0.006858580279969766 | +| Epoch_5_batch_2999.pt | 0.8500000000000002 | 0.0056710222911888165 | +| Epoch_4.pt | 0.8493333333333333 | 0.004382907316292446 | +| Epoch_3_batch_2999.pt | 0.8465000000000001 | 0.0052906276320244605 | +| Epoch_5.pt | 0.8465 | 0.0051306991798461595 | +| Epoch_6.pt | 0.8459999999999999 | 0.006750400079592905 | +| Epoch_2_batch_2999.pt | 0.8458333333333334 | 0.005812130779458671 | +| Epoch_3.pt | 0.845 | 0.006034878050666784 | +| Epoch_9.pt | 0.8448333333333334 | 0.006365658248623751 | +| Epoch_3_batch_5999.pt | 0.8445 | 0.0062856391289398145 | +| Epoch_5_batch_5999.pt | 0.8418333333333333 | 0.007033649282003063 | +| Epoch_2_batch_5999.pt | 0.8416666666666666 | 0.007079792143143992 | +| Epoch_2.pt | 0.8356666666666666 | 0.004863570806275398 | +| Epoch_1_batch_5999.pt | 0.8258333333333333 | 0.0068729654677575445 | +| Epoch_1.pt | 0.8211666666666666 | 0.007445480856545478 | +| Epoch_1_batch_2999.pt | 0.8041666666666666 | 0.006555790956225525 | +| Epoch_7.pt | 0.7866666666666665 | 0.009142223302544095 | +| Epoch_0.pt | 0.7416666666666666 | 0.008138462256546656 | +| Epoch_0_batch_5999.pt | 0.7373333333333333 | 0.008700078047045971 | +| Epoch_0_batch_2999.pt | 0.6186666666666667 | 0.006848447602771095 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..afa654d8ed47577d9d139e1ba238ba153e97eaaf --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+------------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+------------------------+ +| Epoch_17.pt | 0.9988333333333334 | 0.0005000000000000021 | +| Epoch_11.pt | 0.9986666666666666 | 0.0005443310539518171 | +| Epoch_14_batch_2999.pt | 0.9986666666666666 | 0.0005443310539518171 | +| Epoch_16.pt | 0.9986666666666666 | 0.00048432210483785436 | +| Epoch_12_batch_5999.pt | 0.9984999999999999 | 0.0005800170282728065 | +| Epoch_13.pt | 0.9984999999999999 | 0.000524110062892033 | +| Epoch_15_batch_5999.pt | 0.9984999999999999 | 0.000524110062892033 | +| Epoch_15.pt | 0.9984999999999999 | 0.0005800170282728065 | +| Epoch_11_batch_5999.pt | 0.9983333333333334 | 0.0006573421981221791 | +| Epoch_13_batch_2999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_13_batch_5999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_14_batch_5999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_14.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_15_batch_2999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_16_batch_2999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_16_batch_5999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_17_batch_2999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_17_batch_5999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_10_batch_5999.pt | 0.9981666666666665 | 0.0006309898162000297 | +| Epoch_10.pt | 0.9981666666666665 | 0.0006309898162000297 | +| Epoch_12_batch_2999.pt | 0.9981666666666665 | 0.0005800170282728054 | +| Epoch_10_batch_2999.pt | 0.998 | 0.0007370277311900908 | +| Epoch_11_batch_2999.pt | 0.998 | 0.0006478835438716985 | +| Epoch_12.pt | 0.998 | 0.0007370277311900908 | +| Epoch_9_batch_2999.pt | 0.9976666666666667 | 0.0007114582486036506 | +| Epoch_7_batch_5999.pt | 0.9973333333333333 | 0.0009026709338484372 | +| Epoch_5_batch_5999.pt | 0.9971666666666665 | 0.0008624541497922201 | +| Epoch_4_batch_5999.pt | 0.9970000000000001 | 0.0010482201257840675 | +| Epoch_4.pt | 0.9970000000000001 | 0.0011600340565456147 | +| Epoch_8_batch_2999.pt | 0.9970000000000001 | 0.00116003405654562 | +| Epoch_6_batch_2999.pt | 0.9968333333333333 | 0.001228519132638666 | +| Epoch_3.pt | 0.9966666666666667 | 0.0007856742013183885 | +| Epoch_6_batch_5999.pt | 0.9966666666666667 | 0.0010540925533894607 | +| Epoch_6.pt | 0.9966666666666667 | 0.0009938079899999065 | +| Epoch_7_batch_2999.pt | 0.9966666666666667 | 0.0010829771494232203 | +| Epoch_4_batch_2999.pt | 0.9964999999999999 | 0.0009111788592698183 | +| Epoch_3_batch_5999.pt | 0.9963333333333333 | 0.0011600340565456205 | +| Epoch_9_batch_5999.pt | 0.9963333333333333 | 0.001077262190536964 | +| Epoch_3_batch_2999.pt | 0.9961666666666666 | 0.0012184284555256323 | +| Epoch_5_batch_2999.pt | 0.9961666666666666 | 0.000897527467855748 | +| Epoch_5.pt | 0.9959999999999999 | 0.0009686442096757059 | +| Epoch_8.pt | 0.9958333333333333 | 0.0012729376930432875 | +| Epoch_9.pt | 0.9958333333333332 | 0.0008695819912499205 | +| Epoch_2_batch_2999.pt | 0.9953333333333333 | 0.0009875771574795078 | +| Epoch_2_batch_5999.pt | 0.9951666666666666 | 0.0009444444444444449 | +| Epoch_2.pt | 0.9950000000000001 | 0.0007027283689263051 | +| Epoch_8_batch_5999.pt | 0.9948333333333332 | 0.0013933262448871625 | +| Epoch_1_batch_5999.pt | 0.9946666666666666 | 0.0011055415967851294 | +| Epoch_1.pt | 0.9945 | 0.001112499133027818 | +| Epoch_1_batch_2999.pt | 0.9936666666666667 | 0.0011863420280034847 | +| Epoch_7.pt | 0.9914999999999999 | 0.001458267194267416 | +| Epoch_0_batch_5999.pt | 0.9844999999999999 | 0.0020645449084513334 | +| Epoch_0.pt | 0.9831666666666665 | 0.001580162517036429 | +| Epoch_0_batch_2999.pt | 0.9235000000000001 | 0.0038606114784648154 | ++------------------------+--------------------+------------------------+ diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_rfw_African.txt b/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_rfw_African.txt new file mode 100644 index 0000000000000000000000000000000000000000..5c352cd1d388ad8980316dc82ed8f3561a81dc26 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_rfw_African.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_5999.pt | 0.9651666666666667 | 0.002490103870112779 | +| Epoch_15.pt | 0.9641666666666667 | 0.0026323017201071394 | +| Epoch_16_batch_5999.pt | 0.9640000000000001 | 0.0023856567281759903 | +| Epoch_17_batch_5999.pt | 0.9640000000000001 | 0.0026550673656330105 | +| Epoch_14_batch_2999.pt | 0.9628333333333334 | 0.002222916558193615 | +| Epoch_16_batch_2999.pt | 0.9626666666666667 | 0.0020964402515681346 | +| Epoch_17.pt | 0.9626666666666667 | 0.002608154354290107 | +| Epoch_17_batch_2999.pt | 0.9620000000000001 | 0.0024190601174530276 | +| Epoch_15_batch_2999.pt | 0.9618333333333334 | 0.0026229048075806383 | +| Epoch_13.pt | 0.9616666666666667 | 0.0027777777777777805 | +| Epoch_12_batch_5999.pt | 0.9613333333333335 | 0.0022194427061597963 | +| Epoch_16.pt | 0.9613333333333334 | 0.0028631330503833662 | +| Epoch_13_batch_2999.pt | 0.9611666666666668 | 0.0029297326385411587 | +| Epoch_12.pt | 0.9603333333333334 | 0.002419060117453026 | +| Epoch_14_batch_5999.pt | 0.9601666666666666 | 0.0023100692095879816 | +| Epoch_14.pt | 0.9601666666666666 | 0.0027827732858596 | +| Epoch_11_batch_5999.pt | 0.959 | 0.002372684056006953 | +| Epoch_13_batch_5999.pt | 0.9586666666666666 | 0.002662033011269099 | +| Epoch_10.pt | 0.9576666666666667 | 0.0025117010123238514 | +| Epoch_11.pt | 0.9570000000000001 | 0.002830608711746006 | +| Epoch_12_batch_2999.pt | 0.9561666666666667 | 0.002485141027371671 | +| Epoch_11_batch_2999.pt | 0.9558333333333332 | 0.0027805541680538254 | +| Epoch_10_batch_5999.pt | 0.9549999999999998 | 0.0026874192494328528 | +| Epoch_10_batch_2999.pt | 0.9526666666666668 | 0.0031348302177035235 | +| Epoch_7_batch_5999.pt | 0.9345000000000001 | 0.0027783332777888805 | +| Epoch_7_batch_2999.pt | 0.9336666666666666 | 0.003395712619985799 | +| Epoch_6_batch_5999.pt | 0.9326666666666666 | 0.0034623192113073043 | +| Epoch_9_batch_2999.pt | 0.9321666666666667 | 0.0032683480177961625 | +| Epoch_8.pt | 0.9313333333333335 | 0.0030812054719693382 | +| Epoch_8_batch_5999.pt | 0.9306666666666665 | 0.00455555555555555 | +| Epoch_5_batch_5999.pt | 0.9298333333333332 | 0.003688905622452004 | +| Epoch_9_batch_5999.pt | 0.9291666666666666 | 0.0026902888917340532 | +| Epoch_4_batch_2999.pt | 0.9278333333333334 | 0.003002570914860375 | +| Epoch_6_batch_2999.pt | 0.9260000000000002 | 0.004480410034145773 | +| Epoch_5_batch_2999.pt | 0.9229999999999998 | 0.0034228715112776353 | +| Epoch_8_batch_2999.pt | 0.9223333333333332 | 0.002197079992587245 | +| Epoch_3_batch_5999.pt | 0.922 | 0.0042946995755750415 | +| Epoch_4_batch_5999.pt | 0.9215 | 0.004070747800382753 | +| Epoch_3_batch_2999.pt | 0.9166666666666666 | 0.004120110270608708 | +| Epoch_5.pt | 0.9133333333333334 | 0.0021081851067789163 | +| Epoch_6.pt | 0.9131666666666666 | 0.0027492984514797003 | +| Epoch_4.pt | 0.9126666666666667 | 0.0033351846710674704 | +| Epoch_2_batch_5999.pt | 0.9115 | 0.003578485092263985 | +| Epoch_2_batch_2999.pt | 0.9045 | 0.005346338310781812 | +| Epoch_3.pt | 0.9039999999999999 | 0.004575835618216452 | +| Epoch_2.pt | 0.901 | 0.0046361435655611245 | +| Epoch_9.pt | 0.8958333333333334 | 0.0034805455794837915 | +| Epoch_1_batch_5999.pt | 0.8796666666666667 | 0.005604231205741548 | +| Epoch_1.pt | 0.8779999999999999 | 0.004586614986788952 | +| Epoch_7.pt | 0.8673333333333334 | 0.004995059287330891 | +| Epoch_1_batch_2999.pt | 0.85 | 0.005246986201385598 | +| Epoch_0.pt | 0.769 | 0.004869912666846916 | +| Epoch_0_batch_5999.pt | 0.7619999999999999 | 0.0047777777777777775 | +| Epoch_0_batch_2999.pt | 0.6128333333333333 | 0.008864724097981464 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_rfw_Asian.txt b/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_rfw_Asian.txt new file mode 100644 index 0000000000000000000000000000000000000000..0b7d70172c6c8e200221d102680103c4f31e9125 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_rfw_Asian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_5999.pt | 0.9571666666666665 | 0.0022777777777777852 | +| Epoch_16_batch_5999.pt | 0.9570000000000001 | 0.0020757268546965973 | +| Epoch_15_batch_5999.pt | 0.9564999999999999 | 0.0024273391416615017 | +| Epoch_13_batch_2999.pt | 0.9563333333333333 | 0.0021343747458109565 | +| Epoch_16.pt | 0.9561666666666667 | 0.0025585730977043257 | +| Epoch_17_batch_2999.pt | 0.9560000000000001 | 0.0022525705480792597 | +| Epoch_13.pt | 0.9550000000000001 | 0.002408831487630976 | +| Epoch_14_batch_2999.pt | 0.9546666666666667 | 0.0024570382652773356 | +| Epoch_15.pt | 0.9546666666666667 | 0.001822357718539635 | +| Epoch_17_batch_5999.pt | 0.9543333333333335 | 0.002252570548079252 | +| Epoch_16_batch_2999.pt | 0.9541666666666666 | 0.0017612074982385963 | +| Epoch_17.pt | 0.954 | 0.0018954135676924428 | +| Epoch_14.pt | 0.9533333333333334 | 0.002208289657150204 | +| Epoch_12_batch_2999.pt | 0.9530000000000001 | 0.0026270200927859793 | +| Epoch_14_batch_5999.pt | 0.9526666666666668 | 0.0021401511426953628 | +| Epoch_15_batch_2999.pt | 0.9518333333333334 | 0.002388888888888892 | +| Epoch_12_batch_5999.pt | 0.9518333333333333 | 0.002025302903728689 | +| Epoch_12.pt | 0.951 | 0.002560381915956204 | +| Epoch_11_batch_2999.pt | 0.9508333333333333 | 0.001960253196041929 | +| Epoch_11.pt | 0.9505000000000001 | 0.0025706078447242857 | +| Epoch_11_batch_5999.pt | 0.9501666666666667 | 0.001915659961062967 | +| Epoch_10.pt | 0.9491666666666667 | 0.0030555555555555557 | +| Epoch_10_batch_5999.pt | 0.9488333333333333 | 0.00271086064416797 | +| Epoch_10_batch_2999.pt | 0.9478333333333333 | 0.003249406403531052 | +| Epoch_7_batch_2999.pt | 0.9253333333333332 | 0.003150543750835077 | +| Epoch_9_batch_5999.pt | 0.925 | 0.003478327964999669 | +| Epoch_8_batch_5999.pt | 0.9245000000000001 | 0.00305353468525807 | +| Epoch_6_batch_5999.pt | 0.9235 | 0.0012533904636309414 | +| Epoch_7_batch_5999.pt | 0.9233333333333332 | 0.0028974232912011757 | +| Epoch_6_batch_2999.pt | 0.9226666666666666 | 0.00223882685328999 | +| Epoch_8.pt | 0.9221666666666666 | 0.0022641870969238712 | +| Epoch_9_batch_2999.pt | 0.9211666666666666 | 0.003960062974932611 | +| Epoch_4_batch_2999.pt | 0.9163333333333334 | 0.003395712619985814 | +| Epoch_5_batch_2999.pt | 0.9158333333333333 | 0.003260784575739825 | +| Epoch_8_batch_2999.pt | 0.915 | 0.0017568209223157636 | +| Epoch_6.pt | 0.9136666666666666 | 0.003030707043774638 | +| Epoch_5_batch_5999.pt | 0.9121666666666666 | 0.0033059056770692965 | +| Epoch_5.pt | 0.9115 | 0.002490103870112779 | +| Epoch_9.pt | 0.9081666666666666 | 0.00340161544774259 | +| Epoch_4_batch_5999.pt | 0.9051666666666666 | 0.002242270674512282 | +| Epoch_3_batch_2999.pt | 0.9046666666666667 | 0.0035986966090448117 | +| Epoch_4.pt | 0.9046666666666667 | 0.0047648403649759 | +| Epoch_3_batch_5999.pt | 0.9040000000000001 | 0.0028240588949197407 | +| Epoch_3.pt | 0.9 | 0.004479032082388084 | +| Epoch_2_batch_2999.pt | 0.8976666666666666 | 0.003250830852961734 | +| Epoch_2.pt | 0.8973333333333334 | 0.004000000000000001 | +| Epoch_2_batch_5999.pt | 0.8945000000000001 | 0.0031725092300598306 | +| Epoch_1_batch_5999.pt | 0.8803333333333333 | 0.0030912061651652326 | +| Epoch_1.pt | 0.8728333333333333 | 0.0026764865489879806 | +| Epoch_1_batch_2999.pt | 0.8511666666666666 | 0.004135438531988092 | +| Epoch_7.pt | 0.8048333333333334 | 0.004055555555555552 | +| Epoch_0_batch_5999.pt | 0.7933333333333334 | 0.006136311676215136 | +| Epoch_0.pt | 0.791 | 0.005265775827143462 | +| Epoch_0_batch_2999.pt | 0.6616666666666666 | 0.005533288710217216 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_rfw_Caucasian.txt b/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_rfw_Caucasian.txt new file mode 100644 index 0000000000000000000000000000000000000000..f1495cc8ce6a155d75bd3819bac12d99fcfe3e98 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_rfw_Caucasian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.9913333333333334 | 0.0016629588385661935 | +| Epoch_16_batch_5999.pt | 0.991 | 0.0017427096823731277 | +| Epoch_14.pt | 0.9908333333333333 | 0.0018798804795209572 | +| Epoch_15_batch_2999.pt | 0.9906666666666666 | 0.0017950549357115021 | +| Epoch_14_batch_5999.pt | 0.9901666666666668 | 0.0017471316881684884 | +| Epoch_13_batch_2999.pt | 0.9898333333333333 | 0.0015406027359846739 | +| Epoch_14_batch_2999.pt | 0.9898333333333333 | 0.0017293758240303765 | +| Epoch_15_batch_5999.pt | 0.9898333333333333 | 0.00183333333333334 | +| Epoch_16_batch_2999.pt | 0.9898333333333333 | 0.0017471316881684936 | +| Epoch_13_batch_5999.pt | 0.9896666666666667 | 0.0015869840952317477 | +| Epoch_17_batch_2999.pt | 0.9896666666666667 | 0.001644294287438752 | +| Epoch_12_batch_5999.pt | 0.9890000000000001 | 0.001409841948938834 | +| Epoch_15.pt | 0.9889999999999999 | 0.0017777777777777757 | +| Epoch_17_batch_5999.pt | 0.9889999999999999 | 0.0017603310575283184 | +| Epoch_10.pt | 0.9886666666666665 | 0.001527525231651948 | +| Epoch_13.pt | 0.9885000000000002 | 0.0017471316881684839 | +| Epoch_16.pt | 0.9884999999999999 | 0.001931704294523746 | +| Epoch_11.pt | 0.9880000000000001 | 0.0019531550923607703 | +| Epoch_11_batch_5999.pt | 0.9879999999999999 | 0.001921290718421177 | +| Epoch_10_batch_2999.pt | 0.9876666666666667 | 0.0015555555555555548 | +| Epoch_12.pt | 0.9875 | 0.0019444444444444455 | +| Epoch_12_batch_2999.pt | 0.9874999999999998 | 0.0014958791130929123 | +| Epoch_11_batch_2999.pt | 0.9868333333333332 | 0.0015406027359846691 | +| Epoch_10_batch_5999.pt | 0.9863333333333333 | 0.001527525231651942 | +| Epoch_8_batch_2999.pt | 0.9768333333333334 | 0.002085369375458162 | +| Epoch_6_batch_5999.pt | 0.9768333333333332 | 0.0020100058350139404 | +| Epoch_7_batch_5999.pt | 0.976 | 0.002051798368068817 | +| Epoch_9_batch_2999.pt | 0.975 | 0.0022498285257018425 | +| Epoch_9_batch_5999.pt | 0.9748333333333333 | 0.0022831913986704985 | +| Epoch_7_batch_2999.pt | 0.9743333333333333 | 0.002197079992587244 | +| Epoch_5_batch_5999.pt | 0.9740000000000002 | 0.0019277057303219388 | +| Epoch_6_batch_2999.pt | 0.9731666666666665 | 0.0022005891467042566 | +| Epoch_8_batch_5999.pt | 0.9731666666666665 | 0.001899480110808749 | +| Epoch_4_batch_2999.pt | 0.9718333333333333 | 0.0024145904235667428 | +| Epoch_8.pt | 0.9715 | 0.0025633937766798513 | +| Epoch_6.pt | 0.9708333333333332 | 0.0018130187635645265 | +| Epoch_4_batch_5999.pt | 0.9706666666666667 | 0.0021401511426953623 | +| Epoch_5_batch_2999.pt | 0.97 | 0.0030429030972509183 | +| Epoch_9.pt | 0.9661666666666667 | 0.0020794408080236555 | +| Epoch_3_batch_2999.pt | 0.9651666666666667 | 0.002040485296911888 | +| Epoch_3_batch_5999.pt | 0.9648333333333333 | 0.002255993389360772 | +| Epoch_5.pt | 0.9646666666666667 | 0.002060804110110164 | +| Epoch_4.pt | 0.9644999999999999 | 0.001192828364087998 | +| Epoch_3.pt | 0.9608333333333332 | 0.002584975583140411 | +| Epoch_2_batch_5999.pt | 0.9591666666666667 | 0.0032702361450581024 | +| Epoch_2_batch_2999.pt | 0.9566666666666667 | 0.0017391639824998343 | +| Epoch_2.pt | 0.9555 | 0.0024094720491334956 | +| Epoch_1_batch_5999.pt | 0.945 | 0.003181738014061409 | +| Epoch_1.pt | 0.9426666666666665 | 0.0015355861067872473 | +| Epoch_1_batch_2999.pt | 0.9241666666666669 | 0.0035246048723470936 | +| Epoch_7.pt | 0.899 | 0.004061259307221564 | +| Epoch_0.pt | 0.8720000000000001 | 0.004640136226182466 | +| Epoch_0_batch_5999.pt | 0.8705 | 0.004720914851703747 | +| Epoch_0_batch_2999.pt | 0.7423333333333334 | 0.0052774853720168515 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_rfw_Indian.txt b/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_rfw_Indian.txt new file mode 100644 index 0000000000000000000000000000000000000000..baf24e175edf2c31fa375bc0a466119a5ec7ac6c --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet56/accu_files/accu_rfw_Indian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17_batch_5999.pt | 0.9683333333333334 | 0.00226350542082926 | +| Epoch_14_batch_2999.pt | 0.9678333333333333 | 0.0021235016504018195 | +| Epoch_16_batch_2999.pt | 0.9678333333333333 | 0.0023180717827805623 | +| Epoch_17_batch_2999.pt | 0.9678333333333333 | 0.0022089883724523353 | +| Epoch_12_batch_5999.pt | 0.967 | 0.0016996731711976015 | +| Epoch_16_batch_5999.pt | 0.9668333333333334 | 0.0022831913986705006 | +| Epoch_14.pt | 0.9668333333333333 | 0.002040485296911887 | +| Epoch_12_batch_2999.pt | 0.9666666666666668 | 0.003113094605804871 | +| Epoch_13_batch_2999.pt | 0.9666666666666668 | 0.002472066162365224 | +| Epoch_17.pt | 0.9661666666666668 | 0.0025343321617682358 | +| Epoch_13.pt | 0.9661666666666667 | 0.0022777777777777818 | +| Epoch_13_batch_5999.pt | 0.9656666666666667 | 0.0023726840560069646 | +| Epoch_15_batch_5999.pt | 0.9656666666666667 | 0.002051798368068822 | +| Epoch_15_batch_2999.pt | 0.9646666666666668 | 0.0022054925823643606 | +| Epoch_11_batch_5999.pt | 0.9646666666666667 | 0.0023280363155285554 | +| Epoch_15.pt | 0.9644999999999999 | 0.0023966282900136715 | +| Epoch_10.pt | 0.9643333333333333 | 0.002211083193570265 | +| Epoch_12.pt | 0.9641666666666666 | 0.0023207331749117125 | +| Epoch_14_batch_5999.pt | 0.9638333333333333 | 0.0023180717827805614 | +| Epoch_11_batch_2999.pt | 0.9631666666666666 | 0.0024017740356908133 | +| Epoch_11.pt | 0.9630000000000001 | 0.002719386277893432 | +| Epoch_16.pt | 0.9630000000000001 | 0.0021343747458109504 | +| Epoch_10_batch_5999.pt | 0.9618333333333332 | 0.0023759338644825712 | +| Epoch_10_batch_2999.pt | 0.9615 | 0.0019790570145063195 | +| Epoch_7_batch_2999.pt | 0.9470000000000001 | 0.003449816599168892 | +| Epoch_7_batch_5999.pt | 0.9450000000000001 | 0.0027666443551086117 | +| Epoch_8_batch_5999.pt | 0.9448333333333332 | 0.0038042374035044376 | +| Epoch_6_batch_2999.pt | 0.9443333333333334 | 0.00315445990368409 | +| Epoch_9_batch_5999.pt | 0.9436666666666668 | 0.003265986323710902 | +| Epoch_6_batch_5999.pt | 0.9434999999999999 | 0.0025147711772791695 | +| Epoch_8_batch_2999.pt | 0.943 | 0.002105255035721824 | +| Epoch_9_batch_2999.pt | 0.9423333333333332 | 0.002952295612352533 | +| Epoch_5_batch_5999.pt | 0.9388333333333334 | 0.003702268240343582 | +| Epoch_4_batch_2999.pt | 0.9378333333333334 | 0.0034251250315107374 | +| Epoch_8.pt | 0.9358333333333333 | 0.0029840108893323973 | +| Epoch_4_batch_5999.pt | 0.9355 | 0.0031822229981377055 | +| Epoch_6.pt | 0.9338333333333335 | 0.003434124324561236 | +| Epoch_5_batch_2999.pt | 0.933 | 0.003666666666666666 | +| Epoch_3_batch_5999.pt | 0.9316666666666666 | 0.0036767538017276214 | +| Epoch_5.pt | 0.9309999999999998 | 0.0031150768375280344 | +| Epoch_3_batch_2999.pt | 0.9285 | 0.003500000000000002 | +| Epoch_4.pt | 0.9259999999999999 | 0.004158881616047318 | +| Epoch_2.pt | 0.9248333333333333 | 0.0037552432480269316 | +| Epoch_2_batch_5999.pt | 0.9243333333333332 | 0.0032603112780269375 | +| Epoch_9.pt | 0.9238333333333333 | 0.0028442057191489407 | +| Epoch_3.pt | 0.9221666666666668 | 0.0025221243250702604 | +| Epoch_2_batch_2999.pt | 0.9146666666666666 | 0.0018392161508052128 | +| Epoch_1.pt | 0.9058333333333335 | 0.0023207331749117133 | +| Epoch_1_batch_5999.pt | 0.905 | 0.002249828525701841 | +| Epoch_1_batch_2999.pt | 0.8805000000000002 | 0.004216736202032426 | +| Epoch_7.pt | 0.869 | 0.003593547028621393 | +| Epoch_0.pt | 0.8281666666666666 | 0.005662580225905397 | +| Epoch_0_batch_5999.pt | 0.8206666666666667 | 0.00517114501254227 | +| Epoch_0_batch_2999.pt | 0.6966666666666667 | 0.004274529791482515 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet56/log.log b/bob/bio/facexzoo/models/backbones/AttentionNet56/log.log new file mode 100644 index 0000000000000000000000000000000000000000..3acbcdcda98995568eb04fd775b8536c990c72f8 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet56/log.log @@ -0,0 +1,655 @@ +INFO 2020-12-06 22:21:17 train.py: 177] Start optimization. +INFO 2020-12-06 22:21:17 train.py: 178] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='AttentionNet', batch_size=512, data_root='/export/home/wangjun492/wj_data/faceX-Zoo/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='MV-Softmax', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='mv-att56', train_file='/export/home/wangjun492/wj_data/faceX-Zoo/deepglint/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7fb66fac16d8>) +backbone param: +{'stage1_modules': 1, 'stage2_modules': 1, 'stage3_modules': 1, 'feat_dim': 512, 'out_h': 7, 'out_w': 7} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +INFO 2020-12-06 22:21:40 train.py: 79] Epoch 0, iter 0/6416, lr 0.100000, loss 16.339117 +INFO 2020-12-06 22:29:02 train.py: 79] Epoch 0, iter 200/6416, lr 0.100000, loss 15.653760 +INFO 2020-12-06 22:36:24 train.py: 79] Epoch 0, iter 400/6416, lr 0.100000, loss 15.389072 +INFO 2020-12-06 22:43:45 train.py: 79] Epoch 0, iter 600/6416, lr 0.100000, loss 15.345332 +INFO 2020-12-06 22:51:06 train.py: 79] Epoch 0, iter 800/6416, lr 0.100000, loss 15.305819 +INFO 2020-12-06 22:58:28 train.py: 79] Epoch 0, iter 1000/6416, lr 0.100000, loss 15.241742 +INFO 2020-12-06 23:05:50 train.py: 79] Epoch 0, iter 1200/6416, lr 0.100000, loss 15.116363 +INFO 2020-12-06 23:13:12 train.py: 79] Epoch 0, iter 1400/6416, lr 0.100000, loss 14.905524 +INFO 2020-12-06 23:20:33 train.py: 79] Epoch 0, iter 1600/6416, lr 0.100000, loss 14.609928 +INFO 2020-12-06 23:27:55 train.py: 79] Epoch 0, iter 1800/6416, lr 0.100000, loss 14.315692 +INFO 2020-12-06 23:35:17 train.py: 79] Epoch 0, iter 2000/6416, lr 0.100000, loss 13.953385 +INFO 2020-12-06 23:42:39 train.py: 79] Epoch 0, iter 2200/6416, lr 0.100000, loss 13.549322 +INFO 2020-12-06 23:50:01 train.py: 79] Epoch 0, iter 2400/6416, lr 0.100000, loss 13.170653 +INFO 2020-12-06 23:57:23 train.py: 79] Epoch 0, iter 2600/6416, lr 0.100000, loss 12.746714 +INFO 2020-12-07 00:04:45 train.py: 79] Epoch 0, iter 2800/6416, lr 0.100000, loss 12.351781 +INFO 2020-12-07 00:12:05 train.py: 92] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2020-12-07 00:12:08 train.py: 79] Epoch 0, iter 3000/6416, lr 0.100000, loss 12.031275 +INFO 2020-12-07 00:19:29 train.py: 79] Epoch 0, iter 3200/6416, lr 0.100000, loss 11.797055 +INFO 2020-12-07 00:26:50 train.py: 79] Epoch 0, iter 3400/6416, lr 0.100000, loss 11.682382 +INFO 2020-12-07 00:34:10 train.py: 79] Epoch 0, iter 3600/6416, lr 0.100000, loss 11.715891 +INFO 2020-12-07 00:41:30 train.py: 79] Epoch 0, iter 3800/6416, lr 0.100000, loss 11.886867 +INFO 2020-12-07 00:48:50 train.py: 79] Epoch 0, iter 4000/6416, lr 0.100000, loss 12.140014 +INFO 2020-12-07 00:56:10 train.py: 79] Epoch 0, iter 4200/6416, lr 0.100000, loss 12.420920 +INFO 2020-12-07 01:03:29 train.py: 79] Epoch 0, iter 4400/6416, lr 0.100000, loss 12.726578 +INFO 2020-12-07 01:10:48 train.py: 79] Epoch 0, iter 4600/6416, lr 0.100000, loss 13.040385 +INFO 2020-12-07 01:18:07 train.py: 79] Epoch 0, iter 4800/6416, lr 0.100000, loss 13.254581 +INFO 2020-12-07 01:25:25 train.py: 79] Epoch 0, iter 5000/6416, lr 0.100000, loss 13.402957 +INFO 2020-12-07 01:32:43 train.py: 79] Epoch 0, iter 5200/6416, lr 0.100000, loss 13.488013 +INFO 2020-12-07 01:40:01 train.py: 79] Epoch 0, iter 5400/6416, lr 0.100000, loss 13.496982 +INFO 2020-12-07 01:47:18 train.py: 79] Epoch 0, iter 5600/6416, lr 0.100000, loss 13.414288 +INFO 2020-12-07 01:54:36 train.py: 79] Epoch 0, iter 5800/6416, lr 0.100000, loss 13.259584 +INFO 2020-12-07 02:01:51 train.py: 92] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2020-12-07 02:01:53 train.py: 79] Epoch 0, iter 6000/6416, lr 0.100000, loss 13.092949 +INFO 2020-12-07 02:09:10 train.py: 79] Epoch 0, iter 6200/6416, lr 0.100000, loss 12.860123 +INFO 2020-12-07 02:16:26 train.py: 79] Epoch 0, iter 6400/6416, lr 0.100000, loss 12.605660 +INFO 2020-12-07 02:16:58 train.py: 97] Save checkpoint Epoch_0.pt to disk... +INFO 2020-12-07 02:17:01 train.py: 79] Epoch 1, iter 0/6416, lr 0.100000, loss 12.393160 +INFO 2020-12-07 02:24:17 train.py: 79] Epoch 1, iter 200/6416, lr 0.100000, loss 12.085337 +INFO 2020-12-07 02:31:33 train.py: 79] Epoch 1, iter 400/6416, lr 0.100000, loss 11.759532 +INFO 2020-12-07 02:38:49 train.py: 79] Epoch 1, iter 600/6416, lr 0.100000, loss 11.514332 +INFO 2020-12-07 02:46:05 train.py: 79] Epoch 1, iter 800/6416, lr 0.100000, loss 11.240436 +INFO 2020-12-07 02:53:20 train.py: 79] Epoch 1, iter 1000/6416, lr 0.100000, loss 11.003754 +INFO 2020-12-07 03:00:36 train.py: 79] Epoch 1, iter 1200/6416, lr 0.100000, loss 10.700621 +INFO 2020-12-07 03:07:52 train.py: 79] Epoch 1, iter 1400/6416, lr 0.100000, loss 10.439210 +INFO 2020-12-07 03:15:08 train.py: 79] Epoch 1, iter 1600/6416, lr 0.100000, loss 10.217995 +INFO 2020-12-07 03:22:24 train.py: 79] Epoch 1, iter 1800/6416, lr 0.100000, loss 10.008241 +INFO 2020-12-07 03:29:39 train.py: 79] Epoch 1, iter 2000/6416, lr 0.100000, loss 9.750344 +INFO 2020-12-07 03:36:55 train.py: 79] Epoch 1, iter 2200/6416, lr 0.100000, loss 9.543679 +INFO 2020-12-07 03:44:11 train.py: 79] Epoch 1, iter 2400/6416, lr 0.100000, loss 9.361696 +INFO 2020-12-07 03:51:26 train.py: 79] Epoch 1, iter 2600/6416, lr 0.100000, loss 9.178392 +INFO 2020-12-07 03:58:42 train.py: 79] Epoch 1, iter 2800/6416, lr 0.100000, loss 8.976297 +INFO 2020-12-07 04:05:56 train.py: 92] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2020-12-07 04:05:58 train.py: 79] Epoch 1, iter 3000/6416, lr 0.100000, loss 8.794548 +INFO 2020-12-07 04:13:14 train.py: 79] Epoch 1, iter 3200/6416, lr 0.100000, loss 8.647182 +INFO 2020-12-07 04:20:30 train.py: 79] Epoch 1, iter 3400/6416, lr 0.100000, loss 8.476677 +INFO 2020-12-07 04:27:45 train.py: 79] Epoch 1, iter 3600/6416, lr 0.100000, loss 8.388841 +INFO 2020-12-07 04:35:01 train.py: 79] Epoch 1, iter 3800/6416, lr 0.100000, loss 8.202265 +INFO 2020-12-07 04:42:16 train.py: 79] Epoch 1, iter 4000/6416, lr 0.100000, loss 8.063694 +INFO 2020-12-07 04:49:31 train.py: 79] Epoch 1, iter 4200/6416, lr 0.100000, loss 7.975410 +INFO 2020-12-07 04:56:48 train.py: 79] Epoch 1, iter 4400/6416, lr 0.100000, loss 7.846756 +INFO 2020-12-07 05:04:03 train.py: 79] Epoch 1, iter 4600/6416, lr 0.100000, loss 7.762870 +INFO 2020-12-07 05:11:20 train.py: 79] Epoch 1, iter 4800/6416, lr 0.100000, loss 7.624160 +INFO 2020-12-07 05:18:36 train.py: 79] Epoch 1, iter 5000/6416, lr 0.100000, loss 7.570746 +INFO 2020-12-07 05:25:52 train.py: 79] Epoch 1, iter 5200/6416, lr 0.100000, loss 7.451804 +INFO 2020-12-07 05:33:08 train.py: 79] Epoch 1, iter 5400/6416, lr 0.100000, loss 7.377990 +INFO 2020-12-07 05:40:24 train.py: 79] Epoch 1, iter 5600/6416, lr 0.100000, loss 7.248031 +INFO 2020-12-07 05:47:40 train.py: 79] Epoch 1, iter 5800/6416, lr 0.100000, loss 7.187469 +INFO 2020-12-07 05:54:54 train.py: 92] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2020-12-07 05:54:56 train.py: 79] Epoch 1, iter 6000/6416, lr 0.100000, loss 7.126930 +INFO 2020-12-07 06:02:12 train.py: 79] Epoch 1, iter 6200/6416, lr 0.100000, loss 7.025377 +INFO 2020-12-07 06:09:27 train.py: 79] Epoch 1, iter 6400/6416, lr 0.100000, loss 6.978082 +INFO 2020-12-07 06:09:59 train.py: 97] Save checkpoint Epoch_1.pt to disk... +INFO 2020-12-07 06:10:02 train.py: 79] Epoch 2, iter 0/6416, lr 0.100000, loss 6.911716 +INFO 2020-12-07 06:17:18 train.py: 79] Epoch 2, iter 200/6416, lr 0.100000, loss 6.299496 +INFO 2020-12-07 06:24:34 train.py: 79] Epoch 2, iter 400/6416, lr 0.100000, loss 6.312017 +INFO 2020-12-07 06:31:50 train.py: 79] Epoch 2, iter 600/6416, lr 0.100000, loss 6.325150 +INFO 2020-12-07 06:39:06 train.py: 79] Epoch 2, iter 800/6416, lr 0.100000, loss 6.360390 +INFO 2020-12-07 06:46:22 train.py: 79] Epoch 2, iter 1000/6416, lr 0.100000, loss 6.392142 +INFO 2020-12-07 06:53:38 train.py: 79] Epoch 2, iter 1200/6416, lr 0.100000, loss 6.364653 +INFO 2020-12-07 07:00:54 train.py: 79] Epoch 2, iter 1400/6416, lr 0.100000, loss 6.360372 +INFO 2020-12-07 07:08:10 train.py: 79] Epoch 2, iter 1600/6416, lr 0.100000, loss 6.294883 +INFO 2020-12-07 07:15:26 train.py: 79] Epoch 2, iter 1800/6416, lr 0.100000, loss 6.293037 +INFO 2020-12-07 07:22:42 train.py: 79] Epoch 2, iter 2000/6416, lr 0.100000, loss 6.283850 +INFO 2020-12-07 07:29:58 train.py: 79] Epoch 2, iter 2200/6416, lr 0.100000, loss 6.241851 +INFO 2020-12-07 07:37:14 train.py: 79] Epoch 2, iter 2400/6416, lr 0.100000, loss 6.213096 +INFO 2020-12-07 07:44:29 train.py: 79] Epoch 2, iter 2600/6416, lr 0.100000, loss 6.207854 +INFO 2020-12-07 07:51:45 train.py: 79] Epoch 2, iter 2800/6416, lr 0.100000, loss 6.195715 +INFO 2020-12-07 07:59:00 train.py: 92] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2020-12-07 07:59:02 train.py: 79] Epoch 2, iter 3000/6416, lr 0.100000, loss 6.097220 +INFO 2020-12-07 08:06:17 train.py: 79] Epoch 2, iter 3200/6416, lr 0.100000, loss 6.087660 +INFO 2020-12-07 08:13:33 train.py: 79] Epoch 2, iter 3400/6416, lr 0.100000, loss 6.057884 +INFO 2020-12-07 08:20:49 train.py: 79] Epoch 2, iter 3600/6416, lr 0.100000, loss 5.996236 +INFO 2020-12-07 08:28:04 train.py: 79] Epoch 2, iter 3800/6416, lr 0.100000, loss 5.990073 +INFO 2020-12-07 08:35:20 train.py: 79] Epoch 2, iter 4000/6416, lr 0.100000, loss 5.945493 +INFO 2020-12-07 08:42:36 train.py: 79] Epoch 2, iter 4200/6416, lr 0.100000, loss 5.928440 +INFO 2020-12-07 08:49:52 train.py: 79] Epoch 2, iter 4400/6416, lr 0.100000, loss 5.873710 +INFO 2020-12-07 08:57:08 train.py: 79] Epoch 2, iter 4600/6416, lr 0.100000, loss 5.872127 +INFO 2020-12-07 09:04:24 train.py: 79] Epoch 2, iter 4800/6416, lr 0.100000, loss 5.819641 +INFO 2020-12-07 09:11:40 train.py: 79] Epoch 2, iter 5000/6416, lr 0.100000, loss 5.801713 +INFO 2020-12-07 09:18:56 train.py: 79] Epoch 2, iter 5200/6416, lr 0.100000, loss 5.765310 +INFO 2020-12-07 09:26:12 train.py: 79] Epoch 2, iter 5400/6416, lr 0.100000, loss 5.751568 +INFO 2020-12-07 09:33:28 train.py: 79] Epoch 2, iter 5600/6416, lr 0.100000, loss 5.715537 +INFO 2020-12-07 09:40:44 train.py: 79] Epoch 2, iter 5800/6416, lr 0.100000, loss 5.674472 +INFO 2020-12-07 09:47:58 train.py: 92] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2020-12-07 09:48:01 train.py: 79] Epoch 2, iter 6000/6416, lr 0.100000, loss 5.651606 +INFO 2020-12-07 09:55:16 train.py: 79] Epoch 2, iter 6200/6416, lr 0.100000, loss 5.597177 +INFO 2020-12-07 10:02:31 train.py: 79] Epoch 2, iter 6400/6416, lr 0.100000, loss 5.579819 +INFO 2020-12-07 10:03:03 train.py: 97] Save checkpoint Epoch_2.pt to disk... +INFO 2020-12-07 10:03:06 train.py: 79] Epoch 3, iter 0/6416, lr 0.100000, loss 5.477883 +INFO 2020-12-07 10:10:22 train.py: 79] Epoch 3, iter 200/6416, lr 0.100000, loss 5.022878 +INFO 2020-12-07 10:17:38 train.py: 79] Epoch 3, iter 400/6416, lr 0.100000, loss 5.046607 +INFO 2020-12-07 10:24:53 train.py: 79] Epoch 3, iter 600/6416, lr 0.100000, loss 5.062072 +INFO 2020-12-07 10:32:09 train.py: 79] Epoch 3, iter 800/6416, lr 0.100000, loss 5.149184 +INFO 2020-12-07 10:39:25 train.py: 79] Epoch 3, iter 1000/6416, lr 0.100000, loss 5.172674 +INFO 2020-12-07 10:46:41 train.py: 79] Epoch 3, iter 1200/6416, lr 0.100000, loss 5.196896 +INFO 2020-12-07 10:53:57 train.py: 79] Epoch 3, iter 1400/6416, lr 0.100000, loss 5.239215 +INFO 2020-12-07 11:01:13 train.py: 79] Epoch 3, iter 1600/6416, lr 0.100000, loss 5.242085 +INFO 2020-12-07 11:08:29 train.py: 79] Epoch 3, iter 1800/6416, lr 0.100000, loss 5.241448 +INFO 2020-12-07 11:15:44 train.py: 79] Epoch 3, iter 2000/6416, lr 0.100000, loss 5.248835 +INFO 2020-12-07 11:23:00 train.py: 79] Epoch 3, iter 2200/6416, lr 0.100000, loss 5.259196 +INFO 2020-12-07 11:30:16 train.py: 79] Epoch 3, iter 2400/6416, lr 0.100000, loss 5.236755 +INFO 2020-12-07 11:37:32 train.py: 79] Epoch 3, iter 2600/6416, lr 0.100000, loss 5.191518 +INFO 2020-12-07 11:44:47 train.py: 79] Epoch 3, iter 2800/6416, lr 0.100000, loss 5.186061 +INFO 2020-12-07 11:52:02 train.py: 92] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2020-12-07 11:52:04 train.py: 79] Epoch 3, iter 3000/6416, lr 0.100000, loss 5.180946 +INFO 2020-12-07 11:59:19 train.py: 79] Epoch 3, iter 3200/6416, lr 0.100000, loss 5.216998 +INFO 2020-12-07 12:06:34 train.py: 79] Epoch 3, iter 3400/6416, lr 0.100000, loss 5.146158 +INFO 2020-12-07 12:13:49 train.py: 79] Epoch 3, iter 3600/6416, lr 0.100000, loss 5.140103 +INFO 2020-12-07 12:21:04 train.py: 79] Epoch 3, iter 3800/6416, lr 0.100000, loss 5.166954 +INFO 2020-12-07 12:28:19 train.py: 79] Epoch 3, iter 4000/6416, lr 0.100000, loss 5.095518 +INFO 2020-12-07 12:35:34 train.py: 79] Epoch 3, iter 4200/6416, lr 0.100000, loss 5.100386 +INFO 2020-12-07 12:42:48 train.py: 79] Epoch 3, iter 4400/6416, lr 0.100000, loss 5.069518 +INFO 2020-12-07 12:50:04 train.py: 79] Epoch 3, iter 4600/6416, lr 0.100000, loss 5.064836 +INFO 2020-12-07 12:57:19 train.py: 79] Epoch 3, iter 4800/6416, lr 0.100000, loss 5.075561 +INFO 2020-12-07 13:04:34 train.py: 79] Epoch 3, iter 5000/6416, lr 0.100000, loss 5.044867 +INFO 2020-12-07 13:11:49 train.py: 79] Epoch 3, iter 5200/6416, lr 0.100000, loss 5.020993 +INFO 2020-12-07 13:19:05 train.py: 79] Epoch 3, iter 5400/6416, lr 0.100000, loss 5.007873 +INFO 2020-12-07 13:26:21 train.py: 79] Epoch 3, iter 5600/6416, lr 0.100000, loss 5.001257 +INFO 2020-12-07 13:33:36 train.py: 79] Epoch 3, iter 5800/6416, lr 0.100000, loss 4.998086 +INFO 2020-12-07 13:40:50 train.py: 92] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2020-12-07 13:40:53 train.py: 79] Epoch 3, iter 6000/6416, lr 0.100000, loss 4.974132 +INFO 2020-12-07 13:48:08 train.py: 79] Epoch 3, iter 6200/6416, lr 0.100000, loss 4.970709 +INFO 2020-12-07 13:55:23 train.py: 79] Epoch 3, iter 6400/6416, lr 0.100000, loss 4.920613 +INFO 2020-12-07 13:55:55 train.py: 97] Save checkpoint Epoch_3.pt to disk... +INFO 2020-12-07 13:55:58 train.py: 79] Epoch 4, iter 0/6416, lr 0.100000, loss 4.905231 +INFO 2020-12-07 14:03:14 train.py: 79] Epoch 4, iter 200/6416, lr 0.100000, loss 4.430804 +INFO 2020-12-07 14:10:30 train.py: 79] Epoch 4, iter 400/6416, lr 0.100000, loss 4.386273 +INFO 2020-12-07 14:17:45 train.py: 79] Epoch 4, iter 600/6416, lr 0.100000, loss 4.456437 +INFO 2020-12-07 14:25:01 train.py: 79] Epoch 4, iter 800/6416, lr 0.100000, loss 4.541948 +INFO 2020-12-07 14:32:17 train.py: 79] Epoch 4, iter 1000/6416, lr 0.100000, loss 4.576958 +INFO 2020-12-07 14:39:33 train.py: 79] Epoch 4, iter 1200/6416, lr 0.100000, loss 4.655973 +INFO 2020-12-07 14:46:49 train.py: 79] Epoch 4, iter 1400/6416, lr 0.100000, loss 4.660767 +INFO 2020-12-07 14:54:04 train.py: 79] Epoch 4, iter 1600/6416, lr 0.100000, loss 4.659213 +INFO 2020-12-07 15:01:20 train.py: 79] Epoch 4, iter 1800/6416, lr 0.100000, loss 4.659288 +INFO 2020-12-07 15:08:35 train.py: 79] Epoch 4, iter 2000/6416, lr 0.100000, loss 4.679884 +INFO 2020-12-07 15:15:51 train.py: 79] Epoch 4, iter 2200/6416, lr 0.100000, loss 4.691229 +INFO 2020-12-07 15:23:06 train.py: 79] Epoch 4, iter 2400/6416, lr 0.100000, loss 4.709726 +INFO 2020-12-07 15:30:22 train.py: 79] Epoch 4, iter 2600/6416, lr 0.100000, loss 4.684563 +INFO 2020-12-07 15:37:38 train.py: 79] Epoch 4, iter 2800/6416, lr 0.100000, loss 4.664523 +INFO 2020-12-07 15:44:51 train.py: 92] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2020-12-07 15:44:53 train.py: 79] Epoch 4, iter 3000/6416, lr 0.100000, loss 4.673299 +INFO 2020-12-07 15:52:08 train.py: 79] Epoch 4, iter 3200/6416, lr 0.100000, loss 4.679122 +INFO 2020-12-07 15:59:23 train.py: 79] Epoch 4, iter 3400/6416, lr 0.100000, loss 4.673668 +INFO 2020-12-07 16:06:38 train.py: 79] Epoch 4, iter 3600/6416, lr 0.100000, loss 4.690486 +INFO 2020-12-07 16:13:53 train.py: 79] Epoch 4, iter 3800/6416, lr 0.100000, loss 4.711592 +INFO 2020-12-07 16:21:07 train.py: 79] Epoch 4, iter 4000/6416, lr 0.100000, loss 4.679128 +INFO 2020-12-07 16:28:22 train.py: 79] Epoch 4, iter 4200/6416, lr 0.100000, loss 4.642389 +INFO 2020-12-07 16:35:37 train.py: 79] Epoch 4, iter 4400/6416, lr 0.100000, loss 4.640824 +INFO 2020-12-07 16:42:53 train.py: 79] Epoch 4, iter 4600/6416, lr 0.100000, loss 4.956016 +INFO 2020-12-07 16:50:08 train.py: 79] Epoch 4, iter 4800/6416, lr 0.100000, loss 4.703107 +INFO 2020-12-07 16:57:24 train.py: 79] Epoch 4, iter 5000/6416, lr 0.100000, loss 4.654803 +INFO 2020-12-07 17:04:39 train.py: 79] Epoch 4, iter 5200/6416, lr 0.100000, loss 4.646274 +INFO 2020-12-07 17:11:55 train.py: 79] Epoch 4, iter 5400/6416, lr 0.100000, loss 4.609154 +INFO 2020-12-07 17:19:11 train.py: 79] Epoch 4, iter 5600/6416, lr 0.100000, loss 4.582357 +INFO 2020-12-07 17:26:26 train.py: 79] Epoch 4, iter 5800/6416, lr 0.100000, loss 4.605782 +INFO 2020-12-07 17:33:41 train.py: 92] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2020-12-07 17:33:43 train.py: 79] Epoch 4, iter 6000/6416, lr 0.100000, loss 4.570646 +INFO 2020-12-07 17:40:58 train.py: 79] Epoch 4, iter 6200/6416, lr 0.100000, loss 4.556395 +INFO 2020-12-07 17:48:13 train.py: 79] Epoch 4, iter 6400/6416, lr 0.100000, loss 4.555425 +INFO 2020-12-07 17:48:45 train.py: 97] Save checkpoint Epoch_4.pt to disk... +INFO 2020-12-07 17:48:48 train.py: 79] Epoch 5, iter 0/6416, lr 0.100000, loss 4.593332 +INFO 2020-12-07 17:56:03 train.py: 79] Epoch 5, iter 200/6416, lr 0.100000, loss 4.043981 +INFO 2020-12-07 18:03:18 train.py: 79] Epoch 5, iter 400/6416, lr 0.100000, loss 4.023411 +INFO 2020-12-07 18:10:34 train.py: 79] Epoch 5, iter 600/6416, lr 0.100000, loss 4.102510 +INFO 2020-12-07 18:17:49 train.py: 79] Epoch 5, iter 800/6416, lr 0.100000, loss 4.171846 +INFO 2020-12-07 18:25:05 train.py: 79] Epoch 5, iter 1000/6416, lr 0.100000, loss 4.227398 +INFO 2020-12-07 18:32:19 train.py: 79] Epoch 5, iter 1200/6416, lr 0.100000, loss 4.255724 +INFO 2020-12-07 18:39:35 train.py: 79] Epoch 5, iter 1400/6416, lr 0.100000, loss 4.313682 +INFO 2020-12-07 18:46:49 train.py: 79] Epoch 5, iter 1600/6416, lr 0.100000, loss 4.318452 +INFO 2020-12-07 18:54:04 train.py: 79] Epoch 5, iter 1800/6416, lr 0.100000, loss 4.328173 +INFO 2020-12-07 19:01:19 train.py: 79] Epoch 5, iter 2000/6416, lr 0.100000, loss 4.359922 +INFO 2020-12-07 19:08:34 train.py: 79] Epoch 5, iter 2200/6416, lr 0.100000, loss 4.341381 +INFO 2020-12-07 19:15:49 train.py: 79] Epoch 5, iter 2400/6416, lr 0.100000, loss 4.352831 +INFO 2020-12-07 19:23:04 train.py: 79] Epoch 5, iter 2600/6416, lr 0.100000, loss 4.391685 +INFO 2020-12-07 19:30:18 train.py: 79] Epoch 5, iter 2800/6416, lr 0.100000, loss 4.368737 +INFO 2020-12-07 19:37:31 train.py: 92] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2020-12-07 19:37:34 train.py: 79] Epoch 5, iter 3000/6416, lr 0.100000, loss 4.380093 +INFO 2020-12-07 19:44:48 train.py: 79] Epoch 5, iter 3200/6416, lr 0.100000, loss 4.357551 +INFO 2020-12-07 19:52:03 train.py: 79] Epoch 5, iter 3400/6416, lr 0.100000, loss 4.368582 +INFO 2020-12-07 19:59:18 train.py: 79] Epoch 5, iter 3600/6416, lr 0.100000, loss 4.379981 +INFO 2020-12-07 20:06:33 train.py: 79] Epoch 5, iter 3800/6416, lr 0.100000, loss 4.343113 +INFO 2020-12-07 20:13:48 train.py: 79] Epoch 5, iter 4000/6416, lr 0.100000, loss 4.360143 +INFO 2020-12-07 20:21:03 train.py: 79] Epoch 5, iter 4200/6416, lr 0.100000, loss 4.329559 +INFO 2020-12-07 20:28:18 train.py: 79] Epoch 5, iter 4400/6416, lr 0.100000, loss 4.363690 +INFO 2020-12-07 20:35:32 train.py: 79] Epoch 5, iter 4600/6416, lr 0.100000, loss 4.378288 +INFO 2020-12-07 20:42:47 train.py: 79] Epoch 5, iter 4800/6416, lr 0.100000, loss 4.332315 +INFO 2020-12-07 20:50:02 train.py: 79] Epoch 5, iter 5000/6416, lr 0.100000, loss 4.354946 +INFO 2020-12-07 20:57:17 train.py: 79] Epoch 5, iter 5200/6416, lr 0.100000, loss 4.329265 +INFO 2020-12-07 21:04:32 train.py: 79] Epoch 5, iter 5400/6416, lr 0.100000, loss 4.330752 +INFO 2020-12-07 21:11:46 train.py: 79] Epoch 5, iter 5600/6416, lr 0.100000, loss 4.310132 +INFO 2020-12-07 21:19:01 train.py: 79] Epoch 5, iter 5800/6416, lr 0.100000, loss 4.276224 +INFO 2020-12-07 21:26:14 train.py: 92] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2020-12-07 21:26:17 train.py: 79] Epoch 5, iter 6000/6416, lr 0.100000, loss 4.297984 +INFO 2020-12-07 21:33:31 train.py: 79] Epoch 5, iter 6200/6416, lr 0.100000, loss 4.306187 +INFO 2020-12-07 21:40:46 train.py: 79] Epoch 5, iter 6400/6416, lr 0.100000, loss 4.324875 +INFO 2020-12-07 21:41:18 train.py: 97] Save checkpoint Epoch_5.pt to disk... +INFO 2020-12-07 21:41:21 train.py: 79] Epoch 6, iter 0/6416, lr 0.100000, loss 4.364389 +INFO 2020-12-07 21:48:37 train.py: 79] Epoch 6, iter 200/6416, lr 0.100000, loss 3.830979 +INFO 2020-12-07 21:55:52 train.py: 79] Epoch 6, iter 400/6416, lr 0.100000, loss 3.794176 +INFO 2020-12-07 22:03:08 train.py: 79] Epoch 6, iter 600/6416, lr 0.100000, loss 3.850483 +INFO 2020-12-07 22:10:23 train.py: 79] Epoch 6, iter 800/6416, lr 0.100000, loss 3.934534 +INFO 2020-12-07 22:17:39 train.py: 79] Epoch 6, iter 1000/6416, lr 0.100000, loss 3.989497 +INFO 2020-12-07 22:24:54 train.py: 79] Epoch 6, iter 1200/6416, lr 0.100000, loss 4.021287 +INFO 2020-12-07 22:32:09 train.py: 79] Epoch 6, iter 1400/6416, lr 0.100000, loss 4.039314 +INFO 2020-12-07 22:39:24 train.py: 79] Epoch 6, iter 1600/6416, lr 0.100000, loss 4.080950 +INFO 2020-12-07 22:46:40 train.py: 79] Epoch 6, iter 1800/6416, lr 0.100000, loss 4.105197 +INFO 2020-12-07 22:53:55 train.py: 79] Epoch 6, iter 2000/6416, lr 0.100000, loss 4.098700 +INFO 2020-12-07 23:01:10 train.py: 79] Epoch 6, iter 2200/6416, lr 0.100000, loss 4.132332 +INFO 2020-12-07 23:08:26 train.py: 79] Epoch 6, iter 2400/6416, lr 0.100000, loss 4.165100 +INFO 2020-12-07 23:15:41 train.py: 79] Epoch 6, iter 2600/6416, lr 0.100000, loss 4.130368 +INFO 2020-12-07 23:22:56 train.py: 79] Epoch 6, iter 2800/6416, lr 0.100000, loss 4.162566 +INFO 2020-12-07 23:30:10 train.py: 92] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2020-12-07 23:30:12 train.py: 79] Epoch 6, iter 3000/6416, lr 0.100000, loss 4.144197 +INFO 2020-12-07 23:37:27 train.py: 79] Epoch 6, iter 3200/6416, lr 0.100000, loss 4.133361 +INFO 2020-12-07 23:44:41 train.py: 79] Epoch 6, iter 3400/6416, lr 0.100000, loss 4.177254 +INFO 2020-12-07 23:51:56 train.py: 79] Epoch 6, iter 3600/6416, lr 0.100000, loss 4.162256 +INFO 2020-12-07 23:59:12 train.py: 79] Epoch 6, iter 3800/6416, lr 0.100000, loss 4.159798 +INFO 2020-12-08 00:06:27 train.py: 79] Epoch 6, iter 4000/6416, lr 0.100000, loss 4.156479 +INFO 2020-12-08 00:13:42 train.py: 79] Epoch 6, iter 4200/6416, lr 0.100000, loss 4.163072 +INFO 2020-12-08 00:20:57 train.py: 79] Epoch 6, iter 4400/6416, lr 0.100000, loss 4.138556 +INFO 2020-12-08 00:28:13 train.py: 79] Epoch 6, iter 4600/6416, lr 0.100000, loss 4.134754 +INFO 2020-12-08 00:35:28 train.py: 79] Epoch 6, iter 4800/6416, lr 0.100000, loss 4.128897 +INFO 2020-12-08 00:42:44 train.py: 79] Epoch 6, iter 5000/6416, lr 0.100000, loss 4.129762 +INFO 2020-12-08 00:49:59 train.py: 79] Epoch 6, iter 5200/6416, lr 0.100000, loss 4.150688 +INFO 2020-12-08 00:57:15 train.py: 79] Epoch 6, iter 5400/6416, lr 0.100000, loss 4.124341 +INFO 2020-12-08 01:04:30 train.py: 79] Epoch 6, iter 5600/6416, lr 0.100000, loss 4.113522 +INFO 2020-12-08 01:11:46 train.py: 79] Epoch 6, iter 5800/6416, lr 0.100000, loss 4.130361 +INFO 2020-12-08 01:19:00 train.py: 92] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2020-12-08 01:19:02 train.py: 79] Epoch 6, iter 6000/6416, lr 0.100000, loss 4.129368 +INFO 2020-12-08 01:26:17 train.py: 79] Epoch 6, iter 6200/6416, lr 0.100000, loss 4.125476 +INFO 2020-12-08 01:33:32 train.py: 79] Epoch 6, iter 6400/6416, lr 0.100000, loss 4.123388 +INFO 2020-12-08 01:34:03 train.py: 97] Save checkpoint Epoch_6.pt to disk... +INFO 2020-12-08 01:34:07 train.py: 79] Epoch 7, iter 0/6416, lr 0.100000, loss 4.107350 +INFO 2020-12-08 01:41:22 train.py: 79] Epoch 7, iter 200/6416, lr 0.100000, loss 3.639274 +INFO 2020-12-08 01:48:38 train.py: 79] Epoch 7, iter 400/6416, lr 0.100000, loss 3.595132 +INFO 2020-12-08 01:55:54 train.py: 79] Epoch 7, iter 600/6416, lr 0.100000, loss 3.666903 +INFO 2020-12-08 02:03:09 train.py: 79] Epoch 7, iter 800/6416, lr 0.100000, loss 3.758504 +INFO 2020-12-08 02:10:25 train.py: 79] Epoch 7, iter 1000/6416, lr 0.100000, loss 3.787551 +INFO 2020-12-08 02:17:40 train.py: 79] Epoch 7, iter 1200/6416, lr 0.100000, loss 3.838482 +INFO 2020-12-08 02:24:55 train.py: 79] Epoch 7, iter 1400/6416, lr 0.100000, loss 3.877843 +INFO 2020-12-08 02:32:11 train.py: 79] Epoch 7, iter 1600/6416, lr 0.100000, loss 3.949540 +INFO 2020-12-08 02:39:26 train.py: 79] Epoch 7, iter 1800/6416, lr 0.100000, loss 3.920689 +INFO 2020-12-08 02:46:42 train.py: 79] Epoch 7, iter 2000/6416, lr 0.100000, loss 3.950563 +INFO 2020-12-08 02:53:57 train.py: 79] Epoch 7, iter 2200/6416, lr 0.100000, loss 3.974366 +INFO 2020-12-08 03:01:13 train.py: 79] Epoch 7, iter 2400/6416, lr 0.100000, loss 3.974169 +INFO 2020-12-08 03:08:28 train.py: 79] Epoch 7, iter 2600/6416, lr 0.100000, loss 3.983155 +INFO 2020-12-08 03:15:44 train.py: 79] Epoch 7, iter 2800/6416, lr 0.100000, loss 3.991203 +INFO 2020-12-08 03:22:57 train.py: 92] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2020-12-08 03:22:59 train.py: 79] Epoch 7, iter 3000/6416, lr 0.100000, loss 3.976505 +INFO 2020-12-08 03:30:14 train.py: 79] Epoch 7, iter 3200/6416, lr 0.100000, loss 4.021536 +INFO 2020-12-08 03:37:29 train.py: 79] Epoch 7, iter 3400/6416, lr 0.100000, loss 4.009361 +INFO 2020-12-08 03:44:44 train.py: 79] Epoch 7, iter 3600/6416, lr 0.100000, loss 3.997068 +INFO 2020-12-08 03:52:00 train.py: 79] Epoch 7, iter 3800/6416, lr 0.100000, loss 4.005455 +INFO 2020-12-08 03:59:15 train.py: 79] Epoch 7, iter 4000/6416, lr 0.100000, loss 3.993581 +INFO 2020-12-08 04:06:30 train.py: 79] Epoch 7, iter 4200/6416, lr 0.100000, loss 3.979407 +INFO 2020-12-08 04:13:45 train.py: 79] Epoch 7, iter 4400/6416, lr 0.100000, loss 4.059376 +INFO 2020-12-08 04:21:01 train.py: 79] Epoch 7, iter 4600/6416, lr 0.100000, loss 4.042143 +INFO 2020-12-08 04:28:16 train.py: 79] Epoch 7, iter 4800/6416, lr 0.100000, loss 4.020873 +INFO 2020-12-08 04:35:31 train.py: 79] Epoch 7, iter 5000/6416, lr 0.100000, loss 4.019922 +INFO 2020-12-08 04:42:47 train.py: 79] Epoch 7, iter 5200/6416, lr 0.100000, loss 4.020736 +INFO 2020-12-08 04:50:02 train.py: 79] Epoch 7, iter 5400/6416, lr 0.100000, loss 4.004260 +INFO 2020-12-08 04:57:18 train.py: 79] Epoch 7, iter 5600/6416, lr 0.100000, loss 3.991970 +INFO 2020-12-08 05:04:34 train.py: 79] Epoch 7, iter 5800/6416, lr 0.100000, loss 3.967162 +INFO 2020-12-08 05:11:48 train.py: 92] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2020-12-08 05:11:51 train.py: 79] Epoch 7, iter 6000/6416, lr 0.100000, loss 3.965783 +INFO 2020-12-08 05:19:06 train.py: 79] Epoch 7, iter 6200/6416, lr 0.100000, loss 3.968698 +INFO 2020-12-08 05:26:21 train.py: 79] Epoch 7, iter 6400/6416, lr 0.100000, loss 4.231718 +INFO 2020-12-08 05:26:52 train.py: 97] Save checkpoint Epoch_7.pt to disk... +INFO 2020-12-08 05:26:56 train.py: 79] Epoch 8, iter 0/6416, lr 0.100000, loss 4.895331 +INFO 2020-12-08 05:34:12 train.py: 79] Epoch 8, iter 200/6416, lr 0.100000, loss 3.936440 +INFO 2020-12-08 05:41:27 train.py: 79] Epoch 8, iter 400/6416, lr 0.100000, loss 3.663585 +INFO 2020-12-08 05:48:43 train.py: 79] Epoch 8, iter 600/6416, lr 0.100000, loss 3.645332 +INFO 2020-12-08 05:55:58 train.py: 79] Epoch 8, iter 800/6416, lr 0.100000, loss 3.673107 +INFO 2020-12-08 06:03:13 train.py: 79] Epoch 8, iter 1000/6416, lr 0.100000, loss 3.721533 +INFO 2020-12-08 06:10:29 train.py: 79] Epoch 8, iter 1200/6416, lr 0.100000, loss 3.730598 +INFO 2020-12-08 06:17:44 train.py: 79] Epoch 8, iter 1400/6416, lr 0.100000, loss 3.774283 +INFO 2020-12-08 06:24:59 train.py: 79] Epoch 8, iter 1600/6416, lr 0.100000, loss 3.766718 +INFO 2020-12-08 06:32:14 train.py: 79] Epoch 8, iter 1800/6416, lr 0.100000, loss 3.791457 +INFO 2020-12-08 06:39:30 train.py: 79] Epoch 8, iter 2000/6416, lr 0.100000, loss 3.817394 +INFO 2020-12-08 06:46:45 train.py: 79] Epoch 8, iter 2200/6416, lr 0.100000, loss 3.832890 +INFO 2020-12-08 06:54:00 train.py: 79] Epoch 8, iter 2400/6416, lr 0.100000, loss 3.874387 +INFO 2020-12-08 07:01:16 train.py: 79] Epoch 8, iter 2600/6416, lr 0.100000, loss 3.843073 +INFO 2020-12-08 07:08:31 train.py: 79] Epoch 8, iter 2800/6416, lr 0.100000, loss 3.868332 +INFO 2020-12-08 07:15:44 train.py: 92] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2020-12-08 07:15:47 train.py: 79] Epoch 8, iter 3000/6416, lr 0.100000, loss 3.871957 +INFO 2020-12-08 07:23:01 train.py: 79] Epoch 8, iter 3200/6416, lr 0.100000, loss 3.861770 +INFO 2020-12-08 07:30:16 train.py: 79] Epoch 8, iter 3400/6416, lr 0.100000, loss 3.844422 +INFO 2020-12-08 07:37:30 train.py: 79] Epoch 8, iter 3600/6416, lr 0.100000, loss 3.855103 +INFO 2020-12-08 07:44:45 train.py: 79] Epoch 8, iter 3800/6416, lr 0.100000, loss 3.868476 +INFO 2020-12-08 07:51:59 train.py: 79] Epoch 8, iter 4000/6416, lr 0.100000, loss 3.867588 +INFO 2020-12-08 07:59:14 train.py: 79] Epoch 8, iter 4200/6416, lr 0.100000, loss 3.854464 +INFO 2020-12-08 08:06:28 train.py: 79] Epoch 8, iter 4400/6416, lr 0.100000, loss 3.857562 +INFO 2020-12-08 08:13:43 train.py: 79] Epoch 8, iter 4600/6416, lr 0.100000, loss 3.883537 +INFO 2020-12-08 08:20:58 train.py: 79] Epoch 8, iter 4800/6416, lr 0.100000, loss 3.866492 +INFO 2020-12-08 08:28:13 train.py: 79] Epoch 8, iter 5000/6416, lr 0.100000, loss 3.876076 +INFO 2020-12-08 08:35:28 train.py: 79] Epoch 8, iter 5200/6416, lr 0.100000, loss 3.886284 +INFO 2020-12-08 08:42:44 train.py: 79] Epoch 8, iter 5400/6416, lr 0.100000, loss 3.867290 +INFO 2020-12-08 08:49:59 train.py: 79] Epoch 8, iter 5600/6416, lr 0.100000, loss 3.885530 +INFO 2020-12-08 08:57:14 train.py: 79] Epoch 8, iter 5800/6416, lr 0.100000, loss 3.887252 +INFO 2020-12-08 09:04:27 train.py: 92] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2020-12-08 09:04:29 train.py: 79] Epoch 8, iter 6000/6416, lr 0.100000, loss 3.865906 +INFO 2020-12-08 09:11:44 train.py: 79] Epoch 8, iter 6200/6416, lr 0.100000, loss 3.870939 +INFO 2020-12-08 09:18:59 train.py: 79] Epoch 8, iter 6400/6416, lr 0.100000, loss 3.871969 +INFO 2020-12-08 09:19:30 train.py: 97] Save checkpoint Epoch_8.pt to disk... +INFO 2020-12-08 09:19:33 train.py: 79] Epoch 9, iter 0/6416, lr 0.100000, loss 3.833806 +INFO 2020-12-08 09:26:49 train.py: 79] Epoch 9, iter 200/6416, lr 0.100000, loss 3.428932 +INFO 2020-12-08 09:34:03 train.py: 79] Epoch 9, iter 400/6416, lr 0.100000, loss 3.352119 +INFO 2020-12-08 09:41:18 train.py: 79] Epoch 9, iter 600/6416, lr 0.100000, loss 3.449942 +INFO 2020-12-08 09:48:33 train.py: 79] Epoch 9, iter 800/6416, lr 0.100000, loss 3.493509 +INFO 2020-12-08 09:55:48 train.py: 79] Epoch 9, iter 1000/6416, lr 0.100000, loss 3.562358 +INFO 2020-12-08 10:03:02 train.py: 79] Epoch 9, iter 1200/6416, lr 0.100000, loss 3.615163 +INFO 2020-12-08 10:10:17 train.py: 79] Epoch 9, iter 1400/6416, lr 0.100000, loss 3.640636 +INFO 2020-12-08 10:17:32 train.py: 79] Epoch 9, iter 1600/6416, lr 0.100000, loss 3.668462 +INFO 2020-12-08 10:24:46 train.py: 79] Epoch 9, iter 1800/6416, lr 0.100000, loss 3.671193 +INFO 2020-12-08 10:32:01 train.py: 79] Epoch 9, iter 2000/6416, lr 0.100000, loss 3.750169 +INFO 2020-12-08 10:39:15 train.py: 79] Epoch 9, iter 2200/6416, lr 0.100000, loss 3.759791 +INFO 2020-12-08 10:46:30 train.py: 79] Epoch 9, iter 2400/6416, lr 0.100000, loss 3.757455 +INFO 2020-12-08 10:53:44 train.py: 79] Epoch 9, iter 2600/6416, lr 0.100000, loss 3.772337 +INFO 2020-12-08 11:00:59 train.py: 79] Epoch 9, iter 2800/6416, lr 0.100000, loss 3.764061 +INFO 2020-12-08 11:08:11 train.py: 92] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2020-12-08 11:08:14 train.py: 79] Epoch 9, iter 3000/6416, lr 0.100000, loss 3.787713 +INFO 2020-12-08 11:15:28 train.py: 79] Epoch 9, iter 3200/6416, lr 0.100000, loss 3.771101 +INFO 2020-12-08 11:22:43 train.py: 79] Epoch 9, iter 3400/6416, lr 0.100000, loss 3.780502 +INFO 2020-12-08 11:29:57 train.py: 79] Epoch 9, iter 3600/6416, lr 0.100000, loss 3.774684 +INFO 2020-12-08 11:37:12 train.py: 79] Epoch 9, iter 3800/6416, lr 0.100000, loss 3.804026 +INFO 2020-12-08 11:44:26 train.py: 79] Epoch 9, iter 4000/6416, lr 0.100000, loss 3.790399 +INFO 2020-12-08 11:51:41 train.py: 79] Epoch 9, iter 4200/6416, lr 0.100000, loss 3.761879 +INFO 2020-12-08 11:58:56 train.py: 79] Epoch 9, iter 4400/6416, lr 0.100000, loss 3.819084 +INFO 2020-12-08 12:06:10 train.py: 79] Epoch 9, iter 4600/6416, lr 0.100000, loss 3.773706 +INFO 2020-12-08 12:13:25 train.py: 79] Epoch 9, iter 4800/6416, lr 0.100000, loss 3.799159 +INFO 2020-12-08 12:20:39 train.py: 79] Epoch 9, iter 5000/6416, lr 0.100000, loss 3.775115 +INFO 2020-12-08 12:27:54 train.py: 79] Epoch 9, iter 5200/6416, lr 0.100000, loss 3.798848 +INFO 2020-12-08 12:35:08 train.py: 79] Epoch 9, iter 5400/6416, lr 0.100000, loss 3.777364 +INFO 2020-12-08 12:42:23 train.py: 79] Epoch 9, iter 5600/6416, lr 0.100000, loss 3.740130 +INFO 2020-12-08 12:49:37 train.py: 79] Epoch 9, iter 5800/6416, lr 0.100000, loss 3.754799 +INFO 2020-12-08 12:56:50 train.py: 92] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2020-12-08 12:56:52 train.py: 79] Epoch 9, iter 6000/6416, lr 0.100000, loss 3.763572 +INFO 2020-12-08 13:04:06 train.py: 79] Epoch 9, iter 6200/6416, lr 0.100000, loss 3.744781 +INFO 2020-12-08 13:11:21 train.py: 79] Epoch 9, iter 6400/6416, lr 0.100000, loss 3.760781 +INFO 2020-12-08 13:11:53 train.py: 97] Save checkpoint Epoch_9.pt to disk... +INFO 2020-12-08 13:11:56 train.py: 79] Epoch 10, iter 0/6416, lr 0.010000, loss 3.800927 +INFO 2020-12-08 13:19:11 train.py: 79] Epoch 10, iter 200/6416, lr 0.010000, loss 2.698821 +INFO 2020-12-08 13:26:25 train.py: 79] Epoch 10, iter 400/6416, lr 0.010000, loss 2.456147 +INFO 2020-12-08 13:33:40 train.py: 79] Epoch 10, iter 600/6416, lr 0.010000, loss 2.348257 +INFO 2020-12-08 13:40:55 train.py: 79] Epoch 10, iter 800/6416, lr 0.010000, loss 2.277365 +INFO 2020-12-08 13:48:10 train.py: 79] Epoch 10, iter 1000/6416, lr 0.010000, loss 2.235313 +INFO 2020-12-08 13:55:25 train.py: 79] Epoch 10, iter 1200/6416, lr 0.010000, loss 2.199413 +INFO 2020-12-08 14:02:41 train.py: 79] Epoch 10, iter 1400/6416, lr 0.010000, loss 2.163125 +INFO 2020-12-08 14:09:56 train.py: 79] Epoch 10, iter 1600/6416, lr 0.010000, loss 2.135294 +INFO 2020-12-08 14:17:11 train.py: 79] Epoch 10, iter 1800/6416, lr 0.010000, loss 2.099613 +INFO 2020-12-08 14:24:26 train.py: 79] Epoch 10, iter 2000/6416, lr 0.010000, loss 2.080774 +INFO 2020-12-08 14:31:41 train.py: 79] Epoch 10, iter 2200/6416, lr 0.010000, loss 2.066044 +INFO 2020-12-08 14:38:56 train.py: 79] Epoch 10, iter 2400/6416, lr 0.010000, loss 2.021690 +INFO 2020-12-08 14:46:11 train.py: 79] Epoch 10, iter 2600/6416, lr 0.010000, loss 2.005259 +INFO 2020-12-08 14:53:26 train.py: 79] Epoch 10, iter 2800/6416, lr 0.010000, loss 1.986953 +INFO 2020-12-08 15:00:40 train.py: 92] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2020-12-08 15:00:42 train.py: 79] Epoch 10, iter 3000/6416, lr 0.010000, loss 1.952786 +INFO 2020-12-08 15:07:56 train.py: 79] Epoch 10, iter 3200/6416, lr 0.010000, loss 1.947060 +INFO 2020-12-08 15:15:11 train.py: 79] Epoch 10, iter 3400/6416, lr 0.010000, loss 1.927209 +INFO 2020-12-08 15:22:25 train.py: 79] Epoch 10, iter 3600/6416, lr 0.010000, loss 1.930897 +INFO 2020-12-08 15:29:40 train.py: 79] Epoch 10, iter 3800/6416, lr 0.010000, loss 1.910759 +INFO 2020-12-08 15:36:55 train.py: 79] Epoch 10, iter 4000/6416, lr 0.010000, loss 1.896521 +INFO 2020-12-08 15:44:10 train.py: 79] Epoch 10, iter 4200/6416, lr 0.010000, loss 1.884202 +INFO 2020-12-08 15:51:25 train.py: 79] Epoch 10, iter 4400/6416, lr 0.010000, loss 1.866119 +INFO 2020-12-08 15:58:40 train.py: 79] Epoch 10, iter 4600/6416, lr 0.010000, loss 1.842797 +INFO 2020-12-08 16:05:55 train.py: 79] Epoch 10, iter 4800/6416, lr 0.010000, loss 1.842283 +INFO 2020-12-08 16:13:10 train.py: 79] Epoch 10, iter 5000/6416, lr 0.010000, loss 1.836908 +INFO 2020-12-08 16:20:26 train.py: 79] Epoch 10, iter 5200/6416, lr 0.010000, loss 1.820286 +INFO 2020-12-08 16:27:41 train.py: 79] Epoch 10, iter 5400/6416, lr 0.010000, loss 1.813036 +INFO 2020-12-08 16:34:56 train.py: 79] Epoch 10, iter 5600/6416, lr 0.010000, loss 1.813383 +INFO 2020-12-08 16:42:11 train.py: 79] Epoch 10, iter 5800/6416, lr 0.010000, loss 1.810559 +INFO 2020-12-08 16:49:25 train.py: 92] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2020-12-08 16:49:27 train.py: 79] Epoch 10, iter 6000/6416, lr 0.010000, loss 1.782043 +INFO 2020-12-08 16:56:41 train.py: 79] Epoch 10, iter 6200/6416, lr 0.010000, loss 1.783661 +INFO 2020-12-08 17:03:56 train.py: 79] Epoch 10, iter 6400/6416, lr 0.010000, loss 1.758968 +INFO 2020-12-08 17:04:28 train.py: 97] Save checkpoint Epoch_10.pt to disk... +INFO 2020-12-08 17:04:31 train.py: 79] Epoch 11, iter 0/6416, lr 0.010000, loss 1.754459 +INFO 2020-12-08 17:11:46 train.py: 79] Epoch 11, iter 200/6416, lr 0.010000, loss 1.490951 +INFO 2020-12-08 17:19:02 train.py: 79] Epoch 11, iter 400/6416, lr 0.010000, loss 1.503394 +INFO 2020-12-08 17:26:17 train.py: 79] Epoch 11, iter 600/6416, lr 0.010000, loss 1.510283 +INFO 2020-12-08 17:33:32 train.py: 79] Epoch 11, iter 800/6416, lr 0.010000, loss 1.467629 +INFO 2020-12-08 17:40:47 train.py: 79] Epoch 11, iter 1000/6416, lr 0.010000, loss 1.475949 +INFO 2020-12-08 17:48:02 train.py: 79] Epoch 11, iter 1200/6416, lr 0.010000, loss 1.488209 +INFO 2020-12-08 17:55:17 train.py: 79] Epoch 11, iter 1400/6416, lr 0.010000, loss 1.509780 +INFO 2020-12-08 18:02:32 train.py: 79] Epoch 11, iter 1600/6416, lr 0.010000, loss 1.491372 +INFO 2020-12-08 18:09:48 train.py: 79] Epoch 11, iter 1800/6416, lr 0.010000, loss 1.483094 +INFO 2020-12-08 18:17:02 train.py: 79] Epoch 11, iter 2000/6416, lr 0.010000, loss 1.478413 +INFO 2020-12-08 18:24:17 train.py: 79] Epoch 11, iter 2200/6416, lr 0.010000, loss 1.485048 +INFO 2020-12-08 18:31:32 train.py: 79] Epoch 11, iter 2400/6416, lr 0.010000, loss 1.476659 +INFO 2020-12-08 18:38:47 train.py: 79] Epoch 11, iter 2600/6416, lr 0.010000, loss 1.477922 +INFO 2020-12-08 18:46:02 train.py: 79] Epoch 11, iter 2800/6416, lr 0.010000, loss 1.486131 +INFO 2020-12-08 18:53:15 train.py: 92] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2020-12-08 18:53:18 train.py: 79] Epoch 11, iter 3000/6416, lr 0.010000, loss 1.464989 +INFO 2020-12-08 19:00:32 train.py: 79] Epoch 11, iter 3200/6416, lr 0.010000, loss 1.474209 +INFO 2020-12-08 19:07:46 train.py: 79] Epoch 11, iter 3400/6416, lr 0.010000, loss 1.482722 +INFO 2020-12-08 19:15:01 train.py: 79] Epoch 11, iter 3600/6416, lr 0.010000, loss 1.478906 +INFO 2020-12-08 19:22:15 train.py: 79] Epoch 11, iter 3800/6416, lr 0.010000, loss 1.486639 +INFO 2020-12-08 19:29:29 train.py: 79] Epoch 11, iter 4000/6416, lr 0.010000, loss 1.474517 +INFO 2020-12-08 19:36:43 train.py: 79] Epoch 11, iter 4200/6416, lr 0.010000, loss 1.476221 +INFO 2020-12-08 19:43:58 train.py: 79] Epoch 11, iter 4400/6416, lr 0.010000, loss 1.470594 +INFO 2020-12-08 19:51:12 train.py: 79] Epoch 11, iter 4600/6416, lr 0.010000, loss 1.490632 +INFO 2020-12-08 19:58:26 train.py: 79] Epoch 11, iter 4800/6416, lr 0.010000, loss 1.487515 +INFO 2020-12-08 20:05:41 train.py: 79] Epoch 11, iter 5000/6416, lr 0.010000, loss 1.473472 +INFO 2020-12-08 20:12:55 train.py: 79] Epoch 11, iter 5200/6416, lr 0.010000, loss 1.470557 +INFO 2020-12-08 20:20:09 train.py: 79] Epoch 11, iter 5400/6416, lr 0.010000, loss 1.467415 +INFO 2020-12-08 20:27:24 train.py: 79] Epoch 11, iter 5600/6416, lr 0.010000, loss 1.478022 +INFO 2020-12-08 20:34:39 train.py: 79] Epoch 11, iter 5800/6416, lr 0.010000, loss 1.455494 +INFO 2020-12-08 20:41:52 train.py: 92] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2020-12-08 20:41:54 train.py: 79] Epoch 11, iter 6000/6416, lr 0.010000, loss 1.478754 +INFO 2020-12-08 20:49:09 train.py: 79] Epoch 11, iter 6200/6416, lr 0.010000, loss 1.454890 +INFO 2020-12-08 20:56:23 train.py: 79] Epoch 11, iter 6400/6416, lr 0.010000, loss 1.465753 +INFO 2020-12-08 20:56:55 train.py: 97] Save checkpoint Epoch_11.pt to disk... +INFO 2020-12-08 20:56:58 train.py: 79] Epoch 12, iter 0/6416, lr 0.010000, loss 1.484015 +INFO 2020-12-08 21:04:13 train.py: 79] Epoch 12, iter 200/6416, lr 0.010000, loss 1.233789 +INFO 2020-12-08 21:11:29 train.py: 79] Epoch 12, iter 400/6416, lr 0.010000, loss 1.230974 +INFO 2020-12-08 21:18:44 train.py: 79] Epoch 12, iter 600/6416, lr 0.010000, loss 1.221417 +INFO 2020-12-08 21:25:59 train.py: 79] Epoch 12, iter 800/6416, lr 0.010000, loss 1.247169 +INFO 2020-12-08 21:33:14 train.py: 79] Epoch 12, iter 1000/6416, lr 0.010000, loss 1.238401 +INFO 2020-12-08 21:40:29 train.py: 79] Epoch 12, iter 1200/6416, lr 0.010000, loss 1.254406 +INFO 2020-12-08 21:47:44 train.py: 79] Epoch 12, iter 1400/6416, lr 0.010000, loss 1.242645 +INFO 2020-12-08 21:54:59 train.py: 79] Epoch 12, iter 1600/6416, lr 0.010000, loss 1.251614 +INFO 2020-12-08 22:02:14 train.py: 79] Epoch 12, iter 1800/6416, lr 0.010000, loss 1.255217 +INFO 2020-12-08 22:09:29 train.py: 79] Epoch 12, iter 2000/6416, lr 0.010000, loss 1.267736 +INFO 2020-12-08 22:16:44 train.py: 79] Epoch 12, iter 2200/6416, lr 0.010000, loss 1.267111 +INFO 2020-12-08 22:23:59 train.py: 79] Epoch 12, iter 2400/6416, lr 0.010000, loss 1.263658 +INFO 2020-12-08 22:31:14 train.py: 79] Epoch 12, iter 2600/6416, lr 0.010000, loss 1.282978 +INFO 2020-12-08 22:38:29 train.py: 79] Epoch 12, iter 2800/6416, lr 0.010000, loss 1.279125 +INFO 2020-12-08 22:45:42 train.py: 92] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2020-12-08 22:45:44 train.py: 79] Epoch 12, iter 3000/6416, lr 0.010000, loss 1.264927 +INFO 2020-12-08 22:52:58 train.py: 79] Epoch 12, iter 3200/6416, lr 0.010000, loss 1.287299 +INFO 2020-12-08 23:00:13 train.py: 79] Epoch 12, iter 3400/6416, lr 0.010000, loss 1.274587 +INFO 2020-12-08 23:07:27 train.py: 79] Epoch 12, iter 3600/6416, lr 0.010000, loss 1.302100 +INFO 2020-12-08 23:14:41 train.py: 79] Epoch 12, iter 3800/6416, lr 0.010000, loss 1.283710 +INFO 2020-12-08 23:21:55 train.py: 79] Epoch 12, iter 4000/6416, lr 0.010000, loss 1.283689 +INFO 2020-12-08 23:29:10 train.py: 79] Epoch 12, iter 4200/6416, lr 0.010000, loss 1.292065 +INFO 2020-12-08 23:36:24 train.py: 79] Epoch 12, iter 4400/6416, lr 0.010000, loss 1.310679 +INFO 2020-12-08 23:43:38 train.py: 79] Epoch 12, iter 4600/6416, lr 0.010000, loss 1.294607 +INFO 2020-12-08 23:50:53 train.py: 79] Epoch 12, iter 4800/6416, lr 0.010000, loss 1.292776 +INFO 2020-12-08 23:58:07 train.py: 79] Epoch 12, iter 5000/6416, lr 0.010000, loss 1.301286 +INFO 2020-12-09 00:05:22 train.py: 79] Epoch 12, iter 5200/6416, lr 0.010000, loss 1.322327 +INFO 2020-12-09 00:12:37 train.py: 79] Epoch 12, iter 5400/6416, lr 0.010000, loss 1.323649 +INFO 2020-12-09 00:19:52 train.py: 79] Epoch 12, iter 5600/6416, lr 0.010000, loss 1.319972 +INFO 2020-12-09 00:27:07 train.py: 79] Epoch 12, iter 5800/6416, lr 0.010000, loss 1.311442 +INFO 2020-12-09 00:34:20 train.py: 92] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2020-12-09 00:34:22 train.py: 79] Epoch 12, iter 6000/6416, lr 0.010000, loss 1.319461 +INFO 2020-12-09 00:41:37 train.py: 79] Epoch 12, iter 6200/6416, lr 0.010000, loss 1.315675 +INFO 2020-12-09 00:48:51 train.py: 79] Epoch 12, iter 6400/6416, lr 0.010000, loss 1.320610 +INFO 2020-12-09 00:49:22 train.py: 97] Save checkpoint Epoch_12.pt to disk... +INFO 2020-12-09 00:49:26 train.py: 79] Epoch 13, iter 0/6416, lr 0.001000, loss 1.363125 +INFO 2020-12-09 00:56:41 train.py: 79] Epoch 13, iter 200/6416, lr 0.001000, loss 1.054507 +INFO 2020-12-09 01:03:55 train.py: 79] Epoch 13, iter 400/6416, lr 0.001000, loss 1.028544 +INFO 2020-12-09 01:11:10 train.py: 79] Epoch 13, iter 600/6416, lr 0.001000, loss 1.029790 +INFO 2020-12-09 01:18:24 train.py: 79] Epoch 13, iter 800/6416, lr 0.001000, loss 1.025129 +INFO 2020-12-09 01:25:38 train.py: 79] Epoch 13, iter 1000/6416, lr 0.001000, loss 1.007467 +INFO 2020-12-09 01:32:52 train.py: 79] Epoch 13, iter 1200/6416, lr 0.001000, loss 1.010181 +INFO 2020-12-09 01:40:07 train.py: 79] Epoch 13, iter 1400/6416, lr 0.001000, loss 1.009079 +INFO 2020-12-09 01:47:21 train.py: 79] Epoch 13, iter 1600/6416, lr 0.001000, loss 1.019332 +INFO 2020-12-09 01:54:35 train.py: 79] Epoch 13, iter 1800/6416, lr 0.001000, loss 1.006859 +INFO 2020-12-09 02:01:49 train.py: 79] Epoch 13, iter 2000/6416, lr 0.001000, loss 1.011971 +INFO 2020-12-09 02:09:04 train.py: 79] Epoch 13, iter 2200/6416, lr 0.001000, loss 1.015564 +INFO 2020-12-09 02:16:18 train.py: 79] Epoch 13, iter 2400/6416, lr 0.001000, loss 1.014718 +INFO 2020-12-09 02:23:32 train.py: 79] Epoch 13, iter 2600/6416, lr 0.001000, loss 1.008467 +INFO 2020-12-09 02:30:46 train.py: 79] Epoch 13, iter 2800/6416, lr 0.001000, loss 1.011032 +INFO 2020-12-09 02:37:59 train.py: 92] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2020-12-09 02:38:01 train.py: 79] Epoch 13, iter 3000/6416, lr 0.001000, loss 0.999696 +INFO 2020-12-09 02:45:16 train.py: 79] Epoch 13, iter 3200/6416, lr 0.001000, loss 1.014576 +INFO 2020-12-09 02:52:30 train.py: 79] Epoch 13, iter 3400/6416, lr 0.001000, loss 1.002025 +INFO 2020-12-09 02:59:44 train.py: 79] Epoch 13, iter 3600/6416, lr 0.001000, loss 1.006575 +INFO 2020-12-09 03:06:58 train.py: 79] Epoch 13, iter 3800/6416, lr 0.001000, loss 1.015797 +INFO 2020-12-09 03:14:13 train.py: 79] Epoch 13, iter 4000/6416, lr 0.001000, loss 1.018409 +INFO 2020-12-09 03:21:27 train.py: 79] Epoch 13, iter 4200/6416, lr 0.001000, loss 0.999023 +INFO 2020-12-09 03:28:42 train.py: 79] Epoch 13, iter 4400/6416, lr 0.001000, loss 1.010068 +INFO 2020-12-09 03:35:56 train.py: 79] Epoch 13, iter 4600/6416, lr 0.001000, loss 1.005167 +INFO 2020-12-09 03:43:10 train.py: 79] Epoch 13, iter 4800/6416, lr 0.001000, loss 1.004244 +INFO 2020-12-09 03:50:25 train.py: 79] Epoch 13, iter 5000/6416, lr 0.001000, loss 0.999028 +INFO 2020-12-09 03:57:39 train.py: 79] Epoch 13, iter 5200/6416, lr 0.001000, loss 1.005059 +INFO 2020-12-09 04:04:54 train.py: 79] Epoch 13, iter 5400/6416, lr 0.001000, loss 0.998904 +INFO 2020-12-09 04:12:08 train.py: 79] Epoch 13, iter 5600/6416, lr 0.001000, loss 1.017914 +INFO 2020-12-09 04:19:23 train.py: 79] Epoch 13, iter 5800/6416, lr 0.001000, loss 1.002128 +INFO 2020-12-09 04:26:36 train.py: 92] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2020-12-09 04:26:38 train.py: 79] Epoch 13, iter 6000/6416, lr 0.001000, loss 1.005669 +INFO 2020-12-09 04:33:52 train.py: 79] Epoch 13, iter 6200/6416, lr 0.001000, loss 1.007808 +INFO 2020-12-09 04:41:07 train.py: 79] Epoch 13, iter 6400/6416, lr 0.001000, loss 1.015425 +INFO 2020-12-09 04:41:39 train.py: 97] Save checkpoint Epoch_13.pt to disk... +INFO 2020-12-09 04:41:42 train.py: 79] Epoch 14, iter 0/6416, lr 0.001000, loss 0.995089 +INFO 2020-12-09 04:48:57 train.py: 79] Epoch 14, iter 200/6416, lr 0.001000, loss 0.969068 +INFO 2020-12-09 04:56:11 train.py: 79] Epoch 14, iter 400/6416, lr 0.001000, loss 0.977145 +INFO 2020-12-09 05:03:26 train.py: 79] Epoch 14, iter 600/6416, lr 0.001000, loss 0.970506 +INFO 2020-12-09 05:10:40 train.py: 79] Epoch 14, iter 800/6416, lr 0.001000, loss 0.973748 +INFO 2020-12-09 05:17:54 train.py: 79] Epoch 14, iter 1000/6416, lr 0.001000, loss 0.967163 +INFO 2020-12-09 05:25:09 train.py: 79] Epoch 14, iter 1200/6416, lr 0.001000, loss 0.975248 +INFO 2020-12-09 05:32:23 train.py: 79] Epoch 14, iter 1400/6416, lr 0.001000, loss 0.979443 +INFO 2020-12-09 05:39:38 train.py: 79] Epoch 14, iter 1600/6416, lr 0.001000, loss 0.981217 +INFO 2020-12-09 05:46:53 train.py: 79] Epoch 14, iter 1800/6416, lr 0.001000, loss 0.972316 +INFO 2020-12-09 05:54:08 train.py: 79] Epoch 14, iter 2000/6416, lr 0.001000, loss 0.971438 +INFO 2020-12-09 06:01:23 train.py: 79] Epoch 14, iter 2200/6416, lr 0.001000, loss 0.979107 +INFO 2020-12-09 06:08:38 train.py: 79] Epoch 14, iter 2400/6416, lr 0.001000, loss 0.971288 +INFO 2020-12-09 06:15:52 train.py: 79] Epoch 14, iter 2600/6416, lr 0.001000, loss 0.968721 +INFO 2020-12-09 06:23:07 train.py: 79] Epoch 14, iter 2800/6416, lr 0.001000, loss 0.976437 +INFO 2020-12-09 06:30:20 train.py: 92] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2020-12-09 06:30:23 train.py: 79] Epoch 14, iter 3000/6416, lr 0.001000, loss 0.977988 +INFO 2020-12-09 06:37:37 train.py: 79] Epoch 14, iter 3200/6416, lr 0.001000, loss 0.976456 +INFO 2020-12-09 06:44:51 train.py: 79] Epoch 14, iter 3400/6416, lr 0.001000, loss 0.971258 +INFO 2020-12-09 06:52:05 train.py: 79] Epoch 14, iter 3600/6416, lr 0.001000, loss 0.974655 +INFO 2020-12-09 06:59:20 train.py: 79] Epoch 14, iter 3800/6416, lr 0.001000, loss 0.969142 +INFO 2020-12-09 07:06:34 train.py: 79] Epoch 14, iter 4000/6416, lr 0.001000, loss 0.978815 +INFO 2020-12-09 07:13:48 train.py: 79] Epoch 14, iter 4200/6416, lr 0.001000, loss 0.976680 +INFO 2020-12-09 07:21:02 train.py: 79] Epoch 14, iter 4400/6416, lr 0.001000, loss 0.975473 +INFO 2020-12-09 07:28:17 train.py: 79] Epoch 14, iter 4600/6416, lr 0.001000, loss 0.981068 +INFO 2020-12-09 07:35:32 train.py: 79] Epoch 14, iter 4800/6416, lr 0.001000, loss 0.970727 +INFO 2020-12-09 07:42:47 train.py: 79] Epoch 14, iter 5000/6416, lr 0.001000, loss 0.986718 +INFO 2020-12-09 07:50:02 train.py: 79] Epoch 14, iter 5200/6416, lr 0.001000, loss 0.982766 +INFO 2020-12-09 07:57:17 train.py: 79] Epoch 14, iter 5400/6416, lr 0.001000, loss 0.980030 +INFO 2020-12-09 08:04:32 train.py: 79] Epoch 14, iter 5600/6416, lr 0.001000, loss 0.983091 +INFO 2020-12-09 08:11:47 train.py: 79] Epoch 14, iter 5800/6416, lr 0.001000, loss 0.985169 +INFO 2020-12-09 08:19:00 train.py: 92] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2020-12-09 08:19:02 train.py: 79] Epoch 14, iter 6000/6416, lr 0.001000, loss 0.991201 +INFO 2020-12-09 08:26:16 train.py: 79] Epoch 14, iter 6200/6416, lr 0.001000, loss 0.968671 +INFO 2020-12-09 08:33:31 train.py: 79] Epoch 14, iter 6400/6416, lr 0.001000, loss 0.975769 +INFO 2020-12-09 08:34:02 train.py: 97] Save checkpoint Epoch_14.pt to disk... +INFO 2020-12-09 08:34:06 train.py: 79] Epoch 15, iter 0/6416, lr 0.001000, loss 1.011397 +INFO 2020-12-09 08:41:21 train.py: 79] Epoch 15, iter 200/6416, lr 0.001000, loss 0.948173 +INFO 2020-12-09 08:48:36 train.py: 79] Epoch 15, iter 400/6416, lr 0.001000, loss 0.955711 +INFO 2020-12-09 08:55:51 train.py: 79] Epoch 15, iter 600/6416, lr 0.001000, loss 0.946194 +INFO 2020-12-09 09:03:06 train.py: 79] Epoch 15, iter 800/6416, lr 0.001000, loss 0.945617 +INFO 2020-12-09 09:10:21 train.py: 79] Epoch 15, iter 1000/6416, lr 0.001000, loss 0.944328 +INFO 2020-12-09 09:17:36 train.py: 79] Epoch 15, iter 1200/6416, lr 0.001000, loss 0.955536 +INFO 2020-12-09 09:24:50 train.py: 79] Epoch 15, iter 1400/6416, lr 0.001000, loss 0.947339 +INFO 2020-12-09 09:32:05 train.py: 79] Epoch 15, iter 1600/6416, lr 0.001000, loss 0.950708 +INFO 2020-12-09 09:39:20 train.py: 79] Epoch 15, iter 1800/6416, lr 0.001000, loss 0.957520 +INFO 2020-12-09 09:46:35 train.py: 79] Epoch 15, iter 2000/6416, lr 0.001000, loss 0.958083 +INFO 2020-12-09 09:53:49 train.py: 79] Epoch 15, iter 2200/6416, lr 0.001000, loss 0.955983 +INFO 2020-12-09 10:01:04 train.py: 79] Epoch 15, iter 2400/6416, lr 0.001000, loss 0.963296 +INFO 2020-12-09 10:08:19 train.py: 79] Epoch 15, iter 2600/6416, lr 0.001000, loss 0.957618 +INFO 2020-12-09 10:15:34 train.py: 79] Epoch 15, iter 2800/6416, lr 0.001000, loss 0.956104 +INFO 2020-12-09 10:22:47 train.py: 92] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2020-12-09 10:22:49 train.py: 79] Epoch 15, iter 3000/6416, lr 0.001000, loss 0.964389 +INFO 2020-12-09 10:30:03 train.py: 79] Epoch 15, iter 3200/6416, lr 0.001000, loss 0.950037 +INFO 2020-12-09 10:37:17 train.py: 79] Epoch 15, iter 3400/6416, lr 0.001000, loss 0.956096 +INFO 2020-12-09 10:44:32 train.py: 79] Epoch 15, iter 3600/6416, lr 0.001000, loss 0.953946 +INFO 2020-12-09 10:51:46 train.py: 79] Epoch 15, iter 3800/6416, lr 0.001000, loss 0.955661 +INFO 2020-12-09 10:59:01 train.py: 79] Epoch 15, iter 4000/6416, lr 0.001000, loss 0.957458 +INFO 2020-12-09 11:06:16 train.py: 79] Epoch 15, iter 4200/6416, lr 0.001000, loss 0.954589 +INFO 2020-12-09 11:13:31 train.py: 79] Epoch 15, iter 4400/6416, lr 0.001000, loss 0.952797 +INFO 2020-12-09 11:20:46 train.py: 79] Epoch 15, iter 4600/6416, lr 0.001000, loss 0.956928 +INFO 2020-12-09 11:28:00 train.py: 79] Epoch 15, iter 4800/6416, lr 0.001000, loss 0.961252 +INFO 2020-12-09 11:35:15 train.py: 79] Epoch 15, iter 5000/6416, lr 0.001000, loss 0.964729 +INFO 2020-12-09 11:42:31 train.py: 79] Epoch 15, iter 5200/6416, lr 0.001000, loss 0.936394 +INFO 2020-12-09 11:49:46 train.py: 79] Epoch 15, iter 5400/6416, lr 0.001000, loss 0.959212 +INFO 2020-12-09 11:57:02 train.py: 79] Epoch 15, iter 5600/6416, lr 0.001000, loss 0.955976 +INFO 2020-12-09 12:04:18 train.py: 79] Epoch 15, iter 5800/6416, lr 0.001000, loss 0.958369 +INFO 2020-12-09 12:11:32 train.py: 92] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2020-12-09 12:11:34 train.py: 79] Epoch 15, iter 6000/6416, lr 0.001000, loss 0.952067 +INFO 2020-12-09 12:18:49 train.py: 79] Epoch 15, iter 6200/6416, lr 0.001000, loss 0.952807 +INFO 2020-12-09 12:26:04 train.py: 79] Epoch 15, iter 6400/6416, lr 0.001000, loss 0.962677 +INFO 2020-12-09 12:26:36 train.py: 97] Save checkpoint Epoch_15.pt to disk... +INFO 2020-12-09 12:26:39 train.py: 79] Epoch 16, iter 0/6416, lr 0.000100, loss 0.954858 +INFO 2020-12-09 12:33:54 train.py: 79] Epoch 16, iter 200/6416, lr 0.000100, loss 0.926850 +INFO 2020-12-09 12:41:09 train.py: 79] Epoch 16, iter 400/6416, lr 0.000100, loss 0.920335 +INFO 2020-12-09 12:48:24 train.py: 79] Epoch 16, iter 600/6416, lr 0.000100, loss 0.926612 +INFO 2020-12-09 12:55:39 train.py: 79] Epoch 16, iter 800/6416, lr 0.000100, loss 0.910835 +INFO 2020-12-09 13:02:54 train.py: 79] Epoch 16, iter 1000/6416, lr 0.000100, loss 0.927042 +INFO 2020-12-09 13:10:09 train.py: 79] Epoch 16, iter 1200/6416, lr 0.000100, loss 0.922178 +INFO 2020-12-09 13:17:23 train.py: 79] Epoch 16, iter 1400/6416, lr 0.000100, loss 0.919548 +INFO 2020-12-09 13:24:38 train.py: 79] Epoch 16, iter 1600/6416, lr 0.000100, loss 0.931134 +INFO 2020-12-09 13:31:53 train.py: 79] Epoch 16, iter 1800/6416, lr 0.000100, loss 0.928784 +INFO 2020-12-09 13:39:07 train.py: 79] Epoch 16, iter 2000/6416, lr 0.000100, loss 0.925331 +INFO 2020-12-09 13:46:22 train.py: 79] Epoch 16, iter 2200/6416, lr 0.000100, loss 0.914949 +INFO 2020-12-09 13:53:36 train.py: 79] Epoch 16, iter 2400/6416, lr 0.000100, loss 0.924347 +INFO 2020-12-09 14:00:51 train.py: 79] Epoch 16, iter 2600/6416, lr 0.000100, loss 0.923306 +INFO 2020-12-09 14:08:06 train.py: 79] Epoch 16, iter 2800/6416, lr 0.000100, loss 0.925473 +INFO 2020-12-09 14:15:19 train.py: 92] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2020-12-09 14:15:21 train.py: 79] Epoch 16, iter 3000/6416, lr 0.000100, loss 0.918383 +INFO 2020-12-09 14:22:35 train.py: 79] Epoch 16, iter 3200/6416, lr 0.000100, loss 0.918482 +INFO 2020-12-09 14:29:49 train.py: 79] Epoch 16, iter 3400/6416, lr 0.000100, loss 0.923224 +INFO 2020-12-09 14:37:03 train.py: 79] Epoch 16, iter 3600/6416, lr 0.000100, loss 0.922412 +INFO 2020-12-09 14:44:17 train.py: 79] Epoch 16, iter 3800/6416, lr 0.000100, loss 0.909996 +INFO 2020-12-09 14:51:31 train.py: 79] Epoch 16, iter 4000/6416, lr 0.000100, loss 0.918164 +INFO 2020-12-09 14:58:45 train.py: 79] Epoch 16, iter 4200/6416, lr 0.000100, loss 0.916819 +INFO 2020-12-09 15:05:59 train.py: 79] Epoch 16, iter 4400/6416, lr 0.000100, loss 0.930096 +INFO 2020-12-09 15:13:14 train.py: 79] Epoch 16, iter 4600/6416, lr 0.000100, loss 0.923030 +INFO 2020-12-09 15:20:28 train.py: 79] Epoch 16, iter 4800/6416, lr 0.000100, loss 0.922276 +INFO 2020-12-09 15:27:42 train.py: 79] Epoch 16, iter 5000/6416, lr 0.000100, loss 0.927248 +INFO 2020-12-09 15:34:56 train.py: 79] Epoch 16, iter 5200/6416, lr 0.000100, loss 0.926332 +INFO 2020-12-09 15:42:11 train.py: 79] Epoch 16, iter 5400/6416, lr 0.000100, loss 0.915357 +INFO 2020-12-09 15:49:26 train.py: 79] Epoch 16, iter 5600/6416, lr 0.000100, loss 0.927079 +INFO 2020-12-09 15:56:40 train.py: 79] Epoch 16, iter 5800/6416, lr 0.000100, loss 0.920080 +INFO 2020-12-09 16:03:54 train.py: 92] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2020-12-09 16:03:56 train.py: 79] Epoch 16, iter 6000/6416, lr 0.000100, loss 0.923692 +INFO 2020-12-09 16:11:10 train.py: 79] Epoch 16, iter 6200/6416, lr 0.000100, loss 0.924486 +INFO 2020-12-09 16:18:25 train.py: 79] Epoch 16, iter 6400/6416, lr 0.000100, loss 0.925978 +INFO 2020-12-09 16:18:56 train.py: 97] Save checkpoint Epoch_16.pt to disk... +INFO 2020-12-09 16:19:00 train.py: 79] Epoch 17, iter 0/6416, lr 0.000100, loss 0.924411 +INFO 2020-12-09 16:26:14 train.py: 79] Epoch 17, iter 200/6416, lr 0.000100, loss 0.926630 +INFO 2020-12-09 16:33:29 train.py: 79] Epoch 17, iter 400/6416, lr 0.000100, loss 0.922395 +INFO 2020-12-09 16:40:43 train.py: 79] Epoch 17, iter 600/6416, lr 0.000100, loss 0.905566 +INFO 2020-12-09 16:47:57 train.py: 79] Epoch 17, iter 800/6416, lr 0.000100, loss 0.909944 +INFO 2020-12-09 16:55:11 train.py: 79] Epoch 17, iter 1000/6416, lr 0.000100, loss 0.917820 +INFO 2020-12-09 17:02:25 train.py: 79] Epoch 17, iter 1200/6416, lr 0.000100, loss 0.912816 +INFO 2020-12-09 17:09:39 train.py: 79] Epoch 17, iter 1400/6416, lr 0.000100, loss 0.918477 +INFO 2020-12-09 17:16:53 train.py: 79] Epoch 17, iter 1600/6416, lr 0.000100, loss 0.917358 +INFO 2020-12-09 17:24:07 train.py: 79] Epoch 17, iter 1800/6416, lr 0.000100, loss 0.915639 +INFO 2020-12-09 17:31:20 train.py: 79] Epoch 17, iter 2000/6416, lr 0.000100, loss 0.918681 +INFO 2020-12-09 17:38:34 train.py: 79] Epoch 17, iter 2200/6416, lr 0.000100, loss 0.919049 +INFO 2020-12-09 17:45:48 train.py: 79] Epoch 17, iter 2400/6416, lr 0.000100, loss 0.921275 +INFO 2020-12-09 17:53:02 train.py: 79] Epoch 17, iter 2600/6416, lr 0.000100, loss 0.925036 +INFO 2020-12-09 18:00:16 train.py: 79] Epoch 17, iter 2800/6416, lr 0.000100, loss 0.915752 +INFO 2020-12-09 18:07:29 train.py: 92] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2020-12-09 18:07:31 train.py: 79] Epoch 17, iter 3000/6416, lr 0.000100, loss 0.918238 +INFO 2020-12-09 18:14:45 train.py: 79] Epoch 17, iter 3200/6416, lr 0.000100, loss 0.915892 +INFO 2020-12-09 18:21:59 train.py: 79] Epoch 17, iter 3400/6416, lr 0.000100, loss 0.919799 +INFO 2020-12-09 18:29:13 train.py: 79] Epoch 17, iter 3600/6416, lr 0.000100, loss 0.920145 +INFO 2020-12-09 18:36:27 train.py: 79] Epoch 17, iter 3800/6416, lr 0.000100, loss 0.919046 +INFO 2020-12-09 18:43:41 train.py: 79] Epoch 17, iter 4000/6416, lr 0.000100, loss 0.918274 +INFO 2020-12-09 18:50:55 train.py: 79] Epoch 17, iter 4200/6416, lr 0.000100, loss 0.914328 +INFO 2020-12-09 18:58:09 train.py: 79] Epoch 17, iter 4400/6416, lr 0.000100, loss 0.910781 +INFO 2020-12-09 19:05:23 train.py: 79] Epoch 17, iter 4600/6416, lr 0.000100, loss 0.920605 +INFO 2020-12-09 19:12:37 train.py: 79] Epoch 17, iter 4800/6416, lr 0.000100, loss 0.930098 +INFO 2020-12-09 19:19:51 train.py: 79] Epoch 17, iter 5000/6416, lr 0.000100, loss 0.920116 +INFO 2020-12-09 19:27:05 train.py: 79] Epoch 17, iter 5200/6416, lr 0.000100, loss 0.920246 +INFO 2020-12-09 19:34:20 train.py: 79] Epoch 17, iter 5400/6416, lr 0.000100, loss 0.930487 +INFO 2020-12-09 19:41:34 train.py: 79] Epoch 17, iter 5600/6416, lr 0.000100, loss 0.926128 +INFO 2020-12-09 19:48:49 train.py: 79] Epoch 17, iter 5800/6416, lr 0.000100, loss 0.920784 +INFO 2020-12-09 19:56:01 train.py: 92] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2020-12-09 19:56:03 train.py: 79] Epoch 17, iter 6000/6416, lr 0.000100, loss 0.915791 +INFO 2020-12-09 20:03:17 train.py: 79] Epoch 17, iter 6200/6416, lr 0.000100, loss 0.923196 +INFO 2020-12-09 20:10:32 train.py: 79] Epoch 17, iter 6400/6416, lr 0.000100, loss 0.923991 +INFO 2020-12-09 20:11:04 train.py: 97] Save checkpoint Epoch_17.pt to disk... +INFO 2020-12-09 20:11:04 train.py: 180] Optimization done! diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet92/.gitkeep b/bob/bio/facexzoo/models/backbones/AttentionNet92/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_RFW_African.txt b/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_RFW_African.txt new file mode 100644 index 0000000000000000000000000000000000000000..6456b781dcdb61ca532934ee0c646389b3de9632 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_RFW_African.txt @@ -0,0 +1,39 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_2999.pt | 0.9705 | 0.0015325682471259722 | +| Epoch_14_batch_2999.pt | 0.9698333333333334 | 0.001979057014506322 | +| Epoch_16_batch_2999.pt | 0.9696666666666666 | 0.001606314699422325 | +| Epoch_17_batch_2999.pt | 0.9691666666666668 | 0.0013888888888888883 | +| Epoch_17.pt | 0.9691666666666666 | 0.0017258027296676735 | +| Epoch_13_batch_5999.pt | 0.9691666666666666 | 0.001991494258770543 | +| Epoch_16_batch_5999.pt | 0.9690000000000001 | 0.0016887426837300754 | +| Epoch_14_batch_5999.pt | 0.9683333333333334 | 0.001610152971798828 | +| Epoch_16.pt | 0.9683333333333334 | 0.001756820922315767 | +| Epoch_15_batch_5999.pt | 0.9681666666666668 | 0.0017993483045224145 | +| Epoch_14.pt | 0.9681666666666666 | 0.0017293758240303758 | +| Epoch_17_batch_5999.pt | 0.9676666666666666 | 0.0021401511426953615 | +| Epoch_15.pt | 0.9673333333333334 | 0.0017249082995844493 | +| Epoch_13.pt | 0.9666666666666668 | 0.0023306863292670067 | +| Epoch_13_batch_2999.pt | 0.9666666666666666 | 0.0015713484026367705 | +| Epoch_12.pt | 0.9665000000000001 | 0.002040485296911887 | +| Epoch_11_batch_5999.pt | 0.9664999999999999 | 0.0019790570145063195 | +| Epoch_12_batch_2999.pt | 0.9654999999999999 | 0.002222916558193627 | +| Epoch_11.pt | 0.9646666666666667 | 0.001855921454276675 | +| Epoch_10.pt | 0.9636666666666667 | 0.0018888888888888887 | +| Epoch_11_batch_2999.pt | 0.9633333333333333 | 0.0016850834320114552 | +| Epoch_12_batch_5999.pt | 0.9629999999999999 | 0.001625415426480867 | +| Epoch_10_batch_5999.pt | 0.9603333333333332 | 0.001937288419351413 | +| Epoch_10_batch_2999.pt | 0.9596666666666666 | 0.0022054925823643584 | +| Epoch_7.pt | 0.9405000000000001 | 0.0036519063176766167 | +| Epoch_9_batch_2999.pt | 0.9404999999999999 | 0.0016111111111111087 | +| Epoch_6.pt | 0.9391666666666666 | 0.0029107081994288273 | +| Epoch_9_batch_5999.pt | 0.9355000000000002 | 0.003152991916369489 | +| Epoch_9.pt | 0.9333333333333333 | 0.0031720227608044833 | +| Epoch_3.pt | 0.9326666666666666 | 0.002878185299330807 | +| Epoch_5.pt | 0.9308333333333334 | 0.003977172517576763 | +| Epoch_4.pt | 0.9298333333333332 | 0.0037222222222222157 | +| Epoch_8.pt | 0.9265000000000001 | 0.004175546094247459 | +| Epoch_2.pt | 0.9161666666666666 | 0.004588296975545775 | +| Epoch_1.pt | 0.8939999999999999 | 0.003115076837528037 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_RFW_Asian.txt b/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_RFW_Asian.txt new file mode 100644 index 0000000000000000000000000000000000000000..87aef30cf98c6f266482a0d7cdf6f2327db7484f --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_RFW_Asian.txt @@ -0,0 +1,39 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_2999.pt | 0.9568333333333333 | 0.0031175528547996026 | +| Epoch_16.pt | 0.9566666666666667 | 0.002876039801232177 | +| Epoch_15.pt | 0.9563333333333335 | 0.0024695678634325457 | +| Epoch_17.pt | 0.9563333333333333 | 0.0032183885239911664 | +| Epoch_13.pt | 0.9563333333333333 | 0.0027307123838765626 | +| Epoch_14.pt | 0.9558333333333333 | 0.0029943362173804134 | +| Epoch_14_batch_5999.pt | 0.9555 | 0.0029402485827553847 | +| Epoch_12.pt | 0.9555 | 0.0027335365778094556 | +| Epoch_17_batch_2999.pt | 0.9555 | 0.0030837086858617555 | +| Epoch_15_batch_5999.pt | 0.9555 | 0.0027672020900916124 | +| Epoch_14_batch_2999.pt | 0.9555 | 0.002811462428640002 | +| Epoch_16_batch_2999.pt | 0.9553333333333335 | 0.0030102704853653484 | +| Epoch_16_batch_5999.pt | 0.9553333333333333 | 0.002830608711746007 | +| Epoch_13_batch_5999.pt | 0.9553333333333333 | 0.0029689753813083126 | +| Epoch_15_batch_2999.pt | 0.9550000000000001 | 0.0031622776601683772 | +| Epoch_11_batch_2999.pt | 0.9548333333333334 | 0.002255993389360776 | +| Epoch_17_batch_5999.pt | 0.9548333333333334 | 0.0028485430540653904 | +| Epoch_12_batch_5999.pt | 0.9546666666666667 | 0.002696591355447022 | +| Epoch_11.pt | 0.9544999999999998 | 0.002108916988455811 | +| Epoch_10_batch_2999.pt | 0.9541666666666666 | 0.0021264065787782956 | +| Epoch_10_batch_5999.pt | 0.9536666666666667 | 0.0029481109247603532 | +| Epoch_12_batch_2999.pt | 0.9531666666666666 | 0.0021437534868416377 | +| Epoch_11_batch_5999.pt | 0.9528333333333332 | 0.0025706078447242818 | +| Epoch_10.pt | 0.9521666666666666 | 0.0021949718072376014 | +| Epoch_7.pt | 0.9321666666666667 | 0.0036094013046179493 | +| Epoch_9_batch_2999.pt | 0.9313333333333332 | 0.0029896942326830423 | +| Epoch_9.pt | 0.9296666666666666 | 0.0031308895119123094 | +| Epoch_6.pt | 0.9269999999999999 | 0.0026851213274654635 | +| Epoch_9_batch_5999.pt | 0.9248333333333333 | 0.004749593874775885 | +| Epoch_5.pt | 0.9225000000000001 | 0.002952818281315182 | +| Epoch_8.pt | 0.9216666666666666 | 0.002732971972499743 | +| Epoch_3.pt | 0.9188333333333333 | 0.0028442057191489425 | +| Epoch_4.pt | 0.9178333333333333 | 0.003230353724468141 | +| Epoch_2.pt | 0.9076666666666668 | 0.0018459164139817896 | +| Epoch_1.pt | 0.8913333333333334 | 0.004126098806139365 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_RFW_Caucasian.txt b/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_RFW_Caucasian.txt new file mode 100644 index 0000000000000000000000000000000000000000..42c1f5f862db26a292be0ce9231f0d06fc53d774 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_RFW_Caucasian.txt @@ -0,0 +1,39 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_5999.pt | 0.993 | 0.0012862041003100268 | +| Epoch_16.pt | 0.9928333333333332 | 0.0013619611857923655 | +| Epoch_15.pt | 0.9928333333333332 | 0.0013158576980363368 | +| Epoch_13_batch_5999.pt | 0.9926666666666666 | 0.0012957670877434013 | +| Epoch_13.pt | 0.9925 | 0.0013437096247164275 | +| Epoch_11_batch_2999.pt | 0.9924999999999999 | 0.0014326441064697415 | +| Epoch_16_batch_5999.pt | 0.9923333333333332 | 0.0013425606637327329 | +| Epoch_14.pt | 0.9923333333333332 | 0.0013877773329774256 | +| Epoch_12_batch_2999.pt | 0.9923333333333332 | 0.001342560663732732 | +| Epoch_17_batch_5999.pt | 0.9921666666666666 | 0.0014065543223524663 | +| Epoch_17_batch_2999.pt | 0.9920000000000002 | 0.001527525231651945 | +| Epoch_14_batch_5999.pt | 0.992 | 0.0013562839573037482 | +| Epoch_12_batch_5999.pt | 0.992 | 0.001333333333333336 | +| Epoch_14_batch_2999.pt | 0.992 | 0.001333333333333336 | +| Epoch_10_batch_5999.pt | 0.9918333333333335 | 0.0017471316881684917 | +| Epoch_17.pt | 0.9918333333333333 | 0.0014153043558729993 | +| Epoch_15_batch_2999.pt | 0.9918333333333333 | 0.0013709958532503398 | +| Epoch_11_batch_5999.pt | 0.9918333333333333 | 0.0014792807728549332 | +| Epoch_16_batch_2999.pt | 0.9915 | 0.0014999999999999985 | +| Epoch_10_batch_2999.pt | 0.9914999999999999 | 0.0015204369092671154 | +| Epoch_10.pt | 0.9913333333333334 | 0.0014656562175858778 | +| Epoch_11.pt | 0.9913333333333334 | 0.001644294287438749 | +| Epoch_13_batch_2999.pt | 0.9913333333333332 | 0.0014229164972073011 | +| Epoch_12.pt | 0.991 | 0.0014315665251916822 | +| Epoch_7.pt | 0.9799999999999999 | 0.0017568209223157553 | +| Epoch_9.pt | 0.9791666666666666 | 0.0020824072015545817 | +| Epoch_9_batch_2999.pt | 0.9771666666666668 | 0.0013158576980363298 | +| Epoch_9_batch_5999.pt | 0.9766666666666666 | 0.0016850834320114542 | +| Epoch_6.pt | 0.9766666666666666 | 0.0014272480642961195 | +| Epoch_5.pt | 0.9758333333333333 | 0.002386303510546058 | +| Epoch_4.pt | 0.9748333333333334 | 0.0020705161281760324 | +| Epoch_8.pt | 0.9746666666666666 | 0.0018559214542766735 | +| Epoch_3.pt | 0.9724999999999999 | 0.002225691736001119 | +| Epoch_2.pt | 0.9671666666666667 | 0.0020038543107634933 | +| Epoch_1.pt | 0.9556666666666667 | 0.0019116278371205894 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_RFW_Indian.txt b/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_RFW_Indian.txt new file mode 100644 index 0000000000000000000000000000000000000000..f82602507899239eb887155fee258cab3eb8ed4c --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_RFW_Indian.txt @@ -0,0 +1,39 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_2999.pt | 0.9678333333333333 | 0.0016489802310728759 | +| Epoch_14_batch_5999.pt | 0.967 | 0.0019051586888313668 | +| Epoch_15_batch_2999.pt | 0.9668333333333333 | 0.0020853693754581677 | +| Epoch_11_batch_5999.pt | 0.9665000000000001 | 0.0021865187393504907 | +| Epoch_17_batch_5999.pt | 0.9664999999999999 | 0.0018500917561496382 | +| Epoch_13_batch_5999.pt | 0.9664999999999999 | 0.0021293075440818716 | +| Epoch_10_batch_5999.pt | 0.9664999999999999 | 0.002465189748037093 | +| Epoch_15_batch_5999.pt | 0.9663333333333334 | 0.0018223577185396407 | +| Epoch_16.pt | 0.9663333333333333 | 0.0018559214542766735 | +| Epoch_17_batch_2999.pt | 0.9663333333333333 | 0.0020608041101101613 | +| Epoch_13.pt | 0.9661666666666667 | 0.002180865158487834 | +| Epoch_16_batch_5999.pt | 0.9656666666666667 | 0.001862561623804466 | +| Epoch_12.pt | 0.9656666666666667 | 0.0018790593916986442 | +| Epoch_10.pt | 0.9655000000000001 | 0.002383715328102766 | +| Epoch_14_batch_2999.pt | 0.9653333333333334 | 0.002260776661041757 | +| Epoch_15.pt | 0.9653333333333333 | 0.0017533037597843863 | +| Epoch_14.pt | 0.9651666666666667 | 0.0020853693754581673 | +| Epoch_17.pt | 0.9649999999999999 | 0.0020487876571761983 | +| Epoch_13_batch_2999.pt | 0.9646666666666667 | 0.0021773242158072675 | +| Epoch_11.pt | 0.9644999999999999 | 0.0024349563334234554 | +| Epoch_11_batch_2999.pt | 0.9638333333333333 | 0.002108916988455817 | +| Epoch_12_batch_2999.pt | 0.9623333333333333 | 0.002320068113091234 | +| Epoch_12_batch_5999.pt | 0.9613333333333334 | 0.0018223577185396392 | +| Epoch_10_batch_2999.pt | 0.961 | 0.002619961360567026 | +| Epoch_9_batch_5999.pt | 0.9501666666666667 | 0.0021147629234082622 | +| Epoch_9_batch_2999.pt | 0.9463333333333335 | 0.0020905430802474227 | +| Epoch_6.pt | 0.9455 | 0.0030636257064360515 | +| Epoch_7.pt | 0.9448333333333334 | 0.0026579719364234816 | +| Epoch_8.pt | 0.9446666666666665 | 0.0029059326290271125 | +| Epoch_9.pt | 0.9410000000000001 | 0.002802115602870776 | +| Epoch_5.pt | 0.9391666666666666 | 0.0020971762320196492 | +| Epoch_3.pt | 0.9384999999999998 | 0.001994591452335139 | +| Epoch_4.pt | 0.9366666666666668 | 0.003990729999126216 | +| Epoch_2.pt | 0.9281666666666666 | 0.003262677080005783 | +| Epoch_1.pt | 0.9175000000000001 | 0.0034627648982772058 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_agedb30.txt b/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_agedb30.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69997667d4808e56d0694b5792b37b7deefce9b --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_agedb30.txt @@ -0,0 +1,39 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14_batch_2999.pt | 0.9808333333333333 | 0.0024999999999999953 | +| Epoch_11_batch_2999.pt | 0.9806666666666667 | 0.0024113927126900737 | +| Epoch_15.pt | 0.9804999999999999 | 0.002664929990046986 | +| Epoch_10_batch_5999.pt | 0.9803333333333333 | 0.0027977062915587 | +| Epoch_13_batch_5999.pt | 0.9801666666666667 | 0.0026463345252921195 | +| Epoch_13_batch_2999.pt | 0.9801666666666666 | 0.00244002125066641 | +| Epoch_14.pt | 0.9799999999999999 | 0.0025458753860865746 | +| Epoch_16_batch_2999.pt | 0.9799999999999999 | 0.002484519974999761 | +| Epoch_11_batch_5999.pt | 0.9798333333333333 | 0.0025992639033976784 | +| Epoch_16_batch_5999.pt | 0.9796666666666667 | 0.0025067809272618807 | +| Epoch_17_batch_5999.pt | 0.9795000000000001 | 0.002594509873074578 | +| Epoch_10_batch_2999.pt | 0.9795 | 0.002582586510926547 | +| Epoch_10.pt | 0.9795 | 0.002676486548987977 | +| Epoch_16.pt | 0.9793333333333333 | 0.002572408200620048 | +| Epoch_12_batch_5999.pt | 0.9791666666666666 | 0.0026787918780535928 | +| Epoch_15_batch_2999.pt | 0.9791666666666666 | 0.0024501196745777714 | +| Epoch_12_batch_2999.pt | 0.9791666666666664 | 0.002952818281315175 | +| Epoch_12.pt | 0.9789999999999999 | 0.002723922371584722 | +| Epoch_13.pt | 0.9789999999999999 | 0.0026666666666666644 | +| Epoch_17.pt | 0.9788333333333334 | 0.0027783332777888818 | +| Epoch_11.pt | 0.9788333333333334 | 0.0027222222222222257 | +| Epoch_17_batch_2999.pt | 0.9786666666666667 | 0.002457038265277331 | +| Epoch_14_batch_5999.pt | 0.9785 | 0.0027605018330677383 | +| Epoch_15_batch_5999.pt | 0.9781666666666666 | 0.0026579719364234807 | +| Epoch_6.pt | 0.9723333333333335 | 0.002523959264800124 | +| Epoch_9.pt | 0.9723333333333333 | 0.0030751894451328987 | +| Epoch_9_batch_2999.pt | 0.9716666666666667 | 0.003370166864022908 | +| Epoch_7.pt | 0.9711666666666666 | 0.002855036701673244 | +| Epoch_8.pt | 0.9711666666666666 | 0.002344549760667683 | +| Epoch_5.pt | 0.9710000000000001 | 0.0031642290813106958 | +| Epoch_9_batch_5999.pt | 0.9695 | 0.002357677241546996 | +| Epoch_4.pt | 0.9680000000000002 | 0.0033314809667922074 | +| Epoch_3.pt | 0.9666666666666668 | 0.002421610524189264 | +| Epoch_2.pt | 0.9661666666666665 | 0.00252212432507026 | +| Epoch_1.pt | 0.9526666666666668 | 0.0031150768375280418 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..fe01984681abfcf7e6e62f317c221d8bd0d165c7 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_calfw.txt @@ -0,0 +1,39 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_5999.pt | 0.9588333333333333 | 0.003849402711404444 | +| Epoch_14_batch_5999.pt | 0.9586666666666666 | 0.0038151743807531982 | +| Epoch_16_batch_5999.pt | 0.9584999999999999 | 0.003947573094109004 | +| Epoch_15_batch_5999.pt | 0.9584999999999999 | 0.003924047419202289 | +| Epoch_17_batch_5999.pt | 0.9584999999999999 | 0.003844588950399101 | +| Epoch_13.pt | 0.9583333333333333 | 0.003967460238079361 | +| Epoch_16_batch_2999.pt | 0.9581666666666665 | 0.004047938051543746 | +| Epoch_15_batch_2999.pt | 0.9581666666666665 | 0.00395538389140612 | +| Epoch_14_batch_2999.pt | 0.9581666666666665 | 0.004032659876435441 | +| Epoch_17_batch_2999.pt | 0.9579999999999999 | 0.003981438414926422 | +| Epoch_13_batch_2999.pt | 0.9578333333333333 | 0.004202071799411263 | +| Epoch_16.pt | 0.9578333333333333 | 0.0038972133127323557 | +| Epoch_11.pt | 0.9578333333333333 | 0.004082860894816251 | +| Epoch_12_batch_2999.pt | 0.9578333333333333 | 0.00415776827601504 | +| Epoch_15.pt | 0.9576666666666667 | 0.004158881616047309 | +| Epoch_17.pt | 0.9574999999999999 | 0.004084372505713951 | +| Epoch_12.pt | 0.9574999999999999 | 0.004084372505713957 | +| Epoch_11_batch_5999.pt | 0.9574999999999998 | 0.003859012219291619 | +| Epoch_12_batch_5999.pt | 0.9571666666666665 | 0.003913020367320073 | +| Epoch_10.pt | 0.9571666666666665 | 0.004105476619298294 | +| Epoch_14.pt | 0.9569999999999999 | 0.004050605807457372 | +| Epoch_11_batch_2999.pt | 0.9566666666666667 | 0.0038409746705430252 | +| Epoch_10_batch_5999.pt | 0.9566666666666664 | 0.004172218523448578 | +| Epoch_10_batch_2999.pt | 0.9555 | 0.004037249399783144 | +| Epoch_9_batch_2999.pt | 0.9513333333333331 | 0.004185512933741636 | +| Epoch_9_batch_5999.pt | 0.9511666666666667 | 0.0038813418832685715 | +| Epoch_7.pt | 0.951 | 0.0037859388972001883 | +| Epoch_8.pt | 0.9501666666666667 | 0.0038042374035044367 | +| Epoch_9.pt | 0.9486666666666667 | 0.004214905941864593 | +| Epoch_3.pt | 0.9481666666666666 | 0.004017323597731317 | +| Epoch_6.pt | 0.9480000000000001 | 0.003485419364746254 | +| Epoch_5.pt | 0.9471666666666666 | 0.004150338376804387 | +| Epoch_2.pt | 0.9446666666666668 | 0.0032375116187407693 | +| Epoch_4.pt | 0.9428333333333334 | 0.0038654052859553255 | +| Epoch_1.pt | 0.9356666666666668 | 0.004715354483093983 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..f248914235c29d0f898a1b71ac33825c6fe71bec --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_cplfw.txt @@ -0,0 +1,39 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14_batch_2999.pt | 0.9033333333333333 | 0.005533288710217213 | +| Epoch_13.pt | 0.9031666666666667 | 0.005112620550059319 | +| Epoch_14_batch_5999.pt | 0.9023333333333333 | 0.004920353294552114 | +| Epoch_16.pt | 0.9018333333333335 | 0.004965622559901973 | +| Epoch_15_batch_5999.pt | 0.9013333333333333 | 0.005029542354558341 | +| Epoch_17_batch_5999.pt | 0.9011666666666667 | 0.005420867317056913 | +| Epoch_15.pt | 0.901 | 0.005528824579833208 | +| Epoch_16_batch_5999.pt | 0.9006666666666666 | 0.005528824579833213 | +| Epoch_13_batch_2999.pt | 0.9006666666666666 | 0.0048444954125759195 | +| Epoch_17_batch_2999.pt | 0.9006666666666666 | 0.0054614247677531175 | +| Epoch_15_batch_2999.pt | 0.9004999999999999 | 0.00483077837962853 | +| Epoch_12_batch_5999.pt | 0.9003333333333332 | 0.005269291422835276 | +| Epoch_17.pt | 0.9 | 0.005235208439728779 | +| Epoch_16_batch_2999.pt | 0.8998333333333333 | 0.005411749905255874 | +| Epoch_14.pt | 0.8993333333333332 | 0.004957847003849572 | +| Epoch_13_batch_5999.pt | 0.8985 | 0.004896773944315621 | +| Epoch_10_batch_5999.pt | 0.8985 | 0.006375347969200976 | +| Epoch_12_batch_2999.pt | 0.8978333333333332 | 0.0046417988211787335 | +| Epoch_10.pt | 0.8968333333333334 | 0.0055691500337812245 | +| Epoch_11_batch_5999.pt | 0.8968333333333334 | 0.005928847659360227 | +| Epoch_11.pt | 0.8965 | 0.005722222222222225 | +| Epoch_10_batch_2999.pt | 0.8961666666666666 | 0.006030017505041844 | +| Epoch_11_batch_2999.pt | 0.8939999999999999 | 0.005545546539319011 | +| Epoch_12.pt | 0.8938333333333333 | 0.004925682255181749 | +| Epoch_9_batch_5999.pt | 0.866 | 0.006246974576386931 | +| Epoch_5.pt | 0.866 | 0.00622222222222222 | +| Epoch_7.pt | 0.8651666666666665 | 0.007346999051431023 | +| Epoch_6.pt | 0.8641666666666667 | 0.007670892555145885 | +| Epoch_9.pt | 0.8634999999999999 | 0.006297412755045308 | +| Epoch_4.pt | 0.8606666666666667 | 0.005937950762616616 | +| Epoch_9_batch_2999.pt | 0.8598333333333332 | 0.004965622559901967 | +| Epoch_3.pt | 0.8591666666666666 | 0.005617707893376858 | +| Epoch_2.pt | 0.8588333333333333 | 0.006070826819437769 | +| Epoch_8.pt | 0.8583333333333334 | 0.005538863813606443 | +| Epoch_1.pt | 0.841 | 0.006147367197165804 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..30984d13f38f3f23aff2ac4e67507437e9d7290b --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_lfw.txt @@ -0,0 +1,39 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14.pt | 0.9981666666666668 | 0.0006309898162000297 | +| Epoch_15_batch_5999.pt | 0.9981666666666668 | 0.0006781419786518711 | +| Epoch_17_batch_5999.pt | 0.9981666666666668 | 0.0006309898162000297 | +| Epoch_13.pt | 0.9981666666666668 | 0.0006309898162000297 | +| Epoch_10.pt | 0.9981666666666665 | 0.0006309898162000297 | +| Epoch_13_batch_2999.pt | 0.9979999999999999 | 0.0005983516452371659 | +| Epoch_13_batch_5999.pt | 0.9979999999999999 | 0.0005983516452371659 | +| Epoch_12_batch_2999.pt | 0.9979999999999999 | 0.0005983516452371659 | +| Epoch_17.pt | 0.9978333333333333 | 0.0007049209744694192 | +| Epoch_12_batch_5999.pt | 0.9978333333333333 | 0.0007049209744694192 | +| Epoch_15_batch_2999.pt | 0.9978333333333333 | 0.0007049209744694192 | +| Epoch_10_batch_5999.pt | 0.9978333333333333 | 0.0007474235581707629 | +| Epoch_16_batch_5999.pt | 0.9976666666666667 | 0.0007114582486036506 | +| Epoch_11_batch_2999.pt | 0.9976666666666667 | 0.0008314794192831015 | +| Epoch_16.pt | 0.9976666666666667 | 0.0007114582486036506 | +| Epoch_17_batch_2999.pt | 0.9976666666666667 | 0.0007114582486036506 | +| Epoch_9.pt | 0.9976666666666667 | 0.0008678055195451802 | +| Epoch_16_batch_2999.pt | 0.9976666666666667 | 0.0007114582486036506 | +| Epoch_14_batch_2999.pt | 0.9976666666666667 | 0.0007114582486036506 | +| Epoch_5.pt | 0.9976666666666667 | 0.0007114582486036506 | +| Epoch_11_batch_5999.pt | 0.9976666666666667 | 0.0008678055195451803 | +| Epoch_11.pt | 0.9976666666666667 | 0.0007114582486036506 | +| Epoch_14_batch_5999.pt | 0.9974999999999999 | 0.000833333333333329 | +| Epoch_10_batch_2999.pt | 0.9974999999999999 | 0.0007136240321480632 | +| Epoch_9_batch_5999.pt | 0.9974999999999999 | 0.000668977476599572 | +| Epoch_15.pt | 0.9974999999999999 | 0.0007954345035153557 | +| Epoch_12.pt | 0.9973333333333333 | 0.0011439589045541142 | +| Epoch_6.pt | 0.9973333333333333 | 0.0009686442096757043 | +| Epoch_4.pt | 0.9971666666666668 | 0.0008258927081843642 | +| Epoch_7.pt | 0.9970000000000001 | 0.000853460638652065 | +| Epoch_3.pt | 0.9966666666666667 | 0.0008958064164776142 | +| Epoch_2.pt | 0.9966666666666667 | 0.0008958064164776142 | +| Epoch_8.pt | 0.9964999999999999 | 0.0009111788592698182 | +| Epoch_9_batch_2999.pt | 0.9961666666666666 | 0.0013158576980363342 | +| Epoch_1.pt | 0.9951666666666666 | 0.0010671873729054782 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_megaface.txt b/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_megaface.txt new file mode 100644 index 0000000000000000000000000000000000000000..924d78a28fd28f5aac20a47e6b0ab855589fd0cb --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet92/accu_files/accu_megaface.txt @@ -0,0 +1,14 @@ ++------+--------------------+ +| rank | accuracy | ++------+--------------------+ +| 1 | 0.9808831378470911 | +| 2 | 0.9867867789681971 | +| 3 | 0.9886092922139631 | +| 4 | 0.989644219378523 | +| 5 | 0.9904187875079735 | +| 6 | 0.9909785594334587 | +| 7 | 0.9914537146725334 | +| 8 | 0.9919288699116081 | +| 9 | 0.9922868635848836 | +| 10 | 0.9925081687647266 | ++------+--------------------+ diff --git a/bob/bio/facexzoo/models/backbones/AttentionNet92/log.log b/bob/bio/facexzoo/models/backbones/AttentionNet92/log.log new file mode 100644 index 0000000000000000000000000000000000000000..f1ac01ef49f7d7a549b7af02af1b2a9dd6e9130d --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/AttentionNet92/log.log @@ -0,0 +1,441 @@ +INFO 2021-01-22 11:27:19 train_amp.py: 180] Start optimization. +INFO 2021-01-22 11:27:19 train_amp.py: 181] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='AttentionNet', batch_size=512, data_root='/home/wangjun492/wj_data/facex-zoo/private_file/train_data/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='MV-Softmax', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='mv-hrnet', train_file='/home/wangjun492/wj_data/facex-zoo/private_file/train_data/deepglint/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7f9c284d07f0>) +backbone param: +{'stage1_modules': 1, 'stage2_modules': 2, 'stage3_modules': 3, 'feat_dim': 512, 'out_h': 7, 'out_w': 7} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +Selected optimization level O1: Insert automatic casts around Pytorch functions and Tensor methods. + +Defaults for this optimization level are: +enabled : True +opt_level : O1 +cast_model_type : None +patch_torch_functions : True +keep_batchnorm_fp32 : None +master_weights : None +loss_scale : dynamic +Processing user overrides (additional kwargs that are not None)... +After processing overrides, optimization options are: +enabled : True +opt_level : O1 +cast_model_type : None +patch_torch_functions : True +keep_batchnorm_fp32 : None +master_weights : None +loss_scale : dynamic +INFO 2021-01-22 11:27:47 train_amp.py: 80] Epoch 0, iter 0/6416, lr 0.100000, loss 16.200769 +INFO 2021-01-22 11:36:01 train_amp.py: 80] Epoch 0, iter 200/6416, lr 0.100000, loss 15.650791 +INFO 2021-01-22 11:44:16 train_amp.py: 80] Epoch 0, iter 400/6416, lr 0.100000, loss 15.396689 +INFO 2021-01-22 11:52:31 train_amp.py: 80] Epoch 0, iter 600/6416, lr 0.100000, loss 15.359234 +INFO 2021-01-22 12:00:46 train_amp.py: 80] Epoch 0, iter 800/6416, lr 0.100000, loss 15.313069 +INFO 2021-01-22 12:09:02 train_amp.py: 80] Epoch 0, iter 1000/6416, lr 0.100000, loss 15.244729 +INFO 2021-01-22 12:17:18 train_amp.py: 80] Epoch 0, iter 1200/6416, lr 0.100000, loss 15.122207 +INFO 2021-01-22 12:25:33 train_amp.py: 80] Epoch 0, iter 1400/6416, lr 0.100000, loss 14.887803 +INFO 2021-01-22 12:33:49 train_amp.py: 80] Epoch 0, iter 1600/6416, lr 0.100000, loss 14.569927 +INFO 2021-01-22 12:42:04 train_amp.py: 80] Epoch 0, iter 1800/6416, lr 0.100000, loss 14.213781 +INFO 2021-01-22 12:50:20 train_amp.py: 80] Epoch 0, iter 2000/6416, lr 0.100000, loss 13.832066 +INFO 2021-01-22 12:58:36 train_amp.py: 80] Epoch 0, iter 2200/6416, lr 0.100000, loss 13.460406 +INFO 2021-01-22 13:06:53 train_amp.py: 80] Epoch 0, iter 2400/6416, lr 0.100000, loss 13.025999 +INFO 2021-01-22 13:15:09 train_amp.py: 80] Epoch 0, iter 2600/6416, lr 0.100000, loss 12.596452 +INFO 2021-01-22 13:23:26 train_amp.py: 80] Epoch 0, iter 2800/6416, lr 0.100000, loss 12.186990 +INFO 2021-01-22 13:31:40 train_amp.py: 93] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2021-01-22 13:31:42 train_amp.py: 80] Epoch 0, iter 3000/6416, lr 0.100000, loss 11.875443 +INFO 2021-01-22 13:39:57 train_amp.py: 80] Epoch 0, iter 3200/6416, lr 0.100000, loss 11.691376 +INFO 2021-01-22 13:48:12 train_amp.py: 80] Epoch 0, iter 3400/6416, lr 0.100000, loss 11.708680 +INFO 2021-01-22 13:56:26 train_amp.py: 80] Epoch 0, iter 3600/6416, lr 0.100000, loss 11.784122 +INFO 2021-01-22 14:04:39 train_amp.py: 80] Epoch 0, iter 3800/6416, lr 0.100000, loss 12.037083 +INFO 2021-01-22 14:12:51 train_amp.py: 80] Epoch 0, iter 4000/6416, lr 0.100000, loss 12.344254 +INFO 2021-01-22 14:21:03 train_amp.py: 80] Epoch 0, iter 4200/6416, lr 0.100000, loss 12.699137 +INFO 2021-01-22 14:29:15 train_amp.py: 80] Epoch 0, iter 4400/6416, lr 0.100000, loss 12.954928 +INFO 2021-01-22 14:37:25 train_amp.py: 80] Epoch 0, iter 4600/6416, lr 0.100000, loss 13.173759 +INFO 2021-01-22 14:45:35 train_amp.py: 80] Epoch 0, iter 4800/6416, lr 0.100000, loss 13.346399 +INFO 2021-01-22 14:53:44 train_amp.py: 80] Epoch 0, iter 5000/6416, lr 0.100000, loss 13.424897 +INFO 2021-01-22 15:01:54 train_amp.py: 80] Epoch 0, iter 5200/6416, lr 0.100000, loss 13.438772 +INFO 2021-01-22 15:10:03 train_amp.py: 80] Epoch 0, iter 5400/6416, lr 0.100000, loss 13.295961 +INFO 2021-01-22 15:18:12 train_amp.py: 80] Epoch 0, iter 5600/6416, lr 0.100000, loss 13.154845 +INFO 2021-01-22 15:26:20 train_amp.py: 80] Epoch 0, iter 5800/6416, lr 0.100000, loss 12.944470 +INFO 2021-01-22 15:34:27 train_amp.py: 93] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2021-01-22 15:34:29 train_amp.py: 80] Epoch 0, iter 6000/6416, lr 0.100000, loss 12.652119 +INFO 2021-01-22 15:42:37 train_amp.py: 80] Epoch 0, iter 6200/6416, lr 0.100000, loss 12.393544 +INFO 2021-01-22 15:50:46 train_amp.py: 80] Epoch 0, iter 6400/6416, lr 0.100000, loss 12.058863 +INFO 2021-01-22 15:51:21 train_amp.py: 98] Save checkpoint Epoch_0.pt to disk... +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-01-22 15:51:25 train_amp.py: 80] Epoch 1, iter 0/6416, lr 0.100000, loss 11.820808 +INFO 2021-01-22 15:59:31 train_amp.py: 80] Epoch 1, iter 200/6416, lr 0.100000, loss 11.347225 +INFO 2021-01-22 16:07:37 train_amp.py: 80] Epoch 1, iter 400/6416, lr 0.100000, loss 11.088671 +INFO 2021-01-22 16:15:44 train_amp.py: 80] Epoch 1, iter 600/6416, lr 0.100000, loss 10.792624 +INFO 2021-01-22 16:23:50 train_amp.py: 80] Epoch 1, iter 800/6416, lr 0.100000, loss 10.556611 +INFO 2021-01-22 16:31:56 train_amp.py: 80] Epoch 1, iter 1000/6416, lr 0.100000, loss 10.294086 +INFO 2021-01-22 16:40:02 train_amp.py: 80] Epoch 1, iter 1200/6416, lr 0.100000, loss 9.994435 +INFO 2021-01-22 16:48:08 train_amp.py: 80] Epoch 1, iter 1400/6416, lr 0.100000, loss 9.727042 +INFO 2021-01-22 16:56:15 train_amp.py: 80] Epoch 1, iter 1600/6416, lr 0.100000, loss 9.491597 +INFO 2021-01-22 17:04:21 train_amp.py: 80] Epoch 1, iter 1800/6416, lr 0.100000, loss 9.267840 +INFO 2021-01-22 17:12:27 train_amp.py: 80] Epoch 1, iter 2000/6416, lr 0.100000, loss 9.047816 +INFO 2021-01-22 17:20:34 train_amp.py: 80] Epoch 1, iter 2200/6416, lr 0.100000, loss 8.831102 +INFO 2021-01-22 17:28:41 train_amp.py: 80] Epoch 1, iter 2400/6416, lr 0.100000, loss 8.630591 +INFO 2021-01-22 17:36:47 train_amp.py: 80] Epoch 1, iter 2600/6416, lr 0.100000, loss 8.447793 +INFO 2021-01-22 17:44:53 train_amp.py: 80] Epoch 1, iter 2800/6416, lr 0.100000, loss 8.307894 +INFO 2021-01-22 17:52:58 train_amp.py: 93] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2021-01-22 17:53:01 train_amp.py: 80] Epoch 1, iter 3000/6416, lr 0.100000, loss 8.133036 +INFO 2021-01-22 18:01:07 train_amp.py: 80] Epoch 1, iter 3200/6416, lr 0.100000, loss 7.956565 +INFO 2021-01-22 18:09:14 train_amp.py: 80] Epoch 1, iter 3400/6416, lr 0.100000, loss 7.832110 +INFO 2021-01-22 18:17:20 train_amp.py: 80] Epoch 1, iter 3600/6416, lr 0.100000, loss 7.698390 +INFO 2021-01-22 18:25:27 train_amp.py: 80] Epoch 1, iter 3800/6416, lr 0.100000, loss 7.564181 +INFO 2021-01-22 18:33:34 train_amp.py: 80] Epoch 1, iter 4000/6416, lr 0.100000, loss 7.421879 +INFO 2021-01-22 18:41:40 train_amp.py: 80] Epoch 1, iter 4200/6416, lr 0.100000, loss 7.337094 +INFO 2021-01-22 18:49:47 train_amp.py: 80] Epoch 1, iter 4400/6416, lr 0.100000, loss 7.203218 +INFO 2021-01-22 18:57:54 train_amp.py: 80] Epoch 1, iter 4600/6416, lr 0.100000, loss 7.126578 +INFO 2021-01-22 19:06:00 train_amp.py: 80] Epoch 1, iter 4800/6416, lr 0.100000, loss 6.999827 +INFO 2021-01-22 19:14:07 train_amp.py: 80] Epoch 1, iter 5000/6416, lr 0.100000, loss 6.957920 +INFO 2021-01-22 19:22:14 train_amp.py: 80] Epoch 1, iter 5200/6416, lr 0.100000, loss 6.833013 +INFO 2021-01-22 19:30:20 train_amp.py: 80] Epoch 1, iter 5400/6416, lr 0.100000, loss 6.763639 +INFO 2021-01-22 19:38:27 train_amp.py: 80] Epoch 1, iter 5600/6416, lr 0.100000, loss 6.675965 +INFO 2021-01-22 19:46:33 train_amp.py: 80] Epoch 1, iter 5800/6416, lr 0.100000, loss 6.589048 +INFO 2021-01-22 19:54:38 train_amp.py: 93] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2021-01-22 19:54:40 train_amp.py: 80] Epoch 1, iter 6000/6416, lr 0.100000, loss 6.542221 +INFO 2021-01-22 20:02:46 train_amp.py: 80] Epoch 1, iter 6200/6416, lr 0.100000, loss 6.475078 +INFO 2021-01-22 20:10:53 train_amp.py: 80] Epoch 1, iter 6400/6416, lr 0.100000, loss 6.411744 +INFO 2021-01-22 20:11:28 train_amp.py: 98] Save checkpoint Epoch_1.pt to disk... +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 131072.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +INFO 2021-01-22 20:11:32 train_amp.py: 80] Epoch 2, iter 0/6416, lr 0.100000, loss 6.430531 +INFO 2021-01-22 20:19:38 train_amp.py: 80] Epoch 2, iter 200/6416, lr 0.100000, loss 5.644422 +INFO 2021-01-22 20:27:44 train_amp.py: 80] Epoch 2, iter 400/6416, lr 0.100000, loss 5.725728 +INFO 2021-01-22 20:35:51 train_amp.py: 80] Epoch 2, iter 600/6416, lr 0.100000, loss 5.765044 +INFO 2021-01-22 20:43:57 train_amp.py: 80] Epoch 2, iter 800/6416, lr 0.100000, loss 5.819584 +INFO 2021-01-22 20:52:04 train_amp.py: 80] Epoch 2, iter 1000/6416, lr 0.100000, loss 5.813375 +INFO 2021-01-22 21:00:10 train_amp.py: 80] Epoch 2, iter 1200/6416, lr 0.100000, loss 5.825755 +INFO 2021-01-22 21:08:17 train_amp.py: 80] Epoch 2, iter 1400/6416, lr 0.100000, loss 5.800301 +INFO 2021-01-22 21:16:23 train_amp.py: 80] Epoch 2, iter 1600/6416, lr 0.100000, loss 5.800774 +INFO 2021-01-22 21:24:30 train_amp.py: 80] Epoch 2, iter 1800/6416, lr 0.100000, loss 5.803499 +INFO 2021-01-22 21:32:37 train_amp.py: 80] Epoch 2, iter 2000/6416, lr 0.100000, loss 5.793053 +INFO 2021-01-22 21:40:44 train_amp.py: 80] Epoch 2, iter 2200/6416, lr 0.100000, loss 5.752284 +INFO 2021-01-22 21:48:51 train_amp.py: 80] Epoch 2, iter 2400/6416, lr 0.100000, loss 5.708198 +INFO 2021-01-22 21:56:57 train_amp.py: 80] Epoch 2, iter 2600/6416, lr 0.100000, loss 5.727209 +INFO 2021-01-22 22:05:04 train_amp.py: 80] Epoch 2, iter 2800/6416, lr 0.100000, loss 5.657213 +INFO 2021-01-22 22:13:09 train_amp.py: 93] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2021-01-22 22:13:12 train_amp.py: 80] Epoch 2, iter 3000/6416, lr 0.100000, loss 5.644669 +INFO 2021-01-22 22:21:19 train_amp.py: 80] Epoch 2, iter 3200/6416, lr 0.100000, loss 5.608233 +INFO 2021-01-22 22:29:26 train_amp.py: 80] Epoch 2, iter 3400/6416, lr 0.100000, loss 5.576870 +INFO 2021-01-22 22:37:33 train_amp.py: 80] Epoch 2, iter 3600/6416, lr 0.100000, loss 5.532724 +INFO 2021-01-22 22:45:40 train_amp.py: 80] Epoch 2, iter 3800/6416, lr 0.100000, loss 5.531711 +INFO 2021-01-22 22:53:47 train_amp.py: 80] Epoch 2, iter 4000/6416, lr 0.100000, loss 5.492676 +INFO 2021-01-22 23:01:54 train_amp.py: 80] Epoch 2, iter 4200/6416, lr 0.100000, loss 5.450874 +INFO 2021-01-22 23:10:01 train_amp.py: 80] Epoch 2, iter 4400/6416, lr 0.100000, loss 5.415592 +INFO 2021-01-22 23:18:09 train_amp.py: 80] Epoch 2, iter 4600/6416, lr 0.100000, loss 5.451228 +INFO 2021-01-22 23:26:16 train_amp.py: 80] Epoch 2, iter 4800/6416, lr 0.100000, loss 5.393117 +INFO 2021-01-22 23:34:24 train_amp.py: 80] Epoch 2, iter 5000/6416, lr 0.100000, loss 5.343950 +INFO 2021-01-22 23:42:31 train_amp.py: 80] Epoch 2, iter 5200/6416, lr 0.100000, loss 5.354063 +INFO 2021-01-22 23:50:39 train_amp.py: 80] Epoch 2, iter 5400/6416, lr 0.100000, loss 5.321516 +INFO 2021-01-22 23:58:47 train_amp.py: 80] Epoch 2, iter 5600/6416, lr 0.100000, loss 5.272619 +INFO 2021-01-23 00:06:54 train_amp.py: 80] Epoch 2, iter 5800/6416, lr 0.100000, loss 5.256074 +INFO 2021-01-23 00:14:59 train_amp.py: 93] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2021-01-23 00:15:02 train_amp.py: 80] Epoch 2, iter 6000/6416, lr 0.100000, loss 5.242422 +INFO 2021-01-23 00:23:09 train_amp.py: 80] Epoch 2, iter 6200/6416, lr 0.100000, loss 5.222620 +INFO 2021-01-23 00:31:16 train_amp.py: 80] Epoch 2, iter 6400/6416, lr 0.100000, loss 5.177877 +INFO 2021-01-23 00:31:52 train_amp.py: 98] Save checkpoint Epoch_2.pt to disk... +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 131072.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +INFO 2021-01-23 00:31:55 train_amp.py: 80] Epoch 3, iter 0/6416, lr 0.100000, loss 5.053004 +INFO 2021-01-23 00:40:02 train_amp.py: 80] Epoch 3, iter 200/6416, lr 0.100000, loss 4.496916 +INFO 2021-01-23 00:48:08 train_amp.py: 80] Epoch 3, iter 400/6416, lr 0.100000, loss 4.586180 +INFO 2021-01-23 00:56:14 train_amp.py: 80] Epoch 3, iter 600/6416, lr 0.100000, loss 4.670625 +INFO 2021-01-23 01:04:21 train_amp.py: 80] Epoch 3, iter 800/6416, lr 0.100000, loss 4.706992 +INFO 2021-01-23 01:12:27 train_amp.py: 80] Epoch 3, iter 1000/6416, lr 0.100000, loss 4.776439 +INFO 2021-01-23 01:20:33 train_amp.py: 80] Epoch 3, iter 1200/6416, lr 0.100000, loss 4.773361 +INFO 2021-01-23 01:28:40 train_amp.py: 80] Epoch 3, iter 1400/6416, lr 0.100000, loss 4.837910 +INFO 2021-01-23 01:36:46 train_amp.py: 80] Epoch 3, iter 1600/6416, lr 0.100000, loss 4.836994 +INFO 2021-01-23 01:44:53 train_amp.py: 80] Epoch 3, iter 1800/6416, lr 0.100000, loss 4.864613 +INFO 2021-01-23 01:53:00 train_amp.py: 80] Epoch 3, iter 2000/6416, lr 0.100000, loss 4.810300 +INFO 2021-01-23 02:01:07 train_amp.py: 80] Epoch 3, iter 2200/6416, lr 0.100000, loss 4.842055 +INFO 2021-01-23 02:09:13 train_amp.py: 80] Epoch 3, iter 2400/6416, lr 0.100000, loss 4.846513 +INFO 2021-01-23 02:17:20 train_amp.py: 80] Epoch 3, iter 2600/6416, lr 0.100000, loss 4.828449 +INFO 2021-01-23 02:25:27 train_amp.py: 80] Epoch 3, iter 2800/6416, lr 0.100000, loss 4.795540 +INFO 2021-01-23 02:33:32 train_amp.py: 93] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2021-01-23 02:33:35 train_amp.py: 80] Epoch 3, iter 3000/6416, lr 0.100000, loss 4.791901 +INFO 2021-01-23 02:41:42 train_amp.py: 80] Epoch 3, iter 3200/6416, lr 0.100000, loss 4.817109 +INFO 2021-01-23 02:49:49 train_amp.py: 80] Epoch 3, iter 3400/6416, lr 0.100000, loss 4.805560 +INFO 2021-01-23 02:57:56 train_amp.py: 80] Epoch 3, iter 3600/6416, lr 0.100000, loss 4.740652 +INFO 2021-01-23 03:06:03 train_amp.py: 80] Epoch 3, iter 3800/6416, lr 0.100000, loss 4.779515 +INFO 2021-01-23 03:14:10 train_amp.py: 80] Epoch 3, iter 4000/6416, lr 0.100000, loss 4.769814 +INFO 2021-01-23 03:22:17 train_amp.py: 80] Epoch 3, iter 4200/6416, lr 0.100000, loss 4.716411 +INFO 2021-01-23 03:30:24 train_amp.py: 80] Epoch 3, iter 4400/6416, lr 0.100000, loss 4.723036 +INFO 2021-01-23 03:38:31 train_amp.py: 80] Epoch 3, iter 4600/6416, lr 0.100000, loss 4.743889 +INFO 2021-01-23 03:46:37 train_amp.py: 80] Epoch 3, iter 4800/6416, lr 0.100000, loss 4.711898 +INFO 2021-01-23 03:54:44 train_amp.py: 80] Epoch 3, iter 5000/6416, lr 0.100000, loss 4.676345 +INFO 2021-01-23 04:02:51 train_amp.py: 80] Epoch 3, iter 5200/6416, lr 0.100000, loss 4.682190 +INFO 2021-01-23 04:10:58 train_amp.py: 80] Epoch 3, iter 5400/6416, lr 0.100000, loss 4.627394 +INFO 2021-01-23 04:19:06 train_amp.py: 80] Epoch 3, iter 5600/6416, lr 0.100000, loss 4.623215 +INFO 2021-01-23 04:27:13 train_amp.py: 80] Epoch 3, iter 5800/6416, lr 0.100000, loss 4.642187 +INFO 2021-01-23 04:35:18 train_amp.py: 93] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2021-01-23 04:35:20 train_amp.py: 80] Epoch 3, iter 6000/6416, lr 0.100000, loss 4.630307 +INFO 2021-01-23 04:43:26 train_amp.py: 80] Epoch 3, iter 6200/6416, lr 0.100000, loss 4.629063 +INFO 2021-01-23 04:51:33 train_amp.py: 80] Epoch 3, iter 6400/6416, lr 0.100000, loss 4.587063 +INFO 2021-01-23 04:52:08 train_amp.py: 98] Save checkpoint Epoch_3.pt to disk... +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 131072.0 +INFO 2021-01-23 04:52:12 train_amp.py: 80] Epoch 4, iter 0/6416, lr 0.100000, loss 4.536706 +INFO 2021-01-23 05:00:17 train_amp.py: 80] Epoch 4, iter 200/6416, lr 0.100000, loss 3.937602 +INFO 2021-01-23 05:08:23 train_amp.py: 80] Epoch 4, iter 400/6416, lr 0.100000, loss 4.016549 +INFO 2021-01-23 05:16:29 train_amp.py: 80] Epoch 4, iter 600/6416, lr 0.100000, loss 4.092552 +INFO 2021-01-23 05:24:35 train_amp.py: 80] Epoch 4, iter 800/6416, lr 0.100000, loss 4.187135 +INFO 2021-01-23 05:32:40 train_amp.py: 80] Epoch 4, iter 1000/6416, lr 0.100000, loss 4.228737 +INFO 2021-01-23 05:40:46 train_amp.py: 80] Epoch 4, iter 1200/6416, lr 0.100000, loss 4.270726 +INFO 2021-01-23 05:48:52 train_amp.py: 80] Epoch 4, iter 1400/6416, lr 0.100000, loss 4.313067 +INFO 2021-01-23 05:56:58 train_amp.py: 80] Epoch 4, iter 1600/6416, lr 0.100000, loss 4.297603 +INFO 2021-01-23 06:05:04 train_amp.py: 80] Epoch 4, iter 1800/6416, lr 0.100000, loss 4.343759 +INFO 2021-01-23 06:13:10 train_amp.py: 80] Epoch 4, iter 2000/6416, lr 0.100000, loss 4.329446 +INFO 2021-01-23 06:21:15 train_amp.py: 80] Epoch 4, iter 2200/6416, lr 0.100000, loss 4.371943 +INFO 2021-01-23 06:29:22 train_amp.py: 80] Epoch 4, iter 2400/6416, lr 0.100000, loss 4.353969 +INFO 2021-01-23 06:37:28 train_amp.py: 80] Epoch 4, iter 2600/6416, lr 0.100000, loss 4.375121 +INFO 2021-01-23 06:45:34 train_amp.py: 80] Epoch 4, iter 2800/6416, lr 0.100000, loss 4.366602 +INFO 2021-01-23 06:53:38 train_amp.py: 93] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2021-01-23 06:53:41 train_amp.py: 80] Epoch 4, iter 3000/6416, lr 0.100000, loss 4.327982 +INFO 2021-01-23 07:01:47 train_amp.py: 80] Epoch 4, iter 3200/6416, lr 0.100000, loss 4.371157 +INFO 2021-01-23 07:09:53 train_amp.py: 80] Epoch 4, iter 3400/6416, lr 0.100000, loss 4.326776 +INFO 2021-01-23 07:17:59 train_amp.py: 80] Epoch 4, iter 3600/6416, lr 0.100000, loss 4.325711 +INFO 2021-01-23 07:26:05 train_amp.py: 80] Epoch 4, iter 3800/6416, lr 0.100000, loss 4.324026 +INFO 2021-01-23 07:34:12 train_amp.py: 80] Epoch 4, iter 4000/6416, lr 0.100000, loss 4.341099 +INFO 2021-01-23 07:42:18 train_amp.py: 80] Epoch 4, iter 4200/6416, lr 0.100000, loss 4.367066 +INFO 2021-01-23 07:50:24 train_amp.py: 80] Epoch 4, iter 4400/6416, lr 0.100000, loss 4.339646 +INFO 2021-01-23 07:58:31 train_amp.py: 80] Epoch 4, iter 4600/6416, lr 0.100000, loss 4.344855 +INFO 2021-01-23 08:06:37 train_amp.py: 80] Epoch 4, iter 4800/6416, lr 0.100000, loss 4.316831 +INFO 2021-01-23 08:14:43 train_amp.py: 80] Epoch 4, iter 5000/6416, lr 0.100000, loss 4.285109 +INFO 2021-01-23 08:22:50 train_amp.py: 80] Epoch 4, iter 5200/6416, lr 0.100000, loss 4.293263 +INFO 2021-01-23 08:30:56 train_amp.py: 80] Epoch 4, iter 5400/6416, lr 0.100000, loss 4.305744 +INFO 2021-01-23 08:39:03 train_amp.py: 80] Epoch 4, iter 5600/6416, lr 0.100000, loss 4.295299 +INFO 2021-01-23 08:47:09 train_amp.py: 80] Epoch 4, iter 5800/6416, lr 0.100000, loss 4.273463 +INFO 2021-01-23 08:55:14 train_amp.py: 93] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2021-01-23 08:55:16 train_amp.py: 80] Epoch 4, iter 6000/6416, lr 0.100000, loss 4.270777 +INFO 2021-01-23 09:03:24 train_amp.py: 80] Epoch 4, iter 6200/6416, lr 0.100000, loss 4.282375 +INFO 2021-01-23 09:11:31 train_amp.py: 80] Epoch 4, iter 6400/6416, lr 0.100000, loss 4.245695 +INFO 2021-01-23 09:12:07 train_amp.py: 98] Save checkpoint Epoch_4.pt to disk... +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 262144.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 131072.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-01-23 09:12:10 train_amp.py: 80] Epoch 5, iter 0/6416, lr 0.100000, loss 4.193446 +INFO 2021-01-23 09:20:16 train_amp.py: 80] Epoch 5, iter 200/6416, lr 0.100000, loss 3.615340 +INFO 2021-01-23 09:28:22 train_amp.py: 80] Epoch 5, iter 400/6416, lr 0.100000, loss 3.705306 +INFO 2021-01-23 09:36:28 train_amp.py: 80] Epoch 5, iter 600/6416, lr 0.100000, loss 3.771797 +INFO 2021-01-23 09:44:34 train_amp.py: 80] Epoch 5, iter 800/6416, lr 0.100000, loss 3.832407 +INFO 2021-01-23 09:52:40 train_amp.py: 80] Epoch 5, iter 1000/6416, lr 0.100000, loss 3.905287 +INFO 2021-01-23 10:00:47 train_amp.py: 80] Epoch 5, iter 1200/6416, lr 0.100000, loss 3.948975 +INFO 2021-01-23 10:08:53 train_amp.py: 80] Epoch 5, iter 1400/6416, lr 0.100000, loss 3.995046 +INFO 2021-01-23 10:17:00 train_amp.py: 80] Epoch 5, iter 1600/6416, lr 0.100000, loss 4.005833 +INFO 2021-01-23 10:25:06 train_amp.py: 80] Epoch 5, iter 1800/6416, lr 0.100000, loss 4.016435 +INFO 2021-01-23 10:33:13 train_amp.py: 80] Epoch 5, iter 2000/6416, lr 0.100000, loss 4.020118 +INFO 2021-01-23 10:41:20 train_amp.py: 80] Epoch 5, iter 2200/6416, lr 0.100000, loss 4.049165 +INFO 2021-01-23 10:49:27 train_amp.py: 80] Epoch 5, iter 2400/6416, lr 0.100000, loss 4.064548 +INFO 2021-01-23 10:57:34 train_amp.py: 80] Epoch 5, iter 2600/6416, lr 0.100000, loss 4.068893 +INFO 2021-01-23 11:05:41 train_amp.py: 80] Epoch 5, iter 2800/6416, lr 0.100000, loss 4.445986 +INFO 2021-01-23 11:13:46 train_amp.py: 93] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2021-01-23 11:13:49 train_amp.py: 80] Epoch 5, iter 3000/6416, lr 0.100000, loss 4.139378 +INFO 2021-01-23 11:21:56 train_amp.py: 80] Epoch 5, iter 3200/6416, lr 0.100000, loss 4.113524 +INFO 2021-01-23 11:30:03 train_amp.py: 80] Epoch 5, iter 3400/6416, lr 0.100000, loss 4.125536 +INFO 2021-01-23 11:38:10 train_amp.py: 80] Epoch 5, iter 3600/6416, lr 0.100000, loss 4.081725 +INFO 2021-01-23 11:46:17 train_amp.py: 80] Epoch 5, iter 3800/6416, lr 0.100000, loss 4.092283 +INFO 2021-01-23 11:54:24 train_amp.py: 80] Epoch 5, iter 4000/6416, lr 0.100000, loss 4.112386 +INFO 2021-01-23 12:02:31 train_amp.py: 80] Epoch 5, iter 4200/6416, lr 0.100000, loss 4.087631 +INFO 2021-01-23 12:10:38 train_amp.py: 80] Epoch 5, iter 4400/6416, lr 0.100000, loss 4.075816 +INFO 2021-01-23 12:18:44 train_amp.py: 80] Epoch 5, iter 4600/6416, lr 0.100000, loss 4.083638 +INFO 2021-01-23 12:26:52 train_amp.py: 80] Epoch 5, iter 4800/6416, lr 0.100000, loss 4.073061 +INFO 2021-01-23 12:34:58 train_amp.py: 80] Epoch 5, iter 5000/6416, lr 0.100000, loss 4.086428 +INFO 2021-01-23 12:43:05 train_amp.py: 80] Epoch 5, iter 5200/6416, lr 0.100000, loss 4.040670 +INFO 2021-01-23 12:51:12 train_amp.py: 80] Epoch 5, iter 5400/6416, lr 0.100000, loss 4.063632 +INFO 2021-01-23 12:59:19 train_amp.py: 80] Epoch 5, iter 5600/6416, lr 0.100000, loss 4.040343 +INFO 2021-01-23 13:07:26 train_amp.py: 80] Epoch 5, iter 5800/6416, lr 0.100000, loss 4.016819 +INFO 2021-01-23 13:15:31 train_amp.py: 93] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2021-01-23 13:15:34 train_amp.py: 80] Epoch 5, iter 6000/6416, lr 0.100000, loss 4.039247 +INFO 2021-01-23 13:23:40 train_amp.py: 80] Epoch 5, iter 6200/6416, lr 0.100000, loss 3.971773 +INFO 2021-01-23 13:31:47 train_amp.py: 80] Epoch 5, iter 6400/6416, lr 0.100000, loss 3.991577 +INFO 2021-01-23 13:32:22 train_amp.py: 98] Save checkpoint Epoch_5.pt to disk... +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +INFO 2021-01-23 13:32:26 train_amp.py: 80] Epoch 6, iter 0/6416, lr 0.100000, loss 3.981857 +INFO 2021-01-23 13:40:31 train_amp.py: 80] Epoch 6, iter 200/6416, lr 0.100000, loss 3.516364 +INFO 2021-01-23 13:48:36 train_amp.py: 80] Epoch 6, iter 400/6416, lr 0.100000, loss 3.493047 +INFO 2021-01-23 13:56:42 train_amp.py: 80] Epoch 6, iter 600/6416, lr 0.100000, loss 3.576897 +INFO 2021-01-23 14:04:47 train_amp.py: 80] Epoch 6, iter 800/6416, lr 0.100000, loss 3.664588 +INFO 2021-01-23 14:12:52 train_amp.py: 80] Epoch 6, iter 1000/6416, lr 0.100000, loss 3.700190 +INFO 2021-01-23 14:20:58 train_amp.py: 80] Epoch 6, iter 1200/6416, lr 0.100000, loss 3.727872 +INFO 2021-01-23 14:29:03 train_amp.py: 80] Epoch 6, iter 1400/6416, lr 0.100000, loss 3.748572 +INFO 2021-01-23 14:37:09 train_amp.py: 80] Epoch 6, iter 1600/6416, lr 0.100000, loss 3.791810 +INFO 2021-01-23 14:45:15 train_amp.py: 80] Epoch 6, iter 1800/6416, lr 0.100000, loss 3.818300 +INFO 2021-01-23 14:53:21 train_amp.py: 80] Epoch 6, iter 2000/6416, lr 0.100000, loss 3.808685 +INFO 2021-01-23 15:01:27 train_amp.py: 80] Epoch 6, iter 2200/6416, lr 0.100000, loss 3.854625 +INFO 2021-01-23 15:09:33 train_amp.py: 80] Epoch 6, iter 2400/6416, lr 0.100000, loss 3.866210 +INFO 2021-01-23 15:17:38 train_amp.py: 80] Epoch 6, iter 2600/6416, lr 0.100000, loss 3.853472 +INFO 2021-01-23 15:25:44 train_amp.py: 80] Epoch 6, iter 2800/6416, lr 0.100000, loss 3.871405 +INFO 2021-01-23 15:33:48 train_amp.py: 93] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2021-01-23 15:33:51 train_amp.py: 80] Epoch 6, iter 3000/6416, lr 0.100000, loss 3.855416 +INFO 2021-01-23 15:41:57 train_amp.py: 80] Epoch 6, iter 3200/6416, lr 0.100000, loss 3.884241 +INFO 2021-01-23 15:50:03 train_amp.py: 80] Epoch 6, iter 3400/6416, lr 0.100000, loss 3.908138 +INFO 2021-01-23 15:58:09 train_amp.py: 80] Epoch 6, iter 3600/6416, lr 0.100000, loss 3.886681 +INFO 2021-01-23 16:06:16 train_amp.py: 80] Epoch 6, iter 3800/6416, lr 0.100000, loss 3.887693 +INFO 2021-01-23 16:14:22 train_amp.py: 80] Epoch 6, iter 4000/6416, lr 0.100000, loss 3.887921 +INFO 2021-01-23 16:22:28 train_amp.py: 80] Epoch 6, iter 4200/6416, lr 0.100000, loss 3.892143 +INFO 2021-01-23 16:30:34 train_amp.py: 80] Epoch 6, iter 4400/6416, lr 0.100000, loss 3.874170 +INFO 2021-01-23 16:38:41 train_amp.py: 80] Epoch 6, iter 4600/6416, lr 0.100000, loss 3.874878 +INFO 2021-01-23 16:46:47 train_amp.py: 80] Epoch 6, iter 4800/6416, lr 0.100000, loss 3.862447 +INFO 2021-01-23 16:54:53 train_amp.py: 80] Epoch 6, iter 5000/6416, lr 0.100000, loss 3.856809 +INFO 2021-01-23 17:02:59 train_amp.py: 80] Epoch 6, iter 5200/6416, lr 0.100000, loss 3.843367 +INFO 2021-01-23 17:11:05 train_amp.py: 80] Epoch 6, iter 5400/6416, lr 0.100000, loss 3.860189 +INFO 2021-01-23 17:19:11 train_amp.py: 80] Epoch 6, iter 5600/6416, lr 0.100000, loss 3.888652 +INFO 2021-01-23 17:27:18 train_amp.py: 80] Epoch 6, iter 5800/6416, lr 0.100000, loss 3.844141 +INFO 2021-01-23 17:35:22 train_amp.py: 93] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2021-01-23 17:35:25 train_amp.py: 80] Epoch 6, iter 6000/6416, lr 0.100000, loss 3.815569 +INFO 2021-01-23 17:43:32 train_amp.py: 80] Epoch 6, iter 6200/6416, lr 0.100000, loss 3.845630 +INFO 2021-01-23 17:51:39 train_amp.py: 80] Epoch 6, iter 6400/6416, lr 0.100000, loss 3.844138 +INFO 2021-01-23 17:52:14 train_amp.py: 98] Save checkpoint Epoch_6.pt to disk... +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 131072.0 +INFO 2021-01-23 17:52:18 train_amp.py: 80] Epoch 7, iter 0/6416, lr 0.100000, loss 3.852761 +INFO 2021-01-23 18:00:24 train_amp.py: 80] Epoch 7, iter 200/6416, lr 0.100000, loss 3.233932 +INFO 2021-01-23 18:08:30 train_amp.py: 80] Epoch 7, iter 400/6416, lr 0.100000, loss 3.333622 +INFO 2021-01-23 18:16:36 train_amp.py: 80] Epoch 7, iter 600/6416, lr 0.100000, loss 3.372904 +INFO 2021-01-23 18:24:42 train_amp.py: 80] Epoch 7, iter 800/6416, lr 0.100000, loss 3.467978 +INFO 2021-01-23 18:32:48 train_amp.py: 80] Epoch 7, iter 1000/6416, lr 0.100000, loss 3.515557 +INFO 2021-01-23 18:40:54 train_amp.py: 80] Epoch 7, iter 1200/6416, lr 0.100000, loss 3.548216 +INFO 2021-01-23 18:49:00 train_amp.py: 80] Epoch 7, iter 1400/6416, lr 0.100000, loss 3.605942 +INFO 2021-01-23 18:57:06 train_amp.py: 80] Epoch 7, iter 1600/6416, lr 0.100000, loss 3.625488 +INFO 2021-01-23 19:05:13 train_amp.py: 80] Epoch 7, iter 1800/6416, lr 0.100000, loss 3.661789 +INFO 2021-01-23 19:13:19 train_amp.py: 80] Epoch 7, iter 2000/6416, lr 0.100000, loss 3.696077 +INFO 2021-01-23 19:21:26 train_amp.py: 80] Epoch 7, iter 2200/6416, lr 0.100000, loss 3.688675 +INFO 2021-01-23 19:29:32 train_amp.py: 80] Epoch 7, iter 2400/6416, lr 0.100000, loss 3.675459 +INFO 2021-01-23 19:37:39 train_amp.py: 80] Epoch 7, iter 2600/6416, lr 0.100000, loss 3.684645 +INFO 2021-01-23 19:45:46 train_amp.py: 80] Epoch 7, iter 2800/6416, lr 0.100000, loss 3.725261 +INFO 2021-01-23 19:53:51 train_amp.py: 93] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2021-01-23 19:53:54 train_amp.py: 80] Epoch 7, iter 3000/6416, lr 0.100000, loss 3.713844 +INFO 2021-01-23 20:02:01 train_amp.py: 80] Epoch 7, iter 3200/6416, lr 0.100000, loss 3.748073 +INFO 2021-01-23 20:10:08 train_amp.py: 80] Epoch 7, iter 3400/6416, lr 0.100000, loss 3.712234 +INFO 2021-01-23 20:18:15 train_amp.py: 80] Epoch 7, iter 3600/6416, lr 0.100000, loss 3.741482 +INFO 2021-01-23 20:26:22 train_amp.py: 80] Epoch 7, iter 3800/6416, lr 0.100000, loss 3.737261 +INFO 2021-01-23 20:34:29 train_amp.py: 80] Epoch 7, iter 4000/6416, lr 0.100000, loss 3.729734 +INFO 2021-01-23 20:42:36 train_amp.py: 80] Epoch 7, iter 4200/6416, lr 0.100000, loss 3.723875 +INFO 2021-01-23 20:50:42 train_amp.py: 80] Epoch 7, iter 4400/6416, lr 0.100000, loss 3.694521 +INFO 2021-01-23 20:58:49 train_amp.py: 80] Epoch 7, iter 4600/6416, lr 0.100000, loss 3.726618 +INFO 2021-01-23 21:06:56 train_amp.py: 80] Epoch 7, iter 4800/6416, lr 0.100000, loss 3.707411 +INFO 2021-01-23 21:15:03 train_amp.py: 80] Epoch 7, iter 5000/6416, lr 0.100000, loss 3.758164 +INFO 2021-01-23 21:23:10 train_amp.py: 80] Epoch 7, iter 5200/6416, lr 0.100000, loss 3.713144 +INFO 2021-01-23 21:31:17 train_amp.py: 80] Epoch 7, iter 5400/6416, lr 0.100000, loss 3.727918 +INFO 2021-01-23 21:39:24 train_amp.py: 80] Epoch 7, iter 5600/6416, lr 0.100000, loss 3.740217 +INFO 2021-01-23 21:47:31 train_amp.py: 80] Epoch 7, iter 5800/6416, lr 0.100000, loss 3.695104 +INFO 2021-01-23 21:55:37 train_amp.py: 93] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2021-01-23 21:55:39 train_amp.py: 80] Epoch 7, iter 6000/6416, lr 0.100000, loss 3.708433 +INFO 2021-01-23 22:03:47 train_amp.py: 80] Epoch 7, iter 6200/6416, lr 0.100000, loss 3.690604 +INFO 2021-01-23 22:11:54 train_amp.py: 80] Epoch 7, iter 6400/6416, lr 0.100000, loss 3.702294 +INFO 2021-01-23 22:12:30 train_amp.py: 98] Save checkpoint Epoch_7.pt to disk... +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 262144.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 131072.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +INFO 2021-01-23 22:12:33 train_amp.py: 80] Epoch 8, iter 0/6416, lr 0.100000, loss 3.705586 +INFO 2021-01-23 22:20:39 train_amp.py: 80] Epoch 8, iter 200/6416, lr 0.100000, loss 3.111450 +INFO 2021-01-23 22:28:45 train_amp.py: 80] Epoch 8, iter 400/6416, lr 0.100000, loss 3.183126 +INFO 2021-01-23 22:36:50 train_amp.py: 80] Epoch 8, iter 600/6416, lr 0.100000, loss 3.249723 +INFO 2021-01-23 22:44:56 train_amp.py: 80] Epoch 8, iter 800/6416, lr 0.100000, loss 3.340384 +INFO 2021-01-23 22:53:02 train_amp.py: 80] Epoch 8, iter 1000/6416, lr 0.100000, loss 3.394046 +INFO 2021-01-23 23:01:08 train_amp.py: 80] Epoch 8, iter 1200/6416, lr 0.100000, loss 3.439463 +INFO 2021-01-23 23:09:13 train_amp.py: 80] Epoch 8, iter 1400/6416, lr 0.100000, loss 3.463581 +INFO 2021-01-23 23:17:19 train_amp.py: 80] Epoch 8, iter 1600/6416, lr 0.100000, loss 3.505763 +INFO 2021-01-23 23:25:25 train_amp.py: 80] Epoch 8, iter 1800/6416, lr 0.100000, loss 3.523740 +INFO 2021-01-23 23:33:31 train_amp.py: 80] Epoch 8, iter 2000/6416, lr 0.100000, loss 3.572195 +INFO 2021-01-23 23:41:37 train_amp.py: 80] Epoch 8, iter 2200/6416, lr 0.100000, loss 3.566671 +INFO 2021-01-23 23:49:44 train_amp.py: 80] Epoch 8, iter 2400/6416, lr 0.100000, loss 3.570859 +INFO 2021-01-23 23:57:50 train_amp.py: 80] Epoch 8, iter 2600/6416, lr 0.100000, loss 3.588276 +INFO 2021-01-24 00:05:56 train_amp.py: 80] Epoch 8, iter 2800/6416, lr 0.100000, loss 3.578560 +INFO 2021-01-24 00:14:01 train_amp.py: 93] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2021-01-24 00:14:03 train_amp.py: 80] Epoch 8, iter 3000/6416, lr 0.100000, loss 3.632966 +INFO 2021-01-24 00:22:10 train_amp.py: 80] Epoch 8, iter 3200/6416, lr 0.100000, loss 3.661230 +INFO 2021-01-24 00:30:17 train_amp.py: 80] Epoch 8, iter 3400/6416, lr 0.100000, loss 3.620683 +INFO 2021-01-24 00:38:23 train_amp.py: 80] Epoch 8, iter 3600/6416, lr 0.100000, loss 3.603778 +INFO 2021-01-24 00:46:29 train_amp.py: 80] Epoch 8, iter 3800/6416, lr 0.100000, loss 3.626872 +INFO 2021-01-24 00:54:36 train_amp.py: 80] Epoch 8, iter 4000/6416, lr 0.100000, loss 3.618878 +INFO 2021-01-24 01:02:42 train_amp.py: 80] Epoch 8, iter 4200/6416, lr 0.100000, loss 3.600972 +INFO 2021-01-24 01:10:49 train_amp.py: 80] Epoch 8, iter 4400/6416, lr 0.100000, loss 3.599495 +INFO 2021-01-24 01:18:55 train_amp.py: 80] Epoch 8, iter 4600/6416, lr 0.100000, loss 3.599033 +INFO 2021-01-24 01:27:02 train_amp.py: 80] Epoch 8, iter 4800/6416, lr 0.100000, loss 3.616074 +INFO 2021-01-24 01:35:08 train_amp.py: 80] Epoch 8, iter 5000/6416, lr 0.100000, loss 3.611207 +INFO 2021-01-24 01:43:15 train_amp.py: 80] Epoch 8, iter 5200/6416, lr 0.100000, loss 3.613900 +INFO 2021-01-24 01:51:21 train_amp.py: 80] Epoch 8, iter 5400/6416, lr 0.100000, loss 3.604460 +INFO 2021-01-24 01:59:27 train_amp.py: 80] Epoch 8, iter 5600/6416, lr 0.100000, loss 3.573313 +INFO 2021-01-24 02:07:34 train_amp.py: 80] Epoch 8, iter 5800/6416, lr 0.100000, loss 3.615657 +INFO 2021-01-24 02:15:38 train_amp.py: 93] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2021-01-24 02:15:41 train_amp.py: 80] Epoch 8, iter 6000/6416, lr 0.100000, loss 3.601553 +INFO 2021-01-24 02:23:47 train_amp.py: 80] Epoch 8, iter 6200/6416, lr 0.100000, loss 3.612821 +INFO 2021-01-24 02:31:53 train_amp.py: 80] Epoch 8, iter 6400/6416, lr 0.100000, loss 3.585719 +INFO 2021-01-24 02:32:28 train_amp.py: 98] Save checkpoint Epoch_8.pt to disk... +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 131072.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-01-24 02:32:32 train_amp.py: 80] Epoch 9, iter 0/6416, lr 0.100000, loss 3.535126 +INFO 2021-01-24 02:40:37 train_amp.py: 80] Epoch 9, iter 200/6416, lr 0.100000, loss 3.000203 +INFO 2021-01-24 02:48:43 train_amp.py: 80] Epoch 9, iter 400/6416, lr 0.100000, loss 3.076744 +INFO 2021-01-24 02:56:49 train_amp.py: 80] Epoch 9, iter 600/6416, lr 0.100000, loss 3.143883 +INFO 2021-01-24 03:04:55 train_amp.py: 80] Epoch 9, iter 800/6416, lr 0.100000, loss 3.222606 +INFO 2021-01-24 03:13:01 train_amp.py: 80] Epoch 9, iter 1000/6416, lr 0.100000, loss 3.259705 +INFO 2021-01-24 03:21:07 train_amp.py: 80] Epoch 9, iter 1200/6416, lr 0.100000, loss 3.338220 +INFO 2021-01-24 03:29:13 train_amp.py: 80] Epoch 9, iter 1400/6416, lr 0.100000, loss 3.380289 +INFO 2021-01-24 03:37:20 train_amp.py: 80] Epoch 9, iter 1600/6416, lr 0.100000, loss 3.384573 +INFO 2021-01-24 03:45:27 train_amp.py: 80] Epoch 9, iter 1800/6416, lr 0.100000, loss 3.427571 +INFO 2021-01-24 03:53:33 train_amp.py: 80] Epoch 9, iter 2000/6416, lr 0.100000, loss 3.481041 +INFO 2021-01-24 04:01:40 train_amp.py: 80] Epoch 9, iter 2200/6416, lr 0.100000, loss 3.472408 +INFO 2021-01-24 04:09:46 train_amp.py: 80] Epoch 9, iter 2400/6416, lr 0.100000, loss 3.480687 +INFO 2021-01-24 04:17:53 train_amp.py: 80] Epoch 9, iter 2600/6416, lr 0.100000, loss 3.479921 +INFO 2021-01-24 04:25:59 train_amp.py: 80] Epoch 9, iter 2800/6416, lr 0.100000, loss 3.487379 +INFO 2021-01-24 04:34:05 train_amp.py: 93] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2021-01-24 04:34:07 train_amp.py: 80] Epoch 9, iter 3000/6416, lr 0.100000, loss 3.479804 +INFO 2021-01-24 04:42:14 train_amp.py: 80] Epoch 9, iter 3200/6416, lr 0.100000, loss 3.510940 +INFO 2021-01-24 04:50:21 train_amp.py: 80] Epoch 9, iter 3400/6416, lr 0.100000, loss 3.503377 +INFO 2021-01-24 04:58:28 train_amp.py: 80] Epoch 9, iter 3600/6416, lr 0.100000, loss 3.521613 +INFO 2021-01-24 05:06:35 train_amp.py: 80] Epoch 9, iter 3800/6416, lr 0.100000, loss 3.500217 +INFO 2021-01-24 05:14:42 train_amp.py: 80] Epoch 9, iter 4000/6416, lr 0.100000, loss 3.527514 +INFO 2021-01-24 05:22:49 train_amp.py: 80] Epoch 9, iter 4200/6416, lr 0.100000, loss 3.539997 +INFO 2021-01-24 05:30:56 train_amp.py: 80] Epoch 9, iter 4400/6416, lr 0.100000, loss 3.511874 +INFO 2021-01-24 05:39:03 train_amp.py: 80] Epoch 9, iter 4600/6416, lr 0.100000, loss 3.500803 +INFO 2021-01-24 05:47:10 train_amp.py: 80] Epoch 9, iter 4800/6416, lr 0.100000, loss 3.516222 +INFO 2021-01-24 05:55:17 train_amp.py: 80] Epoch 9, iter 5000/6416, lr 0.100000, loss 3.520138 +INFO 2021-01-24 06:03:24 train_amp.py: 80] Epoch 9, iter 5200/6416, lr 0.100000, loss 3.503154 +INFO 2021-01-24 06:11:31 train_amp.py: 80] Epoch 9, iter 5400/6416, lr 0.100000, loss 3.531918 +INFO 2021-01-24 06:19:38 train_amp.py: 80] Epoch 9, iter 5600/6416, lr 0.100000, loss 3.527579 +INFO 2021-01-24 06:27:44 train_amp.py: 80] Epoch 9, iter 5800/6416, lr 0.100000, loss 3.507871 +INFO 2021-01-24 06:35:49 train_amp.py: 93] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2021-01-24 06:35:52 train_amp.py: 80] Epoch 9, iter 6000/6416, lr 0.100000, loss 3.534637 +INFO 2021-01-24 06:43:59 train_amp.py: 80] Epoch 9, iter 6200/6416, lr 0.100000, loss 3.502730 +INFO 2021-01-24 06:52:06 train_amp.py: 80] Epoch 9, iter 6400/6416, lr 0.100000, loss 3.515443 +INFO 2021-01-24 06:52:41 train_amp.py: 98] Save checkpoint Epoch_9.pt to disk... +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 131072.0 +INFO 2021-01-24 06:52:45 train_amp.py: 80] Epoch 10, iter 0/6416, lr 0.010000, loss 3.468381 +INFO 2021-01-24 07:00:51 train_amp.py: 80] Epoch 10, iter 200/6416, lr 0.010000, loss 2.396712 +INFO 2021-01-24 07:08:56 train_amp.py: 80] Epoch 10, iter 400/6416, lr 0.010000, loss 2.183902 +INFO 2021-01-24 07:17:02 train_amp.py: 80] Epoch 10, iter 600/6416, lr 0.010000, loss 2.073261 +INFO 2021-01-24 07:25:08 train_amp.py: 80] Epoch 10, iter 800/6416, lr 0.010000, loss 2.029956 +INFO 2021-01-24 07:33:14 train_amp.py: 80] Epoch 10, iter 1000/6416, lr 0.010000, loss 1.977752 +INFO 2021-01-24 07:41:20 train_amp.py: 80] Epoch 10, iter 1200/6416, lr 0.010000, loss 1.921100 +INFO 2021-01-24 07:49:26 train_amp.py: 80] Epoch 10, iter 1400/6416, lr 0.010000, loss 1.907342 +INFO 2021-01-24 07:57:32 train_amp.py: 80] Epoch 10, iter 1600/6416, lr 0.010000, loss 1.889862 +INFO 2021-01-24 08:05:39 train_amp.py: 80] Epoch 10, iter 1800/6416, lr 0.010000, loss 1.855511 +INFO 2021-01-24 08:13:45 train_amp.py: 80] Epoch 10, iter 2000/6416, lr 0.010000, loss 1.824386 +INFO 2021-01-24 08:21:52 train_amp.py: 80] Epoch 10, iter 2200/6416, lr 0.010000, loss 1.809564 +INFO 2021-01-24 08:29:58 train_amp.py: 80] Epoch 10, iter 2400/6416, lr 0.010000, loss 1.774494 +INFO 2021-01-24 08:38:05 train_amp.py: 80] Epoch 10, iter 2600/6416, lr 0.010000, loss 1.762994 +INFO 2021-01-24 08:46:12 train_amp.py: 80] Epoch 10, iter 2800/6416, lr 0.010000, loss 1.723699 +INFO 2021-01-24 08:54:17 train_amp.py: 93] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2021-01-24 08:54:19 train_amp.py: 80] Epoch 10, iter 3000/6416, lr 0.010000, loss 1.706979 +INFO 2021-01-24 09:02:26 train_amp.py: 80] Epoch 10, iter 3200/6416, lr 0.010000, loss 1.696589 +INFO 2021-01-24 09:10:32 train_amp.py: 80] Epoch 10, iter 3400/6416, lr 0.010000, loss 1.695312 +INFO 2021-01-24 09:18:39 train_amp.py: 80] Epoch 10, iter 3600/6416, lr 0.010000, loss 1.675947 +INFO 2021-01-24 09:26:46 train_amp.py: 80] Epoch 10, iter 3800/6416, lr 0.010000, loss 1.644826 +INFO 2021-01-24 09:34:52 train_amp.py: 80] Epoch 10, iter 4000/6416, lr 0.010000, loss 1.638687 +INFO 2021-01-24 09:42:59 train_amp.py: 80] Epoch 10, iter 4200/6416, lr 0.010000, loss 1.627776 +INFO 2021-01-24 09:51:05 train_amp.py: 80] Epoch 10, iter 4400/6416, lr 0.010000, loss 1.612081 +INFO 2021-01-24 09:59:12 train_amp.py: 80] Epoch 10, iter 4600/6416, lr 0.010000, loss 1.604629 +INFO 2021-01-24 10:07:19 train_amp.py: 80] Epoch 10, iter 4800/6416, lr 0.010000, loss 1.592123 +INFO 2021-01-24 10:15:26 train_amp.py: 80] Epoch 10, iter 5000/6416, lr 0.010000, loss 1.577276 +INFO 2021-01-24 10:23:33 train_amp.py: 80] Epoch 10, iter 5200/6416, lr 0.010000, loss 1.578025 +INFO 2021-01-24 10:31:39 train_amp.py: 80] Epoch 10, iter 5400/6416, lr 0.010000, loss 1.547893 +INFO 2021-01-24 10:39:46 train_amp.py: 80] Epoch 10, iter 5600/6416, lr 0.010000, loss 1.549067 diff --git a/bob/bio/facexzoo/models/backbones/EfficientNet_B0/.gitkeep b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..d89bfbb72d988cda38e27e6e56cbc1837eb0c511 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_agedb.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_2999.pt | 0.9663333333333334 | 0.0031894889098682973 | +| Epoch_14_batch_5999.pt | 0.9660000000000002 | 0.00339934634239519 | +| Epoch_16_batch_5999.pt | 0.9656666666666668 | 0.003850605211369666 | +| Epoch_17.pt | 0.9653333333333334 | 0.00329421490674969 | +| Epoch_17_batch_2999.pt | 0.9651666666666667 | 0.0038924586790229725 | +| Epoch_15_batch_5999.pt | 0.9650000000000001 | 0.0036430214023900004 | +| Epoch_13.pt | 0.9648333333333333 | 0.0032815420945827515 | +| Epoch_15.pt | 0.9645000000000001 | 0.0038333333333333383 | +| Epoch_14.pt | 0.9643333333333335 | 0.0036868133384526853 | +| Epoch_13_batch_5999.pt | 0.9641666666666667 | 0.0035853784000583503 | +| Epoch_16.pt | 0.9638333333333333 | 0.0037847158511669188 | +| Epoch_16_batch_2999.pt | 0.9633333333333335 | 0.0033884334848837583 | +| Epoch_14_batch_2999.pt | 0.9633333333333333 | 0.0037679611017362607 | +| Epoch_15_batch_2999.pt | 0.9631666666666667 | 0.003578485092263985 | +| Epoch_17_batch_5999.pt | 0.9630000000000001 | 0.0036497928234793015 | +| Epoch_12.pt | 0.9626666666666667 | 0.0035329140212410353 | +| Epoch_11_batch_5999.pt | 0.9626666666666667 | 0.003325917677132393 | +| Epoch_12_batch_5999.pt | 0.9621666666666666 | 0.0036349639562123517 | +| Epoch_12_batch_2999.pt | 0.9616666666666667 | 0.003951870943061946 | +| Epoch_10_batch_2999.pt | 0.9603333333333335 | 0.003581502546952484 | +| Epoch_10_batch_5999.pt | 0.9601666666666666 | 0.003374285475346716 | +| Epoch_10.pt | 0.9598333333333333 | 0.0033096380019125545 | +| Epoch_11.pt | 0.9593333333333334 | 0.0040383959656413925 | +| Epoch_11_batch_2999.pt | 0.958 | 0.0034676636742949447 | +| Epoch_9_batch_5999.pt | 0.9498333333333333 | 0.004570774038239255 | +| Epoch_7_batch_5999.pt | 0.9484999999999999 | 0.0035956935833965364 | +| Epoch_9_batch_2999.pt | 0.9468333333333332 | 0.003300299275617587 | +| Epoch_8_batch_2999.pt | 0.9461666666666666 | 0.004360668767375644 | +| Epoch_8_batch_5999.pt | 0.9458333333333334 | 0.0027470522922391346 | +| Epoch_7.pt | 0.9453333333333334 | 0.0041484788227987655 | +| Epoch_9.pt | 0.9433333333333334 | 0.004209043761083513 | +| Epoch_6_batch_2999.pt | 0.9411666666666667 | 0.004231349783184352 | +| Epoch_7_batch_2999.pt | 0.9410000000000001 | 0.0042903854614017405 | +| Epoch_6_batch_5999.pt | 0.9404999999999999 | 0.004142895152778258 | +| Epoch_6.pt | 0.9395 | 0.004493136054576833 | +| Epoch_8.pt | 0.9391666666666666 | 0.004362084109434132 | +| Epoch_5.pt | 0.9384999999999998 | 0.00375524324802693 | +| Epoch_5_batch_2999.pt | 0.9375 | 0.00409945795874962 | +| Epoch_5_batch_5999.pt | 0.9365 | 0.0036383587400073184 | +| Epoch_4_batch_5999.pt | 0.9348333333333333 | 0.004730058856940736 | +| Epoch_4_batch_2999.pt | 0.932 | 0.004751867728965126 | +| Epoch_4.pt | 0.9316666666666666 | 0.0040368671387966525 | +| Epoch_3.pt | 0.9293333333333333 | 0.004173697771331763 | +| Epoch_3_batch_2999.pt | 0.9273333333333333 | 0.005031996388544109 | +| Epoch_3_batch_5999.pt | 0.9238333333333332 | 0.0055168093301459315 | +| Epoch_2.pt | 0.9113333333333333 | 0.004309048762147854 | +| Epoch_2_batch_5999.pt | 0.9056666666666666 | 0.005013561854523765 | +| Epoch_2_batch_2999.pt | 0.9019999999999999 | 0.005413745651146596 | +| Epoch_1_batch_5999.pt | 0.8671666666666666 | 0.004931944248881377 | +| Epoch_1.pt | 0.857 | 0.005909816065320982 | +| Epoch_1_batch_2999.pt | 0.8113333333333334 | 0.006942444156361474 | +| Epoch_0_batch_5999.pt | 0.6745000000000001 | 0.004628481339075794 | +| Epoch_0.pt | 0.6385000000000001 | 0.005094477765552 | +| Epoch_0_batch_2999.pt | 0.5281666666666667 | 0.0028267898296018964 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..adea368b5e99f84e3cf9a3af1b70c75ee1e7b75f --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_calfw.txt @@ -0,0 +1,21 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14_batch_5999.pt | 0.9436666666666665 | 0.002979352817287095 | +| Epoch_14.pt | 0.9433333333333334 | 0.0034783279649996685 | +| Epoch_17.pt | 0.9431666666666667 | 0.0035698497392038513 | +| Epoch_16_batch_5999.pt | 0.9424999999999999 | 0.0035681201607403157 | +| Epoch_17_batch_5999.pt | 0.9423333333333332 | 0.00363623737154524 | +| Epoch_16_batch_2999.pt | 0.9423333333333332 | 0.003627739492736554 | +| Epoch_16.pt | 0.9421666666666665 | 0.0035403319925232943 | +| Epoch_15_batch_2999.pt | 0.9421666666666665 | 0.003928763824052697 | +| Epoch_10_batch_5999.pt | 0.942 | 0.0037908271353848813 | +| Epoch_15_batch_5999.pt | 0.942 | 0.0038473977095957288 | +| Epoch_13.pt | 0.9419999999999998 | 0.0036750745352313843 | +| Epoch_11.pt | 0.9418333333333335 | 0.0034106767729268515 | +| Epoch_17_batch_2999.pt | 0.9418333333333333 | 0.003655285366576887 | +| Epoch_13_batch_2999.pt | 0.9418333333333331 | 0.0036637193541772337 | +| Epoch_14_batch_2999.pt | 0.9416666666666667 | 0.0036514837167011035 | +| Epoch_13_batch_5999.pt | 0.9411666666666667 | 0.0032207851201412705 | +| Epoch_15.pt | 0.9403333333333332 | 0.003590109871423003 | +| Epoch_12_batch_5999.pt | 0.9398333333333335 | 0.004093430448841924 | diff --git a/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..6e8f60b62b3d58a6245839edc39da2538e61b29d --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_cplfw.txt @@ -0,0 +1,20 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.8471666666666667 | 0.00594236723832024 | +| Epoch_16_batch_2999.pt | 0.8455000000000001 | 0.005736228812351742 | +| Epoch_14_batch_2999.pt | 0.8455 | 0.005589065603568065 | +| Epoch_16.pt | 0.8451666666666668 | 0.006188649506641124 | +| Epoch_15_batch_2999.pt | 0.8451666666666666 | 0.0067515430335097016 | +| Epoch_15_batch_5999.pt | 0.8451666666666666 | 0.006113383415926358 | +| Epoch_13_batch_2999.pt | 0.8451666666666666 | 0.005791916461439711 | +| Epoch_17_batch_2999.pt | 0.8448333333333334 | 0.006037179048545562 | +| Epoch_17_batch_5999.pt | 0.8445 | 0.006216515239939106 | +| Epoch_13_batch_5999.pt | 0.844 | 0.006227180564089805 | +| Epoch_13.pt | 0.8436666666666666 | 0.006506407098647713 | +| Epoch_16_batch_5999.pt | 0.8435 | 0.006341369171004238 | +| Epoch_15.pt | 0.8428333333333334 | 0.006070826819437778 | +| Epoch_11.pt | 0.8421666666666667 | 0.0058639408650783455 | +| Epoch_12.pt | 0.8420000000000002 | 0.006259807120445905 | +| Epoch_12_batch_2999.pt | 0.8413333333333334 | 0.006033855103282431 | +| Epoch_12_batch_5999.pt | 0.8411666666666665 | 0.006459990826733539 | diff --git a/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..b1529b73de0037fc5dc43a5756696c2811598c00 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_11_batch_2999.pt | 0.9955 | 0.0010555555555555596 | +| Epoch_12.pt | 0.9954999999999998 | 0.000963852865160968 | +| Epoch_11.pt | 0.9953333333333335 | 0.0011055415967851348 | +| Epoch_10_batch_5999.pt | 0.9951666666666668 | 0.0010378634273483006 | +| Epoch_15_batch_5999.pt | 0.9951666666666666 | 0.0010378634273483065 | +| Epoch_10.pt | 0.9951666666666666 | 0.0010957268290731133 | +| Epoch_12_batch_5999.pt | 0.9950000000000001 | 0.0010829771494232222 | +| Epoch_10_batch_2999.pt | 0.9948333333333335 | 0.000976577546180387 | +| Epoch_9.pt | 0.9946666666666667 | 0.0013562839573037487 | +| Epoch_17_batch_2999.pt | 0.9946666666666667 | 0.0012120791238484135 | +| Epoch_7.pt | 0.9945 | 0.0011666666666666696 | +| Epoch_17.pt | 0.9945 | 0.0011399046960379597 | +| Epoch_15_batch_2999.pt | 0.9945 | 0.0011399046960379542 | +| Epoch_13_batch_5999.pt | 0.9943333333333333 | 0.001143958904554113 | +| Epoch_16_batch_5999.pt | 0.9943333333333333 | 0.0011967032904743344 | +| Epoch_17_batch_5999.pt | 0.9941666666666669 | 0.001118033988749893 | +| Epoch_14_batch_2999.pt | 0.9941666666666666 | 0.0010613873985857113 | +| Epoch_12_batch_2999.pt | 0.9941666666666666 | 0.0011719457283182776 | +| Epoch_14.pt | 0.9940000000000001 | 0.0010599324460188288 | +| Epoch_15.pt | 0.9940000000000001 | 0.0010599324460188288 | +| Epoch_14_batch_5999.pt | 0.9940000000000001 | 0.0010599324460188288 | +| Epoch_11_batch_5999.pt | 0.9940000000000001 | 0.0011166528467912136 | +| Epoch_16.pt | 0.9938333333333335 | 0.0011399046960379573 | +| Epoch_9_batch_5999.pt | 0.9938333333333335 | 0.0011666666666666709 | +| Epoch_9_batch_2999.pt | 0.9938333333333335 | 0.001112499133027825 | +| Epoch_13.pt | 0.9938333333333335 | 0.0009953596037316098 | +| Epoch_8_batch_5999.pt | 0.9938333333333335 | 0.001084401183107948 | +| Epoch_16_batch_2999.pt | 0.9938333333333335 | 0.0010844011831079511 | +| Epoch_6_batch_5999.pt | 0.9936666666666667 | 0.0013099806802835086 | +| Epoch_13_batch_2999.pt | 0.9936666666666667 | 0.0010183501544346332 | +| Epoch_7_batch_2999.pt | 0.9933333333333334 | 0.001427248064296131 | +| Epoch_5_batch_5999.pt | 0.9931666666666666 | 0.0012777777777777852 | +| Epoch_5_batch_2999.pt | 0.9931666666666666 | 0.0014582671942674158 | +| Epoch_6_batch_2999.pt | 0.993 | 0.0012619796324000575 | +| Epoch_4_batch_5999.pt | 0.993 | 0.0014444444444444448 | +| Epoch_8.pt | 0.9928333333333335 | 0.001361961185792361 | +| Epoch_5.pt | 0.9928333333333332 | 0.0015723301886761047 | +| Epoch_8_batch_2999.pt | 0.9925 | 0.0013888888888888883 | +| Epoch_7_batch_5999.pt | 0.9921666666666666 | 0.001055555555555557 | +| Epoch_4_batch_2999.pt | 0.9921666666666666 | 0.0009953596037316124 | +| Epoch_6.pt | 0.992 | 0.0011600340565456216 | +| Epoch_4.pt | 0.9918333333333333 | 0.0011235415786753757 | +| Epoch_3_batch_5999.pt | 0.991 | 0.001409841948938838 | +| Epoch_3_batch_2999.pt | 0.9896666666666667 | 0.0017881641043812299 | +| Epoch_3.pt | 0.9895000000000002 | 0.0016489802310728672 | +| Epoch_2.pt | 0.9886666666666665 | 0.0013562839573037452 | +| Epoch_2_batch_5999.pt | 0.9883333333333333 | 0.0011653431646335003 | +| Epoch_2_batch_2999.pt | 0.9863333333333333 | 0.001048220125784065 | +| Epoch_1_batch_5999.pt | 0.9784999999999998 | 0.0017821127702606022 | +| Epoch_1.pt | 0.9775 | 0.001536590742882148 | +| Epoch_1_batch_2999.pt | 0.9585000000000001 | 0.001979057014506319 | +| Epoch_0.pt | 0.9030000000000001 | 0.004456926915584795 | +| Epoch_0_batch_5999.pt | 0.8895 | 0.004588296975545772 | +| Epoch_0_batch_2999.pt | 0.583 | 0.007555555555555552 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_rfw_African.txt b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_rfw_African.txt new file mode 100644 index 0000000000000000000000000000000000000000..b32c1e2bed36691d5c5d5d5097ff54bbfb8f34b1 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_rfw_African.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_2999.pt | 0.8966666666666667 | 0.003548604316149175 | +| Epoch_13_batch_5999.pt | 0.8958333333333333 | 0.003670452590924201 | +| Epoch_14.pt | 0.8953333333333333 | 0.003581502546952488 | +| Epoch_13.pt | 0.8951666666666668 | 0.0035870996571906507 | +| Epoch_15.pt | 0.8945000000000001 | 0.0034251250315107413 | +| Epoch_17_batch_5999.pt | 0.8945000000000001 | 0.0035490391674854282 | +| Epoch_17.pt | 0.8941666666666667 | 0.003542075139843345 | +| Epoch_16_batch_2999.pt | 0.8934999999999998 | 0.003578485092263977 | +| Epoch_15_batch_5999.pt | 0.893 | 0.0040582183039443685 | +| Epoch_16.pt | 0.8928333333333335 | 0.003333796264150549 | +| Epoch_11_batch_5999.pt | 0.8928333333333333 | 0.0036771734985273138 | +| Epoch_15_batch_2999.pt | 0.8926666666666667 | 0.004151453709393197 | +| Epoch_10.pt | 0.8926666666666667 | 0.004812535072823936 | +| Epoch_17_batch_2999.pt | 0.8923333333333334 | 0.0033902547338649607 | +| Epoch_14_batch_2999.pt | 0.8918333333333335 | 0.004024999041484435 | +| Epoch_12_batch_5999.pt | 0.8916666666666668 | 0.00253372316688697 | +| Epoch_11.pt | 0.8916666666666666 | 0.0037433067839828947 | +| Epoch_10_batch_5999.pt | 0.8911666666666667 | 0.003540331992523296 | +| Epoch_16_batch_5999.pt | 0.8911666666666667 | 0.0036771734985273107 | +| Epoch_14_batch_5999.pt | 0.8901666666666666 | 0.0036213529972738286 | +| Epoch_11_batch_2999.pt | 0.8881666666666668 | 0.0038123418809550575 | +| Epoch_10_batch_2999.pt | 0.8881666666666665 | 0.003595693583396534 | +| Epoch_12.pt | 0.8863333333333333 | 0.00405821830394437 | +| Epoch_12_batch_2999.pt | 0.8843333333333334 | 0.003890475866669243 | +| Epoch_9_batch_5999.pt | 0.8601666666666666 | 0.004677566635509284 | +| Epoch_9_batch_2999.pt | 0.8585 | 0.005406043714397372 | +| Epoch_7.pt | 0.8584999999999999 | 0.005094477765552003 | +| Epoch_8_batch_5999.pt | 0.8578333333333333 | 0.004956913117487634 | +| Epoch_7_batch_5999.pt | 0.8558333333333333 | 0.004319422114983366 | +| Epoch_8_batch_2999.pt | 0.8541666666666666 | 0.0044531165394114895 | +| Epoch_6_batch_5999.pt | 0.8538333333333334 | 0.005483139138742954 | +| Epoch_9.pt | 0.8528333333333334 | 0.005061656879952483 | +| Epoch_5_batch_5999.pt | 0.8513333333333334 | 0.006069555681665629 | +| Epoch_5.pt | 0.8493333333333333 | 0.0052363874079769685 | +| Epoch_7_batch_2999.pt | 0.8491666666666667 | 0.006607375228289023 | +| Epoch_6_batch_2999.pt | 0.8461666666666666 | 0.004317992789294009 | +| Epoch_5_batch_2999.pt | 0.8453333333333333 | 0.006155395104206458 | +| Epoch_8.pt | 0.8443333333333334 | 0.004920353294552119 | +| Epoch_4_batch_2999.pt | 0.842 | 0.005615235008219233 | +| Epoch_4.pt | 0.841 | 0.005381724905916597 | +| Epoch_6.pt | 0.8385 | 0.006828815127778958 | +| Epoch_4_batch_5999.pt | 0.8353333333333332 | 0.00515081199399967 | +| Epoch_3.pt | 0.8306666666666667 | 0.004038395965641387 | +| Epoch_3_batch_2999.pt | 0.8283333333333334 | 0.005762801102173307 | +| Epoch_3_batch_5999.pt | 0.8278333333333334 | 0.005837564602968194 | +| Epoch_2_batch_5999.pt | 0.8101666666666668 | 0.00715546066189666 | +| Epoch_2.pt | 0.8021666666666667 | 0.005122270426382005 | +| Epoch_2_batch_2999.pt | 0.7916666666666666 | 0.004520187912624002 | +| Epoch_1_batch_5999.pt | 0.7523333333333333 | 0.007132779486979569 | +| Epoch_1.pt | 0.7516666666666667 | 0.005957669608202005 | +| Epoch_1_batch_2999.pt | 0.692 | 0.0043233503240763796 | +| Epoch_0.pt | 0.6098333333333333 | 0.006163662932115997 | +| Epoch_0_batch_5999.pt | 0.5868333333333333 | 0.008470901536407215 | +| Epoch_0_batch_2999.pt | 0.5143333333333333 | 0.006051221690751157 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_rfw_Asian.txt b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_rfw_Asian.txt new file mode 100644 index 0000000000000000000000000000000000000000..6937c6c5192059ad646a4e80f6910618b0edecff --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_rfw_Asian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14_batch_2999.pt | 0.8931666666666664 | 0.005178600316163422 | +| Epoch_13_batch_2999.pt | 0.8923333333333332 | 0.0055176484524156145 | +| Epoch_14.pt | 0.8918333333333333 | 0.005400331494169 | +| Epoch_15.pt | 0.8915 | 0.005196449405098935 | +| Epoch_14_batch_5999.pt | 0.8915 | 0.006057593948462085 | +| Epoch_17_batch_5999.pt | 0.8913333333333334 | 0.005017254179944731 | +| Epoch_13_batch_5999.pt | 0.8911666666666667 | 0.005386597450967118 | +| Epoch_17_batch_2999.pt | 0.8908333333333335 | 0.005189317136741494 | +| Epoch_16_batch_5999.pt | 0.8901666666666668 | 0.0052555085739032295 | +| Epoch_13.pt | 0.8895 | 0.005403759550900713 | +| Epoch_16_batch_2999.pt | 0.8893333333333333 | 0.005099019513592788 | +| Epoch_17.pt | 0.8888333333333334 | 0.005049446858839779 | +| Epoch_15_batch_2999.pt | 0.8888333333333334 | 0.0056875975096782935 | +| Epoch_15_batch_5999.pt | 0.8888333333333334 | 0.005116241386596798 | +| Epoch_16.pt | 0.8886666666666667 | 0.004546060565661954 | +| Epoch_10_batch_5999.pt | 0.8886666666666665 | 0.004949123878071136 | +| Epoch_11_batch_2999.pt | 0.8876666666666667 | 0.004793256580027328 | +| Epoch_11.pt | 0.8871666666666667 | 0.0045950187737227146 | +| Epoch_12_batch_2999.pt | 0.8871666666666667 | 0.005223699554629561 | +| Epoch_12_batch_5999.pt | 0.8860000000000001 | 0.0049453806853928675 | +| Epoch_11_batch_5999.pt | 0.8858333333333335 | 0.005147515282177112 | +| Epoch_10_batch_2999.pt | 0.8831666666666667 | 0.004946940693218612 | +| Epoch_12.pt | 0.883 | 0.004222222222222221 | +| Epoch_10.pt | 0.8826666666666666 | 0.005038126243890947 | +| Epoch_8_batch_5999.pt | 0.8629999999999999 | 0.005174724898753341 | +| Epoch_9_batch_2999.pt | 0.8615 | 0.005045778090959789 | +| Epoch_7_batch_5999.pt | 0.8540000000000001 | 0.004728427295767375 | +| Epoch_6_batch_2999.pt | 0.8496666666666666 | 0.005222222222222215 | +| Epoch_8_batch_2999.pt | 0.8495000000000001 | 0.004641798821178732 | +| Epoch_7_batch_2999.pt | 0.8493333333333333 | 0.006359594676112972 | +| Epoch_6_batch_5999.pt | 0.8485000000000001 | 0.0051606894936028404 | +| Epoch_9.pt | 0.8481666666666667 | 0.003836552593471013 | +| Epoch_9_batch_5999.pt | 0.8456666666666667 | 0.005922336876105079 | +| Epoch_4.pt | 0.8455 | 0.005516809330145931 | +| Epoch_5_batch_2999.pt | 0.8448333333333332 | 0.005388888888888897 | +| Epoch_5.pt | 0.8443333333333334 | 0.005300826863056258 | +| Epoch_5_batch_5999.pt | 0.844 | 0.00460943744726479 | +| Epoch_7.pt | 0.8433333333333332 | 0.005036900869619174 | +| Epoch_8.pt | 0.8421666666666667 | 0.005067750858658319 | +| Epoch_4_batch_5999.pt | 0.837 | 0.005920251913225434 | +| Epoch_6.pt | 0.8365 | 0.005445861493593779 | +| Epoch_4_batch_2999.pt | 0.8316666666666667 | 0.004906533814626588 | +| Epoch_3_batch_2999.pt | 0.826 | 0.004754465087852151 | +| Epoch_3_batch_5999.pt | 0.8256666666666665 | 0.004562325592810619 | +| Epoch_3.pt | 0.819 | 0.00429757324573638 | +| Epoch_2_batch_5999.pt | 0.8161666666666667 | 0.004029597290175235 | +| Epoch_2.pt | 0.8145 | 0.003865405285955327 | +| Epoch_2_batch_2999.pt | 0.7981666666666667 | 0.004984234403857092 | +| Epoch_1.pt | 0.7721666666666668 | 0.005217787715303805 | +| Epoch_1_batch_5999.pt | 0.7670000000000001 | 0.006069555681665625 | +| Epoch_1_batch_2999.pt | 0.7223333333333334 | 0.005111111111111112 | +| Epoch_0_batch_5999.pt | 0.6678333333333333 | 0.006540708233634249 | +| Epoch_0.pt | 0.661 | 0.006607141665474894 | +| Epoch_0_batch_2999.pt | 0.5161666666666667 | 0.005884956758497271 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_rfw_Caucasian.txt b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_rfw_Caucasian.txt new file mode 100644 index 0000000000000000000000000000000000000000..394c17e62fc1a7ca17d48f21e46d1c2687f7bf74 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_rfw_Caucasian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14.pt | 0.9610000000000001 | 0.001990719207463218 | +| Epoch_17_batch_2999.pt | 0.9598333333333333 | 0.00212930754408187 | +| Epoch_16_batch_5999.pt | 0.9593333333333331 | 0.0021545243810739186 | +| Epoch_13_batch_2999.pt | 0.9591666666666667 | 0.00248762368635979 | +| Epoch_15_batch_5999.pt | 0.9590000000000002 | 0.002398559238324773 | +| Epoch_15_batch_2999.pt | 0.959 | 0.0023333333333333322 | +| Epoch_14_batch_5999.pt | 0.9588333333333334 | 0.0022505143445032353 | +| Epoch_17.pt | 0.9588333333333333 | 0.0025945098730745793 | +| Epoch_16_batch_2999.pt | 0.9588333333333333 | 0.0020645449084513334 | +| Epoch_17_batch_5999.pt | 0.9584999999999999 | 0.0021001175746039823 | +| Epoch_15.pt | 0.9583333333333334 | 0.001791612832955231 | +| Epoch_13.pt | 0.9578333333333333 | 0.002049540749521857 | +| Epoch_14_batch_2999.pt | 0.9576666666666668 | 0.001812167381144451 | +| Epoch_16.pt | 0.9573333333333333 | 0.0019116278371205792 | +| Epoch_13_batch_5999.pt | 0.9566666666666667 | 0.0023959842947608684 | +| Epoch_10.pt | 0.9561666666666667 | 0.001957101661534281 | +| Epoch_12_batch_5999.pt | 0.9560000000000001 | 0.0016329931618554486 | +| Epoch_12_batch_2999.pt | 0.9556666666666667 | 0.002306726610225191 | +| Epoch_11_batch_2999.pt | 0.9555 | 0.0018765939726727238 | +| Epoch_12.pt | 0.9553333333333333 | 0.00248203421152097 | +| Epoch_11.pt | 0.9546666666666666 | 0.002457038265277336 | +| Epoch_10_batch_5999.pt | 0.9525 | 0.0019914942587705518 | +| Epoch_11_batch_5999.pt | 0.9521666666666666 | 0.002064544908451343 | +| Epoch_10_batch_2999.pt | 0.9489999999999998 | 0.0012472191289246474 | +| Epoch_9_batch_5999.pt | 0.9341666666666667 | 0.0018299632324445083 | +| Epoch_7_batch_2999.pt | 0.9334999999999999 | 0.003057575090181559 | +| Epoch_9_batch_2999.pt | 0.9316666666666666 | 0.0027777777777777688 | +| Epoch_7_batch_5999.pt | 0.9305000000000001 | 0.004029597290175244 | +| Epoch_8_batch_2999.pt | 0.9303333333333332 | 0.003546864377669408 | +| Epoch_7.pt | 0.9301666666666666 | 0.0038924586790229643 | +| Epoch_6_batch_5999.pt | 0.9288333333333334 | 0.0034341243245612366 | +| Epoch_9.pt | 0.9276666666666668 | 0.0030449310235654875 | +| Epoch_8_batch_5999.pt | 0.9276666666666665 | 0.003371997978998558 | +| Epoch_5_batch_5999.pt | 0.9271666666666667 | 0.003343041418517864 | +| Epoch_5_batch_2999.pt | 0.9218333333333334 | 0.00341971408811386 | +| Epoch_6_batch_2999.pt | 0.9216666666666666 | 0.0024845199749997694 | +| Epoch_6.pt | 0.9209999999999999 | 0.0028349668493718072 | +| Epoch_8.pt | 0.9208333333333334 | 0.0034805455794838045 | +| Epoch_5.pt | 0.9206666666666667 | 0.0036192216610894078 | +| Epoch_4_batch_5999.pt | 0.9176666666666666 | 0.003711842908553351 | +| Epoch_4_batch_2999.pt | 0.9163333333333334 | 0.0034228715112776427 | +| Epoch_4.pt | 0.9161666666666667 | 0.0037354656608920593 | +| Epoch_3_batch_5999.pt | 0.9036666666666667 | 0.003666666666666667 | +| Epoch_3.pt | 0.8985 | 0.0029444444444444487 | +| Epoch_3_batch_2999.pt | 0.8955000000000002 | 0.0028658267503397653 | +| Epoch_2_batch_5999.pt | 0.8921666666666667 | 0.0035577250325745232 | +| Epoch_2.pt | 0.8891666666666665 | 0.004629814811111254 | +| Epoch_2_batch_2999.pt | 0.8781666666666668 | 0.0029128281619818473 | +| Epoch_1_batch_5999.pt | 0.8511666666666666 | 0.0036349639562123512 | +| Epoch_1.pt | 0.8476666666666667 | 0.005147215476400212 | +| Epoch_1_batch_2999.pt | 0.8071666666666666 | 0.004919412290502854 | +| Epoch_0.pt | 0.7268333333333333 | 0.004306541105840776 | +| Epoch_0_batch_5999.pt | 0.7035000000000001 | 0.0043351135944220895 | +| Epoch_0_batch_2999.pt | 0.5223333333333333 | 0.005859465277082314 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_rfw_Indian.txt b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_rfw_Indian.txt new file mode 100644 index 0000000000000000000000000000000000000000..e533e28dee3644365f26b9924945cbed8d2262a1 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/accu_files/accu_rfw_Indian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17_batch_5999.pt | 0.9193333333333333 | 0.004114113018127475 | +| Epoch_12.pt | 0.9186666666666667 | 0.004784233364802442 | +| Epoch_13_batch_2999.pt | 0.9186666666666667 | 0.003831319922125935 | +| Epoch_13_batch_5999.pt | 0.9183333333333333 | 0.004186987484759282 | +| Epoch_17.pt | 0.9181666666666667 | 0.0037552432480269364 | +| Epoch_15_batch_5999.pt | 0.9181666666666667 | 0.0038924586790229686 | +| Epoch_13.pt | 0.9179999999999999 | 0.003965904066127726 | +| Epoch_17_batch_2999.pt | 0.9179999999999999 | 0.004103596736137643 | +| Epoch_15.pt | 0.9178333333333335 | 0.003967849185704242 | +| Epoch_14.pt | 0.9175000000000001 | 0.004305107503568754 | +| Epoch_15_batch_2999.pt | 0.9174999999999999 | 0.0039145975622117395 | +| Epoch_16.pt | 0.917 | 0.0041260988061393705 | +| Epoch_16_batch_5999.pt | 0.9168333333333333 | 0.0038845213569807416 | +| Epoch_16_batch_2999.pt | 0.9166666666666666 | 0.003857012212824401 | +| Epoch_10_batch_5999.pt | 0.9164999999999999 | 0.0037222222222222275 | +| Epoch_14_batch_5999.pt | 0.9161666666666667 | 0.004021930621719612 | +| Epoch_14_batch_2999.pt | 0.9156666666666669 | 0.0045215533220835154 | +| Epoch_11.pt | 0.9138333333333334 | 0.004067713890663439 | +| Epoch_11_batch_5999.pt | 0.9138333333333334 | 0.003296556377588176 | +| Epoch_12_batch_5999.pt | 0.9133333333333334 | 0.003591828861165473 | +| Epoch_11_batch_2999.pt | 0.913 | 0.004163331998932264 | +| Epoch_10_batch_2999.pt | 0.9128333333333332 | 0.0034964708839021275 | +| Epoch_10.pt | 0.9118333333333333 | 0.003262677080005785 | +| Epoch_12_batch_2999.pt | 0.9096666666666667 | 0.004273085449562091 | +| Epoch_7_batch_5999.pt | 0.8903333333333334 | 0.0032659863237108934 | +| Epoch_8_batch_5999.pt | 0.8883333333333333 | 0.004785523437190676 | +| Epoch_6_batch_5999.pt | 0.8876666666666667 | 0.004210510071443643 | +| Epoch_8_batch_2999.pt | 0.8865000000000001 | 0.0053831584652254474 | +| Epoch_9_batch_5999.pt | 0.8863333333333333 | 0.004294699575575043 | +| Epoch_7_batch_2999.pt | 0.8846666666666667 | 0.004579880854561103 | +| Epoch_7.pt | 0.8846666666666666 | 0.003413842554608272 | +| Epoch_9_batch_2999.pt | 0.883 | 0.004065816547451549 | +| Epoch_5_batch_2999.pt | 0.8795 | 0.003897213312732355 | +| Epoch_6.pt | 0.8785000000000001 | 0.005337093581832214 | +| Epoch_5_batch_5999.pt | 0.8781666666666667 | 0.004820545023230008 | +| Epoch_8.pt | 0.8780000000000001 | 0.0053679432574138515 | +| Epoch_6_batch_2999.pt | 0.8773333333333333 | 0.004225145187073673 | +| Epoch_5.pt | 0.8768333333333335 | 0.0044752405273658525 | +| Epoch_9.pt | 0.876 | 0.0029938207967349973 | +| Epoch_4_batch_2999.pt | 0.8748333333333334 | 0.005866045842572359 | +| Epoch_4.pt | 0.8748333333333334 | 0.004475240527365849 | +| Epoch_4_batch_5999.pt | 0.8696666666666666 | 0.004764840364975905 | +| Epoch_3_batch_5999.pt | 0.8661666666666668 | 0.005264896561421621 | +| Epoch_3_batch_2999.pt | 0.8603333333333334 | 0.0034228715112776345 | +| Epoch_3.pt | 0.859 | 0.00382648341282723 | +| Epoch_2_batch_5999.pt | 0.8526666666666667 | 0.004582575694955836 | +| Epoch_2.pt | 0.8431666666666666 | 0.006042289239953614 | +| Epoch_2_batch_2999.pt | 0.8318333333333332 | 0.005094477765551996 | +| Epoch_1_batch_5999.pt | 0.8045 | 0.006086059764477351 | +| Epoch_1.pt | 0.8024999999999999 | 0.0077190241179396065 | +| Epoch_1_batch_2999.pt | 0.7508333333333334 | 0.0037944891814509297 | +| Epoch_0.pt | 0.6948333333333332 | 0.003215030288051173 | +| Epoch_0_batch_5999.pt | 0.6801666666666666 | 0.0038526085439079577 | +| Epoch_0_batch_2999.pt | 0.5255 | 0.005006477285958142 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/EfficientNet_B0/log.log b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/log.log new file mode 100644 index 0000000000000000000000000000000000000000..4444bfe2a4b523de8f00872dc7c8a53a8fcf1a3b --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/EfficientNet_B0/log.log @@ -0,0 +1,657 @@ +INFO 2020-12-04 15:43:22 driver.py: 124] Generating grammar tables from /usr/lib/python3.6/lib2to3/Grammar.txt +INFO 2020-12-04 15:43:22 driver.py: 124] Generating grammar tables from /usr/lib/python3.6/lib2to3/PatternGrammar.txt +INFO 2020-12-04 15:43:22 train.py: 177] Start optimization. +INFO 2020-12-04 15:43:22 train.py: 178] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='EfficientNet', batch_size=512, data_root='/home/wangjun492/wj_data/faceX-Zoo/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='MV-Softmax', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='mv-effi', train_file='/home/wangjun492/wj_data/faceX-Zoo/deepglint/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7f9ae71fce80>) +backbone param: +{'width': 1.0, 'depth': 1.0, 'image_size': 112, 'drop_ratio': 0.2, 'out_h': 7, 'out_w': 7, 'feat_dim': 512} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +INFO 2020-12-04 15:43:46 train.py: 79] Epoch 0, iter 0/6416, lr 0.100000, loss 16.337477 +INFO 2020-12-04 15:47:20 train.py: 79] Epoch 0, iter 200/6416, lr 0.100000, loss 15.642263 +INFO 2020-12-04 15:50:53 train.py: 79] Epoch 0, iter 400/6416, lr 0.100000, loss 15.402893 +INFO 2020-12-04 15:54:27 train.py: 79] Epoch 0, iter 600/6416, lr 0.100000, loss 15.359507 +INFO 2020-12-04 15:58:01 train.py: 79] Epoch 0, iter 800/6416, lr 0.100000, loss 15.329064 +INFO 2020-12-04 16:01:35 train.py: 79] Epoch 0, iter 1000/6416, lr 0.100000, loss 15.299876 +INFO 2020-12-04 16:05:08 train.py: 79] Epoch 0, iter 1200/6416, lr 0.100000, loss 15.263649 +INFO 2020-12-04 16:08:42 train.py: 79] Epoch 0, iter 1400/6416, lr 0.100000, loss 15.239414 +INFO 2020-12-04 16:12:16 train.py: 79] Epoch 0, iter 1600/6416, lr 0.100000, loss 15.198864 +INFO 2020-12-04 16:15:50 train.py: 79] Epoch 0, iter 1800/6416, lr 0.100000, loss 15.156965 +INFO 2020-12-04 16:19:23 train.py: 79] Epoch 0, iter 2000/6416, lr 0.100000, loss 15.117281 +INFO 2020-12-04 16:22:57 train.py: 79] Epoch 0, iter 2200/6416, lr 0.100000, loss 15.080080 +INFO 2020-12-04 16:26:31 train.py: 79] Epoch 0, iter 2400/6416, lr 0.100000, loss 15.038412 +INFO 2020-12-04 16:30:04 train.py: 79] Epoch 0, iter 2600/6416, lr 0.100000, loss 14.995138 +INFO 2020-12-04 16:33:38 train.py: 79] Epoch 0, iter 2800/6416, lr 0.100000, loss 14.940116 +INFO 2020-12-04 16:37:11 train.py: 92] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2020-12-04 16:37:12 train.py: 79] Epoch 0, iter 3000/6416, lr 0.100000, loss 14.870924 +INFO 2020-12-04 16:40:46 train.py: 79] Epoch 0, iter 3200/6416, lr 0.100000, loss 14.767175 +INFO 2020-12-04 16:44:20 train.py: 79] Epoch 0, iter 3400/6416, lr 0.100000, loss 14.647236 +INFO 2020-12-04 16:47:53 train.py: 79] Epoch 0, iter 3600/6416, lr 0.100000, loss 14.528890 +INFO 2020-12-04 16:51:27 train.py: 79] Epoch 0, iter 3800/6416, lr 0.100000, loss 14.379911 +INFO 2020-12-04 16:55:01 train.py: 79] Epoch 0, iter 4000/6416, lr 0.100000, loss 14.205200 +INFO 2020-12-04 16:58:35 train.py: 79] Epoch 0, iter 4200/6416, lr 0.100000, loss 14.002715 +INFO 2020-12-04 17:02:09 train.py: 79] Epoch 0, iter 4400/6416, lr 0.100000, loss 13.768731 +INFO 2020-12-04 17:05:43 train.py: 79] Epoch 0, iter 4600/6416, lr 0.100000, loss 13.555681 +INFO 2020-12-04 17:09:16 train.py: 79] Epoch 0, iter 4800/6416, lr 0.100000, loss 13.300397 +INFO 2020-12-04 17:12:50 train.py: 79] Epoch 0, iter 5000/6416, lr 0.100000, loss 13.058598 +INFO 2020-12-04 17:16:24 train.py: 79] Epoch 0, iter 5200/6416, lr 0.100000, loss 12.808439 +INFO 2020-12-04 17:19:58 train.py: 79] Epoch 0, iter 5400/6416, lr 0.100000, loss 12.547190 +INFO 2020-12-04 17:23:32 train.py: 79] Epoch 0, iter 5600/6416, lr 0.100000, loss 12.235485 +INFO 2020-12-04 17:27:06 train.py: 79] Epoch 0, iter 5800/6416, lr 0.100000, loss 11.904796 +INFO 2020-12-04 17:30:39 train.py: 92] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2020-12-04 17:30:40 train.py: 79] Epoch 0, iter 6000/6416, lr 0.100000, loss 11.575368 +INFO 2020-12-04 17:34:13 train.py: 79] Epoch 0, iter 6200/6416, lr 0.100000, loss 11.263143 +INFO 2020-12-04 17:37:47 train.py: 79] Epoch 0, iter 6400/6416, lr 0.100000, loss 10.939203 +INFO 2020-12-04 17:38:02 train.py: 97] Save checkpoint Epoch_0.pt to disk... +INFO 2020-12-04 17:38:05 train.py: 79] Epoch 1, iter 0/6416, lr 0.100000, loss 10.780567 +INFO 2020-12-04 17:41:38 train.py: 79] Epoch 1, iter 200/6416, lr 0.100000, loss 10.553443 +INFO 2020-12-04 17:45:10 train.py: 79] Epoch 1, iter 400/6416, lr 0.100000, loss 10.256111 +INFO 2020-12-04 17:48:42 train.py: 79] Epoch 1, iter 600/6416, lr 0.100000, loss 10.118830 +INFO 2020-12-04 17:52:14 train.py: 79] Epoch 1, iter 800/6416, lr 0.100000, loss 10.001785 +INFO 2020-12-04 17:55:45 train.py: 79] Epoch 1, iter 1000/6416, lr 0.100000, loss 9.989004 +INFO 2020-12-04 17:59:16 train.py: 79] Epoch 1, iter 1200/6416, lr 0.100000, loss 10.098805 +INFO 2020-12-04 18:02:47 train.py: 79] Epoch 1, iter 1400/6416, lr 0.100000, loss 10.293372 +INFO 2020-12-04 18:06:18 train.py: 79] Epoch 1, iter 1600/6416, lr 0.100000, loss 10.591329 +INFO 2020-12-04 18:09:48 train.py: 79] Epoch 1, iter 1800/6416, lr 0.100000, loss 10.944686 +INFO 2020-12-04 18:13:17 train.py: 79] Epoch 1, iter 2000/6416, lr 0.100000, loss 11.360150 +INFO 2020-12-04 18:16:47 train.py: 79] Epoch 1, iter 2200/6416, lr 0.100000, loss 11.743507 +INFO 2020-12-04 18:20:16 train.py: 79] Epoch 1, iter 2400/6416, lr 0.100000, loss 12.141191 +INFO 2020-12-04 18:23:46 train.py: 79] Epoch 1, iter 2600/6416, lr 0.100000, loss 12.527966 +INFO 2020-12-04 18:27:15 train.py: 79] Epoch 1, iter 2800/6416, lr 0.100000, loss 12.834362 +INFO 2020-12-04 18:30:43 train.py: 92] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2020-12-04 18:30:44 train.py: 79] Epoch 1, iter 3000/6416, lr 0.100000, loss 13.081664 +INFO 2020-12-04 18:34:13 train.py: 79] Epoch 1, iter 3200/6416, lr 0.100000, loss 13.314389 +INFO 2020-12-04 18:37:42 train.py: 79] Epoch 1, iter 3400/6416, lr 0.100000, loss 13.413196 +INFO 2020-12-04 18:41:10 train.py: 79] Epoch 1, iter 3600/6416, lr 0.100000, loss 13.508192 +INFO 2020-12-04 18:44:39 train.py: 79] Epoch 1, iter 3800/6416, lr 0.100000, loss 13.529262 +INFO 2020-12-04 18:48:08 train.py: 79] Epoch 1, iter 4000/6416, lr 0.100000, loss 13.488719 +INFO 2020-12-04 18:51:36 train.py: 79] Epoch 1, iter 4200/6416, lr 0.100000, loss 13.417769 +INFO 2020-12-04 18:55:05 train.py: 79] Epoch 1, iter 4400/6416, lr 0.100000, loss 13.342571 +INFO 2020-12-04 18:58:33 train.py: 79] Epoch 1, iter 4600/6416, lr 0.100000, loss 13.225288 +INFO 2020-12-04 19:02:02 train.py: 79] Epoch 1, iter 4800/6416, lr 0.100000, loss 13.083499 +INFO 2020-12-04 19:05:30 train.py: 79] Epoch 1, iter 5000/6416, lr 0.100000, loss 12.969828 +INFO 2020-12-04 19:08:59 train.py: 79] Epoch 1, iter 5200/6416, lr 0.100000, loss 12.814550 +INFO 2020-12-04 19:12:27 train.py: 79] Epoch 1, iter 5400/6416, lr 0.100000, loss 12.689435 +INFO 2020-12-04 19:15:55 train.py: 79] Epoch 1, iter 5600/6416, lr 0.100000, loss 12.555713 +INFO 2020-12-04 19:19:24 train.py: 79] Epoch 1, iter 5800/6416, lr 0.100000, loss 12.389005 +INFO 2020-12-04 19:22:52 train.py: 92] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2020-12-04 19:22:53 train.py: 79] Epoch 1, iter 6000/6416, lr 0.100000, loss 12.243248 +INFO 2020-12-04 19:26:22 train.py: 79] Epoch 1, iter 6200/6416, lr 0.100000, loss 12.139172 +INFO 2020-12-04 19:29:51 train.py: 79] Epoch 1, iter 6400/6416, lr 0.100000, loss 11.995660 +INFO 2020-12-04 19:30:06 train.py: 97] Save checkpoint Epoch_1.pt to disk... +INFO 2020-12-04 19:30:08 train.py: 79] Epoch 2, iter 0/6416, lr 0.100000, loss 11.869083 +INFO 2020-12-04 19:33:37 train.py: 79] Epoch 2, iter 200/6416, lr 0.100000, loss 11.396316 +INFO 2020-12-04 19:37:04 train.py: 79] Epoch 2, iter 400/6416, lr 0.100000, loss 11.301600 +INFO 2020-12-04 19:40:32 train.py: 79] Epoch 2, iter 600/6416, lr 0.100000, loss 11.337017 +INFO 2020-12-04 19:44:00 train.py: 79] Epoch 2, iter 800/6416, lr 0.100000, loss 11.255260 +INFO 2020-12-04 19:47:28 train.py: 79] Epoch 2, iter 1000/6416, lr 0.100000, loss 11.191981 +INFO 2020-12-04 19:50:56 train.py: 79] Epoch 2, iter 1200/6416, lr 0.100000, loss 11.137195 +INFO 2020-12-04 19:54:24 train.py: 79] Epoch 2, iter 1400/6416, lr 0.100000, loss 11.056727 +INFO 2020-12-04 19:57:52 train.py: 79] Epoch 2, iter 1600/6416, lr 0.100000, loss 10.999593 +INFO 2020-12-04 20:01:20 train.py: 79] Epoch 2, iter 1800/6416, lr 0.100000, loss 10.909856 +INFO 2020-12-04 20:04:48 train.py: 79] Epoch 2, iter 2000/6416, lr 0.100000, loss 10.802479 +INFO 2020-12-04 20:08:16 train.py: 79] Epoch 2, iter 2200/6416, lr 0.100000, loss 10.733868 +INFO 2020-12-04 20:11:44 train.py: 79] Epoch 2, iter 2400/6416, lr 0.100000, loss 10.669921 +INFO 2020-12-04 20:15:12 train.py: 79] Epoch 2, iter 2600/6416, lr 0.100000, loss 10.629951 +INFO 2020-12-04 20:18:40 train.py: 79] Epoch 2, iter 2800/6416, lr 0.100000, loss 10.516694 +INFO 2020-12-04 20:22:07 train.py: 92] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2020-12-04 20:22:08 train.py: 79] Epoch 2, iter 3000/6416, lr 0.100000, loss 10.495982 +INFO 2020-12-04 20:25:36 train.py: 79] Epoch 2, iter 3200/6416, lr 0.100000, loss 10.373624 +INFO 2020-12-04 20:29:04 train.py: 79] Epoch 2, iter 3400/6416, lr 0.100000, loss 10.340557 +INFO 2020-12-04 20:32:33 train.py: 79] Epoch 2, iter 3600/6416, lr 0.100000, loss 10.252735 +INFO 2020-12-04 20:36:01 train.py: 79] Epoch 2, iter 3800/6416, lr 0.100000, loss 10.198890 +INFO 2020-12-04 20:39:29 train.py: 79] Epoch 2, iter 4000/6416, lr 0.100000, loss 10.113380 +INFO 2020-12-04 20:42:57 train.py: 79] Epoch 2, iter 4200/6416, lr 0.100000, loss 10.069223 +INFO 2020-12-04 20:46:26 train.py: 79] Epoch 2, iter 4400/6416, lr 0.100000, loss 9.975065 +INFO 2020-12-04 20:49:54 train.py: 79] Epoch 2, iter 4600/6416, lr 0.100000, loss 9.942636 +INFO 2020-12-04 20:53:22 train.py: 79] Epoch 2, iter 4800/6416, lr 0.100000, loss 9.886392 +INFO 2020-12-04 20:56:51 train.py: 79] Epoch 2, iter 5000/6416, lr 0.100000, loss 9.821362 +INFO 2020-12-04 21:00:19 train.py: 79] Epoch 2, iter 5200/6416, lr 0.100000, loss 9.751015 +INFO 2020-12-04 21:03:48 train.py: 79] Epoch 2, iter 5400/6416, lr 0.100000, loss 9.727385 +INFO 2020-12-04 21:07:16 train.py: 79] Epoch 2, iter 5600/6416, lr 0.100000, loss 9.650240 +INFO 2020-12-04 21:10:45 train.py: 79] Epoch 2, iter 5800/6416, lr 0.100000, loss 9.607512 +INFO 2020-12-04 21:14:13 train.py: 92] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2020-12-04 21:14:14 train.py: 79] Epoch 2, iter 6000/6416, lr 0.100000, loss 9.560512 +INFO 2020-12-04 21:17:42 train.py: 79] Epoch 2, iter 6200/6416, lr 0.100000, loss 9.496267 +INFO 2020-12-04 21:21:10 train.py: 79] Epoch 2, iter 6400/6416, lr 0.100000, loss 9.444142 +INFO 2020-12-04 21:21:26 train.py: 97] Save checkpoint Epoch_2.pt to disk... +INFO 2020-12-04 21:21:28 train.py: 79] Epoch 3, iter 0/6416, lr 0.100000, loss 9.351611 +INFO 2020-12-04 21:24:56 train.py: 79] Epoch 3, iter 200/6416, lr 0.100000, loss 8.886291 +INFO 2020-12-04 21:28:23 train.py: 79] Epoch 3, iter 400/6416, lr 0.100000, loss 8.856868 +INFO 2020-12-04 21:31:51 train.py: 79] Epoch 3, iter 600/6416, lr 0.100000, loss 8.932419 +INFO 2020-12-04 21:35:18 train.py: 79] Epoch 3, iter 800/6416, lr 0.100000, loss 8.954494 +INFO 2020-12-04 21:38:46 train.py: 79] Epoch 3, iter 1000/6416, lr 0.100000, loss 9.012721 +INFO 2020-12-04 21:42:13 train.py: 79] Epoch 3, iter 1200/6416, lr 0.100000, loss 9.015286 +INFO 2020-12-04 21:45:41 train.py: 79] Epoch 3, iter 1400/6416, lr 0.100000, loss 8.978294 +INFO 2020-12-04 21:49:08 train.py: 79] Epoch 3, iter 1600/6416, lr 0.100000, loss 8.984096 +INFO 2020-12-04 21:52:36 train.py: 79] Epoch 3, iter 1800/6416, lr 0.100000, loss 8.929338 +INFO 2020-12-04 21:56:03 train.py: 79] Epoch 3, iter 2000/6416, lr 0.100000, loss 8.930364 +INFO 2020-12-04 21:59:31 train.py: 79] Epoch 3, iter 2200/6416, lr 0.100000, loss 8.922982 +INFO 2020-12-04 22:02:59 train.py: 79] Epoch 3, iter 2400/6416, lr 0.100000, loss 8.888956 +INFO 2020-12-04 22:06:26 train.py: 79] Epoch 3, iter 2600/6416, lr 0.100000, loss 8.841022 +INFO 2020-12-04 22:09:54 train.py: 79] Epoch 3, iter 2800/6416, lr 0.100000, loss 8.831702 +INFO 2020-12-04 22:13:21 train.py: 92] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2020-12-04 22:13:22 train.py: 79] Epoch 3, iter 3000/6416, lr 0.100000, loss 8.784187 +INFO 2020-12-04 22:16:50 train.py: 79] Epoch 3, iter 3200/6416, lr 0.100000, loss 8.809937 +INFO 2020-12-04 22:20:18 train.py: 79] Epoch 3, iter 3400/6416, lr 0.100000, loss 8.764032 +INFO 2020-12-04 22:23:46 train.py: 79] Epoch 3, iter 3600/6416, lr 0.100000, loss 8.720683 +INFO 2020-12-04 22:27:14 train.py: 79] Epoch 3, iter 3800/6416, lr 0.100000, loss 8.690780 +INFO 2020-12-04 22:30:41 train.py: 79] Epoch 3, iter 4000/6416, lr 0.100000, loss 8.663415 +INFO 2020-12-04 22:34:09 train.py: 79] Epoch 3, iter 4200/6416, lr 0.100000, loss 8.598696 +INFO 2020-12-04 22:37:37 train.py: 79] Epoch 3, iter 4400/6416, lr 0.100000, loss 8.581060 +INFO 2020-12-04 22:41:05 train.py: 79] Epoch 3, iter 4600/6416, lr 0.100000, loss 8.598070 +INFO 2020-12-04 22:44:33 train.py: 79] Epoch 3, iter 4800/6416, lr 0.100000, loss 8.551843 +INFO 2020-12-04 22:48:01 train.py: 79] Epoch 3, iter 5000/6416, lr 0.100000, loss 8.496203 +INFO 2020-12-04 22:51:29 train.py: 79] Epoch 3, iter 5200/6416, lr 0.100000, loss 8.500524 +INFO 2020-12-04 22:54:57 train.py: 79] Epoch 3, iter 5400/6416, lr 0.100000, loss 8.467890 +INFO 2020-12-04 22:58:26 train.py: 79] Epoch 3, iter 5600/6416, lr 0.100000, loss 8.427388 +INFO 2020-12-04 23:01:54 train.py: 79] Epoch 3, iter 5800/6416, lr 0.100000, loss 8.392213 +INFO 2020-12-04 23:05:22 train.py: 92] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2020-12-04 23:05:23 train.py: 79] Epoch 3, iter 6000/6416, lr 0.100000, loss 8.376185 +INFO 2020-12-04 23:08:51 train.py: 79] Epoch 3, iter 6200/6416, lr 0.100000, loss 8.376378 +INFO 2020-12-04 23:12:20 train.py: 79] Epoch 3, iter 6400/6416, lr 0.100000, loss 8.333553 +INFO 2020-12-04 23:12:35 train.py: 97] Save checkpoint Epoch_3.pt to disk... +INFO 2020-12-04 23:12:37 train.py: 79] Epoch 4, iter 0/6416, lr 0.100000, loss 8.324027 +INFO 2020-12-04 23:16:05 train.py: 79] Epoch 4, iter 200/6416, lr 0.100000, loss 7.799595 +INFO 2020-12-04 23:19:33 train.py: 79] Epoch 4, iter 400/6416, lr 0.100000, loss 7.770641 +INFO 2020-12-04 23:23:01 train.py: 79] Epoch 4, iter 600/6416, lr 0.100000, loss 7.842314 +INFO 2020-12-04 23:26:29 train.py: 79] Epoch 4, iter 800/6416, lr 0.100000, loss 7.927975 +INFO 2020-12-04 23:29:56 train.py: 79] Epoch 4, iter 1000/6416, lr 0.100000, loss 7.971727 +INFO 2020-12-04 23:33:24 train.py: 79] Epoch 4, iter 1200/6416, lr 0.100000, loss 7.991209 +INFO 2020-12-04 23:36:52 train.py: 79] Epoch 4, iter 1400/6416, lr 0.100000, loss 8.028504 +INFO 2020-12-04 23:40:20 train.py: 79] Epoch 4, iter 1600/6416, lr 0.100000, loss 8.006097 +INFO 2020-12-04 23:43:47 train.py: 79] Epoch 4, iter 1800/6416, lr 0.100000, loss 7.999764 +INFO 2020-12-04 23:47:15 train.py: 79] Epoch 4, iter 2000/6416, lr 0.100000, loss 7.988119 +INFO 2020-12-04 23:50:43 train.py: 79] Epoch 4, iter 2200/6416, lr 0.100000, loss 7.981561 +INFO 2020-12-04 23:54:11 train.py: 79] Epoch 4, iter 2400/6416, lr 0.100000, loss 7.943922 +INFO 2020-12-04 23:57:39 train.py: 79] Epoch 4, iter 2600/6416, lr 0.100000, loss 7.992059 +INFO 2020-12-05 00:01:07 train.py: 79] Epoch 4, iter 2800/6416, lr 0.100000, loss 7.957175 +INFO 2020-12-05 00:04:34 train.py: 92] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2020-12-05 00:04:35 train.py: 79] Epoch 4, iter 3000/6416, lr 0.100000, loss 7.946537 +INFO 2020-12-05 00:08:03 train.py: 79] Epoch 4, iter 3200/6416, lr 0.100000, loss 7.963321 +INFO 2020-12-05 00:11:31 train.py: 79] Epoch 4, iter 3400/6416, lr 0.100000, loss 7.934362 +INFO 2020-12-05 00:14:59 train.py: 79] Epoch 4, iter 3600/6416, lr 0.100000, loss 7.910169 +INFO 2020-12-05 00:18:27 train.py: 79] Epoch 4, iter 3800/6416, lr 0.100000, loss 7.893520 +INFO 2020-12-05 00:21:55 train.py: 79] Epoch 4, iter 4000/6416, lr 0.100000, loss 7.861820 +INFO 2020-12-05 00:25:24 train.py: 79] Epoch 4, iter 4200/6416, lr 0.100000, loss 7.854077 +INFO 2020-12-05 00:28:52 train.py: 79] Epoch 4, iter 4400/6416, lr 0.100000, loss 7.842075 +INFO 2020-12-05 00:32:20 train.py: 79] Epoch 4, iter 4600/6416, lr 0.100000, loss 7.816697 +INFO 2020-12-05 00:35:48 train.py: 79] Epoch 4, iter 4800/6416, lr 0.100000, loss 7.801469 +INFO 2020-12-05 00:39:17 train.py: 79] Epoch 4, iter 5000/6416, lr 0.100000, loss 7.793809 +INFO 2020-12-05 00:42:45 train.py: 79] Epoch 4, iter 5200/6416, lr 0.100000, loss 7.778498 +INFO 2020-12-05 00:46:13 train.py: 79] Epoch 4, iter 5400/6416, lr 0.100000, loss 7.765427 +INFO 2020-12-05 00:49:42 train.py: 79] Epoch 4, iter 5600/6416, lr 0.100000, loss 7.735386 +INFO 2020-12-05 00:53:10 train.py: 79] Epoch 4, iter 5800/6416, lr 0.100000, loss 7.705831 +INFO 2020-12-05 00:56:38 train.py: 92] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2020-12-05 00:56:39 train.py: 79] Epoch 4, iter 6000/6416, lr 0.100000, loss 7.682049 +INFO 2020-12-05 01:00:08 train.py: 79] Epoch 4, iter 6200/6416, lr 0.100000, loss 7.694603 +INFO 2020-12-05 01:03:36 train.py: 79] Epoch 4, iter 6400/6416, lr 0.100000, loss 7.685364 +INFO 2020-12-05 01:03:52 train.py: 97] Save checkpoint Epoch_4.pt to disk... +INFO 2020-12-05 01:03:54 train.py: 79] Epoch 5, iter 0/6416, lr 0.100000, loss 7.716165 +INFO 2020-12-05 01:07:22 train.py: 79] Epoch 5, iter 200/6416, lr 0.100000, loss 7.153336 +INFO 2020-12-05 01:10:50 train.py: 79] Epoch 5, iter 400/6416, lr 0.100000, loss 7.126025 +INFO 2020-12-05 01:14:17 train.py: 79] Epoch 5, iter 600/6416, lr 0.100000, loss 7.225863 +INFO 2020-12-05 01:17:45 train.py: 79] Epoch 5, iter 800/6416, lr 0.100000, loss 7.277958 +INFO 2020-12-05 01:21:13 train.py: 79] Epoch 5, iter 1000/6416, lr 0.100000, loss 7.334002 +INFO 2020-12-05 01:24:40 train.py: 79] Epoch 5, iter 1200/6416, lr 0.100000, loss 7.341764 +INFO 2020-12-05 01:28:08 train.py: 79] Epoch 5, iter 1400/6416, lr 0.100000, loss 7.411059 +INFO 2020-12-05 01:31:36 train.py: 79] Epoch 5, iter 1600/6416, lr 0.100000, loss 7.412400 +INFO 2020-12-05 01:35:04 train.py: 79] Epoch 5, iter 1800/6416, lr 0.100000, loss 7.455484 +INFO 2020-12-05 01:38:32 train.py: 79] Epoch 5, iter 2000/6416, lr 0.100000, loss 7.427902 +INFO 2020-12-05 01:41:59 train.py: 79] Epoch 5, iter 2200/6416, lr 0.100000, loss 7.423447 +INFO 2020-12-05 01:45:27 train.py: 79] Epoch 5, iter 2400/6416, lr 0.100000, loss 7.421161 +INFO 2020-12-05 01:48:55 train.py: 79] Epoch 5, iter 2600/6416, lr 0.100000, loss 7.422858 +INFO 2020-12-05 01:52:23 train.py: 79] Epoch 5, iter 2800/6416, lr 0.100000, loss 7.421201 +INFO 2020-12-05 01:55:50 train.py: 92] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2020-12-05 01:55:51 train.py: 79] Epoch 5, iter 3000/6416, lr 0.100000, loss 7.422262 +INFO 2020-12-05 01:59:20 train.py: 79] Epoch 5, iter 3200/6416, lr 0.100000, loss 7.413162 +INFO 2020-12-05 02:02:48 train.py: 79] Epoch 5, iter 3400/6416, lr 0.100000, loss 7.389495 +INFO 2020-12-05 02:06:16 train.py: 79] Epoch 5, iter 3600/6416, lr 0.100000, loss 7.362105 +INFO 2020-12-05 02:09:44 train.py: 79] Epoch 5, iter 3800/6416, lr 0.100000, loss 7.405298 +INFO 2020-12-05 02:13:12 train.py: 79] Epoch 5, iter 4000/6416, lr 0.100000, loss 7.404870 +INFO 2020-12-05 02:16:40 train.py: 79] Epoch 5, iter 4200/6416, lr 0.100000, loss 7.356420 +INFO 2020-12-05 02:20:08 train.py: 79] Epoch 5, iter 4400/6416, lr 0.100000, loss 7.366529 +INFO 2020-12-05 02:23:36 train.py: 79] Epoch 5, iter 4600/6416, lr 0.100000, loss 7.322106 +INFO 2020-12-05 02:27:05 train.py: 79] Epoch 5, iter 4800/6416, lr 0.100000, loss 7.370430 +INFO 2020-12-05 02:30:33 train.py: 79] Epoch 5, iter 5000/6416, lr 0.100000, loss 7.328980 +INFO 2020-12-05 02:34:01 train.py: 79] Epoch 5, iter 5200/6416, lr 0.100000, loss 7.298283 +INFO 2020-12-05 02:37:30 train.py: 79] Epoch 5, iter 5400/6416, lr 0.100000, loss 7.266570 +INFO 2020-12-05 02:40:58 train.py: 79] Epoch 5, iter 5600/6416, lr 0.100000, loss 7.309567 +INFO 2020-12-05 02:44:26 train.py: 79] Epoch 5, iter 5800/6416, lr 0.100000, loss 7.280971 +INFO 2020-12-05 02:47:54 train.py: 92] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2020-12-05 02:47:55 train.py: 79] Epoch 5, iter 6000/6416, lr 0.100000, loss 7.274906 +INFO 2020-12-05 02:51:23 train.py: 79] Epoch 5, iter 6200/6416, lr 0.100000, loss 7.251253 +INFO 2020-12-05 02:54:51 train.py: 79] Epoch 5, iter 6400/6416, lr 0.100000, loss 7.247135 +INFO 2020-12-05 02:55:06 train.py: 97] Save checkpoint Epoch_5.pt to disk... +INFO 2020-12-05 02:55:09 train.py: 79] Epoch 6, iter 0/6416, lr 0.100000, loss 7.152089 +INFO 2020-12-05 02:58:36 train.py: 79] Epoch 6, iter 200/6416, lr 0.100000, loss 6.677138 +INFO 2020-12-05 03:02:04 train.py: 79] Epoch 6, iter 400/6416, lr 0.100000, loss 6.716689 +INFO 2020-12-05 03:05:31 train.py: 79] Epoch 6, iter 600/6416, lr 0.100000, loss 6.827116 +INFO 2020-12-05 03:08:59 train.py: 79] Epoch 6, iter 800/6416, lr 0.100000, loss 6.880670 +INFO 2020-12-05 03:12:26 train.py: 79] Epoch 6, iter 1000/6416, lr 0.100000, loss 6.925452 +INFO 2020-12-05 03:15:54 train.py: 79] Epoch 6, iter 1200/6416, lr 0.100000, loss 6.990694 +INFO 2020-12-05 03:19:21 train.py: 79] Epoch 6, iter 1400/6416, lr 0.100000, loss 6.995743 +INFO 2020-12-05 03:22:49 train.py: 79] Epoch 6, iter 1600/6416, lr 0.100000, loss 7.024012 +INFO 2020-12-05 03:26:16 train.py: 79] Epoch 6, iter 1800/6416, lr 0.100000, loss 7.045314 +INFO 2020-12-05 03:29:44 train.py: 79] Epoch 6, iter 2000/6416, lr 0.100000, loss 7.062760 +INFO 2020-12-05 03:33:11 train.py: 79] Epoch 6, iter 2200/6416, lr 0.100000, loss 7.032008 +INFO 2020-12-05 03:36:39 train.py: 79] Epoch 6, iter 2400/6416, lr 0.100000, loss 7.061680 +INFO 2020-12-05 03:40:07 train.py: 79] Epoch 6, iter 2600/6416, lr 0.100000, loss 7.048713 +INFO 2020-12-05 03:43:34 train.py: 79] Epoch 6, iter 2800/6416, lr 0.100000, loss 7.054901 +INFO 2020-12-05 03:47:01 train.py: 92] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2020-12-05 03:47:02 train.py: 79] Epoch 6, iter 3000/6416, lr 0.100000, loss 7.054258 +INFO 2020-12-05 03:50:30 train.py: 79] Epoch 6, iter 3200/6416, lr 0.100000, loss 7.048441 +INFO 2020-12-05 03:53:58 train.py: 79] Epoch 6, iter 3400/6416, lr 0.100000, loss 7.035745 +INFO 2020-12-05 03:57:27 train.py: 79] Epoch 6, iter 3600/6416, lr 0.100000, loss 7.040420 +INFO 2020-12-05 04:00:55 train.py: 79] Epoch 6, iter 3800/6416, lr 0.100000, loss 7.047064 +INFO 2020-12-05 04:04:23 train.py: 79] Epoch 6, iter 4000/6416, lr 0.100000, loss 7.030522 +INFO 2020-12-05 04:07:51 train.py: 79] Epoch 6, iter 4200/6416, lr 0.100000, loss 7.000274 +INFO 2020-12-05 04:11:20 train.py: 79] Epoch 6, iter 4400/6416, lr 0.100000, loss 6.978023 +INFO 2020-12-05 04:14:48 train.py: 79] Epoch 6, iter 4600/6416, lr 0.100000, loss 7.004088 +INFO 2020-12-05 04:18:16 train.py: 79] Epoch 6, iter 4800/6416, lr 0.100000, loss 6.994035 +INFO 2020-12-05 04:21:44 train.py: 79] Epoch 6, iter 5000/6416, lr 0.100000, loss 6.966543 +INFO 2020-12-05 04:25:13 train.py: 79] Epoch 6, iter 5200/6416, lr 0.100000, loss 6.992030 +INFO 2020-12-05 04:28:41 train.py: 79] Epoch 6, iter 5400/6416, lr 0.100000, loss 6.966049 +INFO 2020-12-05 04:32:09 train.py: 79] Epoch 6, iter 5600/6416, lr 0.100000, loss 6.966196 +INFO 2020-12-05 04:35:38 train.py: 79] Epoch 6, iter 5800/6416, lr 0.100000, loss 6.980391 +INFO 2020-12-05 04:39:05 train.py: 92] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2020-12-05 04:39:06 train.py: 79] Epoch 6, iter 6000/6416, lr 0.100000, loss 6.939235 +INFO 2020-12-05 04:42:34 train.py: 79] Epoch 6, iter 6200/6416, lr 0.100000, loss 6.932310 +INFO 2020-12-05 04:46:02 train.py: 79] Epoch 6, iter 6400/6416, lr 0.100000, loss 6.920093 +INFO 2020-12-05 04:46:18 train.py: 97] Save checkpoint Epoch_6.pt to disk... +INFO 2020-12-05 04:46:20 train.py: 79] Epoch 7, iter 0/6416, lr 0.100000, loss 6.918180 +INFO 2020-12-05 04:49:48 train.py: 79] Epoch 7, iter 200/6416, lr 0.100000, loss 6.396653 +INFO 2020-12-05 04:53:15 train.py: 79] Epoch 7, iter 400/6416, lr 0.100000, loss 6.413509 +INFO 2020-12-05 04:56:43 train.py: 79] Epoch 7, iter 600/6416, lr 0.100000, loss 6.514897 +INFO 2020-12-05 05:00:10 train.py: 79] Epoch 7, iter 800/6416, lr 0.100000, loss 6.566967 +INFO 2020-12-05 05:03:38 train.py: 79] Epoch 7, iter 1000/6416, lr 0.100000, loss 6.618975 +INFO 2020-12-05 05:07:05 train.py: 79] Epoch 7, iter 1200/6416, lr 0.100000, loss 6.687779 +INFO 2020-12-05 05:10:33 train.py: 79] Epoch 7, iter 1400/6416, lr 0.100000, loss 6.724841 +INFO 2020-12-05 05:14:00 train.py: 79] Epoch 7, iter 1600/6416, lr 0.100000, loss 6.741530 +INFO 2020-12-05 05:17:28 train.py: 79] Epoch 7, iter 1800/6416, lr 0.100000, loss 6.729090 +INFO 2020-12-05 05:20:55 train.py: 79] Epoch 7, iter 2000/6416, lr 0.100000, loss 6.782476 +INFO 2020-12-05 05:24:23 train.py: 79] Epoch 7, iter 2200/6416, lr 0.100000, loss 6.763539 +INFO 2020-12-05 05:27:50 train.py: 79] Epoch 7, iter 2400/6416, lr 0.100000, loss 6.769798 +INFO 2020-12-05 05:31:18 train.py: 79] Epoch 7, iter 2600/6416, lr 0.100000, loss 6.760862 +INFO 2020-12-05 05:34:45 train.py: 79] Epoch 7, iter 2800/6416, lr 0.100000, loss 6.796310 +INFO 2020-12-05 05:38:12 train.py: 92] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2020-12-05 05:38:13 train.py: 79] Epoch 7, iter 3000/6416, lr 0.100000, loss 6.765018 +INFO 2020-12-05 05:41:41 train.py: 79] Epoch 7, iter 3200/6416, lr 0.100000, loss 6.790659 +INFO 2020-12-05 05:45:09 train.py: 79] Epoch 7, iter 3400/6416, lr 0.100000, loss 6.779472 +INFO 2020-12-05 05:48:37 train.py: 79] Epoch 7, iter 3600/6416, lr 0.100000, loss 6.754166 +INFO 2020-12-05 05:52:04 train.py: 79] Epoch 7, iter 3800/6416, lr 0.100000, loss 6.741950 +INFO 2020-12-05 05:55:32 train.py: 79] Epoch 7, iter 4000/6416, lr 0.100000, loss 6.796215 +INFO 2020-12-05 05:59:00 train.py: 79] Epoch 7, iter 4200/6416, lr 0.100000, loss 6.730734 +INFO 2020-12-05 06:02:28 train.py: 79] Epoch 7, iter 4400/6416, lr 0.100000, loss 6.720681 +INFO 2020-12-05 06:05:56 train.py: 79] Epoch 7, iter 4600/6416, lr 0.100000, loss 6.737967 +INFO 2020-12-05 06:09:24 train.py: 79] Epoch 7, iter 4800/6416, lr 0.100000, loss 6.723388 +INFO 2020-12-05 06:12:52 train.py: 79] Epoch 7, iter 5000/6416, lr 0.100000, loss 6.755905 +INFO 2020-12-05 06:16:20 train.py: 79] Epoch 7, iter 5200/6416, lr 0.100000, loss 6.756323 +INFO 2020-12-05 06:19:48 train.py: 79] Epoch 7, iter 5400/6416, lr 0.100000, loss 6.730527 +INFO 2020-12-05 06:23:16 train.py: 79] Epoch 7, iter 5600/6416, lr 0.100000, loss 6.712811 +INFO 2020-12-05 06:26:44 train.py: 79] Epoch 7, iter 5800/6416, lr 0.100000, loss 6.676762 +INFO 2020-12-05 06:30:12 train.py: 92] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2020-12-05 06:30:13 train.py: 79] Epoch 7, iter 6000/6416, lr 0.100000, loss 6.709044 +INFO 2020-12-05 06:33:42 train.py: 79] Epoch 7, iter 6200/6416, lr 0.100000, loss 6.735850 +INFO 2020-12-05 06:37:10 train.py: 79] Epoch 7, iter 6400/6416, lr 0.100000, loss 6.704747 +INFO 2020-12-05 06:37:26 train.py: 97] Save checkpoint Epoch_7.pt to disk... +INFO 2020-12-05 06:37:28 train.py: 79] Epoch 8, iter 0/6416, lr 0.100000, loss 6.655569 +INFO 2020-12-05 06:40:56 train.py: 79] Epoch 8, iter 200/6416, lr 0.100000, loss 6.200425 +INFO 2020-12-05 06:44:23 train.py: 79] Epoch 8, iter 400/6416, lr 0.100000, loss 6.194023 +INFO 2020-12-05 06:47:50 train.py: 79] Epoch 8, iter 600/6416, lr 0.100000, loss 6.280918 +INFO 2020-12-05 06:51:18 train.py: 79] Epoch 8, iter 800/6416, lr 0.100000, loss 6.356980 +INFO 2020-12-05 06:54:45 train.py: 79] Epoch 8, iter 1000/6416, lr 0.100000, loss 6.396135 +INFO 2020-12-05 06:58:13 train.py: 79] Epoch 8, iter 1200/6416, lr 0.100000, loss 6.428632 +INFO 2020-12-05 07:01:40 train.py: 79] Epoch 8, iter 1400/6416, lr 0.100000, loss 6.503153 +INFO 2020-12-05 07:05:08 train.py: 79] Epoch 8, iter 1600/6416, lr 0.100000, loss 6.500470 +INFO 2020-12-05 07:08:35 train.py: 79] Epoch 8, iter 1800/6416, lr 0.100000, loss 6.529297 +INFO 2020-12-05 07:12:03 train.py: 79] Epoch 8, iter 2000/6416, lr 0.100000, loss 6.530378 +INFO 2020-12-05 07:15:30 train.py: 79] Epoch 8, iter 2200/6416, lr 0.100000, loss 6.522300 +INFO 2020-12-05 07:18:58 train.py: 79] Epoch 8, iter 2400/6416, lr 0.100000, loss 6.557148 +INFO 2020-12-05 07:22:25 train.py: 79] Epoch 8, iter 2600/6416, lr 0.100000, loss 6.568744 +INFO 2020-12-05 07:25:53 train.py: 79] Epoch 8, iter 2800/6416, lr 0.100000, loss 6.559994 +INFO 2020-12-05 07:29:20 train.py: 92] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2020-12-05 07:29:21 train.py: 79] Epoch 8, iter 3000/6416, lr 0.100000, loss 6.589960 +INFO 2020-12-05 07:32:48 train.py: 79] Epoch 8, iter 3200/6416, lr 0.100000, loss 6.560607 +INFO 2020-12-05 07:36:16 train.py: 79] Epoch 8, iter 3400/6416, lr 0.100000, loss 6.576931 +INFO 2020-12-05 07:39:44 train.py: 79] Epoch 8, iter 3600/6416, lr 0.100000, loss 6.571948 +INFO 2020-12-05 07:43:12 train.py: 79] Epoch 8, iter 3800/6416, lr 0.100000, loss 6.568509 +INFO 2020-12-05 07:46:39 train.py: 79] Epoch 8, iter 4000/6416, lr 0.100000, loss 6.534901 +INFO 2020-12-05 07:50:07 train.py: 79] Epoch 8, iter 4200/6416, lr 0.100000, loss 6.555075 +INFO 2020-12-05 07:53:35 train.py: 79] Epoch 8, iter 4400/6416, lr 0.100000, loss 6.562300 +INFO 2020-12-05 07:57:03 train.py: 79] Epoch 8, iter 4600/6416, lr 0.100000, loss 6.534326 +INFO 2020-12-05 08:00:31 train.py: 79] Epoch 8, iter 4800/6416, lr 0.100000, loss 6.543559 +INFO 2020-12-05 08:03:59 train.py: 79] Epoch 8, iter 5000/6416, lr 0.100000, loss 6.543015 +INFO 2020-12-05 08:07:27 train.py: 79] Epoch 8, iter 5200/6416, lr 0.100000, loss 6.498902 +INFO 2020-12-05 08:10:55 train.py: 79] Epoch 8, iter 5400/6416, lr 0.100000, loss 6.530536 +INFO 2020-12-05 08:14:23 train.py: 79] Epoch 8, iter 5600/6416, lr 0.100000, loss 6.513833 +INFO 2020-12-05 08:17:51 train.py: 79] Epoch 8, iter 5800/6416, lr 0.100000, loss 6.507943 +INFO 2020-12-05 08:21:19 train.py: 92] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2020-12-05 08:21:20 train.py: 79] Epoch 8, iter 6000/6416, lr 0.100000, loss 6.484468 +INFO 2020-12-05 08:24:48 train.py: 79] Epoch 8, iter 6200/6416, lr 0.100000, loss 6.504925 +INFO 2020-12-05 08:28:17 train.py: 79] Epoch 8, iter 6400/6416, lr 0.100000, loss 6.526360 +INFO 2020-12-05 08:28:32 train.py: 97] Save checkpoint Epoch_8.pt to disk... +INFO 2020-12-05 08:28:35 train.py: 79] Epoch 9, iter 0/6416, lr 0.100000, loss 6.546625 +INFO 2020-12-05 08:32:03 train.py: 79] Epoch 9, iter 200/6416, lr 0.100000, loss 5.988418 +INFO 2020-12-05 08:35:30 train.py: 79] Epoch 9, iter 400/6416, lr 0.100000, loss 6.013575 +INFO 2020-12-05 08:38:58 train.py: 79] Epoch 9, iter 600/6416, lr 0.100000, loss 6.090373 +INFO 2020-12-05 08:42:26 train.py: 79] Epoch 9, iter 800/6416, lr 0.100000, loss 6.155948 +INFO 2020-12-05 08:45:53 train.py: 79] Epoch 9, iter 1000/6416, lr 0.100000, loss 6.204142 +INFO 2020-12-05 08:49:21 train.py: 79] Epoch 9, iter 1200/6416, lr 0.100000, loss 6.273956 +INFO 2020-12-05 08:52:49 train.py: 79] Epoch 9, iter 1400/6416, lr 0.100000, loss 6.308727 +INFO 2020-12-05 08:56:17 train.py: 79] Epoch 9, iter 1600/6416, lr 0.100000, loss 6.318594 +INFO 2020-12-05 08:59:44 train.py: 79] Epoch 9, iter 1800/6416, lr 0.100000, loss 6.349388 +INFO 2020-12-05 09:03:12 train.py: 79] Epoch 9, iter 2000/6416, lr 0.100000, loss 6.348874 +INFO 2020-12-05 09:06:40 train.py: 79] Epoch 9, iter 2200/6416, lr 0.100000, loss 6.340981 +INFO 2020-12-05 09:10:08 train.py: 79] Epoch 9, iter 2400/6416, lr 0.100000, loss 6.333893 +INFO 2020-12-05 09:13:36 train.py: 79] Epoch 9, iter 2600/6416, lr 0.100000, loss 6.407534 +INFO 2020-12-05 09:17:04 train.py: 79] Epoch 9, iter 2800/6416, lr 0.100000, loss 6.404898 +INFO 2020-12-05 09:20:31 train.py: 92] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2020-12-05 09:20:32 train.py: 79] Epoch 9, iter 3000/6416, lr 0.100000, loss 6.430646 +INFO 2020-12-05 09:24:00 train.py: 79] Epoch 9, iter 3200/6416, lr 0.100000, loss 6.422098 +INFO 2020-12-05 09:27:28 train.py: 79] Epoch 9, iter 3400/6416, lr 0.100000, loss 6.392207 +INFO 2020-12-05 09:30:56 train.py: 79] Epoch 9, iter 3600/6416, lr 0.100000, loss 6.416785 +INFO 2020-12-05 09:34:24 train.py: 79] Epoch 9, iter 3800/6416, lr 0.100000, loss 6.398945 +INFO 2020-12-05 09:37:52 train.py: 79] Epoch 9, iter 4000/6416, lr 0.100000, loss 6.388043 +INFO 2020-12-05 09:41:20 train.py: 79] Epoch 9, iter 4200/6416, lr 0.100000, loss 6.380904 +INFO 2020-12-05 09:44:49 train.py: 79] Epoch 9, iter 4400/6416, lr 0.100000, loss 6.393300 +INFO 2020-12-05 09:48:17 train.py: 79] Epoch 9, iter 4600/6416, lr 0.100000, loss 6.420892 +INFO 2020-12-05 09:51:45 train.py: 79] Epoch 9, iter 4800/6416, lr 0.100000, loss 6.401572 +INFO 2020-12-05 09:55:13 train.py: 79] Epoch 9, iter 5000/6416, lr 0.100000, loss 6.367910 +INFO 2020-12-05 09:58:42 train.py: 79] Epoch 9, iter 5200/6416, lr 0.100000, loss 6.354099 +INFO 2020-12-05 10:02:10 train.py: 79] Epoch 9, iter 5400/6416, lr 0.100000, loss 6.391977 +INFO 2020-12-05 10:05:38 train.py: 79] Epoch 9, iter 5600/6416, lr 0.100000, loss 6.369676 +INFO 2020-12-05 10:09:07 train.py: 79] Epoch 9, iter 5800/6416, lr 0.100000, loss 6.352410 +INFO 2020-12-05 10:12:34 train.py: 92] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2020-12-05 10:12:35 train.py: 79] Epoch 9, iter 6000/6416, lr 0.100000, loss 6.361461 +INFO 2020-12-05 10:16:04 train.py: 79] Epoch 9, iter 6200/6416, lr 0.100000, loss 6.336442 +INFO 2020-12-05 10:19:32 train.py: 79] Epoch 9, iter 6400/6416, lr 0.100000, loss 6.363317 +INFO 2020-12-05 10:19:48 train.py: 97] Save checkpoint Epoch_9.pt to disk... +INFO 2020-12-05 10:19:50 train.py: 79] Epoch 10, iter 0/6416, lr 0.010000, loss 6.385041 +INFO 2020-12-05 10:23:17 train.py: 79] Epoch 10, iter 200/6416, lr 0.010000, loss 5.172713 +INFO 2020-12-05 10:26:45 train.py: 79] Epoch 10, iter 400/6416, lr 0.010000, loss 4.925981 +INFO 2020-12-05 10:30:12 train.py: 79] Epoch 10, iter 600/6416, lr 0.010000, loss 4.823651 +INFO 2020-12-05 10:33:40 train.py: 79] Epoch 10, iter 800/6416, lr 0.010000, loss 4.755726 +INFO 2020-12-05 10:37:07 train.py: 79] Epoch 10, iter 1000/6416, lr 0.010000, loss 4.711808 +INFO 2020-12-05 10:40:34 train.py: 79] Epoch 10, iter 1200/6416, lr 0.010000, loss 4.656096 +INFO 2020-12-05 10:44:02 train.py: 79] Epoch 10, iter 1400/6416, lr 0.010000, loss 4.620695 +INFO 2020-12-05 10:47:29 train.py: 79] Epoch 10, iter 1600/6416, lr 0.010000, loss 4.570408 +INFO 2020-12-05 10:50:56 train.py: 79] Epoch 10, iter 1800/6416, lr 0.010000, loss 4.555992 +INFO 2020-12-05 10:54:24 train.py: 79] Epoch 10, iter 2000/6416, lr 0.010000, loss 4.514627 +INFO 2020-12-05 10:57:51 train.py: 79] Epoch 10, iter 2200/6416, lr 0.010000, loss 4.499152 +INFO 2020-12-05 11:01:18 train.py: 79] Epoch 10, iter 2400/6416, lr 0.010000, loss 4.501562 +INFO 2020-12-05 11:04:46 train.py: 79] Epoch 10, iter 2600/6416, lr 0.010000, loss 4.447203 +INFO 2020-12-05 11:08:13 train.py: 79] Epoch 10, iter 2800/6416, lr 0.010000, loss 4.449026 +INFO 2020-12-05 11:11:40 train.py: 92] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2020-12-05 11:11:41 train.py: 79] Epoch 10, iter 3000/6416, lr 0.010000, loss 4.419977 +INFO 2020-12-05 11:15:09 train.py: 79] Epoch 10, iter 3200/6416, lr 0.010000, loss 4.400013 +INFO 2020-12-05 11:18:36 train.py: 79] Epoch 10, iter 3400/6416, lr 0.010000, loss 4.355941 +INFO 2020-12-05 11:22:04 train.py: 79] Epoch 10, iter 3600/6416, lr 0.010000, loss 4.361823 +INFO 2020-12-05 11:25:32 train.py: 79] Epoch 10, iter 3800/6416, lr 0.010000, loss 4.329315 +INFO 2020-12-05 11:28:59 train.py: 79] Epoch 10, iter 4000/6416, lr 0.010000, loss 4.302991 +INFO 2020-12-05 11:32:27 train.py: 79] Epoch 10, iter 4200/6416, lr 0.010000, loss 4.288169 +INFO 2020-12-05 11:35:55 train.py: 79] Epoch 10, iter 4400/6416, lr 0.010000, loss 4.288176 +INFO 2020-12-05 11:39:23 train.py: 79] Epoch 10, iter 4600/6416, lr 0.010000, loss 4.257224 +INFO 2020-12-05 11:42:51 train.py: 79] Epoch 10, iter 4800/6416, lr 0.010000, loss 4.265672 +INFO 2020-12-05 11:46:18 train.py: 79] Epoch 10, iter 5000/6416, lr 0.010000, loss 4.237838 +INFO 2020-12-05 11:49:46 train.py: 79] Epoch 10, iter 5200/6416, lr 0.010000, loss 4.239720 +INFO 2020-12-05 11:53:14 train.py: 79] Epoch 10, iter 5400/6416, lr 0.010000, loss 4.222967 +INFO 2020-12-05 11:56:42 train.py: 79] Epoch 10, iter 5600/6416, lr 0.010000, loss 4.225243 +INFO 2020-12-05 12:00:10 train.py: 79] Epoch 10, iter 5800/6416, lr 0.010000, loss 4.196087 +INFO 2020-12-05 12:03:37 train.py: 92] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2020-12-05 12:03:38 train.py: 79] Epoch 10, iter 6000/6416, lr 0.010000, loss 4.195523 +INFO 2020-12-05 12:07:07 train.py: 79] Epoch 10, iter 6200/6416, lr 0.010000, loss 4.190834 +INFO 2020-12-05 12:10:35 train.py: 79] Epoch 10, iter 6400/6416, lr 0.010000, loss 4.175358 +INFO 2020-12-05 12:10:51 train.py: 97] Save checkpoint Epoch_10.pt to disk... +INFO 2020-12-05 12:10:53 train.py: 79] Epoch 11, iter 0/6416, lr 0.010000, loss 4.148418 +INFO 2020-12-05 12:14:21 train.py: 79] Epoch 11, iter 200/6416, lr 0.010000, loss 3.855050 +INFO 2020-12-05 12:17:48 train.py: 79] Epoch 11, iter 400/6416, lr 0.010000, loss 3.864178 +INFO 2020-12-05 12:21:16 train.py: 79] Epoch 11, iter 600/6416, lr 0.010000, loss 3.853740 +INFO 2020-12-05 12:24:44 train.py: 79] Epoch 11, iter 800/6416, lr 0.010000, loss 3.849989 +INFO 2020-12-05 12:28:11 train.py: 79] Epoch 11, iter 1000/6416, lr 0.010000, loss 3.855244 +INFO 2020-12-05 12:31:39 train.py: 79] Epoch 11, iter 1200/6416, lr 0.010000, loss 3.837125 +INFO 2020-12-05 12:35:06 train.py: 79] Epoch 11, iter 1400/6416, lr 0.010000, loss 3.864083 +INFO 2020-12-05 12:38:34 train.py: 79] Epoch 11, iter 1600/6416, lr 0.010000, loss 3.834262 +INFO 2020-12-05 12:42:02 train.py: 79] Epoch 11, iter 1800/6416, lr 0.010000, loss 3.877466 +INFO 2020-12-05 12:45:29 train.py: 79] Epoch 11, iter 2000/6416, lr 0.010000, loss 3.848900 +INFO 2020-12-05 12:48:57 train.py: 79] Epoch 11, iter 2200/6416, lr 0.010000, loss 3.851610 +INFO 2020-12-05 12:52:25 train.py: 79] Epoch 11, iter 2400/6416, lr 0.010000, loss 3.841831 +INFO 2020-12-05 12:55:53 train.py: 79] Epoch 11, iter 2600/6416, lr 0.010000, loss 3.858794 +INFO 2020-12-05 12:59:20 train.py: 79] Epoch 11, iter 2800/6416, lr 0.010000, loss 3.857770 +INFO 2020-12-05 13:02:47 train.py: 92] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2020-12-05 13:02:48 train.py: 79] Epoch 11, iter 3000/6416, lr 0.010000, loss 3.851545 +INFO 2020-12-05 13:06:16 train.py: 79] Epoch 11, iter 3200/6416, lr 0.010000, loss 3.849674 +INFO 2020-12-05 13:09:44 train.py: 79] Epoch 11, iter 3400/6416, lr 0.010000, loss 3.872307 +INFO 2020-12-05 13:13:12 train.py: 79] Epoch 11, iter 3600/6416, lr 0.010000, loss 3.860439 +INFO 2020-12-05 13:16:40 train.py: 79] Epoch 11, iter 3800/6416, lr 0.010000, loss 3.881402 +INFO 2020-12-05 13:20:08 train.py: 79] Epoch 11, iter 4000/6416, lr 0.010000, loss 3.852261 +INFO 2020-12-05 13:23:36 train.py: 79] Epoch 11, iter 4200/6416, lr 0.010000, loss 3.874088 +INFO 2020-12-05 13:27:04 train.py: 79] Epoch 11, iter 4400/6416, lr 0.010000, loss 3.888295 +INFO 2020-12-05 13:30:32 train.py: 79] Epoch 11, iter 4600/6416, lr 0.010000, loss 3.883151 +INFO 2020-12-05 13:34:00 train.py: 79] Epoch 11, iter 4800/6416, lr 0.010000, loss 3.837264 +INFO 2020-12-05 13:37:29 train.py: 79] Epoch 11, iter 5000/6416, lr 0.010000, loss 3.858073 +INFO 2020-12-05 13:40:57 train.py: 79] Epoch 11, iter 5200/6416, lr 0.010000, loss 3.867437 +INFO 2020-12-05 13:44:25 train.py: 79] Epoch 11, iter 5400/6416, lr 0.010000, loss 3.870497 +INFO 2020-12-05 13:47:53 train.py: 79] Epoch 11, iter 5600/6416, lr 0.010000, loss 3.880058 +INFO 2020-12-05 13:51:21 train.py: 79] Epoch 11, iter 5800/6416, lr 0.010000, loss 3.858043 +INFO 2020-12-05 13:54:49 train.py: 92] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2020-12-05 13:54:50 train.py: 79] Epoch 11, iter 6000/6416, lr 0.010000, loss 3.861370 +INFO 2020-12-05 13:58:18 train.py: 79] Epoch 11, iter 6200/6416, lr 0.010000, loss 3.863755 +INFO 2020-12-05 14:01:46 train.py: 79] Epoch 11, iter 6400/6416, lr 0.010000, loss 3.876178 +INFO 2020-12-05 14:02:01 train.py: 97] Save checkpoint Epoch_11.pt to disk... +INFO 2020-12-05 14:02:04 train.py: 79] Epoch 12, iter 0/6416, lr 0.010000, loss 3.795015 +INFO 2020-12-05 14:05:31 train.py: 79] Epoch 12, iter 200/6416, lr 0.010000, loss 3.565641 +INFO 2020-12-05 14:08:59 train.py: 79] Epoch 12, iter 400/6416, lr 0.010000, loss 3.555529 +INFO 2020-12-05 14:12:27 train.py: 79] Epoch 12, iter 600/6416, lr 0.010000, loss 3.565018 +INFO 2020-12-05 14:15:55 train.py: 79] Epoch 12, iter 800/6416, lr 0.010000, loss 3.605192 +INFO 2020-12-05 14:19:22 train.py: 79] Epoch 12, iter 1000/6416, lr 0.010000, loss 3.586902 +INFO 2020-12-05 14:22:50 train.py: 79] Epoch 12, iter 1200/6416, lr 0.010000, loss 3.585633 +INFO 2020-12-05 14:26:17 train.py: 79] Epoch 12, iter 1400/6416, lr 0.010000, loss 3.617846 +INFO 2020-12-05 14:29:45 train.py: 79] Epoch 12, iter 1600/6416, lr 0.010000, loss 3.610591 +INFO 2020-12-05 14:33:12 train.py: 79] Epoch 12, iter 1800/6416, lr 0.010000, loss 3.611443 +INFO 2020-12-05 14:36:40 train.py: 79] Epoch 12, iter 2000/6416, lr 0.010000, loss 3.624212 +INFO 2020-12-05 14:40:08 train.py: 79] Epoch 12, iter 2200/6416, lr 0.010000, loss 3.625046 +INFO 2020-12-05 14:43:35 train.py: 79] Epoch 12, iter 2400/6416, lr 0.010000, loss 3.653922 +INFO 2020-12-05 14:47:03 train.py: 79] Epoch 12, iter 2600/6416, lr 0.010000, loss 3.662666 +INFO 2020-12-05 14:50:31 train.py: 79] Epoch 12, iter 2800/6416, lr 0.010000, loss 3.666486 +INFO 2020-12-05 14:53:58 train.py: 92] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2020-12-05 14:53:59 train.py: 79] Epoch 12, iter 3000/6416, lr 0.010000, loss 3.677757 +INFO 2020-12-05 14:57:27 train.py: 79] Epoch 12, iter 3200/6416, lr 0.010000, loss 3.679683 +INFO 2020-12-05 15:00:55 train.py: 79] Epoch 12, iter 3400/6416, lr 0.010000, loss 3.698292 +INFO 2020-12-05 15:04:23 train.py: 79] Epoch 12, iter 3600/6416, lr 0.010000, loss 3.692556 +INFO 2020-12-05 15:07:51 train.py: 79] Epoch 12, iter 3800/6416, lr 0.010000, loss 3.697790 +INFO 2020-12-05 15:11:19 train.py: 79] Epoch 12, iter 4000/6416, lr 0.010000, loss 3.699502 +INFO 2020-12-05 15:14:47 train.py: 79] Epoch 12, iter 4200/6416, lr 0.010000, loss 3.705153 +INFO 2020-12-05 15:18:15 train.py: 79] Epoch 12, iter 4400/6416, lr 0.010000, loss 3.735897 +INFO 2020-12-05 15:21:43 train.py: 79] Epoch 12, iter 4600/6416, lr 0.010000, loss 3.722900 +INFO 2020-12-05 15:25:11 train.py: 79] Epoch 12, iter 4800/6416, lr 0.010000, loss 3.724094 +INFO 2020-12-05 15:28:39 train.py: 79] Epoch 12, iter 5000/6416, lr 0.010000, loss 3.745422 +INFO 2020-12-05 15:32:07 train.py: 79] Epoch 12, iter 5200/6416, lr 0.010000, loss 3.746051 +INFO 2020-12-05 15:35:35 train.py: 79] Epoch 12, iter 5400/6416, lr 0.010000, loss 3.729365 +INFO 2020-12-05 15:39:04 train.py: 79] Epoch 12, iter 5600/6416, lr 0.010000, loss 3.745029 +INFO 2020-12-05 15:42:32 train.py: 79] Epoch 12, iter 5800/6416, lr 0.010000, loss 3.755959 +INFO 2020-12-05 15:46:00 train.py: 92] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2020-12-05 15:46:01 train.py: 79] Epoch 12, iter 6000/6416, lr 0.010000, loss 3.720827 +INFO 2020-12-05 15:49:29 train.py: 79] Epoch 12, iter 6200/6416, lr 0.010000, loss 3.757693 +INFO 2020-12-05 15:52:57 train.py: 79] Epoch 12, iter 6400/6416, lr 0.010000, loss 3.760766 +INFO 2020-12-05 15:53:13 train.py: 97] Save checkpoint Epoch_12.pt to disk... +INFO 2020-12-05 15:53:15 train.py: 79] Epoch 13, iter 0/6416, lr 0.001000, loss 3.819709 +INFO 2020-12-05 15:56:42 train.py: 79] Epoch 13, iter 200/6416, lr 0.001000, loss 3.375830 +INFO 2020-12-05 16:00:10 train.py: 79] Epoch 13, iter 400/6416, lr 0.001000, loss 3.318987 +INFO 2020-12-05 16:03:37 train.py: 79] Epoch 13, iter 600/6416, lr 0.001000, loss 3.315471 +INFO 2020-12-05 16:07:04 train.py: 79] Epoch 13, iter 800/6416, lr 0.001000, loss 3.302148 +INFO 2020-12-05 16:10:32 train.py: 79] Epoch 13, iter 1000/6416, lr 0.001000, loss 3.296407 +INFO 2020-12-05 16:13:59 train.py: 79] Epoch 13, iter 1200/6416, lr 0.001000, loss 3.294618 +INFO 2020-12-05 16:17:26 train.py: 79] Epoch 13, iter 1400/6416, lr 0.001000, loss 3.303942 +INFO 2020-12-05 16:20:54 train.py: 79] Epoch 13, iter 1600/6416, lr 0.001000, loss 3.284822 +INFO 2020-12-05 16:24:21 train.py: 79] Epoch 13, iter 1800/6416, lr 0.001000, loss 3.292487 +INFO 2020-12-05 16:27:48 train.py: 79] Epoch 13, iter 2000/6416, lr 0.001000, loss 3.281661 +INFO 2020-12-05 16:31:16 train.py: 79] Epoch 13, iter 2200/6416, lr 0.001000, loss 3.294156 +INFO 2020-12-05 16:34:43 train.py: 79] Epoch 13, iter 2400/6416, lr 0.001000, loss 3.296767 +INFO 2020-12-05 16:38:10 train.py: 79] Epoch 13, iter 2600/6416, lr 0.001000, loss 3.306324 +INFO 2020-12-05 16:41:38 train.py: 79] Epoch 13, iter 2800/6416, lr 0.001000, loss 3.280782 +INFO 2020-12-05 16:45:05 train.py: 92] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2020-12-05 16:45:06 train.py: 79] Epoch 13, iter 3000/6416, lr 0.001000, loss 3.293406 +INFO 2020-12-05 16:48:33 train.py: 79] Epoch 13, iter 3200/6416, lr 0.001000, loss 3.288028 +INFO 2020-12-05 16:52:01 train.py: 79] Epoch 13, iter 3400/6416, lr 0.001000, loss 3.301002 +INFO 2020-12-05 16:55:29 train.py: 79] Epoch 13, iter 3600/6416, lr 0.001000, loss 3.289780 +INFO 2020-12-05 16:58:56 train.py: 79] Epoch 13, iter 3800/6416, lr 0.001000, loss 3.290293 +INFO 2020-12-05 17:02:24 train.py: 79] Epoch 13, iter 4000/6416, lr 0.001000, loss 3.290176 +INFO 2020-12-05 17:05:52 train.py: 79] Epoch 13, iter 4200/6416, lr 0.001000, loss 3.299990 +INFO 2020-12-05 17:09:19 train.py: 79] Epoch 13, iter 4400/6416, lr 0.001000, loss 3.277490 +INFO 2020-12-05 17:12:47 train.py: 79] Epoch 13, iter 4600/6416, lr 0.001000, loss 3.306302 +INFO 2020-12-05 17:16:15 train.py: 79] Epoch 13, iter 4800/6416, lr 0.001000, loss 3.305148 +INFO 2020-12-05 17:19:43 train.py: 79] Epoch 13, iter 5000/6416, lr 0.001000, loss 3.283517 +INFO 2020-12-05 17:23:10 train.py: 79] Epoch 13, iter 5200/6416, lr 0.001000, loss 3.281036 +INFO 2020-12-05 17:26:38 train.py: 79] Epoch 13, iter 5400/6416, lr 0.001000, loss 3.287068 +INFO 2020-12-05 17:30:06 train.py: 79] Epoch 13, iter 5600/6416, lr 0.001000, loss 3.285729 +INFO 2020-12-05 17:33:34 train.py: 79] Epoch 13, iter 5800/6416, lr 0.001000, loss 3.287088 +INFO 2020-12-05 17:37:01 train.py: 92] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2020-12-05 17:37:02 train.py: 79] Epoch 13, iter 6000/6416, lr 0.001000, loss 3.285475 +INFO 2020-12-05 17:40:30 train.py: 79] Epoch 13, iter 6200/6416, lr 0.001000, loss 3.308075 +INFO 2020-12-05 17:43:59 train.py: 79] Epoch 13, iter 6400/6416, lr 0.001000, loss 3.281814 +INFO 2020-12-05 17:44:14 train.py: 97] Save checkpoint Epoch_13.pt to disk... +INFO 2020-12-05 17:44:16 train.py: 79] Epoch 14, iter 0/6416, lr 0.001000, loss 3.289893 +INFO 2020-12-05 17:47:44 train.py: 79] Epoch 14, iter 200/6416, lr 0.001000, loss 3.253529 +INFO 2020-12-05 17:51:12 train.py: 79] Epoch 14, iter 400/6416, lr 0.001000, loss 3.232601 +INFO 2020-12-05 17:54:40 train.py: 79] Epoch 14, iter 600/6416, lr 0.001000, loss 3.233960 +INFO 2020-12-05 17:58:07 train.py: 79] Epoch 14, iter 800/6416, lr 0.001000, loss 3.233396 +INFO 2020-12-05 18:01:35 train.py: 79] Epoch 14, iter 1000/6416, lr 0.001000, loss 3.222918 +INFO 2020-12-05 18:05:02 train.py: 79] Epoch 14, iter 1200/6416, lr 0.001000, loss 3.249890 +INFO 2020-12-05 18:08:30 train.py: 79] Epoch 14, iter 1400/6416, lr 0.001000, loss 3.252724 +INFO 2020-12-05 18:11:57 train.py: 79] Epoch 14, iter 1600/6416, lr 0.001000, loss 3.250110 +INFO 2020-12-05 18:15:25 train.py: 79] Epoch 14, iter 1800/6416, lr 0.001000, loss 3.257493 +INFO 2020-12-05 18:18:53 train.py: 79] Epoch 14, iter 2000/6416, lr 0.001000, loss 3.271572 +INFO 2020-12-05 18:22:20 train.py: 79] Epoch 14, iter 2200/6416, lr 0.001000, loss 3.276865 +INFO 2020-12-05 18:25:48 train.py: 79] Epoch 14, iter 2400/6416, lr 0.001000, loss 3.249085 +INFO 2020-12-05 18:29:16 train.py: 79] Epoch 14, iter 2600/6416, lr 0.001000, loss 3.256323 +INFO 2020-12-05 18:32:43 train.py: 79] Epoch 14, iter 2800/6416, lr 0.001000, loss 3.233061 +INFO 2020-12-05 18:36:10 train.py: 92] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2020-12-05 18:36:11 train.py: 79] Epoch 14, iter 3000/6416, lr 0.001000, loss 3.240132 +INFO 2020-12-05 18:39:39 train.py: 79] Epoch 14, iter 3200/6416, lr 0.001000, loss 3.276102 +INFO 2020-12-05 18:43:07 train.py: 79] Epoch 14, iter 3400/6416, lr 0.001000, loss 3.255621 +INFO 2020-12-05 18:46:35 train.py: 79] Epoch 14, iter 3600/6416, lr 0.001000, loss 3.256739 +INFO 2020-12-05 18:50:03 train.py: 79] Epoch 14, iter 3800/6416, lr 0.001000, loss 3.258472 +INFO 2020-12-05 18:53:31 train.py: 79] Epoch 14, iter 4000/6416, lr 0.001000, loss 3.240507 +INFO 2020-12-05 18:56:59 train.py: 79] Epoch 14, iter 4200/6416, lr 0.001000, loss 3.260787 +INFO 2020-12-05 19:00:27 train.py: 79] Epoch 14, iter 4400/6416, lr 0.001000, loss 3.276287 +INFO 2020-12-05 19:03:55 train.py: 79] Epoch 14, iter 4600/6416, lr 0.001000, loss 3.269647 +INFO 2020-12-05 19:07:23 train.py: 79] Epoch 14, iter 4800/6416, lr 0.001000, loss 3.248438 +INFO 2020-12-05 19:10:51 train.py: 79] Epoch 14, iter 5000/6416, lr 0.001000, loss 3.242763 +INFO 2020-12-05 19:14:19 train.py: 79] Epoch 14, iter 5200/6416, lr 0.001000, loss 3.272917 +INFO 2020-12-05 19:17:48 train.py: 79] Epoch 14, iter 5400/6416, lr 0.001000, loss 3.270104 +INFO 2020-12-05 19:21:16 train.py: 79] Epoch 14, iter 5600/6416, lr 0.001000, loss 3.246871 +INFO 2020-12-05 19:24:44 train.py: 79] Epoch 14, iter 5800/6416, lr 0.001000, loss 3.283965 +INFO 2020-12-05 19:28:12 train.py: 92] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2020-12-05 19:28:13 train.py: 79] Epoch 14, iter 6000/6416, lr 0.001000, loss 3.269561 +INFO 2020-12-05 19:31:41 train.py: 79] Epoch 14, iter 6200/6416, lr 0.001000, loss 3.265996 +INFO 2020-12-05 19:35:09 train.py: 79] Epoch 14, iter 6400/6416, lr 0.001000, loss 3.297731 +INFO 2020-12-05 19:35:24 train.py: 97] Save checkpoint Epoch_14.pt to disk... +INFO 2020-12-05 19:35:27 train.py: 79] Epoch 15, iter 0/6416, lr 0.001000, loss 3.274030 +INFO 2020-12-05 19:38:54 train.py: 79] Epoch 15, iter 200/6416, lr 0.001000, loss 3.202996 +INFO 2020-12-05 19:42:22 train.py: 79] Epoch 15, iter 400/6416, lr 0.001000, loss 3.218926 +INFO 2020-12-05 19:45:50 train.py: 79] Epoch 15, iter 600/6416, lr 0.001000, loss 3.221272 +INFO 2020-12-05 19:49:17 train.py: 79] Epoch 15, iter 800/6416, lr 0.001000, loss 3.229126 +INFO 2020-12-05 19:52:45 train.py: 79] Epoch 15, iter 1000/6416, lr 0.001000, loss 3.203917 +INFO 2020-12-05 19:56:12 train.py: 79] Epoch 15, iter 1200/6416, lr 0.001000, loss 3.220771 +INFO 2020-12-05 19:59:40 train.py: 79] Epoch 15, iter 1400/6416, lr 0.001000, loss 3.237727 +INFO 2020-12-05 20:03:08 train.py: 79] Epoch 15, iter 1600/6416, lr 0.001000, loss 3.207903 +INFO 2020-12-05 20:06:35 train.py: 79] Epoch 15, iter 1800/6416, lr 0.001000, loss 3.238711 +INFO 2020-12-05 20:10:03 train.py: 79] Epoch 15, iter 2000/6416, lr 0.001000, loss 3.208129 +INFO 2020-12-05 20:13:30 train.py: 79] Epoch 15, iter 2200/6416, lr 0.001000, loss 3.235893 +INFO 2020-12-05 20:16:58 train.py: 79] Epoch 15, iter 2400/6416, lr 0.001000, loss 3.236612 +INFO 2020-12-05 20:20:26 train.py: 79] Epoch 15, iter 2600/6416, lr 0.001000, loss 3.227373 +INFO 2020-12-05 20:23:54 train.py: 79] Epoch 15, iter 2800/6416, lr 0.001000, loss 3.240951 +INFO 2020-12-05 20:27:21 train.py: 92] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2020-12-05 20:27:22 train.py: 79] Epoch 15, iter 3000/6416, lr 0.001000, loss 3.238829 +INFO 2020-12-05 20:30:49 train.py: 79] Epoch 15, iter 3200/6416, lr 0.001000, loss 3.225033 +INFO 2020-12-05 20:34:17 train.py: 79] Epoch 15, iter 3400/6416, lr 0.001000, loss 3.232243 +INFO 2020-12-05 20:37:45 train.py: 79] Epoch 15, iter 3600/6416, lr 0.001000, loss 3.249092 +INFO 2020-12-05 20:41:13 train.py: 79] Epoch 15, iter 3800/6416, lr 0.001000, loss 3.243252 +INFO 2020-12-05 20:44:41 train.py: 79] Epoch 15, iter 4000/6416, lr 0.001000, loss 3.235035 +INFO 2020-12-05 20:48:09 train.py: 79] Epoch 15, iter 4200/6416, lr 0.001000, loss 3.274263 +INFO 2020-12-05 20:51:37 train.py: 79] Epoch 15, iter 4400/6416, lr 0.001000, loss 3.233355 +INFO 2020-12-05 20:55:05 train.py: 79] Epoch 15, iter 4600/6416, lr 0.001000, loss 3.219492 +INFO 2020-12-05 20:58:33 train.py: 79] Epoch 15, iter 4800/6416, lr 0.001000, loss 3.229777 +INFO 2020-12-05 21:02:01 train.py: 79] Epoch 15, iter 5000/6416, lr 0.001000, loss 3.255224 +INFO 2020-12-05 21:05:30 train.py: 79] Epoch 15, iter 5200/6416, lr 0.001000, loss 3.230233 +INFO 2020-12-05 21:08:58 train.py: 79] Epoch 15, iter 5400/6416, lr 0.001000, loss 3.263279 +INFO 2020-12-05 21:12:26 train.py: 79] Epoch 15, iter 5600/6416, lr 0.001000, loss 3.246884 +INFO 2020-12-05 21:15:54 train.py: 79] Epoch 15, iter 5800/6416, lr 0.001000, loss 3.228916 +INFO 2020-12-05 21:19:22 train.py: 92] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2020-12-05 21:19:23 train.py: 79] Epoch 15, iter 6000/6416, lr 0.001000, loss 3.242338 +INFO 2020-12-05 21:22:51 train.py: 79] Epoch 15, iter 6200/6416, lr 0.001000, loss 3.253669 +INFO 2020-12-05 21:26:19 train.py: 79] Epoch 15, iter 6400/6416, lr 0.001000, loss 3.258864 +INFO 2020-12-05 21:26:35 train.py: 97] Save checkpoint Epoch_15.pt to disk... +INFO 2020-12-05 21:26:37 train.py: 79] Epoch 16, iter 0/6416, lr 0.000100, loss 3.292948 +INFO 2020-12-05 21:30:04 train.py: 79] Epoch 16, iter 200/6416, lr 0.000100, loss 3.183219 +INFO 2020-12-05 21:33:32 train.py: 79] Epoch 16, iter 400/6416, lr 0.000100, loss 3.197252 +INFO 2020-12-05 21:36:59 train.py: 79] Epoch 16, iter 600/6416, lr 0.000100, loss 3.181016 +INFO 2020-12-05 21:40:26 train.py: 79] Epoch 16, iter 800/6416, lr 0.000100, loss 3.192165 +INFO 2020-12-05 21:43:54 train.py: 79] Epoch 16, iter 1000/6416, lr 0.000100, loss 3.184664 +INFO 2020-12-05 21:47:21 train.py: 79] Epoch 16, iter 1200/6416, lr 0.000100, loss 3.198980 +INFO 2020-12-05 21:50:48 train.py: 79] Epoch 16, iter 1400/6416, lr 0.000100, loss 3.192734 +INFO 2020-12-05 21:54:15 train.py: 79] Epoch 16, iter 1600/6416, lr 0.000100, loss 3.191035 +INFO 2020-12-05 21:57:42 train.py: 79] Epoch 16, iter 1800/6416, lr 0.000100, loss 3.173339 +INFO 2020-12-05 22:01:10 train.py: 79] Epoch 16, iter 2000/6416, lr 0.000100, loss 3.204828 +INFO 2020-12-05 22:04:37 train.py: 79] Epoch 16, iter 2200/6416, lr 0.000100, loss 3.194531 +INFO 2020-12-05 22:08:04 train.py: 79] Epoch 16, iter 2400/6416, lr 0.000100, loss 3.175848 +INFO 2020-12-05 22:11:31 train.py: 79] Epoch 16, iter 2600/6416, lr 0.000100, loss 3.189726 +INFO 2020-12-05 22:14:58 train.py: 79] Epoch 16, iter 2800/6416, lr 0.000100, loss 3.177625 +INFO 2020-12-05 22:18:25 train.py: 92] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2020-12-05 22:18:26 train.py: 79] Epoch 16, iter 3000/6416, lr 0.000100, loss 3.170502 +INFO 2020-12-05 22:21:53 train.py: 79] Epoch 16, iter 3200/6416, lr 0.000100, loss 3.186420 +INFO 2020-12-05 22:25:20 train.py: 79] Epoch 16, iter 3400/6416, lr 0.000100, loss 3.185336 +INFO 2020-12-05 22:28:48 train.py: 79] Epoch 16, iter 3600/6416, lr 0.000100, loss 3.188959 +INFO 2020-12-05 22:32:15 train.py: 79] Epoch 16, iter 3800/6416, lr 0.000100, loss 3.207331 +INFO 2020-12-05 22:35:43 train.py: 79] Epoch 16, iter 4000/6416, lr 0.000100, loss 3.175016 +INFO 2020-12-05 22:39:10 train.py: 79] Epoch 16, iter 4200/6416, lr 0.000100, loss 3.202153 +INFO 2020-12-05 22:42:38 train.py: 79] Epoch 16, iter 4400/6416, lr 0.000100, loss 3.175727 +INFO 2020-12-05 22:46:05 train.py: 79] Epoch 16, iter 4600/6416, lr 0.000100, loss 3.197430 +INFO 2020-12-05 22:49:33 train.py: 79] Epoch 16, iter 4800/6416, lr 0.000100, loss 3.209093 +INFO 2020-12-05 22:53:00 train.py: 79] Epoch 16, iter 5000/6416, lr 0.000100, loss 3.200509 +INFO 2020-12-05 22:56:27 train.py: 79] Epoch 16, iter 5200/6416, lr 0.000100, loss 3.166731 +INFO 2020-12-05 22:59:55 train.py: 79] Epoch 16, iter 5400/6416, lr 0.000100, loss 3.189580 +INFO 2020-12-05 23:03:23 train.py: 79] Epoch 16, iter 5600/6416, lr 0.000100, loss 3.176489 +INFO 2020-12-05 23:06:50 train.py: 79] Epoch 16, iter 5800/6416, lr 0.000100, loss 3.185435 +INFO 2020-12-05 23:10:18 train.py: 92] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2020-12-05 23:10:19 train.py: 79] Epoch 16, iter 6000/6416, lr 0.000100, loss 3.183122 +INFO 2020-12-05 23:13:47 train.py: 79] Epoch 16, iter 6200/6416, lr 0.000100, loss 3.173565 +INFO 2020-12-05 23:17:15 train.py: 79] Epoch 16, iter 6400/6416, lr 0.000100, loss 3.172358 +INFO 2020-12-05 23:17:31 train.py: 97] Save checkpoint Epoch_16.pt to disk... +INFO 2020-12-05 23:17:33 train.py: 79] Epoch 17, iter 0/6416, lr 0.000100, loss 3.189538 +INFO 2020-12-05 23:21:01 train.py: 79] Epoch 17, iter 200/6416, lr 0.000100, loss 3.189161 +INFO 2020-12-05 23:24:29 train.py: 79] Epoch 17, iter 400/6416, lr 0.000100, loss 3.188404 +INFO 2020-12-05 23:27:56 train.py: 79] Epoch 17, iter 600/6416, lr 0.000100, loss 3.164539 +INFO 2020-12-05 23:31:24 train.py: 79] Epoch 17, iter 800/6416, lr 0.000100, loss 3.182564 +INFO 2020-12-05 23:34:51 train.py: 79] Epoch 17, iter 1000/6416, lr 0.000100, loss 3.187699 +INFO 2020-12-05 23:38:19 train.py: 79] Epoch 17, iter 1200/6416, lr 0.000100, loss 3.190330 +INFO 2020-12-05 23:41:46 train.py: 79] Epoch 17, iter 1400/6416, lr 0.000100, loss 3.179394 +INFO 2020-12-05 23:45:14 train.py: 79] Epoch 17, iter 1600/6416, lr 0.000100, loss 3.190443 +INFO 2020-12-05 23:48:41 train.py: 79] Epoch 17, iter 1800/6416, lr 0.000100, loss 3.182039 +INFO 2020-12-05 23:52:09 train.py: 79] Epoch 17, iter 2000/6416, lr 0.000100, loss 3.194719 +INFO 2020-12-05 23:55:36 train.py: 79] Epoch 17, iter 2200/6416, lr 0.000100, loss 3.172530 +INFO 2020-12-05 23:59:04 train.py: 79] Epoch 17, iter 2400/6416, lr 0.000100, loss 3.193706 +INFO 2020-12-06 00:02:31 train.py: 79] Epoch 17, iter 2600/6416, lr 0.000100, loss 3.183820 +INFO 2020-12-06 00:05:59 train.py: 79] Epoch 17, iter 2800/6416, lr 0.000100, loss 3.187860 +INFO 2020-12-06 00:09:26 train.py: 92] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2020-12-06 00:09:27 train.py: 79] Epoch 17, iter 3000/6416, lr 0.000100, loss 3.198377 +INFO 2020-12-06 00:12:54 train.py: 79] Epoch 17, iter 3200/6416, lr 0.000100, loss 3.143905 +INFO 2020-12-06 00:16:22 train.py: 79] Epoch 17, iter 3400/6416, lr 0.000100, loss 3.172025 +INFO 2020-12-06 00:19:49 train.py: 79] Epoch 17, iter 3600/6416, lr 0.000100, loss 3.192636 +INFO 2020-12-06 00:23:17 train.py: 79] Epoch 17, iter 3800/6416, lr 0.000100, loss 3.177560 +INFO 2020-12-06 00:26:45 train.py: 79] Epoch 17, iter 4000/6416, lr 0.000100, loss 3.188232 +INFO 2020-12-06 00:30:12 train.py: 79] Epoch 17, iter 4200/6416, lr 0.000100, loss 3.191702 +INFO 2020-12-06 00:33:40 train.py: 79] Epoch 17, iter 4400/6416, lr 0.000100, loss 3.177440 +INFO 2020-12-06 00:37:08 train.py: 79] Epoch 17, iter 4600/6416, lr 0.000100, loss 3.184048 +INFO 2020-12-06 00:40:35 train.py: 79] Epoch 17, iter 4800/6416, lr 0.000100, loss 3.184476 +INFO 2020-12-06 00:44:03 train.py: 79] Epoch 17, iter 5000/6416, lr 0.000100, loss 3.183765 +INFO 2020-12-06 00:47:31 train.py: 79] Epoch 17, iter 5200/6416, lr 0.000100, loss 3.175542 +INFO 2020-12-06 00:50:59 train.py: 79] Epoch 17, iter 5400/6416, lr 0.000100, loss 3.190452 +INFO 2020-12-06 00:54:26 train.py: 79] Epoch 17, iter 5600/6416, lr 0.000100, loss 3.204129 +INFO 2020-12-06 00:57:55 train.py: 79] Epoch 17, iter 5800/6416, lr 0.000100, loss 3.163028 +INFO 2020-12-06 01:01:22 train.py: 92] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2020-12-06 01:01:23 train.py: 79] Epoch 17, iter 6000/6416, lr 0.000100, loss 3.187762 +INFO 2020-12-06 01:04:51 train.py: 79] Epoch 17, iter 6200/6416, lr 0.000100, loss 3.182176 +INFO 2020-12-06 01:08:19 train.py: 79] Epoch 17, iter 6400/6416, lr 0.000100, loss 3.163325 +INFO 2020-12-06 01:08:35 train.py: 97] Save checkpoint Epoch_17.pt to disk... +INFO 2020-12-06 01:08:35 train.py: 180] Optimization done! diff --git a/bob/bio/facexzoo/models/backbones/GhostNet/.gitkeep b/bob/bio/facexzoo/models/backbones/GhostNet/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..57e1f56b3c7524906bf628e03959d797d6a80bff --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_agedb.txt @@ -0,0 +1,45 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.9570000000000001 | 0.0032848323331321023 | +| Epoch_17_batch_5999.pt | 0.9568333333333333 | 0.0033467323292953426 | +| Epoch_13.pt | 0.9563333333333333 | 0.0036243347622889155 | +| Epoch_15_batch_5999.pt | 0.9563333333333333 | 0.0031991511219751087 | +| Epoch_15.pt | 0.9561666666666667 | 0.00324940640353106 | +| Epoch_14.pt | 0.9555 | 0.0033706247360261103 | +| Epoch_16_batch_5999.pt | 0.9555 | 0.0035490391674854248 | +| Epoch_12_batch_5999.pt | 0.9553333333333333 | 0.0031700761372638027 | +| Epoch_10.pt | 0.9551666666666666 | 0.002986078811194823 | +| Epoch_15_batch_2999.pt | 0.9551666666666666 | 0.003309638001912554 | +| Epoch_13_batch_5999.pt | 0.9548333333333334 | 0.0029860788111948163 | +| Epoch_14_batch_2999.pt | 0.9548333333333334 | 0.003107636949099334 | +| Epoch_13_batch_2999.pt | 0.9548333333333332 | 0.003047464033756106 | +| Epoch_16.pt | 0.9548333333333332 | 0.0035088072610306984 | +| Epoch_12.pt | 0.9545 | 0.0037437190197403204 | +| Epoch_12_batch_2999.pt | 0.9543333333333333 | 0.0032603112780269315 | +| Epoch_14_batch_5999.pt | 0.9541666666666668 | 0.00307569123014809 | +| Epoch_17_batch_2999.pt | 0.9541666666666668 | 0.003203489609630777 | +| Epoch_16_batch_2999.pt | 0.9541666666666666 | 0.0035939764421413028 | +| Epoch_10_batch_5999.pt | 0.9533333333333334 | 0.0030530292586742436 | +| Epoch_11_batch_2999.pt | 0.9533333333333334 | 0.003676753801727618 | +| Epoch_10_batch_2999.pt | 0.9528333333333334 | 0.0030332519321597104 | +| Epoch_11_batch_5999.pt | 0.9526666666666668 | 0.003506607519568787 | +| Epoch_11.pt | 0.9491666666666667 | 0.0032796604762545395 | +| Epoch_8_batch_5999.pt | 0.9399999999999998 | 0.003975231959999623 | +| Epoch_9_batch_2999.pt | 0.9391666666666667 | 0.003125462928674486 | +| Epoch_6_batch_2999.pt | 0.9381666666666668 | 0.00428498671072748 | +| Epoch_7_batch_2999.pt | 0.9361666666666666 | 0.005299953412327276 | +| Epoch_7_batch_5999.pt | 0.9351666666666667 | 0.0043776226706870956 | +| Epoch_8_batch_2999.pt | 0.9351666666666667 | 0.004814138129086651 | +| Epoch_5_batch_2999.pt | 0.9341666666666667 | 0.004261875203113481 | +| Epoch_6_batch_5999.pt | 0.9333333333333332 | 0.0037350525142159086 | +| Epoch_7.pt | 0.9333333333333332 | 0.004245549594342846 | +| Epoch_9_batch_5999.pt | 0.9331666666666667 | 0.0039003798485484635 | +| Epoch_8.pt | 0.932 | 0.0046067583203617535 | +| Epoch_5_batch_5999.pt | 0.9318333333333333 | 0.005954819606269348 | +| Epoch_4_batch_2999.pt | 0.9306666666666666 | 0.004682512779045661 | +| Epoch_6.pt | 0.9306666666666666 | 0.004932882862316247 | +| Epoch_9.pt | 0.9306666666666666 | 0.003532914021241036 | +| Epoch_5.pt | 0.9288333333333334 | 0.003760171390892831 | +| Epoch_3_batch_5999.pt | 0.9276666666666665 | 0.004786813161897336 | +| Epoch_4_batch_5999.pt | 0.9253333333333333 | 0.0040809705938237685 | diff --git a/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..0c86c978f4ef9c9d63b730ac2599db3c790ef5a2 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_calfw.txt @@ -0,0 +1,46 @@ ++------------------------+--------------------+-----------------------+ [13/206] +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17_batch_5999.pt | 0.9393333333333335 | 0.003055050463303892 | +| Epoch_16_batch_2999.pt | 0.9386666666666666 | 0.003340732528527317 | +| Epoch_16_batch_5999.pt | 0.9386666666666666 | 0.0028523328117763197 | +| Epoch_16.pt | 0.9385 | 0.00274929845147969 | +| Epoch_14_batch_2999.pt | 0.9381666666666668 | 0.002902212863690886 | +| Epoch_14.pt | 0.9381666666666666 | 0.0036298658275376984 | +| Epoch_15_batch_2999.pt | 0.9381666666666666 | 0.0027938424357066977 | +| Epoch_12_batch_2999.pt | 0.938 | 0.0034047896546765674 | +| Epoch_14_batch_5999.pt | 0.9378333333333334 | 0.0030837086858617594 | +| Epoch_13_batch_5999.pt | 0.9373333333333334 | 0.003279189902971932 | +| Epoch_13.pt | 0.9373333333333334 | 0.0028888888888888844 | +| Epoch_15.pt | 0.9371666666666666 | 0.0030332519321597095 | +| Epoch_17_batch_2999.pt | 0.9369999999999999 | 0.002948110924760356 | +| Epoch_12.pt | 0.9368333333333334 | 0.0026925824035672562 | +| Epoch_17.pt | 0.9368333333333334 | 0.0030169275516412184 | +| Epoch_12_batch_5999.pt | 0.9366666666666668 | 0.0030123203803835365 | +| Epoch_13_batch_2999.pt | 0.9366666666666668 | 0.00255796987404918 | +| Epoch_11.pt | 0.9361666666666666 | 0.0030025709148603684 | +| Epoch_11_batch_2999.pt | 0.9358333333333334 | 0.003154949081000144 | +| Epoch_10_batch_5999.pt | 0.9356666666666665 | 0.003506607519568778 | +| Epoch_10.pt | 0.9353333333333331 | 0.003368334753605355 | +| Epoch_15_batch_5999.pt | 0.9351666666666667 | 0.0031076369490993356 | +| Epoch_11_batch_5999.pt | 0.9333333333333333 | 0.0036851386559504434 | +| Epoch_10_batch_2999.pt | 0.9326666666666666 | 0.0037367048268444995 | +| Epoch_7_batch_5999.pt | 0.9268333333333333 | 0.0038445889503991018 | +| Epoch_7_batch_2999.pt | 0.9245000000000001 | 0.004346489998681923 | +| Epoch_8_batch_5999.pt | 0.924 | 0.004030746032714904 | +| Epoch_8_batch_2999.pt | 0.9224999999999998 | 0.00431942211498337 | +| Epoch_6_batch_2999.pt | 0.9221666666666666 | 0.004701260666231114 | +| Epoch_9.pt | 0.9209999999999999 | 0.0043047490284023335 | +| Epoch_5_batch_5999.pt | 0.9206666666666667 | 0.006475023237481541 | +| Epoch_6_batch_5999.pt | 0.9203333333333334 | 0.005090538306202354 | +| Epoch_9_batch_5999.pt | 0.9201666666666666 | 0.004342227339926471 | +| Epoch_7.pt | 0.9199999999999999 | 0.0041573970964154895 | +| Epoch_4_batch_2999.pt | 0.9186666666666665 | 0.004626813958590444 | +| Epoch_9_batch_2999.pt | 0.9183333333333333 | 0.0035486043161491836 | +| Epoch_5_batch_2999.pt | 0.9161666666666667 | 0.004444791653104356 | +| Epoch_6.pt | 0.916 | 0.003866602809178964 | +| Epoch_5.pt | 0.9153333333333334 | 0.004790680252735582 | +| Epoch_4_batch_5999.pt | 0.9149999999999998 | 0.003920506392083858 | +| Epoch_8.pt | 0.9145000000000001 | 0.003425125031510741 | +| Epoch_3_batch_5999.pt | 0.9108333333333333 | 0.00583862194124945 | +| Epoch_4.pt | 0.9099999999999999 | 0.004157397096415489 | diff --git a/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..b3fadf49108c3354924d656119472963a5c48d47 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_cplfw.txt @@ -0,0 +1,44 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14_batch_5999.pt | 0.8351666666666666 | 0.00529645816898448 | +| Epoch_14.pt | 0.8351666666666666 | 0.005502244211049226 | +| Epoch_15.pt | 0.8346666666666666 | 0.006308919807368171 | +| Epoch_13_batch_5999.pt | 0.8343333333333334 | 0.005606433694019055 | +| Epoch_17_batch_5999.pt | 0.8338333333333333 | 0.005346338310781819 | +| Epoch_14_batch_2999.pt | 0.8335000000000001 | 0.005406043714397371 | +| Epoch_17.pt | 0.8334999999999999 | 0.005148714330710073 | +| Epoch_16_batch_2999.pt | 0.8333333333333334 | 0.006382847385042249 | +| Epoch_15_batch_5999.pt | 0.833 | 0.00634307243386315 | +| Epoch_16_batch_5999.pt | 0.8328333333333333 | 0.00574697988318889 | +| Epoch_17_batch_2999.pt | 0.8328333333333333 | 0.005863940865078348 | +| Epoch_16.pt | 0.8323333333333334 | 0.005731653500679523 | +| Epoch_13_batch_2999.pt | 0.8314999999999999 | 0.005985837194042308 | +| Epoch_15_batch_2999.pt | 0.8308333333333333 | 0.005969314537648581 | +| Epoch_12_batch_2999.pt | 0.8298333333333334 | 0.005700606422149049 | +| Epoch_11_batch_5999.pt | 0.8296666666666666 | 0.005436502143433363 | +| Epoch_12.pt | 0.8295 | 0.005488765180792179 | +| Epoch_13.pt | 0.8295 | 0.006014642626617643 | +| Epoch_11_batch_2999.pt | 0.829 | 0.005628411174183974 | +| Epoch_11.pt | 0.8281666666666666 | 0.0058184996581253584 | +| Epoch_10.pt | 0.827 | 0.005430821959933297 | +| Epoch_10_batch_2999.pt | 0.8266666666666668 | 0.006521569151479632 | +| Epoch_10_batch_5999.pt | 0.8265 | 0.006118429960797555 | +| Epoch_12_batch_5999.pt | 0.8251666666666667 | 0.0063413691710042415 | +| Epoch_8_batch_5999.pt | 0.8028333333333333 | 0.006161659628924338 | +| Epoch_9_batch_5999.pt | 0.8006666666666667 | 0.005890984951916251 | +| Epoch_8_batch_2999.pt | 0.8003333333333333 | 0.0070088127946267365 | +| Epoch_7.pt | 0.7993333333333333 | 0.006513044839890153 | +| Epoch_6_batch_2999.pt | 0.7986666666666667 | 0.006084791808930259 | +| Epoch_5_batch_2999.pt | 0.7985 | 0.006032064527932023 | +| Epoch_7_batch_5999.pt | 0.7983333333333335 | 0.004733646312031285 | +| Epoch_7_batch_2999.pt | 0.7971666666666666 | 0.005018791847141928 | +| Epoch_9.pt | 0.7968333333333334 | 0.008094541675615219 | +| Epoch_8.pt | 0.7965 | 0.005255508573903227 | +| Epoch_9_batch_2999.pt | 0.7955 | 0.004987948438950589 | +| Epoch_6_batch_5999.pt | 0.7933333333333333 | 0.005698169513314707 | +| Epoch_4_batch_2999.pt | 0.7928333333333334 | 0.007345318488922299 | +| Epoch_3_batch_5999.pt | 0.7928333333333333 | 0.006479073626817992 | +| Epoch_5_batch_5999.pt | 0.7925 | 0.0049206669225789835 | +| Epoch_4_batch_5999.pt | 0.7914999999999999 | 0.006737814790282384 | +| Epoch_3_batch_2999.pt | 0.7888333333333333 | 0.005409468151215264 | diff --git a/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..1347bab37bfb5cf96ee39964bc2b3e2fee54c585 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_lfw.txt @@ -0,0 +1,46 @@ ++------------------------+--------------------+-----------------------+ [20/79] +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_11_batch_2999.pt | 0.9964999999999999 | 0.0009444444444444436 | +| Epoch_13_batch_2999.pt | 0.9964999999999999 | 0.0009444444444444436 | +| Epoch_13_batch_5999.pt | 0.9963333333333333 | 0.0010772621905369643 | +| Epoch_14_batch_2999.pt | 0.9963333333333333 | 0.0008164965809277232 | +| Epoch_13.pt | 0.9961666666666668 | 0.0007474235581707571 | +| Epoch_17_batch_5999.pt | 0.9960000000000001 | 0.0009362388636862611 | +| Epoch_14.pt | 0.9958333333333333 | 0.0009043789220055396 | +| Epoch_16.pt | 0.9958333333333333 | 0.0009043789220055396 | +| Epoch_15_batch_2999.pt | 0.9956666666666667 | 0.0008314794192830969 | +| Epoch_15.pt | 0.9956666666666667 | 0.0007535922203472557 | +| Epoch_16_batch_2999.pt | 0.9956666666666667 | 0.0008314794192830969 | +| Epoch_16_batch_5999.pt | 0.9956666666666667 | 0.0010304020550550815 | +| Epoch_17.pt | 0.9956666666666667 | 0.000968644209675708 | +| Epoch_10.pt | 0.9955 | 0.0007876359377087687 | +| Epoch_12.pt | 0.9955 | 0.0007876359377087669 | +| Epoch_14_batch_5999.pt | 0.9955 | 0.000963852865160973 | +| Epoch_15_batch_5999.pt | 0.9955 | 0.0009312808119022384 | +| Epoch_17_batch_2999.pt | 0.9955 | 0.000963852865160973 | +| Epoch_11_batch_5999.pt | 0.9951666666666666 | 0.0008766518798922007 | +| Epoch_11.pt | 0.9951666666666666 | 0.0011772011166898341 | +| Epoch_12_batch_5999.pt | 0.9951666666666666 | 0.0009765775461803897 | +| Epoch_10_batch_5999.pt | 0.9949999999999999 | 0.000785674201318386 | +| Epoch_12_batch_2999.pt | 0.9949999999999999 | 0.0011111111111111072 | +| Epoch_10_batch_2999.pt | 0.9943333333333332 | 0.0011706281947614185 | +| Epoch_4_batch_2999.pt | 0.994 | 0.0010599324460188319 | +| Epoch_7.pt | 0.994 | 0.0007114582486036464 | +| Epoch_7_batch_5999.pt | 0.9933333333333334 | 0.001531560972454468 | +| Epoch_8_batch_5999.pt | 0.9933333333333334 | 0.0011385500851066193 | +| Epoch_9.pt | 0.9933333333333332 | 0.0013146843962443628 | +| Epoch_5_batch_2999.pt | 0.9931666666666666 | 0.001228519132638661 | +| Epoch_9_batch_5999.pt | 0.9931666666666666 | 0.001203133768205985 | +| Epoch_5_batch_5999.pt | 0.9926666666666668 | 0.0010599324460188304 | +| Epoch_7_batch_2999.pt | 0.9926666666666668 | 0.0009026709338484449 | +| Epoch_8_batch_2999.pt | 0.9926666666666666 | 0.0008314794192831023 | +| Epoch_9_batch_2999.pt | 0.9924999999999999 | 0.0010015420209622196 | +| Epoch_3.pt | 0.9923333333333334 | 0.0010000000000000015 | +| Epoch_5.pt | 0.9921666666666666 | 0.0011124991330278197 | +| Epoch_8.pt | 0.9921666666666666 | 0.0015918387535438186 | +| Epoch_2_batch_5999.pt | 0.9918333333333333 | 0.0010957268290731155 | +| Epoch_6_batch_5999.pt | 0.9918333333333333 | 0.001037863427348303 | +| Epoch_3_batch_5999.pt | 0.9916666666666668 | 0.001405456737852609 | +| Epoch_4_batch_5999.pt | 0.9914999999999999 | 0.0009444444444444503 | +| Epoch_6.pt | 0.9913333333333334 | 0.0010772621905369587 | diff --git a/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_megaface.txt b/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_megaface.txt new file mode 100644 index 0000000000000000000000000000000000000000..f2b20c203bf358e6a66f75d35e9d4b73624b0b65 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_megaface.txt @@ -0,0 +1,14 @@ ++------+--------------------+ +| rank | accuracy | ++------+--------------------+ +| 1 | 0.8941770701797779 | +| 2 | 0.915207571240741 | +| 3 | 0.9250100889126105 | +| 4 | 0.9306598799744848 | +| 5 | 0.934838642487991 | +| 6 | 0.9378457893435047 | +| 7 | 0.9401434578283453 | +| 8 | 0.9422979288438758 | +| 9 | 0.9442050587760522 | +| 10 | 0.9458062668419751 | ++------+--------------------+ diff --git a/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_rfw_African.txt b/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_rfw_African.txt new file mode 100644 index 0000000000000000000000000000000000000000..b60d5fae88eb704a591935ad8a08d25781f8d383 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_rfw_African.txt @@ -0,0 +1,44 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17_batch_5999.pt | 0.8865000000000001 | 0.006471447259278996 | +| Epoch_16_batch_5999.pt | 0.8848333333333335 | 0.00664556846679903 | +| Epoch_14_batch_5999.pt | 0.8848333333333332 | 0.005797242852542748 | +| Epoch_13_batch_5999.pt | 0.8846666666666666 | 0.006906786785742248 | +| Epoch_16_batch_2999.pt | 0.8846666666666666 | 0.006094928067512211 | +| Epoch_15_batch_2999.pt | 0.8843333333333334 | 0.006667592528301109 | +| Epoch_17.pt | 0.8843333333333332 | 0.0066024686741091455 | +| Epoch_16.pt | 0.8841666666666667 | 0.006369535905725081 | +| Epoch_14.pt | 0.8835 | 0.006088087944076928 | +| Epoch_17_batch_2999.pt | 0.8833333333333334 | 0.00622123007963085 | +| Epoch_15_batch_5999.pt | 0.8818333333333334 | 0.006263011148159904 | +| Epoch_12.pt | 0.8815000000000002 | 0.006243267979330092 | +| Epoch_13_batch_2999.pt | 0.8808333333333334 | 0.00626202546808642 | +| Epoch_13.pt | 0.8808333333333334 | 0.006446599256608759 | +| Epoch_14_batch_2999.pt | 0.8808333333333334 | 0.006522752202582612 | +| Epoch_12_batch_2999.pt | 0.8805 | 0.005725457553552456 | +| Epoch_12_batch_5999.pt | 0.8801666666666665 | 0.005939250066971811 | +| Epoch_15.pt | 0.8799999999999999 | 0.0064788354387170025 | +| Epoch_11_batch_2999.pt | 0.8795 | 0.006334551539760064 | +| Epoch_10_batch_2999.pt | 0.8783333333333333 | 0.005895174842169915 | +| Epoch_11_batch_5999.pt | 0.8775000000000001 | 0.0050077101048111 | +| Epoch_11.pt | 0.8761666666666666 | 0.005730845713556816 | +| Epoch_10.pt | 0.8736666666666666 | 0.0047842333648024345 | +| Epoch_10_batch_5999.pt | 0.8711666666666666 | 0.005505608812389576 | +| Epoch_8_batch_5999.pt | 0.8514999999999999 | 0.005860781981280213 | +| Epoch_9_batch_5999.pt | 0.8476666666666667 | 0.006310876364961303 | +| Epoch_8_batch_2999.pt | 0.8466666666666667 | 0.005687326174253215 | +| Epoch_9_batch_2999.pt | 0.845 | 0.00411261233851594 | +| Epoch_7_batch_5999.pt | 0.8428333333333333 | 0.006045353281347278 | +| Epoch_9.pt | 0.8413333333333334 | 0.006969067458029653 | +| Epoch_5_batch_5999.pt | 0.841 | 0.005769224438109846 | +| Epoch_7.pt | 0.8385 | 0.004877828397611296 | +| Epoch_4_batch_5999.pt | 0.8366666666666667 | 0.005024630690931122 | +| Epoch_6_batch_2999.pt | 0.8354999999999999 | 0.0065830403122787 | +| Epoch_8.pt | 0.8353333333333334 | 0.004620138419175955 | +| Epoch_5_batch_2999.pt | 0.8348333333333333 | 0.0057060180489820235 | +| Epoch_4_batch_2999.pt | 0.8335000000000001 | 0.00538888888888889 | +| Epoch_7_batch_2999.pt | 0.8331666666666667 | 0.005348646996330754 | +| Epoch_6_batch_5999.pt | 0.8295 | 0.005805754914174107 | +| Epoch_3_batch_5999.pt | 0.8290000000000001 | 0.005864730320176291 | +| Epoch_6.pt | 0.8233333333333335 | 0.006004113816047236 | diff --git a/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_rfw_Asian.txt b/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_rfw_Asian.txt new file mode 100644 index 0000000000000000000000000000000000000000..b9d2f7df9a81a11f7c127d6305fdb89c61bb0f25 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_rfw_Asian.txt @@ -0,0 +1,44 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14_batch_2999.pt | 0.8856666666666667 | 0.004548775442324154 | +| Epoch_17.pt | 0.8850000000000001 | 0.004919098582484149 | +| Epoch_15_batch_2999.pt | 0.8848333333333332 | 0.004839714816616041 | +| Epoch_15_batch_5999.pt | 0.8843333333333334 | 0.004340449996583247 | +| Epoch_14_batch_5999.pt | 0.8841666666666667 | 0.004643128468533754 | +| Epoch_11_batch_5999.pt | 0.8838333333333335 | 0.004919412290502857 | +| Epoch_13_batch_5999.pt | 0.8836666666666666 | 0.004955356249106163 | +| Epoch_17_batch_2999.pt | 0.883 | 0.0048419463487779845 | +| Epoch_13.pt | 0.8826666666666666 | 0.005171145012542263 | +| Epoch_12_batch_5999.pt | 0.8825 | 0.0035246048723470893 | +| Epoch_17_batch_5999.pt | 0.8823333333333334 | 0.004368800722519442 | +| Epoch_16_batch_2999.pt | 0.8821666666666668 | 0.005079916884709394 | +| Epoch_12_batch_2999.pt | 0.8818333333333335 | 0.005640735877043689 | +| Epoch_16.pt | 0.8815 | 0.004996603784843864 | +| Epoch_16_batch_5999.pt | 0.8811666666666668 | 0.004900554264444525 | +| Epoch_15.pt | 0.8801666666666668 | 0.0045368858629387335 | +| Epoch_14.pt | 0.8801666666666665 | 0.004597704741377902 | +| Epoch_13_batch_2999.pt | 0.8800000000000001 | 0.004733646312031285 | +| Epoch_11_batch_2999.pt | 0.8791666666666667 | 0.004844813951249541 | +| Epoch_12.pt | 0.8786666666666667 | 0.004579880854561098 | +| Epoch_10_batch_5999.pt | 0.8781666666666667 | 0.004342227339926473 | +| Epoch_11.pt | 0.8779999999999999 | 0.0060542812114778915 | +| Epoch_10.pt | 0.8766666666666666 | 0.004238273582835707 | +| Epoch_10_batch_2999.pt | 0.875 | 0.004975247372719576 | +| Epoch_9_batch_5999.pt | 0.8550000000000001 | 0.0042236839574995985 | +| Epoch_8_batch_2999.pt | 0.8523333333333334 | 0.005774571760082798 | +| Epoch_6_batch_2999.pt | 0.8488333333333333 | 0.004267664813801922 | +| Epoch_9_batch_2999.pt | 0.8486666666666667 | 0.004660048216780167 | +| Epoch_8_batch_5999.pt | 0.8481666666666665 | 0.0052378607451119925 | +| Epoch_7_batch_2999.pt | 0.8458333333333334 | 0.002973649709127253 | +| Epoch_7_batch_5999.pt | 0.8416666666666666 | 0.004296136650929158 | +| Epoch_8.pt | 0.8415000000000001 | 0.004277777777777781 | +| Epoch_7.pt | 0.8408333333333333 | 0.00513550939928294 | +| Epoch_4_batch_2999.pt | 0.8404999999999999 | 0.005264896561421614 | +| Epoch_9.pt | 0.8400000000000001 | 0.0066989956866590535 | +| Epoch_4_batch_5999.pt | 0.8398333333333332 | 0.004040306185683717 | +| Epoch_5_batch_2999.pt | 0.8385 | 0.002349809553617403 | +| Epoch_6_batch_5999.pt | 0.8361666666666666 | 0.004245913067618993 | +| Epoch_3_batch_5999.pt | 0.8338333333333333 | 0.004727448088778849 | +| Epoch_6.pt | 0.8320000000000001 | 0.003458751648060755 | +| Epoch_5_batch_5999.pt | 0.8313333333333333 | 0.003950308629918044 | diff --git a/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_rfw_Caucasian.txt b/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_rfw_Caucasian.txt new file mode 100644 index 0000000000000000000000000000000000000000..51ecc8a2529a37c55ee030db0a1f68eaca602f8a --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_rfw_Caucasian.txt @@ -0,0 +1,45 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14_batch_5999.pt | 0.9536666666666667 | 0.0026851213274654675 | +| Epoch_15_batch_5999.pt | 0.9536666666666667 | 0.002808716591058781 | +| Epoch_16_batch_5999.pt | 0.9535 | 0.0027716599296147585 | +| Epoch_17_batch_5999.pt | 0.9535 | 0.0027827732858596013 | +| Epoch_17.pt | 0.9533333333333334 | 0.00234389145663656 | +| Epoch_17_batch_2999.pt | 0.9523333333333334 | 0.002746490465401846 | +| Epoch_16_batch_2999.pt | 0.952 | 0.0028952920490656403 | +| Epoch_15_batch_2999.pt | 0.9518333333333334 | 0.002575405996999832 | +| Epoch_15.pt | 0.9516666666666668 | 0.0030731814857642955 | +| Epoch_13_batch_2999.pt | 0.9515 | 0.0028915585954829084 | +| Epoch_13_batch_5999.pt | 0.9515 | 0.0024017740356908107 | +| Epoch_13.pt | 0.9513333333333334 | 0.002650413431528128 | +| Epoch_14.pt | 0.9513333333333334 | 0.002852332811776319 | +| Epoch_16.pt | 0.9513333333333334 | 0.002905932629027119 | +| Epoch_14_batch_2999.pt | 0.9511666666666667 | 0.0036434449849043595 | +| Epoch_12.pt | 0.9493333333333334 | 0.003115076837528045 | +| Epoch_11_batch_5999.pt | 0.9483333333333335 | 0.0028436630871266086 | +| Epoch_10.pt | 0.9478333333333333 | 0.002699451247390294 | +| Epoch_12_batch_2999.pt | 0.9476666666666667 | 0.002813108644704928 | +| Epoch_10_batch_2999.pt | 0.9469999999999998 | 0.0031308895119123016 | +| Epoch_11_batch_2999.pt | 0.9469999999999998 | 0.0032659863237109008 | +| Epoch_11.pt | 0.946 | 0.0032413226990699617 | +| Epoch_12_batch_5999.pt | 0.9456666666666667 | 0.0021401511426953554 | +| Epoch_10_batch_5999.pt | 0.9445 | 0.0024222477062879567 | +| Epoch_7_batch_2999.pt | 0.9259999999999999 | 0.003335184671067475 | +| Epoch_9_batch_2999.pt | 0.9255000000000001 | 0.00310366171632521 | +| Epoch_8_batch_5999.pt | 0.925 | 0.002545875386086577 | +| Epoch_7.pt | 0.9246666666666667 | 0.003179797338056482 | +| Epoch_5_batch_2999.pt | 0.9233333333333335 | 0.004395564543300551 | +| Epoch_9_batch_5999.pt | 0.9224999999999998 | 0.001595711846260564 | +| Epoch_6_batch_2999.pt | 0.9223333333333332 | 0.0032979604621457396 | +| Epoch_8_batch_2999.pt | 0.9213333333333333 | 0.003237511618740773 | +| Epoch_7_batch_5999.pt | 0.9189999999999999 | 0.003426476432246508 | +| Epoch_8.pt | 0.9164999999999999 | 0.002551325000712229 | +| Epoch_5_batch_5999.pt | 0.9156666666666666 | 0.0028131086447049218 | +| Epoch_4_batch_5999.pt | 0.9153333333333332 | 0.0038151743807531995 | +| Epoch_6_batch_5999.pt | 0.9148333333333334 | 0.0033742854753467133 | +| Epoch_6.pt | 0.9143333333333332 | 0.0030550504633038962 | +| Epoch_9.pt | 0.9138333333333334 | 0.004759979769642663 | +| Epoch_3_batch_5999.pt | 0.9125 | 0.002724488852275389 | +| Epoch_4_batch_2999.pt | 0.9103333333333333 | 0.003071172213574503 | +| Epoch_5.pt | 0.9101666666666667 | 0.0031957726707265944 | diff --git a/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_rfw_Indian.txt b/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_rfw_Indian.txt new file mode 100644 index 0000000000000000000000000000000000000000..3c61e4910568a001f8c32b6993f4d38a3de477e5 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/GhostNet/accu_files/accu_rfw_Indian.txt @@ -0,0 +1,44 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.908 | 0.004163331998932263 | +| Epoch_13.pt | 0.9078333333333333 | 0.0038091021592048776 | +| Epoch_14_batch_2999.pt | 0.9073333333333334 | 0.003818408950542129 | +| Epoch_15_batch_2999.pt | 0.9073333333333332 | 0.003644715437079271 | +| Epoch_16.pt | 0.907 | 0.003440858348267113 | +| Epoch_14.pt | 0.9066666666666666 | 0.003522414996477193 | +| Epoch_12_batch_5999.pt | 0.9056666666666668 | 0.004982686072173039 | +| Epoch_14_batch_5999.pt | 0.9056666666666666 | 0.003653173827283017 | +| Epoch_16_batch_2999.pt | 0.9055000000000002 | 0.00426042657111952 | +| Epoch_13_batch_5999.pt | 0.9055 | 0.004090413363155548 | +| Epoch_12_batch_2999.pt | 0.9053333333333334 | 0.0034047896546765713 | +| Epoch_15_batch_5999.pt | 0.9048333333333334 | 0.00425607771673218 | +| Epoch_17_batch_2999.pt | 0.9046666666666667 | 0.004118611776189025 | +| Epoch_11_batch_2999.pt | 0.9045 | 0.0029191788123154767 | +| Epoch_17_batch_5999.pt | 0.9045 | 0.0037022682403435874 | +| Epoch_10_batch_2999.pt | 0.9043333333333333 | 0.0036951753662924254 | +| Epoch_10.pt | 0.9041666666666668 | 0.003164716748583581 | +| Epoch_16_batch_5999.pt | 0.9041666666666666 | 0.004046412829917809 | +| Epoch_11.pt | 0.9034999999999999 | 0.003621352997273831 | +| Epoch_13_batch_2999.pt | 0.9030000000000001 | 0.0043659739343085546 | +| Epoch_12.pt | 0.9026666666666665 | 0.003753187945345448 | +| Epoch_10_batch_5999.pt | 0.9019999999999999 | 0.003749897117930264 | +| Epoch_11_batch_5999.pt | 0.9018333333333333 | 0.002986078811194815 | +| Epoch_15.pt | 0.9001666666666667 | 0.004017323597731312 | +| Epoch_8_batch_2999.pt | 0.8823333333333332 | 0.001613982116259329 | +| Epoch_5_batch_2999.pt | 0.8813333333333333 | 0.0035294178165041303 | +| Epoch_7_batch_2999.pt | 0.8806666666666667 | 0.004575835618216443 | +| Epoch_6_batch_5999.pt | 0.8805 | 0.003967849185704245 | +| Epoch_9_batch_5999.pt | 0.8803333333333333 | 0.003431876713662331 | +| Epoch_5_batch_5999.pt | 0.8781666666666667 | 0.002214570158666091 | +| Epoch_7_batch_5999.pt | 0.8779999999999999 | 0.003725123247608937 | +| Epoch_6_batch_2999.pt | 0.8763333333333332 | 0.004373037478700985 | +| Epoch_7.pt | 0.8753333333333334 | 0.003431876713662335 | +| Epoch_8_batch_5999.pt | 0.8746666666666666 | 0.004155912046503341 | +| Epoch_9.pt | 0.8741666666666665 | 0.004008093663428393 | +| Epoch_9_batch_2999.pt | 0.8709999999999999 | 0.004982686072173035 | +| Epoch_6.pt | 0.8700000000000001 | 0.004029214303215277 | +| Epoch_3_batch_5999.pt | 0.8699999999999999 | 0.005055250296034369 | +| Epoch_5.pt | 0.8695 | 0.004621808207954014 | +| Epoch_4_batch_2999.pt | 0.8678333333333335 | 0.0046084329571978895 | +| Epoch_4_batch_5999.pt | 0.8643333333333333 | 0.0024993826398226654 | diff --git a/bob/bio/facexzoo/models/backbones/GhostNet/log.log b/bob/bio/facexzoo/models/backbones/GhostNet/log.log new file mode 100644 index 0000000000000000000000000000000000000000..ef2803a45b7380fd147a60ce716c7ee82e000182 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/GhostNet/log.log @@ -0,0 +1,655 @@ +INFO 2021-01-21 20:12:59 train.py: 176] Start optimization. +INFO 2021-01-21 20:12:59 train.py: 177] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='GhostNet', batch_size=512, data_root='/export2/wangjun492/face_database/facex-zoo/private_file/train_data/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='MV-Softmax', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='mv-resnet', train_file='/export2/wangjun492/face_database/facex-zoo/private_file/train_data/deepglint/msceleb_deepglint_train_file.txt1', writer=<tensorboardX.writer.SummaryWriter object at 0x7f35ace577f0>) +backbone param: +{'width': 1.0, 'drop_ratio': 0.2, 'out_h': 7, 'out_w': 7, 'feat_dim': 512} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +INFO 2021-01-21 20:13:32 train.py: 78] Epoch 0, iter 0/6416, lr 0.100000, loss 16.250774 +INFO 2021-01-21 20:25:19 train.py: 78] Epoch 0, iter 200/6416, lr 0.100000, loss 15.764360 +INFO 2021-01-21 20:36:01 train.py: 78] Epoch 0, iter 400/6416, lr 0.100000, loss 15.331061 +INFO 2021-01-21 20:46:33 train.py: 78] Epoch 0, iter 600/6416, lr 0.100000, loss 15.235012 +INFO 2021-01-21 20:55:56 train.py: 78] Epoch 0, iter 800/6416, lr 0.100000, loss 15.091175 +INFO 2021-01-21 21:05:38 train.py: 78] Epoch 0, iter 1000/6416, lr 0.100000, loss 14.853463 +INFO 2021-01-21 21:15:24 train.py: 78] Epoch 0, iter 1200/6416, lr 0.100000, loss 14.560143 +INFO 2021-01-21 21:24:43 train.py: 78] Epoch 0, iter 1400/6416, lr 0.100000, loss 14.265671 +INFO 2021-01-21 21:34:31 train.py: 78] Epoch 0, iter 1600/6416, lr 0.100000, loss 13.921368 +INFO 2021-01-21 21:44:24 train.py: 78] Epoch 0, iter 1800/6416, lr 0.100000, loss 13.560656 +INFO 2021-01-21 21:53:54 train.py: 78] Epoch 0, iter 2000/6416, lr 0.100000, loss 13.195586 +INFO 2021-01-21 22:03:30 train.py: 78] Epoch 0, iter 2200/6416, lr 0.100000, loss 12.816410 +INFO 2021-01-21 22:12:59 train.py: 78] Epoch 0, iter 2400/6416, lr 0.100000, loss 12.464761 +INFO 2021-01-21 22:22:24 train.py: 78] Epoch 0, iter 2600/6416, lr 0.100000, loss 12.151867 +INFO 2021-01-21 22:31:43 train.py: 78] Epoch 0, iter 2800/6416, lr 0.100000, loss 11.947212 +INFO 2021-01-21 22:41:37 train.py: 91] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2021-01-21 22:41:38 train.py: 78] Epoch 0, iter 3000/6416, lr 0.100000, loss 11.872883 +INFO 2021-01-21 22:51:55 train.py: 78] Epoch 0, iter 3200/6416, lr 0.100000, loss 11.948144 +INFO 2021-01-21 23:01:23 train.py: 78] Epoch 0, iter 3400/6416, lr 0.100000, loss 12.136700 +INFO 2021-01-21 23:11:01 train.py: 78] Epoch 0, iter 3600/6416, lr 0.100000, loss 12.427660 +INFO 2021-01-21 23:20:49 train.py: 78] Epoch 0, iter 3800/6416, lr 0.100000, loss 12.762948 +INFO 2021-01-21 23:29:55 train.py: 78] Epoch 0, iter 4000/6416, lr 0.100000, loss 13.112913 +INFO 2021-01-21 23:39:00 train.py: 78] Epoch 0, iter 4200/6416, lr 0.100000, loss 13.417453 +INFO 2021-01-21 23:48:48 train.py: 78] Epoch 0, iter 4400/6416, lr 0.100000, loss 13.704103 +INFO 2021-01-21 23:57:52 train.py: 78] Epoch 0, iter 4600/6416, lr 0.100000, loss 13.941063 +INFO 2021-01-22 00:07:10 train.py: 78] Epoch 0, iter 4800/6416, lr 0.100000, loss 14.112939 +INFO 2021-01-22 00:15:55 train.py: 78] Epoch 0, iter 5000/6416, lr 0.100000, loss 14.235073 +INFO 2021-01-22 00:23:58 train.py: 78] Epoch 0, iter 5200/6416, lr 0.100000, loss 14.305190 +INFO 2021-01-22 00:33:30 train.py: 78] Epoch 0, iter 5400/6416, lr 0.100000, loss 14.280206 +INFO 2021-01-22 00:42:12 train.py: 78] Epoch 0, iter 5600/6416, lr 0.100000, loss 14.278833 +INFO 2021-01-22 00:52:18 train.py: 78] Epoch 0, iter 5800/6416, lr 0.100000, loss 14.196568 +INFO 2021-01-22 01:01:32 train.py: 91] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2021-01-22 01:01:33 train.py: 78] Epoch 0, iter 6000/6416, lr 0.100000, loss 14.100001 +INFO 2021-01-22 01:10:58 train.py: 78] Epoch 0, iter 6200/6416, lr 0.100000, loss 13.986286 +INFO 2021-01-22 01:19:56 train.py: 78] Epoch 0, iter 6400/6416, lr 0.100000, loss 13.823606 +INFO 2021-01-22 01:20:28 train.py: 96] Save checkpoint Epoch_0.pt to disk... +INFO 2021-01-22 01:20:30 train.py: 78] Epoch 1, iter 0/6416, lr 0.100000, loss 13.770247 +INFO 2021-01-22 01:22:35 train.py: 78] Epoch 1, iter 200/6416, lr 0.100000, loss 13.470351 +INFO 2021-01-22 01:24:38 train.py: 78] Epoch 1, iter 400/6416, lr 0.100000, loss 13.320353 +INFO 2021-01-22 01:26:42 train.py: 78] Epoch 1, iter 600/6416, lr 0.100000, loss 13.157153 +INFO 2021-01-22 01:28:46 train.py: 78] Epoch 1, iter 800/6416, lr 0.100000, loss 12.991815 +INFO 2021-01-22 01:30:49 train.py: 78] Epoch 1, iter 1000/6416, lr 0.100000, loss 12.854444 +INFO 2021-01-22 01:32:53 train.py: 78] Epoch 1, iter 1200/6416, lr 0.100000, loss 12.679881 +INFO 2021-01-22 01:34:56 train.py: 78] Epoch 1, iter 1400/6416, lr 0.100000, loss 12.565455 +INFO 2021-01-22 01:36:59 train.py: 78] Epoch 1, iter 1600/6416, lr 0.100000, loss 12.393085 +INFO 2021-01-22 01:39:03 train.py: 78] Epoch 1, iter 1800/6416, lr 0.100000, loss 12.235998 +INFO 2021-01-22 01:41:06 train.py: 78] Epoch 1, iter 2000/6416, lr 0.100000, loss 12.078922 +INFO 2021-01-22 01:43:09 train.py: 78] Epoch 1, iter 2200/6416, lr 0.100000, loss 11.955585 +INFO 2021-01-22 01:45:13 train.py: 78] Epoch 1, iter 2400/6416, lr 0.100000, loss 11.815526 +INFO 2021-01-22 01:47:16 train.py: 78] Epoch 1, iter 2600/6416, lr 0.100000, loss 11.653279 +INFO 2021-01-22 01:49:19 train.py: 78] Epoch 1, iter 2800/6416, lr 0.100000, loss 11.547822 +INFO 2021-01-22 01:51:22 train.py: 91] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2021-01-22 01:51:23 train.py: 78] Epoch 1, iter 3000/6416, lr 0.100000, loss 11.399225 +INFO 2021-01-22 01:53:26 train.py: 78] Epoch 1, iter 3200/6416, lr 0.100000, loss 11.332256 +INFO 2021-01-22 01:55:29 train.py: 78] Epoch 1, iter 3400/6416, lr 0.100000, loss 11.179480 +INFO 2021-01-22 01:57:33 train.py: 78] Epoch 1, iter 3600/6416, lr 0.100000, loss 11.079146 +INFO 2021-01-22 01:59:37 train.py: 78] Epoch 1, iter 3800/6416, lr 0.100000, loss 11.000047 +INFO 2021-01-22 02:01:40 train.py: 78] Epoch 1, iter 4000/6416, lr 0.100000, loss 10.885364 +INFO 2021-01-22 02:03:44 train.py: 78] Epoch 1, iter 4200/6416, lr 0.100000, loss 10.799798 +INFO 2021-01-22 02:05:47 train.py: 78] Epoch 1, iter 4400/6416, lr 0.100000, loss 10.700391 +INFO 2021-01-22 02:07:51 train.py: 78] Epoch 1, iter 4600/6416, lr 0.100000, loss 10.611290 +INFO 2021-01-22 02:09:54 train.py: 78] Epoch 1, iter 4800/6416, lr 0.100000, loss 10.554503 +INFO 2021-01-22 02:11:58 train.py: 78] Epoch 1, iter 5000/6416, lr 0.100000, loss 10.446805 +INFO 2021-01-22 02:14:01 train.py: 78] Epoch 1, iter 5200/6416, lr 0.100000, loss 10.398536 +INFO 2021-01-22 02:16:05 train.py: 78] Epoch 1, iter 5400/6416, lr 0.100000, loss 10.320798 +INFO 2021-01-22 02:18:08 train.py: 78] Epoch 1, iter 5600/6416, lr 0.100000, loss 10.229470 +INFO 2021-01-22 02:20:12 train.py: 78] Epoch 1, iter 5800/6416, lr 0.100000, loss 10.170319 +INFO 2021-01-22 02:22:15 train.py: 91] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2021-01-22 02:22:16 train.py: 78] Epoch 1, iter 6000/6416, lr 0.100000, loss 10.089223 +INFO 2021-01-22 02:24:20 train.py: 78] Epoch 1, iter 6200/6416, lr 0.100000, loss 10.078914 +INFO 2021-01-22 02:26:23 train.py: 78] Epoch 1, iter 6400/6416, lr 0.100000, loss 10.004797 +INFO 2021-01-22 02:26:33 train.py: 96] Save checkpoint Epoch_1.pt to disk... +INFO 2021-01-22 02:26:34 train.py: 78] Epoch 2, iter 0/6416, lr 0.100000, loss 10.012711 +INFO 2021-01-22 02:28:38 train.py: 78] Epoch 2, iter 200/6416, lr 0.100000, loss 9.402851 +INFO 2021-01-22 02:30:42 train.py: 78] Epoch 2, iter 400/6416, lr 0.100000, loss 9.393676 +INFO 2021-01-22 02:32:45 train.py: 78] Epoch 2, iter 600/6416, lr 0.100000, loss 9.449439 +INFO 2021-01-22 02:34:48 train.py: 78] Epoch 2, iter 800/6416, lr 0.100000, loss 9.473360 +INFO 2021-01-22 02:36:52 train.py: 78] Epoch 2, iter 1000/6416, lr 0.100000, loss 9.482772 +INFO 2021-01-22 02:38:55 train.py: 78] Epoch 2, iter 1200/6416, lr 0.100000, loss 9.489313 +INFO 2021-01-22 02:40:58 train.py: 78] Epoch 2, iter 1400/6416, lr 0.100000, loss 9.495777 +INFO 2021-01-22 02:43:01 train.py: 78] Epoch 2, iter 1600/6416, lr 0.100000, loss 9.471175 +INFO 2021-01-22 02:45:05 train.py: 78] Epoch 2, iter 1800/6416, lr 0.100000, loss 9.406645 +INFO 2021-01-22 02:47:08 train.py: 78] Epoch 2, iter 2000/6416, lr 0.100000, loss 9.389534 +INFO 2021-01-22 02:49:11 train.py: 78] Epoch 2, iter 2200/6416, lr 0.100000, loss 9.421353 +INFO 2021-01-22 02:51:14 train.py: 78] Epoch 2, iter 2400/6416, lr 0.100000, loss 9.368639 +INFO 2021-01-22 02:53:17 train.py: 78] Epoch 2, iter 2600/6416, lr 0.100000, loss 9.315423 +INFO 2021-01-22 02:55:21 train.py: 78] Epoch 2, iter 2800/6416, lr 0.100000, loss 9.281135 +INFO 2021-01-22 02:57:24 train.py: 91] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2021-01-22 02:57:25 train.py: 78] Epoch 2, iter 3000/6416, lr 0.100000, loss 9.246886 +INFO 2021-01-22 02:59:28 train.py: 78] Epoch 2, iter 3200/6416, lr 0.100000, loss 9.243442 +INFO 2021-01-22 03:01:31 train.py: 78] Epoch 2, iter 3400/6416, lr 0.100000, loss 9.188717 +INFO 2021-01-22 03:03:35 train.py: 78] Epoch 2, iter 3600/6416, lr 0.100000, loss 9.148053 +INFO 2021-01-22 03:05:38 train.py: 78] Epoch 2, iter 3800/6416, lr 0.100000, loss 9.152092 +INFO 2021-01-22 03:07:42 train.py: 78] Epoch 2, iter 4000/6416, lr 0.100000, loss 9.113306 +INFO 2021-01-22 03:09:45 train.py: 78] Epoch 2, iter 4200/6416, lr 0.100000, loss 9.050850 +INFO 2021-01-22 03:11:48 train.py: 78] Epoch 2, iter 4400/6416, lr 0.100000, loss 9.076974 +INFO 2021-01-22 03:13:52 train.py: 78] Epoch 2, iter 4600/6416, lr 0.100000, loss 9.038068 +INFO 2021-01-22 03:15:55 train.py: 78] Epoch 2, iter 4800/6416, lr 0.100000, loss 8.987925 +INFO 2021-01-22 03:17:59 train.py: 78] Epoch 2, iter 5000/6416, lr 0.100000, loss 8.973293 +INFO 2021-01-22 03:20:02 train.py: 78] Epoch 2, iter 5200/6416, lr 0.100000, loss 8.931205 +INFO 2021-01-22 03:22:06 train.py: 78] Epoch 2, iter 5400/6416, lr 0.100000, loss 8.921868 +INFO 2021-01-22 03:24:09 train.py: 78] Epoch 2, iter 5600/6416, lr 0.100000, loss 8.861114 +INFO 2021-01-22 03:26:12 train.py: 78] Epoch 2, iter 5800/6416, lr 0.100000, loss 8.842090 +INFO 2021-01-22 03:28:15 train.py: 91] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2021-01-22 03:28:16 train.py: 78] Epoch 2, iter 6000/6416, lr 0.100000, loss 8.846736 +INFO 2021-01-22 03:30:19 train.py: 78] Epoch 2, iter 6200/6416, lr 0.100000, loss 8.801316 +INFO 2021-01-22 03:32:23 train.py: 78] Epoch 2, iter 6400/6416, lr 0.100000, loss 8.772921 +INFO 2021-01-22 03:32:33 train.py: 96] Save checkpoint Epoch_2.pt to disk... +INFO 2021-01-22 03:32:34 train.py: 78] Epoch 3, iter 0/6416, lr 0.100000, loss 8.785591 +INFO 2021-01-22 03:34:38 train.py: 78] Epoch 3, iter 200/6416, lr 0.100000, loss 8.233217 +INFO 2021-01-22 03:36:42 train.py: 78] Epoch 3, iter 400/6416, lr 0.100000, loss 8.247045 +INFO 2021-01-22 03:38:45 train.py: 78] Epoch 3, iter 600/6416, lr 0.100000, loss 8.277921 +INFO 2021-01-22 03:40:48 train.py: 78] Epoch 3, iter 800/6416, lr 0.100000, loss 8.360723 +INFO 2021-01-22 03:42:51 train.py: 78] Epoch 3, iter 1000/6416, lr 0.100000, loss 8.408463 +INFO 2021-01-22 03:44:54 train.py: 78] Epoch 3, iter 1200/6416, lr 0.100000, loss 8.444841 +INFO 2021-01-22 03:46:57 train.py: 78] Epoch 3, iter 1400/6416, lr 0.100000, loss 8.453999 +INFO 2021-01-22 03:49:00 train.py: 78] Epoch 3, iter 1600/6416, lr 0.100000, loss 8.438502 +INFO 2021-01-22 03:51:03 train.py: 78] Epoch 3, iter 1800/6416, lr 0.100000, loss 8.429155 +INFO 2021-01-22 03:53:06 train.py: 78] Epoch 3, iter 2000/6416, lr 0.100000, loss 8.441304 +INFO 2021-01-22 03:55:09 train.py: 78] Epoch 3, iter 2200/6416, lr 0.100000, loss 8.450672 +INFO 2021-01-22 03:57:12 train.py: 78] Epoch 3, iter 2400/6416, lr 0.100000, loss 8.463969 +INFO 2021-01-22 03:59:15 train.py: 78] Epoch 3, iter 2600/6416, lr 0.100000, loss 8.451363 +INFO 2021-01-22 04:01:19 train.py: 78] Epoch 3, iter 2800/6416, lr 0.100000, loss 8.440834 +INFO 2021-01-22 04:03:21 train.py: 91] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2021-01-22 04:03:22 train.py: 78] Epoch 3, iter 3000/6416, lr 0.100000, loss 8.449899 +INFO 2021-01-22 04:05:25 train.py: 78] Epoch 3, iter 3200/6416, lr 0.100000, loss 8.414726 +INFO 2021-01-22 04:07:28 train.py: 78] Epoch 3, iter 3400/6416, lr 0.100000, loss 8.380796 +INFO 2021-01-22 04:09:31 train.py: 78] Epoch 3, iter 3600/6416, lr 0.100000, loss 8.378931 +INFO 2021-01-22 04:11:35 train.py: 78] Epoch 3, iter 3800/6416, lr 0.100000, loss 8.358698 +INFO 2021-01-22 04:13:38 train.py: 78] Epoch 3, iter 4000/6416, lr 0.100000, loss 8.365002 +INFO 2021-01-22 04:15:41 train.py: 78] Epoch 3, iter 4200/6416, lr 0.100000, loss 8.348931 +INFO 2021-01-22 04:17:44 train.py: 78] Epoch 3, iter 4400/6416, lr 0.100000, loss 8.329774 +INFO 2021-01-22 04:19:47 train.py: 78] Epoch 3, iter 4600/6416, lr 0.100000, loss 8.308526 +INFO 2021-01-22 04:21:50 train.py: 78] Epoch 3, iter 4800/6416, lr 0.100000, loss 8.303235 +INFO 2021-01-22 04:23:53 train.py: 78] Epoch 3, iter 5000/6416, lr 0.100000, loss 8.269777 +INFO 2021-01-22 04:25:57 train.py: 78] Epoch 3, iter 5200/6416, lr 0.100000, loss 8.280975 +INFO 2021-01-22 04:28:00 train.py: 78] Epoch 3, iter 5400/6416, lr 0.100000, loss 8.265018 +INFO 2021-01-22 04:30:03 train.py: 78] Epoch 3, iter 5600/6416, lr 0.100000, loss 8.241350 +INFO 2021-01-22 04:32:06 train.py: 78] Epoch 3, iter 5800/6416, lr 0.100000, loss 8.202742 +INFO 2021-01-22 04:34:09 train.py: 91] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2021-01-22 04:34:09 train.py: 78] Epoch 3, iter 6000/6416, lr 0.100000, loss 8.204603 +INFO 2021-01-22 04:36:12 train.py: 78] Epoch 3, iter 6200/6416, lr 0.100000, loss 8.211601 +INFO 2021-01-22 04:38:15 train.py: 78] Epoch 3, iter 6400/6416, lr 0.100000, loss 8.189393 +INFO 2021-01-22 04:38:25 train.py: 96] Save checkpoint Epoch_3.pt to disk... +INFO 2021-01-22 04:38:27 train.py: 78] Epoch 4, iter 0/6416, lr 0.100000, loss 8.182916 +INFO 2021-01-22 04:40:30 train.py: 78] Epoch 4, iter 200/6416, lr 0.100000, loss 7.598081 +INFO 2021-01-22 04:42:34 train.py: 78] Epoch 4, iter 400/6416, lr 0.100000, loss 7.644563 +INFO 2021-01-22 04:44:37 train.py: 78] Epoch 4, iter 600/6416, lr 0.100000, loss 7.719511 +INFO 2021-01-22 04:46:40 train.py: 78] Epoch 4, iter 800/6416, lr 0.100000, loss 7.801908 +INFO 2021-01-22 04:48:43 train.py: 78] Epoch 4, iter 1000/6416, lr 0.100000, loss 7.892504 +INFO 2021-01-22 04:50:46 train.py: 78] Epoch 4, iter 1200/6416, lr 0.100000, loss 7.906984 +INFO 2021-01-22 04:52:49 train.py: 78] Epoch 4, iter 1400/6416, lr 0.100000, loss 7.933156 +INFO 2021-01-22 04:54:53 train.py: 78] Epoch 4, iter 1600/6416, lr 0.100000, loss 7.944929 +INFO 2021-01-22 04:56:55 train.py: 78] Epoch 4, iter 1800/6416, lr 0.100000, loss 7.953894 +INFO 2021-01-22 04:58:58 train.py: 78] Epoch 4, iter 2000/6416, lr 0.100000, loss 7.948719 +INFO 2021-01-22 05:01:02 train.py: 78] Epoch 4, iter 2200/6416, lr 0.100000, loss 7.990220 +INFO 2021-01-22 05:03:05 train.py: 78] Epoch 4, iter 2400/6416, lr 0.100000, loss 7.968251 +INFO 2021-01-22 05:05:08 train.py: 78] Epoch 4, iter 2600/6416, lr 0.100000, loss 7.954469 +INFO 2021-01-22 05:07:11 train.py: 78] Epoch 4, iter 2800/6416, lr 0.100000, loss 7.949867 +INFO 2021-01-22 05:09:14 train.py: 91] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2021-01-22 05:09:15 train.py: 78] Epoch 4, iter 3000/6416, lr 0.100000, loss 7.924289 +INFO 2021-01-22 05:11:18 train.py: 78] Epoch 4, iter 3200/6416, lr 0.100000, loss 7.950249 +INFO 2021-01-22 05:13:21 train.py: 78] Epoch 4, iter 3400/6416, lr 0.100000, loss 7.953858 +INFO 2021-01-22 05:15:25 train.py: 78] Epoch 4, iter 3600/6416, lr 0.100000, loss 7.936049 +INFO 2021-01-22 05:17:28 train.py: 78] Epoch 4, iter 3800/6416, lr 0.100000, loss 7.930690 +INFO 2021-01-22 05:19:31 train.py: 78] Epoch 4, iter 4000/6416, lr 0.100000, loss 7.934540 +INFO 2021-01-22 05:21:35 train.py: 78] Epoch 4, iter 4200/6416, lr 0.100000, loss 7.934243 +INFO 2021-01-22 05:23:38 train.py: 78] Epoch 4, iter 4400/6416, lr 0.100000, loss 7.884119 +INFO 2021-01-22 05:25:41 train.py: 78] Epoch 4, iter 4600/6416, lr 0.100000, loss 7.863164 +INFO 2021-01-22 05:27:44 train.py: 78] Epoch 4, iter 4800/6416, lr 0.100000, loss 7.864212 +INFO 2021-01-22 05:29:48 train.py: 78] Epoch 4, iter 5000/6416, lr 0.100000, loss 7.869936 +INFO 2021-01-22 05:31:51 train.py: 78] Epoch 4, iter 5200/6416, lr 0.100000, loss 7.847592 +INFO 2021-01-22 05:33:54 train.py: 78] Epoch 4, iter 5400/6416, lr 0.100000, loss 7.844493 +INFO 2021-01-22 05:35:58 train.py: 78] Epoch 4, iter 5600/6416, lr 0.100000, loss 7.818415 +INFO 2021-01-22 05:38:01 train.py: 78] Epoch 4, iter 5800/6416, lr 0.100000, loss 7.784891 +INFO 2021-01-22 05:40:04 train.py: 91] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2021-01-22 05:40:04 train.py: 78] Epoch 4, iter 6000/6416, lr 0.100000, loss 7.840141 +INFO 2021-01-22 05:42:08 train.py: 78] Epoch 4, iter 6200/6416, lr 0.100000, loss 7.777532 +INFO 2021-01-22 05:44:11 train.py: 78] Epoch 4, iter 6400/6416, lr 0.100000, loss 7.802946 +INFO 2021-01-22 05:44:21 train.py: 96] Save checkpoint Epoch_4.pt to disk... +INFO 2021-01-22 05:44:22 train.py: 78] Epoch 5, iter 0/6416, lr 0.100000, loss 7.888285 +INFO 2021-01-22 05:46:26 train.py: 78] Epoch 5, iter 200/6416, lr 0.100000, loss 7.297671 +INFO 2021-01-22 05:48:29 train.py: 78] Epoch 5, iter 400/6416, lr 0.100000, loss 7.319428 +INFO 2021-01-22 05:50:32 train.py: 78] Epoch 5, iter 600/6416, lr 0.100000, loss 7.379807 +INFO 2021-01-22 05:52:35 train.py: 78] Epoch 5, iter 800/6416, lr 0.100000, loss 7.438146 +INFO 2021-01-22 05:54:38 train.py: 78] Epoch 5, iter 1000/6416, lr 0.100000, loss 7.508583 +INFO 2021-01-22 05:56:41 train.py: 78] Epoch 5, iter 1200/6416, lr 0.100000, loss 7.532811 +INFO 2021-01-22 05:58:44 train.py: 78] Epoch 5, iter 1400/6416, lr 0.100000, loss 7.546482 +INFO 2021-01-22 06:00:47 train.py: 78] Epoch 5, iter 1600/6416, lr 0.100000, loss 7.591708 +INFO 2021-01-22 06:02:50 train.py: 78] Epoch 5, iter 1800/6416, lr 0.100000, loss 7.594268 +INFO 2021-01-22 06:04:53 train.py: 78] Epoch 5, iter 2000/6416, lr 0.100000, loss 7.642017 +INFO 2021-01-22 06:06:56 train.py: 78] Epoch 5, iter 2200/6416, lr 0.100000, loss 7.606971 +INFO 2021-01-22 06:08:59 train.py: 78] Epoch 5, iter 2400/6416, lr 0.100000, loss 7.602692 +INFO 2021-01-22 06:11:02 train.py: 78] Epoch 5, iter 2600/6416, lr 0.100000, loss 7.594610 +INFO 2021-01-22 06:13:05 train.py: 78] Epoch 5, iter 2800/6416, lr 0.100000, loss 7.628082 +INFO 2021-01-22 06:15:08 train.py: 91] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2021-01-22 06:15:09 train.py: 78] Epoch 5, iter 3000/6416, lr 0.100000, loss 7.634071 +INFO 2021-01-22 06:17:11 train.py: 78] Epoch 5, iter 3200/6416, lr 0.100000, loss 7.652492 +INFO 2021-01-22 06:19:15 train.py: 78] Epoch 5, iter 3400/6416, lr 0.100000, loss 7.627753 +INFO 2021-01-22 06:21:18 train.py: 78] Epoch 5, iter 3600/6416, lr 0.100000, loss 7.628190 +INFO 2021-01-22 06:23:21 train.py: 78] Epoch 5, iter 3800/6416, lr 0.100000, loss 7.608053 +INFO 2021-01-22 06:25:24 train.py: 78] Epoch 5, iter 4000/6416, lr 0.100000, loss 7.611481 +INFO 2021-01-22 06:27:27 train.py: 78] Epoch 5, iter 4200/6416, lr 0.100000, loss 7.582783 +INFO 2021-01-22 06:29:30 train.py: 78] Epoch 5, iter 4400/6416, lr 0.100000, loss 7.607936 +INFO 2021-01-22 06:31:33 train.py: 78] Epoch 5, iter 4600/6416, lr 0.100000, loss 7.568005 +INFO 2021-01-22 06:33:36 train.py: 78] Epoch 5, iter 4800/6416, lr 0.100000, loss 7.613409 +INFO 2021-01-22 06:35:39 train.py: 78] Epoch 5, iter 5000/6416, lr 0.100000, loss 7.579131 +INFO 2021-01-22 06:37:42 train.py: 78] Epoch 5, iter 5200/6416, lr 0.100000, loss 7.563879 +INFO 2021-01-22 06:39:45 train.py: 78] Epoch 5, iter 5400/6416, lr 0.100000, loss 7.588154 +INFO 2021-01-22 06:41:48 train.py: 78] Epoch 5, iter 5600/6416, lr 0.100000, loss 7.568004 +INFO 2021-01-22 06:43:51 train.py: 78] Epoch 5, iter 5800/6416, lr 0.100000, loss 7.600856 +INFO 2021-01-22 06:45:54 train.py: 91] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2021-01-22 06:45:55 train.py: 78] Epoch 5, iter 6000/6416, lr 0.100000, loss 7.565823 +INFO 2021-01-22 06:47:58 train.py: 78] Epoch 5, iter 6200/6416, lr 0.100000, loss 7.553977 +INFO 2021-01-22 06:50:01 train.py: 78] Epoch 5, iter 6400/6416, lr 0.100000, loss 7.539934 +INFO 2021-01-22 06:50:10 train.py: 96] Save checkpoint Epoch_5.pt to disk... +INFO 2021-01-22 06:50:12 train.py: 78] Epoch 6, iter 0/6416, lr 0.100000, loss 7.630221 +INFO 2021-01-22 06:52:16 train.py: 78] Epoch 6, iter 200/6416, lr 0.100000, loss 7.020682 +INFO 2021-01-22 06:54:18 train.py: 78] Epoch 6, iter 400/6416, lr 0.100000, loss 7.017615 +INFO 2021-01-22 06:56:21 train.py: 78] Epoch 6, iter 600/6416, lr 0.100000, loss 7.125110 +INFO 2021-01-22 06:58:24 train.py: 78] Epoch 6, iter 800/6416, lr 0.100000, loss 7.177220 +INFO 2021-01-22 07:00:28 train.py: 78] Epoch 6, iter 1000/6416, lr 0.100000, loss 7.237925 +INFO 2021-01-22 07:02:31 train.py: 78] Epoch 6, iter 1200/6416, lr 0.100000, loss 7.311243 +INFO 2021-01-22 07:04:34 train.py: 78] Epoch 6, iter 1400/6416, lr 0.100000, loss 7.315162 +INFO 2021-01-22 07:06:37 train.py: 78] Epoch 6, iter 1600/6416, lr 0.100000, loss 7.330540 +INFO 2021-01-22 07:08:40 train.py: 78] Epoch 6, iter 1800/6416, lr 0.100000, loss 7.378689 +INFO 2021-01-22 07:10:43 train.py: 78] Epoch 6, iter 2000/6416, lr 0.100000, loss 7.363947 +INFO 2021-01-22 07:12:46 train.py: 78] Epoch 6, iter 2200/6416, lr 0.100000, loss 7.388986 +INFO 2021-01-22 07:14:49 train.py: 78] Epoch 6, iter 2400/6416, lr 0.100000, loss 7.385360 +INFO 2021-01-22 07:16:51 train.py: 78] Epoch 6, iter 2600/6416, lr 0.100000, loss 7.364944 +INFO 2021-01-22 07:18:54 train.py: 78] Epoch 6, iter 2800/6416, lr 0.100000, loss 7.404275 +INFO 2021-01-22 07:20:57 train.py: 91] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2021-01-22 07:20:58 train.py: 78] Epoch 6, iter 3000/6416, lr 0.100000, loss 7.404556 +INFO 2021-01-22 07:23:00 train.py: 78] Epoch 6, iter 3200/6416, lr 0.100000, loss 7.431760 +INFO 2021-01-22 07:25:03 train.py: 78] Epoch 6, iter 3400/6416, lr 0.100000, loss 7.410710 +INFO 2021-01-22 07:27:06 train.py: 78] Epoch 6, iter 3600/6416, lr 0.100000, loss 7.411103 +INFO 2021-01-22 07:29:09 train.py: 78] Epoch 6, iter 3800/6416, lr 0.100000, loss 7.401692 +INFO 2021-01-22 07:31:12 train.py: 78] Epoch 6, iter 4000/6416, lr 0.100000, loss 7.382090 +INFO 2021-01-22 07:33:15 train.py: 78] Epoch 6, iter 4200/6416, lr 0.100000, loss 7.397586 +INFO 2021-01-22 07:35:18 train.py: 78] Epoch 6, iter 4400/6416, lr 0.100000, loss 7.387713 +INFO 2021-01-22 07:37:21 train.py: 78] Epoch 6, iter 4600/6416, lr 0.100000, loss 7.387556 +INFO 2021-01-22 07:39:24 train.py: 78] Epoch 6, iter 4800/6416, lr 0.100000, loss 7.406343 +INFO 2021-01-22 07:41:27 train.py: 78] Epoch 6, iter 5000/6416, lr 0.100000, loss 7.386101 +INFO 2021-01-22 07:43:29 train.py: 78] Epoch 6, iter 5200/6416, lr 0.100000, loss 7.406947 +INFO 2021-01-22 07:45:32 train.py: 78] Epoch 6, iter 5400/6416, lr 0.100000, loss 7.365710 +INFO 2021-01-22 07:47:35 train.py: 78] Epoch 6, iter 5600/6416, lr 0.100000, loss 7.355272 +INFO 2021-01-22 07:49:38 train.py: 78] Epoch 6, iter 5800/6416, lr 0.100000, loss 7.353986 +INFO 2021-01-22 07:51:41 train.py: 91] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2021-01-22 07:51:41 train.py: 78] Epoch 6, iter 6000/6416, lr 0.100000, loss 7.374732 +INFO 2021-01-22 07:53:44 train.py: 78] Epoch 6, iter 6200/6416, lr 0.100000, loss 7.370151 +INFO 2021-01-22 07:55:47 train.py: 78] Epoch 6, iter 6400/6416, lr 0.100000, loss 7.330472 +INFO 2021-01-22 07:55:57 train.py: 96] Save checkpoint Epoch_6.pt to disk... +INFO 2021-01-22 07:55:58 train.py: 78] Epoch 7, iter 0/6416, lr 0.100000, loss 7.303059 +INFO 2021-01-22 07:58:02 train.py: 78] Epoch 7, iter 200/6416, lr 0.100000, loss 6.846964 +INFO 2021-01-22 08:00:05 train.py: 78] Epoch 7, iter 400/6416, lr 0.100000, loss 6.844414 +INFO 2021-01-22 08:02:08 train.py: 78] Epoch 7, iter 600/6416, lr 0.100000, loss 6.915306 +INFO 2021-01-22 08:04:10 train.py: 78] Epoch 7, iter 800/6416, lr 0.100000, loss 6.987713 +INFO 2021-01-22 08:06:14 train.py: 78] Epoch 7, iter 1000/6416, lr 0.100000, loss 7.036404 +INFO 2021-01-22 08:08:16 train.py: 78] Epoch 7, iter 1200/6416, lr 0.100000, loss 7.103609 +INFO 2021-01-22 08:10:19 train.py: 78] Epoch 7, iter 1400/6416, lr 0.100000, loss 7.162308 +INFO 2021-01-22 08:12:22 train.py: 78] Epoch 7, iter 1600/6416, lr 0.100000, loss 7.186649 +INFO 2021-01-22 08:14:25 train.py: 78] Epoch 7, iter 1800/6416, lr 0.100000, loss 7.188459 +INFO 2021-01-22 08:16:28 train.py: 78] Epoch 7, iter 2000/6416, lr 0.100000, loss 7.189919 +INFO 2021-01-22 08:18:31 train.py: 78] Epoch 7, iter 2200/6416, lr 0.100000, loss 7.201545 +INFO 2021-01-22 08:20:34 train.py: 78] Epoch 7, iter 2400/6416, lr 0.100000, loss 7.237635 +INFO 2021-01-22 08:22:37 train.py: 78] Epoch 7, iter 2600/6416, lr 0.100000, loss 7.207448 +INFO 2021-01-22 08:24:40 train.py: 78] Epoch 7, iter 2800/6416, lr 0.100000, loss 7.245673 +INFO 2021-01-22 08:26:43 train.py: 91] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2021-01-22 08:26:43 train.py: 78] Epoch 7, iter 3000/6416, lr 0.100000, loss 7.234166 +INFO 2021-01-22 08:28:47 train.py: 78] Epoch 7, iter 3200/6416, lr 0.100000, loss 7.247087 +INFO 2021-01-22 08:30:49 train.py: 78] Epoch 7, iter 3400/6416, lr 0.100000, loss 7.243866 +INFO 2021-01-22 08:32:52 train.py: 78] Epoch 7, iter 3600/6416, lr 0.100000, loss 7.232373 +INFO 2021-01-22 08:34:55 train.py: 78] Epoch 7, iter 3800/6416, lr 0.100000, loss 7.211621 +INFO 2021-01-22 08:36:58 train.py: 78] Epoch 7, iter 4000/6416, lr 0.100000, loss 7.213890 +INFO 2021-01-22 08:39:01 train.py: 78] Epoch 7, iter 4200/6416, lr 0.100000, loss 7.190381 +INFO 2021-01-22 08:41:05 train.py: 78] Epoch 7, iter 4400/6416, lr 0.100000, loss 7.219901 +INFO 2021-01-22 08:43:07 train.py: 78] Epoch 7, iter 4600/6416, lr 0.100000, loss 7.233510 +INFO 2021-01-22 08:45:11 train.py: 78] Epoch 7, iter 4800/6416, lr 0.100000, loss 7.247017 +INFO 2021-01-22 08:47:14 train.py: 78] Epoch 7, iter 5000/6416, lr 0.100000, loss 7.222211 +INFO 2021-01-22 08:49:17 train.py: 78] Epoch 7, iter 5200/6416, lr 0.100000, loss 7.201700 +INFO 2021-01-22 08:51:19 train.py: 78] Epoch 7, iter 5400/6416, lr 0.100000, loss 7.179126 +INFO 2021-01-22 08:53:23 train.py: 78] Epoch 7, iter 5600/6416, lr 0.100000, loss 7.222539 +INFO 2021-01-22 08:55:26 train.py: 78] Epoch 7, iter 5800/6416, lr 0.100000, loss 7.203858 +INFO 2021-01-22 08:57:28 train.py: 91] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2021-01-22 08:57:29 train.py: 78] Epoch 7, iter 6000/6416, lr 0.100000, loss 7.188316 +INFO 2021-01-22 08:59:32 train.py: 78] Epoch 7, iter 6200/6416, lr 0.100000, loss 7.184431 +INFO 2021-01-22 09:01:35 train.py: 78] Epoch 7, iter 6400/6416, lr 0.100000, loss 7.207356 +INFO 2021-01-22 09:01:44 train.py: 96] Save checkpoint Epoch_7.pt to disk... +INFO 2021-01-22 09:01:46 train.py: 78] Epoch 8, iter 0/6416, lr 0.100000, loss 7.145245 +INFO 2021-01-22 09:03:49 train.py: 78] Epoch 8, iter 200/6416, lr 0.100000, loss 6.656028 +INFO 2021-01-22 09:05:52 train.py: 78] Epoch 8, iter 400/6416, lr 0.100000, loss 6.703750 +INFO 2021-01-22 09:07:55 train.py: 78] Epoch 8, iter 600/6416, lr 0.100000, loss 6.789069 +INFO 2021-01-22 09:09:58 train.py: 78] Epoch 8, iter 800/6416, lr 0.100000, loss 6.858890 +INFO 2021-01-22 09:12:01 train.py: 78] Epoch 8, iter 1000/6416, lr 0.100000, loss 6.921686 +INFO 2021-01-22 09:14:04 train.py: 78] Epoch 8, iter 1200/6416, lr 0.100000, loss 6.932669 +INFO 2021-01-22 09:16:07 train.py: 78] Epoch 8, iter 1400/6416, lr 0.100000, loss 6.984204 +INFO 2021-01-22 09:18:10 train.py: 78] Epoch 8, iter 1600/6416, lr 0.100000, loss 7.011911 +INFO 2021-01-22 09:20:13 train.py: 78] Epoch 8, iter 1800/6416, lr 0.100000, loss 7.052055 +INFO 2021-01-22 09:22:16 train.py: 78] Epoch 8, iter 2000/6416, lr 0.100000, loss 7.089869 +INFO 2021-01-22 09:24:18 train.py: 78] Epoch 8, iter 2200/6416, lr 0.100000, loss 7.046858 +INFO 2021-01-22 09:26:22 train.py: 78] Epoch 8, iter 2400/6416, lr 0.100000, loss 7.085688 +INFO 2021-01-22 09:28:24 train.py: 78] Epoch 8, iter 2600/6416, lr 0.100000, loss 7.074547 +INFO 2021-01-22 09:30:27 train.py: 78] Epoch 8, iter 2800/6416, lr 0.100000, loss 7.071129 +INFO 2021-01-22 09:32:30 train.py: 91] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2021-01-22 09:32:31 train.py: 78] Epoch 8, iter 3000/6416, lr 0.100000, loss 7.104793 +INFO 2021-01-22 09:34:34 train.py: 78] Epoch 8, iter 3200/6416, lr 0.100000, loss 7.121389 +INFO 2021-01-22 09:36:36 train.py: 78] Epoch 8, iter 3400/6416, lr 0.100000, loss 7.094295 +INFO 2021-01-22 09:38:39 train.py: 78] Epoch 8, iter 3600/6416, lr 0.100000, loss 7.104957 +INFO 2021-01-22 09:40:42 train.py: 78] Epoch 8, iter 3800/6416, lr 0.100000, loss 7.092743 +INFO 2021-01-22 09:42:45 train.py: 78] Epoch 8, iter 4000/6416, lr 0.100000, loss 7.099756 +INFO 2021-01-22 09:44:48 train.py: 78] Epoch 8, iter 4200/6416, lr 0.100000, loss 7.096347 +INFO 2021-01-22 09:46:51 train.py: 78] Epoch 8, iter 4400/6416, lr 0.100000, loss 7.089161 +INFO 2021-01-22 09:48:54 train.py: 78] Epoch 8, iter 4600/6416, lr 0.100000, loss 7.084775 +INFO 2021-01-22 09:50:57 train.py: 78] Epoch 8, iter 4800/6416, lr 0.100000, loss 7.088833 +INFO 2021-01-22 09:53:00 train.py: 78] Epoch 8, iter 5000/6416, lr 0.100000, loss 7.077663 +INFO 2021-01-22 09:55:03 train.py: 78] Epoch 8, iter 5200/6416, lr 0.100000, loss 7.075910 +INFO 2021-01-22 09:57:06 train.py: 78] Epoch 8, iter 5400/6416, lr 0.100000, loss 7.076304 +INFO 2021-01-22 09:59:09 train.py: 78] Epoch 8, iter 5600/6416, lr 0.100000, loss 7.061108 +INFO 2021-01-22 10:01:11 train.py: 78] Epoch 8, iter 5800/6416, lr 0.100000, loss 7.033988 +INFO 2021-01-22 10:03:14 train.py: 91] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2021-01-22 10:03:15 train.py: 78] Epoch 8, iter 6000/6416, lr 0.100000, loss 7.073775 +INFO 2021-01-22 10:05:17 train.py: 78] Epoch 8, iter 6200/6416, lr 0.100000, loss 7.089445 +INFO 2021-01-22 10:07:20 train.py: 78] Epoch 8, iter 6400/6416, lr 0.100000, loss 7.064998 +INFO 2021-01-22 10:07:30 train.py: 96] Save checkpoint Epoch_8.pt to disk... +INFO 2021-01-22 10:07:31 train.py: 78] Epoch 9, iter 0/6416, lr 0.100000, loss 7.116372 +INFO 2021-01-22 10:09:34 train.py: 78] Epoch 9, iter 200/6416, lr 0.100000, loss 6.537119 +INFO 2021-01-22 10:11:37 train.py: 78] Epoch 9, iter 400/6416, lr 0.100000, loss 6.545783 +INFO 2021-01-22 10:13:40 train.py: 78] Epoch 9, iter 600/6416, lr 0.100000, loss 6.664490 +INFO 2021-01-22 10:15:43 train.py: 78] Epoch 9, iter 800/6416, lr 0.100000, loss 6.726363 +INFO 2021-01-22 10:17:46 train.py: 78] Epoch 9, iter 1000/6416, lr 0.100000, loss 6.796361 +INFO 2021-01-22 10:19:49 train.py: 78] Epoch 9, iter 1200/6416, lr 0.100000, loss 6.810639 +INFO 2021-01-22 10:21:51 train.py: 78] Epoch 9, iter 1400/6416, lr 0.100000, loss 6.888028 +INFO 2021-01-22 10:23:54 train.py: 78] Epoch 9, iter 1600/6416, lr 0.100000, loss 6.893971 +INFO 2021-01-22 10:25:57 train.py: 78] Epoch 9, iter 1800/6416, lr 0.100000, loss 6.922876 +INFO 2021-01-22 10:28:00 train.py: 78] Epoch 9, iter 2000/6416, lr 0.100000, loss 6.943989 +INFO 2021-01-22 10:30:03 train.py: 78] Epoch 9, iter 2200/6416, lr 0.100000, loss 6.930270 +INFO 2021-01-22 10:32:05 train.py: 78] Epoch 9, iter 2400/6416, lr 0.100000, loss 6.966433 +INFO 2021-01-22 10:34:09 train.py: 78] Epoch 9, iter 2600/6416, lr 0.100000, loss 6.966681 +INFO 2021-01-22 10:36:12 train.py: 78] Epoch 9, iter 2800/6416, lr 0.100000, loss 6.964253 +INFO 2021-01-22 10:38:14 train.py: 91] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2021-01-22 10:38:15 train.py: 78] Epoch 9, iter 3000/6416, lr 0.100000, loss 6.987408 +INFO 2021-01-22 10:40:18 train.py: 78] Epoch 9, iter 3200/6416, lr 0.100000, loss 6.985979 +INFO 2021-01-22 10:42:21 train.py: 78] Epoch 9, iter 3400/6416, lr 0.100000, loss 6.981175 +INFO 2021-01-22 10:44:24 train.py: 78] Epoch 9, iter 3600/6416, lr 0.100000, loss 6.978908 +INFO 2021-01-22 10:46:27 train.py: 78] Epoch 9, iter 3800/6416, lr 0.100000, loss 6.979999 +INFO 2021-01-22 10:48:30 train.py: 78] Epoch 9, iter 4000/6416, lr 0.100000, loss 6.985364 +INFO 2021-01-22 10:50:33 train.py: 78] Epoch 9, iter 4200/6416, lr 0.100000, loss 6.976088 +INFO 2021-01-22 10:52:36 train.py: 78] Epoch 9, iter 4400/6416, lr 0.100000, loss 6.962269 +INFO 2021-01-22 10:54:39 train.py: 78] Epoch 9, iter 4600/6416, lr 0.100000, loss 6.974390 +INFO 2021-01-22 10:56:42 train.py: 78] Epoch 9, iter 4800/6416, lr 0.100000, loss 6.949354 +INFO 2021-01-22 10:58:45 train.py: 78] Epoch 9, iter 5000/6416, lr 0.100000, loss 7.008740 +INFO 2021-01-22 11:00:48 train.py: 78] Epoch 9, iter 5200/6416, lr 0.100000, loss 7.003042 +INFO 2021-01-22 11:02:51 train.py: 78] Epoch 9, iter 5400/6416, lr 0.100000, loss 6.962869 +INFO 2021-01-22 11:04:54 train.py: 78] Epoch 9, iter 5600/6416, lr 0.100000, loss 6.933342 +INFO 2021-01-22 11:06:57 train.py: 78] Epoch 9, iter 5800/6416, lr 0.100000, loss 6.947052 +INFO 2021-01-22 11:08:59 train.py: 91] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2021-01-22 11:09:00 train.py: 78] Epoch 9, iter 6000/6416, lr 0.100000, loss 6.963691 +INFO 2021-01-22 11:11:03 train.py: 78] Epoch 9, iter 6200/6416, lr 0.100000, loss 6.968245 +INFO 2021-01-22 11:13:05 train.py: 78] Epoch 9, iter 6400/6416, lr 0.100000, loss 6.993389 +INFO 2021-01-22 11:13:15 train.py: 96] Save checkpoint Epoch_9.pt to disk... +INFO 2021-01-22 11:13:17 train.py: 78] Epoch 10, iter 0/6416, lr 0.010000, loss 6.902760 +INFO 2021-01-22 11:15:20 train.py: 78] Epoch 10, iter 200/6416, lr 0.010000, loss 5.748563 +INFO 2021-01-22 11:17:22 train.py: 78] Epoch 10, iter 400/6416, lr 0.010000, loss 5.519318 +INFO 2021-01-22 11:19:25 train.py: 78] Epoch 10, iter 600/6416, lr 0.010000, loss 5.457388 +INFO 2021-01-22 11:21:28 train.py: 78] Epoch 10, iter 800/6416, lr 0.010000, loss 5.341965 +INFO 2021-01-22 11:23:30 train.py: 78] Epoch 10, iter 1000/6416, lr 0.010000, loss 5.301196 +INFO 2021-01-22 11:25:33 train.py: 78] Epoch 10, iter 1200/6416, lr 0.010000, loss 5.278854 +INFO 2021-01-22 11:27:36 train.py: 78] Epoch 10, iter 1400/6416, lr 0.010000, loss 5.215471 +INFO 2021-01-22 11:29:39 train.py: 78] Epoch 10, iter 1600/6416, lr 0.010000, loss 5.189592 +INFO 2021-01-22 11:31:42 train.py: 78] Epoch 10, iter 1800/6416, lr 0.010000, loss 5.178332 +INFO 2021-01-22 11:33:44 train.py: 78] Epoch 10, iter 2000/6416, lr 0.010000, loss 5.113112 +INFO 2021-01-22 11:35:47 train.py: 78] Epoch 10, iter 2200/6416, lr 0.010000, loss 5.122206 +INFO 2021-01-22 11:37:50 train.py: 78] Epoch 10, iter 2400/6416, lr 0.010000, loss 5.085119 +INFO 2021-01-22 11:39:53 train.py: 78] Epoch 10, iter 2600/6416, lr 0.010000, loss 5.083674 +INFO 2021-01-22 11:41:56 train.py: 78] Epoch 10, iter 2800/6416, lr 0.010000, loss 5.016466 +INFO 2021-01-22 11:43:59 train.py: 91] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2021-01-22 11:43:59 train.py: 78] Epoch 10, iter 3000/6416, lr 0.010000, loss 5.036480 +INFO 2021-01-22 11:46:02 train.py: 78] Epoch 10, iter 3200/6416, lr 0.010000, loss 4.996401 +INFO 2021-01-22 11:48:05 train.py: 78] Epoch 10, iter 3400/6416, lr 0.010000, loss 4.995122 +INFO 2021-01-22 11:50:08 train.py: 78] Epoch 10, iter 3600/6416, lr 0.010000, loss 4.961188 +INFO 2021-01-22 11:52:11 train.py: 78] Epoch 10, iter 3800/6416, lr 0.010000, loss 4.936179 +INFO 2021-01-22 11:54:13 train.py: 78] Epoch 10, iter 4000/6416, lr 0.010000, loss 4.932051 +INFO 2021-01-22 11:56:16 train.py: 78] Epoch 10, iter 4200/6416, lr 0.010000, loss 4.928279 +INFO 2021-01-22 11:58:19 train.py: 78] Epoch 10, iter 4400/6416, lr 0.010000, loss 4.902917 +INFO 2021-01-22 12:00:22 train.py: 78] Epoch 10, iter 4600/6416, lr 0.010000, loss 4.865013 +INFO 2021-01-22 12:02:25 train.py: 78] Epoch 10, iter 4800/6416, lr 0.010000, loss 4.857190 +INFO 2021-01-22 12:04:28 train.py: 78] Epoch 10, iter 5000/6416, lr 0.010000, loss 4.863378 +INFO 2021-01-22 12:06:30 train.py: 78] Epoch 10, iter 5200/6416, lr 0.010000, loss 4.856453 +INFO 2021-01-22 12:08:33 train.py: 78] Epoch 10, iter 5400/6416, lr 0.010000, loss 4.829621 +INFO 2021-01-22 12:10:36 train.py: 78] Epoch 10, iter 5600/6416, lr 0.010000, loss 4.798682 +INFO 2021-01-22 12:12:39 train.py: 78] Epoch 10, iter 5800/6416, lr 0.010000, loss 4.840754 +INFO 2021-01-22 12:14:42 train.py: 91] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2021-01-22 12:14:43 train.py: 78] Epoch 10, iter 6000/6416, lr 0.010000, loss 4.824581 +INFO 2021-01-22 12:16:46 train.py: 78] Epoch 10, iter 6200/6416, lr 0.010000, loss 4.786027 +INFO 2021-01-22 12:18:49 train.py: 78] Epoch 10, iter 6400/6416, lr 0.010000, loss 4.797228 +INFO 2021-01-22 12:18:58 train.py: 96] Save checkpoint Epoch_10.pt to disk... +INFO 2021-01-22 12:19:00 train.py: 78] Epoch 11, iter 0/6416, lr 0.010000, loss 4.784014 +INFO 2021-01-22 12:21:03 train.py: 78] Epoch 11, iter 200/6416, lr 0.010000, loss 4.470120 +INFO 2021-01-22 12:23:06 train.py: 78] Epoch 11, iter 400/6416, lr 0.010000, loss 4.451558 +INFO 2021-01-22 12:25:08 train.py: 78] Epoch 11, iter 600/6416, lr 0.010000, loss 4.429917 +INFO 2021-01-22 12:27:11 train.py: 78] Epoch 11, iter 800/6416, lr 0.010000, loss 4.436838 +INFO 2021-01-22 12:29:14 train.py: 78] Epoch 11, iter 1000/6416, lr 0.010000, loss 4.467249 +INFO 2021-01-22 12:31:17 train.py: 78] Epoch 11, iter 1200/6416, lr 0.010000, loss 4.462276 +INFO 2021-01-22 12:33:20 train.py: 78] Epoch 11, iter 1400/6416, lr 0.010000, loss 4.441387 +INFO 2021-01-22 12:35:22 train.py: 78] Epoch 11, iter 1600/6416, lr 0.010000, loss 4.458403 +INFO 2021-01-22 12:37:25 train.py: 78] Epoch 11, iter 1800/6416, lr 0.010000, loss 4.457052 +INFO 2021-01-22 12:39:28 train.py: 78] Epoch 11, iter 2000/6416, lr 0.010000, loss 4.471438 +INFO 2021-01-22 12:41:30 train.py: 78] Epoch 11, iter 2200/6416, lr 0.010000, loss 4.469756 +INFO 2021-01-22 12:43:33 train.py: 78] Epoch 11, iter 2400/6416, lr 0.010000, loss 4.486885 +INFO 2021-01-22 12:45:35 train.py: 78] Epoch 11, iter 2600/6416, lr 0.010000, loss 4.446462 +INFO 2021-01-22 12:47:38 train.py: 78] Epoch 11, iter 2800/6416, lr 0.010000, loss 4.466606 +INFO 2021-01-22 12:49:40 train.py: 91] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2021-01-22 12:49:41 train.py: 78] Epoch 11, iter 3000/6416, lr 0.010000, loss 4.456106 +INFO 2021-01-22 12:51:44 train.py: 78] Epoch 11, iter 3200/6416, lr 0.010000, loss 4.447276 +INFO 2021-01-22 12:53:46 train.py: 78] Epoch 11, iter 3400/6416, lr 0.010000, loss 4.470429 +INFO 2021-01-22 12:55:49 train.py: 78] Epoch 11, iter 3600/6416, lr 0.010000, loss 4.488471 +INFO 2021-01-22 12:57:52 train.py: 78] Epoch 11, iter 3800/6416, lr 0.010000, loss 4.448806 +INFO 2021-01-22 12:59:55 train.py: 78] Epoch 11, iter 4000/6416, lr 0.010000, loss 4.486610 +INFO 2021-01-22 13:01:57 train.py: 78] Epoch 11, iter 4200/6416, lr 0.010000, loss 4.447952 +INFO 2021-01-22 13:04:00 train.py: 78] Epoch 11, iter 4400/6416, lr 0.010000, loss 4.481845 +INFO 2021-01-22 13:06:03 train.py: 78] Epoch 11, iter 4600/6416, lr 0.010000, loss 4.480989 +INFO 2021-01-22 13:08:06 train.py: 78] Epoch 11, iter 4800/6416, lr 0.010000, loss 4.489532 +INFO 2021-01-22 13:10:09 train.py: 78] Epoch 11, iter 5000/6416, lr 0.010000, loss 4.483109 +INFO 2021-01-22 13:12:12 train.py: 78] Epoch 11, iter 5200/6416, lr 0.010000, loss 4.470513 +INFO 2021-01-22 13:14:15 train.py: 78] Epoch 11, iter 5400/6416, lr 0.010000, loss 4.464391 +INFO 2021-01-22 13:16:18 train.py: 78] Epoch 11, iter 5600/6416, lr 0.010000, loss 4.468705 +INFO 2021-01-22 13:18:20 train.py: 78] Epoch 11, iter 5800/6416, lr 0.010000, loss 4.492000 +INFO 2021-01-22 13:20:23 train.py: 91] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2021-01-22 13:20:24 train.py: 78] Epoch 11, iter 6000/6416, lr 0.010000, loss 4.489486 +INFO 2021-01-22 13:22:26 train.py: 78] Epoch 11, iter 6200/6416, lr 0.010000, loss 4.481620 +INFO 2021-01-22 13:24:29 train.py: 78] Epoch 11, iter 6400/6416, lr 0.010000, loss 4.488010 +INFO 2021-01-22 13:24:39 train.py: 96] Save checkpoint Epoch_11.pt to disk... +INFO 2021-01-22 13:24:40 train.py: 78] Epoch 12, iter 0/6416, lr 0.010000, loss 4.577611 +INFO 2021-01-22 13:26:43 train.py: 78] Epoch 12, iter 200/6416, lr 0.010000, loss 4.146712 +INFO 2021-01-22 13:28:46 train.py: 78] Epoch 12, iter 400/6416, lr 0.010000, loss 4.163031 +INFO 2021-01-22 13:30:49 train.py: 78] Epoch 12, iter 600/6416, lr 0.010000, loss 4.160265 +INFO 2021-01-22 13:32:52 train.py: 78] Epoch 12, iter 800/6416, lr 0.010000, loss 4.194707 +INFO 2021-01-22 13:34:54 train.py: 78] Epoch 12, iter 1000/6416, lr 0.010000, loss 4.186946 +INFO 2021-01-22 13:36:57 train.py: 78] Epoch 12, iter 1200/6416, lr 0.010000, loss 4.218983 +INFO 2021-01-22 13:38:59 train.py: 78] Epoch 12, iter 1400/6416, lr 0.010000, loss 4.198204 +INFO 2021-01-22 13:41:02 train.py: 78] Epoch 12, iter 1600/6416, lr 0.010000, loss 4.218284 +INFO 2021-01-22 13:43:05 train.py: 78] Epoch 12, iter 1800/6416, lr 0.010000, loss 4.222625 +INFO 2021-01-22 13:45:08 train.py: 78] Epoch 12, iter 2000/6416, lr 0.010000, loss 4.225643 +INFO 2021-01-22 13:47:10 train.py: 78] Epoch 12, iter 2200/6416, lr 0.010000, loss 4.251512 +INFO 2021-01-22 13:49:13 train.py: 78] Epoch 12, iter 2400/6416, lr 0.010000, loss 4.264884 +INFO 2021-01-22 13:51:16 train.py: 78] Epoch 12, iter 2600/6416, lr 0.010000, loss 4.240960 +INFO 2021-01-22 13:53:18 train.py: 78] Epoch 12, iter 2800/6416, lr 0.010000, loss 4.277109 +INFO 2021-01-22 13:55:21 train.py: 91] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2021-01-22 13:55:21 train.py: 78] Epoch 12, iter 3000/6416, lr 0.010000, loss 4.265947 +INFO 2021-01-22 13:57:24 train.py: 78] Epoch 12, iter 3200/6416, lr 0.010000, loss 4.277185 +INFO 2021-01-22 13:59:27 train.py: 78] Epoch 12, iter 3400/6416, lr 0.010000, loss 4.286415 +INFO 2021-01-22 14:01:29 train.py: 78] Epoch 12, iter 3600/6416, lr 0.010000, loss 4.283371 +INFO 2021-01-22 14:03:32 train.py: 78] Epoch 12, iter 3800/6416, lr 0.010000, loss 4.297545 +INFO 2021-01-22 14:05:35 train.py: 78] Epoch 12, iter 4000/6416, lr 0.010000, loss 4.311358 +INFO 2021-01-22 14:07:37 train.py: 78] Epoch 12, iter 4200/6416, lr 0.010000, loss 4.314255 +INFO 2021-01-22 14:09:40 train.py: 78] Epoch 12, iter 4400/6416, lr 0.010000, loss 4.308063 +INFO 2021-01-22 14:11:43 train.py: 78] Epoch 12, iter 4600/6416, lr 0.010000, loss 4.321885 +INFO 2021-01-22 14:13:45 train.py: 78] Epoch 12, iter 4800/6416, lr 0.010000, loss 4.330787 +INFO 2021-01-22 14:15:48 train.py: 78] Epoch 12, iter 5000/6416, lr 0.010000, loss 4.343471 +INFO 2021-01-22 14:17:51 train.py: 78] Epoch 12, iter 5200/6416, lr 0.010000, loss 4.347062 +INFO 2021-01-22 14:19:54 train.py: 78] Epoch 12, iter 5400/6416, lr 0.010000, loss 4.344270 +INFO 2021-01-22 14:21:56 train.py: 78] Epoch 12, iter 5600/6416, lr 0.010000, loss 4.342152 +INFO 2021-01-22 14:23:59 train.py: 78] Epoch 12, iter 5800/6416, lr 0.010000, loss 4.342138 +INFO 2021-01-22 14:26:01 train.py: 91] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2021-01-22 14:26:02 train.py: 78] Epoch 12, iter 6000/6416, lr 0.010000, loss 4.369567 +INFO 2021-01-22 14:28:05 train.py: 78] Epoch 12, iter 6200/6416, lr 0.010000, loss 4.361533 +INFO 2021-01-22 14:30:07 train.py: 78] Epoch 12, iter 6400/6416, lr 0.010000, loss 4.379941 +INFO 2021-01-22 14:30:17 train.py: 96] Save checkpoint Epoch_12.pt to disk... +INFO 2021-01-22 14:30:18 train.py: 78] Epoch 13, iter 0/6416, lr 0.001000, loss 4.262749 +INFO 2021-01-22 14:32:21 train.py: 78] Epoch 13, iter 200/6416, lr 0.001000, loss 3.927313 +INFO 2021-01-22 14:34:24 train.py: 78] Epoch 13, iter 400/6416, lr 0.001000, loss 3.897762 +INFO 2021-01-22 14:36:27 train.py: 78] Epoch 13, iter 600/6416, lr 0.001000, loss 3.922929 +INFO 2021-01-22 14:38:29 train.py: 78] Epoch 13, iter 800/6416, lr 0.001000, loss 3.892005 +INFO 2021-01-22 14:40:32 train.py: 78] Epoch 13, iter 1000/6416, lr 0.001000, loss 3.868123 +INFO 2021-01-22 14:42:34 train.py: 78] Epoch 13, iter 1200/6416, lr 0.001000, loss 3.876276 +INFO 2021-01-22 14:44:37 train.py: 78] Epoch 13, iter 1400/6416, lr 0.001000, loss 3.889019 +INFO 2021-01-22 14:46:40 train.py: 78] Epoch 13, iter 1600/6416, lr 0.001000, loss 3.871777 +INFO 2021-01-22 14:48:42 train.py: 78] Epoch 13, iter 1800/6416, lr 0.001000, loss 3.871109 +INFO 2021-01-22 14:50:45 train.py: 78] Epoch 13, iter 2000/6416, lr 0.001000, loss 3.888027 +INFO 2021-01-22 14:52:47 train.py: 78] Epoch 13, iter 2200/6416, lr 0.001000, loss 3.864406 +INFO 2021-01-22 14:54:50 train.py: 78] Epoch 13, iter 2400/6416, lr 0.001000, loss 3.873461 +INFO 2021-01-22 14:56:52 train.py: 78] Epoch 13, iter 2600/6416, lr 0.001000, loss 3.881583 +INFO 2021-01-22 14:58:55 train.py: 78] Epoch 13, iter 2800/6416, lr 0.001000, loss 3.881827 +INFO 2021-01-22 15:00:57 train.py: 91] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2021-01-22 15:00:58 train.py: 78] Epoch 13, iter 3000/6416, lr 0.001000, loss 3.882074 +INFO 2021-01-22 15:03:00 train.py: 78] Epoch 13, iter 3200/6416, lr 0.001000, loss 3.860324 +INFO 2021-01-22 15:05:03 train.py: 78] Epoch 13, iter 3400/6416, lr 0.001000, loss 3.876697 +INFO 2021-01-22 15:07:05 train.py: 78] Epoch 13, iter 3600/6416, lr 0.001000, loss 3.882277 +INFO 2021-01-22 15:09:08 train.py: 78] Epoch 13, iter 3800/6416, lr 0.001000, loss 3.881810 +INFO 2021-01-22 15:11:11 train.py: 78] Epoch 13, iter 4000/6416, lr 0.001000, loss 3.876003 +INFO 2021-01-22 15:13:14 train.py: 78] Epoch 13, iter 4200/6416, lr 0.001000, loss 3.891757 +INFO 2021-01-22 15:15:16 train.py: 78] Epoch 13, iter 4400/6416, lr 0.001000, loss 3.877914 +INFO 2021-01-22 15:17:19 train.py: 78] Epoch 13, iter 4600/6416, lr 0.001000, loss 3.865260 +INFO 2021-01-22 15:19:21 train.py: 78] Epoch 13, iter 4800/6416, lr 0.001000, loss 3.893300 +INFO 2021-01-22 15:21:24 train.py: 78] Epoch 13, iter 5000/6416, lr 0.001000, loss 3.864890 +INFO 2021-01-22 15:23:27 train.py: 78] Epoch 13, iter 5200/6416, lr 0.001000, loss 3.879290 +INFO 2021-01-22 15:25:30 train.py: 78] Epoch 13, iter 5400/6416, lr 0.001000, loss 3.870605 +INFO 2021-01-22 15:27:32 train.py: 78] Epoch 13, iter 5600/6416, lr 0.001000, loss 3.877739 +INFO 2021-01-22 15:29:35 train.py: 78] Epoch 13, iter 5800/6416, lr 0.001000, loss 3.865206 +INFO 2021-01-22 15:31:37 train.py: 91] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2021-01-22 15:31:38 train.py: 78] Epoch 13, iter 6000/6416, lr 0.001000, loss 3.879849 +INFO 2021-01-22 15:33:40 train.py: 78] Epoch 13, iter 6200/6416, lr 0.001000, loss 3.907357 +INFO 2021-01-22 15:35:43 train.py: 78] Epoch 13, iter 6400/6416, lr 0.001000, loss 3.893919 +INFO 2021-01-22 15:35:52 train.py: 96] Save checkpoint Epoch_13.pt to disk... +INFO 2021-01-22 15:35:54 train.py: 78] Epoch 14, iter 0/6416, lr 0.001000, loss 3.904979 +INFO 2021-01-22 15:37:57 train.py: 78] Epoch 14, iter 200/6416, lr 0.001000, loss 3.828881 +INFO 2021-01-22 15:40:00 train.py: 78] Epoch 14, iter 400/6416, lr 0.001000, loss 3.829152 +INFO 2021-01-22 15:42:03 train.py: 78] Epoch 14, iter 600/6416, lr 0.001000, loss 3.822321 +INFO 2021-01-22 15:44:05 train.py: 78] Epoch 14, iter 800/6416, lr 0.001000, loss 3.809073 +INFO 2021-01-22 15:46:08 train.py: 78] Epoch 14, iter 1000/6416, lr 0.001000, loss 3.828521 +INFO 2021-01-22 15:48:10 train.py: 78] Epoch 14, iter 1200/6416, lr 0.001000, loss 3.837055 +INFO 2021-01-22 15:50:13 train.py: 78] Epoch 14, iter 1400/6416, lr 0.001000, loss 3.864429 +INFO 2021-01-22 15:52:15 train.py: 78] Epoch 14, iter 1600/6416, lr 0.001000, loss 3.846405 +INFO 2021-01-22 15:54:18 train.py: 78] Epoch 14, iter 1800/6416, lr 0.001000, loss 3.825020 +INFO 2021-01-22 15:56:21 train.py: 78] Epoch 14, iter 2000/6416, lr 0.001000, loss 3.847449 +INFO 2021-01-22 15:58:23 train.py: 78] Epoch 14, iter 2200/6416, lr 0.001000, loss 3.819373 +INFO 2021-01-22 16:00:26 train.py: 78] Epoch 14, iter 2400/6416, lr 0.001000, loss 3.853569 +INFO 2021-01-22 16:02:29 train.py: 78] Epoch 14, iter 2600/6416, lr 0.001000, loss 3.869389 +INFO 2021-01-22 16:04:33 train.py: 78] Epoch 14, iter 2800/6416, lr 0.001000, loss 3.855815 +INFO 2021-01-22 16:06:36 train.py: 91] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2021-01-22 16:06:37 train.py: 78] Epoch 14, iter 3000/6416, lr 0.001000, loss 3.813049 +INFO 2021-01-22 16:08:40 train.py: 78] Epoch 14, iter 3200/6416, lr 0.001000, loss 3.871111 +INFO 2021-01-22 16:10:44 train.py: 78] Epoch 14, iter 3400/6416, lr 0.001000, loss 3.818367 +INFO 2021-01-22 16:12:47 train.py: 78] Epoch 14, iter 3600/6416, lr 0.001000, loss 3.839541 +INFO 2021-01-22 16:14:51 train.py: 78] Epoch 14, iter 3800/6416, lr 0.001000, loss 3.823516 +INFO 2021-01-22 16:16:54 train.py: 78] Epoch 14, iter 4000/6416, lr 0.001000, loss 3.835068 +INFO 2021-01-22 16:18:58 train.py: 78] Epoch 14, iter 4200/6416, lr 0.001000, loss 3.841915 +INFO 2021-01-22 16:21:01 train.py: 78] Epoch 14, iter 4400/6416, lr 0.001000, loss 3.854630 +INFO 2021-01-22 16:23:05 train.py: 78] Epoch 14, iter 4600/6416, lr 0.001000, loss 3.850053 +INFO 2021-01-22 16:25:08 train.py: 78] Epoch 14, iter 4800/6416, lr 0.001000, loss 3.854303 +INFO 2021-01-22 16:27:12 train.py: 78] Epoch 14, iter 5000/6416, lr 0.001000, loss 3.825909 +INFO 2021-01-22 16:29:16 train.py: 78] Epoch 14, iter 5200/6416, lr 0.001000, loss 3.846189 +INFO 2021-01-22 16:31:19 train.py: 78] Epoch 14, iter 5400/6416, lr 0.001000, loss 3.859406 +INFO 2021-01-22 16:33:23 train.py: 78] Epoch 14, iter 5600/6416, lr 0.001000, loss 3.847844 +INFO 2021-01-22 16:35:27 train.py: 78] Epoch 14, iter 5800/6416, lr 0.001000, loss 3.865903 +INFO 2021-01-22 16:37:30 train.py: 91] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2021-01-22 16:37:31 train.py: 78] Epoch 14, iter 6000/6416, lr 0.001000, loss 3.869699 +INFO 2021-01-22 16:39:34 train.py: 78] Epoch 14, iter 6200/6416, lr 0.001000, loss 3.861083 +INFO 2021-01-22 16:41:38 train.py: 78] Epoch 14, iter 6400/6416, lr 0.001000, loss 3.880113 +INFO 2021-01-22 16:41:47 train.py: 96] Save checkpoint Epoch_14.pt to disk... +INFO 2021-01-22 16:41:49 train.py: 78] Epoch 15, iter 0/6416, lr 0.001000, loss 3.850110 +INFO 2021-01-22 16:43:52 train.py: 78] Epoch 15, iter 200/6416, lr 0.001000, loss 3.821365 +INFO 2021-01-22 16:45:55 train.py: 78] Epoch 15, iter 400/6416, lr 0.001000, loss 3.790749 +INFO 2021-01-22 16:47:58 train.py: 78] Epoch 15, iter 600/6416, lr 0.001000, loss 3.810499 +INFO 2021-01-22 16:50:01 train.py: 78] Epoch 15, iter 800/6416, lr 0.001000, loss 3.809179 +INFO 2021-01-22 16:52:04 train.py: 78] Epoch 15, iter 1000/6416, lr 0.001000, loss 3.807130 +INFO 2021-01-22 16:54:07 train.py: 78] Epoch 15, iter 1200/6416, lr 0.001000, loss 3.820730 +INFO 2021-01-22 16:56:09 train.py: 78] Epoch 15, iter 1400/6416, lr 0.001000, loss 3.782620 +INFO 2021-01-22 16:58:12 train.py: 78] Epoch 15, iter 1600/6416, lr 0.001000, loss 3.804616 +INFO 2021-01-22 17:00:15 train.py: 78] Epoch 15, iter 1800/6416, lr 0.001000, loss 3.829590 +INFO 2021-01-22 17:02:18 train.py: 78] Epoch 15, iter 2000/6416, lr 0.001000, loss 3.796985 +INFO 2021-01-22 17:04:20 train.py: 78] Epoch 15, iter 2200/6416, lr 0.001000, loss 3.834459 +INFO 2021-01-22 17:06:23 train.py: 78] Epoch 15, iter 2400/6416, lr 0.001000, loss 3.817646 +INFO 2021-01-22 17:08:26 train.py: 78] Epoch 15, iter 2600/6416, lr 0.001000, loss 3.825184 +INFO 2021-01-22 17:10:29 train.py: 78] Epoch 15, iter 2800/6416, lr 0.001000, loss 3.810892 +INFO 2021-01-22 17:12:31 train.py: 91] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2021-01-22 17:12:32 train.py: 78] Epoch 15, iter 3000/6416, lr 0.001000, loss 3.807870 +INFO 2021-01-22 17:14:34 train.py: 78] Epoch 15, iter 3200/6416, lr 0.001000, loss 3.803119 +INFO 2021-01-22 17:16:37 train.py: 78] Epoch 15, iter 3400/6416, lr 0.001000, loss 3.809163 +INFO 2021-01-22 17:18:40 train.py: 78] Epoch 15, iter 3600/6416, lr 0.001000, loss 3.815229 +INFO 2021-01-22 17:20:43 train.py: 78] Epoch 15, iter 3800/6416, lr 0.001000, loss 3.833905 +INFO 2021-01-22 17:22:46 train.py: 78] Epoch 15, iter 4000/6416, lr 0.001000, loss 3.840918 +INFO 2021-01-22 17:24:49 train.py: 78] Epoch 15, iter 4200/6416, lr 0.001000, loss 3.819103 +INFO 2021-01-22 17:26:52 train.py: 78] Epoch 15, iter 4400/6416, lr 0.001000, loss 3.820613 +INFO 2021-01-22 17:28:54 train.py: 78] Epoch 15, iter 4600/6416, lr 0.001000, loss 3.821484 +INFO 2021-01-22 17:30:57 train.py: 78] Epoch 15, iter 4800/6416, lr 0.001000, loss 3.830079 +INFO 2021-01-22 17:33:00 train.py: 78] Epoch 15, iter 5000/6416, lr 0.001000, loss 3.833368 +INFO 2021-01-22 17:35:03 train.py: 78] Epoch 15, iter 5200/6416, lr 0.001000, loss 3.835595 +INFO 2021-01-22 17:37:06 train.py: 78] Epoch 15, iter 5400/6416, lr 0.001000, loss 3.833158 +INFO 2021-01-22 17:39:09 train.py: 78] Epoch 15, iter 5600/6416, lr 0.001000, loss 3.833666 +INFO 2021-01-22 17:41:12 train.py: 78] Epoch 15, iter 5800/6416, lr 0.001000, loss 3.848253 +INFO 2021-01-22 17:43:15 train.py: 91] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2021-01-22 17:43:15 train.py: 78] Epoch 15, iter 6000/6416, lr 0.001000, loss 3.829368 +INFO 2021-01-22 17:45:18 train.py: 78] Epoch 15, iter 6200/6416, lr 0.001000, loss 3.819348 +INFO 2021-01-22 17:47:21 train.py: 78] Epoch 15, iter 6400/6416, lr 0.001000, loss 3.830857 +INFO 2021-01-22 17:47:30 train.py: 96] Save checkpoint Epoch_15.pt to disk... +INFO 2021-01-22 17:47:32 train.py: 78] Epoch 16, iter 0/6416, lr 0.000100, loss 3.846121 +INFO 2021-01-22 17:49:35 train.py: 78] Epoch 16, iter 200/6416, lr 0.000100, loss 3.775344 +INFO 2021-01-22 17:51:38 train.py: 78] Epoch 16, iter 400/6416, lr 0.000100, loss 3.765746 +INFO 2021-01-22 17:53:41 train.py: 78] Epoch 16, iter 600/6416, lr 0.000100, loss 3.783891 +INFO 2021-01-22 17:55:44 train.py: 78] Epoch 16, iter 800/6416, lr 0.000100, loss 3.773140 +INFO 2021-01-22 17:57:47 train.py: 78] Epoch 16, iter 1000/6416, lr 0.000100, loss 3.769097 +INFO 2021-01-22 17:59:50 train.py: 78] Epoch 16, iter 1200/6416, lr 0.000100, loss 3.778376 +INFO 2021-01-22 18:01:52 train.py: 78] Epoch 16, iter 1400/6416, lr 0.000100, loss 3.781148 +INFO 2021-01-22 18:03:55 train.py: 78] Epoch 16, iter 1600/6416, lr 0.000100, loss 3.774220 +INFO 2021-01-22 18:05:58 train.py: 78] Epoch 16, iter 1800/6416, lr 0.000100, loss 3.774145 +INFO 2021-01-22 18:08:01 train.py: 78] Epoch 16, iter 2000/6416, lr 0.000100, loss 3.789803 +INFO 2021-01-22 18:10:04 train.py: 78] Epoch 16, iter 2200/6416, lr 0.000100, loss 3.804328 +INFO 2021-01-22 18:12:07 train.py: 78] Epoch 16, iter 2400/6416, lr 0.000100, loss 3.792517 +INFO 2021-01-22 18:14:10 train.py: 78] Epoch 16, iter 2600/6416, lr 0.000100, loss 3.750824 +INFO 2021-01-22 18:16:13 train.py: 78] Epoch 16, iter 2800/6416, lr 0.000100, loss 3.783069 +INFO 2021-01-22 18:18:15 train.py: 91] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2021-01-22 18:18:16 train.py: 78] Epoch 16, iter 3000/6416, lr 0.000100, loss 3.765859 +INFO 2021-01-22 18:20:19 train.py: 78] Epoch 16, iter 3200/6416, lr 0.000100, loss 3.753619 +INFO 2021-01-22 18:22:22 train.py: 78] Epoch 16, iter 3400/6416, lr 0.000100, loss 3.790236 +INFO 2021-01-22 18:24:25 train.py: 78] Epoch 16, iter 3600/6416, lr 0.000100, loss 3.750794 +INFO 2021-01-22 18:26:27 train.py: 78] Epoch 16, iter 3800/6416, lr 0.000100, loss 3.761451 +INFO 2021-01-22 18:28:30 train.py: 78] Epoch 16, iter 4000/6416, lr 0.000100, loss 3.791543 +INFO 2021-01-22 18:30:33 train.py: 78] Epoch 16, iter 4200/6416, lr 0.000100, loss 3.763095 +INFO 2021-01-22 18:32:36 train.py: 78] Epoch 16, iter 4400/6416, lr 0.000100, loss 3.783858 +INFO 2021-01-22 18:34:39 train.py: 78] Epoch 16, iter 4600/6416, lr 0.000100, loss 3.760115 +INFO 2021-01-22 18:36:42 train.py: 78] Epoch 16, iter 4800/6416, lr 0.000100, loss 3.761558 +INFO 2021-01-22 18:38:45 train.py: 78] Epoch 16, iter 5000/6416, lr 0.000100, loss 3.760175 +INFO 2021-01-22 18:40:47 train.py: 78] Epoch 16, iter 5200/6416, lr 0.000100, loss 3.765993 +INFO 2021-01-22 18:42:50 train.py: 78] Epoch 16, iter 5400/6416, lr 0.000100, loss 3.781831 +INFO 2021-01-22 18:44:54 train.py: 78] Epoch 16, iter 5600/6416, lr 0.000100, loss 3.756862 +INFO 2021-01-22 18:46:57 train.py: 78] Epoch 16, iter 5800/6416, lr 0.000100, loss 3.779427 +INFO 2021-01-22 18:48:59 train.py: 91] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2021-01-22 18:49:00 train.py: 78] Epoch 16, iter 6000/6416, lr 0.000100, loss 3.783866 +INFO 2021-01-22 18:51:03 train.py: 78] Epoch 16, iter 6200/6416, lr 0.000100, loss 3.755966 +INFO 2021-01-22 18:53:06 train.py: 78] Epoch 16, iter 6400/6416, lr 0.000100, loss 3.745360 +INFO 2021-01-22 18:53:15 train.py: 96] Save checkpoint Epoch_16.pt to disk... +INFO 2021-01-22 18:53:17 train.py: 78] Epoch 17, iter 0/6416, lr 0.000100, loss 3.712460 +INFO 2021-01-22 18:55:20 train.py: 78] Epoch 17, iter 200/6416, lr 0.000100, loss 3.780867 +INFO 2021-01-22 18:57:23 train.py: 78] Epoch 17, iter 400/6416, lr 0.000100, loss 3.741587 +INFO 2021-01-22 18:59:26 train.py: 78] Epoch 17, iter 600/6416, lr 0.000100, loss 3.764056 +INFO 2021-01-22 19:01:29 train.py: 78] Epoch 17, iter 800/6416, lr 0.000100, loss 3.764818 +INFO 2021-01-22 19:03:32 train.py: 78] Epoch 17, iter 1000/6416, lr 0.000100, loss 3.777415 +INFO 2021-01-22 19:05:35 train.py: 78] Epoch 17, iter 1200/6416, lr 0.000100, loss 3.769012 +INFO 2021-01-22 19:07:38 train.py: 78] Epoch 17, iter 1400/6416, lr 0.000100, loss 3.770929 +INFO 2021-01-22 19:09:41 train.py: 78] Epoch 17, iter 1600/6416, lr 0.000100, loss 3.742262 +INFO 2021-01-22 19:11:43 train.py: 78] Epoch 17, iter 1800/6416, lr 0.000100, loss 3.755050 +INFO 2021-01-22 19:13:46 train.py: 78] Epoch 17, iter 2000/6416, lr 0.000100, loss 3.749648 +INFO 2021-01-22 19:15:49 train.py: 78] Epoch 17, iter 2200/6416, lr 0.000100, loss 3.780187 +INFO 2021-01-22 19:17:52 train.py: 78] Epoch 17, iter 2400/6416, lr 0.000100, loss 3.785705 +INFO 2021-01-22 19:19:55 train.py: 78] Epoch 17, iter 2600/6416, lr 0.000100, loss 3.786001 +INFO 2021-01-22 19:21:58 train.py: 78] Epoch 17, iter 2800/6416, lr 0.000100, loss 3.760028 +INFO 2021-01-22 19:24:01 train.py: 91] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2021-01-22 19:24:01 train.py: 78] Epoch 17, iter 3000/6416, lr 0.000100, loss 3.782912 +INFO 2021-01-22 19:26:04 train.py: 78] Epoch 17, iter 3200/6416, lr 0.000100, loss 3.764997 +INFO 2021-01-22 19:28:07 train.py: 78] Epoch 17, iter 3400/6416, lr 0.000100, loss 3.776418 +INFO 2021-01-22 19:30:10 train.py: 78] Epoch 17, iter 3600/6416, lr 0.000100, loss 3.756580 +INFO 2021-01-22 19:32:13 train.py: 78] Epoch 17, iter 3800/6416, lr 0.000100, loss 3.774761 +INFO 2021-01-22 19:34:16 train.py: 78] Epoch 17, iter 4000/6416, lr 0.000100, loss 3.760095 +INFO 2021-01-22 19:36:19 train.py: 78] Epoch 17, iter 4200/6416, lr 0.000100, loss 3.758935 +INFO 2021-01-22 19:38:22 train.py: 78] Epoch 17, iter 4400/6416, lr 0.000100, loss 3.774396 +INFO 2021-01-22 19:40:25 train.py: 78] Epoch 17, iter 4600/6416, lr 0.000100, loss 3.775727 +INFO 2021-01-22 19:42:28 train.py: 78] Epoch 17, iter 4800/6416, lr 0.000100, loss 3.755226 +INFO 2021-01-22 19:44:31 train.py: 78] Epoch 17, iter 5000/6416, lr 0.000100, loss 3.780132 +INFO 2021-01-22 19:46:34 train.py: 78] Epoch 17, iter 5200/6416, lr 0.000100, loss 3.766347 +INFO 2021-01-22 19:48:37 train.py: 78] Epoch 17, iter 5400/6416, lr 0.000100, loss 3.761327 +INFO 2021-01-22 19:50:40 train.py: 78] Epoch 17, iter 5600/6416, lr 0.000100, loss 3.781232 +INFO 2021-01-22 19:52:43 train.py: 78] Epoch 17, iter 5800/6416, lr 0.000100, loss 3.765382 +INFO 2021-01-22 19:54:46 train.py: 91] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2021-01-22 19:54:47 train.py: 78] Epoch 17, iter 6000/6416, lr 0.000100, loss 3.781601 +INFO 2021-01-22 19:56:50 train.py: 78] Epoch 17, iter 6200/6416, lr 0.000100, loss 3.761133 +INFO 2021-01-22 19:58:53 train.py: 78] Epoch 17, iter 6400/6416, lr 0.000100, loss 3.759499 +INFO 2021-01-22 19:59:02 train.py: 96] Save checkpoint Epoch_17.pt to disk... +INFO 2021-01-22 19:59:03 train.py: 179] Optimization done! diff --git a/bob/bio/facexzoo/models/backbones/HRNet/.gitkeep b/bob/bio/facexzoo/models/backbones/HRNet/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..9fce2b3d4d3c08825ff8ba5ff1f7e763c3d7989f --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_agedb.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15.pt | 0.9781666666666666 | 0.0021723571995574545 | +| Epoch_12.pt | 0.9781666666666666 | 0.00232339151848072 | +| Epoch_17_batch_5999.pt | 0.9781666666666666 | 0.002349809553617393 | +| Epoch_14.pt | 0.978 | 0.0022054925823643554 | +| Epoch_13_batch_2999.pt | 0.9778333333333334 | 0.002618193703988483 | +| Epoch_16_batch_5999.pt | 0.9778333333333332 | 0.002304718723632388 | +| Epoch_15_batch_2999.pt | 0.9776666666666666 | 0.002372684056006956 | +| Epoch_17_batch_2999.pt | 0.9776666666666666 | 0.0021401511426953506 | +| Epoch_13.pt | 0.9773333333333334 | 0.0020667861375264717 | +| Epoch_13_batch_5999.pt | 0.9773333333333332 | 0.002111111111111109 | +| Epoch_12_batch_2999.pt | 0.9773333333333332 | 0.0021401511426953563 | +| Epoch_16.pt | 0.9773333333333332 | 0.0024620577562400312 | +| Epoch_15_batch_5999.pt | 0.9771666666666666 | 0.002497529643665448 | +| Epoch_11_batch_5999.pt | 0.977 | 0.0024190601174530232 | +| Epoch_16_batch_2999.pt | 0.977 | 0.002444444444444442 | +| Epoch_17.pt | 0.9766666666666668 | 0.0022222222222222227 | +| Epoch_10_batch_5999.pt | 0.9766666666666668 | 0.0020934937423796453 | +| Epoch_14_batch_2999.pt | 0.9763333333333334 | 0.00223330569358242 | +| Epoch_11.pt | 0.9763333333333334 | 0.002328036315528544 | +| Epoch_14_batch_5999.pt | 0.9763333333333332 | 0.0021052550357218178 | +| Epoch_12_batch_5999.pt | 0.9761666666666666 | 0.00223675801546637 | +| Epoch_11_batch_2999.pt | 0.9743333333333333 | 0.0022388268532899792 | +| Epoch_10_batch_2999.pt | 0.9743333333333333 | 0.0023333333333333383 | +| Epoch_10.pt | 0.9741666666666667 | 0.0022939803135625025 | +| Epoch_9_batch_5999.pt | 0.9718333333333333 | 0.002362907813126301 | +| Epoch_8_batch_2999.pt | 0.9706666666666666 | 0.0024241582476968245 | +| Epoch_8_batch_5999.pt | 0.9696666666666666 | 0.0023674750836291713 | +| Epoch_9_batch_2999.pt | 0.9695 | 0.0027335365778094547 | +| Epoch_7_batch_5999.pt | 0.9693333333333334 | 0.002845832994414608 | +| Epoch_5_batch_2999.pt | 0.9688333333333334 | 0.0026416652062152745 | +| Epoch_9.pt | 0.9688333333333332 | 0.0031725092300598353 | +| Epoch_7_batch_2999.pt | 0.9684999999999999 | 0.0022831913986705054 | +| Epoch_4_batch_5999.pt | 0.9683333333333334 | 0.0020336672464136792 | +| Epoch_6_batch_2999.pt | 0.968 | 0.00281968389787767 | +| Epoch_5_batch_5999.pt | 0.9678333333333334 | 0.002434956333423467 | +| Epoch_4_batch_2999.pt | 0.9675 | 0.002499999999999999 | +| Epoch_6_batch_5999.pt | 0.9673333333333334 | 0.002572408200620051 | +| Epoch_6.pt | 0.9668333333333333 | 0.0023366378716458995 | +| Epoch_3_batch_5999.pt | 0.9663333333333333 | 0.0023544022333796743 | +| Epoch_7.pt | 0.9658333333333333 | 0.002900085141364049 | +| Epoch_5.pt | 0.9656666666666668 | 0.0029418227321941584 | +| Epoch_8.pt | 0.9656666666666667 | 0.0031051530249960307 | +| Epoch_3_batch_2999.pt | 0.9644999999999999 | 0.0026181937039884804 | +| Epoch_3.pt | 0.9630000000000001 | 0.003111111111111119 | +| Epoch_4.pt | 0.9626666666666667 | 0.0026550673656330066 | +| Epoch_2_batch_5999.pt | 0.9625 | 0.002573008039313206 | +| Epoch_2.pt | 0.9606666666666666 | 0.0025724082006200466 | +| Epoch_2_batch_2999.pt | 0.9566666666666667 | 0.00268741924943285 | +| Epoch_1_batch_5999.pt | 0.9503333333333334 | 0.0032375116187407633 | +| Epoch_1.pt | 0.9476666666666667 | 0.0038666028091789597 | +| Epoch_1_batch_2999.pt | 0.9348333333333333 | 0.0035611934467860754 | +| Epoch_0_batch_5999.pt | 0.8800000000000001 | 0.0056546713999997625 | +| Epoch_0.pt | 0.8766666666666667 | 0.00615138246029618 | +| Epoch_0_batch_2999.pt | 0.6321666666666667 | 0.0053115876122834475 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..8fb782e3daffa7e9b7d4bafabb62e0a1ef430388 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_calfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16.pt | 0.9548333333333334 | 0.003963179294891515 | +| Epoch_16_batch_2999.pt | 0.9545 | 0.003998842425095136 | +| Epoch_17.pt | 0.9541666666666666 | 0.004159252663165509 | +| Epoch_14_batch_5999.pt | 0.9541666666666666 | 0.004015786748555824 | +| Epoch_10_batch_5999.pt | 0.9541666666666666 | 0.004015786748555818 | +| Epoch_16_batch_5999.pt | 0.9541666666666666 | 0.003961621441334908 | +| Epoch_17_batch_2999.pt | 0.9540000000000001 | 0.004038395965641386 | +| Epoch_14.pt | 0.9538333333333334 | 0.0037022682403435835 | +| Epoch_15_batch_5999.pt | 0.9538333333333332 | 0.003873381780789634 | +| Epoch_11_batch_2999.pt | 0.9536666666666667 | 0.0036072629068328705 | +| Epoch_15_batch_2999.pt | 0.9536666666666667 | 0.004004626953542246 | +| Epoch_11_batch_5999.pt | 0.9535 | 0.003970959395224096 | +| Epoch_10_batch_2999.pt | 0.9533333333333334 | 0.00373505251421592 | +| Epoch_17_batch_5999.pt | 0.9533333333333334 | 0.0037184890068181157 | +| Epoch_11.pt | 0.953 | 0.0038070759331137343 | +| Epoch_13_batch_5999.pt | 0.9528333333333332 | 0.00377655208874607 | +| Epoch_15.pt | 0.9526666666666666 | 0.0037777777777777714 | +| Epoch_12.pt | 0.9525 | 0.0038107223643650007 | +| Epoch_10.pt | 0.9523333333333334 | 0.004076430295076466 | +| Epoch_13.pt | 0.952 | 0.0036072629068328705 | +| Epoch_13_batch_2999.pt | 0.952 | 0.0037908271353848783 | +| Epoch_12_batch_2999.pt | 0.9518333333333334 | 0.003908284963769235 | +| Epoch_14_batch_2999.pt | 0.9515 | 0.003655285366576879 | +| Epoch_12_batch_5999.pt | 0.9515 | 0.0035088072610306937 | +| Epoch_6_batch_5999.pt | 0.9486666666666667 | 0.002884612219054927 | +| Epoch_7.pt | 0.9486666666666667 | 0.0037498971179302635 | +| Epoch_8_batch_5999.pt | 0.9483333333333335 | 0.003583225665910459 | +| Epoch_9_batch_5999.pt | 0.9476666666666667 | 0.004261513091281139 | +| Epoch_4_batch_2999.pt | 0.9476666666666667 | 0.003818408950542129 | +| Epoch_8_batch_2999.pt | 0.9475 | 0.004232808366400096 | +| Epoch_6_batch_2999.pt | 0.9471666666666666 | 0.004006553273800622 | +| Epoch_5_batch_5999.pt | 0.9471666666666666 | 0.00412796844183554 | +| Epoch_5_batch_2999.pt | 0.9466666666666667 | 0.003487189961438936 | +| Epoch_7_batch_5999.pt | 0.9453333333333334 | 0.004498284995554929 | +| Epoch_7_batch_2999.pt | 0.9450000000000001 | 0.00394405318873308 | +| Epoch_4_batch_5999.pt | 0.9448333333333334 | 0.004032659876435444 | +| Epoch_9_batch_2999.pt | 0.9445 | 0.00426042657111952 | +| Epoch_6.pt | 0.9443333333333334 | 0.003593547028621383 | +| Epoch_3_batch_2999.pt | 0.9441666666666666 | 0.003533350803590633 | +| Epoch_8.pt | 0.944 | 0.0034533933928711236 | +| Epoch_9.pt | 0.9436666666666668 | 0.002937623125867173 | +| Epoch_3.pt | 0.9433333333333334 | 0.004975247372719581 | +| Epoch_5.pt | 0.9433333333333331 | 0.003093202423794456 | +| Epoch_3_batch_5999.pt | 0.9424999999999999 | 0.0036025539637496566 | +| Epoch_4.pt | 0.9410000000000001 | 0.00409154503100488 | +| Epoch_2.pt | 0.9393333333333332 | 0.004232443767720201 | +| Epoch_2_batch_5999.pt | 0.9391666666666667 | 0.0037618126704955963 | +| Epoch_2_batch_2999.pt | 0.9358333333333333 | 0.0032984283575105315 | +| Epoch_1.pt | 0.9338333333333333 | 0.003333796264150551 | +| Epoch_1_batch_5999.pt | 0.9326666666666666 | 0.0037367048268444917 | +| Epoch_1_batch_2999.pt | 0.9183333333333333 | 0.0037433067839828904 | +| Epoch_0.pt | 0.8793333333333333 | 0.004642796092394702 | +| Epoch_0_batch_5999.pt | 0.8744999999999999 | 0.005483139138742954 | +| Epoch_0_batch_2999.pt | 0.677 | 0.005707910906240586 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..f229d1ab85b26d70aa430f0e67af9530618c9b63 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_cplfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15.pt | 0.8888333333333336 | 0.004817983287949738 | +| Epoch_14_batch_2999.pt | 0.8886666666666668 | 0.004633479880442894 | +| Epoch_17_batch_5999.pt | 0.8880000000000001 | 0.004905275567698694 | +| Epoch_17.pt | 0.8875 | 0.004945692726323565 | +| Epoch_13_batch_5999.pt | 0.8871666666666667 | 0.004981756842176048 | +| Epoch_14.pt | 0.8868333333333334 | 0.004921921234840643 | +| Epoch_15_batch_2999.pt | 0.8866666666666667 | 0.004687782913273109 | +| Epoch_13_batch_2999.pt | 0.8863333333333333 | 0.005120763831912408 | +| Epoch_11_batch_2999.pt | 0.8856666666666666 | 0.004818944098266984 | +| Epoch_11.pt | 0.8855000000000001 | 0.005386597450967117 | +| Epoch_13.pt | 0.8848333333333332 | 0.005172636932890828 | +| Epoch_16.pt | 0.8848333333333332 | 0.004978038187632841 | +| Epoch_12.pt | 0.8845000000000001 | 0.005409468151215269 | +| Epoch_17_batch_2999.pt | 0.8843333333333334 | 0.004945380685392872 | +| Epoch_15_batch_5999.pt | 0.8843333333333332 | 0.005062571444397565 | +| Epoch_16_batch_2999.pt | 0.8841666666666665 | 0.004995368225036448 | +| Epoch_14_batch_5999.pt | 0.8838333333333332 | 0.00496313570733088 | +| Epoch_16_batch_5999.pt | 0.8836666666666666 | 0.0050723165380059275 | +| Epoch_11_batch_5999.pt | 0.8831666666666667 | 0.0058502400499445524 | +| Epoch_12_batch_2999.pt | 0.8821666666666668 | 0.004486261607382764 | +| Epoch_12_batch_5999.pt | 0.8801666666666668 | 0.005823801736552048 | +| Epoch_10.pt | 0.8795 | 0.005194073070503383 | +| Epoch_10_batch_5999.pt | 0.8785000000000001 | 0.0050701863992812755 | +| Epoch_10_batch_2999.pt | 0.8748333333333334 | 0.005574689273298304 | +| Epoch_9_batch_2999.pt | 0.8548333333333332 | 0.005552499159259752 | +| Epoch_6_batch_2999.pt | 0.8536666666666667 | 0.006269660435407056 | +| Epoch_8_batch_5999.pt | 0.8518333333333334 | 0.005377421934967227 | +| Epoch_7_batch_2999.pt | 0.85 | 0.006440611887195305 | +| Epoch_8_batch_2999.pt | 0.849 | 0.005864730320176283 | +| Epoch_7_batch_5999.pt | 0.8488333333333333 | 0.006392752454977215 | +| Epoch_5_batch_5999.pt | 0.8480000000000001 | 0.005587684871413404 | +| Epoch_5_batch_2999.pt | 0.8478333333333333 | 0.005763068884107053 | +| Epoch_9_batch_5999.pt | 0.8471666666666666 | 0.007495060101555282 | +| Epoch_6_batch_5999.pt | 0.8463333333333335 | 0.005756370598661609 | +| Epoch_3_batch_5999.pt | 0.8461666666666666 | 0.007277777777777777 | +| Epoch_9.pt | 0.8448333333333332 | 0.006774361616317952 | +| Epoch_4_batch_5999.pt | 0.8446666666666667 | 0.006230153675056087 | +| Epoch_7.pt | 0.8416666666666668 | 0.007131914015947205 | +| Epoch_8.pt | 0.841 | 0.005779914134951097 | +| Epoch_4_batch_2999.pt | 0.8406666666666667 | 0.00649881280706211 | +| Epoch_5.pt | 0.8401666666666667 | 0.007099165313482155 | +| Epoch_6.pt | 0.8386666666666667 | 0.006821353545853706 | +| Epoch_3_batch_2999.pt | 0.8386666666666667 | 0.007323225357015151 | +| Epoch_2.pt | 0.8355 | 0.0071709720056748775 | +| Epoch_2_batch_5999.pt | 0.8341666666666667 | 0.006446599256608765 | +| Epoch_2_batch_2999.pt | 0.833 | 0.006807766080906838 | +| Epoch_3.pt | 0.8316666666666667 | 0.0064501890105333306 | +| Epoch_4.pt | 0.8313333333333335 | 0.0066471937827315706 | +| Epoch_1.pt | 0.8181666666666667 | 0.006375347969200977 | +| Epoch_1_batch_5999.pt | 0.818 | 0.007765068982069397 | +| Epoch_1_batch_2999.pt | 0.8055 | 0.0073411153994908706 | +| Epoch_0.pt | 0.7518333333333332 | 0.007513157183514632 | +| Epoch_0_batch_5999.pt | 0.7456666666666666 | 0.007722821719335615 | +| Epoch_0_batch_2999.pt | 0.6133333333333333 | 0.010567244989431571 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..73a9ca6ec03872e035bc369263be5ae00cd90529 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_10.pt | 0.9979999999999999 | 0.0005983516452371659 | +| Epoch_8_batch_5999.pt | 0.9978333333333333 | 0.0005583264233956013 | +| Epoch_11_batch_5999.pt | 0.9978333333333333 | 0.0005583264233956013 | +| Epoch_14_batch_2999.pt | 0.9976666666666667 | 0.0007114582486036506 | +| Epoch_15_batch_2999.pt | 0.9976666666666667 | 0.0007114582486036506 | +| Epoch_14_batch_5999.pt | 0.9976666666666667 | 0.0007114582486036506 | +| Epoch_15.pt | 0.9974999999999999 | 0.0007136240321480632 | +| Epoch_15_batch_5999.pt | 0.9974999999999999 | 0.0007136240321480632 | +| Epoch_13_batch_5999.pt | 0.9974999999999999 | 0.0007136240321480632 | +| Epoch_12_batch_2999.pt | 0.9974999999999999 | 0.0007136240321480632 | +| Epoch_17.pt | 0.9974999999999999 | 0.0007136240321480632 | +| Epoch_13.pt | 0.9974999999999999 | 0.0007954345035153557 | +| Epoch_11.pt | 0.9974999999999999 | 0.0006689774765995705 | +| Epoch_17_batch_2999.pt | 0.9974999999999999 | 0.0007136240321480632 | +| Epoch_16.pt | 0.9974999999999999 | 0.0007136240321480632 | +| Epoch_17_batch_5999.pt | 0.9974999999999999 | 0.0007136240321480632 | +| Epoch_14.pt | 0.9974999999999999 | 0.0007136240321480632 | +| Epoch_16_batch_2999.pt | 0.9974999999999999 | 0.0007136240321480632 | +| Epoch_11_batch_2999.pt | 0.9973333333333333 | 0.0006666666666666665 | +| Epoch_8.pt | 0.9973333333333333 | 0.0006666666666666665 | +| Epoch_12_batch_5999.pt | 0.9973333333333333 | 0.0007114582486036506 | +| Epoch_16_batch_5999.pt | 0.9973333333333333 | 0.0006666666666666665 | +| Epoch_4_batch_5999.pt | 0.9971666666666668 | 0.001025899184034411 | +| Epoch_4_batch_2999.pt | 0.9971666666666665 | 0.0007474235581707637 | +| Epoch_10_batch_2999.pt | 0.9971666666666665 | 0.0007049209744694181 | +| Epoch_10_batch_5999.pt | 0.9971666666666665 | 0.0007049209744694181 | +| Epoch_9_batch_5999.pt | 0.9970000000000001 | 0.0006478835438716991 | +| Epoch_12.pt | 0.9969999999999999 | 0.0007370277311900913 | +| Epoch_3_batch_2999.pt | 0.9969999999999999 | 0.0006938886664887115 | +| Epoch_13_batch_2999.pt | 0.9969999999999999 | 0.0007370277311900913 | +| Epoch_6_batch_2999.pt | 0.9966666666666667 | 0.0009296222517045277 | +| Epoch_7_batch_2999.pt | 0.9966666666666667 | 0.0008240220541217368 | +| Epoch_6_batch_5999.pt | 0.9966666666666665 | 0.0007453559924999332 | +| Epoch_5.pt | 0.9966666666666665 | 0.0010829771494232166 | +| Epoch_9_batch_2999.pt | 0.9964999999999999 | 0.0005241100628920327 | +| Epoch_8_batch_2999.pt | 0.9963333333333333 | 0.001105541596785132 | +| Epoch_3_batch_5999.pt | 0.9963333333333333 | 0.0008534606386520669 | +| Epoch_7_batch_5999.pt | 0.9961666666666666 | 0.0008975274678557517 | +| Epoch_5_batch_2999.pt | 0.9961666666666666 | 0.0008258927081843649 | +| Epoch_9.pt | 0.9959999999999999 | 0.0007114582486036552 | +| Epoch_3.pt | 0.9959999999999999 | 0.0009026709338484399 | +| Epoch_1_batch_5999.pt | 0.9956666666666665 | 0.0010886621079036305 | +| Epoch_7.pt | 0.9955 | 0.001025899184034412 | +| Epoch_2.pt | 0.9955 | 0.0011666666666666696 | +| Epoch_5_batch_5999.pt | 0.9955 | 0.0008258927081843637 | +| Epoch_2_batch_5999.pt | 0.9953333333333333 | 0.0010183501544346308 | +| Epoch_2_batch_2999.pt | 0.9953333333333332 | 0.0011863420280034786 | +| Epoch_6.pt | 0.9951666666666666 | 0.0007222222222222252 | +| Epoch_4.pt | 0.9949999999999999 | 0.0010829771494232224 | +| Epoch_1_batch_2999.pt | 0.9943333333333332 | 0.0010599324460188284 | +| Epoch_1.pt | 0.9941666666666666 | 0.0008333333333333327 | +| Epoch_0.pt | 0.9824999999999999 | 0.002037457868988028 | +| Epoch_0_batch_5999.pt | 0.9795 | 0.0017924739783224 | +| Epoch_0_batch_2999.pt | 0.9171666666666667 | 0.005170249653689995 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_rfw_African.txt b/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_rfw_African.txt new file mode 100644 index 0000000000000000000000000000000000000000..8e43dc3c36fa783b6a2d1b9f33ae6cdca4790b89 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_rfw_African.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17_batch_5999.pt | 0.9586666666666666 | 0.0025555555555555644 | +| Epoch_15_batch_2999.pt | 0.9584999999999999 | 0.002715410979966653 | +| Epoch_15_batch_5999.pt | 0.958 | 0.0028306087117460008 | +| Epoch_17_batch_2999.pt | 0.9578333333333333 | 0.00281146242864 | +| Epoch_17.pt | 0.9576666666666667 | 0.00281310864470493 | +| Epoch_16_batch_5999.pt | 0.9568333333333332 | 0.0028158501994387116 | +| Epoch_13_batch_2999.pt | 0.9566666666666667 | 0.0028327886186626625 | +| Epoch_13.pt | 0.9563333333333335 | 0.002916534388534827 | +| Epoch_13_batch_5999.pt | 0.9563333333333333 | 0.0030307070437746338 | +| Epoch_14_batch_5999.pt | 0.9563333333333333 | 0.0025915341754868 | +| Epoch_16_batch_2999.pt | 0.9560000000000001 | 0.002631715396072674 | +| Epoch_16.pt | 0.9558333333333333 | 0.0028136571693556903 | +| Epoch_15.pt | 0.9553333333333333 | 0.003101174608211751 | +| Epoch_14_batch_2999.pt | 0.9550000000000001 | 0.00329608821648696 | +| Epoch_12.pt | 0.9548333333333334 | 0.0024017740356908116 | +| Epoch_14.pt | 0.9546666666666667 | 0.003431876713662335 | +| Epoch_12_batch_2999.pt | 0.9541666666666668 | 0.0026087459737497536 | +| Epoch_11_batch_5999.pt | 0.9528333333333334 | 0.0021666666666666657 | +| Epoch_11_batch_2999.pt | 0.9516666666666665 | 0.0028760398012321786 | +| Epoch_12_batch_5999.pt | 0.9515 | 0.0025270145367875954 | +| Epoch_10_batch_2999.pt | 0.9513333333333334 | 0.002673602092336885 | +| Epoch_11.pt | 0.9508333333333334 | 0.003164716748583581 | +| Epoch_10.pt | 0.9501666666666665 | 0.0035611934467860715 | +| Epoch_10_batch_5999.pt | 0.9479999999999998 | 0.002884612219054929 | +| Epoch_9_batch_5999.pt | 0.9276666666666665 | 0.004548775442324165 | +| Epoch_8_batch_5999.pt | 0.9235 | 0.003491170520747769 | +| Epoch_7_batch_5999.pt | 0.9233333333333335 | 0.004090036070956877 | +| Epoch_7_batch_2999.pt | 0.9228333333333334 | 0.0037105954398881226 | +| Epoch_9_batch_2999.pt | 0.9225 | 0.0036281648593901586 | +| Epoch_8_batch_2999.pt | 0.9188333333333333 | 0.0041279684418355405 | +| Epoch_7.pt | 0.9181666666666667 | 0.00463114789919276 | +| Epoch_6_batch_2999.pt | 0.9161666666666667 | 0.005264896561421613 | +| Epoch_6_batch_5999.pt | 0.9158333333333333 | 0.0031056499687497096 | +| Epoch_5_batch_2999.pt | 0.9145 | 0.003379769149834472 | +| Epoch_3_batch_5999.pt | 0.9125 | 0.004397319610067758 | +| Epoch_4_batch_2999.pt | 0.9113333333333333 | 0.004222222222222225 | +| Epoch_5_batch_5999.pt | 0.9106666666666665 | 0.005455770532084851 | +| Epoch_4_batch_5999.pt | 0.9101666666666667 | 0.0046378075918756395 | +| Epoch_6.pt | 0.9091666666666665 | 0.0034359213546813834 | +| Epoch_9.pt | 0.9075 | 0.00458964212273842 | +| Epoch_8.pt | 0.9038333333333334 | 0.002919178812315477 | +| Epoch_3_batch_2999.pt | 0.9021666666666667 | 0.004766459461955927 | +| Epoch_5.pt | 0.9006666666666666 | 0.0038506052113696536 | +| Epoch_2_batch_5999.pt | 0.8985 | 0.005970348543292513 | +| Epoch_3.pt | 0.8944999999999999 | 0.0038654052859553216 | +| Epoch_2.pt | 0.8885 | 0.006103277807866855 | +| Epoch_2_batch_2999.pt | 0.8876666666666665 | 0.005224585753559441 | +| Epoch_4.pt | 0.8871666666666667 | 0.005024937810560444 | +| Epoch_1.pt | 0.8753333333333334 | 0.004058218303944371 | +| Epoch_1_batch_5999.pt | 0.8733333333333333 | 0.005134006689843522 | +| Epoch_1_batch_2999.pt | 0.8525 | 0.005195261373669352 | +| Epoch_0.pt | 0.7766666666666667 | 0.007765863891114027 | +| Epoch_0_batch_5999.pt | 0.765 | 0.007361897232656637 | +| Epoch_0_batch_2999.pt | 0.6043333333333334 | 0.00654141601312667 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_rfw_Asian.txt b/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_rfw_Asian.txt new file mode 100644 index 0000000000000000000000000000000000000000..d49e541d68ace63f912ec7f7096dc48420fd2bde --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_rfw_Asian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15.pt | 0.9476666666666669 | 0.002993820796734991 | +| Epoch_16_batch_5999.pt | 0.9470000000000001 | 0.003010270485365348 | +| Epoch_17.pt | 0.9468333333333334 | 0.002880864924992028 | +| Epoch_17_batch_2999.pt | 0.9466666666666667 | 0.0029917582261858307 | +| Epoch_16.pt | 0.9466666666666667 | 0.0028867513459481246 | +| Epoch_17_batch_5999.pt | 0.9466666666666667 | 0.002687419249432845 | +| Epoch_16_batch_2999.pt | 0.9466666666666667 | 0.0026759099063982834 | +| Epoch_13.pt | 0.9465 | 0.0023498095536174015 | +| Epoch_15_batch_2999.pt | 0.9463333333333332 | 0.0030102704853653523 | +| Epoch_14_batch_2999.pt | 0.9461666666666668 | 0.0034431000960769226 | +| Epoch_15_batch_5999.pt | 0.9461666666666668 | 0.0036094013046179493 | +| Epoch_11_batch_2999.pt | 0.9456666666666667 | 0.0029627314724385264 | +| Epoch_13_batch_5999.pt | 0.9453333333333334 | 0.0026034165586355526 | +| Epoch_14_batch_5999.pt | 0.9448333333333334 | 0.002782773285859601 | +| Epoch_13_batch_2999.pt | 0.9445 | 0.003277777777777774 | +| Epoch_14.pt | 0.9443333333333334 | 0.003297960462145741 | +| Epoch_12_batch_5999.pt | 0.9441666666666666 | 0.0024626844732557203 | +| Epoch_10_batch_2999.pt | 0.9438333333333334 | 0.0023837153281027683 | +| Epoch_12.pt | 0.9431666666666667 | 0.003262677080005785 | +| Epoch_10_batch_5999.pt | 0.943 | 0.002808716591058782 | +| Epoch_11_batch_5999.pt | 0.9418333333333333 | 0.003455627008907546 | +| Epoch_10.pt | 0.9416666666666668 | 0.002557969874049187 | +| Epoch_12_batch_2999.pt | 0.9408333333333333 | 0.0029000851413640383 | +| Epoch_11.pt | 0.9393333333333332 | 0.002779999111821506 | +| Epoch_9_batch_2999.pt | 0.9195 | 0.0027448042948968097 | +| Epoch_7_batch_5999.pt | 0.9169999999999998 | 0.002895292049065638 | +| Epoch_6_batch_2999.pt | 0.9168333333333333 | 0.003931904950937892 | +| Epoch_6_batch_5999.pt | 0.916 | 0.002372684056006958 | +| Epoch_9_batch_5999.pt | 0.9153333333333332 | 0.003958114029012641 | +| Epoch_5_batch_2999.pt | 0.9153333333333332 | 0.002948110924760355 | +| Epoch_5_batch_5999.pt | 0.9131666666666666 | 0.004226971013694952 | +| Epoch_7_batch_2999.pt | 0.9128333333333334 | 0.002034425935955622 | +| Epoch_8_batch_5999.pt | 0.9115 | 0.0034466838598324646 | +| Epoch_9.pt | 0.9091666666666667 | 0.0030756912301480865 | +| Epoch_4_batch_5999.pt | 0.9088333333333335 | 0.0030535346852580717 | +| Epoch_4_batch_2999.pt | 0.9085000000000001 | 0.003955383891406124 | +| Epoch_3_batch_5999.pt | 0.907 | 0.0037085153929508094 | +| Epoch_7.pt | 0.9066666666666666 | 0.002810913475705224 | +| Epoch_3_batch_2999.pt | 0.9055 | 0.005471869700997218 | +| Epoch_6.pt | 0.9041666666666666 | 0.003890872509976246 | +| Epoch_8_batch_2999.pt | 0.9038333333333334 | 0.003693922268862062 | +| Epoch_2_batch_5999.pt | 0.9003333333333334 | 0.004214905941864592 | +| Epoch_5.pt | 0.8985 | 0.002837687286471586 | +| Epoch_8.pt | 0.8961666666666666 | 0.0032111880036929806 | +| Epoch_3.pt | 0.8928333333333333 | 0.0035403319925232943 | +| Epoch_2_batch_2999.pt | 0.891 | 0.0036362373715452395 | +| Epoch_4.pt | 0.8896666666666666 | 0.0036413265795942067 | +| Epoch_1.pt | 0.8798333333333334 | 0.0036552853665768833 | +| Epoch_2.pt | 0.8775000000000001 | 0.0035767596895155337 | +| Epoch_1_batch_5999.pt | 0.8741666666666668 | 0.004895513188902264 | +| Epoch_1_batch_2999.pt | 0.8598333333333334 | 0.0038845213569807364 | +| Epoch_0.pt | 0.7858333333333334 | 0.004735276074968898 | +| Epoch_0_batch_5999.pt | 0.7783333333333333 | 0.005006169033808361 | +| Epoch_0_batch_2999.pt | 0.6736666666666666 | 0.006785059840343121 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_rfw_Caucasian.txt b/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_rfw_Caucasian.txt new file mode 100644 index 0000000000000000000000000000000000000000..f341991acfb383c6378b37f95ce75b951ea085a6 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_rfw_Caucasian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_2999.pt | 0.9908333333333333 | 0.0014958791130929184 | +| Epoch_13_batch_5999.pt | 0.9896666666666667 | 0.00130998068028351 | +| Epoch_12_batch_2999.pt | 0.9896666666666667 | 0.0015674151088517618 | +| Epoch_17_batch_5999.pt | 0.9896666666666667 | 0.0013562839573037402 | +| Epoch_17_batch_2999.pt | 0.9894999999999999 | 0.0016675923355337415 | +| Epoch_14_batch_2999.pt | 0.9893333333333333 | 0.0017069212773041323 | +| Epoch_13_batch_2999.pt | 0.9893333333333333 | 0.0011967032904743398 | +| Epoch_17.pt | 0.9889999999999999 | 0.0013877773329774223 | +| Epoch_14.pt | 0.9889999999999999 | 0.0013193713430042172 | +| Epoch_16_batch_2999.pt | 0.9888333333333333 | 0.001166666666666665 | +| Epoch_11_batch_2999.pt | 0.9886666666666667 | 0.0014865653511399646 | +| Epoch_16_batch_5999.pt | 0.9884999999999999 | 0.0014792807728549206 | +| Epoch_15_batch_5999.pt | 0.9883333333333333 | 0.0014698618394803254 | +| Epoch_11_batch_5999.pt | 0.9883333333333333 | 0.0009938079899999067 | +| Epoch_15.pt | 0.9881666666666666 | 0.0012777777777777837 | +| Epoch_13.pt | 0.9881666666666666 | 0.0015801625170364317 | +| Epoch_11.pt | 0.9881666666666666 | 0.001277777777777784 | +| Epoch_10_batch_5999.pt | 0.9879999999999999 | 0.0011331154474650668 | +| Epoch_16.pt | 0.9879999999999999 | 0.0014229164972073 | +| Epoch_14_batch_5999.pt | 0.9876666666666665 | 0.0011166528467912076 | +| Epoch_12_batch_5999.pt | 0.9874999999999998 | 0.0017786456215091253 | +| Epoch_12.pt | 0.9873333333333333 | 0.0014098419489388361 | +| Epoch_10.pt | 0.9871666666666666 | 0.0015918387535438156 | +| Epoch_10_batch_2999.pt | 0.9866666666666666 | 0.001511274500970596 | +| Epoch_8_batch_5999.pt | 0.9748333333333333 | 0.001711435755638821 | +| Epoch_9_batch_5999.pt | 0.974 | 0.001651785416368722 | +| Epoch_5_batch_2999.pt | 0.9739999999999999 | 0.002962731472438528 | +| Epoch_6_batch_5999.pt | 0.9738333333333333 | 0.002331348362039695 | +| Epoch_8_batch_2999.pt | 0.9726666666666667 | 0.0019277057303219403 | +| Epoch_6_batch_2999.pt | 0.9718333333333333 | 0.002527014536787595 | +| Epoch_7_batch_2999.pt | 0.9716666666666669 | 0.0022498285257018446 | +| Epoch_7_batch_5999.pt | 0.9711666666666666 | 0.0017751717009633866 | +| Epoch_9_batch_2999.pt | 0.9701666666666666 | 0.0017993483045224145 | +| Epoch_5_batch_5999.pt | 0.9698333333333332 | 0.0026346457114176454 | +| Epoch_4_batch_2999.pt | 0.9691666666666666 | 0.0022939803135625064 | +| Epoch_4_batch_5999.pt | 0.9675 | 0.002197782271650279 | +| Epoch_9.pt | 0.9668333333333333 | 0.0032150302880511765 | +| Epoch_6.pt | 0.9663333333333334 | 0.002219442706159796 | +| Epoch_5.pt | 0.9653333333333333 | 0.002431785403137702 | +| Epoch_8.pt | 0.9651666666666665 | 0.0011235415786753711 | +| Epoch_3_batch_5999.pt | 0.9644999999999999 | 0.0020344259359556176 | +| Epoch_7.pt | 0.9638333333333332 | 0.0023837153281027735 | +| Epoch_3_batch_2999.pt | 0.9628333333333334 | 0.0022912878474779276 | +| Epoch_2_batch_5999.pt | 0.9628333333333334 | 0.002687993422978439 | +| Epoch_3.pt | 0.9628333333333334 | 0.0018765939726727238 | +| Epoch_4.pt | 0.9606666666666666 | 0.0025361582690029572 | +| Epoch_2_batch_2999.pt | 0.9556666666666667 | 0.0023465235646603203 | +| Epoch_2.pt | 0.9490000000000001 | 0.003362832433427013 | +| Epoch_1_batch_5999.pt | 0.9469999999999998 | 0.002354402233379671 | +| Epoch_1.pt | 0.9465 | 0.002726753598179559 | +| Epoch_1_batch_2999.pt | 0.9275 | 0.002022252747022367 | +| Epoch_0.pt | 0.8716666666666667 | 0.004097575314352394 | +| Epoch_0_batch_5999.pt | 0.8703333333333333 | 0.003101174608211747 | +| Epoch_0_batch_2999.pt | 0.7348333333333333 | 0.004335113594422084 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_rfw_Indian.txt b/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_rfw_Indian.txt new file mode 100644 index 0000000000000000000000000000000000000000..485365dd3f3698015b155906da5bb76b07edee05 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/HRNet/accu_files/accu_rfw_Indian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_2999.pt | 0.9593333333333336 | 0.0024113927126900793 | +| Epoch_12.pt | 0.9591666666666667 | 0.002678791878053596 | +| Epoch_14_batch_5999.pt | 0.9586666666666668 | 0.002119864892037654 | +| Epoch_14_batch_2999.pt | 0.958 | 0.0025067809272618885 | +| Epoch_13.pt | 0.958 | 0.002301368353023112 | +| Epoch_17.pt | 0.9576666666666668 | 0.002346523564660319 | +| Epoch_15.pt | 0.9576666666666667 | 0.0021829869671542773 | +| Epoch_15_batch_2999.pt | 0.9573333333333333 | 0.002372684056006963 | +| Epoch_15_batch_5999.pt | 0.9571666666666667 | 0.00234454976066769 | +| Epoch_13_batch_5999.pt | 0.9570000000000002 | 0.00241906011745303 | +| Epoch_12_batch_2999.pt | 0.9568333333333333 | 0.002681095224891925 | +| Epoch_13_batch_2999.pt | 0.9568333333333333 | 0.002414590423566748 | +| Epoch_17_batch_2999.pt | 0.9564999999999999 | 0.0019476164603286817 | +| Epoch_11_batch_2999.pt | 0.9563333333333333 | 0.0031011746082117465 | +| Epoch_16_batch_5999.pt | 0.9561666666666667 | 0.0028658267503397705 | +| Epoch_10_batch_5999.pt | 0.9560000000000001 | 0.0029313124351717655 | +| Epoch_17_batch_5999.pt | 0.9560000000000001 | 0.002372684056006956 | +| Epoch_16.pt | 0.9558333333333333 | 0.0022395160411940486 | +| Epoch_12_batch_5999.pt | 0.9555000000000001 | 0.002396628290013671 | +| Epoch_14.pt | 0.9543333333333333 | 0.0024241582476968292 | +| Epoch_11_batch_5999.pt | 0.9541666666666666 | 0.0028571979712497288 | +| Epoch_10.pt | 0.9536666666666666 | 0.0025190631219454748 | +| Epoch_11.pt | 0.9533333333333334 | 0.0025215123817578225 | +| Epoch_10_batch_2999.pt | 0.9523333333333334 | 0.002802115602870783 | +| Epoch_8_batch_2999.pt | 0.9390000000000001 | 0.003711842908553353 | +| Epoch_9_batch_5999.pt | 0.9376666666666665 | 0.002712567914607482 | +| Epoch_7_batch_5999.pt | 0.9366666666666668 | 0.004059739090321136 | +| Epoch_7_batch_2999.pt | 0.9348333333333334 | 0.004070747800382742 | +| Epoch_5_batch_2999.pt | 0.9338333333333333 | 0.004513696577099906 | +| Epoch_8_batch_5999.pt | 0.9335000000000001 | 0.003224615969095877 | +| Epoch_6_batch_5999.pt | 0.9334999999999999 | 0.003924047419202286 | +| Epoch_7.pt | 0.9333333333333333 | 0.0029080560729560874 | +| Epoch_6_batch_2999.pt | 0.9328333333333333 | 0.0025825865109265498 | +| Epoch_5_batch_5999.pt | 0.932 | 0.003051006715054657 | +| Epoch_4_batch_2999.pt | 0.9309999999999998 | 0.0039220805766050585 | +| Epoch_9.pt | 0.93 | 0.0031622776601683746 | +| Epoch_9_batch_2999.pt | 0.9298333333333332 | 0.0034016154477425876 | +| Epoch_4_batch_5999.pt | 0.9265000000000001 | 0.0024651897480370876 | +| Epoch_3.pt | 0.9265000000000001 | 0.0033925299201715605 | +| Epoch_3_batch_5999.pt | 0.9259999999999999 | 0.0028458329944146014 | +| Epoch_5.pt | 0.9241666666666667 | 0.003761812670495604 | +| Epoch_3_batch_2999.pt | 0.9238333333333333 | 0.0024094720491334926 | +| Epoch_2_batch_5999.pt | 0.9225000000000001 | 0.0033263816399828248 | +| Epoch_6.pt | 0.9221666666666668 | 0.0038494027114044497 | +| Epoch_4.pt | 0.9203333333333333 | 0.002393406580948671 | +| Epoch_8.pt | 0.9196666666666665 | 0.0028087165910587806 | +| Epoch_2_batch_2999.pt | 0.9163333333333332 | 0.0033314809667922105 | +| Epoch_1_batch_5999.pt | 0.9121666666666666 | 0.00395226142485165 | +| Epoch_2.pt | 0.9104999999999999 | 0.003460981806038338 | +| Epoch_1.pt | 0.9078333333333333 | 0.0031234872881934677 | +| Epoch_1_batch_2999.pt | 0.8908333333333331 | 0.00355077804028329 | +| Epoch_0.pt | 0.8371666666666666 | 0.004963135707330873 | +| Epoch_0_batch_5999.pt | 0.8319999999999999 | 0.005697086108130785 | +| Epoch_0_batch_2999.pt | 0.6973333333333332 | 0.005917123091419712 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/HRNet/log.log b/bob/bio/facexzoo/models/backbones/HRNet/log.log new file mode 100644 index 0000000000000000000000000000000000000000..9ace30a9682a474c433a1d2154a39f836214a137 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/HRNet/log.log @@ -0,0 +1,657 @@ +INFO 2020-12-04 16:45:02 driver.py: 124] Generating grammar tables from /usr/lib/python3.6/lib2to3/Grammar.txt +INFO 2020-12-04 16:45:02 driver.py: 124] Generating grammar tables from /usr/lib/python3.6/lib2to3/PatternGrammar.txt +INFO 2020-12-04 16:45:02 train.py: 177] Start optimization. +INFO 2020-12-04 16:45:02 train.py: 178] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='HRNet', batch_size=512, data_root='/home/wangjun492/wj_data/facex-zoo/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='MV-Softmax', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10,13,16', tensorboardx_logdir='mv-hrnet', train_file='/home/wangjun492/wj_data/facex-zoo/deepglint/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7f0b2852fef0>) +backbone param: +{'NAME': 'cls_hrnet', 'out_h': 7, 'out_w': 7, 'feat_dim': 512, 'IMAGE_SIZE': [112, 112], 'EXTRA': {'STAGE1': {'NUM_MODULES': 1, 'NUM_RANCHES': 1, 'BLOCK': 'BOTTLENECK', 'NUM_BLOCKS': [4], 'NUM_CHANNELS': [64], 'FUSE_METHOD': 'SUM'}, 'STAGE2': {'NUM_MODULES': 1, 'NUM_BRANCHES': 2, 'BLOCK': 'BASIC', 'NUM_BLOCKS': [4, 4], 'NUM_CHANNELS': [18, 36], 'FUSE_METHOD': 'SUM'}, 'STAGE3': {'NUM_MODULES': 4, 'NUM_BRANCHES': 3, 'BLOCK': 'BASIC', 'NUM_BLOCKS': [4, 4, 4], 'NUM_CHANNELS': [18, 36, 72], 'FUSE_METHOD': 'SUM'}, 'STAGE4': {'NUM_MODULES': 3, 'NUM_BRANCHES': 4, 'BLOCK': 'BASIC', 'NUM_BLOCKS': [4, 4, 4, 4], 'NUM_CHANNELS': [18, 36, 72, 144], 'FUSE_METHOD': 'SUM'}}} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +INFO 2020-12-04 16:45:31 train.py: 79] Epoch 0, iter 0/6416, lr 0.100000, loss 16.185728 +INFO 2020-12-04 16:51:55 train.py: 79] Epoch 0, iter 200/6416, lr 0.100000, loss 15.620639 +INFO 2020-12-04 16:58:20 train.py: 79] Epoch 0, iter 400/6416, lr 0.100000, loss 15.381243 +INFO 2020-12-04 17:04:45 train.py: 79] Epoch 0, iter 600/6416, lr 0.100000, loss 15.335378 +INFO 2020-12-04 17:11:11 train.py: 79] Epoch 0, iter 800/6416, lr 0.100000, loss 15.296765 +INFO 2020-12-04 17:17:36 train.py: 79] Epoch 0, iter 1000/6416, lr 0.100000, loss 15.239479 +INFO 2020-12-04 17:24:02 train.py: 79] Epoch 0, iter 1200/6416, lr 0.100000, loss 15.121688 +INFO 2020-12-04 17:30:28 train.py: 79] Epoch 0, iter 1400/6416, lr 0.100000, loss 14.964488 +INFO 2020-12-04 17:36:53 train.py: 79] Epoch 0, iter 1600/6416, lr 0.100000, loss 14.738796 +INFO 2020-12-04 17:43:18 train.py: 79] Epoch 0, iter 1800/6416, lr 0.100000, loss 14.461993 +INFO 2020-12-04 17:49:44 train.py: 79] Epoch 0, iter 2000/6416, lr 0.100000, loss 14.175071 +INFO 2020-12-04 17:56:09 train.py: 79] Epoch 0, iter 2200/6416, lr 0.100000, loss 13.885569 +INFO 2020-12-04 18:02:35 train.py: 79] Epoch 0, iter 2400/6416, lr 0.100000, loss 13.617845 +INFO 2020-12-04 18:08:59 train.py: 79] Epoch 0, iter 2600/6416, lr 0.100000, loss 13.278031 +INFO 2020-12-04 18:15:25 train.py: 79] Epoch 0, iter 2800/6416, lr 0.100000, loss 12.839781 +INFO 2020-12-04 18:21:49 train.py: 92] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2020-12-04 18:21:51 train.py: 79] Epoch 0, iter 3000/6416, lr 0.100000, loss 12.470365 +INFO 2020-12-04 18:28:16 train.py: 79] Epoch 0, iter 3200/6416, lr 0.100000, loss 12.110523 +INFO 2020-12-04 18:34:42 train.py: 79] Epoch 0, iter 3400/6416, lr 0.100000, loss 11.842208 +INFO 2020-12-04 18:41:08 train.py: 79] Epoch 0, iter 3600/6416, lr 0.100000, loss 11.675521 +INFO 2020-12-04 18:47:33 train.py: 79] Epoch 0, iter 3800/6416, lr 0.100000, loss 11.650650 +INFO 2020-12-04 18:53:57 train.py: 79] Epoch 0, iter 4000/6416, lr 0.100000, loss 11.749744 +INFO 2020-12-04 19:00:21 train.py: 79] Epoch 0, iter 4200/6416, lr 0.100000, loss 11.984227 +INFO 2020-12-04 19:06:44 train.py: 79] Epoch 0, iter 4400/6416, lr 0.100000, loss 12.304579 +INFO 2020-12-04 19:13:07 train.py: 79] Epoch 0, iter 4600/6416, lr 0.100000, loss 12.625556 +INFO 2020-12-04 19:19:30 train.py: 79] Epoch 0, iter 4800/6416, lr 0.100000, loss 12.969390 +INFO 2020-12-04 19:25:53 train.py: 79] Epoch 0, iter 5000/6416, lr 0.100000, loss 13.193763 +INFO 2020-12-04 19:32:14 train.py: 79] Epoch 0, iter 5200/6416, lr 0.100000, loss 13.388941 +INFO 2020-12-04 19:38:36 train.py: 79] Epoch 0, iter 5400/6416, lr 0.100000, loss 13.473217 +INFO 2020-12-04 19:44:57 train.py: 79] Epoch 0, iter 5600/6416, lr 0.100000, loss 13.433913 +INFO 2020-12-04 19:51:19 train.py: 79] Epoch 0, iter 5800/6416, lr 0.100000, loss 13.340193 +INFO 2020-12-04 19:57:39 train.py: 92] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2020-12-04 19:57:41 train.py: 79] Epoch 0, iter 6000/6416, lr 0.100000, loss 13.174352 +INFO 2020-12-04 20:04:03 train.py: 79] Epoch 0, iter 6200/6416, lr 0.100000, loss 12.932402 +INFO 2020-12-04 20:10:23 train.py: 79] Epoch 0, iter 6400/6416, lr 0.100000, loss 12.625778 +INFO 2020-12-04 20:10:52 train.py: 97] Save checkpoint Epoch_0.pt to disk... +INFO 2020-12-04 20:10:55 train.py: 79] Epoch 1, iter 0/6416, lr 0.100000, loss 12.427638 +INFO 2020-12-04 20:17:15 train.py: 79] Epoch 1, iter 200/6416, lr 0.100000, loss 12.079420 +INFO 2020-12-04 20:23:35 train.py: 79] Epoch 1, iter 400/6416, lr 0.100000, loss 11.768555 +INFO 2020-12-04 20:29:55 train.py: 79] Epoch 1, iter 600/6416, lr 0.100000, loss 11.424818 +INFO 2020-12-04 20:36:16 train.py: 79] Epoch 1, iter 800/6416, lr 0.100000, loss 11.129945 +INFO 2020-12-04 20:42:36 train.py: 79] Epoch 1, iter 1000/6416, lr 0.100000, loss 10.825961 +INFO 2020-12-04 20:48:57 train.py: 79] Epoch 1, iter 1200/6416, lr 0.100000, loss 10.503853 +INFO 2020-12-04 20:55:16 train.py: 79] Epoch 1, iter 1400/6416, lr 0.100000, loss 10.213863 +INFO 2020-12-04 21:01:36 train.py: 79] Epoch 1, iter 1600/6416, lr 0.100000, loss 9.947780 +INFO 2020-12-04 21:07:56 train.py: 79] Epoch 1, iter 1800/6416, lr 0.100000, loss 9.703285 +INFO 2020-12-04 21:14:16 train.py: 79] Epoch 1, iter 2000/6416, lr 0.100000, loss 9.421163 +INFO 2020-12-04 21:20:34 train.py: 79] Epoch 1, iter 2200/6416, lr 0.100000, loss 9.202775 +INFO 2020-12-04 21:26:55 train.py: 79] Epoch 1, iter 2400/6416, lr 0.100000, loss 8.958940 +INFO 2020-12-04 21:33:14 train.py: 79] Epoch 1, iter 2600/6416, lr 0.100000, loss 8.743585 +INFO 2020-12-04 21:39:34 train.py: 79] Epoch 1, iter 2800/6416, lr 0.100000, loss 8.536712 +INFO 2020-12-04 21:45:53 train.py: 92] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2020-12-04 21:45:54 train.py: 79] Epoch 1, iter 3000/6416, lr 0.100000, loss 8.372091 +INFO 2020-12-04 21:52:14 train.py: 79] Epoch 1, iter 3200/6416, lr 0.100000, loss 8.190922 +INFO 2020-12-04 21:58:35 train.py: 79] Epoch 1, iter 3400/6416, lr 0.100000, loss 8.022299 +INFO 2020-12-04 22:04:54 train.py: 79] Epoch 1, iter 3600/6416, lr 0.100000, loss 7.868789 +INFO 2020-12-04 22:11:14 train.py: 79] Epoch 1, iter 3800/6416, lr 0.100000, loss 7.726336 +INFO 2020-12-04 22:17:34 train.py: 79] Epoch 1, iter 4000/6416, lr 0.100000, loss 7.586878 +INFO 2020-12-04 22:23:54 train.py: 79] Epoch 1, iter 4200/6416, lr 0.100000, loss 7.453715 +INFO 2020-12-04 22:30:14 train.py: 79] Epoch 1, iter 4400/6416, lr 0.100000, loss 7.349989 +INFO 2020-12-04 22:36:36 train.py: 79] Epoch 1, iter 4600/6416, lr 0.100000, loss 7.243860 +INFO 2020-12-04 22:42:55 train.py: 79] Epoch 1, iter 4800/6416, lr 0.100000, loss 7.157616 +INFO 2020-12-04 22:49:16 train.py: 79] Epoch 1, iter 5000/6416, lr 0.100000, loss 7.052401 +INFO 2020-12-04 22:55:36 train.py: 79] Epoch 1, iter 5200/6416, lr 0.100000, loss 6.954512 +INFO 2020-12-04 23:01:57 train.py: 79] Epoch 1, iter 5400/6416, lr 0.100000, loss 6.891003 +INFO 2020-12-04 23:08:16 train.py: 79] Epoch 1, iter 5600/6416, lr 0.100000, loss 6.785696 +INFO 2020-12-04 23:14:36 train.py: 79] Epoch 1, iter 5800/6416, lr 0.100000, loss 6.731474 +INFO 2020-12-04 23:20:55 train.py: 92] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2020-12-04 23:20:57 train.py: 79] Epoch 1, iter 6000/6416, lr 0.100000, loss 6.633651 +INFO 2020-12-04 23:27:17 train.py: 79] Epoch 1, iter 6200/6416, lr 0.100000, loss 6.575952 +INFO 2020-12-04 23:33:38 train.py: 79] Epoch 1, iter 6400/6416, lr 0.100000, loss 6.521167 +INFO 2020-12-04 23:34:07 train.py: 97] Save checkpoint Epoch_1.pt to disk... +INFO 2020-12-04 23:34:10 train.py: 79] Epoch 2, iter 0/6416, lr 0.100000, loss 6.475440 +INFO 2020-12-04 23:40:30 train.py: 79] Epoch 2, iter 200/6416, lr 0.100000, loss 5.856195 +INFO 2020-12-04 23:46:49 train.py: 79] Epoch 2, iter 400/6416, lr 0.100000, loss 5.842575 +INFO 2020-12-04 23:53:07 train.py: 79] Epoch 2, iter 600/6416, lr 0.100000, loss 5.849176 +INFO 2020-12-04 23:59:26 train.py: 79] Epoch 2, iter 800/6416, lr 0.100000, loss 5.904193 +INFO 2020-12-05 00:05:45 train.py: 79] Epoch 2, iter 1000/6416, lr 0.100000, loss 5.938872 +INFO 2020-12-05 00:12:04 train.py: 79] Epoch 2, iter 1200/6416, lr 0.100000, loss 5.929337 +INFO 2020-12-05 00:18:24 train.py: 79] Epoch 2, iter 1400/6416, lr 0.100000, loss 5.914740 +INFO 2020-12-05 00:24:44 train.py: 79] Epoch 2, iter 1600/6416, lr 0.100000, loss 5.925265 +INFO 2020-12-05 00:31:04 train.py: 79] Epoch 2, iter 1800/6416, lr 0.100000, loss 5.898670 +INFO 2020-12-05 00:37:23 train.py: 79] Epoch 2, iter 2000/6416, lr 0.100000, loss 5.856751 +INFO 2020-12-05 00:43:45 train.py: 79] Epoch 2, iter 2200/6416, lr 0.100000, loss 5.851210 +INFO 2020-12-05 00:50:03 train.py: 79] Epoch 2, iter 2400/6416, lr 0.100000, loss 5.837268 +INFO 2020-12-05 00:56:23 train.py: 79] Epoch 2, iter 2600/6416, lr 0.100000, loss 5.805586 +INFO 2020-12-05 01:02:42 train.py: 79] Epoch 2, iter 2800/6416, lr 0.100000, loss 5.777944 +INFO 2020-12-05 01:09:01 train.py: 92] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2020-12-05 01:09:03 train.py: 79] Epoch 2, iter 3000/6416, lr 0.100000, loss 5.754814 +INFO 2020-12-05 01:15:23 train.py: 79] Epoch 2, iter 3200/6416, lr 0.100000, loss 5.704849 +INFO 2020-12-05 01:21:44 train.py: 79] Epoch 2, iter 3400/6416, lr 0.100000, loss 5.659240 +INFO 2020-12-05 01:28:05 train.py: 79] Epoch 2, iter 3600/6416, lr 0.100000, loss 5.678851 +INFO 2020-12-05 01:34:25 train.py: 79] Epoch 2, iter 3800/6416, lr 0.100000, loss 5.638702 +INFO 2020-12-05 01:40:44 train.py: 79] Epoch 2, iter 4000/6416, lr 0.100000, loss 5.607063 +INFO 2020-12-05 01:47:04 train.py: 79] Epoch 2, iter 4200/6416, lr 0.100000, loss 5.572677 +INFO 2020-12-05 01:53:24 train.py: 79] Epoch 2, iter 4400/6416, lr 0.100000, loss 5.526475 +INFO 2020-12-05 01:59:44 train.py: 79] Epoch 2, iter 4600/6416, lr 0.100000, loss 5.516565 +INFO 2020-12-05 02:06:05 train.py: 79] Epoch 2, iter 4800/6416, lr 0.100000, loss 5.509953 +INFO 2020-12-05 02:12:24 train.py: 79] Epoch 2, iter 5000/6416, lr 0.100000, loss 5.461623 +INFO 2020-12-05 02:18:44 train.py: 79] Epoch 2, iter 5200/6416, lr 0.100000, loss 5.435464 +INFO 2020-12-05 02:25:05 train.py: 79] Epoch 2, iter 5400/6416, lr 0.100000, loss 5.446301 +INFO 2020-12-05 02:31:26 train.py: 79] Epoch 2, iter 5600/6416, lr 0.100000, loss 5.395694 +INFO 2020-12-05 02:37:46 train.py: 79] Epoch 2, iter 5800/6416, lr 0.100000, loss 5.363104 +INFO 2020-12-05 02:44:05 train.py: 92] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2020-12-05 02:44:07 train.py: 79] Epoch 2, iter 6000/6416, lr 0.100000, loss 5.338967 +INFO 2020-12-05 02:50:27 train.py: 79] Epoch 2, iter 6200/6416, lr 0.100000, loss 5.322866 +INFO 2020-12-05 02:56:49 train.py: 79] Epoch 2, iter 6400/6416, lr 0.100000, loss 5.283296 +INFO 2020-12-05 02:57:17 train.py: 97] Save checkpoint Epoch_2.pt to disk... +INFO 2020-12-05 02:57:20 train.py: 79] Epoch 3, iter 0/6416, lr 0.100000, loss 5.215018 +INFO 2020-12-05 03:03:40 train.py: 79] Epoch 3, iter 200/6416, lr 0.100000, loss 4.757631 +INFO 2020-12-05 03:09:59 train.py: 79] Epoch 3, iter 400/6416, lr 0.100000, loss 4.673967 +INFO 2020-12-05 03:16:19 train.py: 79] Epoch 3, iter 600/6416, lr 0.100000, loss 4.763493 +INFO 2020-12-05 03:22:37 train.py: 79] Epoch 3, iter 800/6416, lr 0.100000, loss 4.818247 +INFO 2020-12-05 03:28:57 train.py: 79] Epoch 3, iter 1000/6416, lr 0.100000, loss 4.869078 +INFO 2020-12-05 03:35:16 train.py: 79] Epoch 3, iter 1200/6416, lr 0.100000, loss 4.898946 +INFO 2020-12-05 03:41:36 train.py: 79] Epoch 3, iter 1400/6416, lr 0.100000, loss 4.918872 +INFO 2020-12-05 03:47:56 train.py: 79] Epoch 3, iter 1600/6416, lr 0.100000, loss 4.921781 +INFO 2020-12-05 03:54:16 train.py: 79] Epoch 3, iter 1800/6416, lr 0.100000, loss 4.938617 +INFO 2020-12-05 04:00:36 train.py: 79] Epoch 3, iter 2000/6416, lr 0.100000, loss 4.953668 +INFO 2020-12-05 04:06:56 train.py: 79] Epoch 3, iter 2200/6416, lr 0.100000, loss 4.923477 +INFO 2020-12-05 04:13:17 train.py: 79] Epoch 3, iter 2400/6416, lr 0.100000, loss 4.927328 +INFO 2020-12-05 04:19:38 train.py: 79] Epoch 3, iter 2600/6416, lr 0.100000, loss 4.919026 +INFO 2020-12-05 04:25:58 train.py: 79] Epoch 3, iter 2800/6416, lr 0.100000, loss 4.920281 +INFO 2020-12-05 04:32:17 train.py: 92] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2020-12-05 04:32:19 train.py: 79] Epoch 3, iter 3000/6416, lr 0.100000, loss 4.913823 +INFO 2020-12-05 04:38:39 train.py: 79] Epoch 3, iter 3200/6416, lr 0.100000, loss 4.895135 +INFO 2020-12-05 04:44:59 train.py: 79] Epoch 3, iter 3400/6416, lr 0.100000, loss 4.895300 +INFO 2020-12-05 04:51:21 train.py: 79] Epoch 3, iter 3600/6416, lr 0.100000, loss 4.880908 +INFO 2020-12-05 04:57:40 train.py: 79] Epoch 3, iter 3800/6416, lr 0.100000, loss 4.865934 +INFO 2020-12-05 05:04:03 train.py: 79] Epoch 3, iter 4000/6416, lr 0.100000, loss 4.888324 +INFO 2020-12-05 05:10:23 train.py: 79] Epoch 3, iter 4200/6416, lr 0.100000, loss 4.886136 +INFO 2020-12-05 05:16:45 train.py: 79] Epoch 3, iter 4400/6416, lr 0.100000, loss 4.870280 +INFO 2020-12-05 05:23:04 train.py: 79] Epoch 3, iter 4600/6416, lr 0.100000, loss 4.828404 +INFO 2020-12-05 05:29:26 train.py: 79] Epoch 3, iter 4800/6416, lr 0.100000, loss 4.779614 +INFO 2020-12-05 05:35:45 train.py: 79] Epoch 3, iter 5000/6416, lr 0.100000, loss 4.809465 +INFO 2020-12-05 05:42:06 train.py: 79] Epoch 3, iter 5200/6416, lr 0.100000, loss 4.775767 +INFO 2020-12-05 05:48:26 train.py: 79] Epoch 3, iter 5400/6416, lr 0.100000, loss 4.803928 +INFO 2020-12-05 05:54:48 train.py: 79] Epoch 3, iter 5600/6416, lr 0.100000, loss 4.781010 +INFO 2020-12-05 06:01:08 train.py: 79] Epoch 3, iter 5800/6416, lr 0.100000, loss 4.747395 +INFO 2020-12-05 06:07:29 train.py: 92] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2020-12-05 06:07:30 train.py: 79] Epoch 3, iter 6000/6416, lr 0.100000, loss 4.735175 +INFO 2020-12-05 06:13:51 train.py: 79] Epoch 3, iter 6200/6416, lr 0.100000, loss 4.755426 +INFO 2020-12-05 06:20:12 train.py: 79] Epoch 3, iter 6400/6416, lr 0.100000, loss 4.720754 +INFO 2020-12-05 06:20:41 train.py: 97] Save checkpoint Epoch_3.pt to disk... +INFO 2020-12-05 06:20:44 train.py: 79] Epoch 4, iter 0/6416, lr 0.100000, loss 4.737357 +INFO 2020-12-05 06:27:03 train.py: 79] Epoch 4, iter 200/6416, lr 0.100000, loss 4.189590 +INFO 2020-12-05 06:33:22 train.py: 79] Epoch 4, iter 400/6416, lr 0.100000, loss 4.142774 +INFO 2020-12-05 06:39:42 train.py: 79] Epoch 4, iter 600/6416, lr 0.100000, loss 4.217251 +INFO 2020-12-05 06:46:01 train.py: 79] Epoch 4, iter 800/6416, lr 0.100000, loss 4.274831 +INFO 2020-12-05 06:52:20 train.py: 79] Epoch 4, iter 1000/6416, lr 0.100000, loss 4.344759 +INFO 2020-12-05 06:58:40 train.py: 79] Epoch 4, iter 1200/6416, lr 0.100000, loss 4.357843 +INFO 2020-12-05 07:04:59 train.py: 79] Epoch 4, iter 1400/6416, lr 0.100000, loss 4.373999 +INFO 2020-12-05 07:11:18 train.py: 79] Epoch 4, iter 1600/6416, lr 0.100000, loss 4.431645 +INFO 2020-12-05 07:17:38 train.py: 79] Epoch 4, iter 1800/6416, lr 0.100000, loss 4.459793 +INFO 2020-12-05 07:23:58 train.py: 79] Epoch 4, iter 2000/6416, lr 0.100000, loss 4.469297 +INFO 2020-12-05 07:30:17 train.py: 79] Epoch 4, iter 2200/6416, lr 0.100000, loss 4.484062 +INFO 2020-12-05 07:36:37 train.py: 79] Epoch 4, iter 2400/6416, lr 0.100000, loss 4.457344 +INFO 2020-12-05 07:42:56 train.py: 79] Epoch 4, iter 2600/6416, lr 0.100000, loss 4.484542 +INFO 2020-12-05 07:49:16 train.py: 79] Epoch 4, iter 2800/6416, lr 0.100000, loss 4.492071 +INFO 2020-12-05 07:55:37 train.py: 92] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2020-12-05 07:55:39 train.py: 79] Epoch 4, iter 3000/6416, lr 0.100000, loss 4.465983 +INFO 2020-12-05 08:01:59 train.py: 79] Epoch 4, iter 3200/6416, lr 0.100000, loss 4.478256 +INFO 2020-12-05 08:08:18 train.py: 79] Epoch 4, iter 3400/6416, lr 0.100000, loss 4.476951 +INFO 2020-12-05 08:14:38 train.py: 79] Epoch 4, iter 3600/6416, lr 0.100000, loss 4.488107 +INFO 2020-12-05 08:20:58 train.py: 79] Epoch 4, iter 3800/6416, lr 0.100000, loss 4.439960 +INFO 2020-12-05 08:27:18 train.py: 79] Epoch 4, iter 4000/6416, lr 0.100000, loss 4.466088 +INFO 2020-12-05 08:33:39 train.py: 79] Epoch 4, iter 4200/6416, lr 0.100000, loss 4.460900 +INFO 2020-12-05 08:39:58 train.py: 79] Epoch 4, iter 4400/6416, lr 0.100000, loss 4.428038 +INFO 2020-12-05 08:46:19 train.py: 79] Epoch 4, iter 4600/6416, lr 0.100000, loss 4.463020 +INFO 2020-12-05 08:52:39 train.py: 79] Epoch 4, iter 4800/6416, lr 0.100000, loss 4.422682 +INFO 2020-12-05 08:59:01 train.py: 79] Epoch 4, iter 5000/6416, lr 0.100000, loss 4.437150 +INFO 2020-12-05 09:05:22 train.py: 79] Epoch 4, iter 5200/6416, lr 0.100000, loss 4.443850 +INFO 2020-12-05 09:11:43 train.py: 79] Epoch 4, iter 5400/6416, lr 0.100000, loss 4.396583 +INFO 2020-12-05 09:18:02 train.py: 79] Epoch 4, iter 5600/6416, lr 0.100000, loss 4.386658 +INFO 2020-12-05 09:24:23 train.py: 79] Epoch 4, iter 5800/6416, lr 0.100000, loss 4.389865 +INFO 2020-12-05 09:30:42 train.py: 92] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2020-12-05 09:30:44 train.py: 79] Epoch 4, iter 6000/6416, lr 0.100000, loss 4.412408 +INFO 2020-12-05 09:37:05 train.py: 79] Epoch 4, iter 6200/6416, lr 0.100000, loss 4.365090 +INFO 2020-12-05 09:43:25 train.py: 79] Epoch 4, iter 6400/6416, lr 0.100000, loss 4.405208 +INFO 2020-12-05 09:43:53 train.py: 97] Save checkpoint Epoch_4.pt to disk... +INFO 2020-12-05 09:43:56 train.py: 79] Epoch 5, iter 0/6416, lr 0.100000, loss 4.373674 +INFO 2020-12-05 09:50:15 train.py: 79] Epoch 5, iter 200/6416, lr 0.100000, loss 3.871244 +INFO 2020-12-05 09:56:35 train.py: 79] Epoch 5, iter 400/6416, lr 0.100000, loss 3.822520 +INFO 2020-12-05 10:02:53 train.py: 79] Epoch 5, iter 600/6416, lr 0.100000, loss 3.850365 +INFO 2020-12-05 10:09:13 train.py: 79] Epoch 5, iter 800/6416, lr 0.100000, loss 3.959184 +INFO 2020-12-05 10:15:32 train.py: 79] Epoch 5, iter 1000/6416, lr 0.100000, loss 4.012598 +INFO 2020-12-05 10:21:52 train.py: 79] Epoch 5, iter 1200/6416, lr 0.100000, loss 4.065327 +INFO 2020-12-05 10:28:10 train.py: 79] Epoch 5, iter 1400/6416, lr 0.100000, loss 4.085495 +INFO 2020-12-05 10:34:32 train.py: 79] Epoch 5, iter 1600/6416, lr 0.100000, loss 4.128043 +INFO 2020-12-05 10:40:50 train.py: 79] Epoch 5, iter 1800/6416, lr 0.100000, loss 4.149458 +INFO 2020-12-05 10:47:10 train.py: 79] Epoch 5, iter 2000/6416, lr 0.100000, loss 4.148260 +INFO 2020-12-05 10:53:29 train.py: 79] Epoch 5, iter 2200/6416, lr 0.100000, loss 4.157678 +INFO 2020-12-05 10:59:50 train.py: 79] Epoch 5, iter 2400/6416, lr 0.100000, loss 4.198733 +INFO 2020-12-05 11:06:09 train.py: 79] Epoch 5, iter 2600/6416, lr 0.100000, loss 4.190339 +INFO 2020-12-05 11:12:29 train.py: 79] Epoch 5, iter 2800/6416, lr 0.100000, loss 4.218966 +INFO 2020-12-05 11:18:46 train.py: 92] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2020-12-05 11:18:48 train.py: 79] Epoch 5, iter 3000/6416, lr 0.100000, loss 4.185984 +INFO 2020-12-05 11:25:08 train.py: 79] Epoch 5, iter 3200/6416, lr 0.100000, loss 4.204819 +INFO 2020-12-05 11:31:28 train.py: 79] Epoch 5, iter 3400/6416, lr 0.100000, loss 4.218199 +INFO 2020-12-05 11:37:47 train.py: 79] Epoch 5, iter 3600/6416, lr 0.100000, loss 4.224664 +INFO 2020-12-05 11:44:08 train.py: 79] Epoch 5, iter 3800/6416, lr 0.100000, loss 4.192363 +INFO 2020-12-05 11:50:27 train.py: 79] Epoch 5, iter 4000/6416, lr 0.100000, loss 4.190297 +INFO 2020-12-05 11:56:47 train.py: 79] Epoch 5, iter 4200/6416, lr 0.100000, loss 4.215930 +INFO 2020-12-05 12:03:06 train.py: 79] Epoch 5, iter 4400/6416, lr 0.100000, loss 4.185400 +INFO 2020-12-05 12:09:27 train.py: 79] Epoch 5, iter 4600/6416, lr 0.100000, loss 4.187785 +INFO 2020-12-05 12:15:47 train.py: 79] Epoch 5, iter 4800/6416, lr 0.100000, loss 4.178934 +INFO 2020-12-05 12:22:07 train.py: 79] Epoch 5, iter 5000/6416, lr 0.100000, loss 4.166705 +INFO 2020-12-05 12:28:28 train.py: 79] Epoch 5, iter 5200/6416, lr 0.100000, loss 4.147225 +INFO 2020-12-05 12:34:49 train.py: 79] Epoch 5, iter 5400/6416, lr 0.100000, loss 4.188363 +INFO 2020-12-05 12:41:09 train.py: 79] Epoch 5, iter 5600/6416, lr 0.100000, loss 4.192761 +INFO 2020-12-05 12:47:30 train.py: 79] Epoch 5, iter 5800/6416, lr 0.100000, loss 4.176323 +INFO 2020-12-05 12:53:48 train.py: 92] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2020-12-05 12:53:50 train.py: 79] Epoch 5, iter 6000/6416, lr 0.100000, loss 4.150935 +INFO 2020-12-05 13:00:10 train.py: 79] Epoch 5, iter 6200/6416, lr 0.100000, loss 4.153237 +INFO 2020-12-05 13:06:31 train.py: 79] Epoch 5, iter 6400/6416, lr 0.100000, loss 4.163235 +INFO 2020-12-05 13:07:00 train.py: 97] Save checkpoint Epoch_5.pt to disk... +INFO 2020-12-05 13:07:03 train.py: 79] Epoch 6, iter 0/6416, lr 0.100000, loss 4.141977 +INFO 2020-12-05 13:13:22 train.py: 79] Epoch 6, iter 200/6416, lr 0.100000, loss 3.673644 +INFO 2020-12-05 13:19:41 train.py: 79] Epoch 6, iter 400/6416, lr 0.100000, loss 3.594239 +INFO 2020-12-05 13:26:00 train.py: 79] Epoch 6, iter 600/6416, lr 0.100000, loss 3.647684 +INFO 2020-12-05 13:32:19 train.py: 79] Epoch 6, iter 800/6416, lr 0.100000, loss 3.756734 +INFO 2020-12-05 13:38:38 train.py: 79] Epoch 6, iter 1000/6416, lr 0.100000, loss 3.808701 +INFO 2020-12-05 13:44:57 train.py: 79] Epoch 6, iter 1200/6416, lr 0.100000, loss 3.845456 +INFO 2020-12-05 13:51:16 train.py: 79] Epoch 6, iter 1400/6416, lr 0.100000, loss 3.872381 +INFO 2020-12-05 13:57:36 train.py: 79] Epoch 6, iter 1600/6416, lr 0.100000, loss 3.909472 +INFO 2020-12-05 14:03:56 train.py: 79] Epoch 6, iter 1800/6416, lr 0.100000, loss 3.922629 +INFO 2020-12-05 14:10:14 train.py: 79] Epoch 6, iter 2000/6416, lr 0.100000, loss 3.950967 +INFO 2020-12-05 14:16:34 train.py: 79] Epoch 6, iter 2200/6416, lr 0.100000, loss 3.966451 +INFO 2020-12-05 14:22:53 train.py: 79] Epoch 6, iter 2400/6416, lr 0.100000, loss 4.004148 +INFO 2020-12-05 14:29:13 train.py: 79] Epoch 6, iter 2600/6416, lr 0.100000, loss 3.990190 +INFO 2020-12-05 14:35:32 train.py: 79] Epoch 6, iter 2800/6416, lr 0.100000, loss 3.976946 +INFO 2020-12-05 14:41:51 train.py: 92] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2020-12-05 14:41:53 train.py: 79] Epoch 6, iter 3000/6416, lr 0.100000, loss 4.006734 +INFO 2020-12-05 14:48:12 train.py: 79] Epoch 6, iter 3200/6416, lr 0.100000, loss 4.028544 +INFO 2020-12-05 14:54:32 train.py: 79] Epoch 6, iter 3400/6416, lr 0.100000, loss 4.024532 +INFO 2020-12-05 15:00:51 train.py: 79] Epoch 6, iter 3600/6416, lr 0.100000, loss 3.988816 +INFO 2020-12-05 15:07:11 train.py: 79] Epoch 6, iter 3800/6416, lr 0.100000, loss 4.010228 +INFO 2020-12-05 15:13:31 train.py: 79] Epoch 6, iter 4000/6416, lr 0.100000, loss 4.008840 +INFO 2020-12-05 15:19:52 train.py: 79] Epoch 6, iter 4200/6416, lr 0.100000, loss 3.994895 +INFO 2020-12-05 15:26:12 train.py: 79] Epoch 6, iter 4400/6416, lr 0.100000, loss 4.003911 +INFO 2020-12-05 15:32:33 train.py: 79] Epoch 6, iter 4600/6416, lr 0.100000, loss 3.998039 +INFO 2020-12-05 15:38:52 train.py: 79] Epoch 6, iter 4800/6416, lr 0.100000, loss 3.976100 +INFO 2020-12-05 15:45:13 train.py: 79] Epoch 6, iter 5000/6416, lr 0.100000, loss 4.007036 +INFO 2020-12-05 15:51:33 train.py: 79] Epoch 6, iter 5200/6416, lr 0.100000, loss 4.014025 +INFO 2020-12-05 15:57:54 train.py: 79] Epoch 6, iter 5400/6416, lr 0.100000, loss 4.004497 +INFO 2020-12-05 16:04:14 train.py: 79] Epoch 6, iter 5600/6416, lr 0.100000, loss 4.014919 +INFO 2020-12-05 16:10:36 train.py: 79] Epoch 6, iter 5800/6416, lr 0.100000, loss 4.015862 +INFO 2020-12-05 16:16:56 train.py: 92] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2020-12-05 16:16:58 train.py: 79] Epoch 6, iter 6000/6416, lr 0.100000, loss 4.011972 +INFO 2020-12-05 16:23:18 train.py: 79] Epoch 6, iter 6200/6416, lr 0.100000, loss 3.993713 +INFO 2020-12-05 16:29:39 train.py: 79] Epoch 6, iter 6400/6416, lr 0.100000, loss 3.981413 +INFO 2020-12-05 16:30:07 train.py: 97] Save checkpoint Epoch_6.pt to disk... +INFO 2020-12-05 16:30:10 train.py: 79] Epoch 7, iter 0/6416, lr 0.100000, loss 4.081297 +INFO 2020-12-05 16:36:30 train.py: 79] Epoch 7, iter 200/6416, lr 0.100000, loss 3.492259 +INFO 2020-12-05 16:42:48 train.py: 79] Epoch 7, iter 400/6416, lr 0.100000, loss 3.437357 +INFO 2020-12-05 16:49:08 train.py: 79] Epoch 7, iter 600/6416, lr 0.100000, loss 3.509000 +INFO 2020-12-05 16:55:27 train.py: 79] Epoch 7, iter 800/6416, lr 0.100000, loss 3.573317 +INFO 2020-12-05 17:01:47 train.py: 79] Epoch 7, iter 1000/6416, lr 0.100000, loss 3.628325 +INFO 2020-12-05 17:08:06 train.py: 79] Epoch 7, iter 1200/6416, lr 0.100000, loss 3.669659 +INFO 2020-12-05 17:14:26 train.py: 79] Epoch 7, iter 1400/6416, lr 0.100000, loss 3.703262 +INFO 2020-12-05 17:20:44 train.py: 79] Epoch 7, iter 1600/6416, lr 0.100000, loss 3.754398 +INFO 2020-12-05 17:27:04 train.py: 79] Epoch 7, iter 1800/6416, lr 0.100000, loss 3.783757 +INFO 2020-12-05 17:33:23 train.py: 79] Epoch 7, iter 2000/6416, lr 0.100000, loss 3.811007 +INFO 2020-12-05 17:39:45 train.py: 79] Epoch 7, iter 2200/6416, lr 0.100000, loss 3.805011 +INFO 2020-12-05 17:46:03 train.py: 79] Epoch 7, iter 2400/6416, lr 0.100000, loss 3.814418 +INFO 2020-12-05 17:52:23 train.py: 79] Epoch 7, iter 2600/6416, lr 0.100000, loss 3.857767 +INFO 2020-12-05 17:58:43 train.py: 79] Epoch 7, iter 2800/6416, lr 0.100000, loss 3.829525 +INFO 2020-12-05 18:05:03 train.py: 92] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2020-12-05 18:05:05 train.py: 79] Epoch 7, iter 3000/6416, lr 0.100000, loss 3.835798 +INFO 2020-12-05 18:11:26 train.py: 79] Epoch 7, iter 3200/6416, lr 0.100000, loss 3.864374 +INFO 2020-12-05 18:17:46 train.py: 79] Epoch 7, iter 3400/6416, lr 0.100000, loss 3.860680 +INFO 2020-12-05 18:24:07 train.py: 79] Epoch 7, iter 3600/6416, lr 0.100000, loss 3.877339 +INFO 2020-12-05 18:30:27 train.py: 79] Epoch 7, iter 3800/6416, lr 0.100000, loss 3.860563 +INFO 2020-12-05 18:36:48 train.py: 79] Epoch 7, iter 4000/6416, lr 0.100000, loss 3.869084 +INFO 2020-12-05 18:43:08 train.py: 79] Epoch 7, iter 4200/6416, lr 0.100000, loss 3.892466 +INFO 2020-12-05 18:49:30 train.py: 79] Epoch 7, iter 4400/6416, lr 0.100000, loss 3.884217 +INFO 2020-12-05 18:55:49 train.py: 79] Epoch 7, iter 4600/6416, lr 0.100000, loss 3.884133 +INFO 2020-12-05 19:02:11 train.py: 79] Epoch 7, iter 4800/6416, lr 0.100000, loss 3.868462 +INFO 2020-12-05 19:08:30 train.py: 79] Epoch 7, iter 5000/6416, lr 0.100000, loss 3.902635 +INFO 2020-12-05 19:14:51 train.py: 79] Epoch 7, iter 5200/6416, lr 0.100000, loss 3.890947 +INFO 2020-12-05 19:21:11 train.py: 79] Epoch 7, iter 5400/6416, lr 0.100000, loss 3.874897 +INFO 2020-12-05 19:27:31 train.py: 79] Epoch 7, iter 5600/6416, lr 0.100000, loss 3.873735 +INFO 2020-12-05 19:33:51 train.py: 79] Epoch 7, iter 5800/6416, lr 0.100000, loss 3.853881 +INFO 2020-12-05 19:40:10 train.py: 92] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2020-12-05 19:40:12 train.py: 79] Epoch 7, iter 6000/6416, lr 0.100000, loss 3.878101 +INFO 2020-12-05 19:46:33 train.py: 79] Epoch 7, iter 6200/6416, lr 0.100000, loss 3.876496 +INFO 2020-12-05 19:52:54 train.py: 79] Epoch 7, iter 6400/6416, lr 0.100000, loss 3.890721 +INFO 2020-12-05 19:53:22 train.py: 97] Save checkpoint Epoch_7.pt to disk... +INFO 2020-12-05 19:53:25 train.py: 79] Epoch 8, iter 0/6416, lr 0.100000, loss 3.938865 +INFO 2020-12-05 19:59:46 train.py: 79] Epoch 8, iter 200/6416, lr 0.100000, loss 3.389026 +INFO 2020-12-05 20:06:05 train.py: 79] Epoch 8, iter 400/6416, lr 0.100000, loss 3.325515 +INFO 2020-12-05 20:12:26 train.py: 79] Epoch 8, iter 600/6416, lr 0.100000, loss 3.380000 +INFO 2020-12-05 20:18:45 train.py: 79] Epoch 8, iter 800/6416, lr 0.100000, loss 3.468307 +INFO 2020-12-05 20:25:04 train.py: 79] Epoch 8, iter 1000/6416, lr 0.100000, loss 3.493926 +INFO 2020-12-05 20:31:23 train.py: 79] Epoch 8, iter 1200/6416, lr 0.100000, loss 3.543463 +INFO 2020-12-05 20:37:42 train.py: 79] Epoch 8, iter 1400/6416, lr 0.100000, loss 3.604663 +INFO 2020-12-05 20:44:02 train.py: 79] Epoch 8, iter 1600/6416, lr 0.100000, loss 3.634113 +INFO 2020-12-05 20:50:22 train.py: 79] Epoch 8, iter 1800/6416, lr 0.100000, loss 3.654702 +INFO 2020-12-05 20:56:42 train.py: 79] Epoch 8, iter 2000/6416, lr 0.100000, loss 3.684589 +INFO 2020-12-05 21:03:02 train.py: 79] Epoch 8, iter 2200/6416, lr 0.100000, loss 3.692347 +INFO 2020-12-05 21:09:22 train.py: 79] Epoch 8, iter 2400/6416, lr 0.100000, loss 3.726210 +INFO 2020-12-05 21:15:41 train.py: 79] Epoch 8, iter 2600/6416, lr 0.100000, loss 3.717885 +INFO 2020-12-05 21:22:01 train.py: 79] Epoch 8, iter 2800/6416, lr 0.100000, loss 3.734899 +INFO 2020-12-05 21:28:19 train.py: 92] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2020-12-05 21:28:21 train.py: 79] Epoch 8, iter 3000/6416, lr 0.100000, loss 3.747616 +INFO 2020-12-05 21:34:42 train.py: 79] Epoch 8, iter 3200/6416, lr 0.100000, loss 3.740754 +INFO 2020-12-05 21:41:02 train.py: 79] Epoch 8, iter 3400/6416, lr 0.100000, loss 3.754269 +INFO 2020-12-05 21:47:22 train.py: 79] Epoch 8, iter 3600/6416, lr 0.100000, loss 3.764816 +INFO 2020-12-05 21:53:42 train.py: 79] Epoch 8, iter 3800/6416, lr 0.100000, loss 3.789393 +INFO 2020-12-05 22:00:02 train.py: 79] Epoch 8, iter 4000/6416, lr 0.100000, loss 3.750610 +INFO 2020-12-05 22:06:23 train.py: 79] Epoch 8, iter 4200/6416, lr 0.100000, loss 3.767294 +INFO 2020-12-05 22:12:43 train.py: 79] Epoch 8, iter 4400/6416, lr 0.100000, loss 3.754622 +INFO 2020-12-05 22:19:02 train.py: 79] Epoch 8, iter 4600/6416, lr 0.100000, loss 3.767717 +INFO 2020-12-05 22:25:22 train.py: 79] Epoch 8, iter 4800/6416, lr 0.100000, loss 3.763514 +INFO 2020-12-05 22:31:43 train.py: 79] Epoch 8, iter 5000/6416, lr 0.100000, loss 3.777894 +INFO 2020-12-05 22:38:03 train.py: 79] Epoch 8, iter 5200/6416, lr 0.100000, loss 3.768596 +INFO 2020-12-05 22:44:22 train.py: 79] Epoch 8, iter 5400/6416, lr 0.100000, loss 3.775835 +INFO 2020-12-05 22:50:42 train.py: 79] Epoch 8, iter 5600/6416, lr 0.100000, loss 3.772843 +INFO 2020-12-05 22:57:03 train.py: 79] Epoch 8, iter 5800/6416, lr 0.100000, loss 3.773340 +INFO 2020-12-05 23:03:22 train.py: 92] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2020-12-05 23:03:24 train.py: 79] Epoch 8, iter 6000/6416, lr 0.100000, loss 3.763247 +INFO 2020-12-05 23:09:46 train.py: 79] Epoch 8, iter 6200/6416, lr 0.100000, loss 3.756311 +INFO 2020-12-05 23:16:06 train.py: 79] Epoch 8, iter 6400/6416, lr 0.100000, loss 3.776171 +INFO 2020-12-05 23:16:35 train.py: 97] Save checkpoint Epoch_8.pt to disk... +INFO 2020-12-05 23:16:38 train.py: 79] Epoch 9, iter 0/6416, lr 0.100000, loss 3.747921 +INFO 2020-12-05 23:22:57 train.py: 79] Epoch 9, iter 200/6416, lr 0.100000, loss 3.303898 +INFO 2020-12-05 23:29:18 train.py: 79] Epoch 9, iter 400/6416, lr 0.100000, loss 3.208295 +INFO 2020-12-05 23:35:37 train.py: 79] Epoch 9, iter 600/6416, lr 0.100000, loss 3.306917 +INFO 2020-12-05 23:41:57 train.py: 79] Epoch 9, iter 800/6416, lr 0.100000, loss 3.366264 +INFO 2020-12-05 23:48:16 train.py: 79] Epoch 9, iter 1000/6416, lr 0.100000, loss 3.412550 +INFO 2020-12-05 23:54:36 train.py: 79] Epoch 9, iter 1200/6416, lr 0.100000, loss 3.461481 +INFO 2020-12-06 00:00:54 train.py: 79] Epoch 9, iter 1400/6416, lr 0.100000, loss 3.508088 +INFO 2020-12-06 00:07:15 train.py: 79] Epoch 9, iter 1600/6416, lr 0.100000, loss 3.538460 +INFO 2020-12-06 00:13:34 train.py: 79] Epoch 9, iter 1800/6416, lr 0.100000, loss 3.571782 +INFO 2020-12-06 00:19:54 train.py: 79] Epoch 9, iter 2000/6416, lr 0.100000, loss 3.602450 +INFO 2020-12-06 00:26:14 train.py: 79] Epoch 9, iter 2200/6416, lr 0.100000, loss 3.612209 +INFO 2020-12-06 00:32:34 train.py: 79] Epoch 9, iter 2400/6416, lr 0.100000, loss 3.592770 +INFO 2020-12-06 00:38:53 train.py: 79] Epoch 9, iter 2600/6416, lr 0.100000, loss 3.640832 +INFO 2020-12-06 00:45:13 train.py: 79] Epoch 9, iter 2800/6416, lr 0.100000, loss 3.644980 +INFO 2020-12-06 00:51:31 train.py: 92] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2020-12-06 00:51:33 train.py: 79] Epoch 9, iter 3000/6416, lr 0.100000, loss 3.668094 +INFO 2020-12-06 00:57:54 train.py: 79] Epoch 9, iter 3200/6416, lr 0.100000, loss 3.678232 +INFO 2020-12-06 01:04:14 train.py: 79] Epoch 9, iter 3400/6416, lr 0.100000, loss 3.666057 +INFO 2020-12-06 01:10:34 train.py: 79] Epoch 9, iter 3600/6416, lr 0.100000, loss 3.675592 +INFO 2020-12-06 01:16:54 train.py: 79] Epoch 9, iter 3800/6416, lr 0.100000, loss 3.674710 +INFO 2020-12-06 01:23:15 train.py: 79] Epoch 9, iter 4000/6416, lr 0.100000, loss 3.666389 +INFO 2020-12-06 01:29:36 train.py: 79] Epoch 9, iter 4200/6416, lr 0.100000, loss 3.679206 +INFO 2020-12-06 01:35:56 train.py: 79] Epoch 9, iter 4400/6416, lr 0.100000, loss 3.708740 +INFO 2020-12-06 01:42:16 train.py: 79] Epoch 9, iter 4600/6416, lr 0.100000, loss 3.664768 +INFO 2020-12-06 01:48:37 train.py: 79] Epoch 9, iter 4800/6416, lr 0.100000, loss 3.676176 +INFO 2020-12-06 01:54:57 train.py: 79] Epoch 9, iter 5000/6416, lr 0.100000, loss 3.713797 +INFO 2020-12-06 02:01:17 train.py: 79] Epoch 9, iter 5200/6416, lr 0.100000, loss 3.704025 +INFO 2020-12-06 02:07:37 train.py: 79] Epoch 9, iter 5400/6416, lr 0.100000, loss 3.667043 +INFO 2020-12-06 02:13:57 train.py: 79] Epoch 9, iter 5600/6416, lr 0.100000, loss 3.698179 +INFO 2020-12-06 02:20:19 train.py: 79] Epoch 9, iter 5800/6416, lr 0.100000, loss 3.678683 +INFO 2020-12-06 02:26:40 train.py: 92] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2020-12-06 02:26:42 train.py: 79] Epoch 9, iter 6000/6416, lr 0.100000, loss 3.679635 +INFO 2020-12-06 02:33:02 train.py: 79] Epoch 9, iter 6200/6416, lr 0.100000, loss 3.697636 +INFO 2020-12-06 02:39:22 train.py: 79] Epoch 9, iter 6400/6416, lr 0.100000, loss 3.663839 +INFO 2020-12-06 02:39:50 train.py: 97] Save checkpoint Epoch_9.pt to disk... +INFO 2020-12-06 02:39:53 train.py: 79] Epoch 10, iter 0/6416, lr 0.010000, loss 3.736168 +INFO 2020-12-06 02:46:13 train.py: 79] Epoch 10, iter 200/6416, lr 0.010000, loss 2.609726 +INFO 2020-12-06 02:52:33 train.py: 79] Epoch 10, iter 400/6416, lr 0.010000, loss 2.384023 +INFO 2020-12-06 02:58:52 train.py: 79] Epoch 10, iter 600/6416, lr 0.010000, loss 2.298823 +INFO 2020-12-06 03:05:12 train.py: 79] Epoch 10, iter 800/6416, lr 0.010000, loss 2.262948 +INFO 2020-12-06 03:11:31 train.py: 79] Epoch 10, iter 1000/6416, lr 0.010000, loss 2.177132 +INFO 2020-12-06 03:17:51 train.py: 79] Epoch 10, iter 1200/6416, lr 0.010000, loss 2.148990 +INFO 2020-12-06 03:24:10 train.py: 79] Epoch 10, iter 1400/6416, lr 0.010000, loss 2.120849 +INFO 2020-12-06 03:30:29 train.py: 79] Epoch 10, iter 1600/6416, lr 0.010000, loss 2.086983 +INFO 2020-12-06 03:36:50 train.py: 79] Epoch 10, iter 1800/6416, lr 0.010000, loss 2.047091 +INFO 2020-12-06 03:43:10 train.py: 79] Epoch 10, iter 2000/6416, lr 0.010000, loss 2.040680 +INFO 2020-12-06 03:49:30 train.py: 79] Epoch 10, iter 2200/6416, lr 0.010000, loss 2.001162 +INFO 2020-12-06 03:55:50 train.py: 79] Epoch 10, iter 2400/6416, lr 0.010000, loss 1.978806 +INFO 2020-12-06 04:02:09 train.py: 79] Epoch 10, iter 2600/6416, lr 0.010000, loss 1.972213 +INFO 2020-12-06 04:08:29 train.py: 79] Epoch 10, iter 2800/6416, lr 0.010000, loss 1.933587 +INFO 2020-12-06 04:14:46 train.py: 92] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2020-12-06 04:14:48 train.py: 79] Epoch 10, iter 3000/6416, lr 0.010000, loss 1.916844 +INFO 2020-12-06 04:21:09 train.py: 79] Epoch 10, iter 3200/6416, lr 0.010000, loss 1.903127 +INFO 2020-12-06 04:27:29 train.py: 79] Epoch 10, iter 3400/6416, lr 0.010000, loss 1.881840 +INFO 2020-12-06 04:33:48 train.py: 79] Epoch 10, iter 3600/6416, lr 0.010000, loss 1.878274 +INFO 2020-12-06 04:40:11 train.py: 79] Epoch 10, iter 3800/6416, lr 0.010000, loss 1.875843 +INFO 2020-12-06 04:46:30 train.py: 79] Epoch 10, iter 4000/6416, lr 0.010000, loss 1.851889 +INFO 2020-12-06 04:52:51 train.py: 79] Epoch 10, iter 4200/6416, lr 0.010000, loss 1.833614 +INFO 2020-12-06 04:59:11 train.py: 79] Epoch 10, iter 4400/6416, lr 0.010000, loss 1.810368 +INFO 2020-12-06 05:05:33 train.py: 79] Epoch 10, iter 4600/6416, lr 0.010000, loss 1.816090 +INFO 2020-12-06 05:11:54 train.py: 79] Epoch 10, iter 4800/6416, lr 0.010000, loss 1.794370 +INFO 2020-12-06 05:18:14 train.py: 79] Epoch 10, iter 5000/6416, lr 0.010000, loss 1.794215 +INFO 2020-12-06 05:24:33 train.py: 79] Epoch 10, iter 5200/6416, lr 0.010000, loss 1.756364 +INFO 2020-12-06 05:30:54 train.py: 79] Epoch 10, iter 5400/6416, lr 0.010000, loss 1.757093 +INFO 2020-12-06 05:37:13 train.py: 79] Epoch 10, iter 5600/6416, lr 0.010000, loss 1.757041 +INFO 2020-12-06 05:43:36 train.py: 79] Epoch 10, iter 5800/6416, lr 0.010000, loss 1.748112 +INFO 2020-12-06 05:49:54 train.py: 92] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2020-12-06 05:49:56 train.py: 79] Epoch 10, iter 6000/6416, lr 0.010000, loss 1.749999 +INFO 2020-12-06 05:56:15 train.py: 79] Epoch 10, iter 6200/6416, lr 0.010000, loss 1.738492 +INFO 2020-12-06 06:02:37 train.py: 79] Epoch 10, iter 6400/6416, lr 0.010000, loss 1.734276 +INFO 2020-12-06 06:03:05 train.py: 97] Save checkpoint Epoch_10.pt to disk... +INFO 2020-12-06 06:03:08 train.py: 79] Epoch 11, iter 0/6416, lr 0.010000, loss 1.749832 +INFO 2020-12-06 06:09:28 train.py: 79] Epoch 11, iter 200/6416, lr 0.010000, loss 1.456448 +INFO 2020-12-06 06:15:48 train.py: 79] Epoch 11, iter 400/6416, lr 0.010000, loss 1.416619 +INFO 2020-12-06 06:22:08 train.py: 79] Epoch 11, iter 600/6416, lr 0.010000, loss 1.442494 +INFO 2020-12-06 06:28:28 train.py: 79] Epoch 11, iter 800/6416, lr 0.010000, loss 1.437556 +INFO 2020-12-06 06:34:47 train.py: 79] Epoch 11, iter 1000/6416, lr 0.010000, loss 1.435519 +INFO 2020-12-06 06:41:05 train.py: 79] Epoch 11, iter 1200/6416, lr 0.010000, loss 1.446615 +INFO 2020-12-06 06:47:24 train.py: 79] Epoch 11, iter 1400/6416, lr 0.010000, loss 1.445880 +INFO 2020-12-06 06:53:43 train.py: 79] Epoch 11, iter 1600/6416, lr 0.010000, loss 1.451455 +INFO 2020-12-06 07:00:02 train.py: 79] Epoch 11, iter 1800/6416, lr 0.010000, loss 1.436330 +INFO 2020-12-06 07:06:21 train.py: 79] Epoch 11, iter 2000/6416, lr 0.010000, loss 1.446569 +INFO 2020-12-06 07:12:40 train.py: 79] Epoch 11, iter 2200/6416, lr 0.010000, loss 1.442806 +INFO 2020-12-06 07:18:58 train.py: 79] Epoch 11, iter 2400/6416, lr 0.010000, loss 1.447099 +INFO 2020-12-06 07:25:17 train.py: 79] Epoch 11, iter 2600/6416, lr 0.010000, loss 1.443769 +INFO 2020-12-06 07:31:37 train.py: 79] Epoch 11, iter 2800/6416, lr 0.010000, loss 1.451199 +INFO 2020-12-06 07:37:54 train.py: 92] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2020-12-06 07:37:56 train.py: 79] Epoch 11, iter 3000/6416, lr 0.010000, loss 1.446435 +INFO 2020-12-06 07:44:16 train.py: 79] Epoch 11, iter 3200/6416, lr 0.010000, loss 1.449132 +INFO 2020-12-06 07:50:35 train.py: 79] Epoch 11, iter 3400/6416, lr 0.010000, loss 1.439864 +INFO 2020-12-06 07:56:55 train.py: 79] Epoch 11, iter 3600/6416, lr 0.010000, loss 1.441093 +INFO 2020-12-06 08:03:14 train.py: 79] Epoch 11, iter 3800/6416, lr 0.010000, loss 1.436291 +INFO 2020-12-06 08:09:34 train.py: 79] Epoch 11, iter 4000/6416, lr 0.010000, loss 1.437486 +INFO 2020-12-06 08:15:54 train.py: 79] Epoch 11, iter 4200/6416, lr 0.010000, loss 1.441966 +INFO 2020-12-06 08:22:14 train.py: 79] Epoch 11, iter 4400/6416, lr 0.010000, loss 1.416469 +INFO 2020-12-06 08:28:35 train.py: 79] Epoch 11, iter 4600/6416, lr 0.010000, loss 1.443927 +INFO 2020-12-06 08:34:54 train.py: 79] Epoch 11, iter 4800/6416, lr 0.010000, loss 1.432850 +INFO 2020-12-06 08:41:14 train.py: 79] Epoch 11, iter 5000/6416, lr 0.010000, loss 1.436703 +INFO 2020-12-06 08:47:34 train.py: 79] Epoch 11, iter 5200/6416, lr 0.010000, loss 1.430472 +INFO 2020-12-06 08:53:53 train.py: 79] Epoch 11, iter 5400/6416, lr 0.010000, loss 1.421570 +INFO 2020-12-06 09:00:13 train.py: 79] Epoch 11, iter 5600/6416, lr 0.010000, loss 1.439003 +INFO 2020-12-06 09:06:33 train.py: 79] Epoch 11, iter 5800/6416, lr 0.010000, loss 1.431989 +INFO 2020-12-06 09:12:52 train.py: 92] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2020-12-06 09:12:54 train.py: 79] Epoch 11, iter 6000/6416, lr 0.010000, loss 1.420511 +INFO 2020-12-06 09:19:14 train.py: 79] Epoch 11, iter 6200/6416, lr 0.010000, loss 1.423586 +INFO 2020-12-06 09:25:34 train.py: 79] Epoch 11, iter 6400/6416, lr 0.010000, loss 1.429725 +INFO 2020-12-06 09:26:02 train.py: 97] Save checkpoint Epoch_11.pt to disk... +INFO 2020-12-06 09:26:05 train.py: 79] Epoch 12, iter 0/6416, lr 0.010000, loss 1.396104 +INFO 2020-12-06 09:32:26 train.py: 79] Epoch 12, iter 200/6416, lr 0.010000, loss 1.188492 +INFO 2020-12-06 09:38:45 train.py: 79] Epoch 12, iter 400/6416, lr 0.010000, loss 1.187144 +INFO 2020-12-06 09:45:06 train.py: 79] Epoch 12, iter 600/6416, lr 0.010000, loss 1.176856 +INFO 2020-12-06 09:51:24 train.py: 79] Epoch 12, iter 800/6416, lr 0.010000, loss 1.190689 +INFO 2020-12-06 09:57:44 train.py: 79] Epoch 12, iter 1000/6416, lr 0.010000, loss 1.209835 +INFO 2020-12-06 10:04:03 train.py: 79] Epoch 12, iter 1200/6416, lr 0.010000, loss 1.210686 +INFO 2020-12-06 10:10:23 train.py: 79] Epoch 12, iter 1400/6416, lr 0.010000, loss 1.194799 +INFO 2020-12-06 10:16:43 train.py: 79] Epoch 12, iter 1600/6416, lr 0.010000, loss 1.217039 +INFO 2020-12-06 10:23:03 train.py: 79] Epoch 12, iter 1800/6416, lr 0.010000, loss 1.216754 +INFO 2020-12-06 10:29:22 train.py: 79] Epoch 12, iter 2000/6416, lr 0.010000, loss 1.201908 +INFO 2020-12-06 10:35:42 train.py: 79] Epoch 12, iter 2200/6416, lr 0.010000, loss 1.226034 +INFO 2020-12-06 10:42:00 train.py: 79] Epoch 12, iter 2400/6416, lr 0.010000, loss 1.220114 +INFO 2020-12-06 10:48:20 train.py: 79] Epoch 12, iter 2600/6416, lr 0.010000, loss 1.219304 +INFO 2020-12-06 10:54:39 train.py: 79] Epoch 12, iter 2800/6416, lr 0.010000, loss 1.239668 +INFO 2020-12-06 11:00:58 train.py: 92] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2020-12-06 11:00:59 train.py: 79] Epoch 12, iter 3000/6416, lr 0.010000, loss 1.222346 +INFO 2020-12-06 11:07:19 train.py: 79] Epoch 12, iter 3200/6416, lr 0.010000, loss 1.237528 +INFO 2020-12-06 11:13:38 train.py: 79] Epoch 12, iter 3400/6416, lr 0.010000, loss 1.243870 +INFO 2020-12-06 11:19:58 train.py: 79] Epoch 12, iter 3600/6416, lr 0.010000, loss 1.262808 +INFO 2020-12-06 11:26:18 train.py: 79] Epoch 12, iter 3800/6416, lr 0.010000, loss 1.249614 +INFO 2020-12-06 11:32:40 train.py: 79] Epoch 12, iter 4000/6416, lr 0.010000, loss 1.252200 +INFO 2020-12-06 11:38:59 train.py: 79] Epoch 12, iter 4200/6416, lr 0.010000, loss 1.247521 +INFO 2020-12-06 11:45:20 train.py: 79] Epoch 12, iter 4400/6416, lr 0.010000, loss 1.262831 +INFO 2020-12-06 11:51:40 train.py: 79] Epoch 12, iter 4600/6416, lr 0.010000, loss 1.266734 +INFO 2020-12-06 11:58:01 train.py: 79] Epoch 12, iter 4800/6416, lr 0.010000, loss 1.255959 +INFO 2020-12-06 12:04:22 train.py: 79] Epoch 12, iter 5000/6416, lr 0.010000, loss 1.275324 +INFO 2020-12-06 12:10:43 train.py: 79] Epoch 12, iter 5200/6416, lr 0.010000, loss 1.275397 +INFO 2020-12-06 12:17:02 train.py: 79] Epoch 12, iter 5400/6416, lr 0.010000, loss 1.282276 +INFO 2020-12-06 12:23:23 train.py: 79] Epoch 12, iter 5600/6416, lr 0.010000, loss 1.265771 +INFO 2020-12-06 12:29:42 train.py: 79] Epoch 12, iter 5800/6416, lr 0.010000, loss 1.260887 +INFO 2020-12-06 12:36:02 train.py: 92] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2020-12-06 12:36:04 train.py: 79] Epoch 12, iter 6000/6416, lr 0.010000, loss 1.284875 +INFO 2020-12-06 12:42:25 train.py: 79] Epoch 12, iter 6200/6416, lr 0.010000, loss 1.275401 +INFO 2020-12-06 12:48:46 train.py: 79] Epoch 12, iter 6400/6416, lr 0.010000, loss 1.269966 +INFO 2020-12-06 12:49:14 train.py: 97] Save checkpoint Epoch_12.pt to disk... +INFO 2020-12-06 12:49:17 train.py: 79] Epoch 13, iter 0/6416, lr 0.001000, loss 1.307253 +INFO 2020-12-06 12:55:37 train.py: 79] Epoch 13, iter 200/6416, lr 0.001000, loss 1.020010 +INFO 2020-12-06 13:01:58 train.py: 79] Epoch 13, iter 400/6416, lr 0.001000, loss 0.976545 +INFO 2020-12-06 13:08:17 train.py: 79] Epoch 13, iter 600/6416, lr 0.001000, loss 0.995507 +INFO 2020-12-06 13:14:36 train.py: 79] Epoch 13, iter 800/6416, lr 0.001000, loss 0.994149 +INFO 2020-12-06 13:20:56 train.py: 79] Epoch 13, iter 1000/6416, lr 0.001000, loss 0.986863 +INFO 2020-12-06 13:27:15 train.py: 79] Epoch 13, iter 1200/6416, lr 0.001000, loss 0.986045 +INFO 2020-12-06 13:33:34 train.py: 79] Epoch 13, iter 1400/6416, lr 0.001000, loss 0.978853 +INFO 2020-12-06 13:39:53 train.py: 79] Epoch 13, iter 1600/6416, lr 0.001000, loss 0.983476 +INFO 2020-12-06 13:46:12 train.py: 79] Epoch 13, iter 1800/6416, lr 0.001000, loss 0.978783 +INFO 2020-12-06 13:52:31 train.py: 79] Epoch 13, iter 2000/6416, lr 0.001000, loss 0.983774 +INFO 2020-12-06 13:58:51 train.py: 79] Epoch 13, iter 2200/6416, lr 0.001000, loss 0.971636 +INFO 2020-12-06 14:05:11 train.py: 79] Epoch 13, iter 2400/6416, lr 0.001000, loss 0.969167 +INFO 2020-12-06 14:11:30 train.py: 79] Epoch 13, iter 2600/6416, lr 0.001000, loss 0.983853 +INFO 2020-12-06 14:17:49 train.py: 79] Epoch 13, iter 2800/6416, lr 0.001000, loss 0.978536 +INFO 2020-12-06 14:24:07 train.py: 92] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2020-12-06 14:24:09 train.py: 79] Epoch 13, iter 3000/6416, lr 0.001000, loss 0.978534 +INFO 2020-12-06 14:30:29 train.py: 79] Epoch 13, iter 3200/6416, lr 0.001000, loss 0.980241 +INFO 2020-12-06 14:36:48 train.py: 79] Epoch 13, iter 3400/6416, lr 0.001000, loss 0.971680 +INFO 2020-12-06 14:43:08 train.py: 79] Epoch 13, iter 3600/6416, lr 0.001000, loss 0.982299 +INFO 2020-12-06 14:49:27 train.py: 79] Epoch 13, iter 3800/6416, lr 0.001000, loss 0.981664 +INFO 2020-12-06 14:55:47 train.py: 79] Epoch 13, iter 4000/6416, lr 0.001000, loss 0.983848 +INFO 2020-12-06 15:02:08 train.py: 79] Epoch 13, iter 4200/6416, lr 0.001000, loss 0.966763 +INFO 2020-12-06 15:08:28 train.py: 79] Epoch 13, iter 4400/6416, lr 0.001000, loss 0.974734 +INFO 2020-12-06 15:14:48 train.py: 79] Epoch 13, iter 4600/6416, lr 0.001000, loss 0.967398 +INFO 2020-12-06 15:21:08 train.py: 79] Epoch 13, iter 4800/6416, lr 0.001000, loss 0.969599 +INFO 2020-12-06 15:27:28 train.py: 79] Epoch 13, iter 5000/6416, lr 0.001000, loss 0.968946 +INFO 2020-12-06 15:33:48 train.py: 79] Epoch 13, iter 5200/6416, lr 0.001000, loss 0.978118 +INFO 2020-12-06 15:40:08 train.py: 79] Epoch 13, iter 5400/6416, lr 0.001000, loss 0.973513 +INFO 2020-12-06 15:46:28 train.py: 79] Epoch 13, iter 5600/6416, lr 0.001000, loss 0.980251 +INFO 2020-12-06 15:52:48 train.py: 79] Epoch 13, iter 5800/6416, lr 0.001000, loss 0.968728 +INFO 2020-12-06 15:59:07 train.py: 92] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2020-12-06 15:59:09 train.py: 79] Epoch 13, iter 6000/6416, lr 0.001000, loss 0.972907 +INFO 2020-12-06 16:05:30 train.py: 79] Epoch 13, iter 6200/6416, lr 0.001000, loss 0.978645 +INFO 2020-12-06 16:11:50 train.py: 79] Epoch 13, iter 6400/6416, lr 0.001000, loss 0.984186 +INFO 2020-12-06 16:12:18 train.py: 97] Save checkpoint Epoch_13.pt to disk... +INFO 2020-12-06 16:12:21 train.py: 79] Epoch 14, iter 0/6416, lr 0.001000, loss 0.965483 +INFO 2020-12-06 16:18:40 train.py: 79] Epoch 14, iter 200/6416, lr 0.001000, loss 0.950053 +INFO 2020-12-06 16:25:01 train.py: 79] Epoch 14, iter 400/6416, lr 0.001000, loss 0.942763 +INFO 2020-12-06 16:31:19 train.py: 79] Epoch 14, iter 600/6416, lr 0.001000, loss 0.949050 +INFO 2020-12-06 16:37:38 train.py: 79] Epoch 14, iter 800/6416, lr 0.001000, loss 0.946663 +INFO 2020-12-06 16:43:57 train.py: 79] Epoch 14, iter 1000/6416, lr 0.001000, loss 0.939141 +INFO 2020-12-06 16:50:17 train.py: 79] Epoch 14, iter 1200/6416, lr 0.001000, loss 0.948596 +INFO 2020-12-06 16:56:36 train.py: 79] Epoch 14, iter 1400/6416, lr 0.001000, loss 0.939278 +INFO 2020-12-06 17:02:55 train.py: 79] Epoch 14, iter 1600/6416, lr 0.001000, loss 0.942789 +INFO 2020-12-06 17:09:13 train.py: 79] Epoch 14, iter 1800/6416, lr 0.001000, loss 0.955463 +INFO 2020-12-06 17:15:34 train.py: 79] Epoch 14, iter 2000/6416, lr 0.001000, loss 0.939293 +INFO 2020-12-06 17:21:53 train.py: 79] Epoch 14, iter 2200/6416, lr 0.001000, loss 0.948789 +INFO 2020-12-06 17:28:14 train.py: 79] Epoch 14, iter 2400/6416, lr 0.001000, loss 0.945787 +INFO 2020-12-06 17:34:33 train.py: 79] Epoch 14, iter 2600/6416, lr 0.001000, loss 0.947393 +INFO 2020-12-06 17:40:53 train.py: 79] Epoch 14, iter 2800/6416, lr 0.001000, loss 0.950612 +INFO 2020-12-06 17:47:12 train.py: 92] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2020-12-06 17:47:14 train.py: 79] Epoch 14, iter 3000/6416, lr 0.001000, loss 0.942860 +INFO 2020-12-06 17:53:34 train.py: 79] Epoch 14, iter 3200/6416, lr 0.001000, loss 0.943538 +INFO 2020-12-06 17:59:54 train.py: 79] Epoch 14, iter 3400/6416, lr 0.001000, loss 0.952549 +INFO 2020-12-06 18:06:13 train.py: 79] Epoch 14, iter 3600/6416, lr 0.001000, loss 0.943889 +INFO 2020-12-06 18:12:33 train.py: 79] Epoch 14, iter 3800/6416, lr 0.001000, loss 0.944875 +INFO 2020-12-06 18:18:52 train.py: 79] Epoch 14, iter 4000/6416, lr 0.001000, loss 0.942350 +INFO 2020-12-06 18:25:12 train.py: 79] Epoch 14, iter 4200/6416, lr 0.001000, loss 0.951103 +INFO 2020-12-06 18:31:32 train.py: 79] Epoch 14, iter 4400/6416, lr 0.001000, loss 0.954832 +INFO 2020-12-06 18:37:52 train.py: 79] Epoch 14, iter 4600/6416, lr 0.001000, loss 0.955230 +INFO 2020-12-06 18:44:12 train.py: 79] Epoch 14, iter 4800/6416, lr 0.001000, loss 0.954810 +INFO 2020-12-06 18:50:32 train.py: 79] Epoch 14, iter 5000/6416, lr 0.001000, loss 0.948358 +INFO 2020-12-06 18:56:52 train.py: 79] Epoch 14, iter 5200/6416, lr 0.001000, loss 0.941443 +INFO 2020-12-06 19:03:12 train.py: 79] Epoch 14, iter 5400/6416, lr 0.001000, loss 0.944014 +INFO 2020-12-06 19:09:31 train.py: 79] Epoch 14, iter 5600/6416, lr 0.001000, loss 0.962197 +INFO 2020-12-06 19:15:52 train.py: 79] Epoch 14, iter 5800/6416, lr 0.001000, loss 0.951441 +INFO 2020-12-06 19:22:10 train.py: 92] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2020-12-06 19:22:12 train.py: 79] Epoch 14, iter 6000/6416, lr 0.001000, loss 0.961924 +INFO 2020-12-06 19:28:32 train.py: 79] Epoch 14, iter 6200/6416, lr 0.001000, loss 0.943430 +INFO 2020-12-06 19:34:52 train.py: 79] Epoch 14, iter 6400/6416, lr 0.001000, loss 0.953354 +INFO 2020-12-06 19:35:20 train.py: 97] Save checkpoint Epoch_14.pt to disk... +INFO 2020-12-06 19:35:23 train.py: 79] Epoch 15, iter 0/6416, lr 0.001000, loss 0.935825 +INFO 2020-12-06 19:41:43 train.py: 79] Epoch 15, iter 200/6416, lr 0.001000, loss 0.909370 +INFO 2020-12-06 19:48:03 train.py: 79] Epoch 15, iter 400/6416, lr 0.001000, loss 0.920209 +INFO 2020-12-06 19:54:23 train.py: 79] Epoch 15, iter 600/6416, lr 0.001000, loss 0.914311 +INFO 2020-12-06 20:00:43 train.py: 79] Epoch 15, iter 800/6416, lr 0.001000, loss 0.926013 +INFO 2020-12-06 20:07:02 train.py: 79] Epoch 15, iter 1000/6416, lr 0.001000, loss 0.916556 +INFO 2020-12-06 20:13:21 train.py: 79] Epoch 15, iter 1200/6416, lr 0.001000, loss 0.919629 +INFO 2020-12-06 20:19:40 train.py: 79] Epoch 15, iter 1400/6416, lr 0.001000, loss 0.919652 +INFO 2020-12-06 20:25:59 train.py: 79] Epoch 15, iter 1600/6416, lr 0.001000, loss 0.924657 +INFO 2020-12-06 20:32:19 train.py: 79] Epoch 15, iter 1800/6416, lr 0.001000, loss 0.933341 +INFO 2020-12-06 20:38:39 train.py: 79] Epoch 15, iter 2000/6416, lr 0.001000, loss 0.921353 +INFO 2020-12-06 20:44:59 train.py: 79] Epoch 15, iter 2200/6416, lr 0.001000, loss 0.922088 +INFO 2020-12-06 20:51:18 train.py: 79] Epoch 15, iter 2400/6416, lr 0.001000, loss 0.931816 +INFO 2020-12-06 20:57:38 train.py: 79] Epoch 15, iter 2600/6416, lr 0.001000, loss 0.934314 +INFO 2020-12-06 21:03:57 train.py: 79] Epoch 15, iter 2800/6416, lr 0.001000, loss 0.924028 +INFO 2020-12-06 21:10:16 train.py: 92] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2020-12-06 21:10:18 train.py: 79] Epoch 15, iter 3000/6416, lr 0.001000, loss 0.917808 +INFO 2020-12-06 21:16:37 train.py: 79] Epoch 15, iter 3200/6416, lr 0.001000, loss 0.930806 +INFO 2020-12-06 21:22:57 train.py: 79] Epoch 15, iter 3400/6416, lr 0.001000, loss 0.938937 +INFO 2020-12-06 21:29:16 train.py: 79] Epoch 15, iter 3600/6416, lr 0.001000, loss 0.932077 +INFO 2020-12-06 21:35:36 train.py: 79] Epoch 15, iter 3800/6416, lr 0.001000, loss 0.930898 +INFO 2020-12-06 21:41:57 train.py: 79] Epoch 15, iter 4000/6416, lr 0.001000, loss 0.922503 +INFO 2020-12-06 21:48:17 train.py: 79] Epoch 15, iter 4200/6416, lr 0.001000, loss 0.922279 +INFO 2020-12-06 21:54:36 train.py: 79] Epoch 15, iter 4400/6416, lr 0.001000, loss 0.931669 +INFO 2020-12-06 22:00:56 train.py: 79] Epoch 15, iter 4600/6416, lr 0.001000, loss 0.934641 +INFO 2020-12-06 22:07:15 train.py: 79] Epoch 15, iter 4800/6416, lr 0.001000, loss 0.933393 +INFO 2020-12-06 22:13:36 train.py: 79] Epoch 15, iter 5000/6416, lr 0.001000, loss 0.926171 +INFO 2020-12-06 22:19:55 train.py: 79] Epoch 15, iter 5200/6416, lr 0.001000, loss 0.932479 +INFO 2020-12-06 22:26:17 train.py: 79] Epoch 15, iter 5400/6416, lr 0.001000, loss 0.934811 +INFO 2020-12-06 22:32:36 train.py: 79] Epoch 15, iter 5600/6416, lr 0.001000, loss 0.928534 +INFO 2020-12-06 22:38:57 train.py: 79] Epoch 15, iter 5800/6416, lr 0.001000, loss 0.941098 +INFO 2020-12-06 22:45:17 train.py: 92] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2020-12-06 22:45:19 train.py: 79] Epoch 15, iter 6000/6416, lr 0.001000, loss 0.929192 +INFO 2020-12-06 22:51:39 train.py: 79] Epoch 15, iter 6200/6416, lr 0.001000, loss 0.933308 +INFO 2020-12-06 22:58:00 train.py: 79] Epoch 15, iter 6400/6416, lr 0.001000, loss 0.937846 +INFO 2020-12-06 22:58:29 train.py: 97] Save checkpoint Epoch_15.pt to disk... +INFO 2020-12-06 22:58:32 train.py: 79] Epoch 16, iter 0/6416, lr 0.000100, loss 0.971559 +INFO 2020-12-06 23:04:51 train.py: 79] Epoch 16, iter 200/6416, lr 0.000100, loss 0.899312 +INFO 2020-12-06 23:11:10 train.py: 79] Epoch 16, iter 400/6416, lr 0.000100, loss 0.899546 +INFO 2020-12-06 23:17:30 train.py: 79] Epoch 16, iter 600/6416, lr 0.000100, loss 0.900199 +INFO 2020-12-06 23:23:49 train.py: 79] Epoch 16, iter 800/6416, lr 0.000100, loss 0.891348 +INFO 2020-12-06 23:30:08 train.py: 79] Epoch 16, iter 1000/6416, lr 0.000100, loss 0.893778 +INFO 2020-12-06 23:36:27 train.py: 79] Epoch 16, iter 1200/6416, lr 0.000100, loss 0.890369 +INFO 2020-12-06 23:42:47 train.py: 79] Epoch 16, iter 1400/6416, lr 0.000100, loss 0.895213 +INFO 2020-12-06 23:49:06 train.py: 79] Epoch 16, iter 1600/6416, lr 0.000100, loss 0.905256 +INFO 2020-12-06 23:55:25 train.py: 79] Epoch 16, iter 1800/6416, lr 0.000100, loss 0.898873 +INFO 2020-12-07 00:01:45 train.py: 79] Epoch 16, iter 2000/6416, lr 0.000100, loss 0.893949 +INFO 2020-12-07 00:08:05 train.py: 79] Epoch 16, iter 2200/6416, lr 0.000100, loss 0.903722 +INFO 2020-12-07 00:14:24 train.py: 79] Epoch 16, iter 2400/6416, lr 0.000100, loss 0.897051 +INFO 2020-12-07 00:20:44 train.py: 79] Epoch 16, iter 2600/6416, lr 0.000100, loss 0.898794 +INFO 2020-12-07 00:27:03 train.py: 79] Epoch 16, iter 2800/6416, lr 0.000100, loss 0.903484 +INFO 2020-12-07 00:33:23 train.py: 92] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2020-12-07 00:33:25 train.py: 79] Epoch 16, iter 3000/6416, lr 0.000100, loss 0.902564 +INFO 2020-12-07 00:39:45 train.py: 79] Epoch 16, iter 3200/6416, lr 0.000100, loss 0.900985 +INFO 2020-12-07 00:46:06 train.py: 79] Epoch 16, iter 3400/6416, lr 0.000100, loss 0.914455 +INFO 2020-12-07 00:52:26 train.py: 79] Epoch 16, iter 3600/6416, lr 0.000100, loss 0.901060 +INFO 2020-12-07 00:58:46 train.py: 79] Epoch 16, iter 3800/6416, lr 0.000100, loss 0.910659 +INFO 2020-12-07 01:05:06 train.py: 79] Epoch 16, iter 4000/6416, lr 0.000100, loss 0.890063 +INFO 2020-12-07 01:11:27 train.py: 79] Epoch 16, iter 4200/6416, lr 0.000100, loss 0.892856 +INFO 2020-12-07 01:17:48 train.py: 79] Epoch 16, iter 4400/6416, lr 0.000100, loss 0.899108 +INFO 2020-12-07 01:24:08 train.py: 79] Epoch 16, iter 4600/6416, lr 0.000100, loss 0.891107 +INFO 2020-12-07 01:30:29 train.py: 79] Epoch 16, iter 4800/6416, lr 0.000100, loss 0.902412 +INFO 2020-12-07 01:36:49 train.py: 79] Epoch 16, iter 5000/6416, lr 0.000100, loss 0.893027 +INFO 2020-12-07 01:43:09 train.py: 79] Epoch 16, iter 5200/6416, lr 0.000100, loss 0.895569 +INFO 2020-12-07 01:49:30 train.py: 79] Epoch 16, iter 5400/6416, lr 0.000100, loss 0.887312 +INFO 2020-12-07 01:55:51 train.py: 79] Epoch 16, iter 5600/6416, lr 0.000100, loss 0.899679 +INFO 2020-12-07 02:02:11 train.py: 79] Epoch 16, iter 5800/6416, lr 0.000100, loss 0.894838 +INFO 2020-12-07 02:08:30 train.py: 92] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2020-12-07 02:08:32 train.py: 79] Epoch 16, iter 6000/6416, lr 0.000100, loss 0.891069 +INFO 2020-12-07 02:14:52 train.py: 79] Epoch 16, iter 6200/6416, lr 0.000100, loss 0.904488 +INFO 2020-12-07 02:21:14 train.py: 79] Epoch 16, iter 6400/6416, lr 0.000100, loss 0.885888 +INFO 2020-12-07 02:21:41 train.py: 97] Save checkpoint Epoch_16.pt to disk... +INFO 2020-12-07 02:21:45 train.py: 79] Epoch 17, iter 0/6416, lr 0.000100, loss 0.934706 +INFO 2020-12-07 02:28:05 train.py: 79] Epoch 17, iter 200/6416, lr 0.000100, loss 0.893623 +INFO 2020-12-07 02:34:24 train.py: 79] Epoch 17, iter 400/6416, lr 0.000100, loss 0.901666 +INFO 2020-12-07 02:40:45 train.py: 79] Epoch 17, iter 600/6416, lr 0.000100, loss 0.892125 +INFO 2020-12-07 02:47:04 train.py: 79] Epoch 17, iter 800/6416, lr 0.000100, loss 0.898280 +INFO 2020-12-07 02:53:24 train.py: 79] Epoch 17, iter 1000/6416, lr 0.000100, loss 0.891789 +INFO 2020-12-07 02:59:43 train.py: 79] Epoch 17, iter 1200/6416, lr 0.000100, loss 0.888356 +INFO 2020-12-07 03:06:03 train.py: 79] Epoch 17, iter 1400/6416, lr 0.000100, loss 0.897336 +INFO 2020-12-07 03:12:22 train.py: 79] Epoch 17, iter 1600/6416, lr 0.000100, loss 0.892398 +INFO 2020-12-07 03:18:43 train.py: 79] Epoch 17, iter 1800/6416, lr 0.000100, loss 0.905767 +INFO 2020-12-07 03:25:02 train.py: 79] Epoch 17, iter 2000/6416, lr 0.000100, loss 0.885561 +INFO 2020-12-07 03:31:23 train.py: 79] Epoch 17, iter 2200/6416, lr 0.000100, loss 0.887983 +INFO 2020-12-07 03:37:42 train.py: 79] Epoch 17, iter 2400/6416, lr 0.000100, loss 0.899450 +INFO 2020-12-07 03:44:01 train.py: 79] Epoch 17, iter 2600/6416, lr 0.000100, loss 0.892069 +INFO 2020-12-07 03:50:21 train.py: 79] Epoch 17, iter 2800/6416, lr 0.000100, loss 0.894267 +INFO 2020-12-07 03:56:39 train.py: 92] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2020-12-07 03:56:41 train.py: 79] Epoch 17, iter 3000/6416, lr 0.000100, loss 0.890403 +INFO 2020-12-07 04:03:01 train.py: 79] Epoch 17, iter 3200/6416, lr 0.000100, loss 0.879247 +INFO 2020-12-07 04:09:22 train.py: 79] Epoch 17, iter 3400/6416, lr 0.000100, loss 0.901325 +INFO 2020-12-07 04:15:43 train.py: 79] Epoch 17, iter 3600/6416, lr 0.000100, loss 0.903118 +INFO 2020-12-07 04:22:03 train.py: 79] Epoch 17, iter 3800/6416, lr 0.000100, loss 0.894275 +INFO 2020-12-07 04:28:24 train.py: 79] Epoch 17, iter 4000/6416, lr 0.000100, loss 0.897160 +INFO 2020-12-07 04:34:43 train.py: 79] Epoch 17, iter 4200/6416, lr 0.000100, loss 0.889665 +INFO 2020-12-07 04:41:04 train.py: 79] Epoch 17, iter 4400/6416, lr 0.000100, loss 0.900363 +INFO 2020-12-07 04:47:25 train.py: 79] Epoch 17, iter 4600/6416, lr 0.000100, loss 0.898280 +INFO 2020-12-07 04:53:46 train.py: 79] Epoch 17, iter 4800/6416, lr 0.000100, loss 0.890538 +INFO 2020-12-07 05:00:06 train.py: 79] Epoch 17, iter 5000/6416, lr 0.000100, loss 0.899692 +INFO 2020-12-07 05:06:27 train.py: 79] Epoch 17, iter 5200/6416, lr 0.000100, loss 0.900445 +INFO 2020-12-07 05:12:46 train.py: 79] Epoch 17, iter 5400/6416, lr 0.000100, loss 0.891245 +INFO 2020-12-07 05:19:07 train.py: 79] Epoch 17, iter 5600/6416, lr 0.000100, loss 0.901533 +INFO 2020-12-07 05:25:27 train.py: 79] Epoch 17, iter 5800/6416, lr 0.000100, loss 0.886352 +INFO 2020-12-07 05:31:46 train.py: 92] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2020-12-07 05:31:48 train.py: 79] Epoch 17, iter 6000/6416, lr 0.000100, loss 0.902356 +INFO 2020-12-07 05:38:10 train.py: 79] Epoch 17, iter 6200/6416, lr 0.000100, loss 0.891394 +INFO 2020-12-07 05:44:30 train.py: 79] Epoch 17, iter 6400/6416, lr 0.000100, loss 0.888566 +INFO 2020-12-07 05:44:58 train.py: 97] Save checkpoint Epoch_17.pt to disk... +INFO 2020-12-07 05:44:59 train.py: 180] Optimization done! diff --git a/bob/bio/facexzoo/models/backbones/LightCNN29/.gitkeep b/bob/bio/facexzoo/models/backbones/LightCNN29/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_RFW_African.txt b/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_RFW_African.txt new file mode 100644 index 0000000000000000000000000000000000000000..6050b372952bdab6b7362e0ecbdc89882fbdea10 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_RFW_African.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_5999.pt | 0.8831666666666667 | 0.004335113594422089 | +| Epoch_17.pt | 0.8825 | 0.0037039351779518488 | +| Epoch_16_batch_5999.pt | 0.882 | 0.003973678831610594 | +| Epoch_13_batch_5999.pt | 0.8816666666666666 | 0.0037101795237919973 | +| Epoch_14_batch_5999.pt | 0.8815000000000002 | 0.004017323597731317 | +| Epoch_14_batch_2999.pt | 0.8815 | 0.003986474044646715 | +| Epoch_16.pt | 0.8813333333333334 | 0.0037989602216175035 | +| Epoch_17_batch_2999.pt | 0.8811666666666668 | 0.0036603480911175826 | +| Epoch_16_batch_2999.pt | 0.8811666666666668 | 0.0039287638240527 | +| Epoch_15.pt | 0.881 | 0.004354648431614538 | +| Epoch_14.pt | 0.8806666666666668 | 0.0036362373715452404 | +| Epoch_17_batch_5999.pt | 0.8806666666666667 | 0.0038825344910346986 | +| Epoch_13_batch_2999.pt | 0.8798333333333332 | 0.0038204291659898176 | +| Epoch_13.pt | 0.8793333333333333 | 0.0038425814368423503 | +| Epoch_15_batch_2999.pt | 0.8785000000000001 | 0.003713921091857393 | +| Epoch_12_batch_2999.pt | 0.8763333333333334 | 0.004429140317332167 | +| Epoch_11_batch_2999.pt | 0.8743333333333332 | 0.004734950167258339 | +| Epoch_10_batch_5999.pt | 0.8738333333333334 | 0.004052510272185977 | +| Epoch_11_batch_5999.pt | 0.8738333333333334 | 0.004367740891333548 | +| Epoch_12_batch_5999.pt | 0.8736666666666666 | 0.004559618784151823 | +| Epoch_12.pt | 0.8711666666666668 | 0.004052510272185977 | +| Epoch_11.pt | 0.8706666666666667 | 0.005013561854523771 | +| Epoch_10.pt | 0.8683333333333334 | 0.004694362260950576 | +| Epoch_10_batch_2999.pt | 0.8636666666666667 | 0.004725815626252604 | +| Epoch_9_batch_2999.pt | 0.8348333333333333 | 0.0029128281619818486 | +| Epoch_9_batch_5999.pt | 0.8343333333333334 | 0.003728435941236115 | +| Epoch_8_batch_2999.pt | 0.834 | 0.00438290731629245 | +| Epoch_9.pt | 0.8333333333333334 | 0.0032584173996922723 | +| Epoch_8_batch_5999.pt | 0.8323333333333334 | 0.0044527699798919745 | +| Epoch_7_batch_2999.pt | 0.8320000000000001 | 0.004126098806139364 | +| Epoch_7_batch_5999.pt | 0.8311666666666666 | 0.0036519063176766236 | +| Epoch_6_batch_2999.pt | 0.8281666666666666 | 0.004781974900667853 | +| Epoch_8.pt | 0.8268333333333334 | 0.0046643512774560865 | +| Epoch_6_batch_5999.pt | 0.826 | 0.004275973645531971 | +| Epoch_7.pt | 0.8258333333333333 | 0.003145151078826256 | +| Epoch_5_batch_5999.pt | 0.8234999999999999 | 0.0031957726707265836 | +| Epoch_6.pt | 0.8231666666666666 | 0.00403265987643544 | +| Epoch_5_batch_2999.pt | 0.8183333333333334 | 0.004906533814626583 | +| Epoch_5.pt | 0.8108333333333334 | 0.0037944891814509288 | +| Epoch_4_batch_2999.pt | 0.808 | 0.00353815185068681 | +| Epoch_4.pt | 0.8056666666666666 | 0.0028781852993308003 | +| Epoch_4_batch_5999.pt | 0.8028333333333334 | 0.005988930117359638 | +| Epoch_3_batch_5999.pt | 0.7991666666666666 | 0.005796177965896643 | +| Epoch_3_batch_2999.pt | 0.7853333333333333 | 0.005004935835357872 | +| Epoch_3.pt | 0.7761666666666668 | 0.0036771734985273107 | +| Epoch_2_batch_5999.pt | 0.7735000000000001 | 0.005051891223915218 | +| Epoch_2_batch_2999.pt | 0.7615 | 0.0048460878965650815 | +| Epoch_2.pt | 0.7581666666666667 | 0.006238322424070975 | +| Epoch_1_batch_5999.pt | 0.7323333333333333 | 0.004038395965641385 | +| Epoch_1.pt | 0.7021666666666666 | 0.004981756842176052 | +| Epoch_1_batch_2999.pt | 0.6933333333333334 | 0.0037018513886572595 | +| Epoch_0.pt | 0.6323333333333333 | 0.004548775442324159 | +| Epoch_0_batch_5999.pt | 0.6188333333333332 | 0.0038252733300226695 | +| Epoch_0_batch_2999.pt | 0.5650000000000001 | 0.006039990188856396 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_RFW_Asian.txt b/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_RFW_Asian.txt new file mode 100644 index 0000000000000000000000000000000000000000..d8e3ff24063ab6fc1c6cd762cd5d7d27118c2bda --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_RFW_Asian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14.pt | 0.8783333333333335 | 0.005055250296034368 | +| Epoch_13_batch_2999.pt | 0.8773333333333333 | 0.0046956770242478725 | +| Epoch_16.pt | 0.8771666666666667 | 0.004727448088778852 | +| Epoch_13_batch_5999.pt | 0.8755000000000001 | 0.005466226269523583 | +| Epoch_16_batch_5999.pt | 0.8755000000000001 | 0.005104161942552606 | +| Epoch_13.pt | 0.8751666666666669 | 0.005850240049944562 | +| Epoch_17_batch_2999.pt | 0.8751666666666666 | 0.005273097339852125 | +| Epoch_17.pt | 0.8751666666666666 | 0.005220153254455276 | +| Epoch_14_batch_5999.pt | 0.8751666666666666 | 0.005273097339852127 | +| Epoch_17_batch_5999.pt | 0.875 | 0.004887626099538391 | +| Epoch_14_batch_2999.pt | 0.875 | 0.005351819812796579 | +| Epoch_11_batch_5999.pt | 0.8745 | 0.005352108157389482 | +| Epoch_15.pt | 0.8739999999999999 | 0.004901498888913948 | +| Epoch_11.pt | 0.8736666666666668 | 0.005537749241945386 | +| Epoch_15_batch_5999.pt | 0.8735000000000002 | 0.0057437566749245885 | +| Epoch_16_batch_2999.pt | 0.8731666666666668 | 0.004833333333333336 | +| Epoch_12.pt | 0.8726666666666667 | 0.005763872155263528 | +| Epoch_12_batch_5999.pt | 0.8723333333333333 | 0.005444444444444448 | +| Epoch_12_batch_2999.pt | 0.8708333333333333 | 0.005623199300253397 | +| Epoch_11_batch_2999.pt | 0.8705 | 0.006339422024517554 | +| Epoch_15_batch_2999.pt | 0.8703333333333333 | 0.005344894875913647 | +| Epoch_10.pt | 0.8683333333333334 | 0.004987639041658544 | +| Epoch_10_batch_2999.pt | 0.868 | 0.00532754315321638 | +| Epoch_10_batch_5999.pt | 0.8664999999999999 | 0.005474125444554232 | +| Epoch_7_batch_5999.pt | 0.8493333333333333 | 0.004695677024247878 | +| Epoch_9_batch_2999.pt | 0.8461666666666666 | 0.005746979883188888 | +| Epoch_8_batch_5999.pt | 0.8458333333333332 | 0.005260204662027873 | +| Epoch_9_batch_5999.pt | 0.8455 | 0.004875296762097517 | +| Epoch_7_batch_2999.pt | 0.841 | 0.005890984951916249 | +| Epoch_8_batch_2999.pt | 0.8401666666666667 | 0.00572222222222222 | +| Epoch_6_batch_2999.pt | 0.8378333333333334 | 0.007009913614937693 | +| Epoch_6_batch_5999.pt | 0.8353333333333334 | 0.004387130449422137 | +| Epoch_9.pt | 0.8346666666666668 | 0.005017254179944733 | +| Epoch_7.pt | 0.8343333333333334 | 0.005450110430413657 | +| Epoch_5_batch_5999.pt | 0.833 | 0.006155395104206466 | +| Epoch_6.pt | 0.8310000000000001 | 0.0037449554547450505 | +| Epoch_8.pt | 0.8293333333333333 | 0.005963883066808729 | +| Epoch_5_batch_2999.pt | 0.829 | 0.005068664323536467 | +| Epoch_4_batch_5999.pt | 0.8248333333333333 | 0.006218500871304899 | +| Epoch_4_batch_2999.pt | 0.8173333333333334 | 0.0040990814990437136 | +| Epoch_3_batch_5999.pt | 0.8163333333333334 | 0.005836242660741735 | +| Epoch_5.pt | 0.8133333333333332 | 0.005499719409228701 | +| Epoch_4.pt | 0.813 | 0.004880042501332823 | +| Epoch_3_batch_2999.pt | 0.8006666666666666 | 0.005578840093614753 | +| Epoch_3.pt | 0.7973333333333332 | 0.004275973645531967 | +| Epoch_2_batch_5999.pt | 0.7956666666666667 | 0.0036784323016104143 | +| Epoch_2_batch_2999.pt | 0.7798333333333333 | 0.0034377174454233357 | +| Epoch_2.pt | 0.7770000000000001 | 0.004841946348777979 | +| Epoch_1_batch_5999.pt | 0.7476666666666667 | 0.004225145187073671 | +| Epoch_1.pt | 0.7288333333333333 | 0.003936611941790417 | +| Epoch_1_batch_2999.pt | 0.7208333333333332 | 0.006142595663193328 | +| Epoch_0_batch_5999.pt | 0.6743333333333335 | 0.005001234415523062 | +| Epoch_0.pt | 0.6696666666666666 | 0.00611515018036312 | +| Epoch_0_batch_2999.pt | 0.6291666666666667 | 0.00735035902373331 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_RFW_Caucasian.txt b/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_RFW_Caucasian.txt new file mode 100644 index 0000000000000000000000000000000000000000..84a1efb43636a5902d0f62c02579722d283302c6 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_RFW_Caucasian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17_batch_2999.pt | 0.9533333333333335 | 0.0025700074458267466 | +| Epoch_17_batch_5999.pt | 0.9528333333333332 | 0.002434956333423463 | +| Epoch_15.pt | 0.9521666666666666 | 0.0020645449084513356 | +| Epoch_16_batch_2999.pt | 0.9521666666666666 | 0.0022089883724523353 | +| Epoch_17.pt | 0.9518333333333333 | 0.0021865187393504924 | +| Epoch_14_batch_2999.pt | 0.9518333333333333 | 0.0027827732858596048 | +| Epoch_16_batch_5999.pt | 0.9515 | 0.002388888888888892 | +| Epoch_15_batch_2999.pt | 0.9513333333333334 | 0.002519063121945468 | +| Epoch_13_batch_2999.pt | 0.9508333333333333 | 0.002655648533937139 | +| Epoch_14.pt | 0.9508333333333333 | 0.002573008039313208 | +| Epoch_13_batch_5999.pt | 0.9506666666666665 | 0.0023596400646216935 | +| Epoch_16.pt | 0.9503333333333334 | 0.0025795970591653114 | +| Epoch_13.pt | 0.9498333333333333 | 0.0024400212506664183 | +| Epoch_14_batch_5999.pt | 0.9498333333333331 | 0.0025391988626725414 | +| Epoch_15_batch_5999.pt | 0.9490000000000001 | 0.0025724082006200496 | +| Epoch_11.pt | 0.9486666666666668 | 0.0027755546659548463 | +| Epoch_12_batch_5999.pt | 0.9475 | 0.0035939764421413062 | +| Epoch_12_batch_2999.pt | 0.9469999999999998 | 0.0025795970591653136 | +| Epoch_10.pt | 0.9466666666666667 | 0.0021081851067789197 | +| Epoch_11_batch_5999.pt | 0.9466666666666667 | 0.0034960294939005055 | +| Epoch_12.pt | 0.9450000000000001 | 0.003360996324945372 | +| Epoch_11_batch_2999.pt | 0.9450000000000001 | 0.0030020569080236145 | +| Epoch_10_batch_5999.pt | 0.9446666666666668 | 0.0027193862778934247 | +| Epoch_10_batch_2999.pt | 0.9433333333333334 | 0.002151657414559672 | +| Epoch_9_batch_2999.pt | 0.923 | 0.0028306087117460016 | +| Epoch_9_batch_5999.pt | 0.9206666666666667 | 0.0036021255727660796 | +| Epoch_9.pt | 0.9198333333333334 | 0.0034377174454233318 | +| Epoch_8_batch_2999.pt | 0.9183333333333333 | 0.003496029493900503 | +| Epoch_8_batch_5999.pt | 0.9175000000000001 | 0.002253255532297023 | +| Epoch_7_batch_5999.pt | 0.9163333333333334 | 0.0029270977494043325 | +| Epoch_7_batch_2999.pt | 0.9151666666666666 | 0.003057575090181562 | +| Epoch_6_batch_2999.pt | 0.9136666666666666 | 0.0026851213274654653 | +| Epoch_8.pt | 0.9110000000000001 | 0.002572408200620055 | +| Epoch_6_batch_5999.pt | 0.9084999999999999 | 0.002388888888888887 | +| Epoch_6.pt | 0.906 | 0.004452769979891972 | +| Epoch_5_batch_5999.pt | 0.9059999999999999 | 0.003802208584948599 | +| Epoch_5.pt | 0.9036666666666665 | 0.0048291808471334925 | +| Epoch_5_batch_2999.pt | 0.9028333333333333 | 0.004374801582802231 | +| Epoch_7.pt | 0.9026666666666667 | 0.00404603143467403 | +| Epoch_4_batch_2999.pt | 0.8981666666666666 | 0.004226971013694946 | +| Epoch_4_batch_5999.pt | 0.8973333333333333 | 0.0025843785221362214 | +| Epoch_3_batch_5999.pt | 0.8965000000000002 | 0.003939746811442531 | +| Epoch_4.pt | 0.889 | 0.003703518513888653 | +| Epoch_3.pt | 0.8875 | 0.003055555555555558 | +| Epoch_3_batch_2999.pt | 0.8861666666666667 | 0.0020191979828206915 | +| Epoch_2_batch_5999.pt | 0.8719999999999999 | 0.0025676044462869677 | +| Epoch_2.pt | 0.8666666666666668 | 0.0038167920082928207 | +| Epoch_2_batch_2999.pt | 0.8643333333333334 | 0.004151453709393199 | +| Epoch_1_batch_5999.pt | 0.8426666666666668 | 0.003969015799887057 | +| Epoch_1.pt | 0.8198333333333332 | 0.00472352923088888 | +| Epoch_1_batch_2999.pt | 0.8191666666666666 | 0.0050567764093660435 | +| Epoch_0_batch_5999.pt | 0.7596666666666667 | 0.005598721194375167 | +| Epoch_0.pt | 0.7383333333333334 | 0.005499719409228705 | +| Epoch_0_batch_2999.pt | 0.6643333333333333 | 0.005584369721390692 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_RFW_Indian.txt b/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_RFW_Indian.txt new file mode 100644 index 0000000000000000000000000000000000000000..d82c0539a420294164515bebfe605cf6eab4d7c4 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_RFW_Indian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14_batch_5999.pt | 0.9088333333333333 | 0.00327777777777777 | +| Epoch_16_batch_5999.pt | 0.9073333333333332 | 0.0037035185138886567 | +| Epoch_13_batch_5999.pt | 0.9071666666666667 | 0.0033614554460901854 | +| Epoch_11_batch_5999.pt | 0.9068333333333334 | 0.0034377174454233296 | +| Epoch_16_batch_2999.pt | 0.9068333333333334 | 0.003697262918216627 | +| Epoch_12_batch_5999.pt | 0.9066666666666666 | 0.0033609963249453673 | +| Epoch_15.pt | 0.9063333333333334 | 0.003520662115056634 | +| Epoch_15_batch_2999.pt | 0.9061666666666666 | 0.0034251250315107413 | +| Epoch_17_batch_5999.pt | 0.9058333333333334 | 0.0033998002846209437 | +| Epoch_16.pt | 0.9056666666666668 | 0.003670032125536387 | +| Epoch_17.pt | 0.9056666666666666 | 0.0031836775070876464 | +| Epoch_10.pt | 0.9053333333333334 | 0.004178132372658483 | +| Epoch_14_batch_2999.pt | 0.9053333333333334 | 0.0037085153929508037 | +| Epoch_15_batch_5999.pt | 0.9051666666666666 | 0.003224615969095884 | +| Epoch_11.pt | 0.9051666666666666 | 0.0033282368446111424 | +| Epoch_17_batch_2999.pt | 0.9048333333333332 | 0.0033467323292953374 | +| Epoch_13_batch_2999.pt | 0.9040000000000001 | 0.004151453709393202 | +| Epoch_14.pt | 0.9039999999999999 | 0.003929942040850535 | +| Epoch_12_batch_2999.pt | 0.9036666666666665 | 0.0032942149067496855 | +| Epoch_12.pt | 0.9030000000000001 | 0.004020011670027902 | +| Epoch_13.pt | 0.9023333333333333 | 0.0033811386788228774 | +| Epoch_11_batch_2999.pt | 0.9021666666666668 | 0.0033614554460901806 | +| Epoch_10_batch_5999.pt | 0.9021666666666667 | 0.0037022682403435835 | +| Epoch_10_batch_2999.pt | 0.899 | 0.0032697642154582585 | +| Epoch_9.pt | 0.8866666666666667 | 0.004381498700695629 | +| Epoch_9_batch_5999.pt | 0.8826666666666666 | 0.004375859703892272 | +| Epoch_9_batch_2999.pt | 0.8811666666666668 | 0.003952261424851644 | +| Epoch_8_batch_5999.pt | 0.8785000000000001 | 0.004624478615923729 | +| Epoch_8_batch_2999.pt | 0.8748333333333334 | 0.0038845213569807385 | +| Epoch_7_batch_2999.pt | 0.874 | 0.003984538017120242 | +| Epoch_7_batch_5999.pt | 0.873 | 0.0034765528549249003 | +| Epoch_6.pt | 0.8698333333333335 | 0.0036972629182166353 | +| Epoch_7.pt | 0.8684999999999998 | 0.0030575750901815552 | +| Epoch_6_batch_2999.pt | 0.8673333333333332 | 0.005455770532084851 | +| Epoch_8.pt | 0.867 | 0.0043871304494221336 | +| Epoch_6_batch_5999.pt | 0.8664999999999999 | 0.004093430448841922 | +| Epoch_5.pt | 0.8658333333333335 | 0.003938179688543837 | +| Epoch_5_batch_5999.pt | 0.8623333333333333 | 0.003953432638812715 | +| Epoch_5_batch_2999.pt | 0.8619999999999999 | 0.00294811092476035 | +| Epoch_4_batch_2999.pt | 0.8576666666666666 | 0.004347555010336406 | +| Epoch_4_batch_5999.pt | 0.8548333333333333 | 0.004292183535937485 | +| Epoch_3_batch_5999.pt | 0.8473333333333333 | 0.0030245905752924905 | +| Epoch_4.pt | 0.8460000000000001 | 0.0043829073162924516 | +| Epoch_3_batch_2999.pt | 0.843 | 0.004065816547451559 | +| Epoch_3.pt | 0.8418333333333333 | 0.0041533119314590364 | +| Epoch_2_batch_5999.pt | 0.8328333333333333 | 0.0038892856940415865 | +| Epoch_2_batch_2999.pt | 0.8221666666666666 | 0.004325134694255983 | +| Epoch_2.pt | 0.7996666666666667 | 0.003529417816504129 | +| Epoch_1.pt | 0.7958333333333335 | 0.006276794416591016 | +| Epoch_1_batch_5999.pt | 0.7888333333333333 | 0.004075294430020735 | +| Epoch_1_batch_2999.pt | 0.7613333333333333 | 0.005162782291328418 | +| Epoch_0_batch_5999.pt | 0.7138333333333333 | 0.006275810901320709 | +| Epoch_0.pt | 0.7083333333333333 | 0.0035311663515712665 | +| Epoch_0_batch_2999.pt | 0.6281666666666667 | 0.0036637193541772285 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_agedb30.txt b/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_agedb30.txt new file mode 100644 index 0000000000000000000000000000000000000000..cd9c3e166749e94af91b34d4ac934e5e4a7ec202 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_agedb30.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14.pt | 0.9578333333333333 | 0.0027448042948968066 | +| Epoch_13.pt | 0.9578333333333333 | 0.0027894200468073817 | +| Epoch_13_batch_5999.pt | 0.9574999999999999 | 0.0022804861946415294 | +| Epoch_16_batch_2999.pt | 0.9573333333333333 | 0.002643417167415629 | +| Epoch_17_batch_2999.pt | 0.9568333333333333 | 0.003097689302100148 | +| Epoch_14_batch_5999.pt | 0.9568333333333333 | 0.0024273391416615017 | +| Epoch_14_batch_2999.pt | 0.9566666666666667 | 0.002421610524189266 | +| Epoch_16_batch_5999.pt | 0.9564999999999999 | 0.0026579719364234885 | +| Epoch_17.pt | 0.9563333333333333 | 0.0027193862778934286 | +| Epoch_15_batch_2999.pt | 0.9553333333333333 | 0.0032087842395985937 | +| Epoch_12_batch_5999.pt | 0.9553333333333333 | 0.0026152449546532892 | +| Epoch_13_batch_2999.pt | 0.9551666666666667 | 0.002539198862672546 | +| Epoch_17_batch_5999.pt | 0.9551666666666666 | 0.0030877096070200576 | +| Epoch_15.pt | 0.9550000000000001 | 0.003152502435358025 | +| Epoch_12_batch_2999.pt | 0.9548333333333334 | 0.0029860788111948245 | +| Epoch_15_batch_5999.pt | 0.9546666666666667 | 0.0030711722135745054 | +| Epoch_16.pt | 0.9543333333333333 | 0.0031249691356500537 | +| Epoch_11_batch_5999.pt | 0.9533333333333334 | 0.002843663087126604 | +| Epoch_12.pt | 0.9525 | 0.0027805541680538245 | +| Epoch_11.pt | 0.952 | 0.002958561545709854 | +| Epoch_11_batch_2999.pt | 0.952 | 0.003071172213574502 | +| Epoch_10_batch_5999.pt | 0.9514999999999999 | 0.0026346457114176484 | +| Epoch_10.pt | 0.9503333333333334 | 0.0035555555555555553 | +| Epoch_10_batch_2999.pt | 0.9463333333333332 | 0.0033222036417169015 | +| Epoch_9.pt | 0.9396666666666667 | 0.0037085153929508033 | +| Epoch_8_batch_5999.pt | 0.9396666666666667 | 0.004330483393312235 | +| Epoch_9_batch_5999.pt | 0.9393333333333335 | 0.004368800722519448 | +| Epoch_7_batch_5999.pt | 0.9381666666666668 | 0.006418770698813799 | +| Epoch_8.pt | 0.9369999999999999 | 0.0046201384191759546 | +| Epoch_8_batch_2999.pt | 0.9360000000000002 | 0.004333333333333336 | +| Epoch_9_batch_2999.pt | 0.9356666666666668 | 0.005080828162299415 | +| Epoch_7_batch_2999.pt | 0.9323333333333335 | 0.00445969605341988 | +| Epoch_7.pt | 0.9323333333333332 | 0.004203173404306162 | +| Epoch_5_batch_5999.pt | 0.9279999999999999 | 0.005481731726019557 | +| Epoch_6_batch_5999.pt | 0.9268333333333334 | 0.005786585167543516 | +| Epoch_5_batch_2999.pt | 0.9258333333333335 | 0.006112373606964084 | +| Epoch_6_batch_2999.pt | 0.9256666666666666 | 0.0048253446112463275 | +| Epoch_6.pt | 0.9254999999999999 | 0.006161659628924344 | +| Epoch_5.pt | 0.9231666666666666 | 0.005960000414284514 | +| Epoch_4_batch_2999.pt | 0.9188333333333333 | 0.005049446858839779 | +| Epoch_4_batch_5999.pt | 0.9173333333333333 | 0.006320650068145731 | +| Epoch_4.pt | 0.9145000000000001 | 0.005805754914174107 | +| Epoch_3_batch_5999.pt | 0.9141666666666668 | 0.005796177965896635 | +| Epoch_3_batch_2999.pt | 0.9041666666666668 | 0.006325775217217684 | +| Epoch_2_batch_5999.pt | 0.8955 | 0.00756882005579714 | +| Epoch_3.pt | 0.8896666666666666 | 0.005054029073575178 | +| Epoch_2_batch_2999.pt | 0.8813333333333333 | 0.006372200426195405 | +| Epoch_2.pt | 0.8719999999999999 | 0.008655976312694364 | +| Epoch_1_batch_5999.pt | 0.8571666666666667 | 0.007449625063065048 | +| Epoch_1.pt | 0.8341666666666667 | 0.005710343657903437 | +| Epoch_1_batch_2999.pt | 0.8200000000000001 | 0.008954618092648347 | +| Epoch_0_batch_5999.pt | 0.7471666666666666 | 0.005905897868201722 | +| Epoch_0.pt | 0.7146666666666666 | 0.0049366355314495675 | +| Epoch_0_batch_2999.pt | 0.5974999999999999 | 0.009132934568207554 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..9252be912581525dc5210a8e2e1e682c18a79a68 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_calfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_5999.pt | 0.9386666666666666 | 0.0034765528549248834 | +| Epoch_17_batch_2999.pt | 0.9383333333333332 | 0.003406602159279081 | +| Epoch_15_batch_5999.pt | 0.9381666666666668 | 0.0035175924707281595 | +| Epoch_16_batch_2999.pt | 0.9381666666666666 | 0.0034645470728152986 | +| Epoch_14.pt | 0.9380000000000001 | 0.0032565224199450674 | +| Epoch_15.pt | 0.9376666666666666 | 0.00365317382728302 | +| Epoch_14_batch_2999.pt | 0.9375 | 0.0036872318902322434 | +| Epoch_16.pt | 0.9373333333333334 | 0.003550343401926765 | +| Epoch_11.pt | 0.9371666666666668 | 0.0031036617163252033 | +| Epoch_12_batch_5999.pt | 0.9371666666666668 | 0.00367717349852731 | +| Epoch_12_batch_2999.pt | 0.9371666666666668 | 0.0031036617163251994 | +| Epoch_17_batch_5999.pt | 0.9366666666666668 | 0.0038086970002228033 | +| Epoch_15_batch_2999.pt | 0.9366666666666668 | 0.004112612338515937 | +| Epoch_14_batch_5999.pt | 0.9365 | 0.003796115623523671 | +| Epoch_17.pt | 0.9364999999999999 | 0.0039475730941090055 | +| Epoch_13.pt | 0.9359999999999999 | 0.0037777777777777736 | +| Epoch_13_batch_5999.pt | 0.9359999999999999 | 0.003728435941236117 | +| Epoch_13_batch_2999.pt | 0.9356666666666668 | 0.0037201486761740425 | +| Epoch_11_batch_2999.pt | 0.9348333333333333 | 0.003473444229409015 | +| Epoch_10_batch_5999.pt | 0.9345000000000001 | 0.003833333333333333 | +| Epoch_10.pt | 0.9343333333333336 | 0.003976784481816283 | +| Epoch_12.pt | 0.9331666666666667 | 0.0036721339710357125 | +| Epoch_10_batch_2999.pt | 0.9331666666666667 | 0.003578485092263983 | +| Epoch_11_batch_5999.pt | 0.9316666666666666 | 0.0038968173148333737 | +| Epoch_9.pt | 0.9271666666666667 | 0.0033152286106301544 | +| Epoch_9_batch_5999.pt | 0.9255000000000001 | 0.004157768276015034 | +| Epoch_7_batch_2999.pt | 0.9238333333333333 | 0.003897213312732352 | +| Epoch_9_batch_2999.pt | 0.9226666666666666 | 0.004396968652757638 | +| Epoch_7_batch_5999.pt | 0.9218333333333334 | 0.004377622670687092 | +| Epoch_8_batch_5999.pt | 0.9211666666666666 | 0.004486261607382761 | +| Epoch_8_batch_2999.pt | 0.9201666666666665 | 0.0032341732395173087 | +| Epoch_6_batch_2999.pt | 0.9191666666666668 | 0.0033724556023947117 | +| Epoch_8.pt | 0.9178333333333335 | 0.0037928620419329538 | +| Epoch_5_batch_2999.pt | 0.9166666666666666 | 0.004281744192888379 | +| Epoch_6_batch_5999.pt | 0.9164999999999999 | 0.0038924586790229725 | +| Epoch_6.pt | 0.9161666666666667 | 0.0037437190197403196 | +| Epoch_5_batch_5999.pt | 0.9146666666666668 | 0.003996912388578883 | +| Epoch_7.pt | 0.9111666666666667 | 0.003434124324561246 | +| Epoch_4_batch_5999.pt | 0.9099999999999999 | 0.004194352464039306 | +| Epoch_5.pt | 0.9096666666666666 | 0.004980207740225552 | +| Epoch_4_batch_2999.pt | 0.9061666666666666 | 0.004655078204114274 | +| Epoch_3_batch_5999.pt | 0.9026666666666667 | 0.0040307460327149 | +| Epoch_4.pt | 0.898 | 0.003649792823479302 | +| Epoch_3_batch_2999.pt | 0.8955 | 0.00545492189123787 | +| Epoch_3.pt | 0.8946666666666665 | 0.003839367231815773 | +| Epoch_2_batch_5999.pt | 0.8943333333333333 | 0.004951617767812707 | +| Epoch_2.pt | 0.8821666666666668 | 0.004956913117487637 | +| Epoch_2_batch_2999.pt | 0.8815000000000002 | 0.006228419532798287 | +| Epoch_1_batch_5999.pt | 0.8521666666666666 | 0.005403759550900705 | +| Epoch_1.pt | 0.8471666666666667 | 0.004574823750231149 | +| Epoch_1_batch_2999.pt | 0.8285 | 0.006645568466799026 | +| Epoch_0_batch_5999.pt | 0.7381666666666666 | 0.004651098370211358 | +| Epoch_0.pt | 0.7313333333333334 | 0.005138813813265414 | +| Epoch_0_batch_2999.pt | 0.5836666666666666 | 0.005815050714724233 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..04e90766503d8019ca66bd9f1a690ee620eb1cce --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_cplfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_5999.pt | 0.826 | 0.006621140851306477 | +| Epoch_13.pt | 0.8256666666666665 | 0.006046119049072346 | +| Epoch_16_batch_2999.pt | 0.8256666666666665 | 0.006484549538406609 | +| Epoch_17.pt | 0.8254999999999999 | 0.006961312846238844 | +| Epoch_15_batch_5999.pt | 0.8253333333333334 | 0.006572482853853442 | +| Epoch_16.pt | 0.8251666666666667 | 0.0064952499262875335 | +| Epoch_17_batch_5999.pt | 0.8248333333333333 | 0.006783467557139595 | +| Epoch_17_batch_2999.pt | 0.8244999999999999 | 0.0069657451100561835 | +| Epoch_13_batch_5999.pt | 0.8243333333333334 | 0.0062122936659974965 | +| Epoch_14.pt | 0.8238333333333333 | 0.006502848378751958 | +| Epoch_15.pt | 0.8238333333333333 | 0.006831526409699357 | +| Epoch_13_batch_2999.pt | 0.8234999999999999 | 0.006566140230825425 | +| Epoch_15_batch_2999.pt | 0.8228333333333333 | 0.007201037305250187 | +| Epoch_12_batch_5999.pt | 0.8228333333333332 | 0.006426459578652105 | +| Epoch_12.pt | 0.8218333333333334 | 0.006243267979330084 | +| Epoch_11_batch_5999.pt | 0.8216666666666667 | 0.006141339380193547 | +| Epoch_11.pt | 0.8213333333333332 | 0.007199965706365514 | +| Epoch_14_batch_2999.pt | 0.8211666666666668 | 0.006652995241168621 | +| Epoch_10.pt | 0.8185 | 0.006457123542603505 | +| Epoch_14_batch_5999.pt | 0.8183333333333334 | 0.006867349840161087 | +| Epoch_10_batch_2999.pt | 0.8183333333333334 | 0.006191391873668897 | +| Epoch_12_batch_2999.pt | 0.818 | 0.0063673550141752884 | +| Epoch_11_batch_2999.pt | 0.8164999999999999 | 0.00723695079367847 | +| Epoch_10_batch_5999.pt | 0.8148333333333333 | 0.007683757118544943 | +| Epoch_9_batch_2999.pt | 0.8005000000000001 | 0.007320063751999247 | +| Epoch_8_batch_2999.pt | 0.7929999999999999 | 0.008205689083394117 | +| Epoch_9_batch_5999.pt | 0.7928333333333334 | 0.006831526409699353 | +| Epoch_9.pt | 0.792 | 0.007592231247047343 | +| Epoch_7_batch_5999.pt | 0.7914999999999999 | 0.006909690815115667 | +| Epoch_8_batch_5999.pt | 0.7898333333333334 | 0.007767652139037026 | +| Epoch_8.pt | 0.7896666666666667 | 0.005745637099487956 | +| Epoch_7_batch_2999.pt | 0.7891666666666667 | 0.009037814933125827 | +| Epoch_6_batch_5999.pt | 0.7863333333333333 | 0.007473409653688997 | +| Epoch_5_batch_5999.pt | 0.7843333333333333 | 0.008462699566368722 | +| Epoch_6_batch_2999.pt | 0.7843333333333332 | 0.007970625081982645 | +| Epoch_5_batch_2999.pt | 0.7815 | 0.009383627717242542 | +| Epoch_5.pt | 0.7781666666666667 | 0.008025614856642478 | +| Epoch_4_batch_5999.pt | 0.7776666666666667 | 0.008143011849144552 | +| Epoch_6.pt | 0.7731666666666667 | 0.008371947573464582 | +| Epoch_7.pt | 0.7728333333333335 | 0.009753283714210121 | +| Epoch_4_batch_2999.pt | 0.77 | 0.007681949341086048 | +| Epoch_3_batch_5999.pt | 0.765 | 0.009036961141150638 | +| Epoch_4.pt | 0.7615 | 0.007905498945686281 | +| Epoch_3.pt | 0.7586666666666667 | 0.008853401383049493 | +| Epoch_3_batch_2999.pt | 0.756 | 0.006881716696534232 | +| Epoch_2_batch_5999.pt | 0.7545 | 0.008628298260039318 | +| Epoch_2_batch_2999.pt | 0.7441666666666666 | 0.007015195147888828 | +| Epoch_2.pt | 0.7328333333333333 | 0.008251636575421838 | +| Epoch_1_batch_5999.pt | 0.7155 | 0.007872635839522139 | +| Epoch_1.pt | 0.6944999999999999 | 0.008965124471535437 | +| Epoch_1_batch_2999.pt | 0.6793333333333333 | 0.007662639844251856 | +| Epoch_0_batch_5999.pt | 0.6295 | 0.007519727142409915 | +| Epoch_0.pt | 0.6101666666666665 | 0.006418770698813802 | +| Epoch_0_batch_2999.pt | 0.5516666666666665 | 0.008292492514242356 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..903ac41cad0d718c995b9f7b2046827a694410e1 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_11.pt | 0.9956666666666667 | 0.0008678055195451773 | +| Epoch_15_batch_2999.pt | 0.9955 | 0.0008624541497922234 | +| Epoch_10_batch_5999.pt | 0.9951666666666668 | 0.001150684176511553 | +| Epoch_13.pt | 0.9951666666666668 | 0.0009444444444444424 | +| Epoch_16.pt | 0.9951666666666666 | 0.0008766518798921936 | +| Epoch_16_batch_2999.pt | 0.9950000000000001 | 0.0009938079899999026 | +| Epoch_13_batch_5999.pt | 0.9948333333333335 | 0.0008766518798921935 | +| Epoch_16_batch_5999.pt | 0.9948333333333335 | 0.0011772011166898341 | +| Epoch_17_batch_2999.pt | 0.9946666666666667 | 0.001212079123848407 | +| Epoch_15_batch_5999.pt | 0.9946666666666667 | 0.0011055415967851326 | +| Epoch_12_batch_5999.pt | 0.9946666666666667 | 0.0011055415967851344 | +| Epoch_14_batch_5999.pt | 0.9946666666666667 | 0.0010772621905369608 | +| Epoch_17_batch_5999.pt | 0.9945 | 0.0011666666666666629 | +| Epoch_14_batch_2999.pt | 0.9945 | 0.0011666666666666629 | +| Epoch_14.pt | 0.9943333333333333 | 0.0011706281947614122 | +| Epoch_15.pt | 0.9943333333333333 | 0.0011967032904743294 | +| Epoch_11_batch_5999.pt | 0.9943333333333333 | 0.0010304020550550787 | +| Epoch_17.pt | 0.9941666666666669 | 0.0011180339887498939 | +| Epoch_10_batch_2999.pt | 0.9941666666666666 | 0.0011453071182271292 | +| Epoch_13_batch_2999.pt | 0.9940000000000001 | 0.0009362388636862645 | +| Epoch_11_batch_2999.pt | 0.9940000000000001 | 0.0011706281947614103 | +| Epoch_12_batch_2999.pt | 0.9940000000000001 | 0.0011166528467912104 | +| Epoch_10.pt | 0.9936666666666667 | 0.0012120791238484118 | +| Epoch_9_batch_2999.pt | 0.9936666666666667 | 0.0011600340565456157 | +| Epoch_12.pt | 0.9935 | 0.0012285191326386663 | +| Epoch_8_batch_2999.pt | 0.9926666666666668 | 0.001271724793584401 | +| Epoch_7_batch_5999.pt | 0.9926666666666668 | 0.0015752718754175358 | +| Epoch_9_batch_5999.pt | 0.9919999999999998 | 0.0009875771574795098 | +| Epoch_5.pt | 0.9918333333333335 | 0.0009765775461803875 | +| Epoch_6_batch_2999.pt | 0.9918333333333333 | 0.0014792807728549258 | +| Epoch_7.pt | 0.9918333333333333 | 0.0013933262448871614 | +| Epoch_6.pt | 0.9916666666666666 | 0.0012422599874998802 | +| Epoch_8.pt | 0.9914999999999999 | 0.001253390463630947 | +| Epoch_6_batch_5999.pt | 0.9913333333333332 | 0.0014865653511399643 | +| Epoch_5_batch_5999.pt | 0.9911666666666668 | 0.0011124991330278195 | +| Epoch_4_batch_5999.pt | 0.9911666666666668 | 0.001192828364087999 | +| Epoch_4.pt | 0.991 | 0.0009362388636862651 | +| Epoch_7_batch_2999.pt | 0.9906666666666666 | 0.001271724793584403 | +| Epoch_8_batch_5999.pt | 0.9906666666666666 | 0.0013425606637327372 | +| Epoch_5_batch_2999.pt | 0.9906666666666666 | 0.001474055462380183 | +| Epoch_9.pt | 0.9903333333333334 | 0.0014444444444444507 | +| Epoch_4_batch_2999.pt | 0.9901666666666668 | 0.0013252067157640682 | +| Epoch_3_batch_5999.pt | 0.9884999999999999 | 0.0015406027359846706 | +| Epoch_3.pt | 0.9876666666666667 | 0.0018291197370171471 | +| Epoch_3_batch_2999.pt | 0.9868333333333335 | 0.0013709958532503398 | +| Epoch_2_batch_5999.pt | 0.9858333333333332 | 0.0015163715626618011 | +| Epoch_2_batch_2999.pt | 0.9818333333333333 | 0.0016749792701868098 | +| Epoch_2.pt | 0.9795 | 0.001757699113284037 | +| Epoch_1_batch_5999.pt | 0.9743333333333333 | 0.001555555555555555 | +| Epoch_1.pt | 0.9696666666666666 | 0.0015869840952317527 | +| Epoch_1_batch_2999.pt | 0.9625 | 0.002942347261525639 | +| Epoch_0_batch_5999.pt | 0.931 | 0.00397678448181629 | +| Epoch_0.pt | 0.9164999999999999 | 0.003860611478464824 | +| Epoch_0_batch_2999.pt | 0.8228333333333333 | 0.005527987154046995 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_megaface.txt b/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_megaface.txt new file mode 100644 index 0000000000000000000000000000000000000000..c054db27d05380ce07f656ad56784b05b7d06123 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/LightCNN29/accu_files/accu_megaface.txt @@ -0,0 +1,14 @@ ++------+--------------------+ +| rank | accuracy | ++------+--------------------+ +| 1 | 0.8931616699428512 | +| 2 | 0.9143744223283908 | +| 3 | 0.9242225028314045 | +| 4 | 0.9299243657003007 | +| 5 | 0.9340901102620514 | +| 6 | 0.9369931135035213 | +| 7 | 0.9397008474686592 | +| 8 | 0.9419594620982334 | +| 9 | 0.9436127419711783 | +| 10 | 0.9451423513024461 | ++------+--------------------+ diff --git a/bob/bio/facexzoo/models/backbones/LightCNN29/log.log b/bob/bio/facexzoo/models/backbones/LightCNN29/log.log new file mode 100644 index 0000000000000000000000000000000000000000..f5d84c17f9ede65f4c0d38e4a235d25993cdaeef --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/LightCNN29/log.log @@ -0,0 +1,654 @@ +INFO 2021-10-11 14:25:20 train.py: 180] Start optimization. +INFO 2021-10-11 14:25:20 train.py: 181] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='LightCNN', batch_size=512, data_root='/export/home/wangjun492/wj_data/msra_crop', epoches=180000, head_conf_file='../head_conf.yaml', head_type='MV-Softmax', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='mag-mobile', train_file='/export/home/wangjun492/wj_data/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7f3ac422af28>) +backbone param: +{'depth': 29, 'drop_ratio': 0.4, 'out_h': 7, 'out_w': 7, 'feat_dim': 512, 'dropout_ratio': 0.2} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +INFO 2021-10-11 14:25:45 train.py: 82] Epoch 0, iter 0/6416, lr 0.100000, loss 16.369417 +INFO 2021-10-11 14:31:18 train.py: 82] Epoch 0, iter 200/6416, lr 0.100000, loss 15.651273 +INFO 2021-10-11 14:38:05 train.py: 82] Epoch 0, iter 400/6416, lr 0.100000, loss 15.345418 +INFO 2021-10-11 14:45:57 train.py: 82] Epoch 0, iter 600/6416, lr 0.100000, loss 15.261409 +INFO 2021-10-11 14:53:00 train.py: 82] Epoch 0, iter 800/6416, lr 0.100000, loss 15.173952 +INFO 2021-10-11 15:00:32 train.py: 82] Epoch 0, iter 1000/6416, lr 0.100000, loss 15.093871 +INFO 2021-10-11 15:07:48 train.py: 82] Epoch 0, iter 1200/6416, lr 0.100000, loss 14.985372 +INFO 2021-10-11 15:14:40 train.py: 82] Epoch 0, iter 1400/6416, lr 0.100000, loss 14.856655 +INFO 2021-10-11 15:21:58 train.py: 82] Epoch 0, iter 1600/6416, lr 0.100000, loss 14.715352 +INFO 2021-10-11 15:28:46 train.py: 82] Epoch 0, iter 1800/6416, lr 0.100000, loss 14.533554 +INFO 2021-10-11 15:36:21 train.py: 82] Epoch 0, iter 2000/6416, lr 0.100000, loss 14.381878 +INFO 2021-10-11 15:43:41 train.py: 82] Epoch 0, iter 2200/6416, lr 0.100000, loss 14.243026 +INFO 2021-10-11 15:50:29 train.py: 82] Epoch 0, iter 2400/6416, lr 0.100000, loss 14.102276 +INFO 2021-10-11 15:58:30 train.py: 82] Epoch 0, iter 2600/6416, lr 0.100000, loss 13.979956 +INFO 2021-10-11 16:05:00 train.py: 82] Epoch 0, iter 2800/6416, lr 0.100000, loss 13.843389 +INFO 2021-10-11 16:12:15 train.py: 95] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2021-10-11 16:12:16 train.py: 82] Epoch 0, iter 3000/6416, lr 0.100000, loss 13.708714 +INFO 2021-10-11 16:19:17 train.py: 82] Epoch 0, iter 3200/6416, lr 0.100000, loss 13.543101 +INFO 2021-10-11 16:26:22 train.py: 82] Epoch 0, iter 3400/6416, lr 0.100000, loss 13.357659 +INFO 2021-10-11 16:34:02 train.py: 82] Epoch 0, iter 3600/6416, lr 0.100000, loss 13.181470 +INFO 2021-10-11 16:40:23 train.py: 82] Epoch 0, iter 3800/6416, lr 0.100000, loss 13.011384 +INFO 2021-10-11 16:47:37 train.py: 82] Epoch 0, iter 4000/6416, lr 0.100000, loss 12.825429 +INFO 2021-10-11 16:54:31 train.py: 82] Epoch 0, iter 4200/6416, lr 0.100000, loss 12.656490 +INFO 2021-10-11 17:02:05 train.py: 82] Epoch 0, iter 4400/6416, lr 0.100000, loss 12.513968 +INFO 2021-10-11 17:08:40 train.py: 82] Epoch 0, iter 4600/6416, lr 0.100000, loss 12.413372 +INFO 2021-10-11 17:16:32 train.py: 82] Epoch 0, iter 4800/6416, lr 0.100000, loss 12.334254 +INFO 2021-10-11 17:23:52 train.py: 82] Epoch 0, iter 5000/6416, lr 0.100000, loss 12.348694 +INFO 2021-10-11 17:31:08 train.py: 82] Epoch 0, iter 5200/6416, lr 0.100000, loss 12.375680 +INFO 2021-10-11 17:37:42 train.py: 82] Epoch 0, iter 5400/6416, lr 0.100000, loss 12.418322 +INFO 2021-10-11 17:45:19 train.py: 82] Epoch 0, iter 5600/6416, lr 0.100000, loss 12.548591 +INFO 2021-10-11 17:52:17 train.py: 82] Epoch 0, iter 5800/6416, lr 0.100000, loss 12.691089 +INFO 2021-10-11 17:59:50 train.py: 95] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2021-10-11 17:59:50 train.py: 82] Epoch 0, iter 6000/6416, lr 0.100000, loss 12.901197 +INFO 2021-10-11 18:06:10 train.py: 82] Epoch 0, iter 6200/6416, lr 0.100000, loss 13.147470 +INFO 2021-10-11 18:14:01 train.py: 82] Epoch 0, iter 6400/6416, lr 0.100000, loss 13.373587 +INFO 2021-10-11 18:14:31 train.py: 100] Save checkpoint Epoch_0.pt to disk... +INFO 2021-10-11 18:14:33 train.py: 82] Epoch 1, iter 0/6416, lr 0.100000, loss 13.489206 +INFO 2021-10-11 18:15:47 train.py: 82] Epoch 1, iter 200/6416, lr 0.100000, loss 13.788728 +INFO 2021-10-11 18:17:01 train.py: 82] Epoch 1, iter 400/6416, lr 0.100000, loss 14.003860 +INFO 2021-10-11 18:18:15 train.py: 82] Epoch 1, iter 600/6416, lr 0.100000, loss 14.274572 +INFO 2021-10-11 18:19:28 train.py: 82] Epoch 1, iter 800/6416, lr 0.100000, loss 14.500683 +INFO 2021-10-11 18:20:42 train.py: 82] Epoch 1, iter 1000/6416, lr 0.100000, loss 14.732706 +INFO 2021-10-11 18:21:55 train.py: 82] Epoch 1, iter 1200/6416, lr 0.100000, loss 14.938140 +INFO 2021-10-11 18:23:08 train.py: 82] Epoch 1, iter 1400/6416, lr 0.100000, loss 15.113757 +INFO 2021-10-11 18:24:21 train.py: 82] Epoch 1, iter 1600/6416, lr 0.100000, loss 15.284691 +INFO 2021-10-11 18:25:34 train.py: 82] Epoch 1, iter 1800/6416, lr 0.100000, loss 15.397329 +INFO 2021-10-11 18:26:48 train.py: 82] Epoch 1, iter 2000/6416, lr 0.100000, loss 15.498385 +INFO 2021-10-11 18:28:01 train.py: 82] Epoch 1, iter 2200/6416, lr 0.100000, loss 15.572148 +INFO 2021-10-11 18:29:14 train.py: 82] Epoch 1, iter 2400/6416, lr 0.100000, loss 15.580485 +INFO 2021-10-11 18:30:26 train.py: 82] Epoch 1, iter 2600/6416, lr 0.100000, loss 15.591917 +INFO 2021-10-11 18:31:39 train.py: 82] Epoch 1, iter 2800/6416, lr 0.100000, loss 15.571841 +INFO 2021-10-11 18:32:53 train.py: 95] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2021-10-11 18:32:53 train.py: 82] Epoch 1, iter 3000/6416, lr 0.100000, loss 15.535668 +INFO 2021-10-11 18:34:06 train.py: 82] Epoch 1, iter 3200/6416, lr 0.100000, loss 15.511756 +INFO 2021-10-11 18:35:19 train.py: 82] Epoch 1, iter 3400/6416, lr 0.100000, loss 15.403087 +INFO 2021-10-11 18:36:32 train.py: 82] Epoch 1, iter 3600/6416, lr 0.100000, loss 15.328490 +INFO 2021-10-11 18:37:44 train.py: 82] Epoch 1, iter 3800/6416, lr 0.100000, loss 15.226699 +INFO 2021-10-11 18:38:57 train.py: 82] Epoch 1, iter 4000/6416, lr 0.100000, loss 15.136332 +INFO 2021-10-11 18:40:09 train.py: 82] Epoch 1, iter 4200/6416, lr 0.100000, loss 15.005565 +INFO 2021-10-11 18:41:22 train.py: 82] Epoch 1, iter 4400/6416, lr 0.100000, loss 14.881872 +INFO 2021-10-11 18:42:35 train.py: 82] Epoch 1, iter 4600/6416, lr 0.100000, loss 14.741101 +INFO 2021-10-11 18:43:48 train.py: 82] Epoch 1, iter 4800/6416, lr 0.100000, loss 14.616261 +INFO 2021-10-11 18:45:00 train.py: 82] Epoch 1, iter 5000/6416, lr 0.100000, loss 14.476123 +INFO 2021-10-11 18:46:13 train.py: 82] Epoch 1, iter 5200/6416, lr 0.100000, loss 14.333634 +INFO 2021-10-11 18:47:26 train.py: 82] Epoch 1, iter 5400/6416, lr 0.100000, loss 14.233344 +INFO 2021-10-11 18:48:39 train.py: 82] Epoch 1, iter 5600/6416, lr 0.100000, loss 14.102279 +INFO 2021-10-11 18:49:52 train.py: 82] Epoch 1, iter 5800/6416, lr 0.100000, loss 13.976093 +INFO 2021-10-11 18:51:05 train.py: 95] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2021-10-11 18:51:06 train.py: 82] Epoch 1, iter 6000/6416, lr 0.100000, loss 13.862471 +INFO 2021-10-11 18:52:18 train.py: 82] Epoch 1, iter 6200/6416, lr 0.100000, loss 13.684381 +INFO 2021-10-11 18:53:31 train.py: 82] Epoch 1, iter 6400/6416, lr 0.100000, loss 13.578435 +INFO 2021-10-11 18:53:38 train.py: 100] Save checkpoint Epoch_1.pt to disk... +INFO 2021-10-11 18:53:39 train.py: 82] Epoch 2, iter 0/6416, lr 0.100000, loss 13.555868 +INFO 2021-10-11 18:54:52 train.py: 82] Epoch 2, iter 200/6416, lr 0.100000, loss 13.156655 +INFO 2021-10-11 18:56:05 train.py: 82] Epoch 2, iter 400/6416, lr 0.100000, loss 13.023767 +INFO 2021-10-11 18:57:17 train.py: 82] Epoch 2, iter 600/6416, lr 0.100000, loss 13.002100 +INFO 2021-10-11 18:58:30 train.py: 82] Epoch 2, iter 800/6416, lr 0.100000, loss 12.910942 +INFO 2021-10-11 18:59:43 train.py: 82] Epoch 2, iter 1000/6416, lr 0.100000, loss 12.831745 +INFO 2021-10-11 19:00:55 train.py: 82] Epoch 2, iter 1200/6416, lr 0.100000, loss 12.767485 +INFO 2021-10-11 19:02:08 train.py: 82] Epoch 2, iter 1400/6416, lr 0.100000, loss 12.699910 +INFO 2021-10-11 19:03:20 train.py: 82] Epoch 2, iter 1600/6416, lr 0.100000, loss 12.583787 +INFO 2021-10-11 19:04:33 train.py: 82] Epoch 2, iter 1800/6416, lr 0.100000, loss 12.496349 +INFO 2021-10-11 19:05:46 train.py: 82] Epoch 2, iter 2000/6416, lr 0.100000, loss 12.416905 +INFO 2021-10-11 19:06:59 train.py: 82] Epoch 2, iter 2200/6416, lr 0.100000, loss 12.325140 +INFO 2021-10-11 19:08:11 train.py: 82] Epoch 2, iter 2400/6416, lr 0.100000, loss 12.252379 +INFO 2021-10-11 19:09:24 train.py: 82] Epoch 2, iter 2600/6416, lr 0.100000, loss 12.144799 +INFO 2021-10-11 19:10:36 train.py: 82] Epoch 2, iter 2800/6416, lr 0.100000, loss 12.092999 +INFO 2021-10-11 19:11:50 train.py: 95] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2021-10-11 19:11:50 train.py: 82] Epoch 2, iter 3000/6416, lr 0.100000, loss 11.976919 +INFO 2021-10-11 19:13:03 train.py: 82] Epoch 2, iter 3200/6416, lr 0.100000, loss 11.905363 +INFO 2021-10-11 19:14:16 train.py: 82] Epoch 2, iter 3400/6416, lr 0.100000, loss 11.826677 +INFO 2021-10-11 19:15:28 train.py: 82] Epoch 2, iter 3600/6416, lr 0.100000, loss 11.736064 +INFO 2021-10-11 19:16:41 train.py: 82] Epoch 2, iter 3800/6416, lr 0.100000, loss 11.647443 +INFO 2021-10-11 19:17:54 train.py: 82] Epoch 2, iter 4000/6416, lr 0.100000, loss 11.564908 +INFO 2021-10-11 19:19:07 train.py: 82] Epoch 2, iter 4200/6416, lr 0.100000, loss 11.495774 +INFO 2021-10-11 19:20:19 train.py: 82] Epoch 2, iter 4400/6416, lr 0.100000, loss 11.453334 +INFO 2021-10-11 19:21:32 train.py: 82] Epoch 2, iter 4600/6416, lr 0.100000, loss 11.364244 +INFO 2021-10-11 19:22:45 train.py: 82] Epoch 2, iter 4800/6416, lr 0.100000, loss 11.289079 +INFO 2021-10-11 19:23:58 train.py: 82] Epoch 2, iter 5000/6416, lr 0.100000, loss 11.251229 +INFO 2021-10-11 19:25:10 train.py: 82] Epoch 2, iter 5200/6416, lr 0.100000, loss 11.161038 +INFO 2021-10-11 19:26:23 train.py: 82] Epoch 2, iter 5400/6416, lr 0.100000, loss 11.068827 +INFO 2021-10-11 19:27:36 train.py: 82] Epoch 2, iter 5600/6416, lr 0.100000, loss 11.022828 +INFO 2021-10-11 19:28:48 train.py: 82] Epoch 2, iter 5800/6416, lr 0.100000, loss 10.995260 +INFO 2021-10-11 19:30:02 train.py: 95] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2021-10-11 19:30:02 train.py: 82] Epoch 2, iter 6000/6416, lr 0.100000, loss 10.949003 +INFO 2021-10-11 19:31:15 train.py: 82] Epoch 2, iter 6200/6416, lr 0.100000, loss 10.853169 +INFO 2021-10-11 19:32:28 train.py: 82] Epoch 2, iter 6400/6416, lr 0.100000, loss 10.819425 +INFO 2021-10-11 19:32:35 train.py: 100] Save checkpoint Epoch_2.pt to disk... +INFO 2021-10-11 19:32:36 train.py: 82] Epoch 3, iter 0/6416, lr 0.100000, loss 10.901023 +INFO 2021-10-11 19:33:49 train.py: 82] Epoch 3, iter 200/6416, lr 0.100000, loss 10.308744 +INFO 2021-10-11 19:35:02 train.py: 82] Epoch 3, iter 400/6416, lr 0.100000, loss 10.295135 +INFO 2021-10-11 19:36:15 train.py: 82] Epoch 3, iter 600/6416, lr 0.100000, loss 10.310412 +INFO 2021-10-11 19:37:27 train.py: 82] Epoch 3, iter 800/6416, lr 0.100000, loss 10.352543 +INFO 2021-10-11 19:38:40 train.py: 82] Epoch 3, iter 1000/6416, lr 0.100000, loss 10.338906 +INFO 2021-10-11 19:39:53 train.py: 82] Epoch 3, iter 1200/6416, lr 0.100000, loss 10.303761 +INFO 2021-10-11 19:41:06 train.py: 82] Epoch 3, iter 1400/6416, lr 0.100000, loss 10.279404 +INFO 2021-10-11 19:42:18 train.py: 82] Epoch 3, iter 1600/6416, lr 0.100000, loss 10.291302 +INFO 2021-10-11 19:43:31 train.py: 82] Epoch 3, iter 1800/6416, lr 0.100000, loss 10.236655 +INFO 2021-10-11 19:44:44 train.py: 82] Epoch 3, iter 2000/6416, lr 0.100000, loss 10.200403 +INFO 2021-10-11 19:45:57 train.py: 82] Epoch 3, iter 2200/6416, lr 0.100000, loss 10.172110 +INFO 2021-10-11 19:47:10 train.py: 82] Epoch 3, iter 2400/6416, lr 0.100000, loss 10.128775 +INFO 2021-10-11 19:48:23 train.py: 82] Epoch 3, iter 2600/6416, lr 0.100000, loss 10.089414 +INFO 2021-10-11 19:49:35 train.py: 82] Epoch 3, iter 2800/6416, lr 0.100000, loss 10.076917 +INFO 2021-10-11 19:50:49 train.py: 95] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2021-10-11 19:50:49 train.py: 82] Epoch 3, iter 3000/6416, lr 0.100000, loss 10.048779 +INFO 2021-10-11 19:52:02 train.py: 82] Epoch 3, iter 3200/6416, lr 0.100000, loss 9.983377 +INFO 2021-10-11 19:53:14 train.py: 82] Epoch 3, iter 3400/6416, lr 0.100000, loss 9.966386 +INFO 2021-10-11 19:54:27 train.py: 82] Epoch 3, iter 3600/6416, lr 0.100000, loss 9.905903 +INFO 2021-10-11 19:55:40 train.py: 82] Epoch 3, iter 3800/6416, lr 0.100000, loss 9.883424 +INFO 2021-10-11 19:56:52 train.py: 82] Epoch 3, iter 4000/6416, lr 0.100000, loss 9.859765 +INFO 2021-10-11 19:58:05 train.py: 82] Epoch 3, iter 4200/6416, lr 0.100000, loss 9.824201 +INFO 2021-10-11 19:59:18 train.py: 82] Epoch 3, iter 4400/6416, lr 0.100000, loss 9.762341 +INFO 2021-10-11 20:00:30 train.py: 82] Epoch 3, iter 4600/6416, lr 0.100000, loss 9.717520 +INFO 2021-10-11 20:01:43 train.py: 82] Epoch 3, iter 4800/6416, lr 0.100000, loss 9.733386 +INFO 2021-10-11 20:02:56 train.py: 82] Epoch 3, iter 5000/6416, lr 0.100000, loss 9.691353 +INFO 2021-10-11 20:04:08 train.py: 82] Epoch 3, iter 5200/6416, lr 0.100000, loss 9.672284 +INFO 2021-10-11 20:05:21 train.py: 82] Epoch 3, iter 5400/6416, lr 0.100000, loss 9.624590 +INFO 2021-10-11 20:06:34 train.py: 82] Epoch 3, iter 5600/6416, lr 0.100000, loss 9.559540 +INFO 2021-10-11 20:07:47 train.py: 82] Epoch 3, iter 5800/6416, lr 0.100000, loss 9.554033 +INFO 2021-10-11 20:09:01 train.py: 95] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2021-10-11 20:09:01 train.py: 82] Epoch 3, iter 6000/6416, lr 0.100000, loss 9.531322 +INFO 2021-10-11 20:10:14 train.py: 82] Epoch 3, iter 6200/6416, lr 0.100000, loss 9.491122 +INFO 2021-10-11 20:11:26 train.py: 82] Epoch 3, iter 6400/6416, lr 0.100000, loss 9.447590 +INFO 2021-10-11 20:11:33 train.py: 100] Save checkpoint Epoch_3.pt to disk... +INFO 2021-10-11 20:11:35 train.py: 82] Epoch 4, iter 0/6416, lr 0.100000, loss 9.546006 +INFO 2021-10-11 20:12:47 train.py: 82] Epoch 4, iter 200/6416, lr 0.100000, loss 8.969079 +INFO 2021-10-11 20:14:00 train.py: 82] Epoch 4, iter 400/6416, lr 0.100000, loss 8.960844 +INFO 2021-10-11 20:15:13 train.py: 82] Epoch 4, iter 600/6416, lr 0.100000, loss 9.052503 +INFO 2021-10-11 20:16:25 train.py: 82] Epoch 4, iter 800/6416, lr 0.100000, loss 9.093162 +INFO 2021-10-11 20:17:38 train.py: 82] Epoch 4, iter 1000/6416, lr 0.100000, loss 9.110755 +INFO 2021-10-11 20:18:50 train.py: 82] Epoch 4, iter 1200/6416, lr 0.100000, loss 9.120912 +INFO 2021-10-11 20:20:03 train.py: 82] Epoch 4, iter 1400/6416, lr 0.100000, loss 9.106434 +INFO 2021-10-11 20:21:15 train.py: 82] Epoch 4, iter 1600/6416, lr 0.100000, loss 9.096911 +INFO 2021-10-11 20:22:28 train.py: 82] Epoch 4, iter 1800/6416, lr 0.100000, loss 9.085510 +INFO 2021-10-11 20:23:40 train.py: 82] Epoch 4, iter 2000/6416, lr 0.100000, loss 9.106281 +INFO 2021-10-11 20:24:53 train.py: 82] Epoch 4, iter 2200/6416, lr 0.100000, loss 9.088951 +INFO 2021-10-11 20:26:06 train.py: 82] Epoch 4, iter 2400/6416, lr 0.100000, loss 9.057558 +INFO 2021-10-11 20:27:18 train.py: 82] Epoch 4, iter 2600/6416, lr 0.100000, loss 9.048886 +INFO 2021-10-11 20:28:31 train.py: 82] Epoch 4, iter 2800/6416, lr 0.100000, loss 9.036140 +INFO 2021-10-11 20:29:43 train.py: 95] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2021-10-11 20:29:44 train.py: 82] Epoch 4, iter 3000/6416, lr 0.100000, loss 9.003127 +INFO 2021-10-11 20:30:56 train.py: 82] Epoch 4, iter 3200/6416, lr 0.100000, loss 8.995553 +INFO 2021-10-11 20:32:09 train.py: 82] Epoch 4, iter 3400/6416, lr 0.100000, loss 8.969836 +INFO 2021-10-11 20:33:21 train.py: 82] Epoch 4, iter 3600/6416, lr 0.100000, loss 8.909684 +INFO 2021-10-11 20:34:34 train.py: 82] Epoch 4, iter 3800/6416, lr 0.100000, loss 8.933936 +INFO 2021-10-11 20:35:46 train.py: 82] Epoch 4, iter 4000/6416, lr 0.100000, loss 8.955494 +INFO 2021-10-11 20:36:59 train.py: 82] Epoch 4, iter 4200/6416, lr 0.100000, loss 8.894087 +INFO 2021-10-11 20:38:11 train.py: 82] Epoch 4, iter 4400/6416, lr 0.100000, loss 8.874055 +INFO 2021-10-11 20:39:24 train.py: 82] Epoch 4, iter 4600/6416, lr 0.100000, loss 8.855272 +INFO 2021-10-11 20:40:36 train.py: 82] Epoch 4, iter 4800/6416, lr 0.100000, loss 8.830998 +INFO 2021-10-11 20:41:49 train.py: 82] Epoch 4, iter 5000/6416, lr 0.100000, loss 8.791327 +INFO 2021-10-11 20:43:02 train.py: 82] Epoch 4, iter 5200/6416, lr 0.100000, loss 8.810705 +INFO 2021-10-11 20:44:14 train.py: 82] Epoch 4, iter 5400/6416, lr 0.100000, loss 8.804400 +INFO 2021-10-11 20:45:27 train.py: 82] Epoch 4, iter 5600/6416, lr 0.100000, loss 8.762913 +INFO 2021-10-11 20:46:39 train.py: 82] Epoch 4, iter 5800/6416, lr 0.100000, loss 8.709885 +INFO 2021-10-11 20:47:52 train.py: 95] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2021-10-11 20:47:53 train.py: 82] Epoch 4, iter 6000/6416, lr 0.100000, loss 8.712645 +INFO 2021-10-11 20:49:05 train.py: 82] Epoch 4, iter 6200/6416, lr 0.100000, loss 8.681430 +INFO 2021-10-11 20:50:18 train.py: 82] Epoch 4, iter 6400/6416, lr 0.100000, loss 8.680779 +INFO 2021-10-11 20:50:24 train.py: 100] Save checkpoint Epoch_4.pt to disk... +INFO 2021-10-11 20:50:26 train.py: 82] Epoch 5, iter 0/6416, lr 0.100000, loss 8.733378 +INFO 2021-10-11 20:51:39 train.py: 82] Epoch 5, iter 200/6416, lr 0.100000, loss 8.232566 +INFO 2021-10-11 20:52:51 train.py: 82] Epoch 5, iter 400/6416, lr 0.100000, loss 8.210535 +INFO 2021-10-11 20:54:03 train.py: 82] Epoch 5, iter 600/6416, lr 0.100000, loss 8.279316 +INFO 2021-10-11 20:55:16 train.py: 82] Epoch 5, iter 800/6416, lr 0.100000, loss 8.305984 +INFO 2021-10-11 20:56:28 train.py: 82] Epoch 5, iter 1000/6416, lr 0.100000, loss 8.359419 +INFO 2021-10-11 20:57:40 train.py: 82] Epoch 5, iter 1200/6416, lr 0.100000, loss 8.416656 +INFO 2021-10-11 20:58:53 train.py: 82] Epoch 5, iter 1400/6416, lr 0.100000, loss 8.409195 +INFO 2021-10-11 21:00:05 train.py: 82] Epoch 5, iter 1600/6416, lr 0.100000, loss 8.425412 +INFO 2021-10-11 21:01:17 train.py: 82] Epoch 5, iter 1800/6416, lr 0.100000, loss 8.429231 +INFO 2021-10-11 21:02:30 train.py: 82] Epoch 5, iter 2000/6416, lr 0.100000, loss 8.407216 +INFO 2021-10-11 21:03:42 train.py: 82] Epoch 5, iter 2200/6416, lr 0.100000, loss 8.415463 +INFO 2021-10-11 21:04:55 train.py: 82] Epoch 5, iter 2400/6416, lr 0.100000, loss 8.440240 +INFO 2021-10-11 21:06:07 train.py: 82] Epoch 5, iter 2600/6416, lr 0.100000, loss 8.419984 +INFO 2021-10-11 21:07:20 train.py: 82] Epoch 5, iter 2800/6416, lr 0.100000, loss 8.446846 +INFO 2021-10-11 21:08:33 train.py: 95] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2021-10-11 21:08:33 train.py: 82] Epoch 5, iter 3000/6416, lr 0.100000, loss 8.382041 +INFO 2021-10-11 21:09:46 train.py: 82] Epoch 5, iter 3200/6416, lr 0.100000, loss 8.327706 +INFO 2021-10-11 21:10:59 train.py: 82] Epoch 5, iter 3400/6416, lr 0.100000, loss 8.367816 +INFO 2021-10-11 21:12:11 train.py: 82] Epoch 5, iter 3600/6416, lr 0.100000, loss 8.370680 +INFO 2021-10-11 21:13:24 train.py: 82] Epoch 5, iter 3800/6416, lr 0.100000, loss 8.301980 +INFO 2021-10-11 21:14:36 train.py: 82] Epoch 5, iter 4000/6416, lr 0.100000, loss 8.332644 +INFO 2021-10-11 21:15:49 train.py: 82] Epoch 5, iter 4200/6416, lr 0.100000, loss 8.299320 +INFO 2021-10-11 21:17:02 train.py: 82] Epoch 5, iter 4400/6416, lr 0.100000, loss 8.336908 +INFO 2021-10-11 21:18:15 train.py: 82] Epoch 5, iter 4600/6416, lr 0.100000, loss 8.296913 +INFO 2021-10-11 21:19:27 train.py: 82] Epoch 5, iter 4800/6416, lr 0.100000, loss 8.277619 +INFO 2021-10-11 21:20:40 train.py: 82] Epoch 5, iter 5000/6416, lr 0.100000, loss 8.251506 +INFO 2021-10-11 21:21:53 train.py: 82] Epoch 5, iter 5200/6416, lr 0.100000, loss 8.299996 +INFO 2021-10-11 21:23:05 train.py: 82] Epoch 5, iter 5400/6416, lr 0.100000, loss 8.213327 +INFO 2021-10-11 21:24:18 train.py: 82] Epoch 5, iter 5600/6416, lr 0.100000, loss 8.275252 +INFO 2021-10-11 21:25:30 train.py: 82] Epoch 5, iter 5800/6416, lr 0.100000, loss 8.217992 +INFO 2021-10-11 21:26:43 train.py: 95] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2021-10-11 21:26:44 train.py: 82] Epoch 5, iter 6000/6416, lr 0.100000, loss 8.180969 +INFO 2021-10-11 21:27:56 train.py: 82] Epoch 5, iter 6200/6416, lr 0.100000, loss 8.200027 +INFO 2021-10-11 21:29:09 train.py: 82] Epoch 5, iter 6400/6416, lr 0.100000, loss 8.183986 +INFO 2021-10-11 21:29:15 train.py: 100] Save checkpoint Epoch_5.pt to disk... +INFO 2021-10-11 21:29:17 train.py: 82] Epoch 6, iter 0/6416, lr 0.100000, loss 8.173692 +INFO 2021-10-11 21:30:30 train.py: 82] Epoch 6, iter 200/6416, lr 0.100000, loss 7.717168 +INFO 2021-10-11 21:31:42 train.py: 82] Epoch 6, iter 400/6416, lr 0.100000, loss 7.686439 +INFO 2021-10-11 21:32:55 train.py: 82] Epoch 6, iter 600/6416, lr 0.100000, loss 7.784537 +INFO 2021-10-11 21:34:07 train.py: 82] Epoch 6, iter 800/6416, lr 0.100000, loss 7.852187 +INFO 2021-10-11 21:35:19 train.py: 82] Epoch 6, iter 1000/6416, lr 0.100000, loss 7.849350 +INFO 2021-10-11 21:36:32 train.py: 82] Epoch 6, iter 1200/6416, lr 0.100000, loss 7.895397 +INFO 2021-10-11 21:37:44 train.py: 82] Epoch 6, iter 1400/6416, lr 0.100000, loss 7.968666 +INFO 2021-10-11 21:38:56 train.py: 82] Epoch 6, iter 1600/6416, lr 0.100000, loss 7.918271 +INFO 2021-10-11 21:40:09 train.py: 82] Epoch 6, iter 1800/6416, lr 0.100000, loss 7.965510 +INFO 2021-10-11 21:41:22 train.py: 82] Epoch 6, iter 2000/6416, lr 0.100000, loss 7.977845 +INFO 2021-10-11 21:42:34 train.py: 82] Epoch 6, iter 2200/6416, lr 0.100000, loss 8.002042 +INFO 2021-10-11 21:43:47 train.py: 82] Epoch 6, iter 2400/6416, lr 0.100000, loss 8.005938 +INFO 2021-10-11 21:44:59 train.py: 82] Epoch 6, iter 2600/6416, lr 0.100000, loss 7.950871 +INFO 2021-10-11 21:46:12 train.py: 82] Epoch 6, iter 2800/6416, lr 0.100000, loss 7.954270 +INFO 2021-10-11 21:47:25 train.py: 95] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2021-10-11 21:47:25 train.py: 82] Epoch 6, iter 3000/6416, lr 0.100000, loss 7.975647 +INFO 2021-10-11 21:48:38 train.py: 82] Epoch 6, iter 3200/6416, lr 0.100000, loss 7.940947 +INFO 2021-10-11 21:49:50 train.py: 82] Epoch 6, iter 3400/6416, lr 0.100000, loss 7.963245 +INFO 2021-10-11 21:51:03 train.py: 82] Epoch 6, iter 3600/6416, lr 0.100000, loss 7.953733 +INFO 2021-10-11 21:52:15 train.py: 82] Epoch 6, iter 3800/6416, lr 0.100000, loss 7.977181 +INFO 2021-10-11 21:53:28 train.py: 82] Epoch 6, iter 4000/6416, lr 0.100000, loss 7.939420 +INFO 2021-10-11 21:54:40 train.py: 82] Epoch 6, iter 4200/6416, lr 0.100000, loss 7.950298 +INFO 2021-10-11 21:55:52 train.py: 82] Epoch 6, iter 4400/6416, lr 0.100000, loss 7.890088 +INFO 2021-10-11 21:57:05 train.py: 82] Epoch 6, iter 4600/6416, lr 0.100000, loss 7.883477 +INFO 2021-10-11 21:58:17 train.py: 82] Epoch 6, iter 4800/6416, lr 0.100000, loss 7.905051 +INFO 2021-10-11 21:59:30 train.py: 82] Epoch 6, iter 5000/6416, lr 0.100000, loss 7.891187 +INFO 2021-10-11 22:00:42 train.py: 82] Epoch 6, iter 5200/6416, lr 0.100000, loss 7.893691 +INFO 2021-10-11 22:01:55 train.py: 82] Epoch 6, iter 5400/6416, lr 0.100000, loss 7.848986 +INFO 2021-10-11 22:03:07 train.py: 82] Epoch 6, iter 5600/6416, lr 0.100000, loss 7.846524 +INFO 2021-10-11 22:04:19 train.py: 82] Epoch 6, iter 5800/6416, lr 0.100000, loss 7.852815 +INFO 2021-10-11 22:05:32 train.py: 95] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2021-10-11 22:05:33 train.py: 82] Epoch 6, iter 6000/6416, lr 0.100000, loss 7.860579 +INFO 2021-10-11 22:06:45 train.py: 82] Epoch 6, iter 6200/6416, lr 0.100000, loss 7.820628 +INFO 2021-10-11 22:07:57 train.py: 82] Epoch 6, iter 6400/6416, lr 0.100000, loss 7.811384 +INFO 2021-10-11 22:08:04 train.py: 100] Save checkpoint Epoch_6.pt to disk... +INFO 2021-10-11 22:08:06 train.py: 82] Epoch 7, iter 0/6416, lr 0.100000, loss 7.858979 +INFO 2021-10-11 22:09:18 train.py: 82] Epoch 7, iter 200/6416, lr 0.100000, loss 7.347155 +INFO 2021-10-11 22:10:31 train.py: 82] Epoch 7, iter 400/6416, lr 0.100000, loss 7.338178 +INFO 2021-10-11 22:11:43 train.py: 82] Epoch 7, iter 600/6416, lr 0.100000, loss 7.432431 +INFO 2021-10-11 22:12:56 train.py: 82] Epoch 7, iter 800/6416, lr 0.100000, loss 7.462470 +INFO 2021-10-11 22:14:08 train.py: 82] Epoch 7, iter 1000/6416, lr 0.100000, loss 7.529243 +INFO 2021-10-11 22:15:21 train.py: 82] Epoch 7, iter 1200/6416, lr 0.100000, loss 7.553025 +INFO 2021-10-11 22:16:34 train.py: 82] Epoch 7, iter 1400/6416, lr 0.100000, loss 7.597005 +INFO 2021-10-11 22:17:46 train.py: 82] Epoch 7, iter 1600/6416, lr 0.100000, loss 7.621427 +INFO 2021-10-11 22:18:59 train.py: 82] Epoch 7, iter 1800/6416, lr 0.100000, loss 7.642597 +INFO 2021-10-11 22:20:11 train.py: 82] Epoch 7, iter 2000/6416, lr 0.100000, loss 7.652329 +INFO 2021-10-11 22:21:23 train.py: 82] Epoch 7, iter 2200/6416, lr 0.100000, loss 7.604213 +INFO 2021-10-11 22:22:36 train.py: 82] Epoch 7, iter 2400/6416, lr 0.100000, loss 7.682101 +INFO 2021-10-11 22:23:49 train.py: 82] Epoch 7, iter 2600/6416, lr 0.100000, loss 7.678351 +INFO 2021-10-11 22:25:01 train.py: 82] Epoch 7, iter 2800/6416, lr 0.100000, loss 7.654919 +INFO 2021-10-11 22:26:14 train.py: 95] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2021-10-11 22:26:15 train.py: 82] Epoch 7, iter 3000/6416, lr 0.100000, loss 7.633514 +INFO 2021-10-11 22:27:27 train.py: 82] Epoch 7, iter 3200/6416, lr 0.100000, loss 7.621909 +INFO 2021-10-11 22:28:40 train.py: 82] Epoch 7, iter 3400/6416, lr 0.100000, loss 7.646492 +INFO 2021-10-11 22:29:53 train.py: 82] Epoch 7, iter 3600/6416, lr 0.100000, loss 7.642772 +INFO 2021-10-11 22:31:05 train.py: 82] Epoch 7, iter 3800/6416, lr 0.100000, loss 7.635411 +INFO 2021-10-11 22:32:18 train.py: 82] Epoch 7, iter 4000/6416, lr 0.100000, loss 7.627056 +INFO 2021-10-11 22:33:30 train.py: 82] Epoch 7, iter 4200/6416, lr 0.100000, loss 7.626884 +INFO 2021-10-11 22:34:43 train.py: 82] Epoch 7, iter 4400/6416, lr 0.100000, loss 7.654327 +INFO 2021-10-11 22:35:56 train.py: 82] Epoch 7, iter 4600/6416, lr 0.100000, loss 7.635016 +INFO 2021-10-11 22:37:09 train.py: 82] Epoch 7, iter 4800/6416, lr 0.100000, loss 7.628870 +INFO 2021-10-11 22:38:21 train.py: 82] Epoch 7, iter 5000/6416, lr 0.100000, loss 7.582794 +INFO 2021-10-11 22:39:34 train.py: 82] Epoch 7, iter 5200/6416, lr 0.100000, loss 7.625343 +INFO 2021-10-11 22:40:46 train.py: 82] Epoch 7, iter 5400/6416, lr 0.100000, loss 7.570694 +INFO 2021-10-11 22:41:59 train.py: 82] Epoch 7, iter 5600/6416, lr 0.100000, loss 7.544982 +INFO 2021-10-11 22:43:11 train.py: 82] Epoch 7, iter 5800/6416, lr 0.100000, loss 7.556763 +INFO 2021-10-11 22:44:24 train.py: 95] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2021-10-11 22:44:25 train.py: 82] Epoch 7, iter 6000/6416, lr 0.100000, loss 7.569464 +INFO 2021-10-11 22:45:37 train.py: 82] Epoch 7, iter 6200/6416, lr 0.100000, loss 7.551716 +INFO 2021-10-11 22:46:50 train.py: 82] Epoch 7, iter 6400/6416, lr 0.100000, loss 7.574602 +INFO 2021-10-11 22:46:56 train.py: 100] Save checkpoint Epoch_7.pt to disk... +INFO 2021-10-11 22:46:58 train.py: 82] Epoch 8, iter 0/6416, lr 0.100000, loss 7.628828 +INFO 2021-10-11 22:48:11 train.py: 82] Epoch 8, iter 200/6416, lr 0.100000, loss 7.097268 +INFO 2021-10-11 22:49:23 train.py: 82] Epoch 8, iter 400/6416, lr 0.100000, loss 7.102408 +INFO 2021-10-11 22:50:36 train.py: 82] Epoch 8, iter 600/6416, lr 0.100000, loss 7.184297 +INFO 2021-10-11 22:51:49 train.py: 82] Epoch 8, iter 800/6416, lr 0.100000, loss 7.239732 +INFO 2021-10-11 22:53:01 train.py: 82] Epoch 8, iter 1000/6416, lr 0.100000, loss 7.260486 +INFO 2021-10-11 22:54:13 train.py: 82] Epoch 8, iter 1200/6416, lr 0.100000, loss 7.328599 +INFO 2021-10-11 22:55:26 train.py: 82] Epoch 8, iter 1400/6416, lr 0.100000, loss 7.362567 +INFO 2021-10-11 22:56:39 train.py: 82] Epoch 8, iter 1600/6416, lr 0.100000, loss 7.380589 +INFO 2021-10-11 22:57:51 train.py: 82] Epoch 8, iter 1800/6416, lr 0.100000, loss 7.389757 +INFO 2021-10-11 22:59:03 train.py: 82] Epoch 8, iter 2000/6416, lr 0.100000, loss 7.399941 +INFO 2021-10-11 23:00:16 train.py: 82] Epoch 8, iter 2200/6416, lr 0.100000, loss 7.447249 +INFO 2021-10-11 23:01:29 train.py: 82] Epoch 8, iter 2400/6416, lr 0.100000, loss 7.388890 +INFO 2021-10-11 23:02:41 train.py: 82] Epoch 8, iter 2600/6416, lr 0.100000, loss 7.379715 +INFO 2021-10-11 23:03:53 train.py: 82] Epoch 8, iter 2800/6416, lr 0.100000, loss 7.402969 +INFO 2021-10-11 23:05:06 train.py: 95] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2021-10-11 23:05:07 train.py: 82] Epoch 8, iter 3000/6416, lr 0.100000, loss 7.407772 +INFO 2021-10-11 23:06:19 train.py: 82] Epoch 8, iter 3200/6416, lr 0.100000, loss 7.372286 +INFO 2021-10-11 23:07:31 train.py: 82] Epoch 8, iter 3400/6416, lr 0.100000, loss 7.388764 +INFO 2021-10-11 23:08:43 train.py: 82] Epoch 8, iter 3600/6416, lr 0.100000, loss 7.412668 +INFO 2021-10-11 23:09:56 train.py: 82] Epoch 8, iter 3800/6416, lr 0.100000, loss 7.406136 +INFO 2021-10-11 23:11:08 train.py: 82] Epoch 8, iter 4000/6416, lr 0.100000, loss 7.412901 +INFO 2021-10-11 23:12:20 train.py: 82] Epoch 8, iter 4200/6416, lr 0.100000, loss 7.397339 +INFO 2021-10-11 23:13:33 train.py: 82] Epoch 8, iter 4400/6416, lr 0.100000, loss 7.385983 +INFO 2021-10-11 23:14:45 train.py: 82] Epoch 8, iter 4600/6416, lr 0.100000, loss 7.372269 +INFO 2021-10-11 23:15:57 train.py: 82] Epoch 8, iter 4800/6416, lr 0.100000, loss 7.367348 +INFO 2021-10-11 23:17:10 train.py: 82] Epoch 8, iter 5000/6416, lr 0.100000, loss 7.402361 +INFO 2021-10-11 23:18:22 train.py: 82] Epoch 8, iter 5200/6416, lr 0.100000, loss 7.385488 +INFO 2021-10-11 23:19:34 train.py: 82] Epoch 8, iter 5400/6416, lr 0.100000, loss 7.330408 +INFO 2021-10-11 23:20:46 train.py: 82] Epoch 8, iter 5600/6416, lr 0.100000, loss 7.318797 +INFO 2021-10-11 23:21:59 train.py: 82] Epoch 8, iter 5800/6416, lr 0.100000, loss 7.353994 +INFO 2021-10-11 23:23:12 train.py: 95] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2021-10-11 23:23:12 train.py: 82] Epoch 8, iter 6000/6416, lr 0.100000, loss 7.320303 +INFO 2021-10-11 23:24:25 train.py: 82] Epoch 8, iter 6200/6416, lr 0.100000, loss 7.347665 +INFO 2021-10-11 23:25:37 train.py: 82] Epoch 8, iter 6400/6416, lr 0.100000, loss 7.330069 +INFO 2021-10-11 23:25:43 train.py: 100] Save checkpoint Epoch_8.pt to disk... +INFO 2021-10-11 23:25:45 train.py: 82] Epoch 9, iter 0/6416, lr 0.100000, loss 7.362451 +INFO 2021-10-11 23:26:58 train.py: 82] Epoch 9, iter 200/6416, lr 0.100000, loss 6.870590 +INFO 2021-10-11 23:28:10 train.py: 82] Epoch 9, iter 400/6416, lr 0.100000, loss 6.889367 +INFO 2021-10-11 23:29:22 train.py: 82] Epoch 9, iter 600/6416, lr 0.100000, loss 6.982569 +INFO 2021-10-11 23:30:35 train.py: 82] Epoch 9, iter 800/6416, lr 0.100000, loss 7.039750 +INFO 2021-10-11 23:31:47 train.py: 82] Epoch 9, iter 1000/6416, lr 0.100000, loss 7.072858 +INFO 2021-10-11 23:33:00 train.py: 82] Epoch 9, iter 1200/6416, lr 0.100000, loss 7.088371 +INFO 2021-10-11 23:34:12 train.py: 82] Epoch 9, iter 1400/6416, lr 0.100000, loss 7.112397 +INFO 2021-10-11 23:35:25 train.py: 82] Epoch 9, iter 1600/6416, lr 0.100000, loss 7.142042 +INFO 2021-10-11 23:36:37 train.py: 82] Epoch 9, iter 1800/6416, lr 0.100000, loss 7.182000 +INFO 2021-10-11 23:37:50 train.py: 82] Epoch 9, iter 2000/6416, lr 0.100000, loss 7.214905 +INFO 2021-10-11 23:39:02 train.py: 82] Epoch 9, iter 2200/6416, lr 0.100000, loss 7.226594 +INFO 2021-10-11 23:40:15 train.py: 82] Epoch 9, iter 2400/6416, lr 0.100000, loss 7.230421 +INFO 2021-10-11 23:41:27 train.py: 82] Epoch 9, iter 2600/6416, lr 0.100000, loss 7.233995 +INFO 2021-10-11 23:42:40 train.py: 82] Epoch 9, iter 2800/6416, lr 0.100000, loss 7.210237 +INFO 2021-10-11 23:43:53 train.py: 95] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2021-10-11 23:43:53 train.py: 82] Epoch 9, iter 3000/6416, lr 0.100000, loss 7.191278 +INFO 2021-10-11 23:45:06 train.py: 82] Epoch 9, iter 3200/6416, lr 0.100000, loss 7.224431 +INFO 2021-10-11 23:46:18 train.py: 82] Epoch 9, iter 3400/6416, lr 0.100000, loss 7.214607 +INFO 2021-10-11 23:47:31 train.py: 82] Epoch 9, iter 3600/6416, lr 0.100000, loss 7.231178 +INFO 2021-10-11 23:48:43 train.py: 82] Epoch 9, iter 3800/6416, lr 0.100000, loss 7.198881 +INFO 2021-10-11 23:49:56 train.py: 82] Epoch 9, iter 4000/6416, lr 0.100000, loss 7.224024 +INFO 2021-10-11 23:51:08 train.py: 82] Epoch 9, iter 4200/6416, lr 0.100000, loss 7.201266 +INFO 2021-10-11 23:52:21 train.py: 82] Epoch 9, iter 4400/6416, lr 0.100000, loss 7.226752 +INFO 2021-10-11 23:53:33 train.py: 82] Epoch 9, iter 4600/6416, lr 0.100000, loss 7.200576 +INFO 2021-10-11 23:54:46 train.py: 82] Epoch 9, iter 4800/6416, lr 0.100000, loss 7.239975 +INFO 2021-10-11 23:55:59 train.py: 82] Epoch 9, iter 5000/6416, lr 0.100000, loss 7.169514 +INFO 2021-10-11 23:57:12 train.py: 82] Epoch 9, iter 5200/6416, lr 0.100000, loss 7.204526 +INFO 2021-10-11 23:58:25 train.py: 82] Epoch 9, iter 5400/6416, lr 0.100000, loss 7.183902 +INFO 2021-10-11 23:59:37 train.py: 82] Epoch 9, iter 5600/6416, lr 0.100000, loss 7.213397 +INFO 2021-10-12 00:00:50 train.py: 82] Epoch 9, iter 5800/6416, lr 0.100000, loss 7.157720 +INFO 2021-10-12 00:02:03 train.py: 95] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2021-10-12 00:02:04 train.py: 82] Epoch 9, iter 6000/6416, lr 0.100000, loss 7.179854 +INFO 2021-10-12 00:03:16 train.py: 82] Epoch 9, iter 6200/6416, lr 0.100000, loss 7.212065 +INFO 2021-10-12 00:04:29 train.py: 82] Epoch 9, iter 6400/6416, lr 0.100000, loss 7.167078 +INFO 2021-10-12 00:04:36 train.py: 100] Save checkpoint Epoch_9.pt to disk... +INFO 2021-10-12 00:04:37 train.py: 82] Epoch 10, iter 0/6416, lr 0.010000, loss 7.270155 +INFO 2021-10-12 00:05:50 train.py: 82] Epoch 10, iter 200/6416, lr 0.010000, loss 5.900540 +INFO 2021-10-12 00:07:03 train.py: 82] Epoch 10, iter 400/6416, lr 0.010000, loss 5.672721 +INFO 2021-10-12 00:08:16 train.py: 82] Epoch 10, iter 600/6416, lr 0.010000, loss 5.576178 +INFO 2021-10-12 00:09:29 train.py: 82] Epoch 10, iter 800/6416, lr 0.010000, loss 5.506370 +INFO 2021-10-12 00:10:41 train.py: 82] Epoch 10, iter 1000/6416, lr 0.010000, loss 5.439568 +INFO 2021-10-12 00:11:54 train.py: 82] Epoch 10, iter 1200/6416, lr 0.010000, loss 5.392367 +INFO 2021-10-12 00:13:07 train.py: 82] Epoch 10, iter 1400/6416, lr 0.010000, loss 5.365546 +INFO 2021-10-12 00:14:19 train.py: 82] Epoch 10, iter 1600/6416, lr 0.010000, loss 5.316992 +INFO 2021-10-12 00:15:32 train.py: 82] Epoch 10, iter 1800/6416, lr 0.010000, loss 5.242922 +INFO 2021-10-12 00:16:44 train.py: 82] Epoch 10, iter 2000/6416, lr 0.010000, loss 5.259774 +INFO 2021-10-12 00:17:56 train.py: 82] Epoch 10, iter 2200/6416, lr 0.010000, loss 5.228217 +INFO 2021-10-12 00:19:08 train.py: 82] Epoch 10, iter 2400/6416, lr 0.010000, loss 5.224589 +INFO 2021-10-12 00:20:21 train.py: 82] Epoch 10, iter 2600/6416, lr 0.010000, loss 5.205215 +INFO 2021-10-12 00:21:33 train.py: 82] Epoch 10, iter 2800/6416, lr 0.010000, loss 5.154026 +INFO 2021-10-12 00:22:46 train.py: 95] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2021-10-12 00:22:47 train.py: 82] Epoch 10, iter 3000/6416, lr 0.010000, loss 5.146273 +INFO 2021-10-12 00:23:59 train.py: 82] Epoch 10, iter 3200/6416, lr 0.010000, loss 5.140429 +INFO 2021-10-12 00:25:11 train.py: 82] Epoch 10, iter 3400/6416, lr 0.010000, loss 5.099019 +INFO 2021-10-12 00:26:23 train.py: 82] Epoch 10, iter 3600/6416, lr 0.010000, loss 5.096363 +INFO 2021-10-12 00:27:36 train.py: 82] Epoch 10, iter 3800/6416, lr 0.010000, loss 5.044957 +INFO 2021-10-12 00:28:48 train.py: 82] Epoch 10, iter 4000/6416, lr 0.010000, loss 5.017373 +INFO 2021-10-12 00:30:01 train.py: 82] Epoch 10, iter 4200/6416, lr 0.010000, loss 5.019155 +INFO 2021-10-12 00:31:13 train.py: 82] Epoch 10, iter 4400/6416, lr 0.010000, loss 5.017333 +INFO 2021-10-12 00:32:25 train.py: 82] Epoch 10, iter 4600/6416, lr 0.010000, loss 4.956304 +INFO 2021-10-12 00:33:38 train.py: 82] Epoch 10, iter 4800/6416, lr 0.010000, loss 4.972423 +INFO 2021-10-12 00:34:50 train.py: 82] Epoch 10, iter 5000/6416, lr 0.010000, loss 4.951248 +INFO 2021-10-12 00:36:03 train.py: 82] Epoch 10, iter 5200/6416, lr 0.010000, loss 4.946939 +INFO 2021-10-12 00:37:15 train.py: 82] Epoch 10, iter 5400/6416, lr 0.010000, loss 4.910794 +INFO 2021-10-12 00:38:28 train.py: 82] Epoch 10, iter 5600/6416, lr 0.010000, loss 4.937050 +INFO 2021-10-12 00:39:40 train.py: 82] Epoch 10, iter 5800/6416, lr 0.010000, loss 4.889030 +INFO 2021-10-12 00:40:53 train.py: 95] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2021-10-12 00:40:53 train.py: 82] Epoch 10, iter 6000/6416, lr 0.010000, loss 4.889353 +INFO 2021-10-12 00:42:05 train.py: 82] Epoch 10, iter 6200/6416, lr 0.010000, loss 4.874124 +INFO 2021-10-12 00:43:18 train.py: 82] Epoch 10, iter 6400/6416, lr 0.010000, loss 4.865207 +INFO 2021-10-12 00:43:24 train.py: 100] Save checkpoint Epoch_10.pt to disk... +INFO 2021-10-12 00:43:26 train.py: 82] Epoch 11, iter 0/6416, lr 0.010000, loss 4.836659 +INFO 2021-10-12 00:44:39 train.py: 82] Epoch 11, iter 200/6416, lr 0.010000, loss 4.540447 +INFO 2021-10-12 00:45:51 train.py: 82] Epoch 11, iter 400/6416, lr 0.010000, loss 4.533320 +INFO 2021-10-12 00:47:04 train.py: 82] Epoch 11, iter 600/6416, lr 0.010000, loss 4.538823 +INFO 2021-10-12 00:48:16 train.py: 82] Epoch 11, iter 800/6416, lr 0.010000, loss 4.511605 +INFO 2021-10-12 00:49:28 train.py: 82] Epoch 11, iter 1000/6416, lr 0.010000, loss 4.536511 +INFO 2021-10-12 00:50:40 train.py: 82] Epoch 11, iter 1200/6416, lr 0.010000, loss 4.540965 +INFO 2021-10-12 00:51:52 train.py: 82] Epoch 11, iter 1400/6416, lr 0.010000, loss 4.535392 +INFO 2021-10-12 00:53:04 train.py: 82] Epoch 11, iter 1600/6416, lr 0.010000, loss 4.522141 +INFO 2021-10-12 00:54:16 train.py: 82] Epoch 11, iter 1800/6416, lr 0.010000, loss 4.516510 +INFO 2021-10-12 00:55:28 train.py: 82] Epoch 11, iter 2000/6416, lr 0.010000, loss 4.544702 +INFO 2021-10-12 00:56:40 train.py: 82] Epoch 11, iter 2200/6416, lr 0.010000, loss 4.504144 +INFO 2021-10-12 00:57:52 train.py: 82] Epoch 11, iter 2400/6416, lr 0.010000, loss 4.526364 +INFO 2021-10-12 00:59:04 train.py: 82] Epoch 11, iter 2600/6416, lr 0.010000, loss 4.545413 +INFO 2021-10-12 01:00:16 train.py: 82] Epoch 11, iter 2800/6416, lr 0.010000, loss 4.545825 +INFO 2021-10-12 01:01:28 train.py: 95] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2021-10-12 01:01:29 train.py: 82] Epoch 11, iter 3000/6416, lr 0.010000, loss 4.521823 +INFO 2021-10-12 01:02:40 train.py: 82] Epoch 11, iter 3200/6416, lr 0.010000, loss 4.536296 +INFO 2021-10-12 01:03:52 train.py: 82] Epoch 11, iter 3400/6416, lr 0.010000, loss 4.540962 +INFO 2021-10-12 01:05:04 train.py: 82] Epoch 11, iter 3600/6416, lr 0.010000, loss 4.553539 +INFO 2021-10-12 01:06:16 train.py: 82] Epoch 11, iter 3800/6416, lr 0.010000, loss 4.544167 +INFO 2021-10-12 01:07:28 train.py: 82] Epoch 11, iter 4000/6416, lr 0.010000, loss 4.529852 +INFO 2021-10-12 01:08:40 train.py: 82] Epoch 11, iter 4200/6416, lr 0.010000, loss 4.529248 +INFO 2021-10-12 01:09:52 train.py: 82] Epoch 11, iter 4400/6416, lr 0.010000, loss 4.549093 +INFO 2021-10-12 01:11:04 train.py: 82] Epoch 11, iter 4600/6416, lr 0.010000, loss 4.558291 +INFO 2021-10-12 01:12:16 train.py: 82] Epoch 11, iter 4800/6416, lr 0.010000, loss 4.548318 +INFO 2021-10-12 01:13:28 train.py: 82] Epoch 11, iter 5000/6416, lr 0.010000, loss 4.538473 +INFO 2021-10-12 01:14:40 train.py: 82] Epoch 11, iter 5200/6416, lr 0.010000, loss 4.545289 +INFO 2021-10-12 01:15:52 train.py: 82] Epoch 11, iter 5400/6416, lr 0.010000, loss 4.522825 +INFO 2021-10-12 01:17:04 train.py: 82] Epoch 11, iter 5600/6416, lr 0.010000, loss 4.514425 +INFO 2021-10-12 01:18:16 train.py: 82] Epoch 11, iter 5800/6416, lr 0.010000, loss 4.535403 +INFO 2021-10-12 01:19:29 train.py: 95] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2021-10-12 01:19:29 train.py: 82] Epoch 11, iter 6000/6416, lr 0.010000, loss 4.505395 +INFO 2021-10-12 01:20:42 train.py: 82] Epoch 11, iter 6200/6416, lr 0.010000, loss 4.523374 +INFO 2021-10-12 01:21:54 train.py: 82] Epoch 11, iter 6400/6416, lr 0.010000, loss 4.517419 +INFO 2021-10-12 01:22:00 train.py: 100] Save checkpoint Epoch_11.pt to disk... +INFO 2021-10-12 01:22:02 train.py: 82] Epoch 12, iter 0/6416, lr 0.010000, loss 4.438810 +INFO 2021-10-12 01:23:15 train.py: 82] Epoch 12, iter 200/6416, lr 0.010000, loss 4.212799 +INFO 2021-10-12 01:24:27 train.py: 82] Epoch 12, iter 400/6416, lr 0.010000, loss 4.208974 +INFO 2021-10-12 01:25:40 train.py: 82] Epoch 12, iter 600/6416, lr 0.010000, loss 4.215587 +INFO 2021-10-12 01:26:52 train.py: 82] Epoch 12, iter 800/6416, lr 0.010000, loss 4.189658 +INFO 2021-10-12 01:28:05 train.py: 82] Epoch 12, iter 1000/6416, lr 0.010000, loss 4.238931 +INFO 2021-10-12 01:29:17 train.py: 82] Epoch 12, iter 1200/6416, lr 0.010000, loss 4.224834 +INFO 2021-10-12 01:30:29 train.py: 82] Epoch 12, iter 1400/6416, lr 0.010000, loss 4.263417 +INFO 2021-10-12 01:31:41 train.py: 82] Epoch 12, iter 1600/6416, lr 0.010000, loss 4.264576 +INFO 2021-10-12 01:32:53 train.py: 82] Epoch 12, iter 1800/6416, lr 0.010000, loss 4.274143 +INFO 2021-10-12 01:34:05 train.py: 82] Epoch 12, iter 2000/6416, lr 0.010000, loss 4.256176 +INFO 2021-10-12 01:35:16 train.py: 82] Epoch 12, iter 2200/6416, lr 0.010000, loss 4.274632 +INFO 2021-10-12 01:36:28 train.py: 82] Epoch 12, iter 2400/6416, lr 0.010000, loss 4.259171 +INFO 2021-10-12 01:37:40 train.py: 82] Epoch 12, iter 2600/6416, lr 0.010000, loss 4.299415 +INFO 2021-10-12 01:38:52 train.py: 82] Epoch 12, iter 2800/6416, lr 0.010000, loss 4.305869 +INFO 2021-10-12 01:40:05 train.py: 95] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2021-10-12 01:40:05 train.py: 82] Epoch 12, iter 3000/6416, lr 0.010000, loss 4.312959 +INFO 2021-10-12 01:41:17 train.py: 82] Epoch 12, iter 3200/6416, lr 0.010000, loss 4.305828 +INFO 2021-10-12 01:42:29 train.py: 82] Epoch 12, iter 3400/6416, lr 0.010000, loss 4.324463 +INFO 2021-10-12 01:43:41 train.py: 82] Epoch 12, iter 3600/6416, lr 0.010000, loss 4.344051 +INFO 2021-10-12 01:44:53 train.py: 82] Epoch 12, iter 3800/6416, lr 0.010000, loss 4.323265 +INFO 2021-10-12 01:46:05 train.py: 82] Epoch 12, iter 4000/6416, lr 0.010000, loss 4.349889 +INFO 2021-10-12 01:47:16 train.py: 82] Epoch 12, iter 4200/6416, lr 0.010000, loss 4.357720 +INFO 2021-10-12 01:48:28 train.py: 82] Epoch 12, iter 4400/6416, lr 0.010000, loss 4.352079 +INFO 2021-10-12 01:49:39 train.py: 82] Epoch 12, iter 4600/6416, lr 0.010000, loss 4.359271 +INFO 2021-10-12 01:50:51 train.py: 82] Epoch 12, iter 4800/6416, lr 0.010000, loss 4.381599 +INFO 2021-10-12 01:52:03 train.py: 82] Epoch 12, iter 5000/6416, lr 0.010000, loss 4.335753 +INFO 2021-10-12 01:53:14 train.py: 82] Epoch 12, iter 5200/6416, lr 0.010000, loss 4.353476 +INFO 2021-10-12 01:54:26 train.py: 82] Epoch 12, iter 5400/6416, lr 0.010000, loss 4.373205 +INFO 2021-10-12 01:55:37 train.py: 82] Epoch 12, iter 5600/6416, lr 0.010000, loss 4.366847 +INFO 2021-10-12 01:56:49 train.py: 82] Epoch 12, iter 5800/6416, lr 0.010000, loss 4.364130 +INFO 2021-10-12 01:58:01 train.py: 95] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2021-10-12 01:58:02 train.py: 82] Epoch 12, iter 6000/6416, lr 0.010000, loss 4.368445 +INFO 2021-10-12 01:59:13 train.py: 82] Epoch 12, iter 6200/6416, lr 0.010000, loss 4.399129 +INFO 2021-10-12 02:00:25 train.py: 82] Epoch 12, iter 6400/6416, lr 0.010000, loss 4.361923 +INFO 2021-10-12 02:00:31 train.py: 100] Save checkpoint Epoch_12.pt to disk... +INFO 2021-10-12 02:00:33 train.py: 82] Epoch 13, iter 0/6416, lr 0.001000, loss 4.441228 +INFO 2021-10-12 02:01:45 train.py: 82] Epoch 13, iter 200/6416, lr 0.001000, loss 3.953566 +INFO 2021-10-12 02:02:57 train.py: 82] Epoch 13, iter 400/6416, lr 0.001000, loss 3.924126 +INFO 2021-10-12 02:04:10 train.py: 82] Epoch 13, iter 600/6416, lr 0.001000, loss 3.894496 +INFO 2021-10-12 02:05:22 train.py: 82] Epoch 13, iter 800/6416, lr 0.001000, loss 3.897298 +INFO 2021-10-12 02:06:33 train.py: 82] Epoch 13, iter 1000/6416, lr 0.001000, loss 3.880164 +INFO 2021-10-12 02:07:44 train.py: 82] Epoch 13, iter 1200/6416, lr 0.001000, loss 3.864967 +INFO 2021-10-12 02:08:56 train.py: 82] Epoch 13, iter 1400/6416, lr 0.001000, loss 3.889341 +INFO 2021-10-12 02:10:08 train.py: 82] Epoch 13, iter 1600/6416, lr 0.001000, loss 3.868593 +INFO 2021-10-12 02:11:19 train.py: 82] Epoch 13, iter 1800/6416, lr 0.001000, loss 3.896852 +INFO 2021-10-12 02:12:31 train.py: 82] Epoch 13, iter 2000/6416, lr 0.001000, loss 3.883626 +INFO 2021-10-12 02:13:43 train.py: 82] Epoch 13, iter 2200/6416, lr 0.001000, loss 3.867222 +INFO 2021-10-12 02:14:55 train.py: 82] Epoch 13, iter 2400/6416, lr 0.001000, loss 3.887697 +INFO 2021-10-12 02:16:06 train.py: 82] Epoch 13, iter 2600/6416, lr 0.001000, loss 3.846236 +INFO 2021-10-12 02:17:18 train.py: 82] Epoch 13, iter 2800/6416, lr 0.001000, loss 3.853321 +INFO 2021-10-12 02:18:30 train.py: 95] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2021-10-12 02:18:31 train.py: 82] Epoch 13, iter 3000/6416, lr 0.001000, loss 3.845072 +INFO 2021-10-12 02:19:42 train.py: 82] Epoch 13, iter 3200/6416, lr 0.001000, loss 3.897856 +INFO 2021-10-12 02:20:54 train.py: 82] Epoch 13, iter 3400/6416, lr 0.001000, loss 3.884608 +INFO 2021-10-12 02:22:05 train.py: 82] Epoch 13, iter 3600/6416, lr 0.001000, loss 3.877761 +INFO 2021-10-12 02:23:17 train.py: 82] Epoch 13, iter 3800/6416, lr 0.001000, loss 3.876001 +INFO 2021-10-12 02:24:28 train.py: 82] Epoch 13, iter 4000/6416, lr 0.001000, loss 3.894900 +INFO 2021-10-12 02:25:40 train.py: 82] Epoch 13, iter 4200/6416, lr 0.001000, loss 3.891905 +INFO 2021-10-12 02:26:52 train.py: 82] Epoch 13, iter 4400/6416, lr 0.001000, loss 3.904178 +INFO 2021-10-12 02:28:03 train.py: 82] Epoch 13, iter 4600/6416, lr 0.001000, loss 3.890727 +INFO 2021-10-12 02:29:15 train.py: 82] Epoch 13, iter 4800/6416, lr 0.001000, loss 3.879863 +INFO 2021-10-12 02:30:27 train.py: 82] Epoch 13, iter 5000/6416, lr 0.001000, loss 3.891477 +INFO 2021-10-12 02:31:38 train.py: 82] Epoch 13, iter 5200/6416, lr 0.001000, loss 3.882521 +INFO 2021-10-12 02:32:50 train.py: 82] Epoch 13, iter 5400/6416, lr 0.001000, loss 3.868747 +INFO 2021-10-12 02:34:02 train.py: 82] Epoch 13, iter 5600/6416, lr 0.001000, loss 3.883568 +INFO 2021-10-12 02:35:13 train.py: 82] Epoch 13, iter 5800/6416, lr 0.001000, loss 3.894116 +INFO 2021-10-12 02:36:26 train.py: 95] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2021-10-12 02:36:26 train.py: 82] Epoch 13, iter 6000/6416, lr 0.001000, loss 3.906889 +INFO 2021-10-12 02:37:38 train.py: 82] Epoch 13, iter 6200/6416, lr 0.001000, loss 3.897078 +INFO 2021-10-12 02:38:49 train.py: 82] Epoch 13, iter 6400/6416, lr 0.001000, loss 3.871173 +INFO 2021-10-12 02:38:56 train.py: 100] Save checkpoint Epoch_13.pt to disk... +INFO 2021-10-12 02:38:58 train.py: 82] Epoch 14, iter 0/6416, lr 0.001000, loss 3.928265 +INFO 2021-10-12 02:40:10 train.py: 82] Epoch 14, iter 200/6416, lr 0.001000, loss 3.825548 +INFO 2021-10-12 02:41:23 train.py: 82] Epoch 14, iter 400/6416, lr 0.001000, loss 3.822929 +INFO 2021-10-12 02:42:35 train.py: 82] Epoch 14, iter 600/6416, lr 0.001000, loss 3.796972 +INFO 2021-10-12 02:43:46 train.py: 82] Epoch 14, iter 800/6416, lr 0.001000, loss 3.832615 +INFO 2021-10-12 02:44:58 train.py: 82] Epoch 14, iter 1000/6416, lr 0.001000, loss 3.844211 +INFO 2021-10-12 02:46:10 train.py: 82] Epoch 14, iter 1200/6416, lr 0.001000, loss 3.819662 +INFO 2021-10-12 02:47:22 train.py: 82] Epoch 14, iter 1400/6416, lr 0.001000, loss 3.810265 +INFO 2021-10-12 02:48:34 train.py: 82] Epoch 14, iter 1600/6416, lr 0.001000, loss 3.827449 +INFO 2021-10-12 02:49:45 train.py: 82] Epoch 14, iter 1800/6416, lr 0.001000, loss 3.810592 +INFO 2021-10-12 02:50:57 train.py: 82] Epoch 14, iter 2000/6416, lr 0.001000, loss 3.823550 +INFO 2021-10-12 02:52:08 train.py: 82] Epoch 14, iter 2200/6416, lr 0.001000, loss 3.811846 +INFO 2021-10-12 02:53:20 train.py: 82] Epoch 14, iter 2400/6416, lr 0.001000, loss 3.851203 +INFO 2021-10-12 02:54:31 train.py: 82] Epoch 14, iter 2600/6416, lr 0.001000, loss 3.828231 +INFO 2021-10-12 02:55:43 train.py: 82] Epoch 14, iter 2800/6416, lr 0.001000, loss 3.838185 +INFO 2021-10-12 02:56:55 train.py: 95] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2021-10-12 02:56:56 train.py: 82] Epoch 14, iter 3000/6416, lr 0.001000, loss 3.848820 +INFO 2021-10-12 02:58:08 train.py: 82] Epoch 14, iter 3200/6416, lr 0.001000, loss 3.863523 +INFO 2021-10-12 02:59:19 train.py: 82] Epoch 14, iter 3400/6416, lr 0.001000, loss 3.851798 +INFO 2021-10-12 03:00:31 train.py: 82] Epoch 14, iter 3600/6416, lr 0.001000, loss 3.837083 +INFO 2021-10-12 03:01:43 train.py: 82] Epoch 14, iter 3800/6416, lr 0.001000, loss 3.845924 +INFO 2021-10-12 03:02:54 train.py: 82] Epoch 14, iter 4000/6416, lr 0.001000, loss 3.839927 +INFO 2021-10-12 03:04:06 train.py: 82] Epoch 14, iter 4200/6416, lr 0.001000, loss 3.866790 +INFO 2021-10-12 03:05:18 train.py: 82] Epoch 14, iter 4400/6416, lr 0.001000, loss 3.830319 +INFO 2021-10-12 03:06:30 train.py: 82] Epoch 14, iter 4600/6416, lr 0.001000, loss 3.849122 +INFO 2021-10-12 03:07:42 train.py: 82] Epoch 14, iter 4800/6416, lr 0.001000, loss 3.867346 +INFO 2021-10-12 03:08:53 train.py: 82] Epoch 14, iter 5000/6416, lr 0.001000, loss 3.857668 +INFO 2021-10-12 03:10:05 train.py: 82] Epoch 14, iter 5200/6416, lr 0.001000, loss 3.830453 +INFO 2021-10-12 03:11:17 train.py: 82] Epoch 14, iter 5400/6416, lr 0.001000, loss 3.841674 +INFO 2021-10-12 03:12:28 train.py: 82] Epoch 14, iter 5600/6416, lr 0.001000, loss 3.848972 +INFO 2021-10-12 03:13:40 train.py: 82] Epoch 14, iter 5800/6416, lr 0.001000, loss 3.859697 +INFO 2021-10-12 03:14:53 train.py: 95] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2021-10-12 03:14:53 train.py: 82] Epoch 14, iter 6000/6416, lr 0.001000, loss 3.847249 +INFO 2021-10-12 03:16:05 train.py: 82] Epoch 14, iter 6200/6416, lr 0.001000, loss 3.848293 +INFO 2021-10-12 03:17:17 train.py: 82] Epoch 14, iter 6400/6416, lr 0.001000, loss 3.844851 +INFO 2021-10-12 03:17:23 train.py: 100] Save checkpoint Epoch_14.pt to disk... +INFO 2021-10-12 03:17:25 train.py: 82] Epoch 15, iter 0/6416, lr 0.001000, loss 3.839562 +INFO 2021-10-12 03:18:38 train.py: 82] Epoch 15, iter 200/6416, lr 0.001000, loss 3.784405 +INFO 2021-10-12 03:19:50 train.py: 82] Epoch 15, iter 400/6416, lr 0.001000, loss 3.797444 +INFO 2021-10-12 03:21:01 train.py: 82] Epoch 15, iter 600/6416, lr 0.001000, loss 3.786072 +INFO 2021-10-12 03:22:13 train.py: 82] Epoch 15, iter 800/6416, lr 0.001000, loss 3.799371 +INFO 2021-10-12 03:23:24 train.py: 82] Epoch 15, iter 1000/6416, lr 0.001000, loss 3.802272 +INFO 2021-10-12 03:24:36 train.py: 82] Epoch 15, iter 1200/6416, lr 0.001000, loss 3.777513 +INFO 2021-10-12 03:25:47 train.py: 82] Epoch 15, iter 1400/6416, lr 0.001000, loss 3.773127 +INFO 2021-10-12 03:26:59 train.py: 82] Epoch 15, iter 1600/6416, lr 0.001000, loss 3.805599 +INFO 2021-10-12 03:28:11 train.py: 82] Epoch 15, iter 1800/6416, lr 0.001000, loss 3.811088 +INFO 2021-10-12 03:29:22 train.py: 82] Epoch 15, iter 2000/6416, lr 0.001000, loss 3.792045 +INFO 2021-10-12 03:30:34 train.py: 82] Epoch 15, iter 2200/6416, lr 0.001000, loss 3.809186 +INFO 2021-10-12 03:31:45 train.py: 82] Epoch 15, iter 2400/6416, lr 0.001000, loss 3.778055 +INFO 2021-10-12 03:32:57 train.py: 82] Epoch 15, iter 2600/6416, lr 0.001000, loss 3.805090 +INFO 2021-10-12 03:34:08 train.py: 82] Epoch 15, iter 2800/6416, lr 0.001000, loss 3.802675 +INFO 2021-10-12 03:35:20 train.py: 95] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2021-10-12 03:35:21 train.py: 82] Epoch 15, iter 3000/6416, lr 0.001000, loss 3.824646 +INFO 2021-10-12 03:36:32 train.py: 82] Epoch 15, iter 3200/6416, lr 0.001000, loss 3.831821 +INFO 2021-10-12 03:37:44 train.py: 82] Epoch 15, iter 3400/6416, lr 0.001000, loss 3.814118 +INFO 2021-10-12 03:38:55 train.py: 82] Epoch 15, iter 3600/6416, lr 0.001000, loss 3.812598 +INFO 2021-10-12 03:40:07 train.py: 82] Epoch 15, iter 3800/6416, lr 0.001000, loss 3.811165 +INFO 2021-10-12 03:41:18 train.py: 82] Epoch 15, iter 4000/6416, lr 0.001000, loss 3.823861 +INFO 2021-10-12 03:42:30 train.py: 82] Epoch 15, iter 4200/6416, lr 0.001000, loss 3.814580 +INFO 2021-10-12 03:43:42 train.py: 82] Epoch 15, iter 4400/6416, lr 0.001000, loss 3.810455 +INFO 2021-10-12 03:44:53 train.py: 82] Epoch 15, iter 4600/6416, lr 0.001000, loss 3.810051 +INFO 2021-10-12 03:46:05 train.py: 82] Epoch 15, iter 4800/6416, lr 0.001000, loss 3.793287 +INFO 2021-10-12 03:47:17 train.py: 82] Epoch 15, iter 5000/6416, lr 0.001000, loss 3.823380 +INFO 2021-10-12 03:48:28 train.py: 82] Epoch 15, iter 5200/6416, lr 0.001000, loss 3.806899 +INFO 2021-10-12 03:49:40 train.py: 82] Epoch 15, iter 5400/6416, lr 0.001000, loss 3.830942 +INFO 2021-10-12 03:50:51 train.py: 82] Epoch 15, iter 5600/6416, lr 0.001000, loss 3.815722 +INFO 2021-10-12 03:52:03 train.py: 82] Epoch 15, iter 5800/6416, lr 0.001000, loss 3.804584 +INFO 2021-10-12 03:53:15 train.py: 95] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2021-10-12 03:53:16 train.py: 82] Epoch 15, iter 6000/6416, lr 0.001000, loss 3.816869 +INFO 2021-10-12 03:54:28 train.py: 82] Epoch 15, iter 6200/6416, lr 0.001000, loss 3.823887 +INFO 2021-10-12 03:55:39 train.py: 82] Epoch 15, iter 6400/6416, lr 0.001000, loss 3.854727 +INFO 2021-10-12 03:55:46 train.py: 100] Save checkpoint Epoch_15.pt to disk... +INFO 2021-10-12 03:55:48 train.py: 82] Epoch 16, iter 0/6416, lr 0.000100, loss 3.879567 +INFO 2021-10-12 03:57:00 train.py: 82] Epoch 16, iter 200/6416, lr 0.000100, loss 3.748064 +INFO 2021-10-12 03:58:13 train.py: 82] Epoch 16, iter 400/6416, lr 0.000100, loss 3.753644 +INFO 2021-10-12 03:59:25 train.py: 82] Epoch 16, iter 600/6416, lr 0.000100, loss 3.729019 +INFO 2021-10-12 04:00:37 train.py: 82] Epoch 16, iter 800/6416, lr 0.000100, loss 3.750805 +INFO 2021-10-12 04:01:48 train.py: 82] Epoch 16, iter 1000/6416, lr 0.000100, loss 3.740468 +INFO 2021-10-12 04:03:00 train.py: 82] Epoch 16, iter 1200/6416, lr 0.000100, loss 3.747286 +INFO 2021-10-12 04:04:11 train.py: 82] Epoch 16, iter 1400/6416, lr 0.000100, loss 3.750590 +INFO 2021-10-12 04:05:22 train.py: 82] Epoch 16, iter 1600/6416, lr 0.000100, loss 3.763460 +INFO 2021-10-12 04:06:34 train.py: 82] Epoch 16, iter 1800/6416, lr 0.000100, loss 3.760462 +INFO 2021-10-12 04:07:45 train.py: 82] Epoch 16, iter 2000/6416, lr 0.000100, loss 3.786539 +INFO 2021-10-12 04:08:57 train.py: 82] Epoch 16, iter 2200/6416, lr 0.000100, loss 3.753119 +INFO 2021-10-12 04:10:08 train.py: 82] Epoch 16, iter 2400/6416, lr 0.000100, loss 3.775878 +INFO 2021-10-12 04:11:19 train.py: 82] Epoch 16, iter 2600/6416, lr 0.000100, loss 3.749750 +INFO 2021-10-12 04:12:31 train.py: 82] Epoch 16, iter 2800/6416, lr 0.000100, loss 3.775911 +INFO 2021-10-12 04:13:42 train.py: 95] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2021-10-12 04:13:43 train.py: 82] Epoch 16, iter 3000/6416, lr 0.000100, loss 3.738060 +INFO 2021-10-12 04:14:54 train.py: 82] Epoch 16, iter 3200/6416, lr 0.000100, loss 3.763050 +INFO 2021-10-12 04:16:06 train.py: 82] Epoch 16, iter 3400/6416, lr 0.000100, loss 3.754281 +INFO 2021-10-12 04:17:17 train.py: 82] Epoch 16, iter 3600/6416, lr 0.000100, loss 3.744961 +INFO 2021-10-12 04:18:29 train.py: 82] Epoch 16, iter 3800/6416, lr 0.000100, loss 3.745488 +INFO 2021-10-12 04:19:40 train.py: 82] Epoch 16, iter 4000/6416, lr 0.000100, loss 3.750797 +INFO 2021-10-12 04:20:52 train.py: 82] Epoch 16, iter 4200/6416, lr 0.000100, loss 3.732517 +INFO 2021-10-12 04:22:03 train.py: 82] Epoch 16, iter 4400/6416, lr 0.000100, loss 3.783783 +INFO 2021-10-12 04:23:15 train.py: 82] Epoch 16, iter 4600/6416, lr 0.000100, loss 3.755100 +INFO 2021-10-12 04:24:27 train.py: 82] Epoch 16, iter 4800/6416, lr 0.000100, loss 3.760945 +INFO 2021-10-12 04:25:39 train.py: 82] Epoch 16, iter 5000/6416, lr 0.000100, loss 3.758861 +INFO 2021-10-12 04:26:51 train.py: 82] Epoch 16, iter 5200/6416, lr 0.000100, loss 3.745392 +INFO 2021-10-12 04:28:03 train.py: 82] Epoch 16, iter 5400/6416, lr 0.000100, loss 3.771717 +INFO 2021-10-12 04:29:15 train.py: 82] Epoch 16, iter 5600/6416, lr 0.000100, loss 3.758553 +INFO 2021-10-12 04:30:27 train.py: 82] Epoch 16, iter 5800/6416, lr 0.000100, loss 3.742543 +INFO 2021-10-12 04:31:39 train.py: 95] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2021-10-12 04:31:40 train.py: 82] Epoch 16, iter 6000/6416, lr 0.000100, loss 3.763480 +INFO 2021-10-12 04:32:51 train.py: 82] Epoch 16, iter 6200/6416, lr 0.000100, loss 3.752254 +INFO 2021-10-12 04:34:03 train.py: 82] Epoch 16, iter 6400/6416, lr 0.000100, loss 3.772104 +INFO 2021-10-12 04:34:10 train.py: 100] Save checkpoint Epoch_16.pt to disk... +INFO 2021-10-12 04:34:12 train.py: 82] Epoch 17, iter 0/6416, lr 0.000100, loss 3.821568 +INFO 2021-10-12 04:35:24 train.py: 82] Epoch 17, iter 200/6416, lr 0.000100, loss 3.745310 +INFO 2021-10-12 04:36:37 train.py: 82] Epoch 17, iter 400/6416, lr 0.000100, loss 3.759674 +INFO 2021-10-12 04:37:48 train.py: 82] Epoch 17, iter 600/6416, lr 0.000100, loss 3.741271 +INFO 2021-10-12 04:39:00 train.py: 82] Epoch 17, iter 800/6416, lr 0.000100, loss 3.771942 +INFO 2021-10-12 04:40:12 train.py: 82] Epoch 17, iter 1000/6416, lr 0.000100, loss 3.761821 +INFO 2021-10-12 04:41:23 train.py: 82] Epoch 17, iter 1200/6416, lr 0.000100, loss 3.751132 +INFO 2021-10-12 04:42:34 train.py: 82] Epoch 17, iter 1400/6416, lr 0.000100, loss 3.757315 +INFO 2021-10-12 04:43:45 train.py: 82] Epoch 17, iter 1600/6416, lr 0.000100, loss 3.759437 +INFO 2021-10-12 04:44:57 train.py: 82] Epoch 17, iter 1800/6416, lr 0.000100, loss 3.729860 +INFO 2021-10-12 04:46:08 train.py: 82] Epoch 17, iter 2000/6416, lr 0.000100, loss 3.740405 +INFO 2021-10-12 04:47:20 train.py: 82] Epoch 17, iter 2200/6416, lr 0.000100, loss 3.740128 +INFO 2021-10-12 04:48:31 train.py: 82] Epoch 17, iter 2400/6416, lr 0.000100, loss 3.754893 +INFO 2021-10-12 04:49:43 train.py: 82] Epoch 17, iter 2600/6416, lr 0.000100, loss 3.745712 +INFO 2021-10-12 04:50:54 train.py: 82] Epoch 17, iter 2800/6416, lr 0.000100, loss 3.748604 +INFO 2021-10-12 04:52:06 train.py: 95] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2021-10-12 04:52:07 train.py: 82] Epoch 17, iter 3000/6416, lr 0.000100, loss 3.761845 +INFO 2021-10-12 04:53:18 train.py: 82] Epoch 17, iter 3200/6416, lr 0.000100, loss 3.727124 +INFO 2021-10-12 04:54:29 train.py: 82] Epoch 17, iter 3400/6416, lr 0.000100, loss 3.750767 +INFO 2021-10-12 04:55:41 train.py: 82] Epoch 17, iter 3600/6416, lr 0.000100, loss 3.750870 +INFO 2021-10-12 04:56:53 train.py: 82] Epoch 17, iter 3800/6416, lr 0.000100, loss 3.753284 +INFO 2021-10-12 04:58:04 train.py: 82] Epoch 17, iter 4000/6416, lr 0.000100, loss 3.757116 +INFO 2021-10-12 04:59:16 train.py: 82] Epoch 17, iter 4200/6416, lr 0.000100, loss 3.739168 +INFO 2021-10-12 05:00:28 train.py: 82] Epoch 17, iter 4400/6416, lr 0.000100, loss 3.747804 +INFO 2021-10-12 05:01:39 train.py: 82] Epoch 17, iter 4600/6416, lr 0.000100, loss 3.749971 +INFO 2021-10-12 05:02:51 train.py: 82] Epoch 17, iter 4800/6416, lr 0.000100, loss 3.734868 +INFO 2021-10-12 05:04:03 train.py: 82] Epoch 17, iter 5000/6416, lr 0.000100, loss 3.743888 +INFO 2021-10-12 05:05:14 train.py: 82] Epoch 17, iter 5200/6416, lr 0.000100, loss 3.754829 +INFO 2021-10-12 05:06:26 train.py: 82] Epoch 17, iter 5400/6416, lr 0.000100, loss 3.775448 +INFO 2021-10-12 05:07:38 train.py: 82] Epoch 17, iter 5600/6416, lr 0.000100, loss 3.737936 +INFO 2021-10-12 05:08:49 train.py: 82] Epoch 17, iter 5800/6416, lr 0.000100, loss 3.755900 +INFO 2021-10-12 05:10:02 train.py: 95] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2021-10-12 05:10:02 train.py: 82] Epoch 17, iter 6000/6416, lr 0.000100, loss 3.740855 +INFO 2021-10-12 05:11:14 train.py: 82] Epoch 17, iter 6200/6416, lr 0.000100, loss 3.718625 +INFO 2021-10-12 05:12:26 train.py: 82] Epoch 17, iter 6400/6416, lr 0.000100, loss 3.770707 +INFO 2021-10-12 05:12:32 train.py: 100] Save checkpoint Epoch_17.pt to disk... \ No newline at end of file diff --git a/bob/bio/facexzoo/models/backbones/MobileFaceNet/.gitkeep b/bob/bio/facexzoo/models/backbones/MobileFaceNet/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..0db4976e32282361fe102cc7e26e28dd760be91c --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_agedb.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_2999.pt | 0.9596666666666666 | 0.002808716591058783 | +| Epoch_16_batch_5999.pt | 0.9595 | 0.0024726903426964316 | +| Epoch_13.pt | 0.9588333333333333 | 0.002236758015466374 | +| Epoch_14.pt | 0.9586666666666666 | 0.002830608711745998 | +| Epoch_17.pt | 0.9584999999999999 | 0.0026810952248919255 | +| Epoch_15.pt | 0.9583333333333334 | 0.002277100170213248 | +| Epoch_14_batch_5999.pt | 0.9580000000000002 | 0.0025067809272618815 | +| Epoch_16.pt | 0.958 | 0.0029376231258671785 | +| Epoch_17_batch_2999.pt | 0.9578333333333333 | 0.0027448042948968053 | +| Epoch_14_batch_2999.pt | 0.9576666666666667 | 0.002678215731820883 | +| Epoch_17_batch_5999.pt | 0.9576666666666667 | 0.0027011657291429437 | +| Epoch_13_batch_5999.pt | 0.9570000000000001 | 0.0027307123838765626 | +| Epoch_13_batch_2999.pt | 0.9570000000000001 | 0.0026620330112690966 | +| Epoch_15_batch_5999.pt | 0.9565000000000001 | 0.0026229048075806453 | +| Epoch_15_batch_2999.pt | 0.9565000000000001 | 0.0027154109799666527 | +| Epoch_12_batch_5999.pt | 0.9563333333333333 | 0.002662033011269096 | +| Epoch_11_batch_5999.pt | 0.9560000000000001 | 0.003353641838397019 | +| Epoch_10_batch_2999.pt | 0.9558333333333333 | 0.0029000851413640456 | +| Epoch_12.pt | 0.9556666666666667 | 0.003288588574877501 | +| Epoch_12_batch_2999.pt | 0.9553333333333331 | 0.003237511618740774 | +| Epoch_11.pt | 0.9550000000000001 | 0.0028544961285922577 | +| Epoch_10_batch_5999.pt | 0.9536666666666666 | 0.0031407320055783453 | +| Epoch_11_batch_2999.pt | 0.9531666666666666 | 0.0029234049148717527 | +| Epoch_10.pt | 0.9531666666666666 | 0.0030169275516412093 | +| Epoch_8_batch_2999.pt | 0.9455 | 0.003505287012077192 | +| Epoch_8_batch_5999.pt | 0.9445 | 0.0031822229981377076 | +| Epoch_7_batch_2999.pt | 0.9418333333333331 | 0.00419766248885858 | +| Epoch_9.pt | 0.9413333333333332 | 0.003749897117930266 | +| Epoch_9_batch_5999.pt | 0.9411666666666665 | 0.004245913067618996 | +| Epoch_6_batch_5999.pt | 0.9405000000000001 | 0.00441692871340021 | +| Epoch_7_batch_5999.pt | 0.9403333333333332 | 0.003839367231815777 | +| Epoch_5_batch_5999.pt | 0.9401666666666667 | 0.004461425891758629 | +| Epoch_6_batch_2999.pt | 0.9396666666666667 | 0.003798960221617497 | +| Epoch_9_batch_2999.pt | 0.9383333333333332 | 0.003583225665910461 | +| Epoch_5_batch_2999.pt | 0.9356666666666668 | 0.0043899436144752 | +| Epoch_8.pt | 0.9335000000000001 | 0.0038845213569807416 | +| Epoch_6.pt | 0.9328333333333333 | 0.005500000000000003 | +| Epoch_4_batch_2999.pt | 0.9305 | 0.004486261607382757 | +| Epoch_4_batch_5999.pt | 0.9303333333333332 | 0.004373037478700983 | +| Epoch_4.pt | 0.9301666666666666 | 0.0031666666666666623 | +| Epoch_3_batch_2999.pt | 0.9298333333333334 | 0.004047938051543746 | +| Epoch_7.pt | 0.9286666666666668 | 0.0035030850600965497 | +| Epoch_3_batch_5999.pt | 0.9275 | 0.004603071974772747 | +| Epoch_2_batch_5999.pt | 0.9241666666666667 | 0.006087073938749425 | +| Epoch_3.pt | 0.9235 | 0.00513671125031725 | +| Epoch_5.pt | 0.9218333333333332 | 0.004419722911821962 | +| Epoch_2_batch_2999.pt | 0.921 | 0.0051830683509736 | +| Epoch_2.pt | 0.9126666666666667 | 0.00476095228569523 | +| Epoch_1_batch_5999.pt | 0.9028333333333333 | 0.007777976187945486 | +| Epoch_1.pt | 0.9019999999999999 | 0.005664487598458173 | +| Epoch_1_batch_2999.pt | 0.893 | 0.006185406959874126 | +| Epoch_0_batch_5999.pt | 0.8415000000000001 | 0.007224145043182491 | +| Epoch_0.pt | 0.8406666666666667 | 0.006602468674109144 | +| Epoch_0_batch_2999.pt | 0.7585 | 0.005871304984602846 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..77bce39df7a606a31ef76f7d74719a0a4d8ef50f --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_calfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_5999.pt | 0.9381666666666666 | 0.003713921091857389 | +| Epoch_14_batch_2999.pt | 0.9378333333333334 | 0.0034609818060383395 | +| Epoch_14.pt | 0.9376666666666666 | 0.0033166247903553946 | +| Epoch_15.pt | 0.9375 | 0.0037944891814509227 | +| Epoch_13.pt | 0.9375 | 0.003593976442141298 | +| Epoch_16_batch_2999.pt | 0.9375 | 0.004031128874149273 | +| Epoch_12_batch_2999.pt | 0.9373333333333334 | 0.004015402444353916 | +| Epoch_10_batch_5999.pt | 0.9373333333333334 | 0.0036868133384526766 | +| Epoch_11_batch_2999.pt | 0.9371666666666668 | 0.0035140810224152056 | +| Epoch_17_batch_5999.pt | 0.9369999999999999 | 0.0040046269535422415 | +| Epoch_16.pt | 0.9368333333333334 | 0.0036552853665768807 | +| Epoch_15_batch_5999.pt | 0.9366666666666668 | 0.0039518709430619355 | +| Epoch_12.pt | 0.9366666666666665 | 0.003944053188733076 | +| Epoch_17_batch_2999.pt | 0.9365 | 0.0035870996571906477 | +| Epoch_12_batch_5999.pt | 0.9361666666666666 | 0.0035316033500695124 | +| Epoch_17.pt | 0.9359999999999999 | 0.0037035185138886554 | +| Epoch_15_batch_2999.pt | 0.9359999999999999 | 0.0036700321255363913 | +| Epoch_13_batch_2999.pt | 0.9359999999999999 | 0.0037284359412361094 | +| Epoch_14_batch_5999.pt | 0.9356666666666668 | 0.0034623192113072995 | +| Epoch_11_batch_5999.pt | 0.9356666666666668 | 0.004099081499043714 | +| Epoch_10_batch_2999.pt | 0.9354999999999999 | 0.0037271940261598894 | +| Epoch_13_batch_5999.pt | 0.9353333333333333 | 0.003503085060096543 | +| Epoch_11.pt | 0.9351666666666667 | 0.003156905032261193 | +| Epoch_10.pt | 0.9334999999999999 | 0.00389245867902296 | +| Epoch_9_batch_5999.pt | 0.9271666666666667 | 0.004082860894816248 | +| Epoch_7_batch_5999.pt | 0.9256666666666667 | 0.003644715437079277 | +| Epoch_8_batch_2999.pt | 0.9255000000000001 | 0.00458156531555982 | +| Epoch_9_batch_2999.pt | 0.9243333333333332 | 0.0038666028091789584 | +| Epoch_7_batch_2999.pt | 0.9238333333333333 | 0.003324525400083818 | +| Epoch_6_batch_5999.pt | 0.9236666666666666 | 0.0038393672318157825 | +| Epoch_5_batch_5999.pt | 0.9225 | 0.0030251007533471062 | +| Epoch_9.pt | 0.9221666666666666 | 0.0033152286106301523 | +| Epoch_8.pt | 0.9214999999999998 | 0.003482318654269966 | +| Epoch_6_batch_2999.pt | 0.9213333333333334 | 0.0034318767136623358 | +| Epoch_8_batch_5999.pt | 0.9211666666666666 | 0.0034161020310318276 | +| Epoch_4_batch_5999.pt | 0.9185000000000001 | 0.004040306185683719 | +| Epoch_6.pt | 0.9185000000000001 | 0.0036972629182166314 | +| Epoch_4.pt | 0.9178333333333333 | 0.004289306254879471 | +| Epoch_5_batch_2999.pt | 0.9173333333333332 | 0.0035241670060341605 | +| Epoch_3_batch_5999.pt | 0.915 | 0.004201704533597563 | +| Epoch_3_batch_2999.pt | 0.9148333333333334 | 0.003796115623523669 | +| Epoch_4_batch_2999.pt | 0.9145 | 0.003677173498527313 | +| Epoch_3.pt | 0.9115 | 0.004769048873779113 | +| Epoch_7.pt | 0.9108333333333334 | 0.0037122586382862485 | +| Epoch_2_batch_2999.pt | 0.9106666666666667 | 0.005364492313143695 | +| Epoch_2_batch_5999.pt | 0.908 | 0.005310134731266008 | +| Epoch_2.pt | 0.9076666666666666 | 0.004268749491621903 | +| Epoch_5.pt | 0.9049999999999999 | 0.002897423291201178 | +| Epoch_1.pt | 0.9023333333333333 | 0.004876246279442598 | +| Epoch_1_batch_5999.pt | 0.8965 | 0.004915646472938589 | +| Epoch_1_batch_2999.pt | 0.8821666666666668 | 0.005832275036275763 | +| Epoch_0_batch_5999.pt | 0.8460000000000001 | 0.005410323921751042 | +| Epoch_0.pt | 0.8458333333333332 | 0.006513281776967183 | +| Epoch_0_batch_2999.pt | 0.7321666666666666 | 0.008913334441397197 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..795f9f8bb3803af502a7f3832dca0e3791ee72c1 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_cplfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_5999.pt | 0.8333333333333333 | 0.007260581890090914 | +| Epoch_16_batch_5999.pt | 0.8308333333333333 | 0.006541651922606642 | +| Epoch_10_batch_5999.pt | 0.8305 | 0.006898962169221229 | +| Epoch_15.pt | 0.8303333333333333 | 0.006544246365612105 | +| Epoch_14.pt | 0.8301666666666667 | 0.006394683362656983 | +| Epoch_12_batch_2999.pt | 0.8298333333333334 | 0.0068693719949452685 | +| Epoch_12_batch_5999.pt | 0.8298333333333334 | 0.006806179109755634 | +| Epoch_17_batch_2999.pt | 0.8296666666666667 | 0.006343072433863149 | +| Epoch_17_batch_5999.pt | 0.8295 | 0.006912370374736211 | +| Epoch_15_batch_2999.pt | 0.8285 | 0.006385022984963992 | +| Epoch_16_batch_2999.pt | 0.8281666666666666 | 0.0066223061143082865 | +| Epoch_16.pt | 0.828 | 0.006220237778790407 | +| Epoch_13_batch_2999.pt | 0.8278333333333334 | 0.006781647347123024 | +| Epoch_13.pt | 0.8275 | 0.006723140433157013 | +| Epoch_14_batch_2999.pt | 0.8271666666666666 | 0.006804364975223588 | +| Epoch_12.pt | 0.8266666666666665 | 0.007657804862272348 | +| Epoch_15_batch_5999.pt | 0.8265 | 0.006622306114308287 | +| Epoch_17.pt | 0.8265 | 0.005765210691812374 | +| Epoch_11_batch_5999.pt | 0.8263333333333334 | 0.007473409653688988 | +| Epoch_14_batch_5999.pt | 0.8256666666666665 | 0.007058835633008262 | +| Epoch_11_batch_2999.pt | 0.825 | 0.007395360574352775 | +| Epoch_10_batch_2999.pt | 0.8243333333333333 | 0.007400367024598542 | +| Epoch_11.pt | 0.8234999999999999 | 0.006336500182900753 | +| Epoch_10.pt | 0.8203333333333334 | 0.006059376979749321 | +| Epoch_9_batch_5999.pt | 0.8091666666666667 | 0.005785518319236597 | +| Epoch_8.pt | 0.8038333333333332 | 0.008326107978766194 | +| Epoch_7_batch_5999.pt | 0.8023333333333333 | 0.006291283407507587 | +| Epoch_9_batch_2999.pt | 0.8021666666666667 | 0.007833333333333335 | +| Epoch_8_batch_2999.pt | 0.8015000000000001 | 0.006570839057983835 | +| Epoch_8_batch_5999.pt | 0.8013333333333333 | 0.00795744856435284 | +| Epoch_6_batch_5999.pt | 0.8001666666666667 | 0.007897686799951202 | +| Epoch_9.pt | 0.7971666666666667 | 0.008927174493894722 | +| Epoch_5_batch_5999.pt | 0.7953333333333333 | 0.008042326301865584 | +| Epoch_5_batch_2999.pt | 0.7938333333333334 | 0.007856938429279016 | +| Epoch_6_batch_2999.pt | 0.7936666666666666 | 0.0081187178942807 | +| Epoch_7_batch_2999.pt | 0.7928333333333334 | 0.008516686598512587 | +| Epoch_6.pt | 0.7921666666666667 | 0.0050738375181408595 | +| Epoch_4_batch_2999.pt | 0.7898333333333334 | 0.005496631965391444 | +| Epoch_4_batch_5999.pt | 0.7896666666666666 | 0.006269660435407063 | +| Epoch_3.pt | 0.7871666666666667 | 0.00937902177109724 | +| Epoch_3_batch_5999.pt | 0.7851666666666667 | 0.0068423607939488125 | +| Epoch_2.pt | 0.7841666666666666 | 0.009048054152723514 | +| Epoch_4.pt | 0.7835 | 0.006806179109755635 | +| Epoch_7.pt | 0.7829999999999999 | 0.006235105709599193 | +| Epoch_3_batch_2999.pt | 0.7828333333333333 | 0.00753612698118491 | +| Epoch_5.pt | 0.7808333333333334 | 0.007646713164636313 | +| Epoch_2_batch_5999.pt | 0.7789999999999999 | 0.008632410933135572 | +| Epoch_2_batch_2999.pt | 0.7759999999999999 | 0.008274607894182611 | +| Epoch_1_batch_5999.pt | 0.7626666666666667 | 0.007106769507976613 | +| Epoch_1_batch_2999.pt | 0.7535000000000001 | 0.008799726426724021 | +| Epoch_1.pt | 0.7526666666666667 | 0.006877230277975012 | +| Epoch_0.pt | 0.7073333333333334 | 0.009102299261826758 | +| Epoch_0_batch_5999.pt | 0.7026666666666668 | 0.007790465841314707 | +| Epoch_0_batch_2999.pt | 0.6346666666666667 | 0.00881146839684748 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..265655b2c338ca798d30df93c9eef55630fb5125 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15.pt | 0.9956666666666665 | 0.0011706281947614146 | +| Epoch_12_batch_2999.pt | 0.9956666666666665 | 0.0010886621079036374 | +| Epoch_12.pt | 0.9956666666666665 | 0.0010599324460188284 | +| Epoch_16_batch_2999.pt | 0.9956666666666665 | 0.0011706281947614146 | +| Epoch_15_batch_5999.pt | 0.9955 | 0.0011399046960379555 | +| Epoch_15_batch_2999.pt | 0.9955 | 0.0011399046960379555 | +| Epoch_11_batch_5999.pt | 0.9955 | 0.0011666666666666642 | +| Epoch_16.pt | 0.9953333333333333 | 0.001105541596785135 | +| Epoch_13.pt | 0.9953333333333332 | 0.001133115447465063 | +| Epoch_14_batch_2999.pt | 0.9951666666666666 | 0.0010957268290731133 | +| Epoch_10.pt | 0.9951666666666666 | 0.0011772011166898393 | +| Epoch_17_batch_2999.pt | 0.9951666666666666 | 0.0010378634273483006 | +| Epoch_13_batch_2999.pt | 0.9949999999999999 | 0.0011111111111111128 | +| Epoch_17_batch_5999.pt | 0.9949999999999999 | 0.0011111111111111128 | +| Epoch_13_batch_5999.pt | 0.9948333333333332 | 0.001228519132638667 | +| Epoch_17.pt | 0.9948333333333332 | 0.0011235415786753737 | +| Epoch_14_batch_5999.pt | 0.9948333333333332 | 0.0010671873729054782 | +| Epoch_12_batch_5999.pt | 0.9946666666666667 | 0.001018350154434636 | +| Epoch_14.pt | 0.9945 | 0.0011399046960379542 | +| Epoch_16_batch_5999.pt | 0.9944999999999998 | 0.0011666666666666696 | +| Epoch_11_batch_2999.pt | 0.9943333333333333 | 0.0012222222222222198 | +| Epoch_10_batch_5999.pt | 0.9941666666666666 | 0.0010613873985857113 | +| Epoch_11.pt | 0.9940000000000001 | 0.0013193713430042124 | +| Epoch_10_batch_2999.pt | 0.994 | 0.0012957670877434026 | +| Epoch_7_batch_5999.pt | 0.9935 | 0.0013017082793177735 | +| Epoch_8.pt | 0.9931666666666666 | 0.001301708279317778 | +| Epoch_9_batch_2999.pt | 0.9931666666666666 | 0.0012533904636309486 | +| Epoch_9_batch_5999.pt | 0.993 | 0.0011600340565456162 | +| Epoch_5_batch_5999.pt | 0.993 | 0.0017177360926378114 | +| Epoch_8_batch_5999.pt | 0.9926666666666666 | 0.0013653561919382778 | +| Epoch_6_batch_5999.pt | 0.9924999999999999 | 0.0017078251276599358 | +| Epoch_9.pt | 0.9923333333333332 | 0.0007934920476158749 | +| Epoch_4_batch_5999.pt | 0.9921666666666666 | 0.0016859989894992859 | +| Epoch_3.pt | 0.992 | 0.0017533037597843894 | +| Epoch_3_batch_2999.pt | 0.9918333333333335 | 0.0012031337682059848 | +| Epoch_8_batch_2999.pt | 0.9918333333333333 | 0.0016187558093703858 | +| Epoch_6_batch_2999.pt | 0.9916666666666668 | 0.0015908690070307063 | +| Epoch_5_batch_2999.pt | 0.9915 | 0.001479280772854929 | +| Epoch_2_batch_2999.pt | 0.9915 | 0.0018333333333333322 | +| Epoch_2_batch_5999.pt | 0.9913333333333334 | 0.0017177360926378127 | +| Epoch_6.pt | 0.9911666666666665 | 0.0012435016269777464 | +| Epoch_4_batch_2999.pt | 0.991 | 0.001742709682373126 | +| Epoch_3_batch_5999.pt | 0.9909999999999999 | 0.0020964402515681346 | +| Epoch_5.pt | 0.9908333333333333 | 0.001614937983749851 | +| Epoch_4.pt | 0.9908333333333333 | 0.0015762512176790149 | +| Epoch_7.pt | 0.9906666666666668 | 0.0017603310575283158 | +| Epoch_7_batch_2999.pt | 0.9905000000000002 | 0.0017751717009633857 | +| Epoch_2.pt | 0.9884999999999999 | 0.0016749792701868215 | +| Epoch_1_batch_5999.pt | 0.9864999999999998 | 0.0015204369092671074 | +| Epoch_1.pt | 0.9841666666666666 | 0.002620550314460163 | +| Epoch_1_batch_2999.pt | 0.9823333333333334 | 0.0018954135676924433 | +| Epoch_0.pt | 0.9703333333333333 | 0.0022879178091082257 | +| Epoch_0_batch_5999.pt | 0.9655000000000001 | 0.0030434102055116375 | +| Epoch_0_batch_2999.pt | 0.9373333333333334 | 0.003390254733864971 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_rfw_African.txt b/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_rfw_African.txt new file mode 100644 index 0000000000000000000000000000000000000000..fdd509ff22c09c8d778b6039b9ea42abb155b89c --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_rfw_African.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.8873333333333333 | 0.005117146195408648 | +| Epoch_17_batch_2999.pt | 0.8868333333333334 | 0.004292183535937484 | +| Epoch_16_batch_2999.pt | 0.8868333333333333 | 0.004657729537494039 | +| Epoch_16_batch_5999.pt | 0.8866666666666667 | 0.00450651106459406 | +| Epoch_14_batch_2999.pt | 0.8859999999999999 | 0.0049140765305546565 | +| Epoch_15_batch_5999.pt | 0.8859999999999999 | 0.004622809791714378 | +| Epoch_15_batch_2999.pt | 0.8844999999999998 | 0.0044655747698019105 | +| Epoch_14_batch_5999.pt | 0.8836666666666666 | 0.0055154105093292724 | +| Epoch_13.pt | 0.8835 | 0.004965622559901967 | +| Epoch_13_batch_2999.pt | 0.8835 | 0.004703885969055426 | +| Epoch_17_batch_5999.pt | 0.8831666666666667 | 0.004377622670687092 | +| Epoch_12_batch_2999.pt | 0.8825 | 0.005617707893376856 | +| Epoch_13_batch_5999.pt | 0.8818333333333334 | 0.005722222222222222 | +| Epoch_16.pt | 0.8818333333333334 | 0.004677566635509283 | +| Epoch_14.pt | 0.8815 | 0.0056023033182018836 | +| Epoch_15.pt | 0.8813333333333334 | 0.004955356249106172 | +| Epoch_12_batch_5999.pt | 0.8805 | 0.005443594037892865 | +| Epoch_11_batch_5999.pt | 0.8796666666666667 | 0.005315943872846971 | +| Epoch_12.pt | 0.8796666666666665 | 0.0045119867787215395 | +| Epoch_11.pt | 0.8786666666666667 | 0.004936635531449571 | +| Epoch_10.pt | 0.8785000000000001 | 0.00465109837021135 | +| Epoch_11_batch_2999.pt | 0.8781666666666668 | 0.004577521567803227 | +| Epoch_10_batch_2999.pt | 0.876 | 0.004375859703892269 | +| Epoch_10_batch_5999.pt | 0.8758333333333332 | 0.005573581865803604 | +| Epoch_9_batch_5999.pt | 0.8578333333333333 | 0.0053115876122834475 | +| Epoch_9_batch_2999.pt | 0.8526666666666667 | 0.006522515609528517 | +| Epoch_8_batch_2999.pt | 0.8496666666666666 | 0.004841946348777979 | +| Epoch_7_batch_5999.pt | 0.8451666666666666 | 0.004530077807088045 | +| Epoch_6_batch_5999.pt | 0.8445 | 0.007248030809625737 | +| Epoch_4_batch_5999.pt | 0.8413333333333334 | 0.007070194786636901 | +| Epoch_7_batch_2999.pt | 0.8393333333333333 | 0.0061824123303304696 | +| Epoch_8_batch_5999.pt | 0.8391666666666667 | 0.0062274283775512725 | +| Epoch_9.pt | 0.8381666666666666 | 0.003986474044646718 | +| Epoch_5_batch_2999.pt | 0.8370000000000001 | 0.006807766080906841 | +| Epoch_6_batch_2999.pt | 0.8348333333333333 | 0.0043493294502332976 | +| Epoch_4_batch_2999.pt | 0.8328333333333333 | 0.006206577554358889 | +| Epoch_5.pt | 0.8301666666666666 | 0.006302311941063307 | +| Epoch_4.pt | 0.8298333333333334 | 0.006336500182900745 | +| Epoch_6.pt | 0.8283333333333334 | 0.005746711351549225 | +| Epoch_5_batch_5999.pt | 0.8283333333333334 | 0.00569275042553311 | +| Epoch_3.pt | 0.8258333333333334 | 0.0055235187389253235 | +| Epoch_8.pt | 0.8256666666666665 | 0.0067868791351446455 | +| Epoch_7.pt | 0.8245000000000001 | 0.006554849302822761 | +| Epoch_3_batch_2999.pt | 0.8243333333333334 | 0.00799768485019027 | +| Epoch_3_batch_5999.pt | 0.8193333333333334 | 0.005726266100766724 | +| Epoch_2_batch_5999.pt | 0.8168333333333335 | 0.005738380637922078 | +| Epoch_2_batch_2999.pt | 0.8146666666666667 | 0.0063089198073681685 | +| Epoch_2.pt | 0.7996666666666666 | 0.005788451678947156 | +| Epoch_1_batch_5999.pt | 0.7956666666666667 | 0.0048317366455908695 | +| Epoch_1.pt | 0.7776666666666666 | 0.00639347661369591 | +| Epoch_1_batch_2999.pt | 0.7581666666666667 | 0.006471447259279004 | +| Epoch_0.pt | 0.7028333333333332 | 0.005905897868201724 | +| Epoch_0_batch_5999.pt | 0.7021666666666667 | 0.00636856671279407 | +| Epoch_0_batch_2999.pt | 0.6210000000000001 | 0.008047697316547477 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_rfw_Asian.txt b/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_rfw_Asian.txt new file mode 100644 index 0000000000000000000000000000000000000000..661f912477becb9158263e521e0795d01aca6912 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_rfw_Asian.txt @@ -0,0 +1,57 @@ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16.pt | 0.8801666666666665 | 0.004248819734444195 | +| Epoch_16_batch_2999.pt | 0.8779999999999999 | 0.004653420353638202 | +| Epoch_14_batch_5999.pt | 0.8775000000000001 | 0.0038908725099762597 | +| Epoch_17_batch_5999.pt | 0.8771666666666667 | 0.004635144863025806 | +| Epoch_15.pt | 0.8768333333333335 | 0.004953175811263309 | +| Epoch_17_batch_2999.pt | 0.8765000000000001 | 0.004160736520745062 | +| Epoch_15_batch_2999.pt | 0.8761666666666666 | 0.0035836563161933607 | +| Epoch_12_batch_2999.pt | 0.8756666666666666 | 0.005056471223547888 | +| Epoch_11_batch_5999.pt | 0.8755 | 0.0038574122970755527 | +| Epoch_13_batch_2999.pt | 0.8753333333333334 | 0.00437303747870098 | +| Epoch_16_batch_5999.pt | 0.8753333333333334 | 0.004552844721899529 | +| Epoch_15_batch_5999.pt | 0.8751666666666666 | 0.004447568346583431 | +| Epoch_13_batch_5999.pt | 0.8745 | 0.0035228530805528203 | +| Epoch_13.pt | 0.8741666666666668 | 0.004596361953749566 | +| Epoch_10_batch_5999.pt | 0.8741666666666668 | 0.0031549490810001577 | +| Epoch_12_batch_5999.pt | 0.8736666666666668 | 0.003440858348267117 | +| Epoch_17.pt | 0.8728333333333333 | 0.0047012606662311185 | +| Epoch_11.pt | 0.8718333333333333 | 0.003955383891406126 | +| Epoch_14.pt | 0.8718333333333333 | 0.004996603784843862 | +| Epoch_14_batch_2999.pt | 0.8709999999999999 | 0.004417976744904675 | +| Epoch_10.pt | 0.8706666666666667 | 0.004361730316975672 | +| Epoch_11_batch_2999.pt | 0.8698333333333335 | 0.0038204291659898184 | +| Epoch_10_batch_2999.pt | 0.8676666666666666 | 0.004121608220220315 | +| Epoch_12.pt | 0.8655000000000002 | 0.003991116679035955 | +| Epoch_9_batch_5999.pt | 0.849 | 0.004863570806275395 | +| Epoch_8_batch_2999.pt | 0.8474999999999999 | 0.004844813951249549 | +| Epoch_9_batch_2999.pt | 0.8471666666666667 | 0.0032303537244681383 | +| Epoch_6_batch_5999.pt | 0.8446666666666667 | 0.00385541146064388 | +| Epoch_4_batch_5999.pt | 0.8445 | 0.004759979769642659 | +| Epoch_8.pt | 0.8425 | 0.005742681870148159 | +| Epoch_5_batch_5999.pt | 0.8401666666666667 | 0.004509591971906815 | +| Epoch_8_batch_5999.pt | 0.8398333333333332 | 0.004801298692624985 | +| Epoch_4_batch_2999.pt | 0.8386666666666667 | 0.003218388523991166 | +| Epoch_7_batch_2999.pt | 0.8383333333333333 | 0.005773502691896265 | +| Epoch_6_batch_2999.pt | 0.8380000000000001 | 0.0038554114606438802 | +| Epoch_6.pt | 0.8380000000000001 | 0.006175419214040115 | +| Epoch_5_batch_2999.pt | 0.8346666666666668 | 0.0043871304494221405 | +| Epoch_7_batch_5999.pt | 0.8341666666666667 | 0.004181455237263045 | +| Epoch_3_batch_2999.pt | 0.8300000000000001 | 0.0031720227608044898 | +| Epoch_3.pt | 0.8288333333333332 | 0.0050126383482031215 | +| Epoch_4.pt | 0.8286666666666667 | 0.004930379496074179 | +| Epoch_3_batch_5999.pt | 0.825 | 0.005085685551709239 | +| Epoch_2_batch_2999.pt | 0.8246666666666667 | 0.0039031484600556194 | +| Epoch_2_batch_5999.pt | 0.8236666666666667 | 0.0039346513799168375 | +| Epoch_9.pt | 0.8233333333333335 | 0.004303314829119351 | +| Epoch_7.pt | 0.8216666666666667 | 0.004164814403109187 | +| Epoch_2.pt | 0.8099999999999999 | 0.005097808776424204 | +| Epoch_5.pt | 0.8035 | 0.00479486608162738 | +| Epoch_1.pt | 0.7941666666666667 | 0.006257094738606828 | +| Epoch_1_batch_5999.pt | 0.7921666666666666 | 0.0047729303574985185 | +| Epoch_1_batch_2999.pt | 0.7901666666666666 | 0.005342873411966292 | +| Epoch_0.pt | 0.7403333333333333 | 0.005362190449783839 | +| Epoch_0_batch_5999.pt | 0.7344999999999999 | 0.0041725883845834194 | +| Epoch_0_batch_2999.pt | 0.6815 | 0.0070072713556599085 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_rfw_Caucasian.txt b/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_rfw_Caucasian.txt new file mode 100644 index 0000000000000000000000000000000000000000..49ffb997aec3b5089eed91009926c5e6aa036ea4 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_rfw_Caucasian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_5999.pt | 0.9570000000000001 | 0.00356422554052122 | +| Epoch_16_batch_2999.pt | 0.9558333333333333 | 0.0036111111111111153 | +| Epoch_14_batch_5999.pt | 0.9558333333333332 | 0.003326381639982827 | +| Epoch_17_batch_2999.pt | 0.9551666666666667 | 0.0035000000000000005 | +| Epoch_17.pt | 0.9551666666666666 | 0.00387656778320434 | +| Epoch_14.pt | 0.9548333333333334 | 0.0031861002130977017 | +| Epoch_17_batch_5999.pt | 0.9546666666666667 | 0.003546864377669419 | +| Epoch_15_batch_5999.pt | 0.9545000000000001 | 0.0041577682760150425 | +| Epoch_13_batch_2999.pt | 0.9545 | 0.003833333333333336 | +| Epoch_15_batch_2999.pt | 0.9543333333333333 | 0.0035676876351116303 | +| Epoch_13.pt | 0.9538333333333332 | 0.003735465660892057 | +| Epoch_13_batch_5999.pt | 0.9533333333333334 | 0.0036767538017276236 | +| Epoch_14_batch_2999.pt | 0.9531666666666666 | 0.0034645470728153086 | +| Epoch_15.pt | 0.9523333333333334 | 0.0037531879453454498 | +| Epoch_12_batch_2999.pt | 0.9523333333333331 | 0.0033993463423951887 | +| Epoch_16.pt | 0.9521666666666666 | 0.003702268240343592 | +| Epoch_11_batch_5999.pt | 0.9521666666666666 | 0.004127968441835539 | +| Epoch_12_batch_5999.pt | 0.9516666666666665 | 0.003591828861165471 | +| Epoch_12.pt | 0.9515 | 0.0034911705207477744 | +| Epoch_11_batch_2999.pt | 0.9513333333333331 | 0.00288461221905493 | +| Epoch_11.pt | 0.95 | 0.0034066021592790915 | +| Epoch_10_batch_5999.pt | 0.9496666666666667 | 0.003879353388910243 | +| Epoch_10.pt | 0.9488333333333335 | 0.0034964708839021266 | +| Epoch_10_batch_2999.pt | 0.9481666666666667 | 0.003621352997273837 | +| Epoch_8_batch_5999.pt | 0.9299999999999999 | 0.004201704533597566 | +| Epoch_9_batch_5999.pt | 0.9295 | 0.004423910900359653 | +| Epoch_9.pt | 0.9289999999999999 | 0.003154459903684086 | +| Epoch_7_batch_5999.pt | 0.9263333333333333 | 0.0028087165910587845 | +| Epoch_8_batch_2999.pt | 0.9256666666666666 | 0.005672110674711205 | +| Epoch_9_batch_2999.pt | 0.9248333333333333 | 0.0038526085439079573 | +| Epoch_6_batch_5999.pt | 0.9244999999999999 | 0.004245913067618998 | +| Epoch_8.pt | 0.9225 | 0.002952818281315182 | +| Epoch_5_batch_5999.pt | 0.9206666666666667 | 0.0039999999999999975 | +| Epoch_6_batch_2999.pt | 0.9203333333333333 | 0.003208784239598597 | +| Epoch_7_batch_2999.pt | 0.9196666666666667 | 0.004096068575814838 | +| Epoch_5_batch_2999.pt | 0.9141666666666668 | 0.0031155721984022153 | +| Epoch_4.pt | 0.9126666666666667 | 0.0015947444549341489 | +| Epoch_6.pt | 0.9120000000000001 | 0.0028414915227876533 | +| Epoch_4_batch_2999.pt | 0.9114999999999999 | 0.003787976429717954 | +| Epoch_4_batch_5999.pt | 0.9106666666666667 | 0.004812535072823938 | +| Epoch_7.pt | 0.9095000000000001 | 0.0029085866917129815 | +| Epoch_3_batch_2999.pt | 0.9081666666666666 | 0.0029022128636908826 | +| Epoch_3_batch_5999.pt | 0.9065000000000001 | 0.003057575090181559 | +| Epoch_2_batch_2999.pt | 0.9025000000000001 | 0.0031353224576716543 | +| Epoch_2_batch_5999.pt | 0.9010000000000001 | 0.003014368881389011 | +| Epoch_3.pt | 0.8998333333333333 | 0.0016933056282364609 | +| Epoch_5.pt | 0.8995000000000001 | 0.003668770440244237 | +| Epoch_2.pt | 0.8978333333333332 | 0.003960062974932603 | +| Epoch_1_batch_5999.pt | 0.8835000000000001 | 0.003621352997273838 | +| Epoch_1.pt | 0.8811666666666668 | 0.0033059056770692987 | +| Epoch_1_batch_2999.pt | 0.8671666666666666 | 0.004339383241150778 | +| Epoch_0.pt | 0.8361666666666666 | 0.004289306254879478 | +| Epoch_0_batch_5999.pt | 0.8266666666666668 | 0.006211299937499414 | +| Epoch_0_batch_2999.pt | 0.7578333333333334 | 0.005931970297037765 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_rfw_Indian.txt b/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_rfw_Indian.txt new file mode 100644 index 0000000000000000000000000000000000000000..b2ac0c099ba21fef0489cd0b0d150457751a9e66 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/MobileFaceNet/accu_files/accu_rfw_Indian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_5999.pt | 0.9085000000000001 | 0.003852608543907959 | +| Epoch_16.pt | 0.9075 | 0.003930334701294229 | +| Epoch_17.pt | 0.9066666666666666 | 0.003397529966982369 | +| Epoch_17_batch_2999.pt | 0.9066666666666666 | 0.003659926464889028 | +| Epoch_13_batch_5999.pt | 0.9065 | 0.003446683859832462 | +| Epoch_12_batch_5999.pt | 0.9061666666666668 | 0.00407529443002074 | +| Epoch_13.pt | 0.906 | 0.004046031434674032 | +| Epoch_16_batch_5999.pt | 0.9059999999999999 | 0.003761402417735721 | +| Epoch_12_batch_2999.pt | 0.9058333333333334 | 0.0037781862524265083 | +| Epoch_17_batch_5999.pt | 0.9056666666666666 | 0.0036784323016104117 | +| Epoch_15_batch_2999.pt | 0.9053333333333334 | 0.0034676636742949378 | +| Epoch_16_batch_2999.pt | 0.9053333333333333 | 0.003839367231815781 | +| Epoch_10.pt | 0.9045 | 0.003549039167485427 | +| Epoch_14_batch_5999.pt | 0.9043333333333334 | 0.00375318794534545 | +| Epoch_13_batch_2999.pt | 0.9041666666666666 | 0.0033724556023947074 | +| Epoch_15.pt | 0.9033333333333333 | 0.003583225665910463 | +| Epoch_14_batch_2999.pt | 0.9030000000000001 | 0.00391104797928845 | +| Epoch_10_batch_2999.pt | 0.9024999999999999 | 0.003193840522623292 | +| Epoch_14.pt | 0.9024999999999999 | 0.003859012219291616 | +| Epoch_12.pt | 0.9021666666666667 | 0.004668319813010156 | +| Epoch_10_batch_5999.pt | 0.9019999999999999 | 0.004192880503136267 | +| Epoch_11_batch_5999.pt | 0.8996666666666668 | 0.004004626953542241 | +| Epoch_11_batch_2999.pt | 0.899 | 0.0038984010650775177 | +| Epoch_11.pt | 0.8986666666666666 | 0.004344714399114921 | +| Epoch_9.pt | 0.8821666666666668 | 0.0052531589555567075 | +| Epoch_9_batch_5999.pt | 0.8811666666666668 | 0.004981756842176049 | +| Epoch_8_batch_2999.pt | 0.8796666666666665 | 0.004103596736137634 | +| Epoch_7_batch_5999.pt | 0.8793333333333333 | 0.0050442486501405155 | +| Epoch_7_batch_2999.pt | 0.8791666666666668 | 0.005710343657903436 | +| Epoch_9_batch_2999.pt | 0.8789999999999999 | 0.003610683735393763 | +| Epoch_6_batch_2999.pt | 0.8786666666666667 | 0.004148478822798768 | +| Epoch_5_batch_5999.pt | 0.8785000000000001 | 0.004890466917040397 | +| Epoch_6_batch_5999.pt | 0.8768333333333335 | 0.005196449405098938 | +| Epoch_8_batch_5999.pt | 0.8756666666666666 | 0.003636237371545237 | +| Epoch_8.pt | 0.8733333333333333 | 0.004694362260950578 | +| Epoch_6.pt | 0.8720000000000001 | 0.005162782291328417 | +| Epoch_4_batch_2999.pt | 0.8716666666666667 | 0.00477260702109212 | +| Epoch_5_batch_2999.pt | 0.8705 | 0.00606574067007016 | +| Epoch_4_batch_5999.pt | 0.8680000000000001 | 0.004816381511487389 | +| Epoch_4.pt | 0.867 | 0.0035294178165041355 | +| Epoch_5.pt | 0.8666666666666666 | 0.005594309277855158 | +| Epoch_3_batch_5999.pt | 0.8621666666666666 | 0.005079916884709384 | +| Epoch_2_batch_5999.pt | 0.8618333333333335 | 0.0044890126495590555 | +| Epoch_3_batch_2999.pt | 0.8616666666666667 | 0.004296136650929155 | +| Epoch_3.pt | 0.8536666666666666 | 0.004294699575575041 | +| Epoch_2_batch_2999.pt | 0.8508333333333333 | 0.0049705925324307915 | +| Epoch_2.pt | 0.8498333333333333 | 0.006238322424070969 | +| Epoch_7.pt | 0.8488333333333333 | 0.00534633831078181 | +| Epoch_1_batch_5999.pt | 0.8373333333333333 | 0.004528374193847736 | +| Epoch_1.pt | 0.8318333333333333 | 0.005377421934967231 | +| Epoch_1_batch_2999.pt | 0.8140000000000001 | 0.005495228008390329 | +| Epoch_0_batch_5999.pt | 0.7881666666666666 | 0.004370566536714872 | +| Epoch_0.pt | 0.7849999999999999 | 0.00481125224324688 | +| Epoch_0_batch_2999.pt | 0.7068333333333332 | 0.005278947238855226 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/MobileFaceNet/log.log b/bob/bio/facexzoo/models/backbones/MobileFaceNet/log.log new file mode 100644 index 0000000000000000000000000000000000000000..d38e0a8f66c6c904fb3541adc812d096a3bddfdb --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/MobileFaceNet/log.log @@ -0,0 +1,657 @@ +INFO 2020-11-24 17:02:43 driver.py: 124] Generating grammar tables from /usr/lib/python3.6/lib2to3/Grammar.txt +INFO 2020-11-24 17:02:43 driver.py: 124] Generating grammar tables from /usr/lib/python3.6/lib2to3/PatternGrammar.txt +INFO 2020-11-24 17:02:43 train.py: 172] Start optimization. +INFO 2020-11-24 17:02:43 train.py: 173] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='Mobilefacenets', batch_size=512, data_root='/home/wangjun492/wj_data/facex-zoo/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='mv-softmax', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='mv-mobile', train_file='/home/wangjun492/wj_data/facex-zoo/deepglint/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7fa027e56b00>) +backbone param: +{'feat_dim': 512, 'out_h': 7, 'out_w': 7} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +INFO 2020-11-24 17:03:10 train.py: 74] Epoch 0, iter 0/6416, lr 0.100000, loss 16.358618 +INFO 2020-11-24 17:04:32 train.py: 74] Epoch 0, iter 200/6416, lr 0.100000, loss 15.827444 +INFO 2020-11-24 17:05:55 train.py: 74] Epoch 0, iter 400/6416, lr 0.100000, loss 15.327547 +INFO 2020-11-24 17:07:17 train.py: 74] Epoch 0, iter 600/6416, lr 0.100000, loss 15.027858 +INFO 2020-11-24 17:08:39 train.py: 74] Epoch 0, iter 800/6416, lr 0.100000, loss 14.677421 +INFO 2020-11-24 17:10:01 train.py: 74] Epoch 0, iter 1000/6416, lr 0.100000, loss 14.355350 +INFO 2020-11-24 17:11:23 train.py: 74] Epoch 0, iter 1200/6416, lr 0.100000, loss 14.027037 +INFO 2020-11-24 17:12:45 train.py: 74] Epoch 0, iter 1400/6416, lr 0.100000, loss 13.690001 +INFO 2020-11-24 17:14:07 train.py: 74] Epoch 0, iter 1600/6416, lr 0.100000, loss 13.346130 +INFO 2020-11-24 17:15:29 train.py: 74] Epoch 0, iter 1800/6416, lr 0.100000, loss 13.024926 +INFO 2020-11-24 17:16:51 train.py: 74] Epoch 0, iter 2000/6416, lr 0.100000, loss 12.701884 +INFO 2020-11-24 17:18:13 train.py: 74] Epoch 0, iter 2200/6416, lr 0.100000, loss 12.395277 +INFO 2020-11-24 17:19:35 train.py: 74] Epoch 0, iter 2400/6416, lr 0.100000, loss 12.130202 +INFO 2020-11-24 17:20:57 train.py: 74] Epoch 0, iter 2600/6416, lr 0.100000, loss 11.987308 +INFO 2020-11-24 17:22:18 train.py: 74] Epoch 0, iter 2800/6416, lr 0.100000, loss 11.955337 +INFO 2020-11-24 17:23:39 train.py: 87] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2020-11-24 17:23:39 train.py: 74] Epoch 0, iter 3000/6416, lr 0.100000, loss 12.067932 +INFO 2020-11-24 17:25:00 train.py: 74] Epoch 0, iter 3200/6416, lr 0.100000, loss 12.314615 +INFO 2020-11-24 17:26:21 train.py: 74] Epoch 0, iter 3400/6416, lr 0.100000, loss 12.647381 +INFO 2020-11-24 17:27:42 train.py: 74] Epoch 0, iter 3600/6416, lr 0.100000, loss 13.030897 +INFO 2020-11-24 17:29:02 train.py: 74] Epoch 0, iter 3800/6416, lr 0.100000, loss 13.441236 +INFO 2020-11-24 17:30:22 train.py: 74] Epoch 0, iter 4000/6416, lr 0.100000, loss 13.796649 +INFO 2020-11-24 17:31:41 train.py: 74] Epoch 0, iter 4200/6416, lr 0.100000, loss 14.154292 +INFO 2020-11-24 17:33:00 train.py: 74] Epoch 0, iter 4400/6416, lr 0.100000, loss 14.411892 +INFO 2020-11-24 17:34:19 train.py: 74] Epoch 0, iter 4600/6416, lr 0.100000, loss 14.619047 +INFO 2020-11-24 17:35:38 train.py: 74] Epoch 0, iter 4800/6416, lr 0.100000, loss 14.832919 +INFO 2020-11-24 17:36:56 train.py: 74] Epoch 0, iter 5000/6416, lr 0.100000, loss 14.915812 +INFO 2020-11-24 17:38:14 train.py: 74] Epoch 0, iter 5200/6416, lr 0.100000, loss 14.976967 +INFO 2020-11-24 17:39:32 train.py: 74] Epoch 0, iter 5400/6416, lr 0.100000, loss 14.973729 +INFO 2020-11-24 17:40:50 train.py: 74] Epoch 0, iter 5600/6416, lr 0.100000, loss 14.912079 +INFO 2020-11-24 17:42:08 train.py: 74] Epoch 0, iter 5800/6416, lr 0.100000, loss 14.853437 +INFO 2020-11-24 17:43:25 train.py: 87] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2020-11-24 17:43:26 train.py: 74] Epoch 0, iter 6000/6416, lr 0.100000, loss 14.786114 +INFO 2020-11-24 17:44:43 train.py: 74] Epoch 0, iter 6200/6416, lr 0.100000, loss 14.640276 +INFO 2020-11-24 17:46:00 train.py: 74] Epoch 0, iter 6400/6416, lr 0.100000, loss 14.499856 +INFO 2020-11-24 17:46:07 train.py: 92] Save checkpoint Epoch_0.pt to disk... +INFO 2020-11-24 17:46:08 train.py: 74] Epoch 1, iter 0/6416, lr 0.100000, loss 14.468562 +INFO 2020-11-24 17:47:26 train.py: 74] Epoch 1, iter 200/6416, lr 0.100000, loss 14.190097 +INFO 2020-11-24 17:48:43 train.py: 74] Epoch 1, iter 400/6416, lr 0.100000, loss 14.034737 +INFO 2020-11-24 17:50:00 train.py: 74] Epoch 1, iter 600/6416, lr 0.100000, loss 13.867991 +INFO 2020-11-24 17:51:17 train.py: 74] Epoch 1, iter 800/6416, lr 0.100000, loss 13.711440 +INFO 2020-11-24 17:52:35 train.py: 74] Epoch 1, iter 1000/6416, lr 0.100000, loss 13.581579 +INFO 2020-11-24 17:53:51 train.py: 74] Epoch 1, iter 1200/6416, lr 0.100000, loss 13.396562 +INFO 2020-11-24 17:55:08 train.py: 74] Epoch 1, iter 1400/6416, lr 0.100000, loss 13.189663 +INFO 2020-11-24 17:56:25 train.py: 74] Epoch 1, iter 1600/6416, lr 0.100000, loss 13.039445 +INFO 2020-11-24 17:57:42 train.py: 74] Epoch 1, iter 1800/6416, lr 0.100000, loss 12.903281 +INFO 2020-11-24 17:58:59 train.py: 74] Epoch 1, iter 2000/6416, lr 0.100000, loss 12.729310 +INFO 2020-11-24 18:00:15 train.py: 74] Epoch 1, iter 2200/6416, lr 0.100000, loss 12.598813 +INFO 2020-11-24 18:01:32 train.py: 74] Epoch 1, iter 2400/6416, lr 0.100000, loss 12.446454 +INFO 2020-11-24 18:02:49 train.py: 74] Epoch 1, iter 2600/6416, lr 0.100000, loss 12.294402 +INFO 2020-11-24 18:04:06 train.py: 74] Epoch 1, iter 2800/6416, lr 0.100000, loss 12.151741 +INFO 2020-11-24 18:05:22 train.py: 87] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2020-11-24 18:05:23 train.py: 74] Epoch 1, iter 3000/6416, lr 0.100000, loss 12.006855 +INFO 2020-11-24 18:06:39 train.py: 74] Epoch 1, iter 3200/6416, lr 0.100000, loss 11.907829 +INFO 2020-11-24 18:07:55 train.py: 74] Epoch 1, iter 3400/6416, lr 0.100000, loss 11.759257 +INFO 2020-11-24 18:09:11 train.py: 74] Epoch 1, iter 3600/6416, lr 0.100000, loss 11.656780 +INFO 2020-11-24 18:10:27 train.py: 74] Epoch 1, iter 3800/6416, lr 0.100000, loss 11.537830 +INFO 2020-11-24 18:11:43 train.py: 74] Epoch 1, iter 4000/6416, lr 0.100000, loss 11.460143 +INFO 2020-11-24 18:13:00 train.py: 74] Epoch 1, iter 4200/6416, lr 0.100000, loss 11.327951 +INFO 2020-11-24 18:14:16 train.py: 74] Epoch 1, iter 4400/6416, lr 0.100000, loss 11.268308 +INFO 2020-11-24 18:15:32 train.py: 74] Epoch 1, iter 4600/6416, lr 0.100000, loss 11.173050 +INFO 2020-11-24 18:16:48 train.py: 74] Epoch 1, iter 4800/6416, lr 0.100000, loss 11.074287 +INFO 2020-11-24 18:18:04 train.py: 74] Epoch 1, iter 5000/6416, lr 0.100000, loss 10.989137 +INFO 2020-11-24 18:19:21 train.py: 74] Epoch 1, iter 5200/6416, lr 0.100000, loss 10.935530 +INFO 2020-11-24 18:20:37 train.py: 74] Epoch 1, iter 5400/6416, lr 0.100000, loss 10.858660 +INFO 2020-11-24 18:21:53 train.py: 74] Epoch 1, iter 5600/6416, lr 0.100000, loss 10.765018 +INFO 2020-11-24 18:23:10 train.py: 74] Epoch 1, iter 5800/6416, lr 0.100000, loss 10.696050 +INFO 2020-11-24 18:24:26 train.py: 87] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2020-11-24 18:24:26 train.py: 74] Epoch 1, iter 6000/6416, lr 0.100000, loss 10.650471 +INFO 2020-11-24 18:25:43 train.py: 74] Epoch 1, iter 6200/6416, lr 0.100000, loss 10.606789 +INFO 2020-11-24 18:27:00 train.py: 74] Epoch 1, iter 6400/6416, lr 0.100000, loss 10.507497 +INFO 2020-11-24 18:27:06 train.py: 92] Save checkpoint Epoch_1.pt to disk... +INFO 2020-11-24 18:27:08 train.py: 74] Epoch 2, iter 0/6416, lr 0.100000, loss 10.401783 +INFO 2020-11-24 18:28:25 train.py: 74] Epoch 2, iter 200/6416, lr 0.100000, loss 9.958792 +INFO 2020-11-24 18:29:42 train.py: 74] Epoch 2, iter 400/6416, lr 0.100000, loss 9.970688 +INFO 2020-11-24 18:30:58 train.py: 74] Epoch 2, iter 600/6416, lr 0.100000, loss 10.018418 +INFO 2020-11-24 18:32:15 train.py: 74] Epoch 2, iter 800/6416, lr 0.100000, loss 10.043185 +INFO 2020-11-24 18:33:32 train.py: 74] Epoch 2, iter 1000/6416, lr 0.100000, loss 10.026329 +INFO 2020-11-24 18:34:48 train.py: 74] Epoch 2, iter 1200/6416, lr 0.100000, loss 10.008143 +INFO 2020-11-24 18:36:05 train.py: 74] Epoch 2, iter 1400/6416, lr 0.100000, loss 10.019662 +INFO 2020-11-24 18:37:22 train.py: 74] Epoch 2, iter 1600/6416, lr 0.100000, loss 9.995654 +INFO 2020-11-24 18:38:38 train.py: 74] Epoch 2, iter 1800/6416, lr 0.100000, loss 9.985731 +INFO 2020-11-24 18:39:55 train.py: 74] Epoch 2, iter 2000/6416, lr 0.100000, loss 9.926832 +INFO 2020-11-24 18:41:11 train.py: 74] Epoch 2, iter 2200/6416, lr 0.100000, loss 9.920456 +INFO 2020-11-24 18:42:28 train.py: 74] Epoch 2, iter 2400/6416, lr 0.100000, loss 9.864497 +INFO 2020-11-24 18:43:45 train.py: 74] Epoch 2, iter 2600/6416, lr 0.100000, loss 9.836358 +INFO 2020-11-24 18:45:01 train.py: 74] Epoch 2, iter 2800/6416, lr 0.100000, loss 9.801993 +INFO 2020-11-24 18:46:18 train.py: 87] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2020-11-24 18:46:18 train.py: 74] Epoch 2, iter 3000/6416, lr 0.100000, loss 9.784279 +INFO 2020-11-24 18:47:35 train.py: 74] Epoch 2, iter 3200/6416, lr 0.100000, loss 9.777114 +INFO 2020-11-24 18:48:51 train.py: 74] Epoch 2, iter 3400/6416, lr 0.100000, loss 9.716017 +INFO 2020-11-24 18:50:08 train.py: 74] Epoch 2, iter 3600/6416, lr 0.100000, loss 9.685481 +INFO 2020-11-24 18:51:25 train.py: 74] Epoch 2, iter 3800/6416, lr 0.100000, loss 9.638493 +INFO 2020-11-24 18:52:42 train.py: 74] Epoch 2, iter 4000/6416, lr 0.100000, loss 9.615591 +INFO 2020-11-24 18:53:58 train.py: 74] Epoch 2, iter 4200/6416, lr 0.100000, loss 9.573484 +INFO 2020-11-24 18:55:15 train.py: 74] Epoch 2, iter 4400/6416, lr 0.100000, loss 9.557758 +INFO 2020-11-24 18:56:32 train.py: 74] Epoch 2, iter 4600/6416, lr 0.100000, loss 9.530840 +INFO 2020-11-24 18:57:49 train.py: 74] Epoch 2, iter 4800/6416, lr 0.100000, loss 9.470006 +INFO 2020-11-24 18:59:06 train.py: 74] Epoch 2, iter 5000/6416, lr 0.100000, loss 9.479366 +INFO 2020-11-24 19:00:23 train.py: 74] Epoch 2, iter 5200/6416, lr 0.100000, loss 9.434593 +INFO 2020-11-24 19:01:40 train.py: 74] Epoch 2, iter 5400/6416, lr 0.100000, loss 9.401267 +INFO 2020-11-24 19:02:56 train.py: 74] Epoch 2, iter 5600/6416, lr 0.100000, loss 9.366447 +INFO 2020-11-24 19:04:13 train.py: 74] Epoch 2, iter 5800/6416, lr 0.100000, loss 9.358310 +INFO 2020-11-24 19:05:30 train.py: 87] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2020-11-24 19:05:31 train.py: 74] Epoch 2, iter 6000/6416, lr 0.100000, loss 9.291458 +INFO 2020-11-24 19:06:47 train.py: 74] Epoch 2, iter 6200/6416, lr 0.100000, loss 9.317040 +INFO 2020-11-24 19:08:03 train.py: 74] Epoch 2, iter 6400/6416, lr 0.100000, loss 9.263851 +INFO 2020-11-24 19:08:09 train.py: 92] Save checkpoint Epoch_2.pt to disk... +INFO 2020-11-24 19:08:11 train.py: 74] Epoch 3, iter 0/6416, lr 0.100000, loss 9.158338 +INFO 2020-11-24 19:09:27 train.py: 74] Epoch 3, iter 200/6416, lr 0.100000, loss 8.738770 +INFO 2020-11-24 19:10:43 train.py: 74] Epoch 3, iter 400/6416, lr 0.100000, loss 8.747253 +INFO 2020-11-24 19:12:00 train.py: 74] Epoch 3, iter 600/6416, lr 0.100000, loss 8.834588 +INFO 2020-11-24 19:13:16 train.py: 74] Epoch 3, iter 800/6416, lr 0.100000, loss 8.904287 +INFO 2020-11-24 19:14:33 train.py: 74] Epoch 3, iter 1000/6416, lr 0.100000, loss 8.929899 +INFO 2020-11-24 19:15:50 train.py: 74] Epoch 3, iter 1200/6416, lr 0.100000, loss 8.972742 +INFO 2020-11-24 19:17:06 train.py: 74] Epoch 3, iter 1400/6416, lr 0.100000, loss 8.967419 +INFO 2020-11-24 19:18:23 train.py: 74] Epoch 3, iter 1600/6416, lr 0.100000, loss 8.950048 +INFO 2020-11-24 19:19:39 train.py: 74] Epoch 3, iter 1800/6416, lr 0.100000, loss 9.018943 +INFO 2020-11-24 19:20:56 train.py: 74] Epoch 3, iter 2000/6416, lr 0.100000, loss 8.952868 +INFO 2020-11-24 19:22:12 train.py: 74] Epoch 3, iter 2200/6416, lr 0.100000, loss 8.942784 +INFO 2020-11-24 19:23:29 train.py: 74] Epoch 3, iter 2400/6416, lr 0.100000, loss 8.956252 +INFO 2020-11-24 19:24:45 train.py: 74] Epoch 3, iter 2600/6416, lr 0.100000, loss 8.937395 +INFO 2020-11-24 19:26:02 train.py: 74] Epoch 3, iter 2800/6416, lr 0.100000, loss 8.942570 +INFO 2020-11-24 19:27:18 train.py: 87] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2020-11-24 19:27:19 train.py: 74] Epoch 3, iter 3000/6416, lr 0.100000, loss 8.916036 +INFO 2020-11-24 19:28:35 train.py: 74] Epoch 3, iter 3200/6416, lr 0.100000, loss 8.912676 +INFO 2020-11-24 19:29:52 train.py: 74] Epoch 3, iter 3400/6416, lr 0.100000, loss 8.899460 +INFO 2020-11-24 19:31:09 train.py: 74] Epoch 3, iter 3600/6416, lr 0.100000, loss 8.846656 +INFO 2020-11-24 19:32:25 train.py: 74] Epoch 3, iter 3800/6416, lr 0.100000, loss 8.852470 +INFO 2020-11-24 19:33:42 train.py: 74] Epoch 3, iter 4000/6416, lr 0.100000, loss 8.813011 +INFO 2020-11-24 19:34:59 train.py: 74] Epoch 3, iter 4200/6416, lr 0.100000, loss 8.826520 +INFO 2020-11-24 19:36:15 train.py: 74] Epoch 3, iter 4400/6416, lr 0.100000, loss 8.782351 +INFO 2020-11-24 19:37:32 train.py: 74] Epoch 3, iter 4600/6416, lr 0.100000, loss 8.789090 +INFO 2020-11-24 19:38:49 train.py: 74] Epoch 3, iter 4800/6416, lr 0.100000, loss 8.784844 +INFO 2020-11-24 19:40:06 train.py: 74] Epoch 3, iter 5000/6416, lr 0.100000, loss 8.752145 +INFO 2020-11-24 19:41:22 train.py: 74] Epoch 3, iter 5200/6416, lr 0.100000, loss 8.755990 +INFO 2020-11-24 19:42:39 train.py: 74] Epoch 3, iter 5400/6416, lr 0.100000, loss 8.748737 +INFO 2020-11-24 19:43:56 train.py: 74] Epoch 3, iter 5600/6416, lr 0.100000, loss 8.742908 +INFO 2020-11-24 19:45:13 train.py: 74] Epoch 3, iter 5800/6416, lr 0.100000, loss 8.702594 +INFO 2020-11-24 19:46:30 train.py: 87] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2020-11-24 19:46:30 train.py: 74] Epoch 3, iter 6000/6416, lr 0.100000, loss 8.683531 +INFO 2020-11-24 19:47:47 train.py: 74] Epoch 3, iter 6200/6416, lr 0.100000, loss 8.677554 +INFO 2020-11-24 19:49:04 train.py: 74] Epoch 3, iter 6400/6416, lr 0.100000, loss 8.687340 +INFO 2020-11-24 19:49:10 train.py: 92] Save checkpoint Epoch_3.pt to disk... +INFO 2020-11-24 19:49:12 train.py: 74] Epoch 4, iter 0/6416, lr 0.100000, loss 8.645050 +INFO 2020-11-24 19:50:29 train.py: 74] Epoch 4, iter 200/6416, lr 0.100000, loss 8.138176 +INFO 2020-11-24 19:51:45 train.py: 74] Epoch 4, iter 400/6416, lr 0.100000, loss 8.133244 +INFO 2020-11-24 19:53:02 train.py: 74] Epoch 4, iter 600/6416, lr 0.100000, loss 8.266590 +INFO 2020-11-24 19:54:18 train.py: 74] Epoch 4, iter 800/6416, lr 0.100000, loss 8.264567 +INFO 2020-11-24 19:55:35 train.py: 74] Epoch 4, iter 1000/6416, lr 0.100000, loss 8.324405 +INFO 2020-11-24 19:56:52 train.py: 74] Epoch 4, iter 1200/6416, lr 0.100000, loss 8.387397 +INFO 2020-11-24 19:58:08 train.py: 74] Epoch 4, iter 1400/6416, lr 0.100000, loss 8.381465 +INFO 2020-11-24 19:59:25 train.py: 74] Epoch 4, iter 1600/6416, lr 0.100000, loss 8.419101 +INFO 2020-11-24 20:00:41 train.py: 74] Epoch 4, iter 1800/6416, lr 0.100000, loss 8.418929 +INFO 2020-11-24 20:01:58 train.py: 74] Epoch 4, iter 2000/6416, lr 0.100000, loss 8.439405 +INFO 2020-11-24 20:03:14 train.py: 74] Epoch 4, iter 2200/6416, lr 0.100000, loss 8.440718 +INFO 2020-11-24 20:04:31 train.py: 74] Epoch 4, iter 2400/6416, lr 0.100000, loss 8.468213 +INFO 2020-11-24 20:05:47 train.py: 74] Epoch 4, iter 2600/6416, lr 0.100000, loss 8.412492 +INFO 2020-11-24 20:07:04 train.py: 74] Epoch 4, iter 2800/6416, lr 0.100000, loss 8.401329 +INFO 2020-11-24 20:08:20 train.py: 87] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2020-11-24 20:08:20 train.py: 74] Epoch 4, iter 3000/6416, lr 0.100000, loss 8.462322 +INFO 2020-11-24 20:09:36 train.py: 74] Epoch 4, iter 3200/6416, lr 0.100000, loss 8.428143 +INFO 2020-11-24 20:10:52 train.py: 74] Epoch 4, iter 3400/6416, lr 0.100000, loss 8.421280 +INFO 2020-11-24 20:12:09 train.py: 74] Epoch 4, iter 3600/6416, lr 0.100000, loss 8.391416 +INFO 2020-11-24 20:13:25 train.py: 74] Epoch 4, iter 3800/6416, lr 0.100000, loss 8.353408 +INFO 2020-11-24 20:14:42 train.py: 74] Epoch 4, iter 4000/6416, lr 0.100000, loss 8.400384 +INFO 2020-11-24 20:15:59 train.py: 74] Epoch 4, iter 4200/6416, lr 0.100000, loss 8.367021 +INFO 2020-11-24 20:17:15 train.py: 74] Epoch 4, iter 4400/6416, lr 0.100000, loss 8.395899 +INFO 2020-11-24 20:18:32 train.py: 74] Epoch 4, iter 4600/6416, lr 0.100000, loss 8.344757 +INFO 2020-11-24 20:19:49 train.py: 74] Epoch 4, iter 4800/6416, lr 0.100000, loss 8.359471 +INFO 2020-11-24 20:21:06 train.py: 74] Epoch 4, iter 5000/6416, lr 0.100000, loss 8.358082 +INFO 2020-11-24 20:22:22 train.py: 74] Epoch 4, iter 5200/6416, lr 0.100000, loss 8.314536 +INFO 2020-11-24 20:23:39 train.py: 74] Epoch 4, iter 5400/6416, lr 0.100000, loss 8.286721 +INFO 2020-11-24 20:24:56 train.py: 74] Epoch 4, iter 5600/6416, lr 0.100000, loss 8.331915 +INFO 2020-11-24 20:26:13 train.py: 74] Epoch 4, iter 5800/6416, lr 0.100000, loss 8.285538 +INFO 2020-11-24 20:27:29 train.py: 87] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2020-11-24 20:27:30 train.py: 74] Epoch 4, iter 6000/6416, lr 0.100000, loss 8.278215 +INFO 2020-11-24 20:28:47 train.py: 74] Epoch 4, iter 6200/6416, lr 0.100000, loss 8.267316 +INFO 2020-11-24 20:30:04 train.py: 74] Epoch 4, iter 6400/6416, lr 0.100000, loss 8.247428 +INFO 2020-11-24 20:30:10 train.py: 92] Save checkpoint Epoch_4.pt to disk... +INFO 2020-11-24 20:30:12 train.py: 74] Epoch 5, iter 0/6416, lr 0.100000, loss 8.371536 +INFO 2020-11-24 20:31:28 train.py: 74] Epoch 5, iter 200/6416, lr 0.100000, loss 7.767822 +INFO 2020-11-24 20:32:45 train.py: 74] Epoch 5, iter 400/6416, lr 0.100000, loss 7.743762 +INFO 2020-11-24 20:34:02 train.py: 74] Epoch 5, iter 600/6416, lr 0.100000, loss 7.862978 +INFO 2020-11-24 20:35:18 train.py: 74] Epoch 5, iter 800/6416, lr 0.100000, loss 7.930466 +INFO 2020-11-24 20:36:35 train.py: 74] Epoch 5, iter 1000/6416, lr 0.100000, loss 7.993809 +INFO 2020-11-24 20:37:51 train.py: 74] Epoch 5, iter 1200/6416, lr 0.100000, loss 8.014129 +INFO 2020-11-24 20:39:08 train.py: 74] Epoch 5, iter 1400/6416, lr 0.100000, loss 8.067885 +INFO 2020-11-24 20:40:24 train.py: 74] Epoch 5, iter 1600/6416, lr 0.100000, loss 8.064815 +INFO 2020-11-24 20:41:41 train.py: 74] Epoch 5, iter 1800/6416, lr 0.100000, loss 8.070696 +INFO 2020-11-24 20:42:57 train.py: 74] Epoch 5, iter 2000/6416, lr 0.100000, loss 8.081757 +INFO 2020-11-24 20:44:14 train.py: 74] Epoch 5, iter 2200/6416, lr 0.100000, loss 8.069307 +INFO 2020-11-24 20:45:30 train.py: 74] Epoch 5, iter 2400/6416, lr 0.100000, loss 8.108222 +INFO 2020-11-24 20:46:47 train.py: 74] Epoch 5, iter 2600/6416, lr 0.100000, loss 8.123253 +INFO 2020-11-24 20:48:03 train.py: 74] Epoch 5, iter 2800/6416, lr 0.100000, loss 8.108594 +INFO 2020-11-24 20:49:20 train.py: 87] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2020-11-24 20:49:20 train.py: 74] Epoch 5, iter 3000/6416, lr 0.100000, loss 8.108960 +INFO 2020-11-24 20:50:36 train.py: 74] Epoch 5, iter 3200/6416, lr 0.100000, loss 8.088804 +INFO 2020-11-24 20:51:52 train.py: 74] Epoch 5, iter 3400/6416, lr 0.100000, loss 8.077876 +INFO 2020-11-24 20:53:08 train.py: 74] Epoch 5, iter 3600/6416, lr 0.100000, loss 8.086027 +INFO 2020-11-24 20:54:24 train.py: 74] Epoch 5, iter 3800/6416, lr 0.100000, loss 8.072146 +INFO 2020-11-24 20:55:40 train.py: 74] Epoch 5, iter 4000/6416, lr 0.100000, loss 8.084796 +INFO 2020-11-24 20:56:56 train.py: 74] Epoch 5, iter 4200/6416, lr 0.100000, loss 8.068487 +INFO 2020-11-24 20:58:12 train.py: 74] Epoch 5, iter 4400/6416, lr 0.100000, loss 8.052808 +INFO 2020-11-24 20:59:28 train.py: 74] Epoch 5, iter 4600/6416, lr 0.100000, loss 8.054618 +INFO 2020-11-24 21:00:44 train.py: 74] Epoch 5, iter 4800/6416, lr 0.100000, loss 8.083125 +INFO 2020-11-24 21:02:00 train.py: 74] Epoch 5, iter 5000/6416, lr 0.100000, loss 8.037382 +INFO 2020-11-24 21:03:16 train.py: 74] Epoch 5, iter 5200/6416, lr 0.100000, loss 8.025006 +INFO 2020-11-24 21:04:32 train.py: 74] Epoch 5, iter 5400/6416, lr 0.100000, loss 8.020393 +INFO 2020-11-24 21:05:48 train.py: 74] Epoch 5, iter 5600/6416, lr 0.100000, loss 7.998549 +INFO 2020-11-24 21:07:04 train.py: 74] Epoch 5, iter 5800/6416, lr 0.100000, loss 7.991002 +INFO 2020-11-24 21:08:20 train.py: 87] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2020-11-24 21:08:21 train.py: 74] Epoch 5, iter 6000/6416, lr 0.100000, loss 8.000411 +INFO 2020-11-24 21:09:38 train.py: 74] Epoch 5, iter 6200/6416, lr 0.100000, loss 7.964763 +INFO 2020-11-24 21:10:55 train.py: 74] Epoch 5, iter 6400/6416, lr 0.100000, loss 7.980003 +INFO 2020-11-24 21:11:01 train.py: 92] Save checkpoint Epoch_5.pt to disk... +INFO 2020-11-24 21:11:03 train.py: 74] Epoch 6, iter 0/6416, lr 0.100000, loss 7.949017 +INFO 2020-11-24 21:12:19 train.py: 74] Epoch 6, iter 200/6416, lr 0.100000, loss 7.518950 +INFO 2020-11-24 21:13:36 train.py: 74] Epoch 6, iter 400/6416, lr 0.100000, loss 7.480380 +INFO 2020-11-24 21:14:53 train.py: 74] Epoch 6, iter 600/6416, lr 0.100000, loss 7.594087 +INFO 2020-11-24 21:16:09 train.py: 74] Epoch 6, iter 800/6416, lr 0.100000, loss 7.652602 +INFO 2020-11-24 21:17:26 train.py: 74] Epoch 6, iter 1000/6416, lr 0.100000, loss 7.707925 +INFO 2020-11-24 21:18:42 train.py: 74] Epoch 6, iter 1200/6416, lr 0.100000, loss 7.781615 +INFO 2020-11-24 21:19:59 train.py: 74] Epoch 6, iter 1400/6416, lr 0.100000, loss 7.807427 +INFO 2020-11-24 21:21:15 train.py: 74] Epoch 6, iter 1600/6416, lr 0.100000, loss 7.810504 +INFO 2020-11-24 21:22:32 train.py: 74] Epoch 6, iter 1800/6416, lr 0.100000, loss 7.841157 +INFO 2020-11-24 21:23:48 train.py: 74] Epoch 6, iter 2000/6416, lr 0.100000, loss 7.837509 +INFO 2020-11-24 21:25:05 train.py: 74] Epoch 6, iter 2200/6416, lr 0.100000, loss 7.858138 +INFO 2020-11-24 21:26:21 train.py: 74] Epoch 6, iter 2400/6416, lr 0.100000, loss 7.860692 +INFO 2020-11-24 21:27:38 train.py: 74] Epoch 6, iter 2600/6416, lr 0.100000, loss 7.850410 +INFO 2020-11-24 21:28:54 train.py: 74] Epoch 6, iter 2800/6416, lr 0.100000, loss 7.864597 +INFO 2020-11-24 21:30:10 train.py: 87] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2020-11-24 21:30:11 train.py: 74] Epoch 6, iter 3000/6416, lr 0.100000, loss 7.829093 +INFO 2020-11-24 21:31:28 train.py: 74] Epoch 6, iter 3200/6416, lr 0.100000, loss 7.873271 +INFO 2020-11-24 21:32:44 train.py: 74] Epoch 6, iter 3400/6416, lr 0.100000, loss 7.859303 +INFO 2020-11-24 21:34:01 train.py: 74] Epoch 6, iter 3600/6416, lr 0.100000, loss 7.833756 +INFO 2020-11-24 21:35:17 train.py: 74] Epoch 6, iter 3800/6416, lr 0.100000, loss 7.868141 +INFO 2020-11-24 21:36:34 train.py: 74] Epoch 6, iter 4000/6416, lr 0.100000, loss 7.832145 +INFO 2020-11-24 21:37:51 train.py: 74] Epoch 6, iter 4200/6416, lr 0.100000, loss 7.827492 +INFO 2020-11-24 21:39:07 train.py: 74] Epoch 6, iter 4400/6416, lr 0.100000, loss 7.822211 +INFO 2020-11-24 21:40:24 train.py: 74] Epoch 6, iter 4600/6416, lr 0.100000, loss 7.803100 +INFO 2020-11-24 21:41:41 train.py: 74] Epoch 6, iter 4800/6416, lr 0.100000, loss 7.839389 +INFO 2020-11-24 21:42:57 train.py: 74] Epoch 6, iter 5000/6416, lr 0.100000, loss 7.828123 +INFO 2020-11-24 21:44:14 train.py: 74] Epoch 6, iter 5200/6416, lr 0.100000, loss 7.807350 +INFO 2020-11-24 21:45:31 train.py: 74] Epoch 6, iter 5400/6416, lr 0.100000, loss 7.840542 +INFO 2020-11-24 21:46:48 train.py: 74] Epoch 6, iter 5600/6416, lr 0.100000, loss 7.790327 +INFO 2020-11-24 21:48:05 train.py: 74] Epoch 6, iter 5800/6416, lr 0.100000, loss 7.800599 +INFO 2020-11-24 21:49:21 train.py: 87] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2020-11-24 21:49:22 train.py: 74] Epoch 6, iter 6000/6416, lr 0.100000, loss 7.794503 +INFO 2020-11-24 21:50:38 train.py: 74] Epoch 6, iter 6200/6416, lr 0.100000, loss 7.811972 +INFO 2020-11-24 21:51:55 train.py: 74] Epoch 6, iter 6400/6416, lr 0.100000, loss 7.816250 +INFO 2020-11-24 21:52:01 train.py: 92] Save checkpoint Epoch_6.pt to disk... +INFO 2020-11-24 21:52:03 train.py: 74] Epoch 7, iter 0/6416, lr 0.100000, loss 7.721017 +INFO 2020-11-24 21:53:20 train.py: 74] Epoch 7, iter 200/6416, lr 0.100000, loss 7.263689 +INFO 2020-11-24 21:54:37 train.py: 74] Epoch 7, iter 400/6416, lr 0.100000, loss 7.302127 +INFO 2020-11-24 21:55:53 train.py: 74] Epoch 7, iter 600/6416, lr 0.100000, loss 7.388004 +INFO 2020-11-24 21:57:10 train.py: 74] Epoch 7, iter 800/6416, lr 0.100000, loss 7.476136 +INFO 2020-11-24 21:58:26 train.py: 74] Epoch 7, iter 1000/6416, lr 0.100000, loss 7.525854 +INFO 2020-11-24 21:59:43 train.py: 74] Epoch 7, iter 1200/6416, lr 0.100000, loss 7.569437 +INFO 2020-11-24 22:00:59 train.py: 74] Epoch 7, iter 1400/6416, lr 0.100000, loss 7.606572 +INFO 2020-11-24 22:02:16 train.py: 74] Epoch 7, iter 1600/6416, lr 0.100000, loss 7.646732 +INFO 2020-11-24 22:03:32 train.py: 74] Epoch 7, iter 1800/6416, lr 0.100000, loss 7.663091 +INFO 2020-11-24 22:04:49 train.py: 74] Epoch 7, iter 2000/6416, lr 0.100000, loss 7.641256 +INFO 2020-11-24 22:06:05 train.py: 74] Epoch 7, iter 2200/6416, lr 0.100000, loss 7.667531 +INFO 2020-11-24 22:07:21 train.py: 74] Epoch 7, iter 2400/6416, lr 0.100000, loss 7.688095 +INFO 2020-11-24 22:08:38 train.py: 74] Epoch 7, iter 2600/6416, lr 0.100000, loss 7.702703 +INFO 2020-11-24 22:09:54 train.py: 74] Epoch 7, iter 2800/6416, lr 0.100000, loss 7.673153 +INFO 2020-11-24 22:11:11 train.py: 87] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2020-11-24 22:11:11 train.py: 74] Epoch 7, iter 3000/6416, lr 0.100000, loss 7.691864 +INFO 2020-11-24 22:12:28 train.py: 74] Epoch 7, iter 3200/6416, lr 0.100000, loss 7.671905 +INFO 2020-11-24 22:13:44 train.py: 74] Epoch 7, iter 3400/6416, lr 0.100000, loss 7.709454 +INFO 2020-11-24 22:15:01 train.py: 74] Epoch 7, iter 3600/6416, lr 0.100000, loss 7.666515 +INFO 2020-11-24 22:16:18 train.py: 74] Epoch 7, iter 3800/6416, lr 0.100000, loss 7.645696 +INFO 2020-11-24 22:17:34 train.py: 74] Epoch 7, iter 4000/6416, lr 0.100000, loss 7.697766 +INFO 2020-11-24 22:18:51 train.py: 74] Epoch 7, iter 4200/6416, lr 0.100000, loss 7.661309 +INFO 2020-11-24 22:20:08 train.py: 74] Epoch 7, iter 4400/6416, lr 0.100000, loss 7.704096 +INFO 2020-11-24 22:21:24 train.py: 74] Epoch 7, iter 4600/6416, lr 0.100000, loss 7.703111 +INFO 2020-11-24 22:22:41 train.py: 74] Epoch 7, iter 4800/6416, lr 0.100000, loss 7.686914 +INFO 2020-11-24 22:23:58 train.py: 74] Epoch 7, iter 5000/6416, lr 0.100000, loss 7.652473 +INFO 2020-11-24 22:25:15 train.py: 74] Epoch 7, iter 5200/6416, lr 0.100000, loss 7.657636 +INFO 2020-11-24 22:26:31 train.py: 74] Epoch 7, iter 5400/6416, lr 0.100000, loss 7.659919 +INFO 2020-11-24 22:27:48 train.py: 74] Epoch 7, iter 5600/6416, lr 0.100000, loss 7.633489 +INFO 2020-11-24 22:29:05 train.py: 74] Epoch 7, iter 5800/6416, lr 0.100000, loss 7.652294 +INFO 2020-11-24 22:30:22 train.py: 87] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2020-11-24 22:30:22 train.py: 74] Epoch 7, iter 6000/6416, lr 0.100000, loss 7.629084 +INFO 2020-11-24 22:31:39 train.py: 74] Epoch 7, iter 6200/6416, lr 0.100000, loss 7.587239 +INFO 2020-11-24 22:32:56 train.py: 74] Epoch 7, iter 6400/6416, lr 0.100000, loss 7.620722 +INFO 2020-11-24 22:33:02 train.py: 92] Save checkpoint Epoch_7.pt to disk... +INFO 2020-11-24 22:33:04 train.py: 74] Epoch 8, iter 0/6416, lr 0.100000, loss 7.599243 +INFO 2020-11-24 22:34:21 train.py: 74] Epoch 8, iter 200/6416, lr 0.100000, loss 7.169748 +INFO 2020-11-24 22:35:37 train.py: 74] Epoch 8, iter 400/6416, lr 0.100000, loss 7.161929 +INFO 2020-11-24 22:36:54 train.py: 74] Epoch 8, iter 600/6416, lr 0.100000, loss 7.237029 +INFO 2020-11-24 22:38:10 train.py: 74] Epoch 8, iter 800/6416, lr 0.100000, loss 7.324340 +INFO 2020-11-24 22:39:27 train.py: 74] Epoch 8, iter 1000/6416, lr 0.100000, loss 7.391021 +INFO 2020-11-24 22:40:43 train.py: 74] Epoch 8, iter 1200/6416, lr 0.100000, loss 7.419794 +INFO 2020-11-24 22:42:00 train.py: 74] Epoch 8, iter 1400/6416, lr 0.100000, loss 7.462434 +INFO 2020-11-24 22:43:16 train.py: 74] Epoch 8, iter 1600/6416, lr 0.100000, loss 7.477895 +INFO 2020-11-24 22:44:33 train.py: 74] Epoch 8, iter 1800/6416, lr 0.100000, loss 7.508406 +INFO 2020-11-24 22:45:49 train.py: 74] Epoch 8, iter 2000/6416, lr 0.100000, loss 7.522996 +INFO 2020-11-24 22:47:06 train.py: 74] Epoch 8, iter 2200/6416, lr 0.100000, loss 7.525577 +INFO 2020-11-24 22:48:22 train.py: 74] Epoch 8, iter 2400/6416, lr 0.100000, loss 7.525456 +INFO 2020-11-24 22:49:38 train.py: 74] Epoch 8, iter 2600/6416, lr 0.100000, loss 7.531138 +INFO 2020-11-24 22:50:55 train.py: 74] Epoch 8, iter 2800/6416, lr 0.100000, loss 7.542735 +INFO 2020-11-24 22:52:11 train.py: 87] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2020-11-24 22:52:12 train.py: 74] Epoch 8, iter 3000/6416, lr 0.100000, loss 7.531534 +INFO 2020-11-24 22:53:28 train.py: 74] Epoch 8, iter 3200/6416, lr 0.100000, loss 7.529461 +INFO 2020-11-24 22:54:45 train.py: 74] Epoch 8, iter 3400/6416, lr 0.100000, loss 7.560661 +INFO 2020-11-24 22:56:01 train.py: 74] Epoch 8, iter 3600/6416, lr 0.100000, loss 7.550087 +INFO 2020-11-24 22:57:18 train.py: 74] Epoch 8, iter 3800/6416, lr 0.100000, loss 7.508024 +INFO 2020-11-24 22:58:35 train.py: 74] Epoch 8, iter 4000/6416, lr 0.100000, loss 7.549892 +INFO 2020-11-24 22:59:51 train.py: 74] Epoch 8, iter 4200/6416, lr 0.100000, loss 7.559926 +INFO 2020-11-24 23:01:08 train.py: 74] Epoch 8, iter 4400/6416, lr 0.100000, loss 7.509007 +INFO 2020-11-24 23:02:25 train.py: 74] Epoch 8, iter 4600/6416, lr 0.100000, loss 7.568892 +INFO 2020-11-24 23:03:41 train.py: 74] Epoch 8, iter 4800/6416, lr 0.100000, loss 7.538015 +INFO 2020-11-24 23:04:58 train.py: 74] Epoch 8, iter 5000/6416, lr 0.100000, loss 7.519274 +INFO 2020-11-24 23:06:15 train.py: 74] Epoch 8, iter 5200/6416, lr 0.100000, loss 7.505941 +INFO 2020-11-24 23:07:32 train.py: 74] Epoch 8, iter 5400/6416, lr 0.100000, loss 7.555411 +INFO 2020-11-24 23:08:49 train.py: 74] Epoch 8, iter 5600/6416, lr 0.100000, loss 7.507525 +INFO 2020-11-24 23:10:05 train.py: 74] Epoch 8, iter 5800/6416, lr 0.100000, loss 7.528209 +INFO 2020-11-24 23:11:22 train.py: 87] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2020-11-24 23:11:22 train.py: 74] Epoch 8, iter 6000/6416, lr 0.100000, loss 7.515858 +INFO 2020-11-24 23:12:39 train.py: 74] Epoch 8, iter 6200/6416, lr 0.100000, loss 7.534646 +INFO 2020-11-24 23:13:56 train.py: 74] Epoch 8, iter 6400/6416, lr 0.100000, loss 7.508126 +INFO 2020-11-24 23:14:02 train.py: 92] Save checkpoint Epoch_8.pt to disk... +INFO 2020-11-24 23:14:04 train.py: 74] Epoch 9, iter 0/6416, lr 0.100000, loss 7.443227 +INFO 2020-11-24 23:15:20 train.py: 74] Epoch 9, iter 200/6416, lr 0.100000, loss 7.009048 +INFO 2020-11-24 23:16:36 train.py: 74] Epoch 9, iter 400/6416, lr 0.100000, loss 7.035446 +INFO 2020-11-24 23:17:52 train.py: 74] Epoch 9, iter 600/6416, lr 0.100000, loss 7.069120 +INFO 2020-11-24 23:19:08 train.py: 74] Epoch 9, iter 800/6416, lr 0.100000, loss 7.197210 +INFO 2020-11-24 23:20:24 train.py: 74] Epoch 9, iter 1000/6416, lr 0.100000, loss 7.304525 +INFO 2020-11-24 23:21:40 train.py: 74] Epoch 9, iter 1200/6416, lr 0.100000, loss 7.299744 +INFO 2020-11-24 23:22:56 train.py: 74] Epoch 9, iter 1400/6416, lr 0.100000, loss 7.324403 +INFO 2020-11-24 23:24:11 train.py: 74] Epoch 9, iter 1600/6416, lr 0.100000, loss 7.391143 +INFO 2020-11-24 23:25:27 train.py: 74] Epoch 9, iter 1800/6416, lr 0.100000, loss 7.417595 +INFO 2020-11-24 23:26:43 train.py: 74] Epoch 9, iter 2000/6416, lr 0.100000, loss 7.439957 +INFO 2020-11-24 23:27:59 train.py: 74] Epoch 9, iter 2200/6416, lr 0.100000, loss 7.406044 +INFO 2020-11-24 23:29:15 train.py: 74] Epoch 9, iter 2400/6416, lr 0.100000, loss 7.424606 +INFO 2020-11-24 23:30:31 train.py: 74] Epoch 9, iter 2600/6416, lr 0.100000, loss 7.398502 +INFO 2020-11-24 23:31:47 train.py: 74] Epoch 9, iter 2800/6416, lr 0.100000, loss 7.423678 +INFO 2020-11-24 23:33:02 train.py: 87] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2020-11-24 23:33:03 train.py: 74] Epoch 9, iter 3000/6416, lr 0.100000, loss 7.436243 +INFO 2020-11-24 23:34:19 train.py: 74] Epoch 9, iter 3200/6416, lr 0.100000, loss 7.473204 +INFO 2020-11-24 23:35:36 train.py: 74] Epoch 9, iter 3400/6416, lr 0.100000, loss 7.443741 +INFO 2020-11-24 23:36:53 train.py: 74] Epoch 9, iter 3600/6416, lr 0.100000, loss 7.441603 +INFO 2020-11-24 23:38:09 train.py: 74] Epoch 9, iter 3800/6416, lr 0.100000, loss 7.417943 +INFO 2020-11-24 23:39:26 train.py: 74] Epoch 9, iter 4000/6416, lr 0.100000, loss 7.423790 +INFO 2020-11-24 23:40:42 train.py: 74] Epoch 9, iter 4200/6416, lr 0.100000, loss 7.446940 +INFO 2020-11-24 23:41:59 train.py: 74] Epoch 9, iter 4400/6416, lr 0.100000, loss 7.406042 +INFO 2020-11-24 23:43:16 train.py: 74] Epoch 9, iter 4600/6416, lr 0.100000, loss 7.427912 +INFO 2020-11-24 23:44:33 train.py: 74] Epoch 9, iter 4800/6416, lr 0.100000, loss 7.437229 +INFO 2020-11-24 23:45:49 train.py: 74] Epoch 9, iter 5000/6416, lr 0.100000, loss 7.434042 +INFO 2020-11-24 23:47:06 train.py: 74] Epoch 9, iter 5200/6416, lr 0.100000, loss 7.401678 +INFO 2020-11-24 23:48:23 train.py: 74] Epoch 9, iter 5400/6416, lr 0.100000, loss 7.439736 +INFO 2020-11-24 23:49:40 train.py: 74] Epoch 9, iter 5600/6416, lr 0.100000, loss 7.417320 +INFO 2020-11-24 23:50:56 train.py: 74] Epoch 9, iter 5800/6416, lr 0.100000, loss 7.431844 +INFO 2020-11-24 23:52:13 train.py: 87] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2020-11-24 23:52:14 train.py: 74] Epoch 9, iter 6000/6416, lr 0.100000, loss 7.436903 +INFO 2020-11-24 23:53:30 train.py: 74] Epoch 9, iter 6200/6416, lr 0.100000, loss 7.398268 +INFO 2020-11-24 23:54:47 train.py: 74] Epoch 9, iter 6400/6416, lr 0.100000, loss 7.397418 +INFO 2020-11-24 23:54:53 train.py: 92] Save checkpoint Epoch_9.pt to disk... +INFO 2020-11-24 23:54:55 train.py: 74] Epoch 10, iter 0/6416, lr 0.010000, loss 7.353138 +INFO 2020-11-24 23:56:12 train.py: 74] Epoch 10, iter 200/6416, lr 0.010000, loss 6.257766 +INFO 2020-11-24 23:57:29 train.py: 74] Epoch 10, iter 400/6416, lr 0.010000, loss 6.017529 +INFO 2020-11-24 23:58:45 train.py: 74] Epoch 10, iter 600/6416, lr 0.010000, loss 5.915038 +INFO 2020-11-25 00:00:02 train.py: 74] Epoch 10, iter 800/6416, lr 0.010000, loss 5.836611 +INFO 2020-11-25 00:01:18 train.py: 74] Epoch 10, iter 1000/6416, lr 0.010000, loss 5.783414 +INFO 2020-11-25 00:02:34 train.py: 74] Epoch 10, iter 1200/6416, lr 0.010000, loss 5.734762 +INFO 2020-11-25 00:03:51 train.py: 74] Epoch 10, iter 1400/6416, lr 0.010000, loss 5.738091 +INFO 2020-11-25 00:05:07 train.py: 74] Epoch 10, iter 1600/6416, lr 0.010000, loss 5.682976 +INFO 2020-11-25 00:06:23 train.py: 74] Epoch 10, iter 1800/6416, lr 0.010000, loss 5.647589 +INFO 2020-11-25 00:07:40 train.py: 74] Epoch 10, iter 2000/6416, lr 0.010000, loss 5.622531 +INFO 2020-11-25 00:08:56 train.py: 74] Epoch 10, iter 2200/6416, lr 0.010000, loss 5.601900 +INFO 2020-11-25 00:10:12 train.py: 74] Epoch 10, iter 2400/6416, lr 0.010000, loss 5.571118 +INFO 2020-11-25 00:11:29 train.py: 74] Epoch 10, iter 2600/6416, lr 0.010000, loss 5.534947 +INFO 2020-11-25 00:12:45 train.py: 74] Epoch 10, iter 2800/6416, lr 0.010000, loss 5.509576 +INFO 2020-11-25 00:14:01 train.py: 87] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2020-11-25 00:14:02 train.py: 74] Epoch 10, iter 3000/6416, lr 0.010000, loss 5.511195 +INFO 2020-11-25 00:15:17 train.py: 74] Epoch 10, iter 3200/6416, lr 0.010000, loss 5.482364 +INFO 2020-11-25 00:16:33 train.py: 74] Epoch 10, iter 3400/6416, lr 0.010000, loss 5.489383 +INFO 2020-11-25 00:17:49 train.py: 74] Epoch 10, iter 3600/6416, lr 0.010000, loss 5.448496 +INFO 2020-11-25 00:19:05 train.py: 74] Epoch 10, iter 3800/6416, lr 0.010000, loss 5.419645 +INFO 2020-11-25 00:20:21 train.py: 74] Epoch 10, iter 4000/6416, lr 0.010000, loss 5.423076 +INFO 2020-11-25 00:21:37 train.py: 74] Epoch 10, iter 4200/6416, lr 0.010000, loss 5.412503 +INFO 2020-11-25 00:22:53 train.py: 74] Epoch 10, iter 4400/6416, lr 0.010000, loss 5.375420 +INFO 2020-11-25 00:24:08 train.py: 74] Epoch 10, iter 4600/6416, lr 0.010000, loss 5.357363 +INFO 2020-11-25 00:25:24 train.py: 74] Epoch 10, iter 4800/6416, lr 0.010000, loss 5.346682 +INFO 2020-11-25 00:26:40 train.py: 74] Epoch 10, iter 5000/6416, lr 0.010000, loss 5.338702 +INFO 2020-11-25 00:27:56 train.py: 74] Epoch 10, iter 5200/6416, lr 0.010000, loss 5.338754 +INFO 2020-11-25 00:29:12 train.py: 74] Epoch 10, iter 5400/6416, lr 0.010000, loss 5.340596 +INFO 2020-11-25 00:30:28 train.py: 74] Epoch 10, iter 5600/6416, lr 0.010000, loss 5.277478 +INFO 2020-11-25 00:31:44 train.py: 74] Epoch 10, iter 5800/6416, lr 0.010000, loss 5.315326 +INFO 2020-11-25 00:33:00 train.py: 87] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2020-11-25 00:33:01 train.py: 74] Epoch 10, iter 6000/6416, lr 0.010000, loss 5.293450 +INFO 2020-11-25 00:34:17 train.py: 74] Epoch 10, iter 6200/6416, lr 0.010000, loss 5.272774 +INFO 2020-11-25 00:35:34 train.py: 74] Epoch 10, iter 6400/6416, lr 0.010000, loss 5.283323 +INFO 2020-11-25 00:35:40 train.py: 92] Save checkpoint Epoch_10.pt to disk... +INFO 2020-11-25 00:35:42 train.py: 74] Epoch 11, iter 0/6416, lr 0.010000, loss 5.223241 +INFO 2020-11-25 00:36:58 train.py: 74] Epoch 11, iter 200/6416, lr 0.010000, loss 4.948623 +INFO 2020-11-25 00:38:15 train.py: 74] Epoch 11, iter 400/6416, lr 0.010000, loss 4.906858 +INFO 2020-11-25 00:39:31 train.py: 74] Epoch 11, iter 600/6416, lr 0.010000, loss 4.907461 +INFO 2020-11-25 00:40:48 train.py: 74] Epoch 11, iter 800/6416, lr 0.010000, loss 4.904690 +INFO 2020-11-25 00:42:04 train.py: 74] Epoch 11, iter 1000/6416, lr 0.010000, loss 4.928326 +INFO 2020-11-25 00:43:21 train.py: 74] Epoch 11, iter 1200/6416, lr 0.010000, loss 4.924131 +INFO 2020-11-25 00:44:37 train.py: 74] Epoch 11, iter 1400/6416, lr 0.010000, loss 4.936636 +INFO 2020-11-25 00:45:53 train.py: 74] Epoch 11, iter 1600/6416, lr 0.010000, loss 4.918629 +INFO 2020-11-25 00:47:09 train.py: 74] Epoch 11, iter 1800/6416, lr 0.010000, loss 4.919805 +INFO 2020-11-25 00:48:26 train.py: 74] Epoch 11, iter 2000/6416, lr 0.010000, loss 4.960497 +INFO 2020-11-25 00:49:42 train.py: 74] Epoch 11, iter 2200/6416, lr 0.010000, loss 4.957431 +INFO 2020-11-25 00:50:58 train.py: 74] Epoch 11, iter 2400/6416, lr 0.010000, loss 4.956089 +INFO 2020-11-25 00:52:15 train.py: 74] Epoch 11, iter 2600/6416, lr 0.010000, loss 4.945728 +INFO 2020-11-25 00:53:31 train.py: 74] Epoch 11, iter 2800/6416, lr 0.010000, loss 4.957325 +INFO 2020-11-25 00:54:47 train.py: 87] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2020-11-25 00:54:47 train.py: 74] Epoch 11, iter 3000/6416, lr 0.010000, loss 4.980482 +INFO 2020-11-25 00:56:04 train.py: 74] Epoch 11, iter 3200/6416, lr 0.010000, loss 4.983182 +INFO 2020-11-25 00:57:20 train.py: 74] Epoch 11, iter 3400/6416, lr 0.010000, loss 4.966438 +INFO 2020-11-25 00:58:37 train.py: 74] Epoch 11, iter 3600/6416, lr 0.010000, loss 4.987589 +INFO 2020-11-25 00:59:53 train.py: 74] Epoch 11, iter 3800/6416, lr 0.010000, loss 4.968704 +INFO 2020-11-25 01:01:10 train.py: 74] Epoch 11, iter 4000/6416, lr 0.010000, loss 4.980256 +INFO 2020-11-25 01:02:26 train.py: 74] Epoch 11, iter 4200/6416, lr 0.010000, loss 4.970413 +INFO 2020-11-25 01:03:43 train.py: 74] Epoch 11, iter 4400/6416, lr 0.010000, loss 5.002899 +INFO 2020-11-25 01:04:59 train.py: 74] Epoch 11, iter 4600/6416, lr 0.010000, loss 5.007192 +INFO 2020-11-25 01:06:16 train.py: 74] Epoch 11, iter 4800/6416, lr 0.010000, loss 4.998616 +INFO 2020-11-25 01:07:33 train.py: 74] Epoch 11, iter 5000/6416, lr 0.010000, loss 5.009392 +INFO 2020-11-25 01:08:49 train.py: 74] Epoch 11, iter 5200/6416, lr 0.010000, loss 4.986240 +INFO 2020-11-25 01:10:06 train.py: 74] Epoch 11, iter 5400/6416, lr 0.010000, loss 4.972138 +INFO 2020-11-25 01:11:23 train.py: 74] Epoch 11, iter 5600/6416, lr 0.010000, loss 4.976395 +INFO 2020-11-25 01:12:39 train.py: 74] Epoch 11, iter 5800/6416, lr 0.010000, loss 4.971344 +INFO 2020-11-25 01:13:56 train.py: 87] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2020-11-25 01:13:56 train.py: 74] Epoch 11, iter 6000/6416, lr 0.010000, loss 4.987184 +INFO 2020-11-25 01:15:12 train.py: 74] Epoch 11, iter 6200/6416, lr 0.010000, loss 4.976141 +INFO 2020-11-25 01:16:28 train.py: 74] Epoch 11, iter 6400/6416, lr 0.010000, loss 5.002322 +INFO 2020-11-25 01:16:35 train.py: 92] Save checkpoint Epoch_11.pt to disk... +INFO 2020-11-25 01:16:36 train.py: 74] Epoch 12, iter 0/6416, lr 0.010000, loss 4.983368 +INFO 2020-11-25 01:17:53 train.py: 74] Epoch 12, iter 200/6416, lr 0.010000, loss 4.611268 +INFO 2020-11-25 01:19:09 train.py: 74] Epoch 12, iter 400/6416, lr 0.010000, loss 4.640412 +INFO 2020-11-25 01:20:26 train.py: 74] Epoch 12, iter 600/6416, lr 0.010000, loss 4.673774 +INFO 2020-11-25 01:21:42 train.py: 74] Epoch 12, iter 800/6416, lr 0.010000, loss 4.692424 +INFO 2020-11-25 01:22:59 train.py: 74] Epoch 12, iter 1000/6416, lr 0.010000, loss 4.691139 +INFO 2020-11-25 01:24:15 train.py: 74] Epoch 12, iter 1200/6416, lr 0.010000, loss 4.690612 +INFO 2020-11-25 01:25:31 train.py: 74] Epoch 12, iter 1400/6416, lr 0.010000, loss 4.695927 +INFO 2020-11-25 01:26:47 train.py: 74] Epoch 12, iter 1600/6416, lr 0.010000, loss 4.736963 +INFO 2020-11-25 01:28:04 train.py: 74] Epoch 12, iter 1800/6416, lr 0.010000, loss 4.741829 +INFO 2020-11-25 01:29:20 train.py: 74] Epoch 12, iter 2000/6416, lr 0.010000, loss 4.736865 +INFO 2020-11-25 01:30:36 train.py: 74] Epoch 12, iter 2200/6416, lr 0.010000, loss 4.762031 +INFO 2020-11-25 01:31:53 train.py: 74] Epoch 12, iter 2400/6416, lr 0.010000, loss 4.767115 +INFO 2020-11-25 01:33:09 train.py: 74] Epoch 12, iter 2600/6416, lr 0.010000, loss 4.782443 +INFO 2020-11-25 01:34:25 train.py: 74] Epoch 12, iter 2800/6416, lr 0.010000, loss 4.760673 +INFO 2020-11-25 01:35:41 train.py: 87] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2020-11-25 01:35:42 train.py: 74] Epoch 12, iter 3000/6416, lr 0.010000, loss 4.802496 +INFO 2020-11-25 01:36:58 train.py: 74] Epoch 12, iter 3200/6416, lr 0.010000, loss 4.796419 +INFO 2020-11-25 01:38:15 train.py: 74] Epoch 12, iter 3400/6416, lr 0.010000, loss 4.792343 +INFO 2020-11-25 01:39:31 train.py: 74] Epoch 12, iter 3600/6416, lr 0.010000, loss 4.832982 +INFO 2020-11-25 01:40:48 train.py: 74] Epoch 12, iter 3800/6416, lr 0.010000, loss 4.821779 +INFO 2020-11-25 01:42:04 train.py: 74] Epoch 12, iter 4000/6416, lr 0.010000, loss 4.881370 +INFO 2020-11-25 01:43:20 train.py: 74] Epoch 12, iter 4200/6416, lr 0.010000, loss 4.884917 +INFO 2020-11-25 01:44:37 train.py: 74] Epoch 12, iter 4400/6416, lr 0.010000, loss 4.857210 +INFO 2020-11-25 01:45:53 train.py: 74] Epoch 12, iter 4600/6416, lr 0.010000, loss 4.858853 +INFO 2020-11-25 01:47:10 train.py: 74] Epoch 12, iter 4800/6416, lr 0.010000, loss 4.859920 +INFO 2020-11-25 01:48:27 train.py: 74] Epoch 12, iter 5000/6416, lr 0.010000, loss 4.852360 +INFO 2020-11-25 01:49:43 train.py: 74] Epoch 12, iter 5200/6416, lr 0.010000, loss 4.872837 +INFO 2020-11-25 01:51:00 train.py: 74] Epoch 12, iter 5400/6416, lr 0.010000, loss 4.871405 +INFO 2020-11-25 01:52:17 train.py: 74] Epoch 12, iter 5600/6416, lr 0.010000, loss 4.908140 +INFO 2020-11-25 01:53:33 train.py: 74] Epoch 12, iter 5800/6416, lr 0.010000, loss 4.893963 +INFO 2020-11-25 01:54:50 train.py: 87] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2020-11-25 01:54:50 train.py: 74] Epoch 12, iter 6000/6416, lr 0.010000, loss 4.906605 +INFO 2020-11-25 01:56:07 train.py: 74] Epoch 12, iter 6200/6416, lr 0.010000, loss 4.916764 +INFO 2020-11-25 01:57:23 train.py: 74] Epoch 12, iter 6400/6416, lr 0.010000, loss 4.909206 +INFO 2020-11-25 01:57:30 train.py: 92] Save checkpoint Epoch_12.pt to disk... +INFO 2020-11-25 01:57:31 train.py: 74] Epoch 13, iter 0/6416, lr 0.001000, loss 4.876686 +INFO 2020-11-25 01:58:47 train.py: 74] Epoch 13, iter 200/6416, lr 0.001000, loss 4.442451 +INFO 2020-11-25 02:00:03 train.py: 74] Epoch 13, iter 400/6416, lr 0.001000, loss 4.408205 +INFO 2020-11-25 02:01:19 train.py: 74] Epoch 13, iter 600/6416, lr 0.001000, loss 4.419447 +INFO 2020-11-25 02:02:35 train.py: 74] Epoch 13, iter 800/6416, lr 0.001000, loss 4.387983 +INFO 2020-11-25 02:03:51 train.py: 74] Epoch 13, iter 1000/6416, lr 0.001000, loss 4.412583 +INFO 2020-11-25 02:05:06 train.py: 74] Epoch 13, iter 1200/6416, lr 0.001000, loss 4.399296 +INFO 2020-11-25 02:06:22 train.py: 74] Epoch 13, iter 1400/6416, lr 0.001000, loss 4.394198 +INFO 2020-11-25 02:07:38 train.py: 74] Epoch 13, iter 1600/6416, lr 0.001000, loss 4.380451 +INFO 2020-11-25 02:08:53 train.py: 74] Epoch 13, iter 1800/6416, lr 0.001000, loss 4.419471 +INFO 2020-11-25 02:10:09 train.py: 74] Epoch 13, iter 2000/6416, lr 0.001000, loss 4.381618 +INFO 2020-11-25 02:11:24 train.py: 74] Epoch 13, iter 2200/6416, lr 0.001000, loss 4.409688 +INFO 2020-11-25 02:12:40 train.py: 74] Epoch 13, iter 2400/6416, lr 0.001000, loss 4.408339 +INFO 2020-11-25 02:13:56 train.py: 74] Epoch 13, iter 2600/6416, lr 0.001000, loss 4.411750 +INFO 2020-11-25 02:15:11 train.py: 74] Epoch 13, iter 2800/6416, lr 0.001000, loss 4.413968 +INFO 2020-11-25 02:16:27 train.py: 87] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2020-11-25 02:16:27 train.py: 74] Epoch 13, iter 3000/6416, lr 0.001000, loss 4.390786 +INFO 2020-11-25 02:17:44 train.py: 74] Epoch 13, iter 3200/6416, lr 0.001000, loss 4.429628 +INFO 2020-11-25 02:19:00 train.py: 74] Epoch 13, iter 3400/6416, lr 0.001000, loss 4.420643 +INFO 2020-11-25 02:20:16 train.py: 74] Epoch 13, iter 3600/6416, lr 0.001000, loss 4.388773 +INFO 2020-11-25 02:21:33 train.py: 74] Epoch 13, iter 3800/6416, lr 0.001000, loss 4.397255 +INFO 2020-11-25 02:22:49 train.py: 74] Epoch 13, iter 4000/6416, lr 0.001000, loss 4.405686 +INFO 2020-11-25 02:24:06 train.py: 74] Epoch 13, iter 4200/6416, lr 0.001000, loss 4.395911 +INFO 2020-11-25 02:25:22 train.py: 74] Epoch 13, iter 4400/6416, lr 0.001000, loss 4.432924 +INFO 2020-11-25 02:26:39 train.py: 74] Epoch 13, iter 4600/6416, lr 0.001000, loss 4.400759 +INFO 2020-11-25 02:27:55 train.py: 74] Epoch 13, iter 4800/6416, lr 0.001000, loss 4.384009 +INFO 2020-11-25 02:29:12 train.py: 74] Epoch 13, iter 5000/6416, lr 0.001000, loss 4.438662 +INFO 2020-11-25 02:30:29 train.py: 74] Epoch 13, iter 5200/6416, lr 0.001000, loss 4.423308 +INFO 2020-11-25 02:31:45 train.py: 74] Epoch 13, iter 5400/6416, lr 0.001000, loss 4.411874 +INFO 2020-11-25 02:33:02 train.py: 74] Epoch 13, iter 5600/6416, lr 0.001000, loss 4.426057 +INFO 2020-11-25 02:34:19 train.py: 74] Epoch 13, iter 5800/6416, lr 0.001000, loss 4.420076 +INFO 2020-11-25 02:35:35 train.py: 87] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2020-11-25 02:35:35 train.py: 74] Epoch 13, iter 6000/6416, lr 0.001000, loss 4.426545 +INFO 2020-11-25 02:36:52 train.py: 74] Epoch 13, iter 6200/6416, lr 0.001000, loss 4.424432 +INFO 2020-11-25 02:38:09 train.py: 74] Epoch 13, iter 6400/6416, lr 0.001000, loss 4.414508 +INFO 2020-11-25 02:38:15 train.py: 92] Save checkpoint Epoch_13.pt to disk... +INFO 2020-11-25 02:38:17 train.py: 74] Epoch 14, iter 0/6416, lr 0.001000, loss 4.443413 +INFO 2020-11-25 02:39:33 train.py: 74] Epoch 14, iter 200/6416, lr 0.001000, loss 4.337744 +INFO 2020-11-25 02:40:50 train.py: 74] Epoch 14, iter 400/6416, lr 0.001000, loss 4.345555 +INFO 2020-11-25 02:42:06 train.py: 74] Epoch 14, iter 600/6416, lr 0.001000, loss 4.335841 +INFO 2020-11-25 02:43:23 train.py: 74] Epoch 14, iter 800/6416, lr 0.001000, loss 4.349915 +INFO 2020-11-25 02:44:39 train.py: 74] Epoch 14, iter 1000/6416, lr 0.001000, loss 4.377623 +INFO 2020-11-25 02:45:55 train.py: 74] Epoch 14, iter 1200/6416, lr 0.001000, loss 4.354851 +INFO 2020-11-25 02:47:12 train.py: 74] Epoch 14, iter 1400/6416, lr 0.001000, loss 4.369637 +INFO 2020-11-25 02:48:28 train.py: 74] Epoch 14, iter 1600/6416, lr 0.001000, loss 4.347162 +INFO 2020-11-25 02:49:44 train.py: 74] Epoch 14, iter 1800/6416, lr 0.001000, loss 4.375702 +INFO 2020-11-25 02:51:00 train.py: 74] Epoch 14, iter 2000/6416, lr 0.001000, loss 4.355511 +INFO 2020-11-25 02:52:17 train.py: 74] Epoch 14, iter 2200/6416, lr 0.001000, loss 4.351502 +INFO 2020-11-25 02:53:33 train.py: 74] Epoch 14, iter 2400/6416, lr 0.001000, loss 4.346628 +INFO 2020-11-25 02:54:49 train.py: 74] Epoch 14, iter 2600/6416, lr 0.001000, loss 4.385360 +INFO 2020-11-25 02:56:06 train.py: 74] Epoch 14, iter 2800/6416, lr 0.001000, loss 4.382407 +INFO 2020-11-25 02:57:22 train.py: 87] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2020-11-25 02:57:22 train.py: 74] Epoch 14, iter 3000/6416, lr 0.001000, loss 4.368762 +INFO 2020-11-25 02:58:38 train.py: 74] Epoch 14, iter 3200/6416, lr 0.001000, loss 4.392034 +INFO 2020-11-25 02:59:54 train.py: 74] Epoch 14, iter 3400/6416, lr 0.001000, loss 4.361917 +INFO 2020-11-25 03:01:09 train.py: 74] Epoch 14, iter 3600/6416, lr 0.001000, loss 4.373660 +INFO 2020-11-25 03:02:25 train.py: 74] Epoch 14, iter 3800/6416, lr 0.001000, loss 4.387465 +INFO 2020-11-25 03:03:41 train.py: 74] Epoch 14, iter 4000/6416, lr 0.001000, loss 4.354591 +INFO 2020-11-25 03:04:57 train.py: 74] Epoch 14, iter 4200/6416, lr 0.001000, loss 4.383426 +INFO 2020-11-25 03:06:13 train.py: 74] Epoch 14, iter 4400/6416, lr 0.001000, loss 4.364166 +INFO 2020-11-25 03:07:29 train.py: 74] Epoch 14, iter 4600/6416, lr 0.001000, loss 4.376958 +INFO 2020-11-25 03:08:44 train.py: 74] Epoch 14, iter 4800/6416, lr 0.001000, loss 4.372547 +INFO 2020-11-25 03:10:00 train.py: 74] Epoch 14, iter 5000/6416, lr 0.001000, loss 4.359061 +INFO 2020-11-25 03:11:16 train.py: 74] Epoch 14, iter 5200/6416, lr 0.001000, loss 4.379103 +INFO 2020-11-25 03:12:32 train.py: 74] Epoch 14, iter 5400/6416, lr 0.001000, loss 4.410229 +INFO 2020-11-25 03:13:48 train.py: 74] Epoch 14, iter 5600/6416, lr 0.001000, loss 4.386184 +INFO 2020-11-25 03:15:04 train.py: 74] Epoch 14, iter 5800/6416, lr 0.001000, loss 4.415015 +INFO 2020-11-25 03:16:20 train.py: 87] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2020-11-25 03:16:20 train.py: 74] Epoch 14, iter 6000/6416, lr 0.001000, loss 4.391684 +INFO 2020-11-25 03:17:37 train.py: 74] Epoch 14, iter 6200/6416, lr 0.001000, loss 4.421325 +INFO 2020-11-25 03:18:53 train.py: 74] Epoch 14, iter 6400/6416, lr 0.001000, loss 4.391710 +INFO 2020-11-25 03:19:00 train.py: 92] Save checkpoint Epoch_14.pt to disk... +INFO 2020-11-25 03:19:01 train.py: 74] Epoch 15, iter 0/6416, lr 0.001000, loss 4.447200 +INFO 2020-11-25 03:20:18 train.py: 74] Epoch 15, iter 200/6416, lr 0.001000, loss 4.308515 +INFO 2020-11-25 03:21:34 train.py: 74] Epoch 15, iter 400/6416, lr 0.001000, loss 4.339306 +INFO 2020-11-25 03:22:51 train.py: 74] Epoch 15, iter 600/6416, lr 0.001000, loss 4.358757 +INFO 2020-11-25 03:24:07 train.py: 74] Epoch 15, iter 800/6416, lr 0.001000, loss 4.343400 +INFO 2020-11-25 03:25:23 train.py: 74] Epoch 15, iter 1000/6416, lr 0.001000, loss 4.327294 +INFO 2020-11-25 03:26:40 train.py: 74] Epoch 15, iter 1200/6416, lr 0.001000, loss 4.339487 +INFO 2020-11-25 03:27:56 train.py: 74] Epoch 15, iter 1400/6416, lr 0.001000, loss 4.330323 +INFO 2020-11-25 03:29:12 train.py: 74] Epoch 15, iter 1600/6416, lr 0.001000, loss 4.349277 +INFO 2020-11-25 03:30:28 train.py: 74] Epoch 15, iter 1800/6416, lr 0.001000, loss 4.335158 +INFO 2020-11-25 03:31:45 train.py: 74] Epoch 15, iter 2000/6416, lr 0.001000, loss 4.341329 +INFO 2020-11-25 03:33:01 train.py: 74] Epoch 15, iter 2200/6416, lr 0.001000, loss 4.328359 +INFO 2020-11-25 03:34:17 train.py: 74] Epoch 15, iter 2400/6416, lr 0.001000, loss 4.342991 +INFO 2020-11-25 03:35:34 train.py: 74] Epoch 15, iter 2600/6416, lr 0.001000, loss 4.365566 +INFO 2020-11-25 03:36:50 train.py: 74] Epoch 15, iter 2800/6416, lr 0.001000, loss 4.348621 +INFO 2020-11-25 03:38:06 train.py: 87] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2020-11-25 03:38:06 train.py: 74] Epoch 15, iter 3000/6416, lr 0.001000, loss 4.341549 +INFO 2020-11-25 03:39:23 train.py: 74] Epoch 15, iter 3200/6416, lr 0.001000, loss 4.353372 +INFO 2020-11-25 03:40:39 train.py: 74] Epoch 15, iter 3400/6416, lr 0.001000, loss 4.341762 +INFO 2020-11-25 03:41:56 train.py: 74] Epoch 15, iter 3600/6416, lr 0.001000, loss 4.357957 +INFO 2020-11-25 03:43:12 train.py: 74] Epoch 15, iter 3800/6416, lr 0.001000, loss 4.356401 +INFO 2020-11-25 03:44:28 train.py: 74] Epoch 15, iter 4000/6416, lr 0.001000, loss 4.337076 +INFO 2020-11-25 03:45:45 train.py: 74] Epoch 15, iter 4200/6416, lr 0.001000, loss 4.354352 +INFO 2020-11-25 03:47:01 train.py: 74] Epoch 15, iter 4400/6416, lr 0.001000, loss 4.380453 +INFO 2020-11-25 03:48:18 train.py: 74] Epoch 15, iter 4600/6416, lr 0.001000, loss 4.356988 +INFO 2020-11-25 03:49:34 train.py: 74] Epoch 15, iter 4800/6416, lr 0.001000, loss 4.371785 +INFO 2020-11-25 03:50:51 train.py: 74] Epoch 15, iter 5000/6416, lr 0.001000, loss 4.359285 +INFO 2020-11-25 03:52:07 train.py: 74] Epoch 15, iter 5200/6416, lr 0.001000, loss 4.362331 +INFO 2020-11-25 03:53:24 train.py: 74] Epoch 15, iter 5400/6416, lr 0.001000, loss 4.364020 +INFO 2020-11-25 03:54:41 train.py: 74] Epoch 15, iter 5600/6416, lr 0.001000, loss 4.396912 +INFO 2020-11-25 03:55:57 train.py: 74] Epoch 15, iter 5800/6416, lr 0.001000, loss 4.379699 +INFO 2020-11-25 03:57:14 train.py: 87] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2020-11-25 03:57:14 train.py: 74] Epoch 15, iter 6000/6416, lr 0.001000, loss 4.372220 +INFO 2020-11-25 03:58:31 train.py: 74] Epoch 15, iter 6200/6416, lr 0.001000, loss 4.375687 +INFO 2020-11-25 03:59:47 train.py: 74] Epoch 15, iter 6400/6416, lr 0.001000, loss 4.387501 +INFO 2020-11-25 03:59:54 train.py: 92] Save checkpoint Epoch_15.pt to disk... +INFO 2020-11-25 03:59:55 train.py: 74] Epoch 16, iter 0/6416, lr 0.000100, loss 4.437425 +INFO 2020-11-25 04:01:12 train.py: 74] Epoch 16, iter 200/6416, lr 0.000100, loss 4.312835 +INFO 2020-11-25 04:02:28 train.py: 74] Epoch 16, iter 400/6416, lr 0.000100, loss 4.326099 +INFO 2020-11-25 04:03:45 train.py: 74] Epoch 16, iter 600/6416, lr 0.000100, loss 4.280351 +INFO 2020-11-25 04:05:01 train.py: 74] Epoch 16, iter 800/6416, lr 0.000100, loss 4.285148 +INFO 2020-11-25 04:06:18 train.py: 74] Epoch 16, iter 1000/6416, lr 0.000100, loss 4.303608 +INFO 2020-11-25 04:07:34 train.py: 74] Epoch 16, iter 1200/6416, lr 0.000100, loss 4.304034 +INFO 2020-11-25 04:08:50 train.py: 74] Epoch 16, iter 1400/6416, lr 0.000100, loss 4.293425 +INFO 2020-11-25 04:10:07 train.py: 74] Epoch 16, iter 1600/6416, lr 0.000100, loss 4.328923 +INFO 2020-11-25 04:11:23 train.py: 74] Epoch 16, iter 1800/6416, lr 0.000100, loss 4.299053 +INFO 2020-11-25 04:12:39 train.py: 74] Epoch 16, iter 2000/6416, lr 0.000100, loss 4.304958 +INFO 2020-11-25 04:13:55 train.py: 74] Epoch 16, iter 2200/6416, lr 0.000100, loss 4.297158 +INFO 2020-11-25 04:15:12 train.py: 74] Epoch 16, iter 2400/6416, lr 0.000100, loss 4.286107 +INFO 2020-11-25 04:16:28 train.py: 74] Epoch 16, iter 2600/6416, lr 0.000100, loss 4.298167 +INFO 2020-11-25 04:17:45 train.py: 74] Epoch 16, iter 2800/6416, lr 0.000100, loss 4.299586 +INFO 2020-11-25 04:19:01 train.py: 87] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2020-11-25 04:19:01 train.py: 74] Epoch 16, iter 3000/6416, lr 0.000100, loss 4.286830 +INFO 2020-11-25 04:20:17 train.py: 74] Epoch 16, iter 3200/6416, lr 0.000100, loss 4.326733 +INFO 2020-11-25 04:21:33 train.py: 74] Epoch 16, iter 3400/6416, lr 0.000100, loss 4.311498 +INFO 2020-11-25 04:22:48 train.py: 74] Epoch 16, iter 3600/6416, lr 0.000100, loss 4.313252 +INFO 2020-11-25 04:24:04 train.py: 74] Epoch 16, iter 3800/6416, lr 0.000100, loss 4.304375 +INFO 2020-11-25 04:25:20 train.py: 74] Epoch 16, iter 4000/6416, lr 0.000100, loss 4.305652 +INFO 2020-11-25 04:26:36 train.py: 74] Epoch 16, iter 4200/6416, lr 0.000100, loss 4.332660 +INFO 2020-11-25 04:27:52 train.py: 74] Epoch 16, iter 4400/6416, lr 0.000100, loss 4.300166 +INFO 2020-11-25 04:29:08 train.py: 74] Epoch 16, iter 4600/6416, lr 0.000100, loss 4.277409 +INFO 2020-11-25 04:30:23 train.py: 74] Epoch 16, iter 4800/6416, lr 0.000100, loss 4.320323 +INFO 2020-11-25 04:31:39 train.py: 74] Epoch 16, iter 5000/6416, lr 0.000100, loss 4.266749 +INFO 2020-11-25 04:32:55 train.py: 74] Epoch 16, iter 5200/6416, lr 0.000100, loss 4.300358 +INFO 2020-11-25 04:34:11 train.py: 74] Epoch 16, iter 5400/6416, lr 0.000100, loss 4.313041 +INFO 2020-11-25 04:35:27 train.py: 74] Epoch 16, iter 5600/6416, lr 0.000100, loss 4.324255 +INFO 2020-11-25 04:36:43 train.py: 74] Epoch 16, iter 5800/6416, lr 0.000100, loss 4.296991 +INFO 2020-11-25 04:37:59 train.py: 87] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2020-11-25 04:37:59 train.py: 74] Epoch 16, iter 6000/6416, lr 0.000100, loss 4.308512 +INFO 2020-11-25 04:39:16 train.py: 74] Epoch 16, iter 6200/6416, lr 0.000100, loss 4.318126 +INFO 2020-11-25 04:40:33 train.py: 74] Epoch 16, iter 6400/6416, lr 0.000100, loss 4.305930 +INFO 2020-11-25 04:40:39 train.py: 92] Save checkpoint Epoch_16.pt to disk... +INFO 2020-11-25 04:40:41 train.py: 74] Epoch 17, iter 0/6416, lr 0.000100, loss 4.295313 +INFO 2020-11-25 04:41:57 train.py: 74] Epoch 17, iter 200/6416, lr 0.000100, loss 4.302628 +INFO 2020-11-25 04:43:14 train.py: 74] Epoch 17, iter 400/6416, lr 0.000100, loss 4.303336 +INFO 2020-11-25 04:44:30 train.py: 74] Epoch 17, iter 600/6416, lr 0.000100, loss 4.289142 +INFO 2020-11-25 04:45:46 train.py: 74] Epoch 17, iter 800/6416, lr 0.000100, loss 4.317333 +INFO 2020-11-25 04:47:03 train.py: 74] Epoch 17, iter 1000/6416, lr 0.000100, loss 4.305242 +INFO 2020-11-25 04:48:19 train.py: 74] Epoch 17, iter 1200/6416, lr 0.000100, loss 4.287574 +INFO 2020-11-25 04:49:36 train.py: 74] Epoch 17, iter 1400/6416, lr 0.000100, loss 4.306370 +INFO 2020-11-25 04:50:52 train.py: 74] Epoch 17, iter 1600/6416, lr 0.000100, loss 4.315201 +INFO 2020-11-25 04:52:08 train.py: 74] Epoch 17, iter 1800/6416, lr 0.000100, loss 4.301431 +INFO 2020-11-25 04:53:24 train.py: 74] Epoch 17, iter 2000/6416, lr 0.000100, loss 4.299300 +INFO 2020-11-25 04:54:41 train.py: 74] Epoch 17, iter 2200/6416, lr 0.000100, loss 4.293645 +INFO 2020-11-25 04:55:57 train.py: 74] Epoch 17, iter 2400/6416, lr 0.000100, loss 4.291119 +INFO 2020-11-25 04:57:13 train.py: 74] Epoch 17, iter 2600/6416, lr 0.000100, loss 4.308664 +INFO 2020-11-25 04:58:29 train.py: 74] Epoch 17, iter 2800/6416, lr 0.000100, loss 4.319460 +INFO 2020-11-25 04:59:46 train.py: 87] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2020-11-25 04:59:46 train.py: 74] Epoch 17, iter 3000/6416, lr 0.000100, loss 4.309168 +INFO 2020-11-25 05:01:02 train.py: 74] Epoch 17, iter 3200/6416, lr 0.000100, loss 4.292737 +INFO 2020-11-25 05:02:19 train.py: 74] Epoch 17, iter 3400/6416, lr 0.000100, loss 4.293627 +INFO 2020-11-25 05:03:35 train.py: 74] Epoch 17, iter 3600/6416, lr 0.000100, loss 4.306646 +INFO 2020-11-25 05:04:52 train.py: 74] Epoch 17, iter 3800/6416, lr 0.000100, loss 4.282552 +INFO 2020-11-25 05:06:08 train.py: 74] Epoch 17, iter 4000/6416, lr 0.000100, loss 4.314200 +INFO 2020-11-25 05:07:25 train.py: 74] Epoch 17, iter 4200/6416, lr 0.000100, loss 4.296638 +INFO 2020-11-25 05:08:41 train.py: 74] Epoch 17, iter 4400/6416, lr 0.000100, loss 4.324167 +INFO 2020-11-25 05:09:58 train.py: 74] Epoch 17, iter 4600/6416, lr 0.000100, loss 4.305802 +INFO 2020-11-25 05:11:14 train.py: 74] Epoch 17, iter 4800/6416, lr 0.000100, loss 4.278409 +INFO 2020-11-25 05:12:31 train.py: 74] Epoch 17, iter 5000/6416, lr 0.000100, loss 4.306388 +INFO 2020-11-25 05:13:47 train.py: 74] Epoch 17, iter 5200/6416, lr 0.000100, loss 4.309003 +INFO 2020-11-25 05:15:04 train.py: 74] Epoch 17, iter 5400/6416, lr 0.000100, loss 4.266980 +INFO 2020-11-25 05:16:21 train.py: 74] Epoch 17, iter 5600/6416, lr 0.000100, loss 4.294368 +INFO 2020-11-25 05:17:37 train.py: 74] Epoch 17, iter 5800/6416, lr 0.000100, loss 4.304988 +INFO 2020-11-25 05:18:54 train.py: 87] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2020-11-25 05:18:54 train.py: 74] Epoch 17, iter 6000/6416, lr 0.000100, loss 4.306873 +INFO 2020-11-25 05:20:11 train.py: 74] Epoch 17, iter 6200/6416, lr 0.000100, loss 4.316005 +INFO 2020-11-25 05:21:28 train.py: 74] Epoch 17, iter 6400/6416, lr 0.000100, loss 4.300295 +INFO 2020-11-25 05:21:34 train.py: 92] Save checkpoint Epoch_17.pt to disk... +INFO 2020-11-25 05:21:34 train.py: 175] Optimization done! diff --git a/bob/bio/facexzoo/models/backbones/ReXNet_1/.gitkeep b/bob/bio/facexzoo/models/backbones/ReXNet_1/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/backbones/ReXNet_1/accu_files/accu_agedb30.txt b/bob/bio/facexzoo/models/backbones/ReXNet_1/accu_files/accu_agedb30.txt new file mode 100644 index 0000000000000000000000000000000000000000..e41abdf5f5737ed2f07f1cceaf3dda2592920964 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ReXNet_1/accu_files/accu_agedb30.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_2999.pt | 0.967 | 0.002775554665954846 | +| Epoch_13.pt | 0.967 | 0.0030510067150546602 | +| Epoch_15_batch_5999.pt | 0.967 | 0.0026270200927859737 | +| Epoch_14_batch_2999.pt | 0.9663333333333334 | 0.0030205060486818217 | +| Epoch_14_batch_5999.pt | 0.9663333333333334 | 0.0031700761372638023 | +| Epoch_14.pt | 0.9663333333333334 | 0.003265986323710909 | +| Epoch_16_batch_5999.pt | 0.9663333333333333 | 0.0028523328117763193 | +| Epoch_17_batch_2999.pt | 0.9661666666666665 | 0.0029715731378480784 | +| Epoch_13_batch_5999.pt | 0.9658333333333333 | 0.0031451510788262655 | +| Epoch_17_batch_5999.pt | 0.9656666666666667 | 0.002631715396072672 | +| Epoch_16.pt | 0.9654999999999999 | 0.0026533230969465723 | +| Epoch_15_batch_2999.pt | 0.9653333333333333 | 0.002591534175486803 | +| Epoch_16_batch_2999.pt | 0.9653333333333333 | 0.002808716591058784 | +| Epoch_17.pt | 0.9651666666666667 | 0.0026579719364234833 | +| Epoch_11_batch_5999.pt | 0.9646666666666667 | 0.0026620330112690944 | +| Epoch_15.pt | 0.9646666666666667 | 0.002884612219054929 | +| Epoch_10_batch_5999.pt | 0.9641666666666667 | 0.0026323017201071394 | +| Epoch_10.pt | 0.9641666666666667 | 0.0032417987690878175 | +| Epoch_12_batch_5999.pt | 0.9640000000000001 | 0.003124969135650058 | +| Epoch_12.pt | 0.9636666666666667 | 0.0035381518506868138 | +| Epoch_11.pt | 0.9628333333333334 | 0.002778333277788882 | +| Epoch_12_batch_2999.pt | 0.9628333333333334 | 0.003053534685258065 | +| Epoch_11_batch_2999.pt | 0.9621666666666668 | 0.002653323096946567 | +| Epoch_10_batch_2999.pt | 0.9616666666666667 | 0.003220305943597652 | +| Epoch_9_batch_5999.pt | 0.9553333333333333 | 0.0037333994703136527 | +| Epoch_9_batch_2999.pt | 0.9538333333333332 | 0.0019092044752710652 | +| Epoch_7_batch_5999.pt | 0.9526666666666668 | 0.0035849479566448183 | +| Epoch_8_batch_5999.pt | 0.9523333333333334 | 0.00326976421545826 | +| Epoch_7.pt | 0.9514999999999999 | 0.0030271406057389614 | +| Epoch_7_batch_2999.pt | 0.9511666666666667 | 0.0036519063176766236 | +| Epoch_6_batch_2999.pt | 0.9504999999999999 | 0.002897955856832214 | +| Epoch_6_batch_5999.pt | 0.95 | 0.002581988897471617 | +| Epoch_8_batch_2999.pt | 0.9493333333333334 | 0.0029418227321941653 | +| Epoch_5_batch_5999.pt | 0.9491666666666665 | 0.00341790853672712 | +| Epoch_5_batch_2999.pt | 0.9486666666666667 | 0.003766322501484061 | +| Epoch_8.pt | 0.9481666666666666 | 0.0026579719364234855 | +| Epoch_4_batch_5999.pt | 0.9476666666666669 | 0.002867441755680877 | +| Epoch_6.pt | 0.9475000000000001 | 0.0037205634778340485 | +| Epoch_5.pt | 0.9470000000000001 | 0.0034765528549248912 | +| Epoch_9.pt | 0.9458333333333332 | 0.003085709794888621 | +| Epoch_4.pt | 0.9446666666666668 | 0.0031894889098682973 | +| Epoch_4_batch_2999.pt | 0.9441666666666666 | 0.002747052292239137 | +| Epoch_3_batch_5999.pt | 0.9413333333333334 | 0.003020506048681819 | +| Epoch_3_batch_2999.pt | 0.9375 | 0.003550778040283289 | +| Epoch_3.pt | 0.9346666666666668 | 0.003179797338056478 | +| Epoch_2_batch_5999.pt | 0.9344999999999999 | 0.004289306254879465 | +| Epoch_2.pt | 0.9323333333333332 | 0.002474561939035566 | +| Epoch_2_batch_2999.pt | 0.9298333333333334 | 0.004040306185683716 | +| Epoch_1_batch_5999.pt | 0.917 | 0.0036666666666666705 | +| Epoch_1.pt | 0.9158333333333333 | 0.006727729608048495 | +| Epoch_1_batch_2999.pt | 0.8963333333333333 | 0.003140732005578346 | +| Epoch_0_batch_5999.pt | 0.8621666666666666 | 0.006573656742100472 | +| Epoch_0.pt | 0.8461666666666666 | 0.0069657451100561835 | +| Epoch_0_batch_2999.pt | 0.774 | 0.004061259307221572 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ReXNet_1/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/backbones/ReXNet_1/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..095d7f28862a58f98e46c5278947404b79511ba0 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ReXNet_1/accu_files/accu_calfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16.pt | 0.9458333333333332 | 0.003363291303925624 | +| Epoch_15.pt | 0.9453333333333334 | 0.002852332811776319 | +| Epoch_17_batch_5999.pt | 0.9453333333333334 | 0.0032470309324894317 | +| Epoch_15_batch_2999.pt | 0.9448333333333334 | 0.0028158501994387073 | +| Epoch_11_batch_5999.pt | 0.9446666666666668 | 0.003275422882885256 | +| Epoch_11.pt | 0.9446666666666665 | 0.003766322501484066 | +| Epoch_17_batch_2999.pt | 0.9446666666666665 | 0.0032183885239911625 | +| Epoch_15_batch_5999.pt | 0.9445 | 0.002992274002110054 | +| Epoch_13.pt | 0.9440000000000002 | 0.0034084137000395436 | +| Epoch_16_batch_2999.pt | 0.9440000000000002 | 0.002834966849371792 | +| Epoch_13_batch_5999.pt | 0.9434999999999999 | 0.0031372906452212163 | +| Epoch_16_batch_5999.pt | 0.9433333333333334 | 0.003002056908023617 | +| Epoch_17.pt | 0.9431666666666667 | 0.0030676528205063375 | +| Epoch_12_batch_2999.pt | 0.9430000000000002 | 0.003733399470313655 | +| Epoch_14_batch_2999.pt | 0.943 | 0.00333148096679221 | +| Epoch_14.pt | 0.943 | 0.0031797973380564893 | +| Epoch_13_batch_2999.pt | 0.9428333333333334 | 0.0034609818060383317 | +| Epoch_14_batch_5999.pt | 0.9428333333333334 | 0.0033797691498344677 | +| Epoch_11_batch_2999.pt | 0.9425000000000001 | 0.003542075139843354 | +| Epoch_10_batch_5999.pt | 0.9421666666666667 | 0.003277777777777781 | +| Epoch_10.pt | 0.9411666666666667 | 0.003370624736026108 | +| Epoch_10_batch_2999.pt | 0.9400000000000001 | 0.003539896071571994 | +| Epoch_12.pt | 0.9398333333333333 | 0.0035175924707281573 | +| Epoch_12_batch_5999.pt | 0.9395000000000001 | 0.0035316033500695163 | +| Epoch_9_batch_5999.pt | 0.9366666666666668 | 0.003522414996477193 | +| Epoch_8_batch_2999.pt | 0.9351666666666667 | 0.0034911705207477687 | +| Epoch_8_batch_5999.pt | 0.9328333333333333 | 0.00423134978318436 | +| Epoch_6_batch_2999.pt | 0.9328333333333332 | 0.003609401304617953 | +| Epoch_9.pt | 0.9326666666666668 | 0.003866602809178961 | +| Epoch_7_batch_5999.pt | 0.9321666666666666 | 0.0039051248379533216 | +| Epoch_7_batch_2999.pt | 0.9318333333333333 | 0.004405734198423736 | +| Epoch_5_batch_5999.pt | 0.9315 | 0.0035263557939018532 | +| Epoch_6_batch_5999.pt | 0.9313333333333332 | 0.003950308629918041 | +| Epoch_9_batch_2999.pt | 0.9313333333333332 | 0.003863408589047496 | +| Epoch_8.pt | 0.9306666666666666 | 0.004487293445846374 | +| Epoch_7.pt | 0.9303333333333335 | 0.0038713891978187373 | +| Epoch_5_batch_2999.pt | 0.9296666666666666 | 0.005029542354558343 | +| Epoch_4_batch_5999.pt | 0.9253333333333333 | 0.00350308506009654 | +| Epoch_6.pt | 0.925 | 0.0034516054593353475 | +| Epoch_3_batch_5999.pt | 0.9243333333333335 | 0.00340841370003955 | +| Epoch_4.pt | 0.9240000000000002 | 0.004217833976911629 | +| Epoch_4_batch_2999.pt | 0.9231666666666667 | 0.003763453234319994 | +| Epoch_5.pt | 0.9228333333333332 | 0.004409935471659139 | +| Epoch_3_batch_2999.pt | 0.9208333333333332 | 0.0028136571693556894 | +| Epoch_3.pt | 0.9195 | 0.003143187813292365 | +| Epoch_2_batch_5999.pt | 0.9173333333333333 | 0.004786813161897336 | +| Epoch_2.pt | 0.9148333333333334 | 0.0037387691907536046 | +| Epoch_2_batch_2999.pt | 0.9143333333333332 | 0.004166296279833929 | +| Epoch_1_batch_5999.pt | 0.9073333333333332 | 0.003728435941236111 | +| Epoch_1.pt | 0.905 | 0.0031426968052735466 | +| Epoch_1_batch_2999.pt | 0.8939999999999999 | 0.006137317546507323 | +| Epoch_0.pt | 0.8593333333333334 | 0.004254264382017035 | +| Epoch_0_batch_5999.pt | 0.8548333333333333 | 0.0051786003161634194 | +| Epoch_0_batch_2999.pt | 0.7398333333333332 | 0.006218500871304895 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ReXNet_1/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/backbones/ReXNet_1/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..9b1270c5fd3b5061e4595734541f005de6ee05f3 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ReXNet_1/accu_files/accu_cplfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.8468333333333332 | 0.0069007514351967746 | +| Epoch_16.pt | 0.8456666666666667 | 0.006699917080747261 | +| Epoch_11.pt | 0.845 | 0.006907680463275361 | +| Epoch_13_batch_5999.pt | 0.8446666666666666 | 0.006748570950693432 | +| Epoch_13.pt | 0.8441666666666666 | 0.007487644143174467 | +| Epoch_12.pt | 0.843 | 0.007118052168020875 | +| Epoch_17_batch_5999.pt | 0.8423333333333334 | 0.00727417213481463 | +| Epoch_15.pt | 0.8421666666666667 | 0.007420567014373961 | +| Epoch_17_batch_2999.pt | 0.842 | 0.006775956039328586 | +| Epoch_12_batch_5999.pt | 0.8418333333333333 | 0.006042289239953619 | +| Epoch_10_batch_5999.pt | 0.8414999999999999 | 0.0074429932250505365 | +| Epoch_15_batch_5999.pt | 0.8413333333333334 | 0.006789607163312089 | +| Epoch_16_batch_5999.pt | 0.8413333333333333 | 0.007242705994547676 | +| Epoch_16_batch_2999.pt | 0.8411666666666667 | 0.007433034373659252 | +| Epoch_15_batch_2999.pt | 0.841 | 0.006662961933584419 | +| Epoch_14.pt | 0.8408333333333333 | 0.007015195147888832 | +| Epoch_11_batch_5999.pt | 0.8406666666666668 | 0.007516237566794567 | +| Epoch_10.pt | 0.8403333333333333 | 0.007169895913289633 | +| Epoch_13_batch_2999.pt | 0.8400000000000001 | 0.007453559924999296 | +| Epoch_14_batch_2999.pt | 0.8398333333333333 | 0.007279473932966638 | +| Epoch_11_batch_2999.pt | 0.8390000000000001 | 0.006266706067646033 | +| Epoch_12_batch_2999.pt | 0.8388333333333332 | 0.00796229540698837 | +| Epoch_14_batch_5999.pt | 0.8383333333333333 | 0.007005289007176937 | +| Epoch_10_batch_2999.pt | 0.8365 | 0.008200609733428357 | +| Epoch_9_batch_5999.pt | 0.8188333333333333 | 0.006559556218051472 | +| Epoch_9.pt | 0.8173333333333334 | 0.007869302759833675 | +| Epoch_8_batch_5999.pt | 0.8151666666666667 | 0.007936670633253004 | +| Epoch_9_batch_2999.pt | 0.8141666666666667 | 0.007610300037887246 | +| Epoch_7_batch_5999.pt | 0.8131666666666666 | 0.008715142207887579 | +| Epoch_7_batch_2999.pt | 0.8128333333333334 | 0.007453766965455026 | +| Epoch_4_batch_2999.pt | 0.8128333333333332 | 0.006196623931476569 | +| Epoch_7.pt | 0.8103333333333333 | 0.008981462390204987 | +| Epoch_8_batch_2999.pt | 0.8098333333333334 | 0.007889866919029745 | +| Epoch_4_batch_5999.pt | 0.8091666666666667 | 0.00833796167766868 | +| Epoch_6_batch_5999.pt | 0.8089999999999999 | 0.008043861243439225 | +| Epoch_8.pt | 0.8075000000000001 | 0.008492007862152758 | +| Epoch_5_batch_2999.pt | 0.8068333333333333 | 0.007959969290839706 | +| Epoch_3_batch_2999.pt | 0.8038333333333334 | 0.007536126981184914 | +| Epoch_6_batch_2999.pt | 0.8035 | 0.006006426599387289 | +| Epoch_5_batch_5999.pt | 0.8033333333333333 | 0.007286042804780001 | +| Epoch_4.pt | 0.8024999999999999 | 0.00613756898832264 | +| Epoch_5.pt | 0.8019999999999999 | 0.007302122133621225 | +| Epoch_6.pt | 0.8015000000000001 | 0.008271809929282278 | +| Epoch_3_batch_5999.pt | 0.7991666666666667 | 0.005922597444857044 | +| Epoch_2.pt | 0.7988333333333333 | 0.007218161251444289 | +| Epoch_3.pt | 0.7986666666666666 | 0.006299127903581504 | +| Epoch_2_batch_5999.pt | 0.7965 | 0.007834909218946686 | +| Epoch_1_batch_5999.pt | 0.7875 | 0.006881940940687528 | +| Epoch_2_batch_2999.pt | 0.7836666666666667 | 0.007824463062870338 | +| Epoch_1.pt | 0.7651666666666668 | 0.00775970121608835 | +| Epoch_1_batch_2999.pt | 0.7588333333333332 | 0.005895436611439915 | +| Epoch_0.pt | 0.7324999999999999 | 0.010491766319063114 | +| Epoch_0_batch_5999.pt | 0.726 | 0.00955232503531192 | +| Epoch_0_batch_2999.pt | 0.6325000000000001 | 0.009972957261675687 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ReXNet_1/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/backbones/ReXNet_1/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..75f22e0200e6973523c01943e74e4bc663bda56d --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ReXNet_1/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_2999.pt | 0.9964999999999999 | 0.0008766518798921926 | +| Epoch_15_batch_5999.pt | 0.9964999999999999 | 0.0009444444444444436 | +| Epoch_17.pt | 0.9964999999999999 | 0.0009444444444444436 | +| Epoch_11_batch_5999.pt | 0.9963333333333333 | 0.000922958206990897 | +| Epoch_13_batch_5999.pt | 0.9963333333333333 | 0.0009229582069908971 | +| Epoch_17_batch_2999.pt | 0.9963333333333333 | 0.000922958206990897 | +| Epoch_10_batch_5999.pt | 0.9959999999999999 | 0.0009362388636862643 | +| Epoch_11.pt | 0.9959999999999999 | 0.0010599324460188312 | +| Epoch_12_batch_2999.pt | 0.9959999999999999 | 0.0010304020550550763 | +| Epoch_12_batch_5999.pt | 0.9959999999999999 | 0.0010000000000000022 | +| Epoch_14_batch_5999.pt | 0.9959999999999999 | 0.0009026709338484409 | +| Epoch_17_batch_5999.pt | 0.9959999999999999 | 0.0009026709338484409 | +| Epoch_16.pt | 0.9958333333333333 | 0.0010318986456114817 | +| Epoch_14.pt | 0.9956666666666667 | 0.0010304020550550804 | +| Epoch_15_batch_2999.pt | 0.9956666666666667 | 0.0010599324460188332 | +| Epoch_16_batch_2999.pt | 0.9956666666666667 | 0.001143958904554112 | +| Epoch_16_batch_5999.pt | 0.9956666666666667 | 0.0010599324460188332 | +| Epoch_10.pt | 0.9956666666666665 | 0.001143958904554112 | +| Epoch_11_batch_2999.pt | 0.9956666666666665 | 0.0010886621079036361 | +| Epoch_14_batch_2999.pt | 0.9955 | 0.0009312808119022318 | +| Epoch_15.pt | 0.9955 | 0.0010258991840344167 | +| Epoch_12.pt | 0.9954999999999998 | 0.0010844011831079516 | +| Epoch_10_batch_2999.pt | 0.9953333333333333 | 0.0009558139185602972 | +| Epoch_9_batch_2999.pt | 0.9951666666666668 | 0.0009765775461803873 | +| Epoch_6_batch_5999.pt | 0.9951666666666666 | 0.0011235415786753737 | +| Epoch_8_batch_5999.pt | 0.9951666666666666 | 0.0012031337682059829 | +| Epoch_13.pt | 0.9950000000000001 | 0.001290994448735802 | +| Epoch_5_batch_5999.pt | 0.9949999999999999 | 0.001024393828588094 | +| Epoch_7_batch_5999.pt | 0.9946666666666667 | 0.0009558139185602963 | +| Epoch_9_batch_5999.pt | 0.9945000000000002 | 0.0011666666666666696 | +| Epoch_8.pt | 0.9945 | 0.0009953596037316037 | +| Epoch_4_batch_5999.pt | 0.9943333333333333 | 0.0007535922203472535 | +| Epoch_4.pt | 0.9943333333333333 | 0.0011706281947614185 | +| Epoch_7.pt | 0.9943333333333332 | 0.001515353521887323 | +| Epoch_3_batch_2999.pt | 0.9941666666666666 | 0.0011453071182271274 | +| Epoch_7_batch_2999.pt | 0.9941666666666664 | 0.001001542020962221 | +| Epoch_3_batch_5999.pt | 0.9940000000000001 | 0.001295767087743398 | +| Epoch_6_batch_2999.pt | 0.994 | 0.001143958904554111 | +| Epoch_5.pt | 0.9938333333333332 | 0.0011399046960379573 | +| Epoch_6.pt | 0.9935 | 0.0010957268290731142 | +| Epoch_8_batch_2999.pt | 0.9935 | 0.0010957268290731142 | +| Epoch_5_batch_2999.pt | 0.9934999999999998 | 0.0009444444444444439 | +| Epoch_4_batch_2999.pt | 0.993 | 0.0010482201257840634 | +| Epoch_9.pt | 0.993 | 0.0011863420280034786 | +| Epoch_2_batch_2999.pt | 0.9928333333333332 | 0.0011124991330278184 | +| Epoch_3.pt | 0.9928333333333332 | 0.0016111111111111122 | +| Epoch_2_batch_5999.pt | 0.9926666666666666 | 0.0011706281947614146 | +| Epoch_1_batch_5999.pt | 0.9918333333333335 | 0.0019317042945237479 | +| Epoch_1.pt | 0.9913333333333334 | 0.0010772621905369556 | +| Epoch_2.pt | 0.9908333333333333 | 0.0013888888888888935 | +| Epoch_1_batch_2999.pt | 0.9868333333333332 | 0.0013482956777235134 | +| Epoch_0_batch_5999.pt | 0.9765 | 0.001979057014506314 | +| Epoch_0.pt | 0.976 | 0.0017950549357114982 | +| Epoch_0_batch_2999.pt | 0.9386666666666666 | 0.004653420353638203 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ReXNet_1/accu_files/accu_megaface.txt b/bob/bio/facexzoo/models/backbones/ReXNet_1/accu_files/accu_megaface.txt new file mode 100644 index 0000000000000000000000000000000000000000..caecfb0058691100f4bfec7ac0a101239e894428 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ReXNet_1/accu_files/accu_megaface.txt @@ -0,0 +1,14 @@ ++------+--------------------+ +| rank | accuracy | ++------+--------------------+ +| 1 | 0.9316817891872893 | +| 2 | 0.9479932827368942 | +| 3 | 0.954515276566385 | +| 4 | 0.9583750992618821 | +| 5 | 0.9611544319616752 | +| 6 | 0.9630615618938516 | +| 7 | 0.9649296379707617 | +| 8 | 0.9661923792910424 | +| 9 | 0.9673835218766679 | +| 10 | 0.968392413137717 | ++------+--------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ReXNet_1/log.log b/bob/bio/facexzoo/models/backbones/ReXNet_1/log.log new file mode 100644 index 0000000000000000000000000000000000000000..b8ae09dbdd9fbe23a87977295bff816022e11c27 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ReXNet_1/log.log @@ -0,0 +1,655 @@ +INFO 2021-03-18 11:39:26 train.py: 176] Start optimization. +INFO 2021-03-18 11:39:26 train.py: 177] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='ReXNet', batch_size=512, data_root='/export/home/wangjun492/wj_data/faceX-Zoo/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='MV-Softmax', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='mv-rexnet', train_file='/export/home/wangjun492/wj_data/faceX-Zoo/deepglint/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7f346e0b2198>) +backbone param: +{'input_ch': 16, 'final_ch': 180, 'width_mult': 1.0, 'depth_mult': 1.0, 'use_se': 0, 'se_ratio': 12, 'out_h': 7, 'out_w': 7, 'feat_dim': 512, 'dropout_ratio': 0.2} +head param: +{'feat_dim': 512, 'num_class': 360232, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +INFO 2021-03-18 11:40:12 train.py: 78] Epoch 0, iter 0/6416, lr 0.100000, loss 17.872231 +INFO 2021-03-18 11:52:14 train.py: 78] Epoch 0, iter 200/6416, lr 0.100000, loss 17.330293 +INFO 2021-03-18 12:01:20 train.py: 78] Epoch 0, iter 400/6416, lr 0.100000, loss 16.307696 +INFO 2021-03-18 12:09:15 train.py: 78] Epoch 0, iter 600/6416, lr 0.100000, loss 15.892715 +INFO 2021-03-18 12:16:20 train.py: 78] Epoch 0, iter 800/6416, lr 0.100000, loss 15.584927 +INFO 2021-03-18 12:23:23 train.py: 78] Epoch 0, iter 1000/6416, lr 0.100000, loss 15.252976 +INFO 2021-03-18 12:30:58 train.py: 78] Epoch 0, iter 1200/6416, lr 0.100000, loss 14.878432 +INFO 2021-03-18 12:37:59 train.py: 78] Epoch 0, iter 1400/6416, lr 0.100000, loss 14.490505 +INFO 2021-03-18 12:45:01 train.py: 78] Epoch 0, iter 1600/6416, lr 0.100000, loss 14.062121 +INFO 2021-03-18 12:52:13 train.py: 78] Epoch 0, iter 1800/6416, lr 0.100000, loss 13.671984 +INFO 2021-03-18 12:59:31 train.py: 78] Epoch 0, iter 2000/6416, lr 0.100000, loss 13.298539 +INFO 2021-03-18 13:06:15 train.py: 78] Epoch 0, iter 2200/6416, lr 0.100000, loss 12.974956 +INFO 2021-03-18 13:13:22 train.py: 78] Epoch 0, iter 2400/6416, lr 0.100000, loss 12.781531 +INFO 2021-03-18 13:20:10 train.py: 78] Epoch 0, iter 2600/6416, lr 0.100000, loss 12.746571 +INFO 2021-03-18 13:27:18 train.py: 78] Epoch 0, iter 2800/6416, lr 0.100000, loss 12.873792 +INFO 2021-03-18 13:33:50 train.py: 91] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2021-03-18 13:33:52 train.py: 78] Epoch 0, iter 3000/6416, lr 0.100000, loss 13.168525 +INFO 2021-03-18 13:40:36 train.py: 78] Epoch 0, iter 3200/6416, lr 0.100000, loss 13.498302 +INFO 2021-03-18 13:47:26 train.py: 78] Epoch 0, iter 3400/6416, lr 0.100000, loss 13.925669 +INFO 2021-03-18 13:54:27 train.py: 78] Epoch 0, iter 3600/6416, lr 0.100000, loss 14.302528 +INFO 2021-03-18 14:02:03 train.py: 78] Epoch 0, iter 3800/6416, lr 0.100000, loss 14.625612 +INFO 2021-03-18 14:08:35 train.py: 78] Epoch 0, iter 4000/6416, lr 0.100000, loss 14.907151 +INFO 2021-03-18 14:15:22 train.py: 78] Epoch 0, iter 4200/6416, lr 0.100000, loss 15.126410 +INFO 2021-03-18 14:22:07 train.py: 78] Epoch 0, iter 4400/6416, lr 0.100000, loss 15.264146 +INFO 2021-03-18 14:28:41 train.py: 78] Epoch 0, iter 4600/6416, lr 0.100000, loss 15.343200 +INFO 2021-03-18 14:35:23 train.py: 78] Epoch 0, iter 4800/6416, lr 0.100000, loss 15.363958 +INFO 2021-03-18 14:41:51 train.py: 78] Epoch 0, iter 5000/6416, lr 0.100000, loss 15.306645 +INFO 2021-03-18 14:48:22 train.py: 78] Epoch 0, iter 5200/6416, lr 0.100000, loss 15.231745 +INFO 2021-03-18 14:54:53 train.py: 78] Epoch 0, iter 5400/6416, lr 0.100000, loss 15.087625 +INFO 2021-03-18 15:01:30 train.py: 78] Epoch 0, iter 5600/6416, lr 0.100000, loss 14.953604 +INFO 2021-03-18 15:08:05 train.py: 78] Epoch 0, iter 5800/6416, lr 0.100000, loss 14.763418 +INFO 2021-03-18 15:14:32 train.py: 91] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2021-03-18 15:14:33 train.py: 78] Epoch 0, iter 6000/6416, lr 0.100000, loss 14.569331 +INFO 2021-03-18 15:21:25 train.py: 78] Epoch 0, iter 6200/6416, lr 0.100000, loss 14.341868 +INFO 2021-03-18 15:27:53 train.py: 78] Epoch 0, iter 6400/6416, lr 0.100000, loss 14.107172 +INFO 2021-03-18 15:28:21 train.py: 96] Save checkpoint Epoch_0.pt to disk... +INFO 2021-03-18 15:28:24 train.py: 78] Epoch 1, iter 0/6416, lr 0.100000, loss 13.995048 +INFO 2021-03-18 15:32:21 train.py: 78] Epoch 1, iter 200/6416, lr 0.100000, loss 13.674845 +INFO 2021-03-18 15:36:17 train.py: 78] Epoch 1, iter 400/6416, lr 0.100000, loss 13.393356 +INFO 2021-03-18 15:40:14 train.py: 78] Epoch 1, iter 600/6416, lr 0.100000, loss 13.224054 +INFO 2021-03-18 15:44:10 train.py: 78] Epoch 1, iter 800/6416, lr 0.100000, loss 13.035218 +INFO 2021-03-18 15:48:07 train.py: 78] Epoch 1, iter 1000/6416, lr 0.100000, loss 12.846864 +INFO 2021-03-18 15:52:03 train.py: 78] Epoch 1, iter 1200/6416, lr 0.100000, loss 12.629327 +INFO 2021-03-18 15:55:59 train.py: 78] Epoch 1, iter 1400/6416, lr 0.100000, loss 12.444055 +INFO 2021-03-18 15:59:55 train.py: 78] Epoch 1, iter 1600/6416, lr 0.100000, loss 12.247348 +INFO 2021-03-18 16:03:50 train.py: 78] Epoch 1, iter 1800/6416, lr 0.100000, loss 12.076169 +INFO 2021-03-18 16:07:46 train.py: 78] Epoch 1, iter 2000/6416, lr 0.100000, loss 11.897474 +INFO 2021-03-18 16:11:42 train.py: 78] Epoch 1, iter 2200/6416, lr 0.100000, loss 11.723761 +INFO 2021-03-18 16:15:37 train.py: 78] Epoch 1, iter 2400/6416, lr 0.100000, loss 11.576442 +INFO 2021-03-18 16:19:33 train.py: 78] Epoch 1, iter 2600/6416, lr 0.100000, loss 11.432501 +INFO 2021-03-18 16:23:28 train.py: 78] Epoch 1, iter 2800/6416, lr 0.100000, loss 11.260628 +INFO 2021-03-18 16:27:24 train.py: 91] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2021-03-18 16:27:25 train.py: 78] Epoch 1, iter 3000/6416, lr 0.100000, loss 11.128048 +INFO 2021-03-18 16:31:20 train.py: 78] Epoch 1, iter 3200/6416, lr 0.100000, loss 10.988125 +INFO 2021-03-18 16:35:16 train.py: 78] Epoch 1, iter 3400/6416, lr 0.100000, loss 10.874905 +INFO 2021-03-18 16:39:11 train.py: 78] Epoch 1, iter 3600/6416, lr 0.100000, loss 10.751579 +INFO 2021-03-18 16:43:06 train.py: 78] Epoch 1, iter 3800/6416, lr 0.100000, loss 10.639918 +INFO 2021-03-18 16:47:02 train.py: 78] Epoch 1, iter 4000/6416, lr 0.100000, loss 10.527626 +INFO 2021-03-18 16:50:57 train.py: 78] Epoch 1, iter 4200/6416, lr 0.100000, loss 10.454046 +INFO 2021-03-18 16:54:52 train.py: 78] Epoch 1, iter 4400/6416, lr 0.100000, loss 10.343908 +INFO 2021-03-18 16:58:48 train.py: 78] Epoch 1, iter 4600/6416, lr 0.100000, loss 10.226095 +INFO 2021-03-18 17:02:43 train.py: 78] Epoch 1, iter 4800/6416, lr 0.100000, loss 10.154646 +INFO 2021-03-18 17:06:38 train.py: 78] Epoch 1, iter 5000/6416, lr 0.100000, loss 10.052671 +INFO 2021-03-18 17:10:33 train.py: 78] Epoch 1, iter 5200/6416, lr 0.100000, loss 9.942473 +INFO 2021-03-18 17:14:29 train.py: 78] Epoch 1, iter 5400/6416, lr 0.100000, loss 9.867441 +INFO 2021-03-18 17:18:24 train.py: 78] Epoch 1, iter 5600/6416, lr 0.100000, loss 9.797150 +INFO 2021-03-18 17:22:19 train.py: 78] Epoch 1, iter 5800/6416, lr 0.100000, loss 9.728185 +INFO 2021-03-18 17:26:14 train.py: 91] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2021-03-18 17:26:15 train.py: 78] Epoch 1, iter 6000/6416, lr 0.100000, loss 9.683334 +INFO 2021-03-18 17:30:10 train.py: 78] Epoch 1, iter 6200/6416, lr 0.100000, loss 9.602051 +INFO 2021-03-18 17:34:05 train.py: 78] Epoch 1, iter 6400/6416, lr 0.100000, loss 9.534742 +INFO 2021-03-18 17:34:24 train.py: 96] Save checkpoint Epoch_1.pt to disk... +INFO 2021-03-18 17:34:26 train.py: 78] Epoch 2, iter 0/6416, lr 0.100000, loss 9.490457 +INFO 2021-03-18 17:38:21 train.py: 78] Epoch 2, iter 200/6416, lr 0.100000, loss 8.940673 +INFO 2021-03-18 17:42:16 train.py: 78] Epoch 2, iter 400/6416, lr 0.100000, loss 8.956057 +INFO 2021-03-18 17:46:11 train.py: 78] Epoch 2, iter 600/6416, lr 0.100000, loss 8.996033 +INFO 2021-03-18 17:50:06 train.py: 78] Epoch 2, iter 800/6416, lr 0.100000, loss 9.022861 +INFO 2021-03-18 17:54:01 train.py: 78] Epoch 2, iter 1000/6416, lr 0.100000, loss 9.022265 +INFO 2021-03-18 17:57:56 train.py: 78] Epoch 2, iter 1200/6416, lr 0.100000, loss 9.001086 +INFO 2021-03-18 18:01:51 train.py: 78] Epoch 2, iter 1400/6416, lr 0.100000, loss 8.966400 +INFO 2021-03-18 18:05:46 train.py: 78] Epoch 2, iter 1600/6416, lr 0.100000, loss 8.965331 +INFO 2021-03-18 18:09:41 train.py: 78] Epoch 2, iter 1800/6416, lr 0.100000, loss 8.966231 +INFO 2021-03-18 18:13:36 train.py: 78] Epoch 2, iter 2000/6416, lr 0.100000, loss 8.892111 +INFO 2021-03-18 18:17:31 train.py: 78] Epoch 2, iter 2200/6416, lr 0.100000, loss 8.859752 +INFO 2021-03-18 18:21:26 train.py: 78] Epoch 2, iter 2400/6416, lr 0.100000, loss 8.835646 +INFO 2021-03-18 18:25:21 train.py: 78] Epoch 2, iter 2600/6416, lr 0.100000, loss 8.792579 +INFO 2021-03-18 18:29:16 train.py: 78] Epoch 2, iter 2800/6416, lr 0.100000, loss 8.774919 +INFO 2021-03-18 18:33:10 train.py: 91] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2021-03-18 18:33:12 train.py: 78] Epoch 2, iter 3000/6416, lr 0.100000, loss 8.719857 +INFO 2021-03-18 18:37:07 train.py: 78] Epoch 2, iter 3200/6416, lr 0.100000, loss 8.699471 +INFO 2021-03-18 18:41:02 train.py: 78] Epoch 2, iter 3400/6416, lr 0.100000, loss 8.645844 +INFO 2021-03-18 18:44:57 train.py: 78] Epoch 2, iter 3600/6416, lr 0.100000, loss 8.623665 +INFO 2021-03-18 18:48:52 train.py: 78] Epoch 2, iter 3800/6416, lr 0.100000, loss 8.595744 +INFO 2021-03-18 18:52:47 train.py: 78] Epoch 2, iter 4000/6416, lr 0.100000, loss 8.580572 +INFO 2021-03-18 18:56:42 train.py: 78] Epoch 2, iter 4200/6416, lr 0.100000, loss 8.537626 +INFO 2021-03-18 19:00:37 train.py: 78] Epoch 2, iter 4400/6416, lr 0.100000, loss 8.494640 +INFO 2021-03-18 19:04:32 train.py: 78] Epoch 2, iter 4600/6416, lr 0.100000, loss 8.476546 +INFO 2021-03-18 19:08:27 train.py: 78] Epoch 2, iter 4800/6416, lr 0.100000, loss 8.440517 +INFO 2021-03-18 19:12:22 train.py: 78] Epoch 2, iter 5000/6416, lr 0.100000, loss 8.398935 +INFO 2021-03-18 19:16:17 train.py: 78] Epoch 2, iter 5200/6416, lr 0.100000, loss 8.372356 +INFO 2021-03-18 19:20:12 train.py: 78] Epoch 2, iter 5400/6416, lr 0.100000, loss 8.310381 +INFO 2021-03-18 19:24:07 train.py: 78] Epoch 2, iter 5600/6416, lr 0.100000, loss 8.307603 +INFO 2021-03-18 19:28:02 train.py: 78] Epoch 2, iter 5800/6416, lr 0.100000, loss 8.299147 +INFO 2021-03-18 19:31:57 train.py: 91] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2021-03-18 19:31:58 train.py: 78] Epoch 2, iter 6000/6416, lr 0.100000, loss 8.296972 +INFO 2021-03-18 19:35:53 train.py: 78] Epoch 2, iter 6200/6416, lr 0.100000, loss 8.231998 +INFO 2021-03-18 19:39:48 train.py: 78] Epoch 2, iter 6400/6416, lr 0.100000, loss 8.213281 +INFO 2021-03-18 19:40:06 train.py: 96] Save checkpoint Epoch_2.pt to disk... +INFO 2021-03-18 19:40:09 train.py: 78] Epoch 3, iter 0/6416, lr 0.100000, loss 8.167140 +INFO 2021-03-18 19:44:04 train.py: 78] Epoch 3, iter 200/6416, lr 0.100000, loss 7.664231 +INFO 2021-03-18 19:47:58 train.py: 78] Epoch 3, iter 400/6416, lr 0.100000, loss 7.704569 +INFO 2021-03-18 19:51:53 train.py: 78] Epoch 3, iter 600/6416, lr 0.100000, loss 7.746656 +INFO 2021-03-18 19:55:48 train.py: 78] Epoch 3, iter 800/6416, lr 0.100000, loss 7.816969 +INFO 2021-03-18 19:59:43 train.py: 78] Epoch 3, iter 1000/6416, lr 0.100000, loss 7.838074 +INFO 2021-03-18 20:03:38 train.py: 78] Epoch 3, iter 1200/6416, lr 0.100000, loss 7.895765 +INFO 2021-03-18 20:07:32 train.py: 78] Epoch 3, iter 1400/6416, lr 0.100000, loss 7.918070 +INFO 2021-03-18 20:11:27 train.py: 78] Epoch 3, iter 1600/6416, lr 0.100000, loss 7.914514 +INFO 2021-03-18 20:15:22 train.py: 78] Epoch 3, iter 1800/6416, lr 0.100000, loss 7.889445 +INFO 2021-03-18 20:19:17 train.py: 78] Epoch 3, iter 2000/6416, lr 0.100000, loss 7.896461 +INFO 2021-03-18 20:23:12 train.py: 78] Epoch 3, iter 2200/6416, lr 0.100000, loss 7.905736 +INFO 2021-03-18 20:27:07 train.py: 78] Epoch 3, iter 2400/6416, lr 0.100000, loss 7.851352 +INFO 2021-03-18 20:31:02 train.py: 78] Epoch 3, iter 2600/6416, lr 0.100000, loss 7.853050 +INFO 2021-03-18 20:34:57 train.py: 78] Epoch 3, iter 2800/6416, lr 0.100000, loss 7.843649 +INFO 2021-03-18 20:38:51 train.py: 91] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2021-03-18 20:38:53 train.py: 78] Epoch 3, iter 3000/6416, lr 0.100000, loss 7.829684 +INFO 2021-03-18 20:42:48 train.py: 78] Epoch 3, iter 3200/6416, lr 0.100000, loss 7.818173 +INFO 2021-03-18 20:46:42 train.py: 78] Epoch 3, iter 3400/6416, lr 0.100000, loss 7.805731 +INFO 2021-03-18 20:50:37 train.py: 78] Epoch 3, iter 3600/6416, lr 0.100000, loss 7.795118 +INFO 2021-03-18 20:54:32 train.py: 78] Epoch 3, iter 3800/6416, lr 0.100000, loss 7.778923 +INFO 2021-03-18 20:58:27 train.py: 78] Epoch 3, iter 4000/6416, lr 0.100000, loss 7.767253 +INFO 2021-03-18 21:02:22 train.py: 78] Epoch 3, iter 4200/6416, lr 0.100000, loss 7.701257 +INFO 2021-03-18 21:06:17 train.py: 78] Epoch 3, iter 4400/6416, lr 0.100000, loss 7.735630 +INFO 2021-03-18 21:10:12 train.py: 78] Epoch 3, iter 4600/6416, lr 0.100000, loss 7.724208 +INFO 2021-03-18 21:14:07 train.py: 78] Epoch 3, iter 4800/6416, lr 0.100000, loss 7.650901 +INFO 2021-03-18 21:18:02 train.py: 78] Epoch 3, iter 5000/6416, lr 0.100000, loss 7.685625 +INFO 2021-03-18 21:21:57 train.py: 78] Epoch 3, iter 5200/6416, lr 0.100000, loss 7.654489 +INFO 2021-03-18 21:25:52 train.py: 78] Epoch 3, iter 5400/6416, lr 0.100000, loss 7.639582 +INFO 2021-03-18 21:29:47 train.py: 78] Epoch 3, iter 5600/6416, lr 0.100000, loss 7.627606 +INFO 2021-03-18 21:33:42 train.py: 78] Epoch 3, iter 5800/6416, lr 0.100000, loss 7.633270 +INFO 2021-03-18 21:37:36 train.py: 91] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2021-03-18 21:37:37 train.py: 78] Epoch 3, iter 6000/6416, lr 0.100000, loss 7.614877 +INFO 2021-03-18 21:41:32 train.py: 78] Epoch 3, iter 6200/6416, lr 0.100000, loss 7.603628 +INFO 2021-03-18 21:45:27 train.py: 78] Epoch 3, iter 6400/6416, lr 0.100000, loss 7.583062 +INFO 2021-03-18 21:45:45 train.py: 96] Save checkpoint Epoch_3.pt to disk... +INFO 2021-03-18 21:45:48 train.py: 78] Epoch 4, iter 0/6416, lr 0.100000, loss 7.698452 +INFO 2021-03-18 21:49:42 train.py: 78] Epoch 4, iter 200/6416, lr 0.100000, loss 7.083843 +INFO 2021-03-18 21:53:37 train.py: 78] Epoch 4, iter 400/6416, lr 0.100000, loss 7.060181 +INFO 2021-03-18 21:57:32 train.py: 78] Epoch 4, iter 600/6416, lr 0.100000, loss 7.098379 +INFO 2021-03-18 22:01:26 train.py: 78] Epoch 4, iter 800/6416, lr 0.100000, loss 7.210135 +INFO 2021-03-18 22:05:21 train.py: 78] Epoch 4, iter 1000/6416, lr 0.100000, loss 7.270411 +INFO 2021-03-18 22:09:16 train.py: 78] Epoch 4, iter 1200/6416, lr 0.100000, loss 7.281436 +INFO 2021-03-18 22:13:11 train.py: 78] Epoch 4, iter 1400/6416, lr 0.100000, loss 7.315881 +INFO 2021-03-18 22:17:06 train.py: 78] Epoch 4, iter 1600/6416, lr 0.100000, loss 7.334917 +INFO 2021-03-18 22:21:00 train.py: 78] Epoch 4, iter 1800/6416, lr 0.100000, loss 7.330238 +INFO 2021-03-18 22:24:55 train.py: 78] Epoch 4, iter 2000/6416, lr 0.100000, loss 7.331642 +INFO 2021-03-18 22:28:50 train.py: 78] Epoch 4, iter 2200/6416, lr 0.100000, loss 7.333812 +INFO 2021-03-18 22:32:45 train.py: 78] Epoch 4, iter 2400/6416, lr 0.100000, loss 7.326923 +INFO 2021-03-18 22:36:40 train.py: 78] Epoch 4, iter 2600/6416, lr 0.100000, loss 7.342534 +INFO 2021-03-18 22:40:35 train.py: 78] Epoch 4, iter 2800/6416, lr 0.100000, loss 7.337175 +INFO 2021-03-18 22:44:29 train.py: 91] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2021-03-18 22:44:30 train.py: 78] Epoch 4, iter 3000/6416, lr 0.100000, loss 7.328304 +INFO 2021-03-18 22:48:25 train.py: 78] Epoch 4, iter 3200/6416, lr 0.100000, loss 7.337928 +INFO 2021-03-18 22:52:20 train.py: 78] Epoch 4, iter 3400/6416, lr 0.100000, loss 7.301091 +INFO 2021-03-18 22:56:15 train.py: 78] Epoch 4, iter 3600/6416, lr 0.100000, loss 7.319077 +INFO 2021-03-18 23:00:10 train.py: 78] Epoch 4, iter 3800/6416, lr 0.100000, loss 7.280443 +INFO 2021-03-18 23:04:05 train.py: 78] Epoch 4, iter 4000/6416, lr 0.100000, loss 7.249261 +INFO 2021-03-18 23:08:00 train.py: 78] Epoch 4, iter 4200/6416, lr 0.100000, loss 7.292250 +INFO 2021-03-18 23:11:54 train.py: 78] Epoch 4, iter 4400/6416, lr 0.100000, loss 7.262050 +INFO 2021-03-18 23:15:49 train.py: 78] Epoch 4, iter 4600/6416, lr 0.100000, loss 7.279816 +INFO 2021-03-18 23:19:44 train.py: 78] Epoch 4, iter 4800/6416, lr 0.100000, loss 7.253316 +INFO 2021-03-18 23:23:39 train.py: 78] Epoch 4, iter 5000/6416, lr 0.100000, loss 7.232114 +INFO 2021-03-18 23:27:34 train.py: 78] Epoch 4, iter 5200/6416, lr 0.100000, loss 7.211947 +INFO 2021-03-18 23:31:29 train.py: 78] Epoch 4, iter 5400/6416, lr 0.100000, loss 7.227394 +INFO 2021-03-18 23:35:23 train.py: 78] Epoch 4, iter 5600/6416, lr 0.100000, loss 7.235565 +INFO 2021-03-18 23:39:18 train.py: 78] Epoch 4, iter 5800/6416, lr 0.100000, loss 7.165600 +INFO 2021-03-18 23:43:13 train.py: 91] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2021-03-18 23:43:14 train.py: 78] Epoch 4, iter 6000/6416, lr 0.100000, loss 7.185674 +INFO 2021-03-18 23:47:09 train.py: 78] Epoch 4, iter 6200/6416, lr 0.100000, loss 7.184557 +INFO 2021-03-18 23:51:04 train.py: 78] Epoch 4, iter 6400/6416, lr 0.100000, loss 7.185744 +INFO 2021-03-18 23:51:22 train.py: 96] Save checkpoint Epoch_4.pt to disk... +INFO 2021-03-18 23:51:25 train.py: 78] Epoch 5, iter 0/6416, lr 0.100000, loss 7.265677 +INFO 2021-03-18 23:55:19 train.py: 78] Epoch 5, iter 200/6416, lr 0.100000, loss 6.615274 +INFO 2021-03-18 23:59:14 train.py: 78] Epoch 5, iter 400/6416, lr 0.100000, loss 6.651365 +INFO 2021-03-19 00:03:08 train.py: 78] Epoch 5, iter 600/6416, lr 0.100000, loss 6.788537 +INFO 2021-03-19 00:07:03 train.py: 78] Epoch 5, iter 800/6416, lr 0.100000, loss 6.810198 +INFO 2021-03-19 00:10:58 train.py: 78] Epoch 5, iter 1000/6416, lr 0.100000, loss 6.833654 +INFO 2021-03-19 00:14:52 train.py: 78] Epoch 5, iter 1200/6416, lr 0.100000, loss 6.886417 +INFO 2021-03-19 00:18:47 train.py: 78] Epoch 5, iter 1400/6416, lr 0.100000, loss 6.952357 +INFO 2021-03-19 00:22:42 train.py: 78] Epoch 5, iter 1600/6416, lr 0.100000, loss 6.914136 +INFO 2021-03-19 00:26:37 train.py: 78] Epoch 5, iter 1800/6416, lr 0.100000, loss 6.959671 +INFO 2021-03-19 00:30:31 train.py: 78] Epoch 5, iter 2000/6416, lr 0.100000, loss 6.963630 +INFO 2021-03-19 00:34:26 train.py: 78] Epoch 5, iter 2200/6416, lr 0.100000, loss 6.959732 +INFO 2021-03-19 00:38:21 train.py: 78] Epoch 5, iter 2400/6416, lr 0.100000, loss 7.016838 +INFO 2021-03-19 00:42:15 train.py: 78] Epoch 5, iter 2600/6416, lr 0.100000, loss 6.957831 +INFO 2021-03-19 00:46:10 train.py: 78] Epoch 5, iter 2800/6416, lr 0.100000, loss 6.989584 +INFO 2021-03-19 00:50:05 train.py: 91] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2021-03-19 00:50:06 train.py: 78] Epoch 5, iter 3000/6416, lr 0.100000, loss 6.970374 +INFO 2021-03-19 00:54:01 train.py: 78] Epoch 5, iter 3200/6416, lr 0.100000, loss 6.987554 +INFO 2021-03-19 00:57:55 train.py: 78] Epoch 5, iter 3400/6416, lr 0.100000, loss 6.962708 +INFO 2021-03-19 01:01:50 train.py: 78] Epoch 5, iter 3600/6416, lr 0.100000, loss 6.948819 +INFO 2021-03-19 01:05:45 train.py: 78] Epoch 5, iter 3800/6416, lr 0.100000, loss 6.970038 +INFO 2021-03-19 01:09:39 train.py: 78] Epoch 5, iter 4000/6416, lr 0.100000, loss 6.931672 +INFO 2021-03-19 01:13:34 train.py: 78] Epoch 5, iter 4200/6416, lr 0.100000, loss 6.949328 +INFO 2021-03-19 01:17:29 train.py: 78] Epoch 5, iter 4400/6416, lr 0.100000, loss 6.948502 +INFO 2021-03-19 01:21:23 train.py: 78] Epoch 5, iter 4600/6416, lr 0.100000, loss 6.941133 +INFO 2021-03-19 01:25:18 train.py: 78] Epoch 5, iter 4800/6416, lr 0.100000, loss 6.923984 +INFO 2021-03-19 01:29:13 train.py: 78] Epoch 5, iter 5000/6416, lr 0.100000, loss 6.932709 +INFO 2021-03-19 01:33:08 train.py: 78] Epoch 5, iter 5200/6416, lr 0.100000, loss 6.919337 +INFO 2021-03-19 01:37:02 train.py: 78] Epoch 5, iter 5400/6416, lr 0.100000, loss 6.885154 +INFO 2021-03-19 01:40:57 train.py: 78] Epoch 5, iter 5600/6416, lr 0.100000, loss 6.883781 +INFO 2021-03-19 01:44:52 train.py: 78] Epoch 5, iter 5800/6416, lr 0.100000, loss 6.885192 +INFO 2021-03-19 01:48:46 train.py: 91] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2021-03-19 01:48:48 train.py: 78] Epoch 5, iter 6000/6416, lr 0.100000, loss 6.893103 +INFO 2021-03-19 01:52:42 train.py: 78] Epoch 5, iter 6200/6416, lr 0.100000, loss 6.876412 +INFO 2021-03-19 01:56:37 train.py: 78] Epoch 5, iter 6400/6416, lr 0.100000, loss 6.848571 +INFO 2021-03-19 01:56:55 train.py: 96] Save checkpoint Epoch_5.pt to disk... +INFO 2021-03-19 01:56:57 train.py: 78] Epoch 6, iter 0/6416, lr 0.100000, loss 6.841245 +INFO 2021-03-19 02:00:52 train.py: 78] Epoch 6, iter 200/6416, lr 0.100000, loss 6.348651 +INFO 2021-03-19 02:04:46 train.py: 78] Epoch 6, iter 400/6416, lr 0.100000, loss 6.370475 +INFO 2021-03-19 02:08:41 train.py: 78] Epoch 6, iter 600/6416, lr 0.100000, loss 6.461171 +INFO 2021-03-19 02:12:36 train.py: 78] Epoch 6, iter 800/6416, lr 0.100000, loss 6.501721 +INFO 2021-03-19 02:16:30 train.py: 78] Epoch 6, iter 1000/6416, lr 0.100000, loss 6.552796 +INFO 2021-03-19 02:20:25 train.py: 78] Epoch 6, iter 1200/6416, lr 0.100000, loss 6.638028 +INFO 2021-03-19 02:24:19 train.py: 78] Epoch 6, iter 1400/6416, lr 0.100000, loss 6.676625 +INFO 2021-03-19 02:28:14 train.py: 78] Epoch 6, iter 1600/6416, lr 0.100000, loss 6.687038 +INFO 2021-03-19 02:32:09 train.py: 78] Epoch 6, iter 1800/6416, lr 0.100000, loss 6.689456 +INFO 2021-03-19 02:36:03 train.py: 78] Epoch 6, iter 2000/6416, lr 0.100000, loss 6.692840 +INFO 2021-03-19 02:39:58 train.py: 78] Epoch 6, iter 2200/6416, lr 0.100000, loss 6.733830 +INFO 2021-03-19 02:43:52 train.py: 78] Epoch 6, iter 2400/6416, lr 0.100000, loss 6.734686 +INFO 2021-03-19 02:47:47 train.py: 78] Epoch 6, iter 2600/6416, lr 0.100000, loss 6.711833 +INFO 2021-03-19 02:51:42 train.py: 78] Epoch 6, iter 2800/6416, lr 0.100000, loss 6.727327 +INFO 2021-03-19 02:55:36 train.py: 91] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2021-03-19 02:55:37 train.py: 78] Epoch 6, iter 3000/6416, lr 0.100000, loss 6.721668 +INFO 2021-03-19 02:59:32 train.py: 78] Epoch 6, iter 3200/6416, lr 0.100000, loss 6.744344 +INFO 2021-03-19 03:03:27 train.py: 78] Epoch 6, iter 3400/6416, lr 0.100000, loss 6.736803 +INFO 2021-03-19 03:07:21 train.py: 78] Epoch 6, iter 3600/6416, lr 0.100000, loss 6.695277 +INFO 2021-03-19 03:11:16 train.py: 78] Epoch 6, iter 3800/6416, lr 0.100000, loss 6.749279 +INFO 2021-03-19 03:15:10 train.py: 78] Epoch 6, iter 4000/6416, lr 0.100000, loss 6.743833 +INFO 2021-03-19 03:19:05 train.py: 78] Epoch 6, iter 4200/6416, lr 0.100000, loss 6.732289 +INFO 2021-03-19 03:23:00 train.py: 78] Epoch 6, iter 4400/6416, lr 0.100000, loss 6.690273 +INFO 2021-03-19 03:26:54 train.py: 78] Epoch 6, iter 4600/6416, lr 0.100000, loss 6.737407 +INFO 2021-03-19 03:30:49 train.py: 78] Epoch 6, iter 4800/6416, lr 0.100000, loss 6.706612 +INFO 2021-03-19 03:34:43 train.py: 78] Epoch 6, iter 5000/6416, lr 0.100000, loss 6.689826 +INFO 2021-03-19 03:38:38 train.py: 78] Epoch 6, iter 5200/6416, lr 0.100000, loss 6.689431 +INFO 2021-03-19 03:42:33 train.py: 78] Epoch 6, iter 5400/6416, lr 0.100000, loss 6.720154 +INFO 2021-03-19 03:46:27 train.py: 78] Epoch 6, iter 5600/6416, lr 0.100000, loss 6.671153 +INFO 2021-03-19 03:50:22 train.py: 78] Epoch 6, iter 5800/6416, lr 0.100000, loss 6.679764 +INFO 2021-03-19 03:54:17 train.py: 91] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2021-03-19 03:54:18 train.py: 78] Epoch 6, iter 6000/6416, lr 0.100000, loss 6.695298 +INFO 2021-03-19 03:58:12 train.py: 78] Epoch 6, iter 6200/6416, lr 0.100000, loss 6.662221 +INFO 2021-03-19 04:02:07 train.py: 78] Epoch 6, iter 6400/6416, lr 0.100000, loss 6.645985 +INFO 2021-03-19 04:02:25 train.py: 96] Save checkpoint Epoch_6.pt to disk... +INFO 2021-03-19 04:02:28 train.py: 78] Epoch 7, iter 0/6416, lr 0.100000, loss 6.651794 +INFO 2021-03-19 04:06:22 train.py: 78] Epoch 7, iter 200/6416, lr 0.100000, loss 6.115563 +INFO 2021-03-19 04:10:17 train.py: 78] Epoch 7, iter 400/6416, lr 0.100000, loss 6.167348 +INFO 2021-03-19 04:14:11 train.py: 78] Epoch 7, iter 600/6416, lr 0.100000, loss 6.246819 +INFO 2021-03-19 04:18:06 train.py: 78] Epoch 7, iter 800/6416, lr 0.100000, loss 6.333862 +INFO 2021-03-19 04:22:00 train.py: 78] Epoch 7, iter 1000/6416, lr 0.100000, loss 6.376914 +INFO 2021-03-19 04:25:55 train.py: 78] Epoch 7, iter 1200/6416, lr 0.100000, loss 6.412811 +INFO 2021-03-19 04:29:49 train.py: 78] Epoch 7, iter 1400/6416, lr 0.100000, loss 6.468878 +INFO 2021-03-19 04:33:44 train.py: 78] Epoch 7, iter 1600/6416, lr 0.100000, loss 6.478902 +INFO 2021-03-19 04:37:38 train.py: 78] Epoch 7, iter 1800/6416, lr 0.100000, loss 6.498023 +INFO 2021-03-19 04:41:33 train.py: 78] Epoch 7, iter 2000/6416, lr 0.100000, loss 6.543498 +INFO 2021-03-19 04:45:28 train.py: 78] Epoch 7, iter 2200/6416, lr 0.100000, loss 6.515108 +INFO 2021-03-19 04:49:22 train.py: 78] Epoch 7, iter 2400/6416, lr 0.100000, loss 6.505551 +INFO 2021-03-19 04:53:17 train.py: 78] Epoch 7, iter 2600/6416, lr 0.100000, loss 6.531743 +INFO 2021-03-19 04:57:11 train.py: 78] Epoch 7, iter 2800/6416, lr 0.100000, loss 6.546517 +INFO 2021-03-19 05:01:06 train.py: 91] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2021-03-19 05:01:07 train.py: 78] Epoch 7, iter 3000/6416, lr 0.100000, loss 6.559822 +INFO 2021-03-19 05:05:02 train.py: 78] Epoch 7, iter 3200/6416, lr 0.100000, loss 6.550284 +INFO 2021-03-19 05:08:56 train.py: 78] Epoch 7, iter 3400/6416, lr 0.100000, loss 6.514897 +INFO 2021-03-19 05:12:51 train.py: 78] Epoch 7, iter 3600/6416, lr 0.100000, loss 6.534035 +INFO 2021-03-19 05:16:45 train.py: 78] Epoch 7, iter 3800/6416, lr 0.100000, loss 6.569572 +INFO 2021-03-19 05:20:40 train.py: 78] Epoch 7, iter 4000/6416, lr 0.100000, loss 6.550297 +INFO 2021-03-19 05:24:35 train.py: 78] Epoch 7, iter 4200/6416, lr 0.100000, loss 6.536845 +INFO 2021-03-19 05:28:29 train.py: 78] Epoch 7, iter 4400/6416, lr 0.100000, loss 6.529620 +INFO 2021-03-19 05:32:24 train.py: 78] Epoch 7, iter 4600/6416, lr 0.100000, loss 6.505814 +INFO 2021-03-19 05:36:18 train.py: 78] Epoch 7, iter 4800/6416, lr 0.100000, loss 6.561263 +INFO 2021-03-19 05:40:13 train.py: 78] Epoch 7, iter 5000/6416, lr 0.100000, loss 6.532819 +INFO 2021-03-19 05:44:08 train.py: 78] Epoch 7, iter 5200/6416, lr 0.100000, loss 6.526186 +INFO 2021-03-19 05:48:02 train.py: 78] Epoch 7, iter 5400/6416, lr 0.100000, loss 6.530271 +INFO 2021-03-19 05:51:57 train.py: 78] Epoch 7, iter 5600/6416, lr 0.100000, loss 6.528420 +INFO 2021-03-19 05:55:52 train.py: 78] Epoch 7, iter 5800/6416, lr 0.100000, loss 6.534301 +INFO 2021-03-19 05:59:46 train.py: 91] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2021-03-19 05:59:47 train.py: 78] Epoch 7, iter 6000/6416, lr 0.100000, loss 6.497143 +INFO 2021-03-19 06:03:42 train.py: 78] Epoch 7, iter 6200/6416, lr 0.100000, loss 6.509710 +INFO 2021-03-19 06:07:37 train.py: 78] Epoch 7, iter 6400/6416, lr 0.100000, loss 6.506533 +INFO 2021-03-19 06:07:55 train.py: 96] Save checkpoint Epoch_7.pt to disk... +INFO 2021-03-19 06:07:58 train.py: 78] Epoch 8, iter 0/6416, lr 0.100000, loss 6.506368 +INFO 2021-03-19 06:11:52 train.py: 78] Epoch 8, iter 200/6416, lr 0.100000, loss 5.978776 +INFO 2021-03-19 06:15:47 train.py: 78] Epoch 8, iter 400/6416, lr 0.100000, loss 6.018659 +INFO 2021-03-19 06:19:41 train.py: 78] Epoch 8, iter 600/6416, lr 0.100000, loss 6.092167 +INFO 2021-03-19 06:23:36 train.py: 78] Epoch 8, iter 800/6416, lr 0.100000, loss 6.187115 +INFO 2021-03-19 06:27:30 train.py: 78] Epoch 8, iter 1000/6416, lr 0.100000, loss 6.237979 +INFO 2021-03-19 06:31:25 train.py: 78] Epoch 8, iter 1200/6416, lr 0.100000, loss 6.290860 +INFO 2021-03-19 06:35:19 train.py: 78] Epoch 8, iter 1400/6416, lr 0.100000, loss 6.340390 +INFO 2021-03-19 06:39:14 train.py: 78] Epoch 8, iter 1600/6416, lr 0.100000, loss 6.336167 +INFO 2021-03-19 06:43:08 train.py: 78] Epoch 8, iter 1800/6416, lr 0.100000, loss 6.347223 +INFO 2021-03-19 06:47:03 train.py: 78] Epoch 8, iter 2000/6416, lr 0.100000, loss 6.363110 +INFO 2021-03-19 06:50:57 train.py: 78] Epoch 8, iter 2200/6416, lr 0.100000, loss 6.362799 +INFO 2021-03-19 06:54:52 train.py: 78] Epoch 8, iter 2400/6416, lr 0.100000, loss 6.425506 +INFO 2021-03-19 06:58:46 train.py: 78] Epoch 8, iter 2600/6416, lr 0.100000, loss 6.402283 +INFO 2021-03-19 07:02:41 train.py: 78] Epoch 8, iter 2800/6416, lr 0.100000, loss 6.411157 +INFO 2021-03-19 07:06:36 train.py: 91] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2021-03-19 07:06:37 train.py: 78] Epoch 8, iter 3000/6416, lr 0.100000, loss 6.409878 +INFO 2021-03-19 07:10:31 train.py: 78] Epoch 8, iter 3200/6416, lr 0.100000, loss 6.386874 +INFO 2021-03-19 07:14:26 train.py: 78] Epoch 8, iter 3400/6416, lr 0.100000, loss 6.372492 +INFO 2021-03-19 07:18:21 train.py: 78] Epoch 8, iter 3600/6416, lr 0.100000, loss 6.398647 +INFO 2021-03-19 07:22:15 train.py: 78] Epoch 8, iter 3800/6416, lr 0.100000, loss 6.398147 +INFO 2021-03-19 07:26:10 train.py: 78] Epoch 8, iter 4000/6416, lr 0.100000, loss 6.405181 +INFO 2021-03-19 07:30:04 train.py: 78] Epoch 8, iter 4200/6416, lr 0.100000, loss 6.390733 +INFO 2021-03-19 07:33:59 train.py: 78] Epoch 8, iter 4400/6416, lr 0.100000, loss 6.378577 +INFO 2021-03-19 07:37:53 train.py: 78] Epoch 8, iter 4600/6416, lr 0.100000, loss 6.424184 +INFO 2021-03-19 07:41:48 train.py: 78] Epoch 8, iter 4800/6416, lr 0.100000, loss 6.366973 +INFO 2021-03-19 07:45:43 train.py: 78] Epoch 8, iter 5000/6416, lr 0.100000, loss 6.397382 +INFO 2021-03-19 07:49:37 train.py: 78] Epoch 8, iter 5200/6416, lr 0.100000, loss 6.421305 +INFO 2021-03-19 07:53:32 train.py: 78] Epoch 8, iter 5400/6416, lr 0.100000, loss 6.383141 +INFO 2021-03-19 07:57:26 train.py: 78] Epoch 8, iter 5600/6416, lr 0.100000, loss 6.399861 +INFO 2021-03-19 08:01:21 train.py: 78] Epoch 8, iter 5800/6416, lr 0.100000, loss 6.379353 +INFO 2021-03-19 08:05:16 train.py: 91] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2021-03-19 08:05:17 train.py: 78] Epoch 8, iter 6000/6416, lr 0.100000, loss 6.407344 +INFO 2021-03-19 08:09:11 train.py: 78] Epoch 8, iter 6200/6416, lr 0.100000, loss 6.344912 +INFO 2021-03-19 08:13:06 train.py: 78] Epoch 8, iter 6400/6416, lr 0.100000, loss 6.383652 +INFO 2021-03-19 08:13:24 train.py: 96] Save checkpoint Epoch_8.pt to disk... +INFO 2021-03-19 08:13:27 train.py: 78] Epoch 9, iter 0/6416, lr 0.100000, loss 6.358603 +INFO 2021-03-19 08:17:21 train.py: 78] Epoch 9, iter 200/6416, lr 0.100000, loss 5.887477 +INFO 2021-03-19 08:21:16 train.py: 78] Epoch 9, iter 400/6416, lr 0.100000, loss 5.904647 +INFO 2021-03-19 08:25:10 train.py: 78] Epoch 9, iter 600/6416, lr 0.100000, loss 5.980715 +INFO 2021-03-19 08:29:05 train.py: 78] Epoch 9, iter 800/6416, lr 0.100000, loss 6.070103 +INFO 2021-03-19 08:32:59 train.py: 78] Epoch 9, iter 1000/6416, lr 0.100000, loss 6.121906 +INFO 2021-03-19 08:36:54 train.py: 78] Epoch 9, iter 1200/6416, lr 0.100000, loss 6.163510 +INFO 2021-03-19 08:40:48 train.py: 78] Epoch 9, iter 1400/6416, lr 0.100000, loss 6.187649 +INFO 2021-03-19 08:44:43 train.py: 78] Epoch 9, iter 1600/6416, lr 0.100000, loss 6.237368 +INFO 2021-03-19 08:48:37 train.py: 78] Epoch 9, iter 1800/6416, lr 0.100000, loss 6.251701 +INFO 2021-03-19 08:52:32 train.py: 78] Epoch 9, iter 2000/6416, lr 0.100000, loss 6.246961 +INFO 2021-03-19 08:56:27 train.py: 78] Epoch 9, iter 2200/6416, lr 0.100000, loss 6.222371 +INFO 2021-03-19 09:00:21 train.py: 78] Epoch 9, iter 2400/6416, lr 0.100000, loss 6.266408 +INFO 2021-03-19 09:04:16 train.py: 78] Epoch 9, iter 2600/6416, lr 0.100000, loss 6.266867 +INFO 2021-03-19 09:08:10 train.py: 78] Epoch 9, iter 2800/6416, lr 0.100000, loss 6.306914 +INFO 2021-03-19 09:12:05 train.py: 91] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2021-03-19 09:12:06 train.py: 78] Epoch 9, iter 3000/6416, lr 0.100000, loss 6.305083 +INFO 2021-03-19 09:16:01 train.py: 78] Epoch 9, iter 3200/6416, lr 0.100000, loss 6.315077 +INFO 2021-03-19 09:19:55 train.py: 78] Epoch 9, iter 3400/6416, lr 0.100000, loss 6.299579 +INFO 2021-03-19 09:23:50 train.py: 78] Epoch 9, iter 3600/6416, lr 0.100000, loss 6.314183 +INFO 2021-03-19 09:27:44 train.py: 78] Epoch 9, iter 3800/6416, lr 0.100000, loss 6.289157 +INFO 2021-03-19 09:31:39 train.py: 78] Epoch 9, iter 4000/6416, lr 0.100000, loss 6.267283 +INFO 2021-03-19 09:35:34 train.py: 78] Epoch 9, iter 4200/6416, lr 0.100000, loss 6.293458 +INFO 2021-03-19 09:39:28 train.py: 78] Epoch 9, iter 4400/6416, lr 0.100000, loss 6.295358 +INFO 2021-03-19 09:43:23 train.py: 78] Epoch 9, iter 4600/6416, lr 0.100000, loss 6.290014 +INFO 2021-03-19 09:47:17 train.py: 78] Epoch 9, iter 4800/6416, lr 0.100000, loss 6.296590 +INFO 2021-03-19 09:51:12 train.py: 78] Epoch 9, iter 5000/6416, lr 0.100000, loss 6.309894 +INFO 2021-03-19 09:55:07 train.py: 78] Epoch 9, iter 5200/6416, lr 0.100000, loss 6.262912 +INFO 2021-03-19 09:59:01 train.py: 78] Epoch 9, iter 5400/6416, lr 0.100000, loss 6.285177 +INFO 2021-03-19 10:02:56 train.py: 78] Epoch 9, iter 5600/6416, lr 0.100000, loss 6.298389 +INFO 2021-03-19 10:06:50 train.py: 78] Epoch 9, iter 5800/6416, lr 0.100000, loss 6.303705 +INFO 2021-03-19 10:10:45 train.py: 91] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2021-03-19 10:10:46 train.py: 78] Epoch 9, iter 6000/6416, lr 0.100000, loss 6.300152 +INFO 2021-03-19 10:14:41 train.py: 78] Epoch 9, iter 6200/6416, lr 0.100000, loss 6.279227 +INFO 2021-03-19 10:18:36 train.py: 78] Epoch 9, iter 6400/6416, lr 0.100000, loss 6.283215 +INFO 2021-03-19 10:18:54 train.py: 96] Save checkpoint Epoch_9.pt to disk... +INFO 2021-03-19 10:18:56 train.py: 78] Epoch 10, iter 0/6416, lr 0.010000, loss 6.306887 +INFO 2021-03-19 10:22:51 train.py: 78] Epoch 10, iter 200/6416, lr 0.010000, loss 5.102814 +INFO 2021-03-19 10:26:45 train.py: 78] Epoch 10, iter 400/6416, lr 0.010000, loss 4.828291 +INFO 2021-03-19 10:30:39 train.py: 78] Epoch 10, iter 600/6416, lr 0.010000, loss 4.736236 +INFO 2021-03-19 10:34:34 train.py: 78] Epoch 10, iter 800/6416, lr 0.010000, loss 4.687695 +INFO 2021-03-19 10:38:28 train.py: 78] Epoch 10, iter 1000/6416, lr 0.010000, loss 4.635845 +INFO 2021-03-19 10:42:22 train.py: 78] Epoch 10, iter 1200/6416, lr 0.010000, loss 4.567644 +INFO 2021-03-19 10:46:16 train.py: 78] Epoch 10, iter 1400/6416, lr 0.010000, loss 4.536621 +INFO 2021-03-19 10:50:11 train.py: 78] Epoch 10, iter 1600/6416, lr 0.010000, loss 4.498202 +INFO 2021-03-19 10:54:05 train.py: 78] Epoch 10, iter 1800/6416, lr 0.010000, loss 4.469244 +INFO 2021-03-19 10:57:59 train.py: 78] Epoch 10, iter 2000/6416, lr 0.010000, loss 4.422997 +INFO 2021-03-19 11:01:54 train.py: 78] Epoch 10, iter 2200/6416, lr 0.010000, loss 4.400673 +INFO 2021-03-19 11:05:48 train.py: 78] Epoch 10, iter 2400/6416, lr 0.010000, loss 4.371461 +INFO 2021-03-19 11:09:42 train.py: 78] Epoch 10, iter 2600/6416, lr 0.010000, loss 4.347874 +INFO 2021-03-19 11:13:37 train.py: 78] Epoch 10, iter 2800/6416, lr 0.010000, loss 4.324255 +INFO 2021-03-19 11:17:31 train.py: 91] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2021-03-19 11:17:32 train.py: 78] Epoch 10, iter 3000/6416, lr 0.010000, loss 4.321841 +INFO 2021-03-19 11:21:26 train.py: 78] Epoch 10, iter 3200/6416, lr 0.010000, loss 4.306121 +INFO 2021-03-19 11:25:21 train.py: 78] Epoch 10, iter 3400/6416, lr 0.010000, loss 4.278456 +INFO 2021-03-19 11:29:15 train.py: 78] Epoch 10, iter 3600/6416, lr 0.010000, loss 4.242358 +INFO 2021-03-19 11:33:09 train.py: 78] Epoch 10, iter 3800/6416, lr 0.010000, loss 4.220599 +INFO 2021-03-19 11:37:03 train.py: 78] Epoch 10, iter 4000/6416, lr 0.010000, loss 4.201499 +INFO 2021-03-19 11:40:58 train.py: 78] Epoch 10, iter 4200/6416, lr 0.010000, loss 4.191400 +INFO 2021-03-19 11:44:52 train.py: 78] Epoch 10, iter 4400/6416, lr 0.010000, loss 4.176634 +INFO 2021-03-19 11:48:46 train.py: 78] Epoch 10, iter 4600/6416, lr 0.010000, loss 4.182758 +INFO 2021-03-19 11:52:41 train.py: 78] Epoch 10, iter 4800/6416, lr 0.010000, loss 4.156792 +INFO 2021-03-19 11:56:35 train.py: 78] Epoch 10, iter 5000/6416, lr 0.010000, loss 4.138895 +INFO 2021-03-19 12:00:29 train.py: 78] Epoch 10, iter 5200/6416, lr 0.010000, loss 4.141925 +INFO 2021-03-19 12:04:24 train.py: 78] Epoch 10, iter 5400/6416, lr 0.010000, loss 4.122506 +INFO 2021-03-19 12:08:18 train.py: 78] Epoch 10, iter 5600/6416, lr 0.010000, loss 4.109429 +INFO 2021-03-19 12:12:12 train.py: 78] Epoch 10, iter 5800/6416, lr 0.010000, loss 4.111880 +INFO 2021-03-19 12:16:06 train.py: 91] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2021-03-19 12:16:07 train.py: 78] Epoch 10, iter 6000/6416, lr 0.010000, loss 4.079940 +INFO 2021-03-19 12:20:02 train.py: 78] Epoch 10, iter 6200/6416, lr 0.010000, loss 4.060515 +INFO 2021-03-19 12:23:56 train.py: 78] Epoch 10, iter 6400/6416, lr 0.010000, loss 4.070621 +INFO 2021-03-19 12:24:14 train.py: 96] Save checkpoint Epoch_10.pt to disk... +INFO 2021-03-19 12:24:17 train.py: 78] Epoch 11, iter 0/6416, lr 0.010000, loss 4.059079 +INFO 2021-03-19 12:28:11 train.py: 78] Epoch 11, iter 200/6416, lr 0.010000, loss 3.739686 +INFO 2021-03-19 12:32:05 train.py: 78] Epoch 11, iter 400/6416, lr 0.010000, loss 3.740610 +INFO 2021-03-19 12:35:59 train.py: 78] Epoch 11, iter 600/6416, lr 0.010000, loss 3.729643 +INFO 2021-03-19 12:39:54 train.py: 78] Epoch 11, iter 800/6416, lr 0.010000, loss 3.723222 +INFO 2021-03-19 12:43:48 train.py: 78] Epoch 11, iter 1000/6416, lr 0.010000, loss 3.733978 +INFO 2021-03-19 12:47:42 train.py: 78] Epoch 11, iter 1200/6416, lr 0.010000, loss 3.747483 +INFO 2021-03-19 12:51:37 train.py: 78] Epoch 11, iter 1400/6416, lr 0.010000, loss 3.749420 +INFO 2021-03-19 12:55:31 train.py: 78] Epoch 11, iter 1600/6416, lr 0.010000, loss 3.729718 +INFO 2021-03-19 12:59:25 train.py: 78] Epoch 11, iter 1800/6416, lr 0.010000, loss 3.767851 +INFO 2021-03-19 13:03:19 train.py: 78] Epoch 11, iter 2000/6416, lr 0.010000, loss 3.753646 +INFO 2021-03-19 13:07:14 train.py: 78] Epoch 11, iter 2200/6416, lr 0.010000, loss 3.774915 +INFO 2021-03-19 13:11:08 train.py: 78] Epoch 11, iter 2400/6416, lr 0.010000, loss 3.765724 +INFO 2021-03-19 13:15:02 train.py: 78] Epoch 11, iter 2600/6416, lr 0.010000, loss 3.743829 +INFO 2021-03-19 13:18:57 train.py: 78] Epoch 11, iter 2800/6416, lr 0.010000, loss 3.740179 +INFO 2021-03-19 13:22:51 train.py: 91] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2021-03-19 13:22:52 train.py: 78] Epoch 11, iter 3000/6416, lr 0.010000, loss 3.741612 +INFO 2021-03-19 13:26:46 train.py: 78] Epoch 11, iter 3200/6416, lr 0.010000, loss 3.752897 +INFO 2021-03-19 13:30:40 train.py: 78] Epoch 11, iter 3400/6416, lr 0.010000, loss 3.741632 +INFO 2021-03-19 13:34:35 train.py: 78] Epoch 11, iter 3600/6416, lr 0.010000, loss 3.757295 +INFO 2021-03-19 13:38:29 train.py: 78] Epoch 11, iter 3800/6416, lr 0.010000, loss 3.761692 +INFO 2021-03-19 13:42:23 train.py: 78] Epoch 11, iter 4000/6416, lr 0.010000, loss 3.730823 +INFO 2021-03-19 13:46:18 train.py: 78] Epoch 11, iter 4200/6416, lr 0.010000, loss 3.735064 +INFO 2021-03-19 13:50:12 train.py: 78] Epoch 11, iter 4400/6416, lr 0.010000, loss 3.756033 +INFO 2021-03-19 13:54:06 train.py: 78] Epoch 11, iter 4600/6416, lr 0.010000, loss 3.765811 +INFO 2021-03-19 13:58:16 train.py: 78] Epoch 11, iter 4800/6416, lr 0.010000, loss 3.754437 +INFO 2021-03-19 14:02:27 train.py: 78] Epoch 11, iter 5000/6416, lr 0.010000, loss 3.749697 +INFO 2021-03-19 14:06:37 train.py: 78] Epoch 11, iter 5200/6416, lr 0.010000, loss 3.751701 +INFO 2021-03-19 14:10:32 train.py: 78] Epoch 11, iter 5400/6416, lr 0.010000, loss 3.737948 +INFO 2021-03-19 14:14:26 train.py: 78] Epoch 11, iter 5600/6416, lr 0.010000, loss 3.755978 +INFO 2021-03-19 14:18:20 train.py: 78] Epoch 11, iter 5800/6416, lr 0.010000, loss 3.796466 +INFO 2021-03-19 14:22:14 train.py: 91] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2021-03-19 14:22:15 train.py: 78] Epoch 11, iter 6000/6416, lr 0.010000, loss 3.760121 +INFO 2021-03-19 14:26:10 train.py: 78] Epoch 11, iter 6200/6416, lr 0.010000, loss 3.757607 +INFO 2021-03-19 14:30:04 train.py: 78] Epoch 11, iter 6400/6416, lr 0.010000, loss 3.758687 +INFO 2021-03-19 14:30:22 train.py: 96] Save checkpoint Epoch_11.pt to disk... +INFO 2021-03-19 14:30:25 train.py: 78] Epoch 12, iter 0/6416, lr 0.010000, loss 3.784179 +INFO 2021-03-19 14:34:19 train.py: 78] Epoch 12, iter 200/6416, lr 0.010000, loss 3.431424 +INFO 2021-03-19 14:38:13 train.py: 78] Epoch 12, iter 400/6416, lr 0.010000, loss 3.455622 +INFO 2021-03-19 14:42:08 train.py: 78] Epoch 12, iter 600/6416, lr 0.010000, loss 3.464733 +INFO 2021-03-19 14:46:02 train.py: 78] Epoch 12, iter 800/6416, lr 0.010000, loss 3.476458 +INFO 2021-03-19 14:49:56 train.py: 78] Epoch 12, iter 1000/6416, lr 0.010000, loss 3.457887 +INFO 2021-03-19 14:53:50 train.py: 78] Epoch 12, iter 1200/6416, lr 0.010000, loss 3.479228 +INFO 2021-03-19 14:57:44 train.py: 78] Epoch 12, iter 1400/6416, lr 0.010000, loss 3.492333 +INFO 2021-03-19 15:01:39 train.py: 78] Epoch 12, iter 1600/6416, lr 0.010000, loss 3.498967 +INFO 2021-03-19 15:05:33 train.py: 78] Epoch 12, iter 1800/6416, lr 0.010000, loss 3.533412 +INFO 2021-03-19 15:09:27 train.py: 78] Epoch 12, iter 2000/6416, lr 0.010000, loss 3.508884 +INFO 2021-03-19 15:13:22 train.py: 78] Epoch 12, iter 2200/6416, lr 0.010000, loss 3.538386 +INFO 2021-03-19 15:17:16 train.py: 78] Epoch 12, iter 2400/6416, lr 0.010000, loss 3.548407 +INFO 2021-03-19 15:21:10 train.py: 78] Epoch 12, iter 2600/6416, lr 0.010000, loss 3.561202 +INFO 2021-03-19 15:25:04 train.py: 78] Epoch 12, iter 2800/6416, lr 0.010000, loss 3.553840 +INFO 2021-03-19 15:28:59 train.py: 91] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2021-03-19 15:29:00 train.py: 78] Epoch 12, iter 3000/6416, lr 0.010000, loss 3.550627 +INFO 2021-03-19 15:32:54 train.py: 78] Epoch 12, iter 3200/6416, lr 0.010000, loss 3.560952 +INFO 2021-03-19 15:36:48 train.py: 78] Epoch 12, iter 3400/6416, lr 0.010000, loss 3.582431 +INFO 2021-03-19 15:40:43 train.py: 78] Epoch 12, iter 3600/6416, lr 0.010000, loss 3.597199 +INFO 2021-03-19 15:44:37 train.py: 78] Epoch 12, iter 3800/6416, lr 0.010000, loss 3.581864 +INFO 2021-03-19 15:48:31 train.py: 78] Epoch 12, iter 4000/6416, lr 0.010000, loss 3.574441 +INFO 2021-03-19 15:52:26 train.py: 78] Epoch 12, iter 4200/6416, lr 0.010000, loss 3.607729 +INFO 2021-03-19 15:56:20 train.py: 78] Epoch 12, iter 4400/6416, lr 0.010000, loss 3.621575 +INFO 2021-03-19 16:00:14 train.py: 78] Epoch 12, iter 4600/6416, lr 0.010000, loss 3.609787 +INFO 2021-03-19 16:04:08 train.py: 78] Epoch 12, iter 4800/6416, lr 0.010000, loss 3.636674 +INFO 2021-03-19 16:08:03 train.py: 78] Epoch 12, iter 5000/6416, lr 0.010000, loss 3.609125 +INFO 2021-03-19 16:11:57 train.py: 78] Epoch 12, iter 5200/6416, lr 0.010000, loss 3.610963 +INFO 2021-03-19 16:15:51 train.py: 78] Epoch 12, iter 5400/6416, lr 0.010000, loss 3.622922 +INFO 2021-03-19 16:19:45 train.py: 78] Epoch 12, iter 5600/6416, lr 0.010000, loss 3.618367 +INFO 2021-03-19 16:23:40 train.py: 78] Epoch 12, iter 5800/6416, lr 0.010000, loss 3.600346 +INFO 2021-03-19 16:27:34 train.py: 91] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2021-03-19 16:27:35 train.py: 78] Epoch 12, iter 6000/6416, lr 0.010000, loss 3.637814 +INFO 2021-03-19 16:31:29 train.py: 78] Epoch 12, iter 6200/6416, lr 0.010000, loss 3.666515 +INFO 2021-03-19 16:35:24 train.py: 78] Epoch 12, iter 6400/6416, lr 0.010000, loss 3.650005 +INFO 2021-03-19 16:35:42 train.py: 96] Save checkpoint Epoch_12.pt to disk... +INFO 2021-03-19 16:35:44 train.py: 78] Epoch 13, iter 0/6416, lr 0.001000, loss 3.629887 +INFO 2021-03-19 16:39:39 train.py: 78] Epoch 13, iter 200/6416, lr 0.001000, loss 3.229679 +INFO 2021-03-19 16:43:33 train.py: 78] Epoch 13, iter 400/6416, lr 0.001000, loss 3.187297 +INFO 2021-03-19 16:47:27 train.py: 78] Epoch 13, iter 600/6416, lr 0.001000, loss 3.196512 +INFO 2021-03-19 16:51:22 train.py: 78] Epoch 13, iter 800/6416, lr 0.001000, loss 3.208044 +INFO 2021-03-19 16:55:16 train.py: 78] Epoch 13, iter 1000/6416, lr 0.001000, loss 3.185062 +INFO 2021-03-19 16:59:10 train.py: 78] Epoch 13, iter 1200/6416, lr 0.001000, loss 3.181594 +INFO 2021-03-19 17:03:04 train.py: 78] Epoch 13, iter 1400/6416, lr 0.001000, loss 3.165161 +INFO 2021-03-19 17:06:59 train.py: 78] Epoch 13, iter 1600/6416, lr 0.001000, loss 3.188835 +INFO 2021-03-19 17:10:53 train.py: 78] Epoch 13, iter 1800/6416, lr 0.001000, loss 3.178862 +INFO 2021-03-19 17:14:47 train.py: 78] Epoch 13, iter 2000/6416, lr 0.001000, loss 3.177287 +INFO 2021-03-19 17:18:41 train.py: 78] Epoch 13, iter 2200/6416, lr 0.001000, loss 3.165604 +INFO 2021-03-19 17:22:36 train.py: 78] Epoch 13, iter 2400/6416, lr 0.001000, loss 3.169563 +INFO 2021-03-19 17:26:30 train.py: 78] Epoch 13, iter 2600/6416, lr 0.001000, loss 3.193548 +INFO 2021-03-19 17:30:24 train.py: 78] Epoch 13, iter 2800/6416, lr 0.001000, loss 3.155197 +INFO 2021-03-19 17:34:18 train.py: 91] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2021-03-19 17:34:19 train.py: 78] Epoch 13, iter 3000/6416, lr 0.001000, loss 3.176681 +INFO 2021-03-19 17:38:14 train.py: 78] Epoch 13, iter 3200/6416, lr 0.001000, loss 3.171748 +INFO 2021-03-19 17:42:08 train.py: 78] Epoch 13, iter 3400/6416, lr 0.001000, loss 3.173824 +INFO 2021-03-19 17:46:02 train.py: 78] Epoch 13, iter 3600/6416, lr 0.001000, loss 3.200136 +INFO 2021-03-19 17:49:56 train.py: 78] Epoch 13, iter 3800/6416, lr 0.001000, loss 3.152063 +INFO 2021-03-19 17:53:51 train.py: 78] Epoch 13, iter 4000/6416, lr 0.001000, loss 3.167090 +INFO 2021-03-19 17:57:45 train.py: 78] Epoch 13, iter 4200/6416, lr 0.001000, loss 3.182108 +INFO 2021-03-19 18:01:39 train.py: 78] Epoch 13, iter 4400/6416, lr 0.001000, loss 3.145477 +INFO 2021-03-19 18:05:33 train.py: 78] Epoch 13, iter 4600/6416, lr 0.001000, loss 3.177578 +INFO 2021-03-19 18:09:28 train.py: 78] Epoch 13, iter 4800/6416, lr 0.001000, loss 3.179698 +INFO 2021-03-19 18:13:22 train.py: 78] Epoch 13, iter 5000/6416, lr 0.001000, loss 3.200265 +INFO 2021-03-19 18:17:16 train.py: 78] Epoch 13, iter 5200/6416, lr 0.001000, loss 3.165959 +INFO 2021-03-19 18:21:10 train.py: 78] Epoch 13, iter 5400/6416, lr 0.001000, loss 3.182200 +INFO 2021-03-19 18:25:05 train.py: 78] Epoch 13, iter 5600/6416, lr 0.001000, loss 3.184430 +INFO 2021-03-19 18:28:59 train.py: 78] Epoch 13, iter 5800/6416, lr 0.001000, loss 3.184106 +INFO 2021-03-19 18:32:53 train.py: 91] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2021-03-19 18:32:54 train.py: 78] Epoch 13, iter 6000/6416, lr 0.001000, loss 3.174152 +INFO 2021-03-19 18:36:49 train.py: 78] Epoch 13, iter 6200/6416, lr 0.001000, loss 3.174772 +INFO 2021-03-19 18:40:43 train.py: 78] Epoch 13, iter 6400/6416, lr 0.001000, loss 3.170197 +INFO 2021-03-19 18:41:01 train.py: 96] Save checkpoint Epoch_13.pt to disk... +INFO 2021-03-19 18:41:04 train.py: 78] Epoch 14, iter 0/6416, lr 0.001000, loss 3.216188 +INFO 2021-03-19 18:44:58 train.py: 78] Epoch 14, iter 200/6416, lr 0.001000, loss 3.115940 +INFO 2021-03-19 18:48:52 train.py: 78] Epoch 14, iter 400/6416, lr 0.001000, loss 3.110386 +INFO 2021-03-19 18:52:46 train.py: 78] Epoch 14, iter 600/6416, lr 0.001000, loss 3.112229 +INFO 2021-03-19 18:56:41 train.py: 78] Epoch 14, iter 800/6416, lr 0.001000, loss 3.135627 +INFO 2021-03-19 19:00:35 train.py: 78] Epoch 14, iter 1000/6416, lr 0.001000, loss 3.108733 +INFO 2021-03-19 19:04:29 train.py: 78] Epoch 14, iter 1200/6416, lr 0.001000, loss 3.128385 +INFO 2021-03-19 19:08:23 train.py: 78] Epoch 14, iter 1400/6416, lr 0.001000, loss 3.140274 +INFO 2021-03-19 19:12:17 train.py: 78] Epoch 14, iter 1600/6416, lr 0.001000, loss 3.130934 +INFO 2021-03-19 19:16:12 train.py: 78] Epoch 14, iter 1800/6416, lr 0.001000, loss 3.144010 +INFO 2021-03-19 19:20:06 train.py: 78] Epoch 14, iter 2000/6416, lr 0.001000, loss 3.135949 +INFO 2021-03-19 19:24:00 train.py: 78] Epoch 14, iter 2200/6416, lr 0.001000, loss 3.142621 +INFO 2021-03-19 19:27:54 train.py: 78] Epoch 14, iter 2400/6416, lr 0.001000, loss 3.136556 +INFO 2021-03-19 19:31:49 train.py: 78] Epoch 14, iter 2600/6416, lr 0.001000, loss 3.139964 +INFO 2021-03-19 19:35:43 train.py: 78] Epoch 14, iter 2800/6416, lr 0.001000, loss 3.142671 +INFO 2021-03-19 19:39:37 train.py: 91] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2021-03-19 19:39:38 train.py: 78] Epoch 14, iter 3000/6416, lr 0.001000, loss 3.147926 +INFO 2021-03-19 19:43:32 train.py: 78] Epoch 14, iter 3200/6416, lr 0.001000, loss 3.132282 +INFO 2021-03-19 19:47:27 train.py: 78] Epoch 14, iter 3400/6416, lr 0.001000, loss 3.138195 +INFO 2021-03-19 19:51:21 train.py: 78] Epoch 14, iter 3600/6416, lr 0.001000, loss 3.132258 +INFO 2021-03-19 19:55:15 train.py: 78] Epoch 14, iter 3800/6416, lr 0.001000, loss 3.140412 +INFO 2021-03-19 19:59:09 train.py: 78] Epoch 14, iter 4000/6416, lr 0.001000, loss 3.136316 +INFO 2021-03-19 20:03:03 train.py: 78] Epoch 14, iter 4200/6416, lr 0.001000, loss 3.147257 +INFO 2021-03-19 20:06:58 train.py: 78] Epoch 14, iter 4400/6416, lr 0.001000, loss 3.159377 +INFO 2021-03-19 20:10:52 train.py: 78] Epoch 14, iter 4600/6416, lr 0.001000, loss 3.138995 +INFO 2021-03-19 20:14:46 train.py: 78] Epoch 14, iter 4800/6416, lr 0.001000, loss 3.145203 +INFO 2021-03-19 20:18:40 train.py: 78] Epoch 14, iter 5000/6416, lr 0.001000, loss 3.139713 +INFO 2021-03-19 20:22:34 train.py: 78] Epoch 14, iter 5200/6416, lr 0.001000, loss 3.161223 +INFO 2021-03-19 20:26:29 train.py: 78] Epoch 14, iter 5400/6416, lr 0.001000, loss 3.154851 +INFO 2021-03-19 20:30:23 train.py: 78] Epoch 14, iter 5600/6416, lr 0.001000, loss 3.157712 +INFO 2021-03-19 20:34:17 train.py: 78] Epoch 14, iter 5800/6416, lr 0.001000, loss 3.130871 +INFO 2021-03-19 20:38:11 train.py: 91] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2021-03-19 20:38:12 train.py: 78] Epoch 14, iter 6000/6416, lr 0.001000, loss 3.145180 +INFO 2021-03-19 20:42:07 train.py: 78] Epoch 14, iter 6200/6416, lr 0.001000, loss 3.152377 +INFO 2021-03-19 20:46:01 train.py: 78] Epoch 14, iter 6400/6416, lr 0.001000, loss 3.140218 +INFO 2021-03-19 20:46:19 train.py: 96] Save checkpoint Epoch_14.pt to disk... +INFO 2021-03-19 20:46:22 train.py: 78] Epoch 15, iter 0/6416, lr 0.001000, loss 3.197044 +INFO 2021-03-19 20:50:16 train.py: 78] Epoch 15, iter 200/6416, lr 0.001000, loss 3.105113 +INFO 2021-03-19 20:54:10 train.py: 78] Epoch 15, iter 400/6416, lr 0.001000, loss 3.101389 +INFO 2021-03-19 20:58:04 train.py: 78] Epoch 15, iter 600/6416, lr 0.001000, loss 3.095628 +INFO 2021-03-19 21:01:59 train.py: 78] Epoch 15, iter 800/6416, lr 0.001000, loss 3.094118 +INFO 2021-03-19 21:05:53 train.py: 78] Epoch 15, iter 1000/6416, lr 0.001000, loss 3.100649 +INFO 2021-03-19 21:09:47 train.py: 78] Epoch 15, iter 1200/6416, lr 0.001000, loss 3.116633 +INFO 2021-03-19 21:13:41 train.py: 78] Epoch 15, iter 1400/6416, lr 0.001000, loss 3.104960 +INFO 2021-03-19 21:17:35 train.py: 78] Epoch 15, iter 1600/6416, lr 0.001000, loss 3.080331 +INFO 2021-03-19 21:21:30 train.py: 78] Epoch 15, iter 1800/6416, lr 0.001000, loss 3.128272 +INFO 2021-03-19 21:25:24 train.py: 78] Epoch 15, iter 2000/6416, lr 0.001000, loss 3.109825 +INFO 2021-03-19 21:29:18 train.py: 78] Epoch 15, iter 2200/6416, lr 0.001000, loss 3.122021 +INFO 2021-03-19 21:33:12 train.py: 78] Epoch 15, iter 2400/6416, lr 0.001000, loss 3.113386 +INFO 2021-03-19 21:37:07 train.py: 78] Epoch 15, iter 2600/6416, lr 0.001000, loss 3.087826 +INFO 2021-03-19 21:41:01 train.py: 78] Epoch 15, iter 2800/6416, lr 0.001000, loss 3.115891 +INFO 2021-03-19 21:44:55 train.py: 91] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2021-03-19 21:44:56 train.py: 78] Epoch 15, iter 3000/6416, lr 0.001000, loss 3.137241 +INFO 2021-03-19 21:48:51 train.py: 78] Epoch 15, iter 3200/6416, lr 0.001000, loss 3.104972 +INFO 2021-03-19 21:52:45 train.py: 78] Epoch 15, iter 3400/6416, lr 0.001000, loss 3.112512 +INFO 2021-03-19 21:56:39 train.py: 78] Epoch 15, iter 3600/6416, lr 0.001000, loss 3.113448 +INFO 2021-03-19 22:00:34 train.py: 78] Epoch 15, iter 3800/6416, lr 0.001000, loss 3.098038 +INFO 2021-03-19 22:04:28 train.py: 78] Epoch 15, iter 4000/6416, lr 0.001000, loss 3.118554 +INFO 2021-03-19 22:08:22 train.py: 78] Epoch 15, iter 4200/6416, lr 0.001000, loss 3.123196 +INFO 2021-03-19 22:12:16 train.py: 78] Epoch 15, iter 4400/6416, lr 0.001000, loss 3.115676 +INFO 2021-03-19 22:16:11 train.py: 78] Epoch 15, iter 4600/6416, lr 0.001000, loss 3.113284 +INFO 2021-03-19 22:20:05 train.py: 78] Epoch 15, iter 4800/6416, lr 0.001000, loss 3.121991 +INFO 2021-03-19 22:23:59 train.py: 78] Epoch 15, iter 5000/6416, lr 0.001000, loss 3.131621 +INFO 2021-03-19 22:27:53 train.py: 78] Epoch 15, iter 5200/6416, lr 0.001000, loss 3.132818 +INFO 2021-03-19 22:31:48 train.py: 78] Epoch 15, iter 5400/6416, lr 0.001000, loss 3.140174 +INFO 2021-03-19 22:35:42 train.py: 78] Epoch 15, iter 5600/6416, lr 0.001000, loss 3.130641 +INFO 2021-03-19 22:39:36 train.py: 78] Epoch 15, iter 5800/6416, lr 0.001000, loss 3.134250 +INFO 2021-03-19 22:43:30 train.py: 91] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2021-03-19 22:43:32 train.py: 78] Epoch 15, iter 6000/6416, lr 0.001000, loss 3.118152 +INFO 2021-03-19 22:47:26 train.py: 78] Epoch 15, iter 6200/6416, lr 0.001000, loss 3.137207 +INFO 2021-03-19 22:51:20 train.py: 78] Epoch 15, iter 6400/6416, lr 0.001000, loss 3.138534 +INFO 2021-03-19 22:51:38 train.py: 96] Save checkpoint Epoch_15.pt to disk... +INFO 2021-03-19 22:51:41 train.py: 78] Epoch 16, iter 0/6416, lr 0.000100, loss 3.155837 +INFO 2021-03-19 22:55:52 train.py: 78] Epoch 16, iter 200/6416, lr 0.000100, loss 3.052112 +INFO 2021-03-19 23:00:03 train.py: 78] Epoch 16, iter 400/6416, lr 0.000100, loss 3.036359 +INFO 2021-03-19 23:04:13 train.py: 78] Epoch 16, iter 600/6416, lr 0.000100, loss 3.068549 +INFO 2021-03-19 23:08:07 train.py: 78] Epoch 16, iter 800/6416, lr 0.000100, loss 3.071267 +INFO 2021-03-19 23:12:01 train.py: 78] Epoch 16, iter 1000/6416, lr 0.000100, loss 3.083179 +INFO 2021-03-19 23:15:55 train.py: 78] Epoch 16, iter 1200/6416, lr 0.000100, loss 3.093343 +INFO 2021-03-19 23:19:49 train.py: 78] Epoch 16, iter 1400/6416, lr 0.000100, loss 3.046113 +INFO 2021-03-19 23:23:44 train.py: 78] Epoch 16, iter 1600/6416, lr 0.000100, loss 3.063368 +INFO 2021-03-19 23:27:38 train.py: 78] Epoch 16, iter 1800/6416, lr 0.000100, loss 3.091686 +INFO 2021-03-19 23:31:32 train.py: 78] Epoch 16, iter 2000/6416, lr 0.000100, loss 3.071781 +INFO 2021-03-19 23:35:27 train.py: 78] Epoch 16, iter 2200/6416, lr 0.000100, loss 3.051654 +INFO 2021-03-19 23:39:21 train.py: 78] Epoch 16, iter 2400/6416, lr 0.000100, loss 3.035913 +INFO 2021-03-19 23:43:15 train.py: 78] Epoch 16, iter 2600/6416, lr 0.000100, loss 3.068752 +INFO 2021-03-19 23:47:09 train.py: 78] Epoch 16, iter 2800/6416, lr 0.000100, loss 3.060263 +INFO 2021-03-19 23:51:04 train.py: 91] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2021-03-19 23:51:05 train.py: 78] Epoch 16, iter 3000/6416, lr 0.000100, loss 3.072987 +INFO 2021-03-19 23:54:59 train.py: 78] Epoch 16, iter 3200/6416, lr 0.000100, loss 3.052553 +INFO 2021-03-19 23:58:53 train.py: 78] Epoch 16, iter 3400/6416, lr 0.000100, loss 3.071509 +INFO 2021-03-20 00:02:48 train.py: 78] Epoch 16, iter 3600/6416, lr 0.000100, loss 3.077967 +INFO 2021-03-20 00:06:42 train.py: 78] Epoch 16, iter 3800/6416, lr 0.000100, loss 3.064053 +INFO 2021-03-20 00:10:36 train.py: 78] Epoch 16, iter 4000/6416, lr 0.000100, loss 3.090127 +INFO 2021-03-20 00:14:30 train.py: 78] Epoch 16, iter 4200/6416, lr 0.000100, loss 3.100970 +INFO 2021-03-20 00:18:25 train.py: 78] Epoch 16, iter 4400/6416, lr 0.000100, loss 3.061124 +INFO 2021-03-20 00:22:19 train.py: 78] Epoch 16, iter 4600/6416, lr 0.000100, loss 3.074622 +INFO 2021-03-20 00:26:13 train.py: 78] Epoch 16, iter 4800/6416, lr 0.000100, loss 3.075948 +INFO 2021-03-20 00:30:07 train.py: 78] Epoch 16, iter 5000/6416, lr 0.000100, loss 3.073800 +INFO 2021-03-20 00:34:02 train.py: 78] Epoch 16, iter 5200/6416, lr 0.000100, loss 3.060539 +INFO 2021-03-20 00:37:56 train.py: 78] Epoch 16, iter 5400/6416, lr 0.000100, loss 3.074296 +INFO 2021-03-20 00:41:50 train.py: 78] Epoch 16, iter 5600/6416, lr 0.000100, loss 3.073779 +INFO 2021-03-20 00:45:44 train.py: 78] Epoch 16, iter 5800/6416, lr 0.000100, loss 3.063759 +INFO 2021-03-20 00:49:39 train.py: 91] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2021-03-20 00:49:40 train.py: 78] Epoch 16, iter 6000/6416, lr 0.000100, loss 3.066763 +INFO 2021-03-20 00:53:34 train.py: 78] Epoch 16, iter 6200/6416, lr 0.000100, loss 3.068334 +INFO 2021-03-20 00:57:28 train.py: 78] Epoch 16, iter 6400/6416, lr 0.000100, loss 3.059346 +INFO 2021-03-20 00:57:46 train.py: 96] Save checkpoint Epoch_16.pt to disk... +INFO 2021-03-20 00:57:49 train.py: 78] Epoch 17, iter 0/6416, lr 0.000100, loss 3.114026 +INFO 2021-03-20 01:01:43 train.py: 78] Epoch 17, iter 200/6416, lr 0.000100, loss 3.049200 +INFO 2021-03-20 01:05:38 train.py: 78] Epoch 17, iter 400/6416, lr 0.000100, loss 3.062540 +INFO 2021-03-20 01:09:32 train.py: 78] Epoch 17, iter 600/6416, lr 0.000100, loss 3.053811 +INFO 2021-03-20 01:13:26 train.py: 78] Epoch 17, iter 800/6416, lr 0.000100, loss 3.063780 +INFO 2021-03-20 01:17:20 train.py: 78] Epoch 17, iter 1000/6416, lr 0.000100, loss 3.074239 +INFO 2021-03-20 01:21:15 train.py: 78] Epoch 17, iter 1200/6416, lr 0.000100, loss 3.037428 +INFO 2021-03-20 01:25:09 train.py: 78] Epoch 17, iter 1400/6416, lr 0.000100, loss 3.060609 +INFO 2021-03-20 01:29:03 train.py: 78] Epoch 17, iter 1600/6416, lr 0.000100, loss 3.064894 +INFO 2021-03-20 01:32:58 train.py: 78] Epoch 17, iter 1800/6416, lr 0.000100, loss 3.062991 +INFO 2021-03-20 01:36:52 train.py: 78] Epoch 17, iter 2000/6416, lr 0.000100, loss 3.065635 +INFO 2021-03-20 01:40:46 train.py: 78] Epoch 17, iter 2200/6416, lr 0.000100, loss 3.061597 +INFO 2021-03-20 01:44:40 train.py: 78] Epoch 17, iter 2400/6416, lr 0.000100, loss 3.089202 +INFO 2021-03-20 01:48:35 train.py: 78] Epoch 17, iter 2600/6416, lr 0.000100, loss 3.064418 +INFO 2021-03-20 01:52:29 train.py: 78] Epoch 17, iter 2800/6416, lr 0.000100, loss 3.071868 +INFO 2021-03-20 01:56:23 train.py: 91] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2021-03-20 01:56:24 train.py: 78] Epoch 17, iter 3000/6416, lr 0.000100, loss 3.059083 +INFO 2021-03-20 02:00:18 train.py: 78] Epoch 17, iter 3200/6416, lr 0.000100, loss 3.092387 +INFO 2021-03-20 02:04:13 train.py: 78] Epoch 17, iter 3400/6416, lr 0.000100, loss 3.052788 +INFO 2021-03-20 02:08:07 train.py: 78] Epoch 17, iter 3600/6416, lr 0.000100, loss 3.051660 +INFO 2021-03-20 02:12:01 train.py: 78] Epoch 17, iter 3800/6416, lr 0.000100, loss 3.052828 +INFO 2021-03-20 02:15:55 train.py: 78] Epoch 17, iter 4000/6416, lr 0.000100, loss 3.070680 +INFO 2021-03-20 02:19:50 train.py: 78] Epoch 17, iter 4200/6416, lr 0.000100, loss 3.059567 +INFO 2021-03-20 02:23:44 train.py: 78] Epoch 17, iter 4400/6416, lr 0.000100, loss 3.081448 +INFO 2021-03-20 02:27:38 train.py: 78] Epoch 17, iter 4600/6416, lr 0.000100, loss 3.052200 +INFO 2021-03-20 02:31:33 train.py: 78] Epoch 17, iter 4800/6416, lr 0.000100, loss 3.069250 +INFO 2021-03-20 02:35:27 train.py: 78] Epoch 17, iter 5000/6416, lr 0.000100, loss 3.058106 +INFO 2021-03-20 02:39:21 train.py: 78] Epoch 17, iter 5200/6416, lr 0.000100, loss 3.076459 +INFO 2021-03-20 02:43:15 train.py: 78] Epoch 17, iter 5400/6416, lr 0.000100, loss 3.055265 +INFO 2021-03-20 02:47:10 train.py: 78] Epoch 17, iter 5600/6416, lr 0.000100, loss 3.058003 +INFO 2021-03-20 02:51:04 train.py: 78] Epoch 17, iter 5800/6416, lr 0.000100, loss 3.076422 +INFO 2021-03-20 02:54:58 train.py: 91] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2021-03-20 02:54:59 train.py: 78] Epoch 17, iter 6000/6416, lr 0.000100, loss 3.052855 +INFO 2021-03-20 02:58:53 train.py: 78] Epoch 17, iter 6200/6416, lr 0.000100, loss 3.080742 +INFO 2021-03-20 03:02:48 train.py: 78] Epoch 17, iter 6400/6416, lr 0.000100, loss 3.068288 +INFO 2021-03-20 03:03:06 train.py: 96] Save checkpoint Epoch_17.pt to disk... +INFO 2021-03-20 03:03:06 train.py: 179] Optimization done! diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_A0/.gitkeep b/bob/bio/facexzoo/models/backbones/RepVGG_A0/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_A0/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/backbones/RepVGG_A0/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..860eb1250c8442e45b35282ab7a778d6c8cad910 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_A0/accu_files/accu_agedb.txt @@ -0,0 +1,58 @@ ++------------------------+---------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+---------------------+-----------------------+ +| Epoch_11_batch_5999.pt | 0.9696666666666666 | 0.0025676044462869677 | +| Epoch_17.pt | 0.9688333333333334 | 0.0024222477062879615 | +| Epoch_15_batch_5999.pt | 0.9686666666666668 | 0.002673602092336881 | +| Epoch_17_batch_2999.pt | 0.9683333333333334 | 0.002593915006650837 | +| Epoch_13_batch_5999.pt | 0.9678333333333334 | 0.0023313483620397042 | +| Epoch_17_batch_5999.pt | 0.9678333333333334 | 0.0023180717827805623 | +| Epoch_15_batch_2999.pt | 0.9678333333333334 | 0.002318071782780565 | +| Epoch_14.pt | 0.9678333333333333 | 0.0026063786901644255 | +| Epoch_13.pt | 0.9676666666666668 | 0.0027464904654018346 | +| Epoch_14_batch_5999.pt | 0.9676666666666668 | 0.002824058894919737 | +| Epoch_15.pt | 0.9676666666666666 | 0.0027011657291429354 | +| Epoch_10_batch_5999.pt | 0.967 | 0.003051006715054659 | +| Epoch_16_batch_5999.pt | 0.9668333333333333 | 0.0023888888888888913 | +| Epoch_16_batch_2999.pt | 0.9664999999999999 | 0.0027380492289670213 | +| Epoch_11.pt | 0.9663333333333333 | 0.0031111111111111114 | +| Epoch_10_batch_2999.pt | 0.9658333333333333 | 0.0028571979712497305 | +| Epoch_14_batch_2999.pt | 0.9658333333333333 | 0.0029000851413640456 | +| Epoch_16.pt | 0.9656666666666667 | 0.0030041124076879526 | +| Epoch_13_batch_2999.pt | 0.9654999999999999 | 0.00345205252953466 | +| Epoch_12_batch_2999.pt | 0.9654999999999999 | 0.002664929990046991 | +| Epoch_12_batch_5999.pt | 0.9654999999999999 | 0.002606378690164421 | +| Epoch_11_batch_2999.pt | 0.9653333333333334 | 0.003581502546952489 | +| Epoch_12.pt | 0.9651666666666667 | 0.002477678124553087 | +| Epoch_10.pt | 0.9641666666666667 | 0.0031254629286745 | +| Epoch_7_batch_5999.pt | 0.9548333333333332 | 0.00293394353922465 | +| Epoch_6_batch_5999.pt | 0.9543333333333333 | 0.003212629398844664 | +| Epoch_8_batch_5999.pt | 0.9538333333333334 | 0.0029922740021100518 | +| Epoch_9_batch_5999.pt | 0.9530000000000001 | 0.004200235149207952 | +| Epoch_8.pt | 0.953 | 0.003081205471969347 | +| Epoch_9_batch_2999.pt | 0.9523333333333334 | 0.0038904758666692407 | +| Epoch_5_batch_5999.pt | 0.9515 | 0.0038123418809550558 | +| Epoch_5_batch_2999.pt | 0.951 | 0.0019907192074632117 | +| Epoch_4_batch_2999.pt | 0.9501666666666667 | 0.004078322700496209 | +| Epoch_8_batch_2999.pt | 0.9498333333333333 | 0.0036637193541772324 | +| Epoch_7_batch_2999.pt | 0.9496666666666667 | 0.0039031484600556203 | +| Epoch_7.pt | 0.9491666666666667 | 0.004895513188902268 | +| Epoch_4_batch_5999.pt | 0.9471666666666666 | 0.004759979769642654 | +| Epoch_3_batch_5999.pt | 0.9466666666666667 | 0.004416579314300394 | +| Epoch_6.pt | 0.9465 | 0.004100963451991244 | +| Epoch_6_batch_2999.pt | 0.9455 | 0.0038574122970755445 | +| Epoch_3_batch_2999.pt | 0.9445 | 0.004805154125815264 | +| Epoch_5.pt | 0.943 | 0.004546060565661946 | +| Epoch_2_batch_2999.pt | 0.9385 | 0.004597704741377906 | +| Epoch_2_batch_5999.pt | 0.9359999999999999 | 0.004976487928124147 | +| Epoch_3.pt | 0.9336666666666666 | 0.0034854193647462475 | +| Epoch_2.pt | 0.9321666666666667 | 0.004090413363155542 | +| Epoch_1_batch_5999.pt | 0.9218333333333332 | 0.005829098992273884 | +| Epoch_1_batch_2999.pt | 0.9021666666666667 | 0.006455211312297978 | +| Epoch_0.pt | 0.8541666666666666 | 0.006162661361922171 | +| Epoch_0_batch_5999.pt | 0.8468333333333333 | 0.007159772739341133 | +| Epoch_0_batch_2999.pt | 0.71 | 0.006270644915343315 | +| Epoch_4.pt | 0.6346666666666667 | 0.009777777777777778 | +| Epoch_1.pt | 0.6015 | 0.007438845323911927 | +| Epoch_9.pt | 0.49700000000000005 | 0.003918931575232977 | ++------------------------+---------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_A0/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/backbones/RepVGG_A0/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..8c11c896ca843734f70aca1c65e858872b23a5e4 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_A0/accu_files/accu_calfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13.pt | 0.9488333333333333 | 0.003201562118716419 | +| Epoch_17_batch_5999.pt | 0.9488333333333333 | 0.0031919072049384927 | +| Epoch_14_batch_5999.pt | 0.9488333333333333 | 0.003162765628331171 | +| Epoch_16_batch_5999.pt | 0.9484999999999999 | 0.002880864924992029 | +| Epoch_17_batch_2999.pt | 0.9483333333333333 | 0.003142696805273541 | +| Epoch_15.pt | 0.9481666666666667 | 0.0029234049148717453 | +| Epoch_14_batch_2999.pt | 0.9481666666666667 | 0.002912828161981845 | +| Epoch_15_batch_2999.pt | 0.9481666666666667 | 0.003037319318408135 | +| Epoch_17.pt | 0.9480000000000001 | 0.0030205060486818156 | +| Epoch_15_batch_5999.pt | 0.9480000000000001 | 0.002841491522787644 | +| Epoch_13_batch_5999.pt | 0.9478333333333333 | 0.0028979558568322165 | +| Epoch_16_batch_2999.pt | 0.9478333333333333 | 0.003043410205511624 | +| Epoch_12_batch_5999.pt | 0.9473333333333332 | 0.0025239592648001225 | +| Epoch_13_batch_2999.pt | 0.9471666666666667 | 0.0029297326385411553 | +| Epoch_11.pt | 0.9471666666666666 | 0.0030025709148603693 | +| Epoch_14.pt | 0.9470000000000001 | 0.0029165343885348177 | +| Epoch_16.pt | 0.9470000000000001 | 0.0028631330503833563 | +| Epoch_12_batch_2999.pt | 0.9468333333333334 | 0.0034556270089075554 | +| Epoch_10_batch_5999.pt | 0.9465 | 0.0027938424357067033 | +| Epoch_12.pt | 0.9463333333333332 | 0.0024944382578492917 | +| Epoch_11_batch_5999.pt | 0.9461666666666666 | 0.0033888888888888905 | +| Epoch_10.pt | 0.946 | 0.0035763282087624615 | +| Epoch_11_batch_2999.pt | 0.9455 | 0.003352261075899019 | +| Epoch_10_batch_2999.pt | 0.9438333333333334 | 0.0030434102055116306 | +| Epoch_7_batch_5999.pt | 0.9366666666666668 | 0.0031817380140614104 | +| Epoch_9_batch_5999.pt | 0.9355 | 0.0039287638240526985 | +| Epoch_8_batch_5999.pt | 0.9343333333333333 | 0.003834540872608308 | +| Epoch_8_batch_2999.pt | 0.9338333333333333 | 0.002929732638541159 | +| Epoch_6_batch_5999.pt | 0.9331666666666667 | 0.003107636949099329 | +| Epoch_7_batch_2999.pt | 0.9321666666666667 | 0.0041129875597510236 | +| Epoch_9_batch_2999.pt | 0.9321666666666667 | 0.003370624736026117 | +| Epoch_6_batch_2999.pt | 0.9321666666666666 | 0.0031333530338230127 | +| Epoch_8.pt | 0.9318333333333333 | 0.004085883557377088 | +| Epoch_5_batch_2999.pt | 0.9313333333333332 | 0.003911047979288457 | +| Epoch_4_batch_2999.pt | 0.9301666666666666 | 0.0032626770800057788 | +| Epoch_3_batch_5999.pt | 0.9295 | 0.003920899997465308 | +| Epoch_5_batch_5999.pt | 0.9291666666666666 | 0.0029000851413640352 | +| Epoch_4_batch_5999.pt | 0.9279999999999999 | 0.0030408738185342264 | +| Epoch_3_batch_2999.pt | 0.9271666666666667 | 0.0022505143445032366 | +| Epoch_7.pt | 0.9269999999999999 | 0.0038393672318157773 | +| Epoch_5.pt | 0.9233333333333332 | 0.0029710537682490906 | +| Epoch_6.pt | 0.9233333333333332 | 0.003975231959999624 | +| Epoch_2_batch_5999.pt | 0.9219999999999999 | 0.003368334753605362 | +| Epoch_2_batch_2999.pt | 0.9191666666666668 | 0.0034179085367271166 | +| Epoch_2.pt | 0.9188333333333333 | 0.002981941533404362 | +| Epoch_3.pt | 0.9135 | 0.0035000000000000005 | +| Epoch_1_batch_5999.pt | 0.9133333333333334 | 0.0032107073948444156 | +| Epoch_1_batch_2999.pt | 0.9018333333333333 | 0.004299368314210191 | +| Epoch_0.pt | 0.8636666666666667 | 0.0038554114606438837 | +| Epoch_0_batch_5999.pt | 0.8628333333333333 | 0.004779392492000697 | +| Epoch_4.pt | 0.8011666666666667 | 0.004635144863025807 | +| Epoch_0_batch_2999.pt | 0.7271666666666666 | 0.00758511375111039 | +| Epoch_9.pt | 0.5111666666666668 | 0.0057951128835712394 | +| Epoch_1.pt | 0.5055 | 0.0022777777777777783 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_A0/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/backbones/RepVGG_A0/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..3623abc793dbbd4c3ed33183feb49b3f4428b96f --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_A0/accu_files/accu_cplfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15.pt | 0.8543333333333333 | 0.005704665623552635 | +| Epoch_13_batch_2999.pt | 0.852 | 0.006160407233612938 | +| Epoch_17_batch_2999.pt | 0.852 | 0.006115150180363115 | +| Epoch_14.pt | 0.8513333333333334 | 0.006150378890265803 | +| Epoch_16.pt | 0.8511666666666666 | 0.005305773701158132 | +| Epoch_16_batch_5999.pt | 0.851 | 0.006162410943938684 | +| Epoch_11.pt | 0.8505 | 0.005432242562630949 | +| Epoch_15_batch_2999.pt | 0.8503333333333334 | 0.006195378604200292 | +| Epoch_16_batch_2999.pt | 0.85 | 0.0059524867715461645 | +| Epoch_15_batch_5999.pt | 0.8496666666666666 | 0.006534807090014498 | +| Epoch_17_batch_5999.pt | 0.8494999999999999 | 0.00569302150243265 | +| Epoch_11_batch_2999.pt | 0.8491666666666665 | 0.005450393575096828 | +| Epoch_13_batch_5999.pt | 0.8484999999999999 | 0.006404329168520728 | +| Epoch_14_batch_2999.pt | 0.8484999999999999 | 0.007002865374744126 | +| Epoch_14_batch_5999.pt | 0.8483333333333333 | 0.005910860479231282 | +| Epoch_13.pt | 0.8481666666666667 | 0.0056078098099166624 | +| Epoch_17.pt | 0.8476666666666668 | 0.005785251576419918 | +| Epoch_11_batch_5999.pt | 0.8473333333333333 | 0.005869990640832128 | +| Epoch_12_batch_2999.pt | 0.8461666666666667 | 0.006319917564706943 | +| Epoch_10.pt | 0.8458333333333334 | 0.005529103693576472 | +| Epoch_12.pt | 0.8453333333333333 | 0.0054421763983370924 | +| Epoch_12_batch_5999.pt | 0.845 | 0.00564921058617163 | +| Epoch_10_batch_5999.pt | 0.8441666666666666 | 0.005623199300253408 | +| Epoch_10_batch_2999.pt | 0.8428333333333333 | 0.0056000992054704764 | +| Epoch_7_batch_5999.pt | 0.8201666666666666 | 0.00636565824862375 | +| Epoch_7_batch_2999.pt | 0.8195 | 0.006334551539760054 | +| Epoch_3_batch_2999.pt | 0.8181666666666667 | 0.006026945667091587 | +| Epoch_8_batch_2999.pt | 0.8178333333333334 | 0.007625695677635006 | +| Epoch_9_batch_2999.pt | 0.8166666666666668 | 0.0059421075364982 | +| Epoch_9_batch_5999.pt | 0.8160000000000001 | 0.005123174170399334 | +| Epoch_8_batch_5999.pt | 0.8160000000000001 | 0.007028162044830432 | +| Epoch_6_batch_5999.pt | 0.8158333333333333 | 0.006957765002294951 | +| Epoch_3_batch_5999.pt | 0.8106666666666668 | 0.00739202105710218 | +| Epoch_5_batch_2999.pt | 0.8105 | 0.007474442049452075 | +| Epoch_8.pt | 0.8101666666666667 | 0.006011562932290483 | +| Epoch_6_batch_2999.pt | 0.8095000000000001 | 0.006634412716945294 | +| Epoch_4_batch_5999.pt | 0.8086666666666666 | 0.007440297352348085 | +| Epoch_5_batch_5999.pt | 0.8081666666666667 | 0.007155460661896663 | +| Epoch_4_batch_2999.pt | 0.8063333333333332 | 0.007109374788020616 | +| Epoch_2_batch_2999.pt | 0.8049999999999999 | 0.007005289007176944 | +| Epoch_7.pt | 0.8 | 0.0059886724347608285 | +| Epoch_2_batch_5999.pt | 0.7981666666666667 | 0.006612978261077342 | +| Epoch_5.pt | 0.7976666666666666 | 0.006560261964055785 | +| Epoch_6.pt | 0.7928333333333335 | 0.006305249625471317 | +| Epoch_3.pt | 0.7906666666666666 | 0.007197393218089618 | +| Epoch_2.pt | 0.7905 | 0.006726812023536861 | +| Epoch_1_batch_5999.pt | 0.7896666666666666 | 0.005565546571719193 | +| Epoch_1_batch_2999.pt | 0.7665 | 0.006788015946786453 | +| Epoch_0.pt | 0.7178333333333333 | 0.008621141112061326 | +| Epoch_0_batch_5999.pt | 0.7135 | 0.00945571223267505 | +| Epoch_4.pt | 0.6858333333333334 | 0.008865420408099428 | +| Epoch_0_batch_2999.pt | 0.6245 | 0.0071666666666666675 | +| Epoch_9.pt | 0.5003333333333334 | 0.007859884081701065 | +| Epoch_1.pt | 0.4973333333333332 | 0.007520342781785655 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_A0/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/backbones/RepVGG_A0/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..47eda47b800a91db1c4b72547dc20c1f46ebe7be --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_A0/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_11_batch_2999.pt | 0.9976666666666667 | 0.0008314794192831014 | +| Epoch_14_batch_2999.pt | 0.9976666666666667 | 0.0008314794192831014 | +| Epoch_12_batch_5999.pt | 0.9976666666666667 | 0.0008314794192831014 | +| Epoch_13_batch_2999.pt | 0.9974999999999999 | 0.0007954345035153557 | +| Epoch_13_batch_5999.pt | 0.9974999999999999 | 0.0009378857231185614 | +| Epoch_15.pt | 0.9974999999999999 | 0.0007954345035153557 | +| Epoch_17.pt | 0.9974999999999999 | 0.0009378857231185614 | +| Epoch_14.pt | 0.9974999999999999 | 0.0009378857231185614 | +| Epoch_17_batch_5999.pt | 0.9974999999999999 | 0.0009378857231185614 | +| Epoch_15_batch_2999.pt | 0.9974999999999999 | 0.0009378857231185614 | +| Epoch_11_batch_5999.pt | 0.9974999999999999 | 0.0008695819912499218 | +| Epoch_14_batch_5999.pt | 0.9974999999999999 | 0.0007954345035153557 | +| Epoch_17_batch_2999.pt | 0.9973333333333333 | 0.0009686442096757043 | +| Epoch_16_batch_5999.pt | 0.9973333333333333 | 0.0010599324460188297 | +| Epoch_10_batch_2999.pt | 0.9973333333333333 | 0.000831479419283101 | +| Epoch_16_batch_2999.pt | 0.9973333333333333 | 0.0010599324460188297 | +| Epoch_16.pt | 0.9973333333333333 | 0.000831479419283101 | +| Epoch_15_batch_5999.pt | 0.9971666666666668 | 0.001084401183107953 | +| Epoch_10_batch_5999.pt | 0.9971666666666668 | 0.0008258927081843643 | +| Epoch_12_batch_2999.pt | 0.9971666666666665 | 0.0009312808119022322 | +| Epoch_12.pt | 0.9970000000000001 | 0.0011600340565456147 | +| Epoch_13.pt | 0.9969999999999999 | 0.0010482201257840677 | +| Epoch_11.pt | 0.9968333333333333 | 0.0010957268290731099 | +| Epoch_10.pt | 0.9966666666666667 | 0.0007453559924999334 | +| Epoch_7_batch_5999.pt | 0.9961666666666666 | 0.000611111111111113 | +| Epoch_9_batch_2999.pt | 0.9958333333333332 | 0.0012484558363469042 | +| Epoch_8_batch_5999.pt | 0.9951666666666668 | 0.0010076865081787238 | +| Epoch_8_batch_2999.pt | 0.9951666666666668 | 0.0011772011166898395 | +| Epoch_5_batch_2999.pt | 0.9951666666666666 | 0.0009111788592698187 | +| Epoch_8.pt | 0.9951666666666666 | 0.0007222222222222221 | +| Epoch_7_batch_2999.pt | 0.9950000000000001 | 0.0009938079899999047 | +| Epoch_5_batch_5999.pt | 0.9948333333333335 | 0.0010378634273483023 | +| Epoch_7.pt | 0.9948333333333332 | 0.001203133768205988 | +| Epoch_4_batch_5999.pt | 0.9946666666666667 | 0.0009558139185602859 | +| Epoch_9_batch_5999.pt | 0.9946666666666666 | 0.0011331154474650677 | +| Epoch_3_batch_2999.pt | 0.9944999999999998 | 0.001112499133027825 | +| Epoch_6_batch_2999.pt | 0.9943333333333333 | 0.001247219128924641 | +| Epoch_5.pt | 0.9943333333333332 | 0.0010599324460188284 | +| Epoch_6_batch_5999.pt | 0.9941666666666666 | 0.0007556372504853021 | +| Epoch_2.pt | 0.9936666666666666 | 0.001160034056545618 | +| Epoch_6.pt | 0.9936666666666666 | 0.0011863420280034795 | +| Epoch_3.pt | 0.9933333333333334 | 0.0011653431646335057 | +| Epoch_3_batch_5999.pt | 0.9928333333333332 | 0.0010555555555555516 | +| Epoch_2_batch_5999.pt | 0.9925 | 0.0010318986456114916 | +| Epoch_4_batch_2999.pt | 0.9925 | 0.0015163715626618003 | +| Epoch_2_batch_2999.pt | 0.992 | 0.0009229582069909026 | +| Epoch_1_batch_5999.pt | 0.991 | 0.0014740554623801818 | +| Epoch_1_batch_2999.pt | 0.9861666666666669 | 0.0018600743380870212 | +| Epoch_0_batch_5999.pt | 0.9730000000000001 | 0.002905932629027115 | +| Epoch_0.pt | 0.9730000000000001 | 0.002419060117453028 | +| Epoch_4.pt | 0.9675 | 0.0022804861946415325 | +| Epoch_0_batch_2999.pt | 0.9318333333333333 | 0.003655285366576881 | +| Epoch_1.pt | 0.6048333333333333 | 0.006514229439096016 | +| Epoch_9.pt | 0.5583333333333333 | 0.006004113816047244 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_A0/accu_files/accu_megaface.txt b/bob/bio/facexzoo/models/backbones/RepVGG_A0/accu_files/accu_megaface.txt new file mode 100644 index 0000000000000000000000000000000000000000..fc5b1b81ce4787207c2eb7049a04ae84b7336026 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_A0/accu_files/accu_megaface.txt @@ -0,0 +1,14 @@ ++------+--------------------+ +| rank | accuracy | ++------+--------------------+ +| 1 | 0.9440032805238424 | +| 2 | 0.9563247718603954 | +| 3 | 0.9617272218389159 | +| 4 | 0.9648385123084734 | +| 5 | 0.9669409115169819 | +| 6 | 0.9687373888592369 | +| 7 | 0.9701823815040942 | +| 8 | 0.9713279612585756 | +| 9 | 0.9723043076402359 | +| 10 | 0.9729812411315204 | ++------+--------------------+ diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_A0/log.log b/bob/bio/facexzoo/models/backbones/RepVGG_A0/log.log new file mode 100644 index 0000000000000000000000000000000000000000..e2f69db5a227c725349652451e3e986f4725154d --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_A0/log.log @@ -0,0 +1,655 @@ +INFO 2021-09-18 23:45:55 train.py: 180] Start optimization. +INFO 2021-09-18 23:45:55 train.py: 181] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='RepVGG', batch_size=512, data_root='/export2/wj_data/FaceX-Zoo/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='MV-Softmax', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='mv-repvgg', train_file='/export2/wj_data/FaceX-Zoo/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7ff0d6840e80>) +backbone param: +{'block_stage1': 2, 'block_stage2': 4, 'block_stage3': 14, 'block_stage4': 1, 'width_stage1': 0.75, 'width_stage2': 0.75, 'width_stage3': 0.75, 'width_stage4': 2.5, 'feat_dim': 512, 'out_h': 7, 'out_w': 7} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +INFO 2021-09-18 23:46:17 train.py: 82] Epoch 0, iter 0/6416, lr 0.100000, loss 16.353008 +INFO 2021-09-18 23:48:49 train.py: 82] Epoch 0, iter 200/6416, lr 0.100000, loss 15.731858 +INFO 2021-09-18 23:52:29 train.py: 82] Epoch 0, iter 400/6416, lr 0.100000, loss 15.398714 +INFO 2021-09-18 23:55:58 train.py: 82] Epoch 0, iter 600/6416, lr 0.100000, loss 15.288831 +INFO 2021-09-18 23:59:52 train.py: 82] Epoch 0, iter 800/6416, lr 0.100000, loss 15.139525 +INFO 2021-09-19 00:03:46 train.py: 82] Epoch 0, iter 1000/6416, lr 0.100000, loss 14.951804 +INFO 2021-09-19 00:07:37 train.py: 82] Epoch 0, iter 1200/6416, lr 0.100000, loss 14.688585 +INFO 2021-09-19 00:11:27 train.py: 82] Epoch 0, iter 1400/6416, lr 0.100000, loss 14.384985 +INFO 2021-09-19 00:15:35 train.py: 82] Epoch 0, iter 1600/6416, lr 0.100000, loss 14.068007 +INFO 2021-09-19 00:19:20 train.py: 82] Epoch 0, iter 1800/6416, lr 0.100000, loss 13.735417 +INFO 2021-09-19 00:22:50 train.py: 82] Epoch 0, iter 2000/6416, lr 0.100000, loss 13.378092 +INFO 2021-09-19 00:26:46 train.py: 82] Epoch 0, iter 2200/6416, lr 0.100000, loss 13.019949 +INFO 2021-09-19 00:30:35 train.py: 82] Epoch 0, iter 2400/6416, lr 0.100000, loss 12.640061 +INFO 2021-09-19 00:34:28 train.py: 82] Epoch 0, iter 2600/6416, lr 0.100000, loss 12.300912 +INFO 2021-09-19 00:38:23 train.py: 82] Epoch 0, iter 2800/6416, lr 0.100000, loss 12.022937 +INFO 2021-09-19 00:42:14 train.py: 95] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2021-09-19 00:42:14 train.py: 82] Epoch 0, iter 3000/6416, lr 0.100000, loss 11.875123 +INFO 2021-09-19 00:45:50 train.py: 82] Epoch 0, iter 3200/6416, lr 0.100000, loss 11.820335 +INFO 2021-09-19 00:49:47 train.py: 82] Epoch 0, iter 3400/6416, lr 0.100000, loss 11.878041 +INFO 2021-09-19 00:53:36 train.py: 82] Epoch 0, iter 3600/6416, lr 0.100000, loss 12.044552 +INFO 2021-09-19 00:57:38 train.py: 82] Epoch 0, iter 3800/6416, lr 0.100000, loss 12.299685 +INFO 2021-09-19 01:01:13 train.py: 82] Epoch 0, iter 4000/6416, lr 0.100000, loss 12.550010 +INFO 2021-09-19 01:05:16 train.py: 82] Epoch 0, iter 4200/6416, lr 0.100000, loss 12.808782 +INFO 2021-09-19 01:08:58 train.py: 82] Epoch 0, iter 4400/6416, lr 0.100000, loss 13.042086 +INFO 2021-09-19 01:12:37 train.py: 82] Epoch 0, iter 4600/6416, lr 0.100000, loss 13.175337 +INFO 2021-09-19 01:16:21 train.py: 82] Epoch 0, iter 4800/6416, lr 0.100000, loss 13.318335 +INFO 2021-09-19 01:20:08 train.py: 82] Epoch 0, iter 5000/6416, lr 0.100000, loss 13.428427 +INFO 2021-09-19 01:23:32 train.py: 82] Epoch 0, iter 5200/6416, lr 0.100000, loss 13.422494 +INFO 2021-09-19 01:27:30 train.py: 82] Epoch 0, iter 5400/6416, lr 0.100000, loss 13.452501 +INFO 2021-09-19 01:31:27 train.py: 82] Epoch 0, iter 5600/6416, lr 0.100000, loss 13.369404 +INFO 2021-09-19 01:35:01 train.py: 82] Epoch 0, iter 5800/6416, lr 0.100000, loss 13.261045 +INFO 2021-09-19 01:39:14 train.py: 95] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2021-09-19 01:39:14 train.py: 82] Epoch 0, iter 6000/6416, lr 0.100000, loss 13.097086 +INFO 2021-09-19 01:42:54 train.py: 82] Epoch 0, iter 6200/6416, lr 0.100000, loss 12.957289 +INFO 2021-09-19 01:46:18 train.py: 82] Epoch 0, iter 6400/6416, lr 0.100000, loss 12.764238 +INFO 2021-09-19 01:46:39 train.py: 100] Save checkpoint Epoch_0.pt to disk... +INFO 2021-09-19 01:46:40 train.py: 82] Epoch 1, iter 0/6416, lr 0.100000, loss 12.618020 +INFO 2021-09-19 01:47:53 train.py: 82] Epoch 1, iter 200/6416, lr 0.100000, loss 12.325811 +INFO 2021-09-19 01:49:04 train.py: 82] Epoch 1, iter 400/6416, lr 0.100000, loss 12.102500 +INFO 2021-09-19 01:50:15 train.py: 82] Epoch 1, iter 600/6416, lr 0.100000, loss 11.914946 +INFO 2021-09-19 01:51:26 train.py: 82] Epoch 1, iter 800/6416, lr 0.100000, loss 11.784229 +INFO 2021-09-19 01:52:37 train.py: 82] Epoch 1, iter 1000/6416, lr 0.100000, loss 11.561483 +INFO 2021-09-19 01:53:47 train.py: 82] Epoch 1, iter 1200/6416, lr 0.100000, loss 11.398685 +INFO 2021-09-19 01:54:57 train.py: 82] Epoch 1, iter 1400/6416, lr 0.100000, loss 11.213444 +INFO 2021-09-19 01:56:08 train.py: 82] Epoch 1, iter 1600/6416, lr 0.100000, loss 11.016647 +INFO 2021-09-19 01:57:18 train.py: 82] Epoch 1, iter 1800/6416, lr 0.100000, loss 10.871447 +INFO 2021-09-19 01:58:29 train.py: 82] Epoch 1, iter 2000/6416, lr 0.100000, loss 10.704226 +INFO 2021-09-19 01:59:39 train.py: 82] Epoch 1, iter 2200/6416, lr 0.100000, loss 10.543172 +INFO 2021-09-19 02:00:50 train.py: 82] Epoch 1, iter 2400/6416, lr 0.100000, loss 10.367924 +INFO 2021-09-19 02:02:00 train.py: 82] Epoch 1, iter 2600/6416, lr 0.100000, loss 10.193261 +INFO 2021-09-19 02:03:11 train.py: 82] Epoch 1, iter 2800/6416, lr 0.100000, loss 10.093986 +INFO 2021-09-19 02:04:23 train.py: 95] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2021-09-19 02:04:23 train.py: 82] Epoch 1, iter 3000/6416, lr 0.100000, loss 9.908404 +INFO 2021-09-19 02:05:34 train.py: 82] Epoch 1, iter 3200/6416, lr 0.100000, loss 9.804338 +INFO 2021-09-19 02:06:44 train.py: 82] Epoch 1, iter 3400/6416, lr 0.100000, loss 9.675282 +INFO 2021-09-19 02:07:55 train.py: 82] Epoch 1, iter 3600/6416, lr 0.100000, loss 9.550288 +INFO 2021-09-19 02:09:06 train.py: 82] Epoch 1, iter 3800/6416, lr 0.100000, loss 9.452527 +INFO 2021-09-19 02:10:17 train.py: 82] Epoch 1, iter 4000/6416, lr 0.100000, loss 9.356773 +INFO 2021-09-19 02:11:28 train.py: 82] Epoch 1, iter 4200/6416, lr 0.100000, loss 9.235131 +INFO 2021-09-19 02:12:39 train.py: 82] Epoch 1, iter 4400/6416, lr 0.100000, loss 9.129302 +INFO 2021-09-19 02:13:50 train.py: 82] Epoch 1, iter 4600/6416, lr 0.100000, loss 9.039162 +INFO 2021-09-19 02:15:01 train.py: 82] Epoch 1, iter 4800/6416, lr 0.100000, loss 8.975147 +INFO 2021-09-19 02:16:12 train.py: 82] Epoch 1, iter 5000/6416, lr 0.100000, loss 8.865282 +INFO 2021-09-19 02:17:22 train.py: 82] Epoch 1, iter 5200/6416, lr 0.100000, loss 8.826673 +INFO 2021-09-19 02:18:33 train.py: 82] Epoch 1, iter 5400/6416, lr 0.100000, loss 8.713062 +INFO 2021-09-19 02:19:44 train.py: 82] Epoch 1, iter 5600/6416, lr 0.100000, loss 8.662784 +INFO 2021-09-19 02:20:55 train.py: 82] Epoch 1, iter 5800/6416, lr 0.100000, loss 8.612908 +INFO 2021-09-19 02:22:07 train.py: 95] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2021-09-19 02:22:07 train.py: 82] Epoch 1, iter 6000/6416, lr 0.100000, loss 8.511197 +INFO 2021-09-19 02:23:18 train.py: 82] Epoch 1, iter 6200/6416, lr 0.100000, loss 8.440990 +INFO 2021-09-19 02:24:29 train.py: 82] Epoch 1, iter 6400/6416, lr 0.100000, loss 8.394171 +INFO 2021-09-19 02:24:36 train.py: 100] Save checkpoint Epoch_1.pt to disk... +INFO 2021-09-19 02:24:37 train.py: 82] Epoch 2, iter 0/6416, lr 0.100000, loss 8.303778 +INFO 2021-09-19 02:25:48 train.py: 82] Epoch 2, iter 200/6416, lr 0.100000, loss 7.826875 +INFO 2021-09-19 02:26:59 train.py: 82] Epoch 2, iter 400/6416, lr 0.100000, loss 7.754892 +INFO 2021-09-19 02:28:09 train.py: 82] Epoch 2, iter 600/6416, lr 0.100000, loss 7.789363 +INFO 2021-09-19 02:29:19 train.py: 82] Epoch 2, iter 800/6416, lr 0.100000, loss 7.848291 +INFO 2021-09-19 02:30:29 train.py: 82] Epoch 2, iter 1000/6416, lr 0.100000, loss 7.857591 +INFO 2021-09-19 02:31:39 train.py: 82] Epoch 2, iter 1200/6416, lr 0.100000, loss 7.864572 +INFO 2021-09-19 02:32:49 train.py: 82] Epoch 2, iter 1400/6416, lr 0.100000, loss 7.843249 +INFO 2021-09-19 02:34:00 train.py: 82] Epoch 2, iter 1600/6416, lr 0.100000, loss 7.827703 +INFO 2021-09-19 02:35:09 train.py: 82] Epoch 2, iter 1800/6416, lr 0.100000, loss 7.804352 +INFO 2021-09-19 02:36:19 train.py: 82] Epoch 2, iter 2000/6416, lr 0.100000, loss 7.781755 +INFO 2021-09-19 02:37:29 train.py: 82] Epoch 2, iter 2200/6416, lr 0.100000, loss 7.746896 +INFO 2021-09-19 02:38:39 train.py: 82] Epoch 2, iter 2400/6416, lr 0.100000, loss 7.713318 +INFO 2021-09-19 02:39:49 train.py: 82] Epoch 2, iter 2600/6416, lr 0.100000, loss 7.728170 +INFO 2021-09-19 02:41:00 train.py: 82] Epoch 2, iter 2800/6416, lr 0.100000, loss 7.683657 +INFO 2021-09-19 02:42:11 train.py: 95] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2021-09-19 02:42:12 train.py: 82] Epoch 2, iter 3000/6416, lr 0.100000, loss 7.664109 +INFO 2021-09-19 02:43:22 train.py: 82] Epoch 2, iter 3200/6416, lr 0.100000, loss 7.604242 +INFO 2021-09-19 02:44:33 train.py: 82] Epoch 2, iter 3400/6416, lr 0.100000, loss 7.596752 +INFO 2021-09-19 02:45:43 train.py: 82] Epoch 2, iter 3600/6416, lr 0.100000, loss 7.569513 +INFO 2021-09-19 02:46:54 train.py: 82] Epoch 2, iter 3800/6416, lr 0.100000, loss 7.536128 +INFO 2021-09-19 02:48:04 train.py: 82] Epoch 2, iter 4000/6416, lr 0.100000, loss 7.497804 +INFO 2021-09-19 02:49:15 train.py: 82] Epoch 2, iter 4200/6416, lr 0.100000, loss 7.486746 +INFO 2021-09-19 02:50:25 train.py: 82] Epoch 2, iter 4400/6416, lr 0.100000, loss 7.450782 +INFO 2021-09-19 02:51:36 train.py: 82] Epoch 2, iter 4600/6416, lr 0.100000, loss 7.432486 +INFO 2021-09-19 02:52:46 train.py: 82] Epoch 2, iter 4800/6416, lr 0.100000, loss 7.430892 +INFO 2021-09-19 02:53:57 train.py: 82] Epoch 2, iter 5000/6416, lr 0.100000, loss 7.352362 +INFO 2021-09-19 02:55:07 train.py: 82] Epoch 2, iter 5200/6416, lr 0.100000, loss 7.311288 +INFO 2021-09-19 02:56:18 train.py: 82] Epoch 2, iter 5400/6416, lr 0.100000, loss 7.339102 +INFO 2021-09-19 02:57:28 train.py: 82] Epoch 2, iter 5600/6416, lr 0.100000, loss 7.269108 +INFO 2021-09-19 02:58:39 train.py: 82] Epoch 2, iter 5800/6416, lr 0.100000, loss 7.225426 +INFO 2021-09-19 02:59:51 train.py: 95] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2021-09-19 02:59:51 train.py: 82] Epoch 2, iter 6000/6416, lr 0.100000, loss 7.286758 +INFO 2021-09-19 03:01:02 train.py: 82] Epoch 2, iter 6200/6416, lr 0.100000, loss 7.246595 +INFO 2021-09-19 03:02:12 train.py: 82] Epoch 2, iter 6400/6416, lr 0.100000, loss 7.206277 +INFO 2021-09-19 03:02:20 train.py: 100] Save checkpoint Epoch_2.pt to disk... +INFO 2021-09-19 03:02:21 train.py: 82] Epoch 3, iter 0/6416, lr 0.100000, loss 7.128949 +INFO 2021-09-19 03:03:33 train.py: 82] Epoch 3, iter 200/6416, lr 0.100000, loss 6.581805 +INFO 2021-09-19 03:04:44 train.py: 82] Epoch 3, iter 400/6416, lr 0.100000, loss 6.584225 +INFO 2021-09-19 03:05:54 train.py: 82] Epoch 3, iter 600/6416, lr 0.100000, loss 6.645071 +INFO 2021-09-19 03:07:04 train.py: 82] Epoch 3, iter 800/6416, lr 0.100000, loss 6.736682 +INFO 2021-09-19 03:08:14 train.py: 82] Epoch 3, iter 1000/6416, lr 0.100000, loss 6.768208 +INFO 2021-09-19 03:09:24 train.py: 82] Epoch 3, iter 1200/6416, lr 0.100000, loss 6.847166 +INFO 2021-09-19 03:10:35 train.py: 82] Epoch 3, iter 1400/6416, lr 0.100000, loss 6.866416 +INFO 2021-09-19 03:11:45 train.py: 82] Epoch 3, iter 1600/6416, lr 0.100000, loss 6.847016 +INFO 2021-09-19 03:12:55 train.py: 82] Epoch 3, iter 1800/6416, lr 0.100000, loss 6.855584 +INFO 2021-09-19 03:14:06 train.py: 82] Epoch 3, iter 2000/6416, lr 0.100000, loss 6.812305 +INFO 2021-09-19 03:15:16 train.py: 82] Epoch 3, iter 2200/6416, lr 0.100000, loss 6.839051 +INFO 2021-09-19 03:16:26 train.py: 82] Epoch 3, iter 2400/6416, lr 0.100000, loss 6.869794 +INFO 2021-09-19 03:17:37 train.py: 82] Epoch 3, iter 2600/6416, lr 0.100000, loss 6.836675 +INFO 2021-09-19 03:18:47 train.py: 82] Epoch 3, iter 2800/6416, lr 0.100000, loss 6.818048 +INFO 2021-09-19 03:19:59 train.py: 95] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2021-09-19 03:19:59 train.py: 82] Epoch 3, iter 3000/6416, lr 0.100000, loss 6.847676 +INFO 2021-09-19 03:21:10 train.py: 82] Epoch 3, iter 3200/6416, lr 0.100000, loss 6.802153 +INFO 2021-09-19 03:22:20 train.py: 82] Epoch 3, iter 3400/6416, lr 0.100000, loss 6.790721 +INFO 2021-09-19 03:23:31 train.py: 82] Epoch 3, iter 3600/6416, lr 0.100000, loss 6.801906 +INFO 2021-09-19 03:24:42 train.py: 82] Epoch 3, iter 3800/6416, lr 0.100000, loss 6.782529 +INFO 2021-09-19 03:25:52 train.py: 82] Epoch 3, iter 4000/6416, lr 0.100000, loss 6.766145 +INFO 2021-09-19 03:27:03 train.py: 82] Epoch 3, iter 4200/6416, lr 0.100000, loss 6.785294 +INFO 2021-09-19 03:28:13 train.py: 82] Epoch 3, iter 4400/6416, lr 0.100000, loss 6.773862 +INFO 2021-09-19 03:29:23 train.py: 82] Epoch 3, iter 4600/6416, lr 0.100000, loss 6.738414 +INFO 2021-09-19 03:30:33 train.py: 82] Epoch 3, iter 4800/6416, lr 0.100000, loss 6.738544 +INFO 2021-09-19 03:31:44 train.py: 82] Epoch 3, iter 5000/6416, lr 0.100000, loss 6.713134 +INFO 2021-09-19 03:32:54 train.py: 82] Epoch 3, iter 5200/6416, lr 0.100000, loss 6.728994 +INFO 2021-09-19 03:34:05 train.py: 82] Epoch 3, iter 5400/6416, lr 0.100000, loss 6.698849 +INFO 2021-09-19 03:35:15 train.py: 82] Epoch 3, iter 5600/6416, lr 0.100000, loss 6.671636 +INFO 2021-09-19 03:36:26 train.py: 82] Epoch 3, iter 5800/6416, lr 0.100000, loss 6.682286 +INFO 2021-09-19 03:37:37 train.py: 95] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2021-09-19 03:37:38 train.py: 82] Epoch 3, iter 6000/6416, lr 0.100000, loss 6.650610 +INFO 2021-09-19 03:38:49 train.py: 82] Epoch 3, iter 6200/6416, lr 0.100000, loss 6.635904 +INFO 2021-09-19 03:39:59 train.py: 82] Epoch 3, iter 6400/6416, lr 0.100000, loss 6.612389 +INFO 2021-09-19 03:40:07 train.py: 100] Save checkpoint Epoch_3.pt to disk... +INFO 2021-09-19 03:40:08 train.py: 82] Epoch 4, iter 0/6416, lr 0.100000, loss 6.507708 +INFO 2021-09-19 03:41:20 train.py: 82] Epoch 4, iter 200/6416, lr 0.100000, loss 6.112202 +INFO 2021-09-19 03:42:30 train.py: 82] Epoch 4, iter 400/6416, lr 0.100000, loss 6.069352 +INFO 2021-09-19 03:43:40 train.py: 82] Epoch 4, iter 600/6416, lr 0.100000, loss 6.144737 +INFO 2021-09-19 03:44:50 train.py: 82] Epoch 4, iter 800/6416, lr 0.100000, loss 6.188641 +INFO 2021-09-19 03:46:00 train.py: 82] Epoch 4, iter 1000/6416, lr 0.100000, loss 6.255131 +INFO 2021-09-19 03:47:11 train.py: 82] Epoch 4, iter 1200/6416, lr 0.100000, loss 6.280993 +INFO 2021-09-19 03:48:21 train.py: 82] Epoch 4, iter 1400/6416, lr 0.100000, loss 6.317935 +INFO 2021-09-19 03:49:31 train.py: 82] Epoch 4, iter 1600/6416, lr 0.100000, loss 6.309303 +INFO 2021-09-19 03:50:41 train.py: 82] Epoch 4, iter 1800/6416, lr 0.100000, loss 6.352117 +INFO 2021-09-19 03:51:51 train.py: 82] Epoch 4, iter 2000/6416, lr 0.100000, loss 6.355208 +INFO 2021-09-19 03:53:01 train.py: 82] Epoch 4, iter 2200/6416, lr 0.100000, loss 6.379259 +INFO 2021-09-19 03:54:12 train.py: 82] Epoch 4, iter 2400/6416, lr 0.100000, loss 6.392918 +INFO 2021-09-19 03:55:22 train.py: 82] Epoch 4, iter 2600/6416, lr 0.100000, loss 6.390889 +INFO 2021-09-19 03:56:32 train.py: 82] Epoch 4, iter 2800/6416, lr 0.100000, loss 6.382627 +INFO 2021-09-19 03:57:44 train.py: 95] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2021-09-19 03:57:44 train.py: 82] Epoch 4, iter 3000/6416, lr 0.100000, loss 6.359970 +INFO 2021-09-19 03:58:56 train.py: 82] Epoch 4, iter 3200/6416, lr 0.100000, loss 6.383309 +INFO 2021-09-19 04:00:06 train.py: 82] Epoch 4, iter 3400/6416, lr 0.100000, loss 6.387433 +INFO 2021-09-19 04:01:17 train.py: 82] Epoch 4, iter 3600/6416, lr 0.100000, loss 6.395325 +INFO 2021-09-19 04:02:28 train.py: 82] Epoch 4, iter 3800/6416, lr 0.100000, loss 6.368671 +INFO 2021-09-19 04:03:39 train.py: 82] Epoch 4, iter 4000/6416, lr 0.100000, loss 6.366275 +INFO 2021-09-19 04:04:50 train.py: 82] Epoch 4, iter 4200/6416, lr 0.100000, loss 6.349015 +INFO 2021-09-19 04:06:01 train.py: 82] Epoch 4, iter 4400/6416, lr 0.100000, loss 6.357250 +INFO 2021-09-19 04:07:12 train.py: 82] Epoch 4, iter 4600/6416, lr 0.100000, loss 6.359817 +INFO 2021-09-19 04:08:23 train.py: 82] Epoch 4, iter 4800/6416, lr 0.100000, loss 6.328359 +INFO 2021-09-19 04:09:34 train.py: 82] Epoch 4, iter 5000/6416, lr 0.100000, loss 6.354290 +INFO 2021-09-19 04:10:45 train.py: 82] Epoch 4, iter 5200/6416, lr 0.100000, loss 6.340010 +INFO 2021-09-19 04:11:56 train.py: 82] Epoch 4, iter 5400/6416, lr 0.100000, loss 6.299857 +INFO 2021-09-19 04:13:07 train.py: 82] Epoch 4, iter 5600/6416, lr 0.100000, loss 6.309415 +INFO 2021-09-19 04:14:17 train.py: 82] Epoch 4, iter 5800/6416, lr 0.100000, loss 6.294510 +INFO 2021-09-19 04:15:29 train.py: 95] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2021-09-19 04:15:30 train.py: 82] Epoch 4, iter 6000/6416, lr 0.100000, loss 6.297518 +INFO 2021-09-19 04:16:41 train.py: 82] Epoch 4, iter 6200/6416, lr 0.100000, loss 6.246137 +INFO 2021-09-19 04:17:52 train.py: 82] Epoch 4, iter 6400/6416, lr 0.100000, loss 6.279172 +INFO 2021-09-19 04:17:59 train.py: 100] Save checkpoint Epoch_4.pt to disk... +INFO 2021-09-19 04:18:01 train.py: 82] Epoch 5, iter 0/6416, lr 0.100000, loss 6.301932 +INFO 2021-09-19 04:19:12 train.py: 82] Epoch 5, iter 200/6416, lr 0.100000, loss 5.684716 +INFO 2021-09-19 04:20:22 train.py: 82] Epoch 5, iter 400/6416, lr 0.100000, loss 5.695194 +INFO 2021-09-19 04:21:33 train.py: 82] Epoch 5, iter 600/6416, lr 0.100000, loss 5.792845 +INFO 2021-09-19 04:22:43 train.py: 82] Epoch 5, iter 800/6416, lr 0.100000, loss 5.843522 +INFO 2021-09-19 04:23:53 train.py: 82] Epoch 5, iter 1000/6416, lr 0.100000, loss 5.896922 +INFO 2021-09-19 04:25:02 train.py: 82] Epoch 5, iter 1200/6416, lr 0.100000, loss 5.954686 +INFO 2021-09-19 04:26:12 train.py: 82] Epoch 5, iter 1400/6416, lr 0.100000, loss 5.999677 +INFO 2021-09-19 04:27:22 train.py: 82] Epoch 5, iter 1600/6416, lr 0.100000, loss 6.030915 +INFO 2021-09-19 04:28:32 train.py: 82] Epoch 5, iter 1800/6416, lr 0.100000, loss 6.053623 +INFO 2021-09-19 04:29:42 train.py: 82] Epoch 5, iter 2000/6416, lr 0.100000, loss 6.061182 +INFO 2021-09-19 04:30:52 train.py: 82] Epoch 5, iter 2200/6416, lr 0.100000, loss 6.063276 +INFO 2021-09-19 04:32:02 train.py: 82] Epoch 5, iter 2400/6416, lr 0.100000, loss 6.085247 +INFO 2021-09-19 04:33:12 train.py: 82] Epoch 5, iter 2600/6416, lr 0.100000, loss 6.089018 +INFO 2021-09-19 04:34:22 train.py: 82] Epoch 5, iter 2800/6416, lr 0.100000, loss 6.077935 +INFO 2021-09-19 04:35:34 train.py: 95] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2021-09-19 04:35:35 train.py: 82] Epoch 5, iter 3000/6416, lr 0.100000, loss 6.100785 +INFO 2021-09-19 04:36:45 train.py: 82] Epoch 5, iter 3200/6416, lr 0.100000, loss 6.105000 +INFO 2021-09-19 04:37:56 train.py: 82] Epoch 5, iter 3400/6416, lr 0.100000, loss 6.063684 +INFO 2021-09-19 04:39:06 train.py: 82] Epoch 5, iter 3600/6416, lr 0.100000, loss 6.120810 +INFO 2021-09-19 04:40:17 train.py: 82] Epoch 5, iter 3800/6416, lr 0.100000, loss 6.074528 +INFO 2021-09-19 04:41:27 train.py: 82] Epoch 5, iter 4000/6416, lr 0.100000, loss 6.047152 +INFO 2021-09-19 04:42:37 train.py: 82] Epoch 5, iter 4200/6416, lr 0.100000, loss 6.074724 +INFO 2021-09-19 04:43:48 train.py: 82] Epoch 5, iter 4400/6416, lr 0.100000, loss 6.064087 +INFO 2021-09-19 04:44:58 train.py: 82] Epoch 5, iter 4600/6416, lr 0.100000, loss 6.069888 +INFO 2021-09-19 04:46:09 train.py: 82] Epoch 5, iter 4800/6416, lr 0.100000, loss 6.087017 +INFO 2021-09-19 04:47:19 train.py: 82] Epoch 5, iter 5000/6416, lr 0.100000, loss 6.041490 +INFO 2021-09-19 04:48:29 train.py: 82] Epoch 5, iter 5200/6416, lr 0.100000, loss 6.070181 +INFO 2021-09-19 04:49:40 train.py: 82] Epoch 5, iter 5400/6416, lr 0.100000, loss 6.035474 +INFO 2021-09-19 04:50:49 train.py: 82] Epoch 5, iter 5600/6416, lr 0.100000, loss 6.050062 +INFO 2021-09-19 04:52:00 train.py: 82] Epoch 5, iter 5800/6416, lr 0.100000, loss 6.055520 +INFO 2021-09-19 04:53:11 train.py: 95] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2021-09-19 04:53:12 train.py: 82] Epoch 5, iter 6000/6416, lr 0.100000, loss 6.058685 +INFO 2021-09-19 04:54:22 train.py: 82] Epoch 5, iter 6200/6416, lr 0.100000, loss 6.050825 +INFO 2021-09-19 04:55:32 train.py: 82] Epoch 5, iter 6400/6416, lr 0.100000, loss 6.054288 +INFO 2021-09-19 04:55:39 train.py: 100] Save checkpoint Epoch_5.pt to disk... +INFO 2021-09-19 04:55:41 train.py: 82] Epoch 6, iter 0/6416, lr 0.100000, loss 6.046018 +INFO 2021-09-19 04:56:52 train.py: 82] Epoch 6, iter 200/6416, lr 0.100000, loss 5.513563 +INFO 2021-09-19 04:58:02 train.py: 82] Epoch 6, iter 400/6416, lr 0.100000, loss 5.459075 +INFO 2021-09-19 04:59:13 train.py: 82] Epoch 6, iter 600/6416, lr 0.100000, loss 5.533977 +INFO 2021-09-19 05:00:23 train.py: 82] Epoch 6, iter 800/6416, lr 0.100000, loss 5.622576 +INFO 2021-09-19 05:01:33 train.py: 82] Epoch 6, iter 1000/6416, lr 0.100000, loss 5.693591 +INFO 2021-09-19 05:02:44 train.py: 82] Epoch 6, iter 1200/6416, lr 0.100000, loss 5.736691 +INFO 2021-09-19 05:03:54 train.py: 82] Epoch 6, iter 1400/6416, lr 0.100000, loss 5.789540 +INFO 2021-09-19 05:05:04 train.py: 82] Epoch 6, iter 1600/6416, lr 0.100000, loss 5.796751 +INFO 2021-09-19 05:06:14 train.py: 82] Epoch 6, iter 1800/6416, lr 0.100000, loss 5.809555 +INFO 2021-09-19 05:07:25 train.py: 82] Epoch 6, iter 2000/6416, lr 0.100000, loss 5.840025 +INFO 2021-09-19 05:08:35 train.py: 82] Epoch 6, iter 2200/6416, lr 0.100000, loss 5.816417 +INFO 2021-09-19 05:09:46 train.py: 82] Epoch 6, iter 2400/6416, lr 0.100000, loss 5.868867 +INFO 2021-09-19 05:10:56 train.py: 82] Epoch 6, iter 2600/6416, lr 0.100000, loss 5.883127 +INFO 2021-09-19 05:12:07 train.py: 82] Epoch 6, iter 2800/6416, lr 0.100000, loss 5.887144 +INFO 2021-09-19 05:13:18 train.py: 95] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2021-09-19 05:13:19 train.py: 82] Epoch 6, iter 3000/6416, lr 0.100000, loss 5.866807 +INFO 2021-09-19 05:14:29 train.py: 82] Epoch 6, iter 3200/6416, lr 0.100000, loss 5.884314 +INFO 2021-09-19 05:15:40 train.py: 82] Epoch 6, iter 3400/6416, lr 0.100000, loss 5.867385 +INFO 2021-09-19 05:16:50 train.py: 82] Epoch 6, iter 3600/6416, lr 0.100000, loss 5.894966 +INFO 2021-09-19 05:18:01 train.py: 82] Epoch 6, iter 3800/6416, lr 0.100000, loss 5.879976 +INFO 2021-09-19 05:19:12 train.py: 82] Epoch 6, iter 4000/6416, lr 0.100000, loss 5.874800 +INFO 2021-09-19 05:20:22 train.py: 82] Epoch 6, iter 4200/6416, lr 0.100000, loss 5.871449 +INFO 2021-09-19 05:21:33 train.py: 82] Epoch 6, iter 4400/6416, lr 0.100000, loss 5.916727 +INFO 2021-09-19 05:22:44 train.py: 82] Epoch 6, iter 4600/6416, lr 0.100000, loss 5.909396 +INFO 2021-09-19 05:23:55 train.py: 82] Epoch 6, iter 4800/6416, lr 0.100000, loss 5.878181 +INFO 2021-09-19 05:25:06 train.py: 82] Epoch 6, iter 5000/6416, lr 0.100000, loss 5.872513 +INFO 2021-09-19 05:26:17 train.py: 82] Epoch 6, iter 5200/6416, lr 0.100000, loss 5.869475 +INFO 2021-09-19 05:27:27 train.py: 82] Epoch 6, iter 5400/6416, lr 0.100000, loss 5.900326 +INFO 2021-09-19 05:28:38 train.py: 82] Epoch 6, iter 5600/6416, lr 0.100000, loss 5.877262 +INFO 2021-09-19 05:29:49 train.py: 82] Epoch 6, iter 5800/6416, lr 0.100000, loss 5.860929 +INFO 2021-09-19 05:31:01 train.py: 95] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2021-09-19 05:31:01 train.py: 82] Epoch 6, iter 6000/6416, lr 0.100000, loss 5.850844 +INFO 2021-09-19 05:32:12 train.py: 82] Epoch 6, iter 6200/6416, lr 0.100000, loss 5.822910 +INFO 2021-09-19 05:33:22 train.py: 82] Epoch 6, iter 6400/6416, lr 0.100000, loss 5.860385 +INFO 2021-09-19 05:33:29 train.py: 100] Save checkpoint Epoch_6.pt to disk... +INFO 2021-09-19 05:33:31 train.py: 82] Epoch 7, iter 0/6416, lr 0.100000, loss 5.900809 +INFO 2021-09-19 05:34:42 train.py: 82] Epoch 7, iter 200/6416, lr 0.100000, loss 5.303712 +INFO 2021-09-19 05:35:52 train.py: 82] Epoch 7, iter 400/6416, lr 0.100000, loss 5.308420 +INFO 2021-09-19 05:37:03 train.py: 82] Epoch 7, iter 600/6416, lr 0.100000, loss 5.406546 +INFO 2021-09-19 05:38:13 train.py: 82] Epoch 7, iter 800/6416, lr 0.100000, loss 5.441214 +INFO 2021-09-19 05:39:23 train.py: 82] Epoch 7, iter 1000/6416, lr 0.100000, loss 5.521501 +INFO 2021-09-19 05:40:32 train.py: 82] Epoch 7, iter 1200/6416, lr 0.100000, loss 5.527788 +INFO 2021-09-19 05:41:42 train.py: 82] Epoch 7, iter 1400/6416, lr 0.100000, loss 5.596058 +INFO 2021-09-19 05:42:52 train.py: 82] Epoch 7, iter 1600/6416, lr 0.100000, loss 5.715074 +INFO 2021-09-19 05:44:02 train.py: 82] Epoch 7, iter 1800/6416, lr 0.100000, loss 5.660813 +INFO 2021-09-19 05:45:12 train.py: 82] Epoch 7, iter 2000/6416, lr 0.100000, loss 5.705364 +INFO 2021-09-19 05:46:22 train.py: 82] Epoch 7, iter 2200/6416, lr 0.100000, loss 5.725795 +INFO 2021-09-19 05:47:31 train.py: 82] Epoch 7, iter 2400/6416, lr 0.100000, loss 5.720624 +INFO 2021-09-19 05:48:41 train.py: 82] Epoch 7, iter 2600/6416, lr 0.100000, loss 5.712527 +INFO 2021-09-19 05:49:51 train.py: 82] Epoch 7, iter 2800/6416, lr 0.100000, loss 5.734387 +INFO 2021-09-19 05:51:02 train.py: 95] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2021-09-19 05:51:02 train.py: 82] Epoch 7, iter 3000/6416, lr 0.100000, loss 5.729689 +INFO 2021-09-19 05:52:12 train.py: 82] Epoch 7, iter 3200/6416, lr 0.100000, loss 5.734296 +INFO 2021-09-19 05:53:22 train.py: 82] Epoch 7, iter 3400/6416, lr 0.100000, loss 5.717445 +INFO 2021-09-19 05:54:32 train.py: 82] Epoch 7, iter 3600/6416, lr 0.100000, loss 5.751255 +INFO 2021-09-19 05:55:42 train.py: 82] Epoch 7, iter 3800/6416, lr 0.100000, loss 5.737377 +INFO 2021-09-19 05:56:52 train.py: 82] Epoch 7, iter 4000/6416, lr 0.100000, loss 5.735906 +INFO 2021-09-19 05:58:01 train.py: 82] Epoch 7, iter 4200/6416, lr 0.100000, loss 5.757196 +INFO 2021-09-19 05:59:11 train.py: 82] Epoch 7, iter 4400/6416, lr 0.100000, loss 5.735972 +INFO 2021-09-19 06:00:21 train.py: 82] Epoch 7, iter 4600/6416, lr 0.100000, loss 5.732712 +INFO 2021-09-19 06:01:30 train.py: 82] Epoch 7, iter 4800/6416, lr 0.100000, loss 5.735229 +INFO 2021-09-19 06:02:41 train.py: 82] Epoch 7, iter 5000/6416, lr 0.100000, loss 5.750493 +INFO 2021-09-19 06:03:51 train.py: 82] Epoch 7, iter 5200/6416, lr 0.100000, loss 5.755233 +INFO 2021-09-19 06:05:01 train.py: 82] Epoch 7, iter 5400/6416, lr 0.100000, loss 5.745013 +INFO 2021-09-19 06:06:11 train.py: 82] Epoch 7, iter 5600/6416, lr 0.100000, loss 5.735132 +INFO 2021-09-19 06:07:21 train.py: 82] Epoch 7, iter 5800/6416, lr 0.100000, loss 5.723073 +INFO 2021-09-19 06:08:32 train.py: 95] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2021-09-19 06:08:33 train.py: 82] Epoch 7, iter 6000/6416, lr 0.100000, loss 5.722929 +INFO 2021-09-19 06:09:43 train.py: 82] Epoch 7, iter 6200/6416, lr 0.100000, loss 5.747271 +INFO 2021-09-19 06:10:52 train.py: 82] Epoch 7, iter 6400/6416, lr 0.100000, loss 5.672806 +INFO 2021-09-19 06:10:59 train.py: 100] Save checkpoint Epoch_7.pt to disk... +INFO 2021-09-19 06:11:01 train.py: 82] Epoch 8, iter 0/6416, lr 0.100000, loss 5.689348 +INFO 2021-09-19 06:12:11 train.py: 82] Epoch 8, iter 200/6416, lr 0.100000, loss 5.139348 +INFO 2021-09-19 06:13:22 train.py: 82] Epoch 8, iter 400/6416, lr 0.100000, loss 5.120587 +INFO 2021-09-19 06:14:32 train.py: 82] Epoch 8, iter 600/6416, lr 0.100000, loss 5.272039 +INFO 2021-09-19 06:15:42 train.py: 82] Epoch 8, iter 800/6416, lr 0.100000, loss 5.316755 +INFO 2021-09-19 06:16:52 train.py: 82] Epoch 8, iter 1000/6416, lr 0.100000, loss 5.359534 +INFO 2021-09-19 06:18:02 train.py: 82] Epoch 8, iter 1200/6416, lr 0.100000, loss 5.427262 +INFO 2021-09-19 06:19:12 train.py: 82] Epoch 8, iter 1400/6416, lr 0.100000, loss 5.492239 +INFO 2021-09-19 06:20:22 train.py: 82] Epoch 8, iter 1600/6416, lr 0.100000, loss 5.485799 +INFO 2021-09-19 06:21:32 train.py: 82] Epoch 8, iter 1800/6416, lr 0.100000, loss 5.513596 +INFO 2021-09-19 06:22:42 train.py: 82] Epoch 8, iter 2000/6416, lr 0.100000, loss 5.530857 +INFO 2021-09-19 06:23:52 train.py: 82] Epoch 8, iter 2200/6416, lr 0.100000, loss 5.560761 +INFO 2021-09-19 06:25:02 train.py: 82] Epoch 8, iter 2400/6416, lr 0.100000, loss 5.567073 +INFO 2021-09-19 06:26:12 train.py: 82] Epoch 8, iter 2600/6416, lr 0.100000, loss 5.558556 +INFO 2021-09-19 06:27:22 train.py: 82] Epoch 8, iter 2800/6416, lr 0.100000, loss 5.589994 +INFO 2021-09-19 06:28:33 train.py: 95] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2021-09-19 06:28:33 train.py: 82] Epoch 8, iter 3000/6416, lr 0.100000, loss 5.581484 +INFO 2021-09-19 06:29:44 train.py: 82] Epoch 8, iter 3200/6416, lr 0.100000, loss 5.609827 +INFO 2021-09-19 06:30:54 train.py: 82] Epoch 8, iter 3400/6416, lr 0.100000, loss 5.623524 +INFO 2021-09-19 06:32:04 train.py: 82] Epoch 8, iter 3600/6416, lr 0.100000, loss 5.612797 +INFO 2021-09-19 06:33:14 train.py: 82] Epoch 8, iter 3800/6416, lr 0.100000, loss 5.624250 +INFO 2021-09-19 06:34:24 train.py: 82] Epoch 8, iter 4000/6416, lr 0.100000, loss 5.628313 +INFO 2021-09-19 06:35:34 train.py: 82] Epoch 8, iter 4200/6416, lr 0.100000, loss 5.629772 +INFO 2021-09-19 06:36:44 train.py: 82] Epoch 8, iter 4400/6416, lr 0.100000, loss 5.593678 +INFO 2021-09-19 06:37:55 train.py: 82] Epoch 8, iter 4600/6416, lr 0.100000, loss 5.600658 +INFO 2021-09-19 06:39:05 train.py: 82] Epoch 8, iter 4800/6416, lr 0.100000, loss 5.590963 +INFO 2021-09-19 06:40:15 train.py: 82] Epoch 8, iter 5000/6416, lr 0.100000, loss 5.596903 +INFO 2021-09-19 06:41:24 train.py: 82] Epoch 8, iter 5200/6416, lr 0.100000, loss 5.605292 +INFO 2021-09-19 06:42:35 train.py: 82] Epoch 8, iter 5400/6416, lr 0.100000, loss 5.584203 +INFO 2021-09-19 06:43:45 train.py: 82] Epoch 8, iter 5600/6416, lr 0.100000, loss 5.630040 +INFO 2021-09-19 06:44:55 train.py: 82] Epoch 8, iter 5800/6416, lr 0.100000, loss 5.641527 +INFO 2021-09-19 06:46:07 train.py: 95] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2021-09-19 06:46:07 train.py: 82] Epoch 8, iter 6000/6416, lr 0.100000, loss 5.579319 +INFO 2021-09-19 06:47:17 train.py: 82] Epoch 8, iter 6200/6416, lr 0.100000, loss 5.588082 +INFO 2021-09-19 06:48:27 train.py: 82] Epoch 8, iter 6400/6416, lr 0.100000, loss 5.612361 +INFO 2021-09-19 06:48:34 train.py: 100] Save checkpoint Epoch_8.pt to disk... +INFO 2021-09-19 06:48:36 train.py: 82] Epoch 9, iter 0/6416, lr 0.100000, loss 5.660765 +INFO 2021-09-19 06:49:46 train.py: 82] Epoch 9, iter 200/6416, lr 0.100000, loss 5.054737 +INFO 2021-09-19 06:50:56 train.py: 82] Epoch 9, iter 400/6416, lr 0.100000, loss 5.013385 +INFO 2021-09-19 06:52:06 train.py: 82] Epoch 9, iter 600/6416, lr 0.100000, loss 5.127389 +INFO 2021-09-19 06:53:16 train.py: 82] Epoch 9, iter 800/6416, lr 0.100000, loss 5.228197 +INFO 2021-09-19 06:54:26 train.py: 82] Epoch 9, iter 1000/6416, lr 0.100000, loss 5.265991 +INFO 2021-09-19 06:55:35 train.py: 82] Epoch 9, iter 1200/6416, lr 0.100000, loss 5.321754 +INFO 2021-09-19 06:56:46 train.py: 82] Epoch 9, iter 1400/6416, lr 0.100000, loss 5.329900 +INFO 2021-09-19 06:57:56 train.py: 82] Epoch 9, iter 1600/6416, lr 0.100000, loss 5.378988 +INFO 2021-09-19 06:59:06 train.py: 82] Epoch 9, iter 1800/6416, lr 0.100000, loss 5.380778 +INFO 2021-09-19 07:00:15 train.py: 82] Epoch 9, iter 2000/6416, lr 0.100000, loss 5.445940 +INFO 2021-09-19 07:01:25 train.py: 82] Epoch 9, iter 2200/6416, lr 0.100000, loss 5.484453 +INFO 2021-09-19 07:02:35 train.py: 82] Epoch 9, iter 2400/6416, lr 0.100000, loss 5.484496 +INFO 2021-09-19 07:03:45 train.py: 82] Epoch 9, iter 2600/6416, lr 0.100000, loss 5.500321 +INFO 2021-09-19 07:04:55 train.py: 82] Epoch 9, iter 2800/6416, lr 0.100000, loss 5.466910 +INFO 2021-09-19 07:06:07 train.py: 95] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2021-09-19 07:06:07 train.py: 82] Epoch 9, iter 3000/6416, lr 0.100000, loss 5.516197 +INFO 2021-09-19 07:07:17 train.py: 82] Epoch 9, iter 3200/6416, lr 0.100000, loss 5.525093 +INFO 2021-09-19 07:08:27 train.py: 82] Epoch 9, iter 3400/6416, lr 0.100000, loss 5.508861 +INFO 2021-09-19 07:09:37 train.py: 82] Epoch 9, iter 3600/6416, lr 0.100000, loss 5.473113 +INFO 2021-09-19 07:10:47 train.py: 82] Epoch 9, iter 3800/6416, lr 0.100000, loss 5.498541 +INFO 2021-09-19 07:11:57 train.py: 82] Epoch 9, iter 4000/6416, lr 0.100000, loss 5.509012 +INFO 2021-09-19 07:13:08 train.py: 82] Epoch 9, iter 4200/6416, lr 0.100000, loss 5.495477 +INFO 2021-09-19 07:14:18 train.py: 82] Epoch 9, iter 4400/6416, lr 0.100000, loss 5.479660 +INFO 2021-09-19 07:15:28 train.py: 82] Epoch 9, iter 4600/6416, lr 0.100000, loss 5.527653 +INFO 2021-09-19 07:16:39 train.py: 82] Epoch 9, iter 4800/6416, lr 0.100000, loss 5.513913 +INFO 2021-09-19 07:17:49 train.py: 82] Epoch 9, iter 5000/6416, lr 0.100000, loss 5.516574 +INFO 2021-09-19 07:18:59 train.py: 82] Epoch 9, iter 5200/6416, lr 0.100000, loss 5.549802 +INFO 2021-09-19 07:20:09 train.py: 82] Epoch 9, iter 5400/6416, lr 0.100000, loss 5.558803 +INFO 2021-09-19 07:21:20 train.py: 82] Epoch 9, iter 5600/6416, lr 0.100000, loss 5.499242 +INFO 2021-09-19 07:22:30 train.py: 82] Epoch 9, iter 5800/6416, lr 0.100000, loss 5.509315 +INFO 2021-09-19 07:23:41 train.py: 95] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2021-09-19 07:23:41 train.py: 82] Epoch 9, iter 6000/6416, lr 0.100000, loss 5.523698 +INFO 2021-09-19 07:24:52 train.py: 82] Epoch 9, iter 6200/6416, lr 0.100000, loss 5.465705 +INFO 2021-09-19 07:26:02 train.py: 82] Epoch 9, iter 6400/6416, lr 0.100000, loss 5.497083 +INFO 2021-09-19 07:26:09 train.py: 100] Save checkpoint Epoch_9.pt to disk... +INFO 2021-09-19 07:26:11 train.py: 82] Epoch 10, iter 0/6416, lr 0.010000, loss 5.432965 +INFO 2021-09-19 07:27:21 train.py: 82] Epoch 10, iter 200/6416, lr 0.010000, loss 4.352161 +INFO 2021-09-19 07:28:31 train.py: 82] Epoch 10, iter 400/6416, lr 0.010000, loss 4.064512 +INFO 2021-09-19 07:29:40 train.py: 82] Epoch 10, iter 600/6416, lr 0.010000, loss 3.970171 +INFO 2021-09-19 07:30:50 train.py: 82] Epoch 10, iter 800/6416, lr 0.010000, loss 3.887686 +INFO 2021-09-19 07:32:00 train.py: 82] Epoch 10, iter 1000/6416, lr 0.010000, loss 3.853635 +INFO 2021-09-19 07:33:09 train.py: 82] Epoch 10, iter 1200/6416, lr 0.010000, loss 3.802465 +INFO 2021-09-19 07:34:19 train.py: 82] Epoch 10, iter 1400/6416, lr 0.010000, loss 3.778143 +INFO 2021-09-19 07:35:29 train.py: 82] Epoch 10, iter 1600/6416, lr 0.010000, loss 3.721591 +INFO 2021-09-19 07:36:39 train.py: 82] Epoch 10, iter 1800/6416, lr 0.010000, loss 3.718536 +INFO 2021-09-19 07:37:48 train.py: 82] Epoch 10, iter 2000/6416, lr 0.010000, loss 3.645258 +INFO 2021-09-19 07:38:58 train.py: 82] Epoch 10, iter 2200/6416, lr 0.010000, loss 3.630993 +INFO 2021-09-19 07:40:08 train.py: 82] Epoch 10, iter 2400/6416, lr 0.010000, loss 3.595042 +INFO 2021-09-19 07:41:18 train.py: 82] Epoch 10, iter 2600/6416, lr 0.010000, loss 3.597292 +INFO 2021-09-19 07:42:28 train.py: 82] Epoch 10, iter 2800/6416, lr 0.010000, loss 3.544022 +INFO 2021-09-19 07:43:39 train.py: 95] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2021-09-19 07:43:39 train.py: 82] Epoch 10, iter 3000/6416, lr 0.010000, loss 3.547099 +INFO 2021-09-19 07:44:49 train.py: 82] Epoch 10, iter 3200/6416, lr 0.010000, loss 3.520643 +INFO 2021-09-19 07:45:59 train.py: 82] Epoch 10, iter 3400/6416, lr 0.010000, loss 3.497581 +INFO 2021-09-19 07:47:09 train.py: 82] Epoch 10, iter 3600/6416, lr 0.010000, loss 3.448916 +INFO 2021-09-19 07:48:18 train.py: 82] Epoch 10, iter 3800/6416, lr 0.010000, loss 3.445067 +INFO 2021-09-19 07:49:29 train.py: 82] Epoch 10, iter 4000/6416, lr 0.010000, loss 3.460121 +INFO 2021-09-19 07:50:39 train.py: 82] Epoch 10, iter 4200/6416, lr 0.010000, loss 3.419068 +INFO 2021-09-19 07:51:48 train.py: 82] Epoch 10, iter 4400/6416, lr 0.010000, loss 3.389921 +INFO 2021-09-19 07:52:58 train.py: 82] Epoch 10, iter 4600/6416, lr 0.010000, loss 3.432742 +INFO 2021-09-19 07:54:08 train.py: 82] Epoch 10, iter 4800/6416, lr 0.010000, loss 3.401298 +INFO 2021-09-19 07:55:18 train.py: 82] Epoch 10, iter 5000/6416, lr 0.010000, loss 3.360272 +INFO 2021-09-19 07:56:28 train.py: 82] Epoch 10, iter 5200/6416, lr 0.010000, loss 3.364981 +INFO 2021-09-19 07:57:38 train.py: 82] Epoch 10, iter 5400/6416, lr 0.010000, loss 3.355302 +INFO 2021-09-19 07:58:47 train.py: 82] Epoch 10, iter 5600/6416, lr 0.010000, loss 3.317275 +INFO 2021-09-19 07:59:58 train.py: 82] Epoch 10, iter 5800/6416, lr 0.010000, loss 3.311607 +INFO 2021-09-19 08:01:09 train.py: 95] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2021-09-19 08:01:09 train.py: 82] Epoch 10, iter 6000/6416, lr 0.010000, loss 3.330219 +INFO 2021-09-19 08:02:19 train.py: 82] Epoch 10, iter 6200/6416, lr 0.010000, loss 3.289577 +INFO 2021-09-19 08:03:29 train.py: 82] Epoch 10, iter 6400/6416, lr 0.010000, loss 3.298895 +INFO 2021-09-19 08:03:36 train.py: 100] Save checkpoint Epoch_10.pt to disk... +INFO 2021-09-19 08:03:38 train.py: 82] Epoch 11, iter 0/6416, lr 0.010000, loss 3.216603 +INFO 2021-09-19 08:04:48 train.py: 82] Epoch 11, iter 200/6416, lr 0.010000, loss 2.958152 +INFO 2021-09-19 08:05:58 train.py: 82] Epoch 11, iter 400/6416, lr 0.010000, loss 2.955029 +INFO 2021-09-19 08:07:07 train.py: 82] Epoch 11, iter 600/6416, lr 0.010000, loss 2.951972 +INFO 2021-09-19 08:08:17 train.py: 82] Epoch 11, iter 800/6416, lr 0.010000, loss 2.940289 +INFO 2021-09-19 08:09:27 train.py: 82] Epoch 11, iter 1000/6416, lr 0.010000, loss 2.948962 +INFO 2021-09-19 08:10:37 train.py: 82] Epoch 11, iter 1200/6416, lr 0.010000, loss 2.962738 +INFO 2021-09-19 08:11:47 train.py: 82] Epoch 11, iter 1400/6416, lr 0.010000, loss 2.962874 +INFO 2021-09-19 08:12:58 train.py: 82] Epoch 11, iter 1600/6416, lr 0.010000, loss 2.984128 +INFO 2021-09-19 08:14:08 train.py: 82] Epoch 11, iter 1800/6416, lr 0.010000, loss 2.991319 +INFO 2021-09-19 08:15:18 train.py: 82] Epoch 11, iter 2000/6416, lr 0.010000, loss 2.961891 +INFO 2021-09-19 08:16:28 train.py: 82] Epoch 11, iter 2200/6416, lr 0.010000, loss 2.947934 +INFO 2021-09-19 08:17:38 train.py: 82] Epoch 11, iter 2400/6416, lr 0.010000, loss 2.942955 +INFO 2021-09-19 08:18:49 train.py: 82] Epoch 11, iter 2600/6416, lr 0.010000, loss 2.948131 +INFO 2021-09-19 08:19:59 train.py: 82] Epoch 11, iter 2800/6416, lr 0.010000, loss 2.962273 +INFO 2021-09-19 08:21:11 train.py: 95] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2021-09-19 08:21:12 train.py: 82] Epoch 11, iter 3000/6416, lr 0.010000, loss 2.938132 +INFO 2021-09-19 08:22:22 train.py: 82] Epoch 11, iter 3200/6416, lr 0.010000, loss 2.972156 +INFO 2021-09-19 08:23:33 train.py: 82] Epoch 11, iter 3400/6416, lr 0.010000, loss 2.978951 +INFO 2021-09-19 08:24:44 train.py: 82] Epoch 11, iter 3600/6416, lr 0.010000, loss 2.975123 +INFO 2021-09-19 08:25:54 train.py: 82] Epoch 11, iter 3800/6416, lr 0.010000, loss 2.976828 +INFO 2021-09-19 08:27:05 train.py: 82] Epoch 11, iter 4000/6416, lr 0.010000, loss 2.977453 +INFO 2021-09-19 08:28:16 train.py: 82] Epoch 11, iter 4200/6416, lr 0.010000, loss 2.983852 +INFO 2021-09-19 08:29:26 train.py: 82] Epoch 11, iter 4400/6416, lr 0.010000, loss 2.948758 +INFO 2021-09-19 08:30:37 train.py: 82] Epoch 11, iter 4600/6416, lr 0.010000, loss 2.947861 +INFO 2021-09-19 08:31:47 train.py: 82] Epoch 11, iter 4800/6416, lr 0.010000, loss 2.943177 +INFO 2021-09-19 08:32:57 train.py: 82] Epoch 11, iter 5000/6416, lr 0.010000, loss 2.963660 +INFO 2021-09-19 08:34:08 train.py: 82] Epoch 11, iter 5200/6416, lr 0.010000, loss 2.960780 +INFO 2021-09-19 08:35:18 train.py: 82] Epoch 11, iter 5400/6416, lr 0.010000, loss 2.955101 +INFO 2021-09-19 08:36:29 train.py: 82] Epoch 11, iter 5600/6416, lr 0.010000, loss 2.963177 +INFO 2021-09-19 08:37:39 train.py: 82] Epoch 11, iter 5800/6416, lr 0.010000, loss 2.951466 +INFO 2021-09-19 08:38:51 train.py: 95] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2021-09-19 08:38:51 train.py: 82] Epoch 11, iter 6000/6416, lr 0.010000, loss 2.960908 +INFO 2021-09-19 08:40:02 train.py: 82] Epoch 11, iter 6200/6416, lr 0.010000, loss 2.986121 +INFO 2021-09-19 08:41:12 train.py: 82] Epoch 11, iter 6400/6416, lr 0.010000, loss 2.946486 +INFO 2021-09-19 08:41:19 train.py: 100] Save checkpoint Epoch_11.pt to disk... +INFO 2021-09-19 08:41:21 train.py: 82] Epoch 12, iter 0/6416, lr 0.010000, loss 2.942438 +INFO 2021-09-19 08:42:31 train.py: 82] Epoch 12, iter 200/6416, lr 0.010000, loss 2.644667 +INFO 2021-09-19 08:43:41 train.py: 82] Epoch 12, iter 400/6416, lr 0.010000, loss 2.637221 +INFO 2021-09-19 08:44:50 train.py: 82] Epoch 12, iter 600/6416, lr 0.010000, loss 2.631070 +INFO 2021-09-19 08:46:00 train.py: 82] Epoch 12, iter 800/6416, lr 0.010000, loss 2.656773 +INFO 2021-09-19 08:47:10 train.py: 82] Epoch 12, iter 1000/6416, lr 0.010000, loss 2.644617 +INFO 2021-09-19 08:48:20 train.py: 82] Epoch 12, iter 1200/6416, lr 0.010000, loss 2.670818 +INFO 2021-09-19 08:49:30 train.py: 82] Epoch 12, iter 1400/6416, lr 0.010000, loss 2.695057 +INFO 2021-09-19 08:50:40 train.py: 82] Epoch 12, iter 1600/6416, lr 0.010000, loss 2.681815 +INFO 2021-09-19 08:51:50 train.py: 82] Epoch 12, iter 1800/6416, lr 0.010000, loss 2.692749 +INFO 2021-09-19 08:53:00 train.py: 82] Epoch 12, iter 2000/6416, lr 0.010000, loss 2.702770 +INFO 2021-09-19 08:54:10 train.py: 82] Epoch 12, iter 2200/6416, lr 0.010000, loss 2.705044 +INFO 2021-09-19 08:55:21 train.py: 82] Epoch 12, iter 2400/6416, lr 0.010000, loss 2.726312 +INFO 2021-09-19 08:56:31 train.py: 82] Epoch 12, iter 2600/6416, lr 0.010000, loss 2.735580 +INFO 2021-09-19 08:57:41 train.py: 82] Epoch 12, iter 2800/6416, lr 0.010000, loss 2.729822 +INFO 2021-09-19 08:58:52 train.py: 95] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2021-09-19 08:58:53 train.py: 82] Epoch 12, iter 3000/6416, lr 0.010000, loss 2.733575 +INFO 2021-09-19 09:00:03 train.py: 82] Epoch 12, iter 3200/6416, lr 0.010000, loss 2.732999 +INFO 2021-09-19 09:01:13 train.py: 82] Epoch 12, iter 3400/6416, lr 0.010000, loss 2.777878 +INFO 2021-09-19 09:02:24 train.py: 82] Epoch 12, iter 3600/6416, lr 0.010000, loss 2.769897 +INFO 2021-09-19 09:03:35 train.py: 82] Epoch 12, iter 3800/6416, lr 0.010000, loss 2.767126 +INFO 2021-09-19 09:04:45 train.py: 82] Epoch 12, iter 4000/6416, lr 0.010000, loss 2.756580 +INFO 2021-09-19 09:05:55 train.py: 82] Epoch 12, iter 4200/6416, lr 0.010000, loss 2.773906 +INFO 2021-09-19 09:07:05 train.py: 82] Epoch 12, iter 4400/6416, lr 0.010000, loss 2.785596 +INFO 2021-09-19 09:08:16 train.py: 82] Epoch 12, iter 4600/6416, lr 0.010000, loss 2.805755 +INFO 2021-09-19 09:09:27 train.py: 82] Epoch 12, iter 4800/6416, lr 0.010000, loss 2.792646 +INFO 2021-09-19 09:10:37 train.py: 82] Epoch 12, iter 5000/6416, lr 0.010000, loss 2.785725 +INFO 2021-09-19 09:11:47 train.py: 82] Epoch 12, iter 5200/6416, lr 0.010000, loss 2.791236 +INFO 2021-09-19 09:12:58 train.py: 82] Epoch 12, iter 5400/6416, lr 0.010000, loss 2.805673 +INFO 2021-09-19 09:14:08 train.py: 82] Epoch 12, iter 5600/6416, lr 0.010000, loss 2.823273 +INFO 2021-09-19 09:15:18 train.py: 82] Epoch 12, iter 5800/6416, lr 0.010000, loss 2.808817 +INFO 2021-09-19 09:16:29 train.py: 95] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2021-09-19 09:16:30 train.py: 82] Epoch 12, iter 6000/6416, lr 0.010000, loss 2.821896 +INFO 2021-09-19 09:17:41 train.py: 82] Epoch 12, iter 6200/6416, lr 0.010000, loss 2.825202 +INFO 2021-09-19 09:18:51 train.py: 82] Epoch 12, iter 6400/6416, lr 0.010000, loss 2.815725 +INFO 2021-09-19 09:18:58 train.py: 100] Save checkpoint Epoch_12.pt to disk... +INFO 2021-09-19 09:19:00 train.py: 82] Epoch 13, iter 0/6416, lr 0.001000, loss 2.800413 +INFO 2021-09-19 09:20:10 train.py: 82] Epoch 13, iter 200/6416, lr 0.001000, loss 2.413482 +INFO 2021-09-19 09:21:20 train.py: 82] Epoch 13, iter 400/6416, lr 0.001000, loss 2.380512 +INFO 2021-09-19 09:22:30 train.py: 82] Epoch 13, iter 600/6416, lr 0.001000, loss 2.390611 +INFO 2021-09-19 09:23:40 train.py: 82] Epoch 13, iter 800/6416, lr 0.001000, loss 2.357303 +INFO 2021-09-19 09:24:50 train.py: 82] Epoch 13, iter 1000/6416, lr 0.001000, loss 2.386323 +INFO 2021-09-19 09:25:59 train.py: 82] Epoch 13, iter 1200/6416, lr 0.001000, loss 2.369664 +INFO 2021-09-19 09:27:09 train.py: 82] Epoch 13, iter 1400/6416, lr 0.001000, loss 2.366166 +INFO 2021-09-19 09:28:20 train.py: 82] Epoch 13, iter 1600/6416, lr 0.001000, loss 2.361037 +INFO 2021-09-19 09:29:30 train.py: 82] Epoch 13, iter 1800/6416, lr 0.001000, loss 2.376281 +INFO 2021-09-19 09:30:39 train.py: 82] Epoch 13, iter 2000/6416, lr 0.001000, loss 2.378462 +INFO 2021-09-19 09:31:49 train.py: 82] Epoch 13, iter 2200/6416, lr 0.001000, loss 2.376838 +INFO 2021-09-19 09:32:59 train.py: 82] Epoch 13, iter 2400/6416, lr 0.001000, loss 2.365319 +INFO 2021-09-19 09:34:09 train.py: 82] Epoch 13, iter 2600/6416, lr 0.001000, loss 2.356722 +INFO 2021-09-19 09:35:19 train.py: 82] Epoch 13, iter 2800/6416, lr 0.001000, loss 2.378973 +INFO 2021-09-19 09:36:31 train.py: 95] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2021-09-19 09:36:31 train.py: 82] Epoch 13, iter 3000/6416, lr 0.001000, loss 2.352463 +INFO 2021-09-19 09:37:41 train.py: 82] Epoch 13, iter 3200/6416, lr 0.001000, loss 2.382218 +INFO 2021-09-19 09:38:52 train.py: 82] Epoch 13, iter 3400/6416, lr 0.001000, loss 2.367465 +INFO 2021-09-19 09:40:02 train.py: 82] Epoch 13, iter 3600/6416, lr 0.001000, loss 2.350621 +INFO 2021-09-19 09:41:12 train.py: 82] Epoch 13, iter 3800/6416, lr 0.001000, loss 2.369132 +INFO 2021-09-19 09:42:22 train.py: 82] Epoch 13, iter 4000/6416, lr 0.001000, loss 2.378563 +INFO 2021-09-19 09:43:32 train.py: 82] Epoch 13, iter 4200/6416, lr 0.001000, loss 2.363354 +INFO 2021-09-19 09:44:42 train.py: 82] Epoch 13, iter 4400/6416, lr 0.001000, loss 2.363441 +INFO 2021-09-19 09:45:53 train.py: 82] Epoch 13, iter 4600/6416, lr 0.001000, loss 2.346006 +INFO 2021-09-19 09:47:03 train.py: 82] Epoch 13, iter 4800/6416, lr 0.001000, loss 2.380742 +INFO 2021-09-19 09:48:14 train.py: 82] Epoch 13, iter 5000/6416, lr 0.001000, loss 2.403296 +INFO 2021-09-19 09:49:24 train.py: 82] Epoch 13, iter 5200/6416, lr 0.001000, loss 2.363068 +INFO 2021-09-19 09:50:35 train.py: 82] Epoch 13, iter 5400/6416, lr 0.001000, loss 2.362031 +INFO 2021-09-19 09:51:45 train.py: 82] Epoch 13, iter 5600/6416, lr 0.001000, loss 2.369125 +INFO 2021-09-19 09:52:55 train.py: 82] Epoch 13, iter 5800/6416, lr 0.001000, loss 2.369220 +INFO 2021-09-19 09:54:07 train.py: 95] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2021-09-19 09:54:07 train.py: 82] Epoch 13, iter 6000/6416, lr 0.001000, loss 2.373340 +INFO 2021-09-19 09:55:18 train.py: 82] Epoch 13, iter 6200/6416, lr 0.001000, loss 2.378530 +INFO 2021-09-19 09:56:28 train.py: 82] Epoch 13, iter 6400/6416, lr 0.001000, loss 2.381798 +INFO 2021-09-19 09:56:35 train.py: 100] Save checkpoint Epoch_13.pt to disk... +INFO 2021-09-19 09:56:37 train.py: 82] Epoch 14, iter 0/6416, lr 0.001000, loss 2.369519 +INFO 2021-09-19 09:57:47 train.py: 82] Epoch 14, iter 200/6416, lr 0.001000, loss 2.315587 +INFO 2021-09-19 09:58:56 train.py: 82] Epoch 14, iter 400/6416, lr 0.001000, loss 2.311979 +INFO 2021-09-19 10:00:06 train.py: 82] Epoch 14, iter 600/6416, lr 0.001000, loss 2.327739 +INFO 2021-09-19 10:01:16 train.py: 82] Epoch 14, iter 800/6416, lr 0.001000, loss 2.318597 +INFO 2021-09-19 10:02:25 train.py: 82] Epoch 14, iter 1000/6416, lr 0.001000, loss 2.322992 +INFO 2021-09-19 10:03:35 train.py: 82] Epoch 14, iter 1200/6416, lr 0.001000, loss 2.321007 +INFO 2021-09-19 10:04:45 train.py: 82] Epoch 14, iter 1400/6416, lr 0.001000, loss 2.312466 +INFO 2021-09-19 10:05:55 train.py: 82] Epoch 14, iter 1600/6416, lr 0.001000, loss 2.324459 +INFO 2021-09-19 10:07:04 train.py: 82] Epoch 14, iter 1800/6416, lr 0.001000, loss 2.345706 +INFO 2021-09-19 10:08:14 train.py: 82] Epoch 14, iter 2000/6416, lr 0.001000, loss 2.341147 +INFO 2021-09-19 10:09:24 train.py: 82] Epoch 14, iter 2200/6416, lr 0.001000, loss 2.329970 +INFO 2021-09-19 10:10:33 train.py: 82] Epoch 14, iter 2400/6416, lr 0.001000, loss 2.320496 +INFO 2021-09-19 10:11:43 train.py: 82] Epoch 14, iter 2600/6416, lr 0.001000, loss 2.319579 +INFO 2021-09-19 10:12:53 train.py: 82] Epoch 14, iter 2800/6416, lr 0.001000, loss 2.321475 +INFO 2021-09-19 10:14:04 train.py: 95] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2021-09-19 10:14:05 train.py: 82] Epoch 14, iter 3000/6416, lr 0.001000, loss 2.323610 +INFO 2021-09-19 10:15:15 train.py: 82] Epoch 14, iter 3200/6416, lr 0.001000, loss 2.338683 +INFO 2021-09-19 10:16:25 train.py: 82] Epoch 14, iter 3400/6416, lr 0.001000, loss 2.335192 +INFO 2021-09-19 10:17:36 train.py: 82] Epoch 14, iter 3600/6416, lr 0.001000, loss 2.332269 +INFO 2021-09-19 10:18:46 train.py: 82] Epoch 14, iter 3800/6416, lr 0.001000, loss 2.347203 +INFO 2021-09-19 10:19:57 train.py: 82] Epoch 14, iter 4000/6416, lr 0.001000, loss 2.330586 +INFO 2021-09-19 10:21:08 train.py: 82] Epoch 14, iter 4200/6416, lr 0.001000, loss 2.356861 +INFO 2021-09-19 10:22:19 train.py: 82] Epoch 14, iter 4400/6416, lr 0.001000, loss 2.344010 +INFO 2021-09-19 10:23:30 train.py: 82] Epoch 14, iter 4600/6416, lr 0.001000, loss 2.324589 +INFO 2021-09-19 10:24:41 train.py: 82] Epoch 14, iter 4800/6416, lr 0.001000, loss 2.326964 +INFO 2021-09-19 10:25:51 train.py: 82] Epoch 14, iter 5000/6416, lr 0.001000, loss 2.329856 +INFO 2021-09-19 10:27:02 train.py: 82] Epoch 14, iter 5200/6416, lr 0.001000, loss 2.355338 +INFO 2021-09-19 10:28:13 train.py: 82] Epoch 14, iter 5400/6416, lr 0.001000, loss 2.325544 +INFO 2021-09-19 10:29:23 train.py: 82] Epoch 14, iter 5600/6416, lr 0.001000, loss 2.330749 +INFO 2021-09-19 10:30:34 train.py: 82] Epoch 14, iter 5800/6416, lr 0.001000, loss 2.343659 +INFO 2021-09-19 10:31:46 train.py: 95] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2021-09-19 10:31:46 train.py: 82] Epoch 14, iter 6000/6416, lr 0.001000, loss 2.320386 +INFO 2021-09-19 10:32:57 train.py: 82] Epoch 14, iter 6200/6416, lr 0.001000, loss 2.339257 +INFO 2021-09-19 10:34:07 train.py: 82] Epoch 14, iter 6400/6416, lr 0.001000, loss 2.343378 +INFO 2021-09-19 10:34:14 train.py: 100] Save checkpoint Epoch_14.pt to disk... +INFO 2021-09-19 10:34:16 train.py: 82] Epoch 15, iter 0/6416, lr 0.001000, loss 2.403512 +INFO 2021-09-19 10:35:27 train.py: 82] Epoch 15, iter 200/6416, lr 0.001000, loss 2.302820 +INFO 2021-09-19 10:36:37 train.py: 82] Epoch 15, iter 400/6416, lr 0.001000, loss 2.306578 +INFO 2021-09-19 10:37:47 train.py: 82] Epoch 15, iter 600/6416, lr 0.001000, loss 2.298548 +INFO 2021-09-19 10:38:57 train.py: 82] Epoch 15, iter 800/6416, lr 0.001000, loss 2.304025 +INFO 2021-09-19 10:40:07 train.py: 82] Epoch 15, iter 1000/6416, lr 0.001000, loss 2.274814 +INFO 2021-09-19 10:41:17 train.py: 82] Epoch 15, iter 1200/6416, lr 0.001000, loss 2.295869 +INFO 2021-09-19 10:42:27 train.py: 82] Epoch 15, iter 1400/6416, lr 0.001000, loss 2.310575 +INFO 2021-09-19 10:43:38 train.py: 82] Epoch 15, iter 1600/6416, lr 0.001000, loss 2.293905 +INFO 2021-09-19 10:44:48 train.py: 82] Epoch 15, iter 1800/6416, lr 0.001000, loss 2.303342 +INFO 2021-09-19 10:45:58 train.py: 82] Epoch 15, iter 2000/6416, lr 0.001000, loss 2.303691 +INFO 2021-09-19 10:47:08 train.py: 82] Epoch 15, iter 2200/6416, lr 0.001000, loss 2.307822 +INFO 2021-09-19 10:48:18 train.py: 82] Epoch 15, iter 2400/6416, lr 0.001000, loss 2.299887 +INFO 2021-09-19 10:49:29 train.py: 82] Epoch 15, iter 2600/6416, lr 0.001000, loss 2.288764 +INFO 2021-09-19 10:50:39 train.py: 82] Epoch 15, iter 2800/6416, lr 0.001000, loss 2.287246 +INFO 2021-09-19 10:51:51 train.py: 95] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2021-09-19 10:51:51 train.py: 82] Epoch 15, iter 3000/6416, lr 0.001000, loss 2.303929 +INFO 2021-09-19 10:53:02 train.py: 82] Epoch 15, iter 3200/6416, lr 0.001000, loss 2.303544 +INFO 2021-09-19 10:54:13 train.py: 82] Epoch 15, iter 3400/6416, lr 0.001000, loss 2.308096 +INFO 2021-09-19 10:55:24 train.py: 82] Epoch 15, iter 3600/6416, lr 0.001000, loss 2.304996 +INFO 2021-09-19 10:56:35 train.py: 82] Epoch 15, iter 3800/6416, lr 0.001000, loss 2.297510 +INFO 2021-09-19 10:57:46 train.py: 82] Epoch 15, iter 4000/6416, lr 0.001000, loss 2.300384 +INFO 2021-09-19 10:58:57 train.py: 82] Epoch 15, iter 4200/6416, lr 0.001000, loss 2.314665 +INFO 2021-09-19 11:00:08 train.py: 82] Epoch 15, iter 4400/6416, lr 0.001000, loss 2.310723 +INFO 2021-09-19 11:01:19 train.py: 82] Epoch 15, iter 4600/6416, lr 0.001000, loss 2.316207 +INFO 2021-09-19 11:02:30 train.py: 82] Epoch 15, iter 4800/6416, lr 0.001000, loss 2.299171 +INFO 2021-09-19 11:03:42 train.py: 82] Epoch 15, iter 5000/6416, lr 0.001000, loss 2.309225 +INFO 2021-09-19 11:04:53 train.py: 82] Epoch 15, iter 5200/6416, lr 0.001000, loss 2.313352 +INFO 2021-09-19 11:06:04 train.py: 82] Epoch 15, iter 5400/6416, lr 0.001000, loss 2.322332 +INFO 2021-09-19 11:07:14 train.py: 82] Epoch 15, iter 5600/6416, lr 0.001000, loss 2.323402 +INFO 2021-09-19 11:08:26 train.py: 82] Epoch 15, iter 5800/6416, lr 0.001000, loss 2.304920 +INFO 2021-09-19 11:09:38 train.py: 95] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2021-09-19 11:09:38 train.py: 82] Epoch 15, iter 6000/6416, lr 0.001000, loss 2.312304 +INFO 2021-09-19 11:10:49 train.py: 82] Epoch 15, iter 6200/6416, lr 0.001000, loss 2.309592 +INFO 2021-09-19 11:12:00 train.py: 82] Epoch 15, iter 6400/6416, lr 0.001000, loss 2.333553 +INFO 2021-09-19 11:12:07 train.py: 100] Save checkpoint Epoch_15.pt to disk... +INFO 2021-09-19 11:12:09 train.py: 82] Epoch 16, iter 0/6416, lr 0.000100, loss 2.303236 +INFO 2021-09-19 11:13:19 train.py: 82] Epoch 16, iter 200/6416, lr 0.000100, loss 2.278505 +INFO 2021-09-19 11:14:29 train.py: 82] Epoch 16, iter 400/6416, lr 0.000100, loss 2.254318 +INFO 2021-09-19 11:15:39 train.py: 82] Epoch 16, iter 600/6416, lr 0.000100, loss 2.252762 +INFO 2021-09-19 11:16:49 train.py: 82] Epoch 16, iter 800/6416, lr 0.000100, loss 2.250345 +INFO 2021-09-19 11:17:59 train.py: 82] Epoch 16, iter 1000/6416, lr 0.000100, loss 2.254362 +INFO 2021-09-19 11:19:08 train.py: 82] Epoch 16, iter 1200/6416, lr 0.000100, loss 2.269996 +INFO 2021-09-19 11:20:18 train.py: 82] Epoch 16, iter 1400/6416, lr 0.000100, loss 2.247288 +INFO 2021-09-19 11:21:28 train.py: 82] Epoch 16, iter 1600/6416, lr 0.000100, loss 2.246930 +INFO 2021-09-19 11:22:38 train.py: 82] Epoch 16, iter 1800/6416, lr 0.000100, loss 2.252600 +INFO 2021-09-19 11:23:48 train.py: 82] Epoch 16, iter 2000/6416, lr 0.000100, loss 2.267004 +INFO 2021-09-19 11:24:58 train.py: 82] Epoch 16, iter 2200/6416, lr 0.000100, loss 2.250348 +INFO 2021-09-19 11:26:08 train.py: 82] Epoch 16, iter 2400/6416, lr 0.000100, loss 2.253333 +INFO 2021-09-19 11:27:19 train.py: 82] Epoch 16, iter 2600/6416, lr 0.000100, loss 2.263728 +INFO 2021-09-19 11:28:29 train.py: 82] Epoch 16, iter 2800/6416, lr 0.000100, loss 2.264098 +INFO 2021-09-19 11:29:41 train.py: 95] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2021-09-19 11:29:41 train.py: 82] Epoch 16, iter 3000/6416, lr 0.000100, loss 2.257215 +INFO 2021-09-19 11:30:52 train.py: 82] Epoch 16, iter 3200/6416, lr 0.000100, loss 2.266333 +INFO 2021-09-19 11:32:03 train.py: 82] Epoch 16, iter 3400/6416, lr 0.000100, loss 2.267763 +INFO 2021-09-19 11:33:14 train.py: 82] Epoch 16, iter 3600/6416, lr 0.000100, loss 2.261790 +INFO 2021-09-19 11:34:24 train.py: 82] Epoch 16, iter 3800/6416, lr 0.000100, loss 2.254827 +INFO 2021-09-19 11:35:36 train.py: 82] Epoch 16, iter 4000/6416, lr 0.000100, loss 2.276496 +INFO 2021-09-19 11:36:47 train.py: 82] Epoch 16, iter 4200/6416, lr 0.000100, loss 2.259896 +INFO 2021-09-19 11:37:58 train.py: 82] Epoch 16, iter 4400/6416, lr 0.000100, loss 2.259406 +INFO 2021-09-19 11:39:08 train.py: 82] Epoch 16, iter 4600/6416, lr 0.000100, loss 2.278588 +INFO 2021-09-19 11:40:19 train.py: 82] Epoch 16, iter 4800/6416, lr 0.000100, loss 2.256832 +INFO 2021-09-19 11:41:29 train.py: 82] Epoch 16, iter 5000/6416, lr 0.000100, loss 2.256046 +INFO 2021-09-19 11:42:39 train.py: 82] Epoch 16, iter 5200/6416, lr 0.000100, loss 2.262844 +INFO 2021-09-19 11:43:50 train.py: 82] Epoch 16, iter 5400/6416, lr 0.000100, loss 2.265277 +INFO 2021-09-19 11:45:00 train.py: 82] Epoch 16, iter 5600/6416, lr 0.000100, loss 2.248440 +INFO 2021-09-19 11:46:11 train.py: 82] Epoch 16, iter 5800/6416, lr 0.000100, loss 2.257869 +INFO 2021-09-19 11:47:23 train.py: 95] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2021-09-19 11:47:23 train.py: 82] Epoch 16, iter 6000/6416, lr 0.000100, loss 2.267195 +INFO 2021-09-19 11:48:35 train.py: 82] Epoch 16, iter 6200/6416, lr 0.000100, loss 2.265269 +INFO 2021-09-19 11:49:45 train.py: 82] Epoch 16, iter 6400/6416, lr 0.000100, loss 2.255789 +INFO 2021-09-19 11:49:53 train.py: 100] Save checkpoint Epoch_16.pt to disk... +INFO 2021-09-19 11:49:55 train.py: 82] Epoch 17, iter 0/6416, lr 0.000100, loss 2.233435 +INFO 2021-09-19 11:51:05 train.py: 82] Epoch 17, iter 200/6416, lr 0.000100, loss 2.243726 +INFO 2021-09-19 11:52:15 train.py: 82] Epoch 17, iter 400/6416, lr 0.000100, loss 2.255259 +INFO 2021-09-19 11:53:25 train.py: 82] Epoch 17, iter 600/6416, lr 0.000100, loss 2.243763 +INFO 2021-09-19 11:54:35 train.py: 82] Epoch 17, iter 800/6416, lr 0.000100, loss 2.244552 +INFO 2021-09-19 11:55:44 train.py: 82] Epoch 17, iter 1000/6416, lr 0.000100, loss 2.258126 +INFO 2021-09-19 11:56:54 train.py: 82] Epoch 17, iter 1200/6416, lr 0.000100, loss 2.248700 +INFO 2021-09-19 11:58:04 train.py: 82] Epoch 17, iter 1400/6416, lr 0.000100, loss 2.251632 +INFO 2021-09-19 11:59:14 train.py: 82] Epoch 17, iter 1600/6416, lr 0.000100, loss 2.259832 +INFO 2021-09-19 12:00:23 train.py: 82] Epoch 17, iter 1800/6416, lr 0.000100, loss 2.249055 +INFO 2021-09-19 12:01:33 train.py: 82] Epoch 17, iter 2000/6416, lr 0.000100, loss 2.261270 +INFO 2021-09-19 12:02:43 train.py: 82] Epoch 17, iter 2200/6416, lr 0.000100, loss 2.250452 +INFO 2021-09-19 12:03:53 train.py: 82] Epoch 17, iter 2400/6416, lr 0.000100, loss 2.257999 +INFO 2021-09-19 12:05:03 train.py: 82] Epoch 17, iter 2600/6416, lr 0.000100, loss 2.267271 +INFO 2021-09-19 12:06:13 train.py: 82] Epoch 17, iter 2800/6416, lr 0.000100, loss 2.263096 +INFO 2021-09-19 12:07:24 train.py: 95] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2021-09-19 12:07:25 train.py: 82] Epoch 17, iter 3000/6416, lr 0.000100, loss 2.267387 +INFO 2021-09-19 12:08:35 train.py: 82] Epoch 17, iter 3200/6416, lr 0.000100, loss 2.267748 +INFO 2021-09-19 12:09:45 train.py: 82] Epoch 17, iter 3400/6416, lr 0.000100, loss 2.263820 +INFO 2021-09-19 12:10:56 train.py: 82] Epoch 17, iter 3600/6416, lr 0.000100, loss 2.266134 +INFO 2021-09-19 12:12:06 train.py: 82] Epoch 17, iter 3800/6416, lr 0.000100, loss 2.248134 +INFO 2021-09-19 12:13:17 train.py: 82] Epoch 17, iter 4000/6416, lr 0.000100, loss 2.255861 +INFO 2021-09-19 12:14:27 train.py: 82] Epoch 17, iter 4200/6416, lr 0.000100, loss 2.249989 +INFO 2021-09-19 12:15:38 train.py: 82] Epoch 17, iter 4400/6416, lr 0.000100, loss 2.250293 +INFO 2021-09-19 12:16:48 train.py: 82] Epoch 17, iter 4600/6416, lr 0.000100, loss 2.255407 +INFO 2021-09-19 12:17:58 train.py: 82] Epoch 17, iter 4800/6416, lr 0.000100, loss 2.252727 +INFO 2021-09-19 12:19:09 train.py: 82] Epoch 17, iter 5000/6416, lr 0.000100, loss 2.259792 +INFO 2021-09-19 12:20:19 train.py: 82] Epoch 17, iter 5200/6416, lr 0.000100, loss 2.243176 +INFO 2021-09-19 12:21:30 train.py: 82] Epoch 17, iter 5400/6416, lr 0.000100, loss 2.245568 +INFO 2021-09-19 12:22:40 train.py: 82] Epoch 17, iter 5600/6416, lr 0.000100, loss 2.263195 +INFO 2021-09-19 12:23:50 train.py: 82] Epoch 17, iter 5800/6416, lr 0.000100, loss 2.232738 +INFO 2021-09-19 12:25:02 train.py: 95] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2021-09-19 12:25:02 train.py: 82] Epoch 17, iter 6000/6416, lr 0.000100, loss 2.255250 +INFO 2021-09-19 12:26:13 train.py: 82] Epoch 17, iter 6200/6416, lr 0.000100, loss 2.260690 +INFO 2021-09-19 12:27:24 train.py: 82] Epoch 17, iter 6400/6416, lr 0.000100, loss 2.268025 +INFO 2021-09-19 12:27:31 train.py: 100] Save checkpoint Epoch_17.pt to disk... +INFO 2021-09-19 12:27:31 train.py: 183] Optimization done! diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_B0/.gitkeep b/bob/bio/facexzoo/models/backbones/RepVGG_B0/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_B0/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/backbones/RepVGG_B0/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..88b05cb4c553a40bca708b02bdf9c20b53a3c0d6 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_B0/accu_files/accu_agedb.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15.pt | 0.9756666666666666 | 0.0019907192074632087 | +| Epoch_15_batch_2999.pt | 0.9755 | 0.0019571016615342785 | +| Epoch_12_batch_5999.pt | 0.9753333333333334 | 0.002469567863432542 | +| Epoch_12.pt | 0.975 | 0.001956312984628778 | +| Epoch_14_batch_5999.pt | 0.9743333333333333 | 0.0020964402515681337 | +| Epoch_16.pt | 0.9743333333333333 | 0.0018459164139817941 | +| Epoch_13_batch_5999.pt | 0.974 | 0.002111111111111113 | +| Epoch_17_batch_2999.pt | 0.974 | 0.0021256807188565485 | +| Epoch_13_batch_2999.pt | 0.9739999999999999 | 0.0023985592383247703 | +| Epoch_14.pt | 0.9738333333333333 | 0.0021808651584878285 | +| Epoch_16_batch_2999.pt | 0.9736666666666667 | 0.002105255035721823 | +| Epoch_14_batch_2999.pt | 0.9736666666666667 | 0.0020457725155024445 | +| Epoch_16_batch_5999.pt | 0.9735000000000001 | 0.0021723571995574567 | +| Epoch_15_batch_5999.pt | 0.9733333333333333 | 0.0020184335693983254 | +| Epoch_12_batch_2999.pt | 0.9733333333333333 | 0.002496911672693804 | +| Epoch_11_batch_2999.pt | 0.9731666666666667 | 0.002085369375458154 | +| Epoch_17_batch_5999.pt | 0.9730000000000001 | 0.002045772515502444 | +| Epoch_11.pt | 0.9730000000000001 | 0.0020905430802474223 | +| Epoch_13.pt | 0.9729999999999999 | 0.002163102481547977 | +| Epoch_17.pt | 0.9720000000000001 | 0.002119864892037658 | +| Epoch_10_batch_5999.pt | 0.9713333333333335 | 0.002328036315528548 | +| Epoch_11_batch_5999.pt | 0.9705 | 0.0025098571106836696 | +| Epoch_10.pt | 0.9691666666666665 | 0.0025367666792957557 | +| Epoch_10_batch_2999.pt | 0.9678333333333333 | 0.002108916988455812 | +| Epoch_9_batch_5999.pt | 0.9658333333333335 | 0.003576759689515523 | +| Epoch_7_batch_2999.pt | 0.9650000000000001 | 0.0027888667551135907 | +| Epoch_8_batch_5999.pt | 0.9621666666666666 | 0.0021523745142011676 | +| Epoch_9_batch_2999.pt | 0.9620000000000001 | 0.004133572275052949 | +| Epoch_7.pt | 0.9616666666666667 | 0.0028436630871266095 | +| Epoch_6_batch_2999.pt | 0.9611666666666666 | 0.0027894200468073817 | +| Epoch_8_batch_2999.pt | 0.9598333333333334 | 0.004212342241614973 | +| Epoch_6_batch_5999.pt | 0.9594999999999999 | 0.0029402485827553847 | +| Epoch_6.pt | 0.9586666666666666 | 0.0039267993437938475 | +| Epoch_5_batch_2999.pt | 0.958 | 0.0036413265795942106 | +| Epoch_7_batch_5999.pt | 0.9578333333333333 | 0.0035490391674854386 | +| Epoch_4.pt | 0.9563333333333333 | 0.003581502546952496 | +| Epoch_4_batch_5999.pt | 0.9555 | 0.003452052529534665 | +| Epoch_4_batch_2999.pt | 0.9546666666666666 | 0.00318948890986829 | +| Epoch_8.pt | 0.9541666666666668 | 0.003559459662142519 | +| Epoch_9.pt | 0.9538333333333332 | 0.0052941267247562 | +| Epoch_5_batch_5999.pt | 0.953 | 0.002567604446286967 | +| Epoch_3_batch_5999.pt | 0.9525000000000002 | 0.0033907098932593536 | +| Epoch_3_batch_2999.pt | 0.9518333333333333 | 0.003374285475346714 | +| Epoch_2_batch_5999.pt | 0.9484999999999999 | 0.0033096380019125523 | +| Epoch_5.pt | 0.9481666666666667 | 0.004256077716732179 | +| Epoch_3.pt | 0.9448333333333332 | 0.004342227339926476 | +| Epoch_2.pt | 0.9436666666666665 | 0.002786652489774326 | +| Epoch_2_batch_2999.pt | 0.9398333333333333 | 0.004756087716849883 | +| Epoch_1_batch_5999.pt | 0.9305 | 0.0053923242200212 | +| Epoch_1.pt | 0.9286666666666665 | 0.005315943872846968 | +| Epoch_1_batch_2999.pt | 0.909 | 0.007106769507976614 | +| Epoch_0_batch_5999.pt | 0.8563333333333333 | 0.008072969683218984 | +| Epoch_0.pt | 0.8521666666666666 | 0.0075279315277451695 | +| Epoch_0_batch_2999.pt | 0.7011666666666667 | 0.005703854014373438 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_B0/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/backbones/RepVGG_B0/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..817d69401e4b13cdb6afb7a88a2a53add20a5d0d --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_B0/accu_files/accu_calfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_5999.pt | 0.9516666666666668 | 0.003591828861165467 | +| Epoch_13_batch_2999.pt | 0.9514999999999999 | 0.0031569050322611944 | +| Epoch_15_batch_5999.pt | 0.9514999999999999 | 0.0029757248312982402 | +| Epoch_14_batch_2999.pt | 0.9513333333333334 | 0.003170076137263794 | +| Epoch_16.pt | 0.9510000000000002 | 0.0037449554547450497 | +| Epoch_17.pt | 0.951 | 0.0038506052113696544 | +| Epoch_14_batch_5999.pt | 0.951 | 0.003344425987398313 | +| Epoch_11.pt | 0.9506666666666668 | 0.003497794719710483 | +| Epoch_11_batch_2999.pt | 0.9506666666666665 | 0.003593547028621378 | +| Epoch_14.pt | 0.9503333333333334 | 0.0037498971179302674 | +| Epoch_16_batch_2999.pt | 0.9503333333333334 | 0.0035468643776694125 | +| Epoch_11_batch_5999.pt | 0.9503333333333334 | 0.003449816599168893 | +| Epoch_13_batch_5999.pt | 0.9501666666666667 | 0.0036972629182166297 | +| Epoch_13.pt | 0.9501666666666667 | 0.0030373193184081377 | +| Epoch_15_batch_2999.pt | 0.9501666666666667 | 0.0035438174297371208 | +| Epoch_17_batch_2999.pt | 0.9496666666666668 | 0.0035294178165041316 | +| Epoch_10.pt | 0.9496666666666667 | 0.0029376231258671725 | +| Epoch_17_batch_5999.pt | 0.9496666666666667 | 0.003965904066127721 | +| Epoch_10_batch_5999.pt | 0.9495000000000001 | 0.003287180487219337 | +| Epoch_12_batch_2999.pt | 0.9495000000000001 | 0.0034964708839021236 | +| Epoch_15.pt | 0.9493333333333334 | 0.0037531879453454563 | +| Epoch_12.pt | 0.9488333333333333 | 0.0031822229981377063 | +| Epoch_10_batch_2999.pt | 0.9486666666666667 | 0.0031011746082117496 | +| Epoch_12_batch_5999.pt | 0.9478333333333333 | 0.002940248582755387 | +| Epoch_9_batch_2999.pt | 0.9421666666666667 | 0.003370624736026112 | +| Epoch_8_batch_2999.pt | 0.9410000000000001 | 0.0031249691356500446 | +| Epoch_6_batch_5999.pt | 0.9395 | 0.002699451247390298 | +| Epoch_8_batch_5999.pt | 0.9395 | 0.0031234872881934603 | +| Epoch_8.pt | 0.9393333333333332 | 0.003279189902971933 | +| Epoch_7_batch_5999.pt | 0.9385000000000001 | 0.0037716453494430415 | +| Epoch_9_batch_5999.pt | 0.9381666666666666 | 0.003963179294891509 | +| Epoch_5_batch_2999.pt | 0.9375 | 0.003381595065229599 | +| Epoch_4_batch_2999.pt | 0.9373333333333335 | 0.003969015799887048 | +| Epoch_9.pt | 0.9373333333333334 | 0.003532914021241031 | +| Epoch_6.pt | 0.9368333333333334 | 0.003629865827537694 | +| Epoch_7_batch_2999.pt | 0.9366666666666668 | 0.003990729999126217 | +| Epoch_7.pt | 0.9364999999999999 | 0.003473444229409012 | +| Epoch_6_batch_2999.pt | 0.9364999999999999 | 0.0030271406057389458 | +| Epoch_5_batch_5999.pt | 0.9363333333333334 | 0.0038393672318157795 | +| Epoch_3_batch_5999.pt | 0.9355 | 0.0033522610758990198 | +| Epoch_5.pt | 0.9350000000000002 | 0.0034694433324435523 | +| Epoch_4_batch_5999.pt | 0.9339999999999999 | 0.0037531879453454467 | +| Epoch_3_batch_2999.pt | 0.9315000000000001 | 0.004523259504296639 | +| Epoch_2_batch_5999.pt | 0.9293333333333333 | 0.0027464904654018406 | +| Epoch_4.pt | 0.9281666666666666 | 0.003612820108419801 | +| Epoch_2.pt | 0.9261666666666667 | 0.0031627656283311698 | +| Epoch_3.pt | 0.9258333333333335 | 0.003593976442141308 | +| Epoch_2_batch_2999.pt | 0.9243333333333335 | 0.0034444444444444414 | +| Epoch_1_batch_5999.pt | 0.9223333333333334 | 0.003144660377352199 | +| Epoch_1.pt | 0.9108333333333333 | 0.003712258638286249 | +| Epoch_1_batch_2999.pt | 0.9086666666666667 | 0.004706181907677198 | +| Epoch_0_batch_5999.pt | 0.8735000000000002 | 0.0043422273399264695 | +| Epoch_0.pt | 0.8675 | 0.006962199524735146 | +| Epoch_0_batch_2999.pt | 0.725 | 0.0079115480528524 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_B0/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/backbones/RepVGG_B0/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..581a07f5de70e2524e0afacd77a80a115b84284a --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_B0/accu_files/accu_cplfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14.pt | 0.8676666666666668 | 0.0059014540999508865 | +| Epoch_17_batch_5999.pt | 0.8661666666666668 | 0.005848129383311438 | +| Epoch_17_batch_2999.pt | 0.866 | 0.005753152651555382 | +| Epoch_16.pt | 0.8648333333333333 | 0.00574912768477118 | +| Epoch_14_batch_5999.pt | 0.8644999999999999 | 0.006373411203615397 | +| Epoch_17.pt | 0.8643333333333333 | 0.005467073155618902 | +| Epoch_16_batch_5999.pt | 0.8640000000000001 | 0.006142344427148998 | +| Epoch_16_batch_2999.pt | 0.8638333333333333 | 0.005968280352862987 | +| Epoch_15_batch_5999.pt | 0.8634999999999999 | 0.005813192743797783 | +| Epoch_15_batch_2999.pt | 0.8625 | 0.006432220206905504 | +| Epoch_14_batch_2999.pt | 0.8623333333333333 | 0.005806552280201741 | +| Epoch_11_batch_5999.pt | 0.8619999999999999 | 0.00597215762238964 | +| Epoch_13_batch_5999.pt | 0.8618333333333335 | 0.005360175508458787 | +| Epoch_13.pt | 0.8615 | 0.005045778090959797 | +| Epoch_15.pt | 0.861 | 0.006071589374361893 | +| Epoch_12_batch_2999.pt | 0.8605 | 0.0060504565688349506 | +| Epoch_13_batch_2999.pt | 0.8601666666666666 | 0.0051547053896727184 | +| Epoch_11_batch_2999.pt | 0.8598333333333334 | 0.005990991179149073 | +| Epoch_12_batch_5999.pt | 0.8598333333333332 | 0.005678908345800272 | +| Epoch_10.pt | 0.8576666666666668 | 0.005551109331909688 | +| Epoch_10_batch_2999.pt | 0.8568333333333333 | 0.005876559420041964 | +| Epoch_12.pt | 0.8568333333333333 | 0.006148622248565571 | +| Epoch_11.pt | 0.8566666666666668 | 0.006309898162000302 | +| Epoch_10_batch_5999.pt | 0.8563333333333333 | 0.00475186772896513 | +| Epoch_6_batch_5999.pt | 0.8294999999999998 | 0.006339422024517554 | +| Epoch_9_batch_2999.pt | 0.8288333333333334 | 0.006493348923853817 | +| Epoch_9_batch_5999.pt | 0.8241666666666667 | 0.006948887467576154 | +| Epoch_4_batch_5999.pt | 0.8241666666666667 | 0.007963070628040447 | +| Epoch_6_batch_2999.pt | 0.8240000000000001 | 0.006522515609528522 | +| Epoch_7_batch_2999.pt | 0.8238333333333333 | 0.006407220078614626 | +| Epoch_5_batch_5999.pt | 0.8238333333333333 | 0.0058322750362757554 | +| Epoch_8_batch_5999.pt | 0.8234999999999999 | 0.006737814790282389 | +| Epoch_7.pt | 0.8216666666666667 | 0.007294510027631041 | +| Epoch_4_batch_2999.pt | 0.8203333333333334 | 0.00694688845881804 | +| Epoch_5_batch_2999.pt | 0.8200000000000001 | 0.005510931896727663 | +| Epoch_3_batch_5999.pt | 0.8195 | 0.006639063224117319 | +| Epoch_4.pt | 0.8185 | 0.006575534527396817 | +| Epoch_8_batch_2999.pt | 0.8185 | 0.006945333276451722 | +| Epoch_7_batch_5999.pt | 0.8168333333333333 | 0.007384710598072473 | +| Epoch_8.pt | 0.8166666666666667 | 0.007027283689263063 | +| Epoch_6.pt | 0.8156666666666667 | 0.007337540880488467 | +| Epoch_2_batch_5999.pt | 0.8148333333333333 | 0.006864877508730691 | +| Epoch_3.pt | 0.8130000000000001 | 0.006185406959874121 | +| Epoch_9.pt | 0.8105 | 0.006146614043319366 | +| Epoch_3_batch_2999.pt | 0.8103333333333333 | 0.0064060156912887 | +| Epoch_2_batch_2999.pt | 0.8076666666666668 | 0.007137105267889657 | +| Epoch_5.pt | 0.8030000000000002 | 0.007895146188218004 | +| Epoch_2.pt | 0.8011666666666667 | 0.00644085148883551 | +| Epoch_1_batch_5999.pt | 0.8011666666666667 | 0.00767008780351178 | +| Epoch_1.pt | 0.7813333333333334 | 0.005799105933644391 | +| Epoch_1_batch_2999.pt | 0.7763333333333333 | 0.006665740676431394 | +| Epoch_0_batch_5999.pt | 0.7313333333333334 | 0.008439325934114774 | +| Epoch_0.pt | 0.7311666666666666 | 0.006055555555555557 | +| Epoch_0_batch_2999.pt | 0.6271666666666667 | 0.008784280291914278 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_B0/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/backbones/RepVGG_B0/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..7c32bab445e1490a24a8ef687a04b009ff6ff92a --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_B0/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.9971666666666665 | 0.0006596856715021067 | +| Epoch_15.pt | 0.9969999999999999 | 0.0006938886664887116 | +| Epoch_15_batch_5999.pt | 0.9969999999999999 | 0.0007370277311900913 | +| Epoch_12_batch_2999.pt | 0.9969999999999999 | 0.0006938886664887116 | +| Epoch_13_batch_2999.pt | 0.9968333333333333 | 0.0007637626158259759 | +| Epoch_13.pt | 0.9968333333333333 | 0.0008407081083567512 | +| Epoch_14_batch_2999.pt | 0.9968333333333333 | 0.0008407081083567512 | +| Epoch_14.pt | 0.9966666666666667 | 0.0007856742013183834 | +| Epoch_10_batch_2999.pt | 0.9966666666666667 | 0.0008240220541217444 | +| Epoch_11_batch_2999.pt | 0.9966666666666665 | 0.0006573421981221823 | +| Epoch_17_batch_2999.pt | 0.9964999999999999 | 0.001095726829073116 | +| Epoch_12.pt | 0.9964999999999999 | 0.0007637626158259764 | +| Epoch_11_batch_5999.pt | 0.9964999999999999 | 0.0008031573497111666 | +| Epoch_11.pt | 0.9964999999999999 | 0.0005241100628920327 | +| Epoch_16_batch_5999.pt | 0.9963333333333333 | 0.0011055415967851372 | +| Epoch_16_batch_2999.pt | 0.9963333333333333 | 0.0011055415967851372 | +| Epoch_10_batch_5999.pt | 0.9963333333333333 | 0.0008888888888888872 | +| Epoch_17_batch_5999.pt | 0.9963333333333333 | 0.0011055415967851372 | +| Epoch_15_batch_2999.pt | 0.9963333333333333 | 0.0011055415967851372 | +| Epoch_12_batch_5999.pt | 0.9963333333333333 | 0.0007370277311900846 | +| Epoch_14_batch_5999.pt | 0.9963333333333333 | 0.0008164965809277232 | +| Epoch_16.pt | 0.9963333333333333 | 0.001160034056545621 | +| Epoch_9_batch_2999.pt | 0.9961666666666668 | 0.0008624541497922222 | +| Epoch_10.pt | 0.9961666666666666 | 0.0009638528651609659 | +| Epoch_8_batch_5999.pt | 0.9961666666666666 | 0.0012921892610681153 | +| Epoch_9_batch_5999.pt | 0.9958333333333332 | 0.0010318986456114817 | +| Epoch_13_batch_5999.pt | 0.9956666666666667 | 0.000968644209675708 | +| Epoch_8.pt | 0.9956666666666665 | 0.0008314794192830935 | +| Epoch_7_batch_2999.pt | 0.9955 | 0.0015723301886761032 | +| Epoch_4.pt | 0.9955 | 0.0007876359377087703 | +| Epoch_6.pt | 0.9955 | 0.0009953596037316041 | +| Epoch_5_batch_2999.pt | 0.9953333333333333 | 0.000987577157479508 | +| Epoch_5_batch_5999.pt | 0.9953333333333333 | 0.000987577157479508 | +| Epoch_7.pt | 0.9951666666666666 | 0.0006309898162000319 | +| Epoch_3_batch_5999.pt | 0.9951666666666666 | 0.0011235415786753752 | +| Epoch_6_batch_2999.pt | 0.9951666666666666 | 0.0009444444444444425 | +| Epoch_6_batch_5999.pt | 0.9949999999999999 | 0.0009938079899999047 | +| Epoch_4_batch_2999.pt | 0.9949999999999999 | 0.0008958064164776189 | +| Epoch_8_batch_2999.pt | 0.9949999999999999 | 0.0012171612389003702 | +| Epoch_7_batch_5999.pt | 0.9948333333333332 | 0.0009444444444444378 | +| Epoch_9.pt | 0.9946666666666666 | 0.0009229582069909011 | +| Epoch_2.pt | 0.9943333333333333 | 0.0010304020550550815 | +| Epoch_5.pt | 0.9943333333333333 | 0.0009026709338484367 | +| Epoch_3_batch_2999.pt | 0.9943333333333332 | 0.0009686442096757094 | +| Epoch_4_batch_5999.pt | 0.9943333333333332 | 0.0006666666666666666 | +| Epoch_2_batch_2999.pt | 0.9938333333333332 | 0.0010258991840344088 | +| Epoch_3.pt | 0.9936666666666667 | 0.0011863420280034797 | +| Epoch_2_batch_5999.pt | 0.9931666666666666 | 0.0011506841765115585 | +| Epoch_1_batch_5999.pt | 0.9931666666666666 | 0.0013709958532503398 | +| Epoch_1.pt | 0.9918333333333333 | 0.0009444444444444498 | +| Epoch_1_batch_2999.pt | 0.9890000000000001 | 0.0015947444549341513 | +| Epoch_0_batch_5999.pt | 0.9786666666666666 | 0.0019372884193514085 | +| Epoch_0.pt | 0.9773333333333334 | 0.0022933074933944716 | +| Epoch_0_batch_2999.pt | 0.9361666666666668 | 0.004157768276015036 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_B0/accu_files/accu_megaface.txt b/bob/bio/facexzoo/models/backbones/RepVGG_B0/accu_files/accu_megaface.txt new file mode 100644 index 0000000000000000000000000000000000000000..ce0f126bd43f4745c0eae874c8345c89eff884fe --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_B0/accu_files/accu_megaface.txt @@ -0,0 +1,8 @@ +INFO 2021-09-19 14:29:18 megaface_evaluator.py: 144] Rank 1 accuracy: 0.957483. +INFO 2021-09-19 14:30:18 megaface_evaluator.py: 144] Rank 2 accuracy: 0.968047. +INFO 2021-09-19 14:31:15 megaface_evaluator.py: 144] Rank 3 accuracy: 0.972122. +INFO 2021-09-19 14:32:12 megaface_evaluator.py: 144] Rank 4 accuracy: 0.974459. +INFO 2021-09-19 14:33:13 megaface_evaluator.py: 144] Rank 5 accuracy: 0.976014. +INFO 2021-09-19 14:34:11 megaface_evaluator.py: 144] Rank 6 accuracy: 0.977433. +INFO 2021-09-19 14:35:10 megaface_evaluator.py: 144] Rank 7 accuracy: 0.978455. +INFO 2021-09-19 14:36:10 megaface_evaluator.py: 144] Rank 8 accuracy: 0.979288. diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_B0/log.log b/bob/bio/facexzoo/models/backbones/RepVGG_B0/log.log new file mode 100644 index 0000000000000000000000000000000000000000..57c1f70cb0ad042c054256162896e410686573ef --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_B0/log.log @@ -0,0 +1,655 @@ +INFO 2021-09-16 19:41:47 train.py: 180] Start optimization. +INFO 2021-09-16 19:41:47 train.py: 181] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='RepVGG', batch_size=512, data_root='/export2/wj_data/FaceX-Zoo/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='MV-Softmax', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='mv-repvgg', train_file='/export2/wj_data/FaceX-Zoo/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7fc626371dd8>) +backbone param: +{'block_stage1': 4, 'block_stage2': 6, 'block_stage3': 16, 'block_stage4': 1, 'width_stage1': 1, 'width_stage2': 1, 'width_stage3': 1, 'width_stage4': 2.5, 'feat_dim': 512, 'out_h': 7, 'out_w': 7} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +INFO 2021-09-16 19:42:14 train.py: 82] Epoch 0, iter 0/6416, lr 0.100000, loss 16.264084 +INFO 2021-09-16 19:43:50 train.py: 82] Epoch 0, iter 200/6416, lr 0.100000, loss 15.661278 +INFO 2021-09-16 19:45:26 train.py: 82] Epoch 0, iter 400/6416, lr 0.100000, loss 15.400107 +INFO 2021-09-16 19:47:02 train.py: 82] Epoch 0, iter 600/6416, lr 0.100000, loss 15.327783 +INFO 2021-09-16 19:48:38 train.py: 82] Epoch 0, iter 800/6416, lr 0.100000, loss 15.210372 +INFO 2021-09-16 19:50:14 train.py: 82] Epoch 0, iter 1000/6416, lr 0.100000, loss 15.007365 +INFO 2021-09-16 19:51:50 train.py: 82] Epoch 0, iter 1200/6416, lr 0.100000, loss 14.706685 +INFO 2021-09-16 19:53:25 train.py: 82] Epoch 0, iter 1400/6416, lr 0.100000, loss 14.366101 +INFO 2021-09-16 19:55:02 train.py: 82] Epoch 0, iter 1600/6416, lr 0.100000, loss 14.018750 +INFO 2021-09-16 19:56:38 train.py: 82] Epoch 0, iter 1800/6416, lr 0.100000, loss 13.681811 +INFO 2021-09-16 19:58:14 train.py: 82] Epoch 0, iter 2000/6416, lr 0.100000, loss 13.310346 +INFO 2021-09-16 19:59:50 train.py: 82] Epoch 0, iter 2200/6416, lr 0.100000, loss 12.933504 +INFO 2021-09-16 20:01:26 train.py: 82] Epoch 0, iter 2400/6416, lr 0.100000, loss 12.542779 +INFO 2021-09-16 20:03:02 train.py: 82] Epoch 0, iter 2600/6416, lr 0.100000, loss 12.217304 +INFO 2021-09-16 20:04:37 train.py: 82] Epoch 0, iter 2800/6416, lr 0.100000, loss 11.967700 +INFO 2021-09-16 20:06:14 train.py: 95] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2021-09-16 20:06:15 train.py: 82] Epoch 0, iter 3000/6416, lr 0.100000, loss 11.815062 +INFO 2021-09-16 20:07:50 train.py: 82] Epoch 0, iter 3200/6416, lr 0.100000, loss 11.813564 +INFO 2021-09-16 20:09:26 train.py: 82] Epoch 0, iter 3400/6416, lr 0.100000, loss 11.904291 +INFO 2021-09-16 20:11:01 train.py: 82] Epoch 0, iter 3600/6416, lr 0.100000, loss 12.068402 +INFO 2021-09-16 20:12:36 train.py: 82] Epoch 0, iter 3800/6416, lr 0.100000, loss 12.323702 +INFO 2021-09-16 20:14:11 train.py: 82] Epoch 0, iter 4000/6416, lr 0.100000, loss 12.622537 +INFO 2021-09-16 20:15:45 train.py: 82] Epoch 0, iter 4200/6416, lr 0.100000, loss 12.852440 +INFO 2021-09-16 20:17:20 train.py: 82] Epoch 0, iter 4400/6416, lr 0.100000, loss 13.061609 +INFO 2021-09-16 20:18:55 train.py: 82] Epoch 0, iter 4600/6416, lr 0.100000, loss 13.278873 +INFO 2021-09-16 20:20:30 train.py: 82] Epoch 0, iter 4800/6416, lr 0.100000, loss 13.396634 +INFO 2021-09-16 20:22:04 train.py: 82] Epoch 0, iter 5000/6416, lr 0.100000, loss 13.451684 +INFO 2021-09-16 20:23:39 train.py: 82] Epoch 0, iter 5200/6416, lr 0.100000, loss 13.481663 +INFO 2021-09-16 20:25:13 train.py: 82] Epoch 0, iter 5400/6416, lr 0.100000, loss 13.411484 +INFO 2021-09-16 20:26:47 train.py: 82] Epoch 0, iter 5600/6416, lr 0.100000, loss 13.336041 +INFO 2021-09-16 20:28:21 train.py: 82] Epoch 0, iter 5800/6416, lr 0.100000, loss 13.219929 +INFO 2021-09-16 20:29:56 train.py: 95] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2021-09-16 20:29:57 train.py: 82] Epoch 0, iter 6000/6416, lr 0.100000, loss 13.057388 +INFO 2021-09-16 20:31:31 train.py: 82] Epoch 0, iter 6200/6416, lr 0.100000, loss 12.836571 +INFO 2021-09-16 20:33:05 train.py: 82] Epoch 0, iter 6400/6416, lr 0.100000, loss 12.648535 +INFO 2021-09-16 20:33:14 train.py: 100] Save checkpoint Epoch_0.pt to disk... +INFO 2021-09-16 20:33:16 train.py: 82] Epoch 1, iter 0/6416, lr 0.100000, loss 12.551365 +INFO 2021-09-16 20:34:49 train.py: 82] Epoch 1, iter 200/6416, lr 0.100000, loss 12.140407 +INFO 2021-09-16 20:36:23 train.py: 82] Epoch 1, iter 400/6416, lr 0.100000, loss 11.929699 +INFO 2021-09-16 20:37:57 train.py: 82] Epoch 1, iter 600/6416, lr 0.100000, loss 11.733131 +INFO 2021-09-16 20:39:31 train.py: 82] Epoch 1, iter 800/6416, lr 0.100000, loss 11.580440 +INFO 2021-09-16 20:41:04 train.py: 82] Epoch 1, iter 1000/6416, lr 0.100000, loss 11.342613 +INFO 2021-09-16 20:42:38 train.py: 82] Epoch 1, iter 1200/6416, lr 0.100000, loss 11.134010 +INFO 2021-09-16 20:44:11 train.py: 82] Epoch 1, iter 1400/6416, lr 0.100000, loss 10.938638 +INFO 2021-09-16 20:45:44 train.py: 82] Epoch 1, iter 1600/6416, lr 0.100000, loss 10.750035 +INFO 2021-09-16 20:47:17 train.py: 82] Epoch 1, iter 1800/6416, lr 0.100000, loss 10.549917 +INFO 2021-09-16 20:48:50 train.py: 82] Epoch 1, iter 2000/6416, lr 0.100000, loss 10.383498 +INFO 2021-09-16 20:50:24 train.py: 82] Epoch 1, iter 2200/6416, lr 0.100000, loss 10.238290 +INFO 2021-09-16 20:51:57 train.py: 82] Epoch 1, iter 2400/6416, lr 0.100000, loss 10.030859 +INFO 2021-09-16 20:53:30 train.py: 82] Epoch 1, iter 2600/6416, lr 0.100000, loss 9.890399 +INFO 2021-09-16 20:55:03 train.py: 82] Epoch 1, iter 2800/6416, lr 0.100000, loss 9.725298 +INFO 2021-09-16 20:56:38 train.py: 95] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2021-09-16 20:56:38 train.py: 82] Epoch 1, iter 3000/6416, lr 0.100000, loss 9.600577 +INFO 2021-09-16 20:58:11 train.py: 82] Epoch 1, iter 3200/6416, lr 0.100000, loss 9.447812 +INFO 2021-09-16 20:59:44 train.py: 82] Epoch 1, iter 3400/6416, lr 0.100000, loss 9.331855 +INFO 2021-09-16 21:01:17 train.py: 82] Epoch 1, iter 3600/6416, lr 0.100000, loss 9.206323 +INFO 2021-09-16 21:02:50 train.py: 82] Epoch 1, iter 3800/6416, lr 0.100000, loss 9.088237 +INFO 2021-09-16 21:04:23 train.py: 82] Epoch 1, iter 4000/6416, lr 0.100000, loss 9.000854 +INFO 2021-09-16 21:05:57 train.py: 82] Epoch 1, iter 4200/6416, lr 0.100000, loss 8.869513 +INFO 2021-09-16 21:07:30 train.py: 82] Epoch 1, iter 4400/6416, lr 0.100000, loss 8.769005 +INFO 2021-09-16 21:09:03 train.py: 82] Epoch 1, iter 4600/6416, lr 0.100000, loss 8.683575 +INFO 2021-09-16 21:10:36 train.py: 82] Epoch 1, iter 4800/6416, lr 0.100000, loss 8.584510 +INFO 2021-09-16 21:12:09 train.py: 82] Epoch 1, iter 5000/6416, lr 0.100000, loss 8.474653 +INFO 2021-09-16 21:13:42 train.py: 82] Epoch 1, iter 5200/6416, lr 0.100000, loss 8.406663 +INFO 2021-09-16 21:15:15 train.py: 82] Epoch 1, iter 5400/6416, lr 0.100000, loss 8.358311 +INFO 2021-09-16 21:16:48 train.py: 82] Epoch 1, iter 5600/6416, lr 0.100000, loss 8.238079 +INFO 2021-09-16 21:18:22 train.py: 82] Epoch 1, iter 5800/6416, lr 0.100000, loss 8.177464 +INFO 2021-09-16 21:19:56 train.py: 95] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2021-09-16 21:19:57 train.py: 82] Epoch 1, iter 6000/6416, lr 0.100000, loss 8.109052 +INFO 2021-09-16 21:21:30 train.py: 82] Epoch 1, iter 6200/6416, lr 0.100000, loss 8.034128 +INFO 2021-09-16 21:23:03 train.py: 82] Epoch 1, iter 6400/6416, lr 0.100000, loss 7.973383 +INFO 2021-09-16 21:23:12 train.py: 100] Save checkpoint Epoch_1.pt to disk... +INFO 2021-09-16 21:23:14 train.py: 82] Epoch 2, iter 0/6416, lr 0.100000, loss 7.866819 +INFO 2021-09-16 21:24:48 train.py: 82] Epoch 2, iter 200/6416, lr 0.100000, loss 7.309457 +INFO 2021-09-16 21:26:21 train.py: 82] Epoch 2, iter 400/6416, lr 0.100000, loss 7.256321 +INFO 2021-09-16 21:27:54 train.py: 82] Epoch 2, iter 600/6416, lr 0.100000, loss 7.348893 +INFO 2021-09-16 21:29:27 train.py: 82] Epoch 2, iter 800/6416, lr 0.100000, loss 7.359792 +INFO 2021-09-16 21:31:00 train.py: 82] Epoch 2, iter 1000/6416, lr 0.100000, loss 7.372995 +INFO 2021-09-16 21:32:33 train.py: 82] Epoch 2, iter 1200/6416, lr 0.100000, loss 7.381105 +INFO 2021-09-16 21:34:06 train.py: 82] Epoch 2, iter 1400/6416, lr 0.100000, loss 7.394651 +INFO 2021-09-16 21:35:38 train.py: 82] Epoch 2, iter 1600/6416, lr 0.100000, loss 7.331339 +INFO 2021-09-16 21:37:11 train.py: 82] Epoch 2, iter 1800/6416, lr 0.100000, loss 7.324999 +INFO 2021-09-16 21:38:43 train.py: 82] Epoch 2, iter 2000/6416, lr 0.100000, loss 7.316104 +INFO 2021-09-16 21:40:16 train.py: 82] Epoch 2, iter 2200/6416, lr 0.100000, loss 7.262855 +INFO 2021-09-16 21:41:48 train.py: 82] Epoch 2, iter 2400/6416, lr 0.100000, loss 7.285564 +INFO 2021-09-16 21:43:21 train.py: 82] Epoch 2, iter 2600/6416, lr 0.100000, loss 7.259609 +INFO 2021-09-16 21:44:53 train.py: 82] Epoch 2, iter 2800/6416, lr 0.100000, loss 7.182303 +INFO 2021-09-16 21:46:27 train.py: 95] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2021-09-16 21:46:27 train.py: 82] Epoch 2, iter 3000/6416, lr 0.100000, loss 7.176984 +INFO 2021-09-16 21:48:00 train.py: 82] Epoch 2, iter 3200/6416, lr 0.100000, loss 7.113152 +INFO 2021-09-16 21:49:32 train.py: 82] Epoch 2, iter 3400/6416, lr 0.100000, loss 7.103764 +INFO 2021-09-16 21:51:05 train.py: 82] Epoch 2, iter 3600/6416, lr 0.100000, loss 7.057729 +INFO 2021-09-16 21:52:38 train.py: 82] Epoch 2, iter 3800/6416, lr 0.100000, loss 7.048240 +INFO 2021-09-16 21:54:10 train.py: 82] Epoch 2, iter 4000/6416, lr 0.100000, loss 7.026205 +INFO 2021-09-16 21:55:43 train.py: 82] Epoch 2, iter 4200/6416, lr 0.100000, loss 6.988499 +INFO 2021-09-16 21:57:16 train.py: 82] Epoch 2, iter 4400/6416, lr 0.100000, loss 6.935102 +INFO 2021-09-16 21:58:49 train.py: 82] Epoch 2, iter 4600/6416, lr 0.100000, loss 6.912633 +INFO 2021-09-16 22:00:22 train.py: 82] Epoch 2, iter 4800/6416, lr 0.100000, loss 6.860900 +INFO 2021-09-16 22:01:54 train.py: 82] Epoch 2, iter 5000/6416, lr 0.100000, loss 6.872863 +INFO 2021-09-16 22:03:27 train.py: 82] Epoch 2, iter 5200/6416, lr 0.100000, loss 6.832867 +INFO 2021-09-16 22:05:00 train.py: 82] Epoch 2, iter 5400/6416, lr 0.100000, loss 6.811628 +INFO 2021-09-16 22:06:33 train.py: 82] Epoch 2, iter 5600/6416, lr 0.100000, loss 6.766112 +INFO 2021-09-16 22:08:05 train.py: 82] Epoch 2, iter 5800/6416, lr 0.100000, loss 6.734297 +INFO 2021-09-16 22:09:39 train.py: 95] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2021-09-16 22:09:40 train.py: 82] Epoch 2, iter 6000/6416, lr 0.100000, loss 6.710829 +INFO 2021-09-16 22:11:12 train.py: 82] Epoch 2, iter 6200/6416, lr 0.100000, loss 6.692142 +INFO 2021-09-16 22:12:45 train.py: 82] Epoch 2, iter 6400/6416, lr 0.100000, loss 6.646334 +INFO 2021-09-16 22:12:54 train.py: 100] Save checkpoint Epoch_2.pt to disk... +INFO 2021-09-16 22:12:56 train.py: 82] Epoch 3, iter 0/6416, lr 0.100000, loss 6.645002 +INFO 2021-09-16 22:14:29 train.py: 82] Epoch 3, iter 200/6416, lr 0.100000, loss 6.054503 +INFO 2021-09-16 22:16:02 train.py: 82] Epoch 3, iter 400/6416, lr 0.100000, loss 6.053902 +INFO 2021-09-16 22:17:35 train.py: 82] Epoch 3, iter 600/6416, lr 0.100000, loss 6.074604 +INFO 2021-09-16 22:19:07 train.py: 82] Epoch 3, iter 800/6416, lr 0.100000, loss 6.178117 +INFO 2021-09-16 22:20:39 train.py: 82] Epoch 3, iter 1000/6416, lr 0.100000, loss 6.263463 +INFO 2021-09-16 22:22:11 train.py: 82] Epoch 3, iter 1200/6416, lr 0.100000, loss 6.251473 +INFO 2021-09-16 22:23:43 train.py: 82] Epoch 3, iter 1400/6416, lr 0.100000, loss 6.265714 +INFO 2021-09-16 22:25:16 train.py: 82] Epoch 3, iter 1600/6416, lr 0.100000, loss 6.283561 +INFO 2021-09-16 22:26:48 train.py: 82] Epoch 3, iter 1800/6416, lr 0.100000, loss 6.292271 +INFO 2021-09-16 22:28:20 train.py: 82] Epoch 3, iter 2000/6416, lr 0.100000, loss 6.295875 +INFO 2021-09-16 22:29:53 train.py: 82] Epoch 3, iter 2200/6416, lr 0.100000, loss 6.287003 +INFO 2021-09-16 22:31:25 train.py: 82] Epoch 3, iter 2400/6416, lr 0.100000, loss 6.298549 +INFO 2021-09-16 22:32:57 train.py: 82] Epoch 3, iter 2600/6416, lr 0.100000, loss 6.283034 +INFO 2021-09-16 22:34:29 train.py: 82] Epoch 3, iter 2800/6416, lr 0.100000, loss 6.242559 +INFO 2021-09-16 22:36:02 train.py: 95] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2021-09-16 22:36:03 train.py: 82] Epoch 3, iter 3000/6416, lr 0.100000, loss 6.270848 +INFO 2021-09-16 22:37:35 train.py: 82] Epoch 3, iter 3200/6416, lr 0.100000, loss 6.222117 +INFO 2021-09-16 22:39:08 train.py: 82] Epoch 3, iter 3400/6416, lr 0.100000, loss 6.215120 +INFO 2021-09-16 22:40:40 train.py: 82] Epoch 3, iter 3600/6416, lr 0.100000, loss 6.200288 +INFO 2021-09-16 22:42:12 train.py: 82] Epoch 3, iter 3800/6416, lr 0.100000, loss 6.160233 +INFO 2021-09-16 22:43:45 train.py: 82] Epoch 3, iter 4000/6416, lr 0.100000, loss 6.177357 +INFO 2021-09-16 22:45:17 train.py: 82] Epoch 3, iter 4200/6416, lr 0.100000, loss 6.179563 +INFO 2021-09-16 22:46:49 train.py: 82] Epoch 3, iter 4400/6416, lr 0.100000, loss 6.201195 +INFO 2021-09-16 22:48:22 train.py: 82] Epoch 3, iter 4600/6416, lr 0.100000, loss 6.131716 +INFO 2021-09-16 22:49:54 train.py: 82] Epoch 3, iter 4800/6416, lr 0.100000, loss 6.110546 +INFO 2021-09-16 22:51:27 train.py: 82] Epoch 3, iter 5000/6416, lr 0.100000, loss 6.092837 +INFO 2021-09-16 22:52:59 train.py: 82] Epoch 3, iter 5200/6416, lr 0.100000, loss 6.096896 +INFO 2021-09-16 22:54:32 train.py: 82] Epoch 3, iter 5400/6416, lr 0.100000, loss 6.098371 +INFO 2021-09-16 22:56:05 train.py: 82] Epoch 3, iter 5600/6416, lr 0.100000, loss 6.097321 +INFO 2021-09-16 22:57:37 train.py: 82] Epoch 3, iter 5800/6416, lr 0.100000, loss 6.066154 +INFO 2021-09-16 22:59:11 train.py: 95] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2021-09-16 22:59:11 train.py: 82] Epoch 3, iter 6000/6416, lr 0.100000, loss 6.065526 +INFO 2021-09-16 23:00:43 train.py: 82] Epoch 3, iter 6200/6416, lr 0.100000, loss 6.010776 +INFO 2021-09-16 23:02:15 train.py: 82] Epoch 3, iter 6400/6416, lr 0.100000, loss 6.019417 +INFO 2021-09-16 23:02:24 train.py: 100] Save checkpoint Epoch_3.pt to disk... +INFO 2021-09-16 23:02:26 train.py: 82] Epoch 4, iter 0/6416, lr 0.100000, loss 5.888591 +INFO 2021-09-16 23:03:59 train.py: 82] Epoch 4, iter 200/6416, lr 0.100000, loss 5.430405 +INFO 2021-09-16 23:05:32 train.py: 82] Epoch 4, iter 400/6416, lr 0.100000, loss 5.414519 +INFO 2021-09-16 23:07:05 train.py: 82] Epoch 4, iter 600/6416, lr 0.100000, loss 5.466144 +INFO 2021-09-16 23:08:37 train.py: 82] Epoch 4, iter 800/6416, lr 0.100000, loss 5.586032 +INFO 2021-09-16 23:10:09 train.py: 82] Epoch 4, iter 1000/6416, lr 0.100000, loss 5.604651 +INFO 2021-09-16 23:11:40 train.py: 82] Epoch 4, iter 1200/6416, lr 0.100000, loss 5.655258 +INFO 2021-09-16 23:13:12 train.py: 82] Epoch 4, iter 1400/6416, lr 0.100000, loss 5.710244 +INFO 2021-09-16 23:14:44 train.py: 82] Epoch 4, iter 1600/6416, lr 0.100000, loss 5.723429 +INFO 2021-09-16 23:16:16 train.py: 82] Epoch 4, iter 1800/6416, lr 0.100000, loss 5.703756 +INFO 2021-09-16 23:17:47 train.py: 82] Epoch 4, iter 2000/6416, lr 0.100000, loss 5.744333 +INFO 2021-09-16 23:19:19 train.py: 82] Epoch 4, iter 2200/6416, lr 0.100000, loss 5.764536 +INFO 2021-09-16 23:20:51 train.py: 82] Epoch 4, iter 2400/6416, lr 0.100000, loss 5.775996 +INFO 2021-09-16 23:22:24 train.py: 82] Epoch 4, iter 2600/6416, lr 0.100000, loss 5.771736 +INFO 2021-09-16 23:23:56 train.py: 82] Epoch 4, iter 2800/6416, lr 0.100000, loss 5.751640 +INFO 2021-09-16 23:25:29 train.py: 95] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2021-09-16 23:25:30 train.py: 82] Epoch 4, iter 3000/6416, lr 0.100000, loss 5.751266 +INFO 2021-09-16 23:27:02 train.py: 82] Epoch 4, iter 3200/6416, lr 0.100000, loss 5.753745 +INFO 2021-09-16 23:28:35 train.py: 82] Epoch 4, iter 3400/6416, lr 0.100000, loss 5.740605 +INFO 2021-09-16 23:30:07 train.py: 82] Epoch 4, iter 3600/6416, lr 0.100000, loss 5.749350 +INFO 2021-09-16 23:31:39 train.py: 82] Epoch 4, iter 3800/6416, lr 0.100000, loss 5.726547 +INFO 2021-09-16 23:33:12 train.py: 82] Epoch 4, iter 4000/6416, lr 0.100000, loss 5.733989 +INFO 2021-09-16 23:34:44 train.py: 82] Epoch 4, iter 4200/6416, lr 0.100000, loss 5.709351 +INFO 2021-09-16 23:36:17 train.py: 82] Epoch 4, iter 4400/6416, lr 0.100000, loss 5.689769 +INFO 2021-09-16 23:37:50 train.py: 82] Epoch 4, iter 4600/6416, lr 0.100000, loss 5.697974 +INFO 2021-09-16 23:39:22 train.py: 82] Epoch 4, iter 4800/6416, lr 0.100000, loss 5.698458 +INFO 2021-09-16 23:40:54 train.py: 82] Epoch 4, iter 5000/6416, lr 0.100000, loss 5.657177 +INFO 2021-09-16 23:42:27 train.py: 82] Epoch 4, iter 5200/6416, lr 0.100000, loss 5.667414 +INFO 2021-09-16 23:43:59 train.py: 82] Epoch 4, iter 5400/6416, lr 0.100000, loss 5.684025 +INFO 2021-09-16 23:45:31 train.py: 82] Epoch 4, iter 5600/6416, lr 0.100000, loss 5.649860 +INFO 2021-09-16 23:47:04 train.py: 82] Epoch 4, iter 5800/6416, lr 0.100000, loss 5.644955 +INFO 2021-09-16 23:48:38 train.py: 95] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2021-09-16 23:48:38 train.py: 82] Epoch 4, iter 6000/6416, lr 0.100000, loss 5.605525 +INFO 2021-09-16 23:50:11 train.py: 82] Epoch 4, iter 6200/6416, lr 0.100000, loss 5.603739 +INFO 2021-09-16 23:51:43 train.py: 82] Epoch 4, iter 6400/6416, lr 0.100000, loss 5.586209 +INFO 2021-09-16 23:51:52 train.py: 100] Save checkpoint Epoch_4.pt to disk... +INFO 2021-09-16 23:51:54 train.py: 82] Epoch 5, iter 0/6416, lr 0.100000, loss 5.569964 +INFO 2021-09-16 23:53:27 train.py: 82] Epoch 5, iter 200/6416, lr 0.100000, loss 5.059988 +INFO 2021-09-16 23:55:01 train.py: 82] Epoch 5, iter 400/6416, lr 0.100000, loss 5.075252 +INFO 2021-09-16 23:56:33 train.py: 82] Epoch 5, iter 600/6416, lr 0.100000, loss 5.147770 +INFO 2021-09-16 23:58:05 train.py: 82] Epoch 5, iter 800/6416, lr 0.100000, loss 5.204382 +INFO 2021-09-16 23:59:37 train.py: 82] Epoch 5, iter 1000/6416, lr 0.100000, loss 5.264986 +INFO 2021-09-17 00:01:08 train.py: 82] Epoch 5, iter 1200/6416, lr 0.100000, loss 5.296878 +INFO 2021-09-17 00:02:41 train.py: 82] Epoch 5, iter 1400/6416, lr 0.100000, loss 5.301634 +INFO 2021-09-17 00:04:13 train.py: 82] Epoch 5, iter 1600/6416, lr 0.100000, loss 5.352289 +INFO 2021-09-17 00:05:45 train.py: 82] Epoch 5, iter 1800/6416, lr 0.100000, loss 5.393488 +INFO 2021-09-17 00:07:17 train.py: 82] Epoch 5, iter 2000/6416, lr 0.100000, loss 5.393345 +INFO 2021-09-17 00:08:49 train.py: 82] Epoch 5, iter 2200/6416, lr 0.100000, loss 5.417219 +INFO 2021-09-17 00:10:21 train.py: 82] Epoch 5, iter 2400/6416, lr 0.100000, loss 5.420899 +INFO 2021-09-17 00:11:53 train.py: 82] Epoch 5, iter 2600/6416, lr 0.100000, loss 5.427281 +INFO 2021-09-17 00:13:25 train.py: 82] Epoch 5, iter 2800/6416, lr 0.100000, loss 5.420875 +INFO 2021-09-17 00:14:58 train.py: 95] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2021-09-17 00:14:59 train.py: 82] Epoch 5, iter 3000/6416, lr 0.100000, loss 5.417903 +INFO 2021-09-17 00:16:31 train.py: 82] Epoch 5, iter 3200/6416, lr 0.100000, loss 5.412522 +INFO 2021-09-17 00:18:03 train.py: 82] Epoch 5, iter 3400/6416, lr 0.100000, loss 5.411889 +INFO 2021-09-17 00:19:36 train.py: 82] Epoch 5, iter 3600/6416, lr 0.100000, loss 5.422176 +INFO 2021-09-17 00:21:08 train.py: 82] Epoch 5, iter 3800/6416, lr 0.100000, loss 5.404112 +INFO 2021-09-17 00:22:40 train.py: 82] Epoch 5, iter 4000/6416, lr 0.100000, loss 5.405759 +INFO 2021-09-17 00:24:12 train.py: 82] Epoch 5, iter 4200/6416, lr 0.100000, loss 5.400752 +INFO 2021-09-17 00:25:45 train.py: 82] Epoch 5, iter 4400/6416, lr 0.100000, loss 5.389306 +INFO 2021-09-17 00:27:16 train.py: 82] Epoch 5, iter 4600/6416, lr 0.100000, loss 5.395241 +INFO 2021-09-17 00:28:49 train.py: 82] Epoch 5, iter 4800/6416, lr 0.100000, loss 5.378862 +INFO 2021-09-17 00:30:20 train.py: 82] Epoch 5, iter 5000/6416, lr 0.100000, loss 5.387434 +INFO 2021-09-17 00:31:53 train.py: 82] Epoch 5, iter 5200/6416, lr 0.100000, loss 5.367028 +INFO 2021-09-17 00:33:25 train.py: 82] Epoch 5, iter 5400/6416, lr 0.100000, loss 5.385673 +INFO 2021-09-17 00:34:57 train.py: 82] Epoch 5, iter 5600/6416, lr 0.100000, loss 5.383887 +INFO 2021-09-17 00:36:30 train.py: 82] Epoch 5, iter 5800/6416, lr 0.100000, loss 5.350840 +INFO 2021-09-17 00:38:03 train.py: 95] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2021-09-17 00:38:03 train.py: 82] Epoch 5, iter 6000/6416, lr 0.100000, loss 5.348172 +INFO 2021-09-17 00:39:36 train.py: 82] Epoch 5, iter 6200/6416, lr 0.100000, loss 5.358875 +INFO 2021-09-17 00:41:08 train.py: 82] Epoch 5, iter 6400/6416, lr 0.100000, loss 5.334617 +INFO 2021-09-17 00:41:17 train.py: 100] Save checkpoint Epoch_5.pt to disk... +INFO 2021-09-17 00:41:19 train.py: 82] Epoch 6, iter 0/6416, lr 0.100000, loss 5.331950 +INFO 2021-09-17 00:42:52 train.py: 82] Epoch 6, iter 200/6416, lr 0.100000, loss 4.825155 +INFO 2021-09-17 00:44:24 train.py: 82] Epoch 6, iter 400/6416, lr 0.100000, loss 4.771967 +INFO 2021-09-17 00:45:56 train.py: 82] Epoch 6, iter 600/6416, lr 0.100000, loss 4.850631 +INFO 2021-09-17 00:47:28 train.py: 82] Epoch 6, iter 800/6416, lr 0.100000, loss 4.940105 +INFO 2021-09-17 00:49:00 train.py: 82] Epoch 6, iter 1000/6416, lr 0.100000, loss 4.996032 +INFO 2021-09-17 00:50:32 train.py: 82] Epoch 6, iter 1200/6416, lr 0.100000, loss 5.031637 +INFO 2021-09-17 00:52:04 train.py: 82] Epoch 6, iter 1400/6416, lr 0.100000, loss 5.116790 +INFO 2021-09-17 00:53:35 train.py: 82] Epoch 6, iter 1600/6416, lr 0.100000, loss 5.092117 +INFO 2021-09-17 00:55:07 train.py: 82] Epoch 6, iter 1800/6416, lr 0.100000, loss 5.144563 +INFO 2021-09-17 00:56:39 train.py: 82] Epoch 6, iter 2000/6416, lr 0.100000, loss 5.162694 +INFO 2021-09-17 00:58:11 train.py: 82] Epoch 6, iter 2200/6416, lr 0.100000, loss 5.170516 +INFO 2021-09-17 00:59:43 train.py: 82] Epoch 6, iter 2400/6416, lr 0.100000, loss 5.199002 +INFO 2021-09-17 01:01:15 train.py: 82] Epoch 6, iter 2600/6416, lr 0.100000, loss 5.161922 +INFO 2021-09-17 01:02:47 train.py: 82] Epoch 6, iter 2800/6416, lr 0.100000, loss 5.158922 +INFO 2021-09-17 01:04:20 train.py: 95] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2021-09-17 01:04:20 train.py: 82] Epoch 6, iter 3000/6416, lr 0.100000, loss 5.188388 +INFO 2021-09-17 01:05:53 train.py: 82] Epoch 6, iter 3200/6416, lr 0.100000, loss 5.188697 +INFO 2021-09-17 01:07:25 train.py: 82] Epoch 6, iter 3400/6416, lr 0.100000, loss 5.201222 +INFO 2021-09-17 01:08:58 train.py: 82] Epoch 6, iter 3600/6416, lr 0.100000, loss 5.198324 +INFO 2021-09-17 01:10:30 train.py: 82] Epoch 6, iter 3800/6416, lr 0.100000, loss 5.219489 +INFO 2021-09-17 01:12:03 train.py: 82] Epoch 6, iter 4000/6416, lr 0.100000, loss 5.214616 +INFO 2021-09-17 01:13:35 train.py: 82] Epoch 6, iter 4200/6416, lr 0.100000, loss 5.184642 +INFO 2021-09-17 01:15:08 train.py: 82] Epoch 6, iter 4400/6416, lr 0.100000, loss 5.221622 +INFO 2021-09-17 01:16:41 train.py: 82] Epoch 6, iter 4600/6416, lr 0.100000, loss 5.183578 +INFO 2021-09-17 01:18:13 train.py: 82] Epoch 6, iter 4800/6416, lr 0.100000, loss 5.195134 +INFO 2021-09-17 01:19:46 train.py: 82] Epoch 6, iter 5000/6416, lr 0.100000, loss 5.233120 +INFO 2021-09-17 01:21:19 train.py: 82] Epoch 6, iter 5200/6416, lr 0.100000, loss 5.198898 +INFO 2021-09-17 01:22:52 train.py: 82] Epoch 6, iter 5400/6416, lr 0.100000, loss 5.187761 +INFO 2021-09-17 01:24:24 train.py: 82] Epoch 6, iter 5600/6416, lr 0.100000, loss 5.161280 +INFO 2021-09-17 01:25:57 train.py: 82] Epoch 6, iter 5800/6416, lr 0.100000, loss 5.214184 +INFO 2021-09-17 01:27:31 train.py: 95] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2021-09-17 01:27:31 train.py: 82] Epoch 6, iter 6000/6416, lr 0.100000, loss 5.141961 +INFO 2021-09-17 01:29:04 train.py: 82] Epoch 6, iter 6200/6416, lr 0.100000, loss 5.141327 +INFO 2021-09-17 01:30:37 train.py: 82] Epoch 6, iter 6400/6416, lr 0.100000, loss 5.140300 +INFO 2021-09-17 01:30:45 train.py: 100] Save checkpoint Epoch_6.pt to disk... +INFO 2021-09-17 01:30:47 train.py: 82] Epoch 7, iter 0/6416, lr 0.100000, loss 5.092330 +INFO 2021-09-17 01:32:21 train.py: 82] Epoch 7, iter 200/6416, lr 0.100000, loss 4.605258 +INFO 2021-09-17 01:33:53 train.py: 82] Epoch 7, iter 400/6416, lr 0.100000, loss 4.606459 +INFO 2021-09-17 01:35:25 train.py: 82] Epoch 7, iter 600/6416, lr 0.100000, loss 4.684873 +INFO 2021-09-17 01:36:57 train.py: 82] Epoch 7, iter 800/6416, lr 0.100000, loss 4.770544 +INFO 2021-09-17 01:38:29 train.py: 82] Epoch 7, iter 1000/6416, lr 0.100000, loss 4.797153 +INFO 2021-09-17 01:40:01 train.py: 82] Epoch 7, iter 1200/6416, lr 0.100000, loss 4.847652 +INFO 2021-09-17 01:41:33 train.py: 82] Epoch 7, iter 1400/6416, lr 0.100000, loss 4.910492 +INFO 2021-09-17 01:43:06 train.py: 82] Epoch 7, iter 1600/6416, lr 0.100000, loss 4.924279 +INFO 2021-09-17 01:44:38 train.py: 82] Epoch 7, iter 1800/6416, lr 0.100000, loss 4.948795 +INFO 2021-09-17 01:46:10 train.py: 82] Epoch 7, iter 2000/6416, lr 0.100000, loss 4.955816 +INFO 2021-09-17 01:47:42 train.py: 82] Epoch 7, iter 2200/6416, lr 0.100000, loss 5.003122 +INFO 2021-09-17 01:49:15 train.py: 82] Epoch 7, iter 2400/6416, lr 0.100000, loss 4.991083 +INFO 2021-09-17 01:50:47 train.py: 82] Epoch 7, iter 2600/6416, lr 0.100000, loss 5.028439 +INFO 2021-09-17 01:52:19 train.py: 82] Epoch 7, iter 2800/6416, lr 0.100000, loss 5.015730 +INFO 2021-09-17 01:53:53 train.py: 95] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2021-09-17 01:53:54 train.py: 82] Epoch 7, iter 3000/6416, lr 0.100000, loss 5.048214 +INFO 2021-09-17 01:55:26 train.py: 82] Epoch 7, iter 3200/6416, lr 0.100000, loss 4.987984 +INFO 2021-09-17 01:56:58 train.py: 82] Epoch 7, iter 3400/6416, lr 0.100000, loss 5.035593 +INFO 2021-09-17 01:58:31 train.py: 82] Epoch 7, iter 3600/6416, lr 0.100000, loss 5.003642 +INFO 2021-09-17 02:00:04 train.py: 82] Epoch 7, iter 3800/6416, lr 0.100000, loss 5.051496 +INFO 2021-09-17 02:01:36 train.py: 82] Epoch 7, iter 4000/6416, lr 0.100000, loss 5.021516 +INFO 2021-09-17 02:03:09 train.py: 82] Epoch 7, iter 4200/6416, lr 0.100000, loss 5.041113 +INFO 2021-09-17 02:04:41 train.py: 82] Epoch 7, iter 4400/6416, lr 0.100000, loss 5.012691 +INFO 2021-09-17 02:06:14 train.py: 82] Epoch 7, iter 4600/6416, lr 0.100000, loss 5.020426 +INFO 2021-09-17 02:07:46 train.py: 82] Epoch 7, iter 4800/6416, lr 0.100000, loss 5.013516 +INFO 2021-09-17 02:09:18 train.py: 82] Epoch 7, iter 5000/6416, lr 0.100000, loss 5.049451 +INFO 2021-09-17 02:10:50 train.py: 82] Epoch 7, iter 5200/6416, lr 0.100000, loss 5.008332 +INFO 2021-09-17 02:12:22 train.py: 82] Epoch 7, iter 5400/6416, lr 0.100000, loss 4.989865 +INFO 2021-09-17 02:13:54 train.py: 82] Epoch 7, iter 5600/6416, lr 0.100000, loss 5.055245 +INFO 2021-09-17 02:15:26 train.py: 82] Epoch 7, iter 5800/6416, lr 0.100000, loss 5.037957 +INFO 2021-09-17 02:16:59 train.py: 95] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2021-09-17 02:17:00 train.py: 82] Epoch 7, iter 6000/6416, lr 0.100000, loss 4.979538 +INFO 2021-09-17 02:18:32 train.py: 82] Epoch 7, iter 6200/6416, lr 0.100000, loss 5.011980 +INFO 2021-09-17 02:20:04 train.py: 82] Epoch 7, iter 6400/6416, lr 0.100000, loss 4.998070 +INFO 2021-09-17 02:20:13 train.py: 100] Save checkpoint Epoch_7.pt to disk... +INFO 2021-09-17 02:20:15 train.py: 82] Epoch 8, iter 0/6416, lr 0.100000, loss 4.929272 +INFO 2021-09-17 02:21:48 train.py: 82] Epoch 8, iter 200/6416, lr 0.100000, loss 4.475036 +INFO 2021-09-17 02:23:20 train.py: 82] Epoch 8, iter 400/6416, lr 0.100000, loss 4.467852 +INFO 2021-09-17 02:24:51 train.py: 82] Epoch 8, iter 600/6416, lr 0.100000, loss 4.529003 +INFO 2021-09-17 02:26:24 train.py: 82] Epoch 8, iter 800/6416, lr 0.100000, loss 4.605097 +INFO 2021-09-17 02:27:55 train.py: 82] Epoch 8, iter 1000/6416, lr 0.100000, loss 4.688232 +INFO 2021-09-17 02:29:27 train.py: 82] Epoch 8, iter 1200/6416, lr 0.100000, loss 4.681448 +INFO 2021-09-17 02:30:59 train.py: 82] Epoch 8, iter 1400/6416, lr 0.100000, loss 4.733311 +INFO 2021-09-17 02:32:31 train.py: 82] Epoch 8, iter 1600/6416, lr 0.100000, loss 4.803483 +INFO 2021-09-17 02:34:03 train.py: 82] Epoch 8, iter 1800/6416, lr 0.100000, loss 4.808274 +INFO 2021-09-17 02:35:34 train.py: 82] Epoch 8, iter 2000/6416, lr 0.100000, loss 4.823631 +INFO 2021-09-17 02:37:06 train.py: 82] Epoch 8, iter 2200/6416, lr 0.100000, loss 4.834197 +INFO 2021-09-17 02:38:38 train.py: 82] Epoch 8, iter 2400/6416, lr 0.100000, loss 4.858599 +INFO 2021-09-17 02:40:11 train.py: 82] Epoch 8, iter 2600/6416, lr 0.100000, loss 4.900997 +INFO 2021-09-17 02:41:43 train.py: 82] Epoch 8, iter 2800/6416, lr 0.100000, loss 4.887682 +INFO 2021-09-17 02:43:16 train.py: 95] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2021-09-17 02:43:17 train.py: 82] Epoch 8, iter 3000/6416, lr 0.100000, loss 4.881066 +INFO 2021-09-17 02:44:49 train.py: 82] Epoch 8, iter 3200/6416, lr 0.100000, loss 4.887744 +INFO 2021-09-17 02:46:22 train.py: 82] Epoch 8, iter 3400/6416, lr 0.100000, loss 4.892846 +INFO 2021-09-17 02:47:54 train.py: 82] Epoch 8, iter 3600/6416, lr 0.100000, loss 4.915452 +INFO 2021-09-17 02:49:26 train.py: 82] Epoch 8, iter 3800/6416, lr 0.100000, loss 4.919376 +INFO 2021-09-17 02:50:58 train.py: 82] Epoch 8, iter 4000/6416, lr 0.100000, loss 4.872629 +INFO 2021-09-17 02:52:31 train.py: 82] Epoch 8, iter 4200/6416, lr 0.100000, loss 4.895602 +INFO 2021-09-17 02:54:03 train.py: 82] Epoch 8, iter 4400/6416, lr 0.100000, loss 4.877744 +INFO 2021-09-17 02:55:36 train.py: 82] Epoch 8, iter 4600/6416, lr 0.100000, loss 4.900730 +INFO 2021-09-17 02:57:08 train.py: 82] Epoch 8, iter 4800/6416, lr 0.100000, loss 4.903669 +INFO 2021-09-17 02:58:41 train.py: 82] Epoch 8, iter 5000/6416, lr 0.100000, loss 4.902806 +INFO 2021-09-17 03:00:13 train.py: 82] Epoch 8, iter 5200/6416, lr 0.100000, loss 4.873756 +INFO 2021-09-17 03:01:45 train.py: 82] Epoch 8, iter 5400/6416, lr 0.100000, loss 4.888844 +INFO 2021-09-17 03:03:18 train.py: 82] Epoch 8, iter 5600/6416, lr 0.100000, loss 4.901817 +INFO 2021-09-17 03:04:50 train.py: 82] Epoch 8, iter 5800/6416, lr 0.100000, loss 4.921406 +INFO 2021-09-17 03:06:23 train.py: 95] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2021-09-17 03:06:24 train.py: 82] Epoch 8, iter 6000/6416, lr 0.100000, loss 4.888860 +INFO 2021-09-17 03:07:56 train.py: 82] Epoch 8, iter 6200/6416, lr 0.100000, loss 4.890106 +INFO 2021-09-17 03:09:29 train.py: 82] Epoch 8, iter 6400/6416, lr 0.100000, loss 4.892730 +INFO 2021-09-17 03:09:38 train.py: 100] Save checkpoint Epoch_8.pt to disk... +INFO 2021-09-17 03:09:40 train.py: 82] Epoch 9, iter 0/6416, lr 0.100000, loss 4.880278 +INFO 2021-09-17 03:11:13 train.py: 82] Epoch 9, iter 200/6416, lr 0.100000, loss 4.410804 +INFO 2021-09-17 03:12:45 train.py: 82] Epoch 9, iter 400/6416, lr 0.100000, loss 4.336949 +INFO 2021-09-17 03:14:17 train.py: 82] Epoch 9, iter 600/6416, lr 0.100000, loss 4.400163 +INFO 2021-09-17 03:15:48 train.py: 82] Epoch 9, iter 800/6416, lr 0.100000, loss 4.471257 +INFO 2021-09-17 03:17:20 train.py: 82] Epoch 9, iter 1000/6416, lr 0.100000, loss 4.553718 +INFO 2021-09-17 03:18:52 train.py: 82] Epoch 9, iter 1200/6416, lr 0.100000, loss 4.603666 +INFO 2021-09-17 03:20:24 train.py: 82] Epoch 9, iter 1400/6416, lr 0.100000, loss 4.638796 +INFO 2021-09-17 03:21:56 train.py: 82] Epoch 9, iter 1600/6416, lr 0.100000, loss 4.664761 +INFO 2021-09-17 03:23:28 train.py: 82] Epoch 9, iter 1800/6416, lr 0.100000, loss 4.692238 +INFO 2021-09-17 03:25:00 train.py: 82] Epoch 9, iter 2000/6416, lr 0.100000, loss 4.725207 +INFO 2021-09-17 03:26:32 train.py: 82] Epoch 9, iter 2200/6416, lr 0.100000, loss 4.717188 +INFO 2021-09-17 03:28:04 train.py: 82] Epoch 9, iter 2400/6416, lr 0.100000, loss 4.759216 +INFO 2021-09-17 03:29:36 train.py: 82] Epoch 9, iter 2600/6416, lr 0.100000, loss 4.769640 +INFO 2021-09-17 03:31:08 train.py: 82] Epoch 9, iter 2800/6416, lr 0.100000, loss 4.790487 +INFO 2021-09-17 03:32:41 train.py: 95] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2021-09-17 03:32:42 train.py: 82] Epoch 9, iter 3000/6416, lr 0.100000, loss 4.794496 +INFO 2021-09-17 03:34:14 train.py: 82] Epoch 9, iter 3200/6416, lr 0.100000, loss 4.799691 +INFO 2021-09-17 03:35:47 train.py: 82] Epoch 9, iter 3400/6416, lr 0.100000, loss 4.792707 +INFO 2021-09-17 03:37:19 train.py: 82] Epoch 9, iter 3600/6416, lr 0.100000, loss 4.776469 +INFO 2021-09-17 03:38:51 train.py: 82] Epoch 9, iter 3800/6416, lr 0.100000, loss 4.774457 +INFO 2021-09-17 03:40:24 train.py: 82] Epoch 9, iter 4000/6416, lr 0.100000, loss 4.768630 +INFO 2021-09-17 03:41:56 train.py: 82] Epoch 9, iter 4200/6416, lr 0.100000, loss 4.754323 +INFO 2021-09-17 03:43:29 train.py: 82] Epoch 9, iter 4400/6416, lr 0.100000, loss 4.778079 +INFO 2021-09-17 03:45:01 train.py: 82] Epoch 9, iter 4600/6416, lr 0.100000, loss 4.810099 +INFO 2021-09-17 03:46:34 train.py: 82] Epoch 9, iter 4800/6416, lr 0.100000, loss 4.824768 +INFO 2021-09-17 03:48:06 train.py: 82] Epoch 9, iter 5000/6416, lr 0.100000, loss 4.788132 +INFO 2021-09-17 03:49:39 train.py: 82] Epoch 9, iter 5200/6416, lr 0.100000, loss 4.796879 +INFO 2021-09-17 03:51:11 train.py: 82] Epoch 9, iter 5400/6416, lr 0.100000, loss 4.790698 +INFO 2021-09-17 03:52:44 train.py: 82] Epoch 9, iter 5600/6416, lr 0.100000, loss 4.786067 +INFO 2021-09-17 03:54:16 train.py: 82] Epoch 9, iter 5800/6416, lr 0.100000, loss 4.789535 +INFO 2021-09-17 03:55:50 train.py: 95] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2021-09-17 03:55:51 train.py: 82] Epoch 9, iter 6000/6416, lr 0.100000, loss 4.785182 +INFO 2021-09-17 03:57:24 train.py: 82] Epoch 9, iter 6200/6416, lr 0.100000, loss 4.799157 +INFO 2021-09-17 03:58:56 train.py: 82] Epoch 9, iter 6400/6416, lr 0.100000, loss 4.783874 +INFO 2021-09-17 03:59:05 train.py: 100] Save checkpoint Epoch_9.pt to disk... +INFO 2021-09-17 03:59:07 train.py: 82] Epoch 10, iter 0/6416, lr 0.010000, loss 4.803516 +INFO 2021-09-17 04:00:39 train.py: 82] Epoch 10, iter 200/6416, lr 0.010000, loss 3.593149 +INFO 2021-09-17 04:02:12 train.py: 82] Epoch 10, iter 400/6416, lr 0.010000, loss 3.343426 +INFO 2021-09-17 04:03:43 train.py: 82] Epoch 10, iter 600/6416, lr 0.010000, loss 3.258991 +INFO 2021-09-17 04:05:15 train.py: 82] Epoch 10, iter 800/6416, lr 0.010000, loss 3.168543 +INFO 2021-09-17 04:06:47 train.py: 82] Epoch 10, iter 1000/6416, lr 0.010000, loss 3.107442 +INFO 2021-09-17 04:08:19 train.py: 82] Epoch 10, iter 1200/6416, lr 0.010000, loss 3.077062 +INFO 2021-09-17 04:09:51 train.py: 82] Epoch 10, iter 1400/6416, lr 0.010000, loss 3.056982 +INFO 2021-09-17 04:11:23 train.py: 82] Epoch 10, iter 1600/6416, lr 0.010000, loss 3.009703 +INFO 2021-09-17 04:12:55 train.py: 82] Epoch 10, iter 1800/6416, lr 0.010000, loss 2.979670 +INFO 2021-09-17 04:14:26 train.py: 82] Epoch 10, iter 2000/6416, lr 0.010000, loss 2.961445 +INFO 2021-09-17 04:15:58 train.py: 82] Epoch 10, iter 2200/6416, lr 0.010000, loss 2.922332 +INFO 2021-09-17 04:17:30 train.py: 82] Epoch 10, iter 2400/6416, lr 0.010000, loss 2.879532 +INFO 2021-09-17 04:19:02 train.py: 82] Epoch 10, iter 2600/6416, lr 0.010000, loss 2.905262 +INFO 2021-09-17 04:20:34 train.py: 82] Epoch 10, iter 2800/6416, lr 0.010000, loss 2.866600 +INFO 2021-09-17 04:22:06 train.py: 95] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2021-09-17 04:22:07 train.py: 82] Epoch 10, iter 3000/6416, lr 0.010000, loss 2.855847 +INFO 2021-09-17 04:23:39 train.py: 82] Epoch 10, iter 3200/6416, lr 0.010000, loss 2.841305 +INFO 2021-09-17 04:25:11 train.py: 82] Epoch 10, iter 3400/6416, lr 0.010000, loss 2.802454 +INFO 2021-09-17 04:26:44 train.py: 82] Epoch 10, iter 3600/6416, lr 0.010000, loss 2.763495 +INFO 2021-09-17 04:28:16 train.py: 82] Epoch 10, iter 3800/6416, lr 0.010000, loss 2.774854 +INFO 2021-09-17 04:29:49 train.py: 82] Epoch 10, iter 4000/6416, lr 0.010000, loss 2.752714 +INFO 2021-09-17 04:31:21 train.py: 82] Epoch 10, iter 4200/6416, lr 0.010000, loss 2.738505 +INFO 2021-09-17 04:32:54 train.py: 82] Epoch 10, iter 4400/6416, lr 0.010000, loss 2.714128 +INFO 2021-09-17 04:34:26 train.py: 82] Epoch 10, iter 4600/6416, lr 0.010000, loss 2.715667 +INFO 2021-09-17 04:35:59 train.py: 82] Epoch 10, iter 4800/6416, lr 0.010000, loss 2.692296 +INFO 2021-09-17 04:37:31 train.py: 82] Epoch 10, iter 5000/6416, lr 0.010000, loss 2.686138 +INFO 2021-09-17 04:39:04 train.py: 82] Epoch 10, iter 5200/6416, lr 0.010000, loss 2.674896 +INFO 2021-09-17 04:40:37 train.py: 82] Epoch 10, iter 5400/6416, lr 0.010000, loss 2.647006 +INFO 2021-09-17 04:42:10 train.py: 82] Epoch 10, iter 5600/6416, lr 0.010000, loss 2.635188 +INFO 2021-09-17 04:43:42 train.py: 82] Epoch 10, iter 5800/6416, lr 0.010000, loss 2.647114 +INFO 2021-09-17 04:45:16 train.py: 95] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2021-09-17 04:45:17 train.py: 82] Epoch 10, iter 6000/6416, lr 0.010000, loss 2.614934 +INFO 2021-09-17 04:46:50 train.py: 82] Epoch 10, iter 6200/6416, lr 0.010000, loss 2.614308 +INFO 2021-09-17 04:48:22 train.py: 82] Epoch 10, iter 6400/6416, lr 0.010000, loss 2.619571 +INFO 2021-09-17 04:48:31 train.py: 100] Save checkpoint Epoch_10.pt to disk... +INFO 2021-09-17 04:48:33 train.py: 82] Epoch 11, iter 0/6416, lr 0.010000, loss 2.533707 +INFO 2021-09-17 04:50:06 train.py: 82] Epoch 11, iter 200/6416, lr 0.010000, loss 2.318053 +INFO 2021-09-17 04:51:38 train.py: 82] Epoch 11, iter 400/6416, lr 0.010000, loss 2.288318 +INFO 2021-09-17 04:53:11 train.py: 82] Epoch 11, iter 600/6416, lr 0.010000, loss 2.287960 +INFO 2021-09-17 04:54:43 train.py: 82] Epoch 11, iter 800/6416, lr 0.010000, loss 2.289226 +INFO 2021-09-17 04:56:16 train.py: 82] Epoch 11, iter 1000/6416, lr 0.010000, loss 2.303832 +INFO 2021-09-17 04:57:48 train.py: 82] Epoch 11, iter 1200/6416, lr 0.010000, loss 2.293429 +INFO 2021-09-17 04:59:19 train.py: 82] Epoch 11, iter 1400/6416, lr 0.010000, loss 2.291608 +INFO 2021-09-17 05:00:51 train.py: 82] Epoch 11, iter 1600/6416, lr 0.010000, loss 2.280869 +INFO 2021-09-17 05:02:23 train.py: 82] Epoch 11, iter 1800/6416, lr 0.010000, loss 2.298780 +INFO 2021-09-17 05:03:55 train.py: 82] Epoch 11, iter 2000/6416, lr 0.010000, loss 2.286786 +INFO 2021-09-17 05:05:27 train.py: 82] Epoch 11, iter 2200/6416, lr 0.010000, loss 2.281992 +INFO 2021-09-17 05:06:59 train.py: 82] Epoch 11, iter 2400/6416, lr 0.010000, loss 2.283318 +INFO 2021-09-17 05:08:32 train.py: 82] Epoch 11, iter 2600/6416, lr 0.010000, loss 2.300605 +INFO 2021-09-17 05:10:04 train.py: 82] Epoch 11, iter 2800/6416, lr 0.010000, loss 2.303029 +INFO 2021-09-17 05:11:37 train.py: 95] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2021-09-17 05:11:38 train.py: 82] Epoch 11, iter 3000/6416, lr 0.010000, loss 2.279977 +INFO 2021-09-17 05:13:10 train.py: 82] Epoch 11, iter 3200/6416, lr 0.010000, loss 2.305846 +INFO 2021-09-17 05:14:43 train.py: 82] Epoch 11, iter 3400/6416, lr 0.010000, loss 2.288871 +INFO 2021-09-17 05:16:15 train.py: 82] Epoch 11, iter 3600/6416, lr 0.010000, loss 2.273834 +INFO 2021-09-17 05:17:48 train.py: 82] Epoch 11, iter 3800/6416, lr 0.010000, loss 2.301581 +INFO 2021-09-17 05:19:20 train.py: 82] Epoch 11, iter 4000/6416, lr 0.010000, loss 2.293179 +INFO 2021-09-17 05:20:53 train.py: 82] Epoch 11, iter 4200/6416, lr 0.010000, loss 2.298645 +INFO 2021-09-17 05:22:25 train.py: 82] Epoch 11, iter 4400/6416, lr 0.010000, loss 2.276742 +INFO 2021-09-17 05:23:58 train.py: 82] Epoch 11, iter 4600/6416, lr 0.010000, loss 2.254408 +INFO 2021-09-17 05:25:30 train.py: 82] Epoch 11, iter 4800/6416, lr 0.010000, loss 2.279991 +INFO 2021-09-17 05:27:02 train.py: 82] Epoch 11, iter 5000/6416, lr 0.010000, loss 2.291928 +INFO 2021-09-17 05:28:35 train.py: 82] Epoch 11, iter 5200/6416, lr 0.010000, loss 2.271676 +INFO 2021-09-17 05:30:07 train.py: 82] Epoch 11, iter 5400/6416, lr 0.010000, loss 2.287489 +INFO 2021-09-17 05:31:40 train.py: 82] Epoch 11, iter 5600/6416, lr 0.010000, loss 2.288821 +INFO 2021-09-17 05:33:12 train.py: 82] Epoch 11, iter 5800/6416, lr 0.010000, loss 2.262747 +INFO 2021-09-17 05:34:46 train.py: 95] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2021-09-17 05:34:46 train.py: 82] Epoch 11, iter 6000/6416, lr 0.010000, loss 2.285672 +INFO 2021-09-17 05:36:19 train.py: 82] Epoch 11, iter 6200/6416, lr 0.010000, loss 2.293871 +INFO 2021-09-17 05:37:52 train.py: 82] Epoch 11, iter 6400/6416, lr 0.010000, loss 2.262752 +INFO 2021-09-17 05:38:00 train.py: 100] Save checkpoint Epoch_11.pt to disk... +INFO 2021-09-17 05:38:02 train.py: 82] Epoch 12, iter 0/6416, lr 0.010000, loss 2.300846 +INFO 2021-09-17 05:39:36 train.py: 82] Epoch 12, iter 200/6416, lr 0.010000, loss 1.984294 +INFO 2021-09-17 05:41:08 train.py: 82] Epoch 12, iter 400/6416, lr 0.010000, loss 1.978422 +INFO 2021-09-17 05:42:40 train.py: 82] Epoch 12, iter 600/6416, lr 0.010000, loss 1.984881 +INFO 2021-09-17 05:44:12 train.py: 82] Epoch 12, iter 800/6416, lr 0.010000, loss 1.998398 +INFO 2021-09-17 05:45:43 train.py: 82] Epoch 12, iter 1000/6416, lr 0.010000, loss 1.996305 +INFO 2021-09-17 05:47:16 train.py: 82] Epoch 12, iter 1200/6416, lr 0.010000, loss 2.009561 +INFO 2021-09-17 05:48:48 train.py: 82] Epoch 12, iter 1400/6416, lr 0.010000, loss 2.030360 +INFO 2021-09-17 05:50:20 train.py: 82] Epoch 12, iter 1600/6416, lr 0.010000, loss 2.028437 +INFO 2021-09-17 05:51:52 train.py: 82] Epoch 12, iter 1800/6416, lr 0.010000, loss 2.030260 +INFO 2021-09-17 05:53:24 train.py: 82] Epoch 12, iter 2000/6416, lr 0.010000, loss 2.044406 +INFO 2021-09-17 05:54:56 train.py: 82] Epoch 12, iter 2200/6416, lr 0.010000, loss 2.059969 +INFO 2021-09-17 05:56:29 train.py: 82] Epoch 12, iter 2400/6416, lr 0.010000, loss 2.056551 +INFO 2021-09-17 05:58:01 train.py: 82] Epoch 12, iter 2600/6416, lr 0.010000, loss 2.047188 +INFO 2021-09-17 05:59:33 train.py: 82] Epoch 12, iter 2800/6416, lr 0.010000, loss 2.048483 +INFO 2021-09-17 06:01:07 train.py: 95] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2021-09-17 06:01:07 train.py: 82] Epoch 12, iter 3000/6416, lr 0.010000, loss 2.070303 +INFO 2021-09-17 06:02:40 train.py: 82] Epoch 12, iter 3200/6416, lr 0.010000, loss 2.072240 +INFO 2021-09-17 06:04:12 train.py: 82] Epoch 12, iter 3400/6416, lr 0.010000, loss 2.072334 +INFO 2021-09-17 06:05:45 train.py: 82] Epoch 12, iter 3600/6416, lr 0.010000, loss 2.078040 +INFO 2021-09-17 06:07:17 train.py: 82] Epoch 12, iter 3800/6416, lr 0.010000, loss 2.095011 +INFO 2021-09-17 06:08:50 train.py: 82] Epoch 12, iter 4000/6416, lr 0.010000, loss 2.096343 +INFO 2021-09-17 06:10:23 train.py: 82] Epoch 12, iter 4200/6416, lr 0.010000, loss 2.092617 +INFO 2021-09-17 06:11:55 train.py: 82] Epoch 12, iter 4400/6416, lr 0.010000, loss 2.104593 +INFO 2021-09-17 06:13:29 train.py: 82] Epoch 12, iter 4600/6416, lr 0.010000, loss 2.109142 +INFO 2021-09-17 06:15:01 train.py: 82] Epoch 12, iter 4800/6416, lr 0.010000, loss 2.107329 +INFO 2021-09-17 06:16:34 train.py: 82] Epoch 12, iter 5000/6416, lr 0.010000, loss 2.108961 +INFO 2021-09-17 06:18:06 train.py: 82] Epoch 12, iter 5200/6416, lr 0.010000, loss 2.112416 +INFO 2021-09-17 06:19:39 train.py: 82] Epoch 12, iter 5400/6416, lr 0.010000, loss 2.114941 +INFO 2021-09-17 06:21:12 train.py: 82] Epoch 12, iter 5600/6416, lr 0.010000, loss 2.096043 +INFO 2021-09-17 06:22:44 train.py: 82] Epoch 12, iter 5800/6416, lr 0.010000, loss 2.127511 +INFO 2021-09-17 06:24:18 train.py: 95] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2021-09-17 06:24:18 train.py: 82] Epoch 12, iter 6000/6416, lr 0.010000, loss 2.120107 +INFO 2021-09-17 06:25:51 train.py: 82] Epoch 12, iter 6200/6416, lr 0.010000, loss 2.121091 +INFO 2021-09-17 06:27:24 train.py: 82] Epoch 12, iter 6400/6416, lr 0.010000, loss 2.144610 +INFO 2021-09-17 06:27:32 train.py: 100] Save checkpoint Epoch_12.pt to disk... +INFO 2021-09-17 06:27:34 train.py: 82] Epoch 13, iter 0/6416, lr 0.001000, loss 2.096312 +INFO 2021-09-17 06:29:07 train.py: 82] Epoch 13, iter 200/6416, lr 0.001000, loss 1.787402 +INFO 2021-09-17 06:30:39 train.py: 82] Epoch 13, iter 400/6416, lr 0.001000, loss 1.739275 +INFO 2021-09-17 06:32:10 train.py: 82] Epoch 13, iter 600/6416, lr 0.001000, loss 1.741618 +INFO 2021-09-17 06:33:42 train.py: 82] Epoch 13, iter 800/6416, lr 0.001000, loss 1.744287 +INFO 2021-09-17 06:35:14 train.py: 82] Epoch 13, iter 1000/6416, lr 0.001000, loss 1.741477 +INFO 2021-09-17 06:36:46 train.py: 82] Epoch 13, iter 1200/6416, lr 0.001000, loss 1.734860 +INFO 2021-09-17 06:38:17 train.py: 82] Epoch 13, iter 1400/6416, lr 0.001000, loss 1.732881 +INFO 2021-09-17 06:39:49 train.py: 82] Epoch 13, iter 1600/6416, lr 0.001000, loss 1.721535 +INFO 2021-09-17 06:41:21 train.py: 82] Epoch 13, iter 1800/6416, lr 0.001000, loss 1.722999 +INFO 2021-09-17 06:42:53 train.py: 82] Epoch 13, iter 2000/6416, lr 0.001000, loss 1.737704 +INFO 2021-09-17 06:44:24 train.py: 82] Epoch 13, iter 2200/6416, lr 0.001000, loss 1.729291 +INFO 2021-09-17 06:45:56 train.py: 82] Epoch 13, iter 2400/6416, lr 0.001000, loss 1.717288 +INFO 2021-09-17 06:47:28 train.py: 82] Epoch 13, iter 2600/6416, lr 0.001000, loss 1.728385 +INFO 2021-09-17 06:49:00 train.py: 82] Epoch 13, iter 2800/6416, lr 0.001000, loss 1.724939 +INFO 2021-09-17 06:50:32 train.py: 95] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2021-09-17 06:50:33 train.py: 82] Epoch 13, iter 3000/6416, lr 0.001000, loss 1.711869 +INFO 2021-09-17 06:52:05 train.py: 82] Epoch 13, iter 3200/6416, lr 0.001000, loss 1.724575 +INFO 2021-09-17 06:53:37 train.py: 82] Epoch 13, iter 3400/6416, lr 0.001000, loss 1.728718 +INFO 2021-09-17 06:55:09 train.py: 82] Epoch 13, iter 3600/6416, lr 0.001000, loss 1.712458 +INFO 2021-09-17 06:56:42 train.py: 82] Epoch 13, iter 3800/6416, lr 0.001000, loss 1.731049 +INFO 2021-09-17 06:58:14 train.py: 82] Epoch 13, iter 4000/6416, lr 0.001000, loss 1.739248 +INFO 2021-09-17 06:59:46 train.py: 82] Epoch 13, iter 4200/6416, lr 0.001000, loss 1.722661 +INFO 2021-09-17 07:01:19 train.py: 82] Epoch 13, iter 4400/6416, lr 0.001000, loss 1.716428 +INFO 2021-09-17 07:02:51 train.py: 82] Epoch 13, iter 4600/6416, lr 0.001000, loss 1.733585 +INFO 2021-09-17 07:04:23 train.py: 82] Epoch 13, iter 4800/6416, lr 0.001000, loss 1.727239 +INFO 2021-09-17 07:05:56 train.py: 82] Epoch 13, iter 5000/6416, lr 0.001000, loss 1.727764 +INFO 2021-09-17 07:07:28 train.py: 82] Epoch 13, iter 5200/6416, lr 0.001000, loss 1.710731 +INFO 2021-09-17 07:09:01 train.py: 82] Epoch 13, iter 5400/6416, lr 0.001000, loss 1.722069 +INFO 2021-09-17 07:10:33 train.py: 82] Epoch 13, iter 5600/6416, lr 0.001000, loss 1.717373 +INFO 2021-09-17 07:12:05 train.py: 82] Epoch 13, iter 5800/6416, lr 0.001000, loss 1.716422 +INFO 2021-09-17 07:13:38 train.py: 95] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2021-09-17 07:13:39 train.py: 82] Epoch 13, iter 6000/6416, lr 0.001000, loss 1.733602 +INFO 2021-09-17 07:15:11 train.py: 82] Epoch 13, iter 6200/6416, lr 0.001000, loss 1.735715 +INFO 2021-09-17 07:16:44 train.py: 82] Epoch 13, iter 6400/6416, lr 0.001000, loss 1.735755 +INFO 2021-09-17 07:16:53 train.py: 100] Save checkpoint Epoch_13.pt to disk... +INFO 2021-09-17 07:16:55 train.py: 82] Epoch 14, iter 0/6416, lr 0.001000, loss 1.704220 +INFO 2021-09-17 07:18:27 train.py: 82] Epoch 14, iter 200/6416, lr 0.001000, loss 1.680985 +INFO 2021-09-17 07:19:59 train.py: 82] Epoch 14, iter 400/6416, lr 0.001000, loss 1.668753 +INFO 2021-09-17 07:21:31 train.py: 82] Epoch 14, iter 600/6416, lr 0.001000, loss 1.675919 +INFO 2021-09-17 07:23:03 train.py: 82] Epoch 14, iter 800/6416, lr 0.001000, loss 1.664963 +INFO 2021-09-17 07:24:35 train.py: 82] Epoch 14, iter 1000/6416, lr 0.001000, loss 1.668047 +INFO 2021-09-17 07:26:07 train.py: 82] Epoch 14, iter 1200/6416, lr 0.001000, loss 1.676194 +INFO 2021-09-17 07:27:39 train.py: 82] Epoch 14, iter 1400/6416, lr 0.001000, loss 1.677905 +INFO 2021-09-17 07:29:11 train.py: 82] Epoch 14, iter 1600/6416, lr 0.001000, loss 1.685143 +INFO 2021-09-17 07:30:42 train.py: 82] Epoch 14, iter 1800/6416, lr 0.001000, loss 1.684014 +INFO 2021-09-17 07:32:14 train.py: 82] Epoch 14, iter 2000/6416, lr 0.001000, loss 1.689739 +INFO 2021-09-17 07:33:47 train.py: 82] Epoch 14, iter 2200/6416, lr 0.001000, loss 1.684034 +INFO 2021-09-17 07:35:19 train.py: 82] Epoch 14, iter 2400/6416, lr 0.001000, loss 1.690418 +INFO 2021-09-17 07:36:51 train.py: 82] Epoch 14, iter 2600/6416, lr 0.001000, loss 1.693889 +INFO 2021-09-17 07:38:22 train.py: 82] Epoch 14, iter 2800/6416, lr 0.001000, loss 1.696419 +INFO 2021-09-17 07:39:55 train.py: 95] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2021-09-17 07:39:56 train.py: 82] Epoch 14, iter 3000/6416, lr 0.001000, loss 1.700553 +INFO 2021-09-17 07:41:28 train.py: 82] Epoch 14, iter 3200/6416, lr 0.001000, loss 1.687815 +INFO 2021-09-17 07:43:01 train.py: 82] Epoch 14, iter 3400/6416, lr 0.001000, loss 1.697562 +INFO 2021-09-17 07:44:33 train.py: 82] Epoch 14, iter 3600/6416, lr 0.001000, loss 1.672227 +INFO 2021-09-17 07:46:05 train.py: 82] Epoch 14, iter 3800/6416, lr 0.001000, loss 1.693138 +INFO 2021-09-17 07:47:37 train.py: 82] Epoch 14, iter 4000/6416, lr 0.001000, loss 1.682881 +INFO 2021-09-17 07:49:10 train.py: 82] Epoch 14, iter 4200/6416, lr 0.001000, loss 1.693437 +INFO 2021-09-17 07:50:42 train.py: 82] Epoch 14, iter 4400/6416, lr 0.001000, loss 1.699042 +INFO 2021-09-17 07:52:14 train.py: 82] Epoch 14, iter 4600/6416, lr 0.001000, loss 1.688267 +INFO 2021-09-17 07:53:46 train.py: 82] Epoch 14, iter 4800/6416, lr 0.001000, loss 1.700087 +INFO 2021-09-17 07:55:19 train.py: 82] Epoch 14, iter 5000/6416, lr 0.001000, loss 1.688774 +INFO 2021-09-17 07:56:51 train.py: 82] Epoch 14, iter 5200/6416, lr 0.001000, loss 1.688839 +INFO 2021-09-17 07:58:24 train.py: 82] Epoch 14, iter 5400/6416, lr 0.001000, loss 1.707735 +INFO 2021-09-17 07:59:56 train.py: 82] Epoch 14, iter 5600/6416, lr 0.001000, loss 1.702186 +INFO 2021-09-17 08:01:28 train.py: 82] Epoch 14, iter 5800/6416, lr 0.001000, loss 1.699786 +INFO 2021-09-17 08:03:02 train.py: 95] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2021-09-17 08:03:02 train.py: 82] Epoch 14, iter 6000/6416, lr 0.001000, loss 1.692826 +INFO 2021-09-17 08:04:34 train.py: 82] Epoch 14, iter 6200/6416, lr 0.001000, loss 1.693920 +INFO 2021-09-17 08:06:06 train.py: 82] Epoch 14, iter 6400/6416, lr 0.001000, loss 1.694143 +INFO 2021-09-17 08:06:15 train.py: 100] Save checkpoint Epoch_14.pt to disk... +INFO 2021-09-17 08:06:17 train.py: 82] Epoch 15, iter 0/6416, lr 0.001000, loss 1.687596 +INFO 2021-09-17 08:07:49 train.py: 82] Epoch 15, iter 200/6416, lr 0.001000, loss 1.636696 +INFO 2021-09-17 08:09:21 train.py: 82] Epoch 15, iter 400/6416, lr 0.001000, loss 1.646974 +INFO 2021-09-17 08:10:53 train.py: 82] Epoch 15, iter 600/6416, lr 0.001000, loss 1.652427 +INFO 2021-09-17 08:12:25 train.py: 82] Epoch 15, iter 800/6416, lr 0.001000, loss 1.637968 +INFO 2021-09-17 08:13:57 train.py: 82] Epoch 15, iter 1000/6416, lr 0.001000, loss 1.658541 +INFO 2021-09-17 08:15:30 train.py: 82] Epoch 15, iter 1200/6416, lr 0.001000, loss 1.664379 +INFO 2021-09-17 08:17:02 train.py: 82] Epoch 15, iter 1400/6416, lr 0.001000, loss 1.680450 +INFO 2021-09-17 08:18:34 train.py: 82] Epoch 15, iter 1600/6416, lr 0.001000, loss 1.643123 +INFO 2021-09-17 08:20:06 train.py: 82] Epoch 15, iter 1800/6416, lr 0.001000, loss 1.639892 +INFO 2021-09-17 08:21:38 train.py: 82] Epoch 15, iter 2000/6416, lr 0.001000, loss 1.662015 +INFO 2021-09-17 08:23:10 train.py: 82] Epoch 15, iter 2200/6416, lr 0.001000, loss 1.682518 +INFO 2021-09-17 08:24:43 train.py: 82] Epoch 15, iter 2400/6416, lr 0.001000, loss 1.661900 +INFO 2021-09-17 08:26:14 train.py: 82] Epoch 15, iter 2600/6416, lr 0.001000, loss 1.660998 +INFO 2021-09-17 08:27:47 train.py: 82] Epoch 15, iter 2800/6416, lr 0.001000, loss 1.657256 +INFO 2021-09-17 08:29:20 train.py: 95] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2021-09-17 08:29:20 train.py: 82] Epoch 15, iter 3000/6416, lr 0.001000, loss 1.675822 +INFO 2021-09-17 08:30:53 train.py: 82] Epoch 15, iter 3200/6416, lr 0.001000, loss 1.654904 +INFO 2021-09-17 08:32:25 train.py: 82] Epoch 15, iter 3400/6416, lr 0.001000, loss 1.676090 +INFO 2021-09-17 08:33:58 train.py: 82] Epoch 15, iter 3600/6416, lr 0.001000, loss 1.662378 +INFO 2021-09-17 08:35:30 train.py: 82] Epoch 15, iter 3800/6416, lr 0.001000, loss 1.660323 +INFO 2021-09-17 08:37:03 train.py: 82] Epoch 15, iter 4000/6416, lr 0.001000, loss 1.661360 +INFO 2021-09-17 08:38:35 train.py: 82] Epoch 15, iter 4200/6416, lr 0.001000, loss 1.674782 +INFO 2021-09-17 08:40:07 train.py: 82] Epoch 15, iter 4400/6416, lr 0.001000, loss 1.649986 +INFO 2021-09-17 08:41:39 train.py: 82] Epoch 15, iter 4600/6416, lr 0.001000, loss 1.672945 +INFO 2021-09-17 08:43:12 train.py: 82] Epoch 15, iter 4800/6416, lr 0.001000, loss 1.650549 +INFO 2021-09-17 08:44:45 train.py: 82] Epoch 15, iter 5000/6416, lr 0.001000, loss 1.665742 +INFO 2021-09-17 08:46:17 train.py: 82] Epoch 15, iter 5200/6416, lr 0.001000, loss 1.669584 +INFO 2021-09-17 08:47:49 train.py: 82] Epoch 15, iter 5400/6416, lr 0.001000, loss 1.671357 +INFO 2021-09-17 08:49:22 train.py: 82] Epoch 15, iter 5600/6416, lr 0.001000, loss 1.680265 +INFO 2021-09-17 08:50:55 train.py: 82] Epoch 15, iter 5800/6416, lr 0.001000, loss 1.679076 +INFO 2021-09-17 08:52:28 train.py: 95] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2021-09-17 08:52:29 train.py: 82] Epoch 15, iter 6000/6416, lr 0.001000, loss 1.673102 +INFO 2021-09-17 08:54:01 train.py: 82] Epoch 15, iter 6200/6416, lr 0.001000, loss 1.680908 +INFO 2021-09-17 08:55:34 train.py: 82] Epoch 15, iter 6400/6416, lr 0.001000, loss 1.681875 +INFO 2021-09-17 08:55:43 train.py: 100] Save checkpoint Epoch_15.pt to disk... +INFO 2021-09-17 08:55:44 train.py: 82] Epoch 16, iter 0/6416, lr 0.000100, loss 1.765504 +INFO 2021-09-17 08:57:17 train.py: 82] Epoch 16, iter 200/6416, lr 0.000100, loss 1.620723 +INFO 2021-09-17 08:58:49 train.py: 82] Epoch 16, iter 400/6416, lr 0.000100, loss 1.627695 +INFO 2021-09-17 09:00:21 train.py: 82] Epoch 16, iter 600/6416, lr 0.000100, loss 1.612941 +INFO 2021-09-17 09:01:53 train.py: 82] Epoch 16, iter 800/6416, lr 0.000100, loss 1.612128 +INFO 2021-09-17 09:03:26 train.py: 82] Epoch 16, iter 1000/6416, lr 0.000100, loss 1.623295 +INFO 2021-09-17 09:04:58 train.py: 82] Epoch 16, iter 1200/6416, lr 0.000100, loss 1.621130 +INFO 2021-09-17 09:06:30 train.py: 82] Epoch 16, iter 1400/6416, lr 0.000100, loss 1.619956 +INFO 2021-09-17 09:08:02 train.py: 82] Epoch 16, iter 1600/6416, lr 0.000100, loss 1.623024 +INFO 2021-09-17 09:09:34 train.py: 82] Epoch 16, iter 1800/6416, lr 0.000100, loss 1.609937 +INFO 2021-09-17 09:11:06 train.py: 82] Epoch 16, iter 2000/6416, lr 0.000100, loss 1.615599 +INFO 2021-09-17 09:12:39 train.py: 82] Epoch 16, iter 2200/6416, lr 0.000100, loss 1.615302 +INFO 2021-09-17 09:14:11 train.py: 82] Epoch 16, iter 2400/6416, lr 0.000100, loss 1.623361 +INFO 2021-09-17 09:15:43 train.py: 82] Epoch 16, iter 2600/6416, lr 0.000100, loss 1.617204 +INFO 2021-09-17 09:17:16 train.py: 82] Epoch 16, iter 2800/6416, lr 0.000100, loss 1.625166 +INFO 2021-09-17 09:18:49 train.py: 95] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2021-09-17 09:18:50 train.py: 82] Epoch 16, iter 3000/6416, lr 0.000100, loss 1.612472 +INFO 2021-09-17 09:20:22 train.py: 82] Epoch 16, iter 3200/6416, lr 0.000100, loss 1.628349 +INFO 2021-09-17 09:21:55 train.py: 82] Epoch 16, iter 3400/6416, lr 0.000100, loss 1.625452 +INFO 2021-09-17 09:23:27 train.py: 82] Epoch 16, iter 3600/6416, lr 0.000100, loss 1.632724 +INFO 2021-09-17 09:25:00 train.py: 82] Epoch 16, iter 3800/6416, lr 0.000100, loss 1.628694 +INFO 2021-09-17 09:26:32 train.py: 82] Epoch 16, iter 4000/6416, lr 0.000100, loss 1.618106 +INFO 2021-09-17 09:28:05 train.py: 82] Epoch 16, iter 4200/6416, lr 0.000100, loss 1.622793 +INFO 2021-09-17 09:29:37 train.py: 82] Epoch 16, iter 4400/6416, lr 0.000100, loss 1.631416 +INFO 2021-09-17 09:31:10 train.py: 82] Epoch 16, iter 4600/6416, lr 0.000100, loss 1.611960 +INFO 2021-09-17 09:32:42 train.py: 82] Epoch 16, iter 4800/6416, lr 0.000100, loss 1.633533 +INFO 2021-09-17 09:34:15 train.py: 82] Epoch 16, iter 5000/6416, lr 0.000100, loss 1.627026 +INFO 2021-09-17 09:35:47 train.py: 82] Epoch 16, iter 5200/6416, lr 0.000100, loss 1.635878 +INFO 2021-09-17 09:37:20 train.py: 82] Epoch 16, iter 5400/6416, lr 0.000100, loss 1.610844 +INFO 2021-09-17 09:38:53 train.py: 82] Epoch 16, iter 5600/6416, lr 0.000100, loss 1.626107 +INFO 2021-09-17 09:40:26 train.py: 82] Epoch 16, iter 5800/6416, lr 0.000100, loss 1.621249 +INFO 2021-09-17 09:41:59 train.py: 95] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2021-09-17 09:42:00 train.py: 82] Epoch 16, iter 6000/6416, lr 0.000100, loss 1.609684 +INFO 2021-09-17 09:43:33 train.py: 82] Epoch 16, iter 6200/6416, lr 0.000100, loss 1.619737 +INFO 2021-09-17 09:45:06 train.py: 82] Epoch 16, iter 6400/6416, lr 0.000100, loss 1.641055 +INFO 2021-09-17 09:45:14 train.py: 100] Save checkpoint Epoch_16.pt to disk... +INFO 2021-09-17 09:45:16 train.py: 82] Epoch 17, iter 0/6416, lr 0.000100, loss 1.653002 +INFO 2021-09-17 09:46:48 train.py: 82] Epoch 17, iter 200/6416, lr 0.000100, loss 1.621332 +INFO 2021-09-17 09:48:21 train.py: 82] Epoch 17, iter 400/6416, lr 0.000100, loss 1.614825 +INFO 2021-09-17 09:49:53 train.py: 82] Epoch 17, iter 600/6416, lr 0.000100, loss 1.615034 +INFO 2021-09-17 09:51:25 train.py: 82] Epoch 17, iter 800/6416, lr 0.000100, loss 1.617731 +INFO 2021-09-17 09:52:57 train.py: 82] Epoch 17, iter 1000/6416, lr 0.000100, loss 1.607662 +INFO 2021-09-17 09:54:30 train.py: 82] Epoch 17, iter 1200/6416, lr 0.000100, loss 1.616919 +INFO 2021-09-17 09:56:02 train.py: 82] Epoch 17, iter 1400/6416, lr 0.000100, loss 1.610678 +INFO 2021-09-17 09:57:35 train.py: 82] Epoch 17, iter 1600/6416, lr 0.000100, loss 1.614414 +INFO 2021-09-17 09:59:07 train.py: 82] Epoch 17, iter 1800/6416, lr 0.000100, loss 1.626630 +INFO 2021-09-17 10:00:39 train.py: 82] Epoch 17, iter 2000/6416, lr 0.000100, loss 1.626345 +INFO 2021-09-17 10:02:11 train.py: 82] Epoch 17, iter 2200/6416, lr 0.000100, loss 1.631727 +INFO 2021-09-17 10:03:43 train.py: 82] Epoch 17, iter 2400/6416, lr 0.000100, loss 1.632018 +INFO 2021-09-17 10:05:15 train.py: 82] Epoch 17, iter 2600/6416, lr 0.000100, loss 1.619205 +INFO 2021-09-17 10:06:47 train.py: 82] Epoch 17, iter 2800/6416, lr 0.000100, loss 1.613809 +INFO 2021-09-17 10:08:20 train.py: 95] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2021-09-17 10:08:21 train.py: 82] Epoch 17, iter 3000/6416, lr 0.000100, loss 1.618722 +INFO 2021-09-17 10:09:53 train.py: 82] Epoch 17, iter 3200/6416, lr 0.000100, loss 1.614290 +INFO 2021-09-17 10:11:26 train.py: 82] Epoch 17, iter 3400/6416, lr 0.000100, loss 1.614336 +INFO 2021-09-17 10:12:58 train.py: 82] Epoch 17, iter 3600/6416, lr 0.000100, loss 1.621089 +INFO 2021-09-17 10:14:30 train.py: 82] Epoch 17, iter 3800/6416, lr 0.000100, loss 1.617981 +INFO 2021-09-17 10:16:02 train.py: 82] Epoch 17, iter 4000/6416, lr 0.000100, loss 1.619380 +INFO 2021-09-17 10:17:34 train.py: 82] Epoch 17, iter 4200/6416, lr 0.000100, loss 1.606993 +INFO 2021-09-17 10:19:06 train.py: 82] Epoch 17, iter 4400/6416, lr 0.000100, loss 1.617127 +INFO 2021-09-17 10:20:39 train.py: 82] Epoch 17, iter 4600/6416, lr 0.000100, loss 1.632343 +INFO 2021-09-17 10:22:11 train.py: 82] Epoch 17, iter 4800/6416, lr 0.000100, loss 1.615973 +INFO 2021-09-17 10:23:44 train.py: 82] Epoch 17, iter 5000/6416, lr 0.000100, loss 1.599065 +INFO 2021-09-17 10:25:16 train.py: 82] Epoch 17, iter 5200/6416, lr 0.000100, loss 1.621521 +INFO 2021-09-17 10:26:48 train.py: 82] Epoch 17, iter 5400/6416, lr 0.000100, loss 1.600619 +INFO 2021-09-17 10:28:20 train.py: 82] Epoch 17, iter 5600/6416, lr 0.000100, loss 1.627305 +INFO 2021-09-17 10:29:52 train.py: 82] Epoch 17, iter 5800/6416, lr 0.000100, loss 1.615763 +INFO 2021-09-17 10:31:25 train.py: 95] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2021-09-17 10:31:26 train.py: 82] Epoch 17, iter 6000/6416, lr 0.000100, loss 1.602896 +INFO 2021-09-17 10:32:58 train.py: 82] Epoch 17, iter 6200/6416, lr 0.000100, loss 1.624158 +INFO 2021-09-17 10:34:31 train.py: 82] Epoch 17, iter 6400/6416, lr 0.000100, loss 1.625425 +INFO 2021-09-17 10:34:40 train.py: 100] Save checkpoint Epoch_17.pt to disk... +INFO 2021-09-17 10:34:40 train.py: 183] Optimization done! diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_B1/.gitkeep b/bob/bio/facexzoo/models/backbones/RepVGG_B1/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_B1/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/backbones/RepVGG_B1/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..3dddabb5e269e6c048cc8d30b277a39a51397caa --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_B1/accu_files/accu_agedb.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_2999.pt | 0.9778333333333334 | 0.002357677241546989 | +| Epoch_16_batch_2999.pt | 0.9776666666666667 | 0.002385656728175981 | +| Epoch_14.pt | 0.9775 | 0.002399202542409903 | +| Epoch_14_batch_5999.pt | 0.9775 | 0.002266911751455905 | +| Epoch_16_batch_5999.pt | 0.9771666666666668 | 0.0024975296436654474 | +| Epoch_15_batch_2999.pt | 0.9771666666666666 | 0.00249752964366545 | +| Epoch_15_batch_5999.pt | 0.9770000000000001 | 0.0023147407395555123 | +| Epoch_14_batch_2999.pt | 0.9770000000000001 | 0.0024695678634325353 | +| Epoch_15.pt | 0.9763333333333334 | 0.002506780927261885 | +| Epoch_12_batch_5999.pt | 0.9761666666666665 | 0.0022367580154663697 | +| Epoch_13_batch_5999.pt | 0.976 | 0.0022933074933944734 | +| Epoch_13.pt | 0.9758333333333334 | 0.0022256917360011204 | +| Epoch_17_batch_5999.pt | 0.9758333333333334 | 0.002386303510546061 | +| Epoch_16.pt | 0.9756666666666668 | 0.0021401511426953554 | +| Epoch_12_batch_2999.pt | 0.9755 | 0.0018929694486000896 | +| Epoch_17_batch_2999.pt | 0.9753333333333334 | 0.0024570382652773348 | +| Epoch_12.pt | 0.9751666666666667 | 0.002427339141661492 | +| Epoch_17.pt | 0.9746666666666666 | 0.0029059326290271146 | +| Epoch_11_batch_5999.pt | 0.9744999999999997 | 0.0024975296436654405 | +| Epoch_10.pt | 0.9743333333333334 | 0.0022933074933944755 | +| Epoch_10_batch_2999.pt | 0.9743333333333333 | 0.0018790593916986412 | +| Epoch_11_batch_2999.pt | 0.9739999999999999 | 0.002006163342807529 | +| Epoch_11.pt | 0.9735000000000001 | 0.0023100692095879777 | +| Epoch_10_batch_5999.pt | 0.9730000000000001 | 0.0019212907184211734 | +| Epoch_9_batch_5999.pt | 0.9675 | 0.0019602531960419252 | +| Epoch_7_batch_2999.pt | 0.9674999999999999 | 0.002584975583140416 | +| Epoch_8_batch_5999.pt | 0.9666666666666666 | 0.0024969116726938057 | +| Epoch_8_batch_2999.pt | 0.9663333333333334 | 0.002419060117453027 | +| Epoch_5_batch_5999.pt | 0.9661666666666665 | 0.00271086064416797 | +| Epoch_6_batch_5999.pt | 0.9658333333333335 | 0.003471666622215111 | +| Epoch_9_batch_2999.pt | 0.9654999999999999 | 0.002641665206215286 | +| Epoch_7_batch_5999.pt | 0.9631666666666666 | 0.0026229048075806414 | +| Epoch_9.pt | 0.962 | 0.002852332811776326 | +| Epoch_4_batch_5999.pt | 0.9618333333333334 | 0.0037305048809332317 | +| Epoch_5_batch_2999.pt | 0.9615 | 0.002870131411797664 | +| Epoch_6.pt | 0.9611666666666666 | 0.003865405285955329 | +| Epoch_5.pt | 0.9603333333333335 | 0.004200235149207959 | +| Epoch_7.pt | 0.9603333333333334 | 0.0026270200927859776 | +| Epoch_6_batch_2999.pt | 0.9603333333333334 | 0.0029585615457098534 | +| Epoch_4_batch_2999.pt | 0.9590000000000002 | 0.00319335730293332 | +| Epoch_3_batch_5999.pt | 0.958 | 0.0040809705938237685 | +| Epoch_3_batch_2999.pt | 0.9571666666666667 | 0.0035750334540435953 | +| Epoch_3.pt | 0.9566666666666667 | 0.0032489314482696506 | +| Epoch_2_batch_5999.pt | 0.9546666666666667 | 0.0021914536581462292 | +| Epoch_8.pt | 0.9543333333333333 | 0.002608154354290112 | +| Epoch_4.pt | 0.9543333333333333 | 0.0024870032539554936 | +| Epoch_2.pt | 0.9518333333333333 | 0.0037879764297179485 | +| Epoch_2_batch_2999.pt | 0.9501666666666667 | 0.002870131411797663 | +| Epoch_1_batch_5999.pt | 0.942 | 0.004498284995554917 | +| Epoch_1.pt | 0.9351666666666667 | 0.004978038187632844 | +| Epoch_1_batch_2999.pt | 0.9244999999999999 | 0.005671294406651241 | +| Epoch_0_batch_5999.pt | 0.8755 | 0.006378252014888725 | +| Epoch_0_batch_2999.pt | 0.7336666666666666 | 0.004058218303944368 | +| Epoch_0.pt | 0.6769999999999999 | 0.008317763232094622 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_B1/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/backbones/RepVGG_B1/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..8ea418b950b5a053fc9310506c01c26e0320b038 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_B1/accu_files/accu_calfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14_batch_2999.pt | 0.9549999999999998 | 0.0036004114991154746 | +| Epoch_13_batch_5999.pt | 0.9546666666666667 | 0.003598696609044811 | +| Epoch_16_batch_5999.pt | 0.9546666666666667 | 0.003675074535231386 | +| Epoch_15_batch_2999.pt | 0.9545000000000001 | 0.003531603350069515 | +| Epoch_13_batch_2999.pt | 0.9545 | 0.0036264630934150156 | +| Epoch_14_batch_5999.pt | 0.9545 | 0.0033979841518606735 | +| Epoch_15.pt | 0.9543333333333335 | 0.0033811386788228756 | +| Epoch_16_batch_2999.pt | 0.9541666666666668 | 0.0032984283575105324 | +| Epoch_12_batch_2999.pt | 0.9541666666666668 | 0.003515837184954836 | +| Epoch_12_batch_5999.pt | 0.9541666666666668 | 0.003712258638286247 | +| Epoch_17_batch_2999.pt | 0.9540000000000001 | 0.0035849479566448174 | +| Epoch_17_batch_5999.pt | 0.9540000000000001 | 0.0036616126785075686 | +| Epoch_17.pt | 0.9538333333333334 | 0.0036179422567033195 | +| Epoch_12.pt | 0.9538333333333334 | 0.0036094013046179536 | +| Epoch_15_batch_5999.pt | 0.9538333333333334 | 0.003514081022415214 | +| Epoch_13.pt | 0.9536666666666667 | 0.0035030850600965414 | +| Epoch_11_batch_2999.pt | 0.9535 | 0.0036298658275376924 | +| Epoch_10_batch_5999.pt | 0.9535 | 0.003621352997273838 | +| Epoch_11_batch_5999.pt | 0.9535 | 0.0036128201084197997 | +| Epoch_16.pt | 0.9535 | 0.003346732329295342 | +| Epoch_14.pt | 0.9533333333333334 | 0.003333333333333332 | +| Epoch_11.pt | 0.953 | 0.0034047896546765674 | +| Epoch_10.pt | 0.9525 | 0.0036025539637496652 | +| Epoch_10_batch_2999.pt | 0.9521666666666666 | 0.0032777777777777796 | +| Epoch_7_batch_5999.pt | 0.9476666666666664 | 0.004247003300803639 | +| Epoch_5_batch_5999.pt | 0.9463333333333332 | 0.0040123266856150605 | +| Epoch_6_batch_2999.pt | 0.9461666666666666 | 0.0038009907740216256 | +| Epoch_8_batch_5999.pt | 0.9453333333333334 | 0.003520662115056636 | +| Epoch_9_batch_5999.pt | 0.9451666666666666 | 0.0035870996571906472 | +| Epoch_6_batch_5999.pt | 0.9448333333333332 | 0.003812341880955058 | +| Epoch_8_batch_2999.pt | 0.9446666666666668 | 0.003807075933113735 | +| Epoch_9_batch_2999.pt | 0.9436666666666668 | 0.0033314809667922144 | +| Epoch_5_batch_2999.pt | 0.9431666666666667 | 0.003508807261030692 | +| Epoch_7_batch_2999.pt | 0.9425000000000001 | 0.0033998002846209394 | +| Epoch_4_batch_2999.pt | 0.9421666666666667 | 0.003857412297075546 | +| Epoch_4_batch_5999.pt | 0.9408333333333333 | 0.003222701113838477 | +| Epoch_7.pt | 0.9404999999999999 | 0.003073683598582898 | +| Epoch_3_batch_2999.pt | 0.9395 | 0.0028004629246952306 | +| Epoch_5.pt | 0.9385 | 0.0038845213569807433 | +| Epoch_3.pt | 0.937 | 0.0034854193647462475 | +| Epoch_3_batch_5999.pt | 0.9368333333333332 | 0.0029963970133692836 | +| Epoch_8.pt | 0.9366666666666668 | 0.0033054388401430016 | +| Epoch_6.pt | 0.9356666666666668 | 0.0038103173776627185 | +| Epoch_9.pt | 0.9348333333333333 | 0.0029860788111948163 | +| Epoch_2_batch_5999.pt | 0.9321666666666667 | 0.00370226824034358 | +| Epoch_2_batch_2999.pt | 0.9316666666666666 | 0.002971053768249093 | +| Epoch_4.pt | 0.9296666666666665 | 0.003798960221617499 | +| Epoch_2.pt | 0.9285 | 0.00336512616020173 | +| Epoch_1_batch_5999.pt | 0.9223333333333332 | 0.004895197949313491 | +| Epoch_1.pt | 0.9209999999999999 | 0.004210510071443646 | +| Epoch_1_batch_2999.pt | 0.9111666666666665 | 0.0037437190197403204 | +| Epoch_0_batch_5999.pt | 0.8745 | 0.004661703710177372 | +| Epoch_0_batch_2999.pt | 0.7233333333333334 | 0.007092858519335389 | +| Epoch_0.pt | 0.7201666666666668 | 0.005383158465225451 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_B1/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/backbones/RepVGG_B1/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..698a717ef80dd1766d60e0546d107abbc14fdac3 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_B1/accu_files/accu_cplfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_5999.pt | 0.8755000000000001 | 0.004701260666231113 | +| Epoch_17_batch_5999.pt | 0.8753333333333334 | 0.004816381511487384 | +| Epoch_15_batch_5999.pt | 0.8751666666666665 | 0.0049531758112633115 | +| Epoch_15_batch_2999.pt | 0.8744999999999999 | 0.005061656879952487 | +| Epoch_15.pt | 0.8743333333333334 | 0.005242278272037973 | +| Epoch_13_batch_2999.pt | 0.8743333333333332 | 0.004970282054743333 | +| Epoch_13.pt | 0.8741666666666668 | 0.005135509399282944 | +| Epoch_17_batch_2999.pt | 0.874 | 0.00505647122354789 | +| Epoch_16_batch_2999.pt | 0.8736666666666668 | 0.004803548071381615 | +| Epoch_14.pt | 0.873 | 0.0051747248987533394 | +| Epoch_14_batch_5999.pt | 0.873 | 0.004841946348777981 | +| Epoch_12_batch_5999.pt | 0.8728333333333333 | 0.004714372560794834 | +| Epoch_11.pt | 0.8723333333333334 | 0.005763872155263528 | +| Epoch_12.pt | 0.8723333333333333 | 0.004812535072823933 | +| Epoch_16.pt | 0.8721666666666668 | 0.004963135707330867 | +| Epoch_10.pt | 0.8721666666666665 | 0.005363629230149916 | +| Epoch_17.pt | 0.8718333333333333 | 0.004953175811263304 | +| Epoch_16_batch_5999.pt | 0.8716666666666667 | 0.004594682917363401 | +| Epoch_14_batch_2999.pt | 0.8716666666666665 | 0.004687782913273106 | +| Epoch_11_batch_2999.pt | 0.8701666666666668 | 0.00529645816898448 | +| Epoch_11_batch_5999.pt | 0.8699999999999999 | 0.0054489777045507665 | +| Epoch_12_batch_2999.pt | 0.8686666666666667 | 0.0059202519132254315 | +| Epoch_10_batch_2999.pt | 0.8683333333333334 | 0.006136311676215146 | +| Epoch_10_batch_5999.pt | 0.8666666666666668 | 0.005392038026022631 | +| Epoch_8_batch_5999.pt | 0.8493333333333334 | 0.006305983832738983 | +| Epoch_7_batch_5999.pt | 0.8493333333333334 | 0.007201680188043908 | +| Epoch_5_batch_5999.pt | 0.8451666666666666 | 0.006437975680615574 | +| Epoch_9_batch_2999.pt | 0.8426666666666666 | 0.005617433182117574 | +| Epoch_6_batch_5999.pt | 0.842 | 0.006155395104206462 | +| Epoch_4_batch_5999.pt | 0.841 | 0.006939776208723197 | +| Epoch_9_batch_5999.pt | 0.8401666666666667 | 0.005569150033781231 | +| Epoch_6_batch_2999.pt | 0.8385 | 0.005871304984602847 | +| Epoch_7_batch_2999.pt | 0.8380000000000001 | 0.006628594994788738 | +| Epoch_8_batch_2999.pt | 0.8376666666666667 | 0.005080828162299409 | +| Epoch_4_batch_2999.pt | 0.836 | 0.006764102780099742 | +| Epoch_3_batch_5999.pt | 0.8358333333333334 | 0.005984805864400948 | +| Epoch_5_batch_2999.pt | 0.8343333333333334 | 0.007032552177087404 | +| Epoch_3.pt | 0.834 | 0.0071673126323867275 | +| Epoch_5.pt | 0.8328333333333333 | 0.006440851488835508 | +| Epoch_3_batch_2999.pt | 0.8311666666666667 | 0.006749714214343354 | +| Epoch_2_batch_2999.pt | 0.827 | 0.0081642097589206 | +| Epoch_2_batch_5999.pt | 0.8263333333333334 | 0.007268229529522799 | +| Epoch_8.pt | 0.8261666666666667 | 0.005890199015690757 | +| Epoch_9.pt | 0.8258333333333333 | 0.005694105680980364 | +| Epoch_7.pt | 0.8246666666666667 | 0.008652409926191902 | +| Epoch_2.pt | 0.8205000000000002 | 0.007829392231587923 | +| Epoch_4.pt | 0.8191666666666666 | 0.007758905675670424 | +| Epoch_1_batch_5999.pt | 0.8156666666666667 | 0.008791831225421492 | +| Epoch_6.pt | 0.8121666666666666 | 0.0070406667052432545 | +| Epoch_1.pt | 0.8023333333333333 | 0.007223076872508893 | +| Epoch_1_batch_2999.pt | 0.7833333333333334 | 0.007490735018081407 | +| Epoch_0_batch_5999.pt | 0.7365 | 0.00816666666666667 | +| Epoch_0_batch_2999.pt | 0.6320000000000001 | 0.008314051767346854 | +| Epoch_0.pt | 0.5715 | 0.008098353742170898 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_B1/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/backbones/RepVGG_B1/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..faa51c872277bc4d4a940a88ad7f08cf336d693a --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_B1/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_2999.pt | 0.9981666666666665 | 0.0007222222222222252 | +| Epoch_13_batch_5999.pt | 0.9981666666666665 | 0.0007222222222222252 | +| Epoch_15.pt | 0.9981666666666665 | 0.0007222222222222252 | +| Epoch_17_batch_2999.pt | 0.9981666666666665 | 0.0007222222222222252 | +| Epoch_14.pt | 0.9981666666666665 | 0.0007222222222222252 | +| Epoch_12.pt | 0.9981666666666665 | 0.0007637626158259756 | +| Epoch_15_batch_5999.pt | 0.9981666666666665 | 0.0007222222222222252 | +| Epoch_13.pt | 0.9981666666666665 | 0.0007222222222222252 | +| Epoch_16_batch_2999.pt | 0.9981666666666665 | 0.0007222222222222252 | +| Epoch_14_batch_2999.pt | 0.9981666666666665 | 0.0007222222222222252 | +| Epoch_15_batch_2999.pt | 0.9981666666666665 | 0.0007222222222222252 | +| Epoch_14_batch_5999.pt | 0.9981666666666665 | 0.0007222222222222252 | +| Epoch_16_batch_5999.pt | 0.9979999999999999 | 0.0007370277311900908 | +| Epoch_17_batch_5999.pt | 0.9979999999999999 | 0.0007370277311900908 | +| Epoch_12_batch_5999.pt | 0.9979999999999999 | 0.0007370277311900908 | +| Epoch_16.pt | 0.9979999999999999 | 0.0007370277311900908 | +| Epoch_17.pt | 0.9978333333333333 | 0.0007474235581707629 | +| Epoch_12_batch_2999.pt | 0.9976666666666667 | 0.0007934920476158755 | +| Epoch_11_batch_2999.pt | 0.9974999999999999 | 0.0007136240321480632 | +| Epoch_10_batch_5999.pt | 0.9974999999999999 | 0.0007136240321480632 | +| Epoch_10.pt | 0.9971666666666665 | 0.0008975274678557489 | +| Epoch_11.pt | 0.9971666666666665 | 0.0009312808119022322 | +| Epoch_10_batch_2999.pt | 0.9969999999999999 | 0.000853460638652065 | +| Epoch_11_batch_5999.pt | 0.9969999999999999 | 0.0008888888888888863 | +| Epoch_9_batch_2999.pt | 0.9968333333333333 | 0.000976577546180386 | +| Epoch_8_batch_5999.pt | 0.9968333333333332 | 0.000722222222222217 | +| Epoch_3.pt | 0.9966666666666665 | 0.0007856742013183833 | +| Epoch_9_batch_5999.pt | 0.9964999999999999 | 0.0009444444444444461 | +| Epoch_4_batch_5999.pt | 0.9964999999999999 | 0.0010076865081787277 | +| Epoch_5.pt | 0.9964999999999999 | 0.0010378634273482956 | +| Epoch_5_batch_2999.pt | 0.9961666666666666 | 0.000704920974469411 | +| Epoch_7_batch_2999.pt | 0.9961666666666666 | 0.0012184284555256302 | +| Epoch_5_batch_5999.pt | 0.9961666666666666 | 0.0010555555555555535 | +| Epoch_3_batch_5999.pt | 0.9961666666666666 | 0.0009312808119022304 | +| Epoch_4.pt | 0.9961666666666666 | 0.0011124991330278195 | +| Epoch_9.pt | 0.9960000000000001 | 0.0011706281947614185 | +| Epoch_4_batch_2999.pt | 0.9960000000000001 | 0.001222222222222224 | +| Epoch_7_batch_5999.pt | 0.9960000000000001 | 0.0009686442096757033 | +| Epoch_7.pt | 0.9958333333333333 | 0.0007556372504853008 | +| Epoch_6_batch_5999.pt | 0.9958333333333332 | 0.0007954345035153545 | +| Epoch_6_batch_2999.pt | 0.9958333333333332 | 0.0009043789220055362 | +| Epoch_6.pt | 0.9958333333333332 | 0.0010015420209622187 | +| Epoch_3_batch_2999.pt | 0.9955 | 0.0011928283640879926 | +| Epoch_8_batch_2999.pt | 0.9955 | 0.0008624541497922252 | +| Epoch_2.pt | 0.9953333333333333 | 0.0009229582069909011 | +| Epoch_2_batch_5999.pt | 0.9953333333333333 | 0.0010183501544346308 | +| Epoch_2_batch_2999.pt | 0.9948333333333335 | 0.0008407081083567555 | +| Epoch_1_batch_5999.pt | 0.9946666666666667 | 0.001133115447465063 | +| Epoch_8.pt | 0.9941666666666666 | 0.0013437096247164253 | +| Epoch_1.pt | 0.9908333333333331 | 0.0009043789220055385 | +| Epoch_1_batch_2999.pt | 0.9898333333333333 | 0.0010671873729054782 | +| Epoch_0_batch_5999.pt | 0.9778333333333332 | 0.00240947204913349 | +| Epoch_0_batch_2999.pt | 0.9386666666666666 | 0.003782676562344267 | +| Epoch_0.pt | 0.8089999999999998 | 0.003761402417735725 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_B1/accu_files/accu_megaface.txt b/bob/bio/facexzoo/models/backbones/RepVGG_B1/accu_files/accu_megaface.txt new file mode 100644 index 0000000000000000000000000000000000000000..06b2630e195db48a4554269ad4d5cde873ff2424 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_B1/accu_files/accu_megaface.txt @@ -0,0 +1,14 @@ ++------+--------------------+ +| rank | accuracy | ++------+--------------------+ +| 1 | 0.9673509769972792 | +| 2 | 0.9760925316010779 | +| 3 | 0.9795357798403999 | +| 4 | 0.9814949815795982 | +| 5 | 0.9828813934415559 | +| 6 | 0.9837991590403166 | +| 7 | 0.984528164338623 | +| 8 | 0.9852311337334184 | +| 9 | 0.9856542171654712 | +| 10 | 0.9861423903563014 | ++------+--------------------+ diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_B1/accu_rfw.txt b/bob/bio/facexzoo/models/backbones/RepVGG_B1/accu_rfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..4d6c2679f6854673227e2c1774072dc0b382b9f9 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_B1/accu_rfw.txt @@ -0,0 +1,27 @@ +RFW_African ++-------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++-------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.9456666666666667 | 0.0024620577562400373 | ++-------------+--------------------+-----------------------+ + +RFW_Asian ++-------------+--------------------+---------------------+ +| model_name | mean accuracy | standard error | ++-------------+--------------------+---------------------+ +| Epoch_17.pt | 0.9388333333333334 | 0.00398337594894297 | ++-------------+--------------------+---------------------+ + +RFW_Caucasian ++-------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++-------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.9873333333333333 | 0.0019751543149590183 | ++-------------+--------------------+-----------------------+ + +RFW_Indian ++-------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++-------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.9503333333333333 | 0.0030205060486818178 | ++-------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/RepVGG_B1/log.log b/bob/bio/facexzoo/models/backbones/RepVGG_B1/log.log new file mode 100644 index 0000000000000000000000000000000000000000..93ceb756515b0fbe32b8ea4722c7e606492c5f85 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/RepVGG_B1/log.log @@ -0,0 +1,655 @@ +INFO 2021-09-17 11:09:50 train.py: 180] Start optimization. +INFO 2021-09-17 11:09:50 train.py: 181] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='RepVGG', batch_size=512, data_root='/export2/wj_data/FaceX-Zoo/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='MV-Softmax', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='mv-repvgg', train_file='/export2/wj_data/FaceX-Zoo/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7f2dd0211da0>) +backbone param: +{'block_stage1': 4, 'block_stage2': 6, 'block_stage3': 16, 'block_stage4': 1, 'width_stage1': 2, 'width_stage2': 2, 'width_stage3': 2, 'width_stage4': 4, 'feat_dim': 512, 'out_h': 7, 'out_w': 7} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +INFO 2021-09-17 11:10:15 train.py: 82] Epoch 0, iter 0/6416, lr 0.100000, loss 16.309374 +INFO 2021-09-17 11:13:13 train.py: 82] Epoch 0, iter 200/6416, lr 0.100000, loss 15.664051 +INFO 2021-09-17 11:16:11 train.py: 82] Epoch 0, iter 400/6416, lr 0.100000, loss 15.389331 +INFO 2021-09-17 11:19:09 train.py: 82] Epoch 0, iter 600/6416, lr 0.100000, loss 15.317583 +INFO 2021-09-17 11:22:08 train.py: 82] Epoch 0, iter 800/6416, lr 0.100000, loss 15.194844 +INFO 2021-09-17 11:25:06 train.py: 82] Epoch 0, iter 1000/6416, lr 0.100000, loss 15.002481 +INFO 2021-09-17 11:28:04 train.py: 82] Epoch 0, iter 1200/6416, lr 0.100000, loss 14.741223 +INFO 2021-09-17 11:31:02 train.py: 82] Epoch 0, iter 1400/6416, lr 0.100000, loss 14.427274 +INFO 2021-09-17 11:34:01 train.py: 82] Epoch 0, iter 1600/6416, lr 0.100000, loss 14.101495 +INFO 2021-09-17 11:37:04 train.py: 82] Epoch 0, iter 1800/6416, lr 0.100000, loss 13.756198 +INFO 2021-09-17 11:40:10 train.py: 82] Epoch 0, iter 2000/6416, lr 0.100000, loss 13.395571 +INFO 2021-09-17 11:43:09 train.py: 82] Epoch 0, iter 2200/6416, lr 0.100000, loss 13.032782 +INFO 2021-09-17 11:46:08 train.py: 82] Epoch 0, iter 2400/6416, lr 0.100000, loss 12.640520 +INFO 2021-09-17 11:49:07 train.py: 82] Epoch 0, iter 2600/6416, lr 0.100000, loss 12.294255 +INFO 2021-09-17 11:52:06 train.py: 82] Epoch 0, iter 2800/6416, lr 0.100000, loss 12.013902 +INFO 2021-09-17 11:55:07 train.py: 95] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2021-09-17 11:55:08 train.py: 82] Epoch 0, iter 3000/6416, lr 0.100000, loss 11.833890 +INFO 2021-09-17 11:58:07 train.py: 82] Epoch 0, iter 3200/6416, lr 0.100000, loss 11.812492 +INFO 2021-09-17 12:01:06 train.py: 82] Epoch 0, iter 3400/6416, lr 0.100000, loss 11.873455 +INFO 2021-09-17 12:04:05 train.py: 82] Epoch 0, iter 3600/6416, lr 0.100000, loss 12.082802 +INFO 2021-09-17 12:07:04 train.py: 82] Epoch 0, iter 3800/6416, lr 0.100000, loss 12.330923 +INFO 2021-09-17 12:10:02 train.py: 82] Epoch 0, iter 4000/6416, lr 0.100000, loss 12.596411 +INFO 2021-09-17 12:13:01 train.py: 82] Epoch 0, iter 4200/6416, lr 0.100000, loss 12.873820 +INFO 2021-09-17 12:15:59 train.py: 82] Epoch 0, iter 4400/6416, lr 0.100000, loss 13.103076 +INFO 2021-09-17 12:18:56 train.py: 82] Epoch 0, iter 4600/6416, lr 0.100000, loss 13.258172 +INFO 2021-09-17 12:21:54 train.py: 82] Epoch 0, iter 4800/6416, lr 0.100000, loss 13.374078 +INFO 2021-09-17 12:24:51 train.py: 82] Epoch 0, iter 5000/6416, lr 0.100000, loss 13.423296 +INFO 2021-09-17 12:27:50 train.py: 82] Epoch 0, iter 5200/6416, lr 0.100000, loss 13.407871 +INFO 2021-09-17 12:30:48 train.py: 82] Epoch 0, iter 5400/6416, lr 0.100000, loss 13.314967 +INFO 2021-09-17 12:33:45 train.py: 82] Epoch 0, iter 5600/6416, lr 0.100000, loss 13.199173 +INFO 2021-09-17 12:36:42 train.py: 82] Epoch 0, iter 5800/6416, lr 0.100000, loss 13.032544 +INFO 2021-09-17 12:39:42 train.py: 95] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2021-09-17 12:39:42 train.py: 82] Epoch 0, iter 6000/6416, lr 0.100000, loss 12.823961 +INFO 2021-09-17 12:42:40 train.py: 82] Epoch 0, iter 6200/6416, lr 0.100000, loss 12.596705 +INFO 2021-09-17 12:45:46 train.py: 82] Epoch 0, iter 6400/6416, lr 0.100000, loss 12.338798 +INFO 2021-09-17 12:46:02 train.py: 100] Save checkpoint Epoch_0.pt to disk... +INFO 2021-09-17 12:46:04 train.py: 82] Epoch 1, iter 0/6416, lr 0.100000, loss 12.174789 +INFO 2021-09-17 12:49:01 train.py: 82] Epoch 1, iter 200/6416, lr 0.100000, loss 11.949627 +INFO 2021-09-17 12:51:56 train.py: 82] Epoch 1, iter 400/6416, lr 0.100000, loss 11.617720 +INFO 2021-09-17 12:54:52 train.py: 82] Epoch 1, iter 600/6416, lr 0.100000, loss 11.385432 +INFO 2021-09-17 12:57:47 train.py: 82] Epoch 1, iter 800/6416, lr 0.100000, loss 11.121999 +INFO 2021-09-17 13:00:43 train.py: 82] Epoch 1, iter 1000/6416, lr 0.100000, loss 10.884434 +INFO 2021-09-17 13:03:39 train.py: 82] Epoch 1, iter 1200/6416, lr 0.100000, loss 10.693742 +INFO 2021-09-17 13:06:35 train.py: 82] Epoch 1, iter 1400/6416, lr 0.100000, loss 10.462524 +INFO 2021-09-17 13:09:30 train.py: 82] Epoch 1, iter 1600/6416, lr 0.100000, loss 10.286891 +INFO 2021-09-17 13:12:26 train.py: 82] Epoch 1, iter 1800/6416, lr 0.100000, loss 10.063639 +INFO 2021-09-17 13:15:22 train.py: 82] Epoch 1, iter 2000/6416, lr 0.100000, loss 9.896982 +INFO 2021-09-17 13:18:17 train.py: 82] Epoch 1, iter 2200/6416, lr 0.100000, loss 9.702913 +INFO 2021-09-17 13:21:13 train.py: 82] Epoch 1, iter 2400/6416, lr 0.100000, loss 9.494096 +INFO 2021-09-17 13:24:10 train.py: 82] Epoch 1, iter 2600/6416, lr 0.100000, loss 9.317434 +INFO 2021-09-17 13:27:06 train.py: 82] Epoch 1, iter 2800/6416, lr 0.100000, loss 9.201912 +INFO 2021-09-17 13:30:08 train.py: 95] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2021-09-17 13:30:09 train.py: 82] Epoch 1, iter 3000/6416, lr 0.100000, loss 9.021920 +INFO 2021-09-17 13:33:06 train.py: 82] Epoch 1, iter 3200/6416, lr 0.100000, loss 8.869344 +INFO 2021-09-17 13:36:11 train.py: 82] Epoch 1, iter 3400/6416, lr 0.100000, loss 8.739332 +INFO 2021-09-17 13:39:19 train.py: 82] Epoch 1, iter 3600/6416, lr 0.100000, loss 8.604727 +INFO 2021-09-17 13:42:21 train.py: 82] Epoch 1, iter 3800/6416, lr 0.100000, loss 8.512420 +INFO 2021-09-17 13:45:31 train.py: 82] Epoch 1, iter 4000/6416, lr 0.100000, loss 8.403469 +INFO 2021-09-17 13:48:42 train.py: 82] Epoch 1, iter 4200/6416, lr 0.100000, loss 8.249118 +INFO 2021-09-17 13:51:59 train.py: 82] Epoch 1, iter 4400/6416, lr 0.100000, loss 8.187804 +INFO 2021-09-17 13:55:15 train.py: 82] Epoch 1, iter 4600/6416, lr 0.100000, loss 8.050545 +INFO 2021-09-17 13:58:36 train.py: 82] Epoch 1, iter 4800/6416, lr 0.100000, loss 7.953538 +INFO 2021-09-17 14:01:48 train.py: 82] Epoch 1, iter 5000/6416, lr 0.100000, loss 7.863615 +INFO 2021-09-17 14:05:19 train.py: 82] Epoch 1, iter 5200/6416, lr 0.100000, loss 7.783763 +INFO 2021-09-17 14:08:45 train.py: 82] Epoch 1, iter 5400/6416, lr 0.100000, loss 7.709828 +INFO 2021-09-17 14:12:18 train.py: 82] Epoch 1, iter 5600/6416, lr 0.100000, loss 7.599424 +INFO 2021-09-17 14:16:07 train.py: 82] Epoch 1, iter 5800/6416, lr 0.100000, loss 7.491830 +INFO 2021-09-17 14:19:46 train.py: 95] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2021-09-17 14:19:47 train.py: 82] Epoch 1, iter 6000/6416, lr 0.100000, loss 7.464325 +INFO 2021-09-17 14:23:15 train.py: 82] Epoch 1, iter 6200/6416, lr 0.100000, loss 7.401899 +INFO 2021-09-17 14:27:09 train.py: 82] Epoch 1, iter 6400/6416, lr 0.100000, loss 7.315104 +INFO 2021-09-17 14:27:25 train.py: 100] Save checkpoint Epoch_1.pt to disk... +INFO 2021-09-17 14:27:27 train.py: 82] Epoch 2, iter 0/6416, lr 0.100000, loss 7.161765 +INFO 2021-09-17 14:30:23 train.py: 82] Epoch 2, iter 200/6416, lr 0.100000, loss 6.645709 +INFO 2021-09-17 14:33:18 train.py: 82] Epoch 2, iter 400/6416, lr 0.100000, loss 6.619753 +INFO 2021-09-17 14:36:13 train.py: 82] Epoch 2, iter 600/6416, lr 0.100000, loss 6.663946 +INFO 2021-09-17 14:39:08 train.py: 82] Epoch 2, iter 800/6416, lr 0.100000, loss 6.655832 +INFO 2021-09-17 14:42:04 train.py: 82] Epoch 2, iter 1000/6416, lr 0.100000, loss 6.705996 +INFO 2021-09-17 14:44:59 train.py: 82] Epoch 2, iter 1200/6416, lr 0.100000, loss 6.702095 +INFO 2021-09-17 14:47:54 train.py: 82] Epoch 2, iter 1400/6416, lr 0.100000, loss 6.694686 +INFO 2021-09-17 14:50:49 train.py: 82] Epoch 2, iter 1600/6416, lr 0.100000, loss 6.687016 +INFO 2021-09-17 14:53:44 train.py: 82] Epoch 2, iter 1800/6416, lr 0.100000, loss 6.620364 +INFO 2021-09-17 14:56:40 train.py: 82] Epoch 2, iter 2000/6416, lr 0.100000, loss 6.632934 +INFO 2021-09-17 14:59:39 train.py: 82] Epoch 2, iter 2200/6416, lr 0.100000, loss 6.588741 +INFO 2021-09-17 15:02:34 train.py: 82] Epoch 2, iter 2400/6416, lr 0.100000, loss 6.556752 +INFO 2021-09-17 15:05:30 train.py: 82] Epoch 2, iter 2600/6416, lr 0.100000, loss 6.550915 +INFO 2021-09-17 15:08:25 train.py: 82] Epoch 2, iter 2800/6416, lr 0.100000, loss 6.522386 +INFO 2021-09-17 15:11:23 train.py: 95] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2021-09-17 15:11:24 train.py: 82] Epoch 2, iter 3000/6416, lr 0.100000, loss 6.461958 +INFO 2021-09-17 15:14:26 train.py: 82] Epoch 2, iter 3200/6416, lr 0.100000, loss 6.447941 +INFO 2021-09-17 15:17:27 train.py: 82] Epoch 2, iter 3400/6416, lr 0.100000, loss 6.381988 +INFO 2021-09-17 15:20:26 train.py: 82] Epoch 2, iter 3600/6416, lr 0.100000, loss 6.406001 +INFO 2021-09-17 15:23:33 train.py: 82] Epoch 2, iter 3800/6416, lr 0.100000, loss 6.362502 +INFO 2021-09-17 15:26:38 train.py: 82] Epoch 2, iter 4000/6416, lr 0.100000, loss 6.354174 +INFO 2021-09-17 15:29:48 train.py: 82] Epoch 2, iter 4200/6416, lr 0.100000, loss 6.298320 +INFO 2021-09-17 15:33:11 train.py: 82] Epoch 2, iter 4400/6416, lr 0.100000, loss 6.246674 +INFO 2021-09-17 15:36:26 train.py: 82] Epoch 2, iter 4600/6416, lr 0.100000, loss 6.234659 +INFO 2021-09-17 15:39:42 train.py: 82] Epoch 2, iter 4800/6416, lr 0.100000, loss 6.224736 +INFO 2021-09-17 15:43:14 train.py: 82] Epoch 2, iter 5000/6416, lr 0.100000, loss 6.144226 +INFO 2021-09-17 15:46:41 train.py: 82] Epoch 2, iter 5200/6416, lr 0.100000, loss 6.116475 +INFO 2021-09-17 15:49:46 train.py: 82] Epoch 2, iter 5400/6416, lr 0.100000, loss 6.098807 +INFO 2021-09-17 15:53:24 train.py: 82] Epoch 2, iter 5600/6416, lr 0.100000, loss 6.070324 +INFO 2021-09-17 15:56:45 train.py: 82] Epoch 2, iter 5800/6416, lr 0.100000, loss 6.051608 +INFO 2021-09-17 15:59:59 train.py: 95] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2021-09-17 15:59:59 train.py: 82] Epoch 2, iter 6000/6416, lr 0.100000, loss 6.028819 +INFO 2021-09-17 16:03:42 train.py: 82] Epoch 2, iter 6200/6416, lr 0.100000, loss 5.992936 +INFO 2021-09-17 16:07:15 train.py: 82] Epoch 2, iter 6400/6416, lr 0.100000, loss 5.976271 +INFO 2021-09-17 16:07:30 train.py: 100] Save checkpoint Epoch_2.pt to disk... +INFO 2021-09-17 16:07:33 train.py: 82] Epoch 3, iter 0/6416, lr 0.100000, loss 5.908553 +INFO 2021-09-17 16:10:29 train.py: 82] Epoch 3, iter 200/6416, lr 0.100000, loss 5.294825 +INFO 2021-09-17 16:13:24 train.py: 82] Epoch 3, iter 400/6416, lr 0.100000, loss 5.298500 +INFO 2021-09-17 16:16:19 train.py: 82] Epoch 3, iter 600/6416, lr 0.100000, loss 5.369991 +INFO 2021-09-17 16:19:14 train.py: 82] Epoch 3, iter 800/6416, lr 0.100000, loss 5.461115 +INFO 2021-09-17 16:22:09 train.py: 82] Epoch 3, iter 1000/6416, lr 0.100000, loss 5.487593 +INFO 2021-09-17 16:25:04 train.py: 82] Epoch 3, iter 1200/6416, lr 0.100000, loss 5.504771 +INFO 2021-09-17 16:27:59 train.py: 82] Epoch 3, iter 1400/6416, lr 0.100000, loss 5.524527 +INFO 2021-09-17 16:30:55 train.py: 82] Epoch 3, iter 1600/6416, lr 0.100000, loss 5.573862 +INFO 2021-09-17 16:33:50 train.py: 82] Epoch 3, iter 1800/6416, lr 0.100000, loss 5.517027 +INFO 2021-09-17 16:36:45 train.py: 82] Epoch 3, iter 2000/6416, lr 0.100000, loss 5.554914 +INFO 2021-09-17 16:39:40 train.py: 82] Epoch 3, iter 2200/6416, lr 0.100000, loss 5.565343 +INFO 2021-09-17 16:42:35 train.py: 82] Epoch 3, iter 2400/6416, lr 0.100000, loss 5.545687 +INFO 2021-09-17 16:45:31 train.py: 82] Epoch 3, iter 2600/6416, lr 0.100000, loss 5.560186 +INFO 2021-09-17 16:48:26 train.py: 82] Epoch 3, iter 2800/6416, lr 0.100000, loss 5.519884 +INFO 2021-09-17 16:51:23 train.py: 95] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2021-09-17 16:51:24 train.py: 82] Epoch 3, iter 3000/6416, lr 0.100000, loss 5.537192 +INFO 2021-09-17 16:54:20 train.py: 82] Epoch 3, iter 3200/6416, lr 0.100000, loss 5.522058 +INFO 2021-09-17 16:57:16 train.py: 82] Epoch 3, iter 3400/6416, lr 0.100000, loss 5.485364 +INFO 2021-09-17 17:00:12 train.py: 82] Epoch 3, iter 3600/6416, lr 0.100000, loss 5.508276 +INFO 2021-09-17 17:03:09 train.py: 82] Epoch 3, iter 3800/6416, lr 0.100000, loss 5.463995 +INFO 2021-09-17 17:06:05 train.py: 82] Epoch 3, iter 4000/6416, lr 0.100000, loss 5.434506 +INFO 2021-09-17 17:09:01 train.py: 82] Epoch 3, iter 4200/6416, lr 0.100000, loss 5.444456 +INFO 2021-09-17 17:11:57 train.py: 82] Epoch 3, iter 4400/6416, lr 0.100000, loss 5.461675 +INFO 2021-09-17 17:14:53 train.py: 82] Epoch 3, iter 4600/6416, lr 0.100000, loss 5.423387 +INFO 2021-09-17 17:17:49 train.py: 82] Epoch 3, iter 4800/6416, lr 0.100000, loss 5.409078 +INFO 2021-09-17 17:20:46 train.py: 82] Epoch 3, iter 5000/6416, lr 0.100000, loss 5.374251 +INFO 2021-09-17 17:23:43 train.py: 82] Epoch 3, iter 5200/6416, lr 0.100000, loss 5.365706 +INFO 2021-09-17 17:26:39 train.py: 82] Epoch 3, iter 5400/6416, lr 0.100000, loss 5.337068 +INFO 2021-09-17 17:29:43 train.py: 82] Epoch 3, iter 5600/6416, lr 0.100000, loss 5.320861 +INFO 2021-09-17 17:32:49 train.py: 82] Epoch 3, iter 5800/6416, lr 0.100000, loss 5.312380 +INFO 2021-09-17 17:35:52 train.py: 95] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2021-09-17 17:35:53 train.py: 82] Epoch 3, iter 6000/6416, lr 0.100000, loss 5.317948 +INFO 2021-09-17 17:38:50 train.py: 82] Epoch 3, iter 6200/6416, lr 0.100000, loss 5.315086 +INFO 2021-09-17 17:41:47 train.py: 82] Epoch 3, iter 6400/6416, lr 0.100000, loss 5.248424 +INFO 2021-09-17 17:42:03 train.py: 100] Save checkpoint Epoch_3.pt to disk... +INFO 2021-09-17 17:42:05 train.py: 82] Epoch 4, iter 0/6416, lr 0.100000, loss 5.296052 +INFO 2021-09-17 17:45:01 train.py: 82] Epoch 4, iter 200/6416, lr 0.100000, loss 4.677725 +INFO 2021-09-17 17:47:56 train.py: 82] Epoch 4, iter 400/6416, lr 0.100000, loss 4.651695 +INFO 2021-09-17 17:50:52 train.py: 82] Epoch 4, iter 600/6416, lr 0.100000, loss 4.759351 +INFO 2021-09-17 17:53:47 train.py: 82] Epoch 4, iter 800/6416, lr 0.100000, loss 4.757572 +INFO 2021-09-17 17:56:42 train.py: 82] Epoch 4, iter 1000/6416, lr 0.100000, loss 4.822478 +INFO 2021-09-17 17:59:37 train.py: 82] Epoch 4, iter 1200/6416, lr 0.100000, loss 4.889204 +INFO 2021-09-17 18:02:32 train.py: 82] Epoch 4, iter 1400/6416, lr 0.100000, loss 4.921907 +INFO 2021-09-17 18:05:27 train.py: 82] Epoch 4, iter 1600/6416, lr 0.100000, loss 4.922673 +INFO 2021-09-17 18:08:22 train.py: 82] Epoch 4, iter 1800/6416, lr 0.100000, loss 4.958898 +INFO 2021-09-17 18:11:18 train.py: 82] Epoch 4, iter 2000/6416, lr 0.100000, loss 4.973729 +INFO 2021-09-17 18:14:13 train.py: 82] Epoch 4, iter 2200/6416, lr 0.100000, loss 4.955810 +INFO 2021-09-17 18:17:09 train.py: 82] Epoch 4, iter 2400/6416, lr 0.100000, loss 4.971030 +INFO 2021-09-17 18:20:05 train.py: 82] Epoch 4, iter 2600/6416, lr 0.100000, loss 4.999764 +INFO 2021-09-17 18:23:00 train.py: 82] Epoch 4, iter 2800/6416, lr 0.100000, loss 4.963907 +INFO 2021-09-17 18:25:58 train.py: 95] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2021-09-17 18:25:58 train.py: 82] Epoch 4, iter 3000/6416, lr 0.100000, loss 4.977689 +INFO 2021-09-17 18:28:55 train.py: 82] Epoch 4, iter 3200/6416, lr 0.100000, loss 4.990679 +INFO 2021-09-17 18:31:51 train.py: 82] Epoch 4, iter 3400/6416, lr 0.100000, loss 4.972846 +INFO 2021-09-17 18:34:48 train.py: 82] Epoch 4, iter 3600/6416, lr 0.100000, loss 4.988738 +INFO 2021-09-17 18:37:44 train.py: 82] Epoch 4, iter 3800/6416, lr 0.100000, loss 4.958032 +INFO 2021-09-17 18:40:41 train.py: 82] Epoch 4, iter 4000/6416, lr 0.100000, loss 4.949542 +INFO 2021-09-17 18:43:37 train.py: 82] Epoch 4, iter 4200/6416, lr 0.100000, loss 4.930051 +INFO 2021-09-17 18:46:34 train.py: 82] Epoch 4, iter 4400/6416, lr 0.100000, loss 4.935332 +INFO 2021-09-17 18:49:30 train.py: 82] Epoch 4, iter 4600/6416, lr 0.100000, loss 4.899679 +INFO 2021-09-17 18:52:26 train.py: 82] Epoch 4, iter 4800/6416, lr 0.100000, loss 4.919532 +INFO 2021-09-17 18:55:22 train.py: 82] Epoch 4, iter 5000/6416, lr 0.100000, loss 4.923083 +INFO 2021-09-17 18:58:19 train.py: 82] Epoch 4, iter 5200/6416, lr 0.100000, loss 4.884307 +INFO 2021-09-17 19:01:15 train.py: 82] Epoch 4, iter 5400/6416, lr 0.100000, loss 4.888160 +INFO 2021-09-17 19:04:11 train.py: 82] Epoch 4, iter 5600/6416, lr 0.100000, loss 4.838418 +INFO 2021-09-17 19:07:07 train.py: 82] Epoch 4, iter 5800/6416, lr 0.100000, loss 4.851031 +INFO 2021-09-17 19:10:05 train.py: 95] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2021-09-17 19:10:06 train.py: 82] Epoch 4, iter 6000/6416, lr 0.100000, loss 4.857647 +INFO 2021-09-17 19:13:02 train.py: 82] Epoch 4, iter 6200/6416, lr 0.100000, loss 4.836750 +INFO 2021-09-17 19:15:58 train.py: 82] Epoch 4, iter 6400/6416, lr 0.100000, loss 4.866601 +INFO 2021-09-17 19:16:14 train.py: 100] Save checkpoint Epoch_4.pt to disk... +INFO 2021-09-17 19:16:16 train.py: 82] Epoch 5, iter 0/6416, lr 0.100000, loss 4.732683 +INFO 2021-09-17 19:19:12 train.py: 82] Epoch 5, iter 200/6416, lr 0.100000, loss 4.270972 +INFO 2021-09-17 19:22:08 train.py: 82] Epoch 5, iter 400/6416, lr 0.100000, loss 4.234095 +INFO 2021-09-17 19:25:03 train.py: 82] Epoch 5, iter 600/6416, lr 0.100000, loss 4.300946 +INFO 2021-09-17 19:27:58 train.py: 82] Epoch 5, iter 800/6416, lr 0.100000, loss 4.382501 +INFO 2021-09-17 19:30:53 train.py: 82] Epoch 5, iter 1000/6416, lr 0.100000, loss 4.435821 +INFO 2021-09-17 19:33:48 train.py: 82] Epoch 5, iter 1200/6416, lr 0.100000, loss 4.439177 +INFO 2021-09-17 19:36:43 train.py: 82] Epoch 5, iter 1400/6416, lr 0.100000, loss 4.523221 +INFO 2021-09-17 19:39:38 train.py: 82] Epoch 5, iter 1600/6416, lr 0.100000, loss 4.576399 +INFO 2021-09-17 19:42:33 train.py: 82] Epoch 5, iter 1800/6416, lr 0.100000, loss 4.550761 +INFO 2021-09-17 19:45:28 train.py: 82] Epoch 5, iter 2000/6416, lr 0.100000, loss 4.570737 +INFO 2021-09-17 19:48:24 train.py: 82] Epoch 5, iter 2200/6416, lr 0.100000, loss 4.595881 +INFO 2021-09-17 19:51:19 train.py: 82] Epoch 5, iter 2400/6416, lr 0.100000, loss 4.597567 +INFO 2021-09-17 19:54:15 train.py: 82] Epoch 5, iter 2600/6416, lr 0.100000, loss 4.606163 +INFO 2021-09-17 19:57:10 train.py: 82] Epoch 5, iter 2800/6416, lr 0.100000, loss 4.604537 +INFO 2021-09-17 20:00:07 train.py: 95] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2021-09-17 20:00:08 train.py: 82] Epoch 5, iter 3000/6416, lr 0.100000, loss 4.634249 +INFO 2021-09-17 20:03:04 train.py: 82] Epoch 5, iter 3200/6416, lr 0.100000, loss 4.602003 +INFO 2021-09-17 20:06:00 train.py: 82] Epoch 5, iter 3400/6416, lr 0.100000, loss 4.618445 +INFO 2021-09-17 20:08:57 train.py: 82] Epoch 5, iter 3600/6416, lr 0.100000, loss 4.605092 +INFO 2021-09-17 20:11:53 train.py: 82] Epoch 5, iter 3800/6416, lr 0.100000, loss 4.617896 +INFO 2021-09-17 20:14:49 train.py: 82] Epoch 5, iter 4000/6416, lr 0.100000, loss 4.620143 +INFO 2021-09-17 20:17:45 train.py: 82] Epoch 5, iter 4200/6416, lr 0.100000, loss 4.595380 +INFO 2021-09-17 20:20:41 train.py: 82] Epoch 5, iter 4400/6416, lr 0.100000, loss 4.603217 +INFO 2021-09-17 20:23:38 train.py: 82] Epoch 5, iter 4600/6416, lr 0.100000, loss 4.610298 +INFO 2021-09-17 20:26:34 train.py: 82] Epoch 5, iter 4800/6416, lr 0.100000, loss 4.580344 +INFO 2021-09-17 20:29:31 train.py: 82] Epoch 5, iter 5000/6416, lr 0.100000, loss 4.554963 +INFO 2021-09-17 20:32:28 train.py: 82] Epoch 5, iter 5200/6416, lr 0.100000, loss 4.565137 +INFO 2021-09-17 20:35:25 train.py: 82] Epoch 5, iter 5400/6416, lr 0.100000, loss 4.554716 +INFO 2021-09-17 20:38:21 train.py: 82] Epoch 5, iter 5600/6416, lr 0.100000, loss 4.558520 +INFO 2021-09-17 20:41:18 train.py: 82] Epoch 5, iter 5800/6416, lr 0.100000, loss 4.587286 +INFO 2021-09-17 20:44:16 train.py: 95] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2021-09-17 20:44:17 train.py: 82] Epoch 5, iter 6000/6416, lr 0.100000, loss 4.557456 +INFO 2021-09-17 20:47:14 train.py: 82] Epoch 5, iter 6200/6416, lr 0.100000, loss 4.563951 +INFO 2021-09-17 20:50:11 train.py: 82] Epoch 5, iter 6400/6416, lr 0.100000, loss 4.545721 +INFO 2021-09-17 20:50:27 train.py: 100] Save checkpoint Epoch_5.pt to disk... +INFO 2021-09-17 20:50:29 train.py: 82] Epoch 6, iter 0/6416, lr 0.100000, loss 4.476425 +INFO 2021-09-17 20:53:26 train.py: 82] Epoch 6, iter 200/6416, lr 0.100000, loss 4.013819 +INFO 2021-09-17 20:56:22 train.py: 82] Epoch 6, iter 400/6416, lr 0.100000, loss 3.942493 +INFO 2021-09-17 20:59:18 train.py: 82] Epoch 6, iter 600/6416, lr 0.100000, loss 4.034682 +INFO 2021-09-17 21:02:13 train.py: 82] Epoch 6, iter 800/6416, lr 0.100000, loss 4.105159 +INFO 2021-09-17 21:05:08 train.py: 82] Epoch 6, iter 1000/6416, lr 0.100000, loss 4.133657 +INFO 2021-09-17 21:08:03 train.py: 82] Epoch 6, iter 1200/6416, lr 0.100000, loss 4.167027 +INFO 2021-09-17 21:10:59 train.py: 82] Epoch 6, iter 1400/6416, lr 0.100000, loss 4.235294 +INFO 2021-09-17 21:13:54 train.py: 82] Epoch 6, iter 1600/6416, lr 0.100000, loss 4.278386 +INFO 2021-09-17 21:16:50 train.py: 82] Epoch 6, iter 1800/6416, lr 0.100000, loss 4.279158 +INFO 2021-09-17 21:19:45 train.py: 82] Epoch 6, iter 2000/6416, lr 0.100000, loss 4.295179 +INFO 2021-09-17 21:22:41 train.py: 82] Epoch 6, iter 2200/6416, lr 0.100000, loss 4.324185 +INFO 2021-09-17 21:25:36 train.py: 82] Epoch 6, iter 2400/6416, lr 0.100000, loss 4.354933 +INFO 2021-09-17 21:28:31 train.py: 82] Epoch 6, iter 2600/6416, lr 0.100000, loss 4.362097 +INFO 2021-09-17 21:31:27 train.py: 82] Epoch 6, iter 2800/6416, lr 0.100000, loss 4.354158 +INFO 2021-09-17 21:34:24 train.py: 95] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2021-09-17 21:34:25 train.py: 82] Epoch 6, iter 3000/6416, lr 0.100000, loss 4.348253 +INFO 2021-09-17 21:37:21 train.py: 82] Epoch 6, iter 3200/6416, lr 0.100000, loss 4.363612 +INFO 2021-09-17 21:40:17 train.py: 82] Epoch 6, iter 3400/6416, lr 0.100000, loss 4.358525 +INFO 2021-09-17 21:43:14 train.py: 82] Epoch 6, iter 3600/6416, lr 0.100000, loss 4.381478 +INFO 2021-09-17 21:46:10 train.py: 82] Epoch 6, iter 3800/6416, lr 0.100000, loss 4.368137 +INFO 2021-09-17 21:49:06 train.py: 82] Epoch 6, iter 4000/6416, lr 0.100000, loss 4.400902 +INFO 2021-09-17 21:52:02 train.py: 82] Epoch 6, iter 4200/6416, lr 0.100000, loss 4.371290 +INFO 2021-09-17 21:54:58 train.py: 82] Epoch 6, iter 4400/6416, lr 0.100000, loss 4.356726 +INFO 2021-09-17 21:57:54 train.py: 82] Epoch 6, iter 4600/6416, lr 0.100000, loss 4.350521 +INFO 2021-09-17 22:00:51 train.py: 82] Epoch 6, iter 4800/6416, lr 0.100000, loss 4.362551 +INFO 2021-09-17 22:03:47 train.py: 82] Epoch 6, iter 5000/6416, lr 0.100000, loss 4.358347 +INFO 2021-09-17 22:06:43 train.py: 82] Epoch 6, iter 5200/6416, lr 0.100000, loss 4.348168 +INFO 2021-09-17 22:09:39 train.py: 82] Epoch 6, iter 5400/6416, lr 0.100000, loss 4.332241 +INFO 2021-09-17 22:12:36 train.py: 82] Epoch 6, iter 5600/6416, lr 0.100000, loss 4.323315 +INFO 2021-09-17 22:15:33 train.py: 82] Epoch 6, iter 5800/6416, lr 0.100000, loss 4.333842 +INFO 2021-09-17 22:18:31 train.py: 95] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2021-09-17 22:18:32 train.py: 82] Epoch 6, iter 6000/6416, lr 0.100000, loss 4.332040 +INFO 2021-09-17 22:21:28 train.py: 82] Epoch 6, iter 6200/6416, lr 0.100000, loss 4.339341 +INFO 2021-09-17 22:24:24 train.py: 82] Epoch 6, iter 6400/6416, lr 0.100000, loss 4.348284 +INFO 2021-09-17 22:24:40 train.py: 100] Save checkpoint Epoch_6.pt to disk... +INFO 2021-09-17 22:24:42 train.py: 82] Epoch 7, iter 0/6416, lr 0.100000, loss 4.334388 +INFO 2021-09-17 22:27:38 train.py: 82] Epoch 7, iter 200/6416, lr 0.100000, loss 3.841594 +INFO 2021-09-17 22:30:35 train.py: 82] Epoch 7, iter 400/6416, lr 0.100000, loss 3.762655 +INFO 2021-09-17 22:33:30 train.py: 82] Epoch 7, iter 600/6416, lr 0.100000, loss 3.832084 +INFO 2021-09-17 22:36:26 train.py: 82] Epoch 7, iter 800/6416, lr 0.100000, loss 3.852691 +INFO 2021-09-17 22:39:21 train.py: 82] Epoch 7, iter 1000/6416, lr 0.100000, loss 3.924323 +INFO 2021-09-17 22:42:16 train.py: 82] Epoch 7, iter 1200/6416, lr 0.100000, loss 3.960904 +INFO 2021-09-17 22:45:11 train.py: 82] Epoch 7, iter 1400/6416, lr 0.100000, loss 4.028336 +INFO 2021-09-17 22:48:07 train.py: 82] Epoch 7, iter 1600/6416, lr 0.100000, loss 4.045936 +INFO 2021-09-17 22:51:02 train.py: 82] Epoch 7, iter 1800/6416, lr 0.100000, loss 4.064921 +INFO 2021-09-17 22:53:57 train.py: 82] Epoch 7, iter 2000/6416, lr 0.100000, loss 4.106194 +INFO 2021-09-17 22:56:53 train.py: 82] Epoch 7, iter 2200/6416, lr 0.100000, loss 4.117006 +INFO 2021-09-17 22:59:48 train.py: 82] Epoch 7, iter 2400/6416, lr 0.100000, loss 4.135059 +INFO 2021-09-17 23:02:43 train.py: 82] Epoch 7, iter 2600/6416, lr 0.100000, loss 4.149813 +INFO 2021-09-17 23:05:38 train.py: 82] Epoch 7, iter 2800/6416, lr 0.100000, loss 4.153727 +INFO 2021-09-17 23:08:35 train.py: 95] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2021-09-17 23:08:36 train.py: 82] Epoch 7, iter 3000/6416, lr 0.100000, loss 4.172337 +INFO 2021-09-17 23:11:32 train.py: 82] Epoch 7, iter 3200/6416, lr 0.100000, loss 4.168360 +INFO 2021-09-17 23:14:28 train.py: 82] Epoch 7, iter 3400/6416, lr 0.100000, loss 4.172255 +INFO 2021-09-17 23:17:24 train.py: 82] Epoch 7, iter 3600/6416, lr 0.100000, loss 4.181818 +INFO 2021-09-17 23:20:20 train.py: 82] Epoch 7, iter 3800/6416, lr 0.100000, loss 4.179822 +INFO 2021-09-17 23:23:17 train.py: 82] Epoch 7, iter 4000/6416, lr 0.100000, loss 4.177024 +INFO 2021-09-17 23:26:13 train.py: 82] Epoch 7, iter 4200/6416, lr 0.100000, loss 4.207950 +INFO 2021-09-17 23:29:09 train.py: 82] Epoch 7, iter 4400/6416, lr 0.100000, loss 4.200332 +INFO 2021-09-17 23:32:06 train.py: 82] Epoch 7, iter 4600/6416, lr 0.100000, loss 4.198892 +INFO 2021-09-17 23:35:02 train.py: 82] Epoch 7, iter 4800/6416, lr 0.100000, loss 4.146377 +INFO 2021-09-17 23:37:58 train.py: 82] Epoch 7, iter 5000/6416, lr 0.100000, loss 4.174750 +INFO 2021-09-17 23:40:54 train.py: 82] Epoch 7, iter 5200/6416, lr 0.100000, loss 4.216462 +INFO 2021-09-17 23:43:51 train.py: 82] Epoch 7, iter 5400/6416, lr 0.100000, loss 4.143825 +INFO 2021-09-17 23:46:47 train.py: 82] Epoch 7, iter 5600/6416, lr 0.100000, loss 4.194038 +INFO 2021-09-17 23:49:43 train.py: 82] Epoch 7, iter 5800/6416, lr 0.100000, loss 4.176992 +INFO 2021-09-17 23:52:41 train.py: 95] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2021-09-17 23:52:42 train.py: 82] Epoch 7, iter 6000/6416, lr 0.100000, loss 4.174215 +INFO 2021-09-17 23:55:38 train.py: 82] Epoch 7, iter 6200/6416, lr 0.100000, loss 4.159925 +INFO 2021-09-17 23:58:34 train.py: 82] Epoch 7, iter 6400/6416, lr 0.100000, loss 4.164781 +INFO 2021-09-17 23:58:50 train.py: 100] Save checkpoint Epoch_7.pt to disk... +INFO 2021-09-17 23:58:52 train.py: 82] Epoch 8, iter 0/6416, lr 0.100000, loss 4.178131 +INFO 2021-09-18 00:01:48 train.py: 82] Epoch 8, iter 200/6416, lr 0.100000, loss 3.613638 +INFO 2021-09-18 00:04:44 train.py: 82] Epoch 8, iter 400/6416, lr 0.100000, loss 3.586572 +INFO 2021-09-18 00:07:40 train.py: 82] Epoch 8, iter 600/6416, lr 0.100000, loss 3.632357 +INFO 2021-09-18 00:10:36 train.py: 82] Epoch 8, iter 800/6416, lr 0.100000, loss 3.722838 +INFO 2021-09-18 00:13:31 train.py: 82] Epoch 8, iter 1000/6416, lr 0.100000, loss 3.771134 +INFO 2021-09-18 00:16:26 train.py: 82] Epoch 8, iter 1200/6416, lr 0.100000, loss 3.831397 +INFO 2021-09-18 00:19:21 train.py: 82] Epoch 8, iter 1400/6416, lr 0.100000, loss 3.871126 +INFO 2021-09-18 00:22:16 train.py: 82] Epoch 8, iter 1600/6416, lr 0.100000, loss 3.907012 +INFO 2021-09-18 00:25:11 train.py: 82] Epoch 8, iter 1800/6416, lr 0.100000, loss 3.927835 +INFO 2021-09-18 00:28:07 train.py: 82] Epoch 8, iter 2000/6416, lr 0.100000, loss 3.956889 +INFO 2021-09-18 00:31:03 train.py: 82] Epoch 8, iter 2200/6416, lr 0.100000, loss 3.945203 +INFO 2021-09-18 00:33:58 train.py: 82] Epoch 8, iter 2400/6416, lr 0.100000, loss 3.978433 +INFO 2021-09-18 00:36:54 train.py: 82] Epoch 8, iter 2600/6416, lr 0.100000, loss 3.969880 +INFO 2021-09-18 00:39:49 train.py: 82] Epoch 8, iter 2800/6416, lr 0.100000, loss 4.034084 +INFO 2021-09-18 00:42:47 train.py: 95] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2021-09-18 00:42:48 train.py: 82] Epoch 8, iter 3000/6416, lr 0.100000, loss 4.008741 +INFO 2021-09-18 00:45:44 train.py: 82] Epoch 8, iter 3200/6416, lr 0.100000, loss 4.036693 +INFO 2021-09-18 00:48:41 train.py: 82] Epoch 8, iter 3400/6416, lr 0.100000, loss 4.055786 +INFO 2021-09-18 00:51:38 train.py: 82] Epoch 8, iter 3600/6416, lr 0.100000, loss 4.019490 +INFO 2021-09-18 00:54:34 train.py: 82] Epoch 8, iter 3800/6416, lr 0.100000, loss 4.006062 +INFO 2021-09-18 00:57:31 train.py: 82] Epoch 8, iter 4000/6416, lr 0.100000, loss 4.043445 +INFO 2021-09-18 01:00:27 train.py: 82] Epoch 8, iter 4200/6416, lr 0.100000, loss 4.050289 +INFO 2021-09-18 01:03:24 train.py: 82] Epoch 8, iter 4400/6416, lr 0.100000, loss 4.050702 +INFO 2021-09-18 01:06:21 train.py: 82] Epoch 8, iter 4600/6416, lr 0.100000, loss 4.045620 +INFO 2021-09-18 01:09:17 train.py: 82] Epoch 8, iter 4800/6416, lr 0.100000, loss 4.041173 +INFO 2021-09-18 01:12:14 train.py: 82] Epoch 8, iter 5000/6416, lr 0.100000, loss 4.039389 +INFO 2021-09-18 01:15:10 train.py: 82] Epoch 8, iter 5200/6416, lr 0.100000, loss 4.014804 +INFO 2021-09-18 01:18:07 train.py: 82] Epoch 8, iter 5400/6416, lr 0.100000, loss 4.056807 +INFO 2021-09-18 01:21:04 train.py: 82] Epoch 8, iter 5600/6416, lr 0.100000, loss 4.025864 +INFO 2021-09-18 01:24:01 train.py: 82] Epoch 8, iter 5800/6416, lr 0.100000, loss 4.031175 +INFO 2021-09-18 01:26:59 train.py: 95] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2021-09-18 01:27:00 train.py: 82] Epoch 8, iter 6000/6416, lr 0.100000, loss 4.061855 +INFO 2021-09-18 01:29:56 train.py: 82] Epoch 8, iter 6200/6416, lr 0.100000, loss 4.026516 +INFO 2021-09-18 01:32:53 train.py: 82] Epoch 8, iter 6400/6416, lr 0.100000, loss 4.045800 +INFO 2021-09-18 01:33:09 train.py: 100] Save checkpoint Epoch_8.pt to disk... +INFO 2021-09-18 01:33:11 train.py: 82] Epoch 9, iter 0/6416, lr 0.100000, loss 3.968938 +INFO 2021-09-18 01:36:08 train.py: 82] Epoch 9, iter 200/6416, lr 0.100000, loss 3.493595 +INFO 2021-09-18 01:39:04 train.py: 82] Epoch 9, iter 400/6416, lr 0.100000, loss 3.436604 +INFO 2021-09-18 01:42:00 train.py: 82] Epoch 9, iter 600/6416, lr 0.100000, loss 3.537616 +INFO 2021-09-18 01:44:55 train.py: 82] Epoch 9, iter 800/6416, lr 0.100000, loss 3.600449 +INFO 2021-09-18 01:47:50 train.py: 82] Epoch 9, iter 1000/6416, lr 0.100000, loss 3.650454 +INFO 2021-09-18 01:50:45 train.py: 82] Epoch 9, iter 1200/6416, lr 0.100000, loss 3.693088 +INFO 2021-09-18 01:53:40 train.py: 82] Epoch 9, iter 1400/6416, lr 0.100000, loss 3.753376 +INFO 2021-09-18 01:56:36 train.py: 82] Epoch 9, iter 1600/6416, lr 0.100000, loss 3.759929 +INFO 2021-09-18 01:59:31 train.py: 82] Epoch 9, iter 1800/6416, lr 0.100000, loss 3.814349 +INFO 2021-09-18 02:02:26 train.py: 82] Epoch 9, iter 2000/6416, lr 0.100000, loss 3.809961 +INFO 2021-09-18 02:05:21 train.py: 82] Epoch 9, iter 2200/6416, lr 0.100000, loss 3.860529 +INFO 2021-09-18 02:08:16 train.py: 82] Epoch 9, iter 2400/6416, lr 0.100000, loss 3.853160 +INFO 2021-09-18 02:11:12 train.py: 82] Epoch 9, iter 2600/6416, lr 0.100000, loss 3.890652 +INFO 2021-09-18 02:14:07 train.py: 82] Epoch 9, iter 2800/6416, lr 0.100000, loss 3.889155 +INFO 2021-09-18 02:17:05 train.py: 95] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2021-09-18 02:17:06 train.py: 82] Epoch 9, iter 3000/6416, lr 0.100000, loss 3.883740 +INFO 2021-09-18 02:20:02 train.py: 82] Epoch 9, iter 3200/6416, lr 0.100000, loss 3.899819 +INFO 2021-09-18 02:22:58 train.py: 82] Epoch 9, iter 3400/6416, lr 0.100000, loss 3.915588 +INFO 2021-09-18 02:25:55 train.py: 82] Epoch 9, iter 3600/6416, lr 0.100000, loss 3.924188 +INFO 2021-09-18 02:28:52 train.py: 82] Epoch 9, iter 3800/6416, lr 0.100000, loss 3.898071 +INFO 2021-09-18 02:31:48 train.py: 82] Epoch 9, iter 4000/6416, lr 0.100000, loss 3.917155 +INFO 2021-09-18 02:34:44 train.py: 82] Epoch 9, iter 4200/6416, lr 0.100000, loss 3.916235 +INFO 2021-09-18 02:37:41 train.py: 82] Epoch 9, iter 4400/6416, lr 0.100000, loss 3.901233 +INFO 2021-09-18 02:40:37 train.py: 82] Epoch 9, iter 4600/6416, lr 0.100000, loss 3.910037 +INFO 2021-09-18 02:43:34 train.py: 82] Epoch 9, iter 4800/6416, lr 0.100000, loss 3.923329 +INFO 2021-09-18 02:46:30 train.py: 82] Epoch 9, iter 5000/6416, lr 0.100000, loss 3.924127 +INFO 2021-09-18 02:49:27 train.py: 82] Epoch 9, iter 5200/6416, lr 0.100000, loss 3.929169 +INFO 2021-09-18 02:52:23 train.py: 82] Epoch 9, iter 5400/6416, lr 0.100000, loss 3.924546 +INFO 2021-09-18 02:55:19 train.py: 82] Epoch 9, iter 5600/6416, lr 0.100000, loss 3.921665 +INFO 2021-09-18 02:58:15 train.py: 82] Epoch 9, iter 5800/6416, lr 0.100000, loss 3.948178 +INFO 2021-09-18 03:01:14 train.py: 95] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2021-09-18 03:01:14 train.py: 82] Epoch 9, iter 6000/6416, lr 0.100000, loss 3.949781 +INFO 2021-09-18 03:04:11 train.py: 82] Epoch 9, iter 6200/6416, lr 0.100000, loss 3.916651 +INFO 2021-09-18 03:07:08 train.py: 82] Epoch 9, iter 6400/6416, lr 0.100000, loss 3.922783 +INFO 2021-09-18 03:07:23 train.py: 100] Save checkpoint Epoch_9.pt to disk... +INFO 2021-09-18 03:07:26 train.py: 82] Epoch 10, iter 0/6416, lr 0.010000, loss 3.951655 +INFO 2021-09-18 03:10:22 train.py: 82] Epoch 10, iter 200/6416, lr 0.010000, loss 2.785600 +INFO 2021-09-18 03:13:18 train.py: 82] Epoch 10, iter 400/6416, lr 0.010000, loss 2.529166 +INFO 2021-09-18 03:16:14 train.py: 82] Epoch 10, iter 600/6416, lr 0.010000, loss 2.420989 +INFO 2021-09-18 03:19:10 train.py: 82] Epoch 10, iter 800/6416, lr 0.010000, loss 2.372029 +INFO 2021-09-18 03:22:05 train.py: 82] Epoch 10, iter 1000/6416, lr 0.010000, loss 2.299332 +INFO 2021-09-18 03:25:01 train.py: 82] Epoch 10, iter 1200/6416, lr 0.010000, loss 2.282172 +INFO 2021-09-18 03:27:56 train.py: 82] Epoch 10, iter 1400/6416, lr 0.010000, loss 2.220315 +INFO 2021-09-18 03:30:51 train.py: 82] Epoch 10, iter 1600/6416, lr 0.010000, loss 2.192235 +INFO 2021-09-18 03:33:47 train.py: 82] Epoch 10, iter 1800/6416, lr 0.010000, loss 2.174173 +INFO 2021-09-18 03:36:42 train.py: 82] Epoch 10, iter 2000/6416, lr 0.010000, loss 2.142446 +INFO 2021-09-18 03:39:38 train.py: 82] Epoch 10, iter 2200/6416, lr 0.010000, loss 2.114646 +INFO 2021-09-18 03:42:33 train.py: 82] Epoch 10, iter 2400/6416, lr 0.010000, loss 2.089790 +INFO 2021-09-18 03:45:29 train.py: 82] Epoch 10, iter 2600/6416, lr 0.010000, loss 2.075372 +INFO 2021-09-18 03:48:25 train.py: 82] Epoch 10, iter 2800/6416, lr 0.010000, loss 2.048838 +INFO 2021-09-18 03:51:22 train.py: 95] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2021-09-18 03:51:23 train.py: 82] Epoch 10, iter 3000/6416, lr 0.010000, loss 2.040410 +INFO 2021-09-18 03:54:19 train.py: 82] Epoch 10, iter 3200/6416, lr 0.010000, loss 2.007740 +INFO 2021-09-18 03:57:15 train.py: 82] Epoch 10, iter 3400/6416, lr 0.010000, loss 1.996273 +INFO 2021-09-18 04:00:12 train.py: 82] Epoch 10, iter 3600/6416, lr 0.010000, loss 2.004067 +INFO 2021-09-18 04:03:08 train.py: 82] Epoch 10, iter 3800/6416, lr 0.010000, loss 1.950489 +INFO 2021-09-18 04:06:04 train.py: 82] Epoch 10, iter 4000/6416, lr 0.010000, loss 1.953415 +INFO 2021-09-18 04:09:01 train.py: 82] Epoch 10, iter 4200/6416, lr 0.010000, loss 1.935262 +INFO 2021-09-18 04:11:58 train.py: 82] Epoch 10, iter 4400/6416, lr 0.010000, loss 1.931762 +INFO 2021-09-18 04:14:55 train.py: 82] Epoch 10, iter 4600/6416, lr 0.010000, loss 1.914031 +INFO 2021-09-18 04:17:52 train.py: 82] Epoch 10, iter 4800/6416, lr 0.010000, loss 1.875355 +INFO 2021-09-18 04:20:48 train.py: 82] Epoch 10, iter 5000/6416, lr 0.010000, loss 1.883015 +INFO 2021-09-18 04:23:45 train.py: 82] Epoch 10, iter 5200/6416, lr 0.010000, loss 1.867335 +INFO 2021-09-18 04:26:42 train.py: 82] Epoch 10, iter 5400/6416, lr 0.010000, loss 1.841941 +INFO 2021-09-18 04:29:39 train.py: 82] Epoch 10, iter 5600/6416, lr 0.010000, loss 1.868534 +INFO 2021-09-18 04:32:35 train.py: 82] Epoch 10, iter 5800/6416, lr 0.010000, loss 1.830383 +INFO 2021-09-18 04:35:34 train.py: 95] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2021-09-18 04:35:34 train.py: 82] Epoch 10, iter 6000/6416, lr 0.010000, loss 1.836244 +INFO 2021-09-18 04:38:31 train.py: 82] Epoch 10, iter 6200/6416, lr 0.010000, loss 1.808811 +INFO 2021-09-18 04:41:27 train.py: 82] Epoch 10, iter 6400/6416, lr 0.010000, loss 1.782962 +INFO 2021-09-18 04:41:43 train.py: 100] Save checkpoint Epoch_10.pt to disk... +INFO 2021-09-18 04:41:45 train.py: 82] Epoch 11, iter 0/6416, lr 0.010000, loss 1.777685 +INFO 2021-09-18 04:44:42 train.py: 82] Epoch 11, iter 200/6416, lr 0.010000, loss 1.524485 +INFO 2021-09-18 04:47:38 train.py: 82] Epoch 11, iter 400/6416, lr 0.010000, loss 1.528034 +INFO 2021-09-18 04:50:34 train.py: 82] Epoch 11, iter 600/6416, lr 0.010000, loss 1.504700 +INFO 2021-09-18 04:53:30 train.py: 82] Epoch 11, iter 800/6416, lr 0.010000, loss 1.499111 +INFO 2021-09-18 04:56:26 train.py: 82] Epoch 11, iter 1000/6416, lr 0.010000, loss 1.524296 +INFO 2021-09-18 04:59:22 train.py: 82] Epoch 11, iter 1200/6416, lr 0.010000, loss 1.507689 +INFO 2021-09-18 05:02:17 train.py: 82] Epoch 11, iter 1400/6416, lr 0.010000, loss 1.503928 +INFO 2021-09-18 05:05:13 train.py: 82] Epoch 11, iter 1600/6416, lr 0.010000, loss 1.502943 +INFO 2021-09-18 05:08:09 train.py: 82] Epoch 11, iter 1800/6416, lr 0.010000, loss 1.525630 +INFO 2021-09-18 05:11:05 train.py: 82] Epoch 11, iter 2000/6416, lr 0.010000, loss 1.495522 +INFO 2021-09-18 05:14:01 train.py: 82] Epoch 11, iter 2200/6416, lr 0.010000, loss 1.504253 +INFO 2021-09-18 05:16:57 train.py: 82] Epoch 11, iter 2400/6416, lr 0.010000, loss 1.499877 +INFO 2021-09-18 05:19:53 train.py: 82] Epoch 11, iter 2600/6416, lr 0.010000, loss 1.518339 +INFO 2021-09-18 05:22:49 train.py: 82] Epoch 11, iter 2800/6416, lr 0.010000, loss 1.499026 +INFO 2021-09-18 05:25:47 train.py: 95] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2021-09-18 05:25:48 train.py: 82] Epoch 11, iter 3000/6416, lr 0.010000, loss 1.512318 +INFO 2021-09-18 05:28:44 train.py: 82] Epoch 11, iter 3200/6416, lr 0.010000, loss 1.502435 +INFO 2021-09-18 05:31:41 train.py: 82] Epoch 11, iter 3400/6416, lr 0.010000, loss 1.497613 +INFO 2021-09-18 05:34:37 train.py: 82] Epoch 11, iter 3600/6416, lr 0.010000, loss 1.498958 +INFO 2021-09-18 05:37:33 train.py: 82] Epoch 11, iter 3800/6416, lr 0.010000, loss 1.491821 +INFO 2021-09-18 05:40:29 train.py: 82] Epoch 11, iter 4000/6416, lr 0.010000, loss 1.493014 +INFO 2021-09-18 05:43:26 train.py: 82] Epoch 11, iter 4200/6416, lr 0.010000, loss 1.475280 +INFO 2021-09-18 05:46:22 train.py: 82] Epoch 11, iter 4400/6416, lr 0.010000, loss 1.490949 +INFO 2021-09-18 05:49:19 train.py: 82] Epoch 11, iter 4600/6416, lr 0.010000, loss 1.487287 +INFO 2021-09-18 05:52:15 train.py: 82] Epoch 11, iter 4800/6416, lr 0.010000, loss 1.496570 +INFO 2021-09-18 05:55:12 train.py: 82] Epoch 11, iter 5000/6416, lr 0.010000, loss 1.483571 +INFO 2021-09-18 05:58:08 train.py: 82] Epoch 11, iter 5200/6416, lr 0.010000, loss 1.488689 +INFO 2021-09-18 06:01:05 train.py: 82] Epoch 11, iter 5400/6416, lr 0.010000, loss 1.480259 +INFO 2021-09-18 06:04:01 train.py: 82] Epoch 11, iter 5600/6416, lr 0.010000, loss 1.481583 +INFO 2021-09-18 06:06:58 train.py: 82] Epoch 11, iter 5800/6416, lr 0.010000, loss 1.482504 +INFO 2021-09-18 06:09:56 train.py: 95] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2021-09-18 06:09:57 train.py: 82] Epoch 11, iter 6000/6416, lr 0.010000, loss 1.474071 +INFO 2021-09-18 06:12:54 train.py: 82] Epoch 11, iter 6200/6416, lr 0.010000, loss 1.477157 +INFO 2021-09-18 06:15:51 train.py: 82] Epoch 11, iter 6400/6416, lr 0.010000, loss 1.473180 +INFO 2021-09-18 06:16:06 train.py: 100] Save checkpoint Epoch_11.pt to disk... +INFO 2021-09-18 06:16:09 train.py: 82] Epoch 12, iter 0/6416, lr 0.010000, loss 1.470346 +INFO 2021-09-18 06:19:05 train.py: 82] Epoch 12, iter 200/6416, lr 0.010000, loss 1.234924 +INFO 2021-09-18 06:22:02 train.py: 82] Epoch 12, iter 400/6416, lr 0.010000, loss 1.211312 +INFO 2021-09-18 06:24:58 train.py: 82] Epoch 12, iter 600/6416, lr 0.010000, loss 1.212760 +INFO 2021-09-18 06:27:54 train.py: 82] Epoch 12, iter 800/6416, lr 0.010000, loss 1.234937 +INFO 2021-09-18 06:30:50 train.py: 82] Epoch 12, iter 1000/6416, lr 0.010000, loss 1.235776 +INFO 2021-09-18 06:33:46 train.py: 82] Epoch 12, iter 1200/6416, lr 0.010000, loss 1.224307 +INFO 2021-09-18 06:36:42 train.py: 82] Epoch 12, iter 1400/6416, lr 0.010000, loss 1.244601 +INFO 2021-09-18 06:39:38 train.py: 82] Epoch 12, iter 1600/6416, lr 0.010000, loss 1.250141 +INFO 2021-09-18 06:42:34 train.py: 82] Epoch 12, iter 1800/6416, lr 0.010000, loss 1.232014 +INFO 2021-09-18 06:45:30 train.py: 82] Epoch 12, iter 2000/6416, lr 0.010000, loss 1.257584 +INFO 2021-09-18 06:48:26 train.py: 82] Epoch 12, iter 2200/6416, lr 0.010000, loss 1.261288 +INFO 2021-09-18 06:51:22 train.py: 82] Epoch 12, iter 2400/6416, lr 0.010000, loss 1.254686 +INFO 2021-09-18 06:54:18 train.py: 82] Epoch 12, iter 2600/6416, lr 0.010000, loss 1.261828 +INFO 2021-09-18 06:57:14 train.py: 82] Epoch 12, iter 2800/6416, lr 0.010000, loss 1.264168 +INFO 2021-09-18 07:00:12 train.py: 95] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2021-09-18 07:00:13 train.py: 82] Epoch 12, iter 3000/6416, lr 0.010000, loss 1.256683 +INFO 2021-09-18 07:03:10 train.py: 82] Epoch 12, iter 3200/6416, lr 0.010000, loss 1.273424 +INFO 2021-09-18 07:06:06 train.py: 82] Epoch 12, iter 3400/6416, lr 0.010000, loss 1.269503 +INFO 2021-09-18 07:09:03 train.py: 82] Epoch 12, iter 3600/6416, lr 0.010000, loss 1.268754 +INFO 2021-09-18 07:11:59 train.py: 82] Epoch 12, iter 3800/6416, lr 0.010000, loss 1.277676 +INFO 2021-09-18 07:14:56 train.py: 82] Epoch 12, iter 4000/6416, lr 0.010000, loss 1.285016 +INFO 2021-09-18 07:17:52 train.py: 82] Epoch 12, iter 4200/6416, lr 0.010000, loss 1.278501 +INFO 2021-09-18 07:20:49 train.py: 82] Epoch 12, iter 4400/6416, lr 0.010000, loss 1.287451 +INFO 2021-09-18 07:23:45 train.py: 82] Epoch 12, iter 4600/6416, lr 0.010000, loss 1.294658 +INFO 2021-09-18 07:26:42 train.py: 82] Epoch 12, iter 4800/6416, lr 0.010000, loss 1.305582 +INFO 2021-09-18 07:29:38 train.py: 82] Epoch 12, iter 5000/6416, lr 0.010000, loss 1.291133 +INFO 2021-09-18 07:32:35 train.py: 82] Epoch 12, iter 5200/6416, lr 0.010000, loss 1.294039 +INFO 2021-09-18 07:35:31 train.py: 82] Epoch 12, iter 5400/6416, lr 0.010000, loss 1.302877 +INFO 2021-09-18 07:38:28 train.py: 82] Epoch 12, iter 5600/6416, lr 0.010000, loss 1.310678 +INFO 2021-09-18 07:41:24 train.py: 82] Epoch 12, iter 5800/6416, lr 0.010000, loss 1.314489 +INFO 2021-09-18 07:44:23 train.py: 95] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2021-09-18 07:44:23 train.py: 82] Epoch 12, iter 6000/6416, lr 0.010000, loss 1.309482 +INFO 2021-09-18 07:47:20 train.py: 82] Epoch 12, iter 6200/6416, lr 0.010000, loss 1.311983 +INFO 2021-09-18 07:50:16 train.py: 82] Epoch 12, iter 6400/6416, lr 0.010000, loss 1.313067 +INFO 2021-09-18 07:50:31 train.py: 100] Save checkpoint Epoch_12.pt to disk... +INFO 2021-09-18 07:50:34 train.py: 82] Epoch 13, iter 0/6416, lr 0.001000, loss 1.257330 +INFO 2021-09-18 07:53:30 train.py: 82] Epoch 13, iter 200/6416, lr 0.001000, loss 1.028950 +INFO 2021-09-18 07:56:27 train.py: 82] Epoch 13, iter 400/6416, lr 0.001000, loss 1.000358 +INFO 2021-09-18 07:59:23 train.py: 82] Epoch 13, iter 600/6416, lr 0.001000, loss 1.003336 +INFO 2021-09-18 08:02:19 train.py: 82] Epoch 13, iter 800/6416, lr 0.001000, loss 1.005784 +INFO 2021-09-18 08:05:14 train.py: 82] Epoch 13, iter 1000/6416, lr 0.001000, loss 0.987267 +INFO 2021-09-18 08:08:10 train.py: 82] Epoch 13, iter 1200/6416, lr 0.001000, loss 0.983041 +INFO 2021-09-18 08:11:06 train.py: 82] Epoch 13, iter 1400/6416, lr 0.001000, loss 0.977014 +INFO 2021-09-18 08:14:02 train.py: 82] Epoch 13, iter 1600/6416, lr 0.001000, loss 0.991434 +INFO 2021-09-18 08:16:58 train.py: 82] Epoch 13, iter 1800/6416, lr 0.001000, loss 0.971608 +INFO 2021-09-18 08:19:54 train.py: 82] Epoch 13, iter 2000/6416, lr 0.001000, loss 0.988868 +INFO 2021-09-18 08:22:50 train.py: 82] Epoch 13, iter 2200/6416, lr 0.001000, loss 0.993155 +INFO 2021-09-18 08:25:46 train.py: 82] Epoch 13, iter 2400/6416, lr 0.001000, loss 0.968953 +INFO 2021-09-18 08:28:42 train.py: 82] Epoch 13, iter 2600/6416, lr 0.001000, loss 0.986511 +INFO 2021-09-18 08:31:38 train.py: 82] Epoch 13, iter 2800/6416, lr 0.001000, loss 0.980281 +INFO 2021-09-18 08:34:36 train.py: 95] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2021-09-18 08:34:37 train.py: 82] Epoch 13, iter 3000/6416, lr 0.001000, loss 0.983388 +INFO 2021-09-18 08:37:33 train.py: 82] Epoch 13, iter 3200/6416, lr 0.001000, loss 0.988416 +INFO 2021-09-18 08:40:30 train.py: 82] Epoch 13, iter 3400/6416, lr 0.001000, loss 0.973327 +INFO 2021-09-18 08:43:26 train.py: 82] Epoch 13, iter 3600/6416, lr 0.001000, loss 0.982067 +INFO 2021-09-18 08:46:22 train.py: 82] Epoch 13, iter 3800/6416, lr 0.001000, loss 0.976763 +INFO 2021-09-18 08:49:18 train.py: 82] Epoch 13, iter 4000/6416, lr 0.001000, loss 0.973787 +INFO 2021-09-18 08:52:15 train.py: 82] Epoch 13, iter 4200/6416, lr 0.001000, loss 0.982412 +INFO 2021-09-18 08:55:11 train.py: 82] Epoch 13, iter 4400/6416, lr 0.001000, loss 0.981923 +INFO 2021-09-18 08:58:08 train.py: 82] Epoch 13, iter 4600/6416, lr 0.001000, loss 0.980630 +INFO 2021-09-18 09:01:04 train.py: 82] Epoch 13, iter 4800/6416, lr 0.001000, loss 0.975949 +INFO 2021-09-18 09:04:01 train.py: 82] Epoch 13, iter 5000/6416, lr 0.001000, loss 0.979984 +INFO 2021-09-18 09:06:57 train.py: 82] Epoch 13, iter 5200/6416, lr 0.001000, loss 0.983873 +INFO 2021-09-18 09:09:53 train.py: 82] Epoch 13, iter 5400/6416, lr 0.001000, loss 0.972562 +INFO 2021-09-18 09:12:50 train.py: 82] Epoch 13, iter 5600/6416, lr 0.001000, loss 0.981552 +INFO 2021-09-18 09:15:46 train.py: 82] Epoch 13, iter 5800/6416, lr 0.001000, loss 0.968218 +INFO 2021-09-18 09:18:44 train.py: 95] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2021-09-18 09:18:45 train.py: 82] Epoch 13, iter 6000/6416, lr 0.001000, loss 0.977834 +INFO 2021-09-18 09:21:41 train.py: 82] Epoch 13, iter 6200/6416, lr 0.001000, loss 0.978507 +INFO 2021-09-18 09:24:38 train.py: 82] Epoch 13, iter 6400/6416, lr 0.001000, loss 0.976699 +INFO 2021-09-18 09:24:54 train.py: 100] Save checkpoint Epoch_13.pt to disk... +INFO 2021-09-18 09:24:56 train.py: 82] Epoch 14, iter 0/6416, lr 0.001000, loss 0.966510 +INFO 2021-09-18 09:27:52 train.py: 82] Epoch 14, iter 200/6416, lr 0.001000, loss 0.956110 +INFO 2021-09-18 09:30:49 train.py: 82] Epoch 14, iter 400/6416, lr 0.001000, loss 0.946157 +INFO 2021-09-18 09:33:45 train.py: 82] Epoch 14, iter 600/6416, lr 0.001000, loss 0.938465 +INFO 2021-09-18 09:36:41 train.py: 82] Epoch 14, iter 800/6416, lr 0.001000, loss 0.943507 +INFO 2021-09-18 09:39:37 train.py: 82] Epoch 14, iter 1000/6416, lr 0.001000, loss 0.942004 +INFO 2021-09-18 09:42:33 train.py: 82] Epoch 14, iter 1200/6416, lr 0.001000, loss 0.943810 +INFO 2021-09-18 09:45:29 train.py: 82] Epoch 14, iter 1400/6416, lr 0.001000, loss 0.941365 +INFO 2021-09-18 09:48:25 train.py: 82] Epoch 14, iter 1600/6416, lr 0.001000, loss 0.953532 +INFO 2021-09-18 09:51:21 train.py: 82] Epoch 14, iter 1800/6416, lr 0.001000, loss 0.942934 +INFO 2021-09-18 09:54:17 train.py: 82] Epoch 14, iter 2000/6416, lr 0.001000, loss 0.948742 +INFO 2021-09-18 09:57:13 train.py: 82] Epoch 14, iter 2200/6416, lr 0.001000, loss 0.948447 +INFO 2021-09-18 10:00:10 train.py: 82] Epoch 14, iter 2400/6416, lr 0.001000, loss 0.946558 +INFO 2021-09-18 10:03:06 train.py: 82] Epoch 14, iter 2600/6416, lr 0.001000, loss 0.953501 +INFO 2021-09-18 10:06:02 train.py: 82] Epoch 14, iter 2800/6416, lr 0.001000, loss 0.945308 +INFO 2021-09-18 10:09:00 train.py: 95] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2021-09-18 10:09:01 train.py: 82] Epoch 14, iter 3000/6416, lr 0.001000, loss 0.949884 +INFO 2021-09-18 10:11:57 train.py: 82] Epoch 14, iter 3200/6416, lr 0.001000, loss 0.950832 +INFO 2021-09-18 10:14:53 train.py: 82] Epoch 14, iter 3400/6416, lr 0.001000, loss 0.945578 +INFO 2021-09-18 10:17:50 train.py: 82] Epoch 14, iter 3600/6416, lr 0.001000, loss 0.949999 +INFO 2021-09-18 10:20:46 train.py: 82] Epoch 14, iter 3800/6416, lr 0.001000, loss 0.939212 +INFO 2021-09-18 10:23:42 train.py: 82] Epoch 14, iter 4000/6416, lr 0.001000, loss 0.958105 +INFO 2021-09-18 10:26:39 train.py: 82] Epoch 14, iter 4200/6416, lr 0.001000, loss 0.955731 +INFO 2021-09-18 10:29:35 train.py: 82] Epoch 14, iter 4400/6416, lr 0.001000, loss 0.941838 +INFO 2021-09-18 10:32:31 train.py: 82] Epoch 14, iter 4600/6416, lr 0.001000, loss 0.952432 +INFO 2021-09-18 10:35:28 train.py: 82] Epoch 14, iter 4800/6416, lr 0.001000, loss 0.955755 +INFO 2021-09-18 10:38:24 train.py: 82] Epoch 14, iter 5000/6416, lr 0.001000, loss 0.942293 +INFO 2021-09-18 10:41:20 train.py: 82] Epoch 14, iter 5200/6416, lr 0.001000, loss 0.956310 +INFO 2021-09-18 10:44:16 train.py: 82] Epoch 14, iter 5400/6416, lr 0.001000, loss 0.957801 +INFO 2021-09-18 10:47:12 train.py: 82] Epoch 14, iter 5600/6416, lr 0.001000, loss 0.952182 +INFO 2021-09-18 10:50:09 train.py: 82] Epoch 14, iter 5800/6416, lr 0.001000, loss 0.951778 +INFO 2021-09-18 10:53:07 train.py: 95] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2021-09-18 10:53:08 train.py: 82] Epoch 14, iter 6000/6416, lr 0.001000, loss 0.949939 +INFO 2021-09-18 10:56:04 train.py: 82] Epoch 14, iter 6200/6416, lr 0.001000, loss 0.950231 +INFO 2021-09-18 10:59:00 train.py: 82] Epoch 14, iter 6400/6416, lr 0.001000, loss 0.955365 +INFO 2021-09-18 10:59:16 train.py: 100] Save checkpoint Epoch_14.pt to disk... +INFO 2021-09-18 10:59:18 train.py: 82] Epoch 15, iter 0/6416, lr 0.001000, loss 0.917994 +INFO 2021-09-18 11:02:14 train.py: 82] Epoch 15, iter 200/6416, lr 0.001000, loss 0.913979 +INFO 2021-09-18 11:05:11 train.py: 82] Epoch 15, iter 400/6416, lr 0.001000, loss 0.920250 +INFO 2021-09-18 11:08:07 train.py: 82] Epoch 15, iter 600/6416, lr 0.001000, loss 0.911822 +INFO 2021-09-18 11:11:04 train.py: 82] Epoch 15, iter 800/6416, lr 0.001000, loss 0.915877 +INFO 2021-09-18 11:14:00 train.py: 82] Epoch 15, iter 1000/6416, lr 0.001000, loss 0.917582 +INFO 2021-09-18 11:16:56 train.py: 82] Epoch 15, iter 1200/6416, lr 0.001000, loss 0.933239 +INFO 2021-09-18 11:19:52 train.py: 82] Epoch 15, iter 1400/6416, lr 0.001000, loss 0.913189 +INFO 2021-09-18 11:22:47 train.py: 82] Epoch 15, iter 1600/6416, lr 0.001000, loss 0.923403 +INFO 2021-09-18 11:25:43 train.py: 82] Epoch 15, iter 1800/6416, lr 0.001000, loss 0.923825 +INFO 2021-09-18 11:28:39 train.py: 82] Epoch 15, iter 2000/6416, lr 0.001000, loss 0.916485 +INFO 2021-09-18 11:31:35 train.py: 82] Epoch 15, iter 2200/6416, lr 0.001000, loss 0.914219 +INFO 2021-09-18 11:34:31 train.py: 82] Epoch 15, iter 2400/6416, lr 0.001000, loss 0.915130 +INFO 2021-09-18 11:37:27 train.py: 82] Epoch 15, iter 2600/6416, lr 0.001000, loss 0.914441 +INFO 2021-09-18 11:40:23 train.py: 82] Epoch 15, iter 2800/6416, lr 0.001000, loss 0.902331 +INFO 2021-09-18 11:43:21 train.py: 95] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2021-09-18 11:43:22 train.py: 82] Epoch 15, iter 3000/6416, lr 0.001000, loss 0.911609 +INFO 2021-09-18 11:46:18 train.py: 82] Epoch 15, iter 3200/6416, lr 0.001000, loss 0.916117 +INFO 2021-09-18 11:49:14 train.py: 82] Epoch 15, iter 3400/6416, lr 0.001000, loss 0.905673 +INFO 2021-09-18 11:52:10 train.py: 82] Epoch 15, iter 3600/6416, lr 0.001000, loss 0.929923 +INFO 2021-09-18 11:55:07 train.py: 82] Epoch 15, iter 3800/6416, lr 0.001000, loss 0.925836 +INFO 2021-09-18 11:58:03 train.py: 82] Epoch 15, iter 4000/6416, lr 0.001000, loss 0.928902 +INFO 2021-09-18 12:00:59 train.py: 82] Epoch 15, iter 4200/6416, lr 0.001000, loss 0.923974 +INFO 2021-09-18 12:03:55 train.py: 82] Epoch 15, iter 4400/6416, lr 0.001000, loss 0.926927 +INFO 2021-09-18 12:06:52 train.py: 82] Epoch 15, iter 4600/6416, lr 0.001000, loss 0.932579 +INFO 2021-09-18 12:09:48 train.py: 82] Epoch 15, iter 4800/6416, lr 0.001000, loss 0.931709 +INFO 2021-09-18 12:12:44 train.py: 82] Epoch 15, iter 5000/6416, lr 0.001000, loss 0.939475 +INFO 2021-09-18 12:15:40 train.py: 82] Epoch 15, iter 5200/6416, lr 0.001000, loss 0.937369 +INFO 2021-09-18 12:18:37 train.py: 82] Epoch 15, iter 5400/6416, lr 0.001000, loss 0.939057 +INFO 2021-09-18 12:21:33 train.py: 82] Epoch 15, iter 5600/6416, lr 0.001000, loss 0.917767 +INFO 2021-09-18 12:24:29 train.py: 82] Epoch 15, iter 5800/6416, lr 0.001000, loss 0.929093 +INFO 2021-09-18 12:27:27 train.py: 95] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2021-09-18 12:27:28 train.py: 82] Epoch 15, iter 6000/6416, lr 0.001000, loss 0.921136 +INFO 2021-09-18 12:30:24 train.py: 82] Epoch 15, iter 6200/6416, lr 0.001000, loss 0.925819 +INFO 2021-09-18 12:33:20 train.py: 82] Epoch 15, iter 6400/6416, lr 0.001000, loss 0.922700 +INFO 2021-09-18 12:33:36 train.py: 100] Save checkpoint Epoch_15.pt to disk... +INFO 2021-09-18 12:33:38 train.py: 82] Epoch 16, iter 0/6416, lr 0.000100, loss 0.926071 +INFO 2021-09-18 12:36:35 train.py: 82] Epoch 16, iter 200/6416, lr 0.000100, loss 0.881997 +INFO 2021-09-18 12:39:31 train.py: 82] Epoch 16, iter 400/6416, lr 0.000100, loss 0.877790 +INFO 2021-09-18 12:42:27 train.py: 82] Epoch 16, iter 600/6416, lr 0.000100, loss 0.889376 +INFO 2021-09-18 12:45:23 train.py: 82] Epoch 16, iter 800/6416, lr 0.000100, loss 0.888077 +INFO 2021-09-18 12:48:20 train.py: 82] Epoch 16, iter 1000/6416, lr 0.000100, loss 0.883947 +INFO 2021-09-18 12:51:16 train.py: 82] Epoch 16, iter 1200/6416, lr 0.000100, loss 0.889155 +INFO 2021-09-18 12:54:12 train.py: 82] Epoch 16, iter 1400/6416, lr 0.000100, loss 0.886565 +INFO 2021-09-18 12:57:09 train.py: 82] Epoch 16, iter 1600/6416, lr 0.000100, loss 0.881857 +INFO 2021-09-18 13:00:05 train.py: 82] Epoch 16, iter 1800/6416, lr 0.000100, loss 0.891921 +INFO 2021-09-18 13:03:01 train.py: 82] Epoch 16, iter 2000/6416, lr 0.000100, loss 0.893977 +INFO 2021-09-18 13:05:58 train.py: 82] Epoch 16, iter 2200/6416, lr 0.000100, loss 0.891510 +INFO 2021-09-18 13:08:54 train.py: 82] Epoch 16, iter 2400/6416, lr 0.000100, loss 0.885443 +INFO 2021-09-18 13:11:50 train.py: 82] Epoch 16, iter 2600/6416, lr 0.000100, loss 0.885629 +INFO 2021-09-18 13:14:47 train.py: 82] Epoch 16, iter 2800/6416, lr 0.000100, loss 0.887539 +INFO 2021-09-18 13:17:45 train.py: 95] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2021-09-18 13:17:46 train.py: 82] Epoch 16, iter 3000/6416, lr 0.000100, loss 0.894704 +INFO 2021-09-18 13:20:42 train.py: 82] Epoch 16, iter 3200/6416, lr 0.000100, loss 0.878147 +INFO 2021-09-18 13:23:39 train.py: 82] Epoch 16, iter 3400/6416, lr 0.000100, loss 0.887074 +INFO 2021-09-18 13:26:35 train.py: 82] Epoch 16, iter 3600/6416, lr 0.000100, loss 0.893055 +INFO 2021-09-18 13:29:32 train.py: 82] Epoch 16, iter 3800/6416, lr 0.000100, loss 0.887524 +INFO 2021-09-18 13:32:28 train.py: 82] Epoch 16, iter 4000/6416, lr 0.000100, loss 0.889063 +INFO 2021-09-18 13:35:25 train.py: 82] Epoch 16, iter 4200/6416, lr 0.000100, loss 0.882367 +INFO 2021-09-18 13:38:21 train.py: 82] Epoch 16, iter 4400/6416, lr 0.000100, loss 0.889608 +INFO 2021-09-18 13:41:17 train.py: 82] Epoch 16, iter 4600/6416, lr 0.000100, loss 0.890188 +INFO 2021-09-18 13:44:14 train.py: 82] Epoch 16, iter 4800/6416, lr 0.000100, loss 0.883644 +INFO 2021-09-18 13:47:14 train.py: 82] Epoch 16, iter 5000/6416, lr 0.000100, loss 0.898921 +INFO 2021-09-18 13:50:20 train.py: 82] Epoch 16, iter 5200/6416, lr 0.000100, loss 0.887187 +INFO 2021-09-18 13:53:22 train.py: 82] Epoch 16, iter 5400/6416, lr 0.000100, loss 0.891199 +INFO 2021-09-18 13:56:23 train.py: 82] Epoch 16, iter 5600/6416, lr 0.000100, loss 0.889662 +INFO 2021-09-18 13:59:27 train.py: 82] Epoch 16, iter 5800/6416, lr 0.000100, loss 0.898723 +INFO 2021-09-18 14:02:35 train.py: 95] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2021-09-18 14:02:35 train.py: 82] Epoch 16, iter 6000/6416, lr 0.000100, loss 0.892579 +INFO 2021-09-18 14:05:48 train.py: 82] Epoch 16, iter 6200/6416, lr 0.000100, loss 0.898475 +INFO 2021-09-18 14:09:00 train.py: 82] Epoch 16, iter 6400/6416, lr 0.000100, loss 0.885162 +INFO 2021-09-18 14:09:16 train.py: 100] Save checkpoint Epoch_16.pt to disk... +INFO 2021-09-18 14:09:18 train.py: 82] Epoch 17, iter 0/6416, lr 0.000100, loss 0.890773 +INFO 2021-09-18 14:12:16 train.py: 82] Epoch 17, iter 200/6416, lr 0.000100, loss 0.879062 +INFO 2021-09-18 14:15:12 train.py: 82] Epoch 17, iter 400/6416, lr 0.000100, loss 0.881150 +INFO 2021-09-18 14:18:09 train.py: 82] Epoch 17, iter 600/6416, lr 0.000100, loss 0.883788 +INFO 2021-09-18 14:21:05 train.py: 82] Epoch 17, iter 800/6416, lr 0.000100, loss 0.886351 +INFO 2021-09-18 14:24:01 train.py: 82] Epoch 17, iter 1000/6416, lr 0.000100, loss 0.888901 +INFO 2021-09-18 14:26:57 train.py: 82] Epoch 17, iter 1200/6416, lr 0.000100, loss 0.891962 +INFO 2021-09-18 14:29:52 train.py: 82] Epoch 17, iter 1400/6416, lr 0.000100, loss 0.878181 +INFO 2021-09-18 14:32:48 train.py: 82] Epoch 17, iter 1600/6416, lr 0.000100, loss 0.880641 +INFO 2021-09-18 14:35:44 train.py: 82] Epoch 17, iter 1800/6416, lr 0.000100, loss 0.884812 +INFO 2021-09-18 14:38:40 train.py: 82] Epoch 17, iter 2000/6416, lr 0.000100, loss 0.892285 +INFO 2021-09-18 14:41:36 train.py: 82] Epoch 17, iter 2200/6416, lr 0.000100, loss 0.883714 +INFO 2021-09-18 14:44:32 train.py: 82] Epoch 17, iter 2400/6416, lr 0.000100, loss 0.885584 +INFO 2021-09-18 14:47:28 train.py: 82] Epoch 17, iter 2600/6416, lr 0.000100, loss 0.892373 +INFO 2021-09-18 14:50:24 train.py: 82] Epoch 17, iter 2800/6416, lr 0.000100, loss 0.888797 +INFO 2021-09-18 14:53:22 train.py: 95] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2021-09-18 14:53:22 train.py: 82] Epoch 17, iter 3000/6416, lr 0.000100, loss 0.894852 +INFO 2021-09-18 14:56:20 train.py: 82] Epoch 17, iter 3200/6416, lr 0.000100, loss 0.878462 +INFO 2021-09-18 14:59:17 train.py: 82] Epoch 17, iter 3400/6416, lr 0.000100, loss 0.877219 +INFO 2021-09-18 15:02:18 train.py: 82] Epoch 17, iter 3600/6416, lr 0.000100, loss 0.878370 +INFO 2021-09-18 15:05:23 train.py: 82] Epoch 17, iter 3800/6416, lr 0.000100, loss 0.887341 +INFO 2021-09-18 15:08:35 train.py: 82] Epoch 17, iter 4000/6416, lr 0.000100, loss 0.888016 +INFO 2021-09-18 15:11:47 train.py: 82] Epoch 17, iter 4200/6416, lr 0.000100, loss 0.892289 +INFO 2021-09-18 15:15:17 train.py: 82] Epoch 17, iter 4400/6416, lr 0.000100, loss 0.876705 +INFO 2021-09-18 15:18:27 train.py: 82] Epoch 17, iter 4600/6416, lr 0.000100, loss 0.902008 +INFO 2021-09-18 15:21:41 train.py: 82] Epoch 17, iter 4800/6416, lr 0.000100, loss 0.878303 +INFO 2021-09-18 15:24:59 train.py: 82] Epoch 17, iter 5000/6416, lr 0.000100, loss 0.886773 +INFO 2021-09-18 15:28:24 train.py: 82] Epoch 17, iter 5200/6416, lr 0.000100, loss 0.879008 +INFO 2021-09-18 15:31:54 train.py: 82] Epoch 17, iter 5400/6416, lr 0.000100, loss 0.886785 +INFO 2021-09-18 15:35:20 train.py: 82] Epoch 17, iter 5600/6416, lr 0.000100, loss 0.885537 +INFO 2021-09-18 15:38:48 train.py: 82] Epoch 17, iter 5800/6416, lr 0.000100, loss 0.891631 +INFO 2021-09-18 15:42:29 train.py: 95] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2021-09-18 15:42:30 train.py: 82] Epoch 17, iter 6000/6416, lr 0.000100, loss 0.874014 +INFO 2021-09-18 15:46:05 train.py: 82] Epoch 17, iter 6200/6416, lr 0.000100, loss 0.877176 +INFO 2021-09-18 15:49:32 train.py: 82] Epoch 17, iter 6400/6416, lr 0.000100, loss 0.884876 +INFO 2021-09-18 15:49:52 train.py: 100] Save checkpoint Epoch_17.pt to disk... +INFO 2021-09-18 15:49:52 train.py: 183] Optimization done! diff --git a/bob/bio/facexzoo/models/backbones/ResNeSt50/.gitkeep b/bob/bio/facexzoo/models/backbones/ResNeSt50/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/backbones/ResNeSt50/accu_files/accu_agedb30.txt b/bob/bio/facexzoo/models/backbones/ResNeSt50/accu_files/accu_agedb30.txt new file mode 100644 index 0000000000000000000000000000000000000000..2ea7922b4124ebf5ead002b3d00edfb0173fd5fc --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNeSt50/accu_files/accu_agedb30.txt @@ -0,0 +1,34 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14_batch_2999.pt | 0.9798333333333333 | 0.002269633135090605 | +| Epoch_13_batch_5999.pt | 0.9796666666666667 | 0.0024062675364119645 | +| Epoch_17_batch_5999.pt | 0.9796666666666667 | 0.002380476142847607 | +| Epoch_14_batch_5999.pt | 0.9795 | 0.0023966282900136616 | +| Epoch_17_batch_2999.pt | 0.9793333333333333 | 0.0022525705480792506 | +| Epoch_16.pt | 0.9791666666666666 | 0.002450119674577765 | +| Epoch_16_batch_5999.pt | 0.9791666666666666 | 0.002239516041194037 | +| Epoch_13_batch_2999.pt | 0.9791666666666666 | 0.002560984571470238 | +| Epoch_11_batch_5999.pt | 0.9789999999999999 | 0.002333333333333326 | +| Epoch_15_batch_5999.pt | 0.9788333333333334 | 0.002166666666666659 | +| Epoch_15_batch_2999.pt | 0.9788333333333332 | 0.0025706078447242835 | +| Epoch_10.pt | 0.9785000000000001 | 0.002349809553617398 | +| Epoch_15.pt | 0.9783333333333333 | 0.0025215123817578225 | +| Epoch_16_batch_2999.pt | 0.9781666666666666 | 0.0025873624493766684 | +| Epoch_17.pt | 0.9778333333333334 | 0.002582586510926545 | +| Epoch_12.pt | 0.9778333333333334 | 0.0025706078447242787 | +| Epoch_10_batch_2999.pt | 0.9776666666666667 | 0.0021970799925872387 | +| Epoch_12_batch_2999.pt | 0.9776666666666667 | 0.0023067266102251897 | +| Epoch_14.pt | 0.9776666666666666 | 0.002560381915956203 | +| Epoch_13.pt | 0.9771666666666666 | 0.0028765763257776913 | +| Epoch_10_batch_5999.pt | 0.9770000000000001 | 0.0024570382652773313 | +| Epoch_11_batch_2999.pt | 0.9766666666666668 | 0.002222222222222222 | +| Epoch_11.pt | 0.9763333333333334 | 0.0024570382652773304 | +| Epoch_12_batch_5999.pt | 0.9755 | 0.002509857110683663 | +| Epoch_8_batch_5999.pt | 0.9705 | 0.0017924739783224148 | +| Epoch_9_batch_5999.pt | 0.9684999999999999 | 0.002575405996999836 | +| Epoch_9_batch_2999.pt | 0.9684999999999999 | 0.00181642030269687 | +| Epoch_8_batch_2999.pt | 0.9664999999999999 | 0.0027938424357067037 | +| Epoch_9.pt | 0.9646666666666667 | 0.0024190601174530328 | +| Epoch_8.pt | 0.9630000000000001 | 0.003733399470313655 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNeSt50/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/backbones/ResNeSt50/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..2fd9515f67d211f1ffe1793a9843194a8840309d --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNeSt50/accu_files/accu_calfw.txt @@ -0,0 +1,34 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15.pt | 0.9555000000000001 | 0.0037437190197403256 | +| Epoch_17_batch_2999.pt | 0.9551666666666667 | 0.003722222222222224 | +| Epoch_12.pt | 0.9546666666666667 | 0.00391104797928845 | +| Epoch_10.pt | 0.9546666666666667 | 0.0039503086299180435 | +| Epoch_17.pt | 0.9545000000000001 | 0.0035490391674854334 | +| Epoch_14_batch_2999.pt | 0.9545000000000001 | 0.003583656316193371 | +| Epoch_13.pt | 0.9543333333333335 | 0.0038506052113696522 | +| Epoch_10_batch_2999.pt | 0.9543333333333335 | 0.0034444444444444483 | +| Epoch_13_batch_2999.pt | 0.9543333333333335 | 0.0036951753662924232 | +| Epoch_15_batch_2999.pt | 0.9543333333333333 | 0.003703518513888659 | +| Epoch_11_batch_2999.pt | 0.9543333333333333 | 0.0037614024177357215 | +| Epoch_17_batch_5999.pt | 0.9541666666666668 | 0.0037700083505163434 | +| Epoch_14_batch_5999.pt | 0.9541666666666668 | 0.003593976442141304 | +| Epoch_11_batch_5999.pt | 0.9541666666666668 | 0.0037122586382862498 | +| Epoch_16_batch_2999.pt | 0.9541666666666668 | 0.003653596232768307 | +| Epoch_13_batch_5999.pt | 0.9540000000000001 | 0.0036106837353937623 | +| Epoch_10_batch_5999.pt | 0.954 | 0.00365317382728302 | +| Epoch_14.pt | 0.9538333333333334 | 0.0034876324701598946 | +| Epoch_16_batch_5999.pt | 0.9538333333333334 | 0.0037683706404692493 | +| Epoch_12_batch_2999.pt | 0.9536666666666667 | 0.0032848323331321023 | +| Epoch_16.pt | 0.9535 | 0.0035438174297371255 | +| Epoch_12_batch_5999.pt | 0.9533333333333335 | 0.0037184890068181174 | +| Epoch_11.pt | 0.9530000000000001 | 0.003572874486847453 | +| Epoch_15_batch_5999.pt | 0.9530000000000001 | 0.003749897117930266 | +| Epoch_9_batch_5999.pt | 0.9475 | 0.003728849821011072 | +| Epoch_9.pt | 0.9473333333333332 | 0.003842581436842354 | +| Epoch_8_batch_5999.pt | 0.9471666666666667 | 0.0030128326362125 | +| Epoch_8_batch_2999.pt | 0.9451666666666666 | 0.003224615969095875 | +| Epoch_9_batch_2999.pt | 0.9445 | 0.0038813418832685676 | +| Epoch_8.pt | 0.9431666666666667 | 0.0035350973933184486 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNeSt50/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/backbones/ResNeSt50/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..f1f56183cb4d2b9a89981a3c0faf8c84029b27c9 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNeSt50/accu_files/accu_cplfw.txt @@ -0,0 +1,34 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_2999.pt | 0.8998333333333333 | 0.004130958098893619 | +| Epoch_16_batch_5999.pt | 0.8995 | 0.003936611941790411 | +| Epoch_17_batch_2999.pt | 0.899 | 0.004173697771331771 | +| Epoch_17_batch_5999.pt | 0.8985000000000001 | 0.004093430448841925 | +| Epoch_16_batch_2999.pt | 0.8976666666666666 | 0.0038425814368423473 | +| Epoch_15_batch_5999.pt | 0.8975000000000002 | 0.004562663830983816 | +| Epoch_16.pt | 0.8975 | 0.004276334532872405 | +| Epoch_14.pt | 0.8971666666666668 | 0.003735465660892049 | +| Epoch_14_batch_2999.pt | 0.8969999999999999 | 0.003887301263230197 | +| Epoch_13_batch_2999.pt | 0.8968333333333334 | 0.004219662967057385 | +| Epoch_13.pt | 0.8968333333333331 | 0.004651098370211355 | +| Epoch_14_batch_5999.pt | 0.8966666666666668 | 0.004360314860077465 | +| Epoch_13_batch_5999.pt | 0.8963333333333333 | 0.004732342097565968 | +| Epoch_15.pt | 0.8963333333333333 | 0.004178132372658477 | +| Epoch_17.pt | 0.8950000000000001 | 0.004374448818895448 | +| Epoch_12_batch_5999.pt | 0.8948333333333334 | 0.0040326598764354425 | +| Epoch_11_batch_2999.pt | 0.8933333333333333 | 0.004667989230577778 | +| Epoch_11.pt | 0.8923333333333334 | 0.005584369721390699 | +| Epoch_12.pt | 0.8908333333333334 | 0.004715681745091333 | +| Epoch_12_batch_2999.pt | 0.8908333333333334 | 0.004844813951249548 | +| Epoch_10.pt | 0.8901666666666666 | 0.004703885969055433 | +| Epoch_10_batch_2999.pt | 0.8883333333333333 | 0.004962824763139404 | +| Epoch_10_batch_5999.pt | 0.8876666666666665 | 0.0049888765156985895 | +| Epoch_11_batch_5999.pt | 0.8861666666666667 | 0.005488765180792174 | +| Epoch_8_batch_5999.pt | 0.8633333333333335 | 0.005725188012439223 | +| Epoch_9_batch_2999.pt | 0.8633333333333333 | 0.005061351988413492 | +| Epoch_8_batch_2999.pt | 0.8591666666666666 | 0.006723140433157004 | +| Epoch_9_batch_5999.pt | 0.8563333333333333 | 0.006951329919829802 | +| Epoch_8.pt | 0.8543333333333335 | 0.005753152651555383 | +| Epoch_9.pt | 0.8446666666666667 | 0.007608474807008882 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNeSt50/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/backbones/ResNeSt50/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..97b0a119408a8f9bf2d5e42d5f51eac4f8e6a6c5 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNeSt50/accu_files/accu_lfw.txt @@ -0,0 +1,34 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.998 | 0.000544331053951814 | +| Epoch_14.pt | 0.998 | 0.0006478835438716985 | +| Epoch_12_batch_5999.pt | 0.998 | 0.0006478835438716985 | +| Epoch_15.pt | 0.998 | 0.0006478835438716985 | +| Epoch_13.pt | 0.998 | 0.0006478835438716985 | +| Epoch_15_batch_2999.pt | 0.998 | 0.0006478835438716985 | +| Epoch_13_batch_5999.pt | 0.9978333333333333 | 0.0007049209744694171 | +| Epoch_16.pt | 0.9976666666666667 | 0.0007934920476158739 | +| Epoch_14_batch_2999.pt | 0.9976666666666667 | 0.0007934920476158739 | +| Epoch_17_batch_5999.pt | 0.9976666666666667 | 0.0007934920476158739 | +| Epoch_11.pt | 0.9976666666666667 | 0.0007114582486036506 | +| Epoch_13_batch_2999.pt | 0.9976666666666667 | 0.0007934920476158739 | +| Epoch_10_batch_5999.pt | 0.9974999999999999 | 0.0007556372504853036 | +| Epoch_14_batch_5999.pt | 0.9974999999999999 | 0.0008333333333333352 | +| Epoch_15_batch_5999.pt | 0.9974999999999999 | 0.0008333333333333352 | +| Epoch_12_batch_2999.pt | 0.9974999999999999 | 0.0007954345035153545 | +| Epoch_8_batch_2999.pt | 0.9973333333333333 | 0.0009362388636862596 | +| Epoch_10_batch_2999.pt | 0.9973333333333333 | 0.0008678055195451802 | +| Epoch_16_batch_5999.pt | 0.9971666666666665 | 0.0007876359377087692 | +| Epoch_8_batch_5999.pt | 0.9971666666666665 | 0.00086245414979222 | +| Epoch_11_batch_5999.pt | 0.9971666666666665 | 0.0007474235581707618 | +| Epoch_16_batch_2999.pt | 0.9971666666666665 | 0.0007876359377087692 | +| Epoch_11_batch_2999.pt | 0.9971666666666665 | 0.0008624541497922263 | +| Epoch_17_batch_2999.pt | 0.9971666666666665 | 0.0007876359377087692 | +| Epoch_9_batch_5999.pt | 0.9970000000000001 | 0.0008534606386520699 | +| Epoch_12.pt | 0.9969999999999999 | 0.0008888888888888863 | +| Epoch_9.pt | 0.9969999999999999 | 0.0006478835438716991 | +| Epoch_10.pt | 0.9969999999999999 | 0.0007370277311900897 | +| Epoch_9_batch_2999.pt | 0.9966666666666667 | 0.0007856742013183886 | +| Epoch_8.pt | 0.9959999999999999 | 0.0011439589045541157 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNeSt50/accu_files/accu_megaface.txt b/bob/bio/facexzoo/models/backbones/ResNeSt50/accu_files/accu_megaface.txt new file mode 100644 index 0000000000000000000000000000000000000000..804f6f69279c268e1bc9455591bc24ab22d3dca5 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNeSt50/accu_files/accu_megaface.txt @@ -0,0 +1,14 @@ ++------+--------------------+ +| rank | accuracy | ++------+--------------------+ +| 1 | 0.9708072431883568 | +| 2 | 0.979757085020243 | +| 3 | 0.982731686996368 | +| 4 | 0.9846518348803 | +| 5 | 0.985803923610659 | +| 6 | 0.9866045276436205 | +| 7 | 0.9872554252313941 | +| 8 | 0.9878412330603903 | +| 9 | 0.9882382805889321 | +| 10 | 0.9886808909486181 | ++------+--------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNeSt50/log.log b/bob/bio/facexzoo/models/backbones/ResNeSt50/log.log new file mode 100644 index 0000000000000000000000000000000000000000..09ce751b93e338c2ecbe5443dd0717abdf30f426 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNeSt50/log.log @@ -0,0 +1,655 @@ +INFO 2021-02-24 17:04:52 train.py: 176] Start optimization. +INFO 2021-02-24 17:04:52 train.py: 177] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='ResNeSt', batch_size=512, data_root='/home/wangjun492/wj_data/face_database/facex-zoo/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='MV-Softmax', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='mv-resnest', train_file='/home/wangjun492/wj_data/face_database/facex-zoo/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7f2966c4dda0>) +backbone param: +{'depth': 50, 'drop_ratio': 0.4, 'feat_dim': 512, 'out_h': 7, 'out_w': 7} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +INFO 2021-02-24 17:05:17 train.py: 78] Epoch 0, iter 0/6416, lr 0.100000, loss 16.313322 +INFO 2021-02-24 17:10:50 train.py: 78] Epoch 0, iter 200/6416, lr 0.100000, loss 15.620893 +INFO 2021-02-24 17:16:23 train.py: 78] Epoch 0, iter 400/6416, lr 0.100000, loss 15.359382 +INFO 2021-02-24 17:21:56 train.py: 78] Epoch 0, iter 600/6416, lr 0.100000, loss 15.326296 +INFO 2021-02-24 17:27:29 train.py: 78] Epoch 0, iter 800/6416, lr 0.100000, loss 15.290645 +INFO 2021-02-24 17:33:02 train.py: 78] Epoch 0, iter 1000/6416, lr 0.100000, loss 15.263804 +INFO 2021-02-24 17:38:35 train.py: 78] Epoch 0, iter 1200/6416, lr 0.100000, loss 15.189003 +INFO 2021-02-24 17:44:08 train.py: 78] Epoch 0, iter 1400/6416, lr 0.100000, loss 15.069101 +INFO 2021-02-24 17:49:41 train.py: 78] Epoch 0, iter 1600/6416, lr 0.100000, loss 14.929240 +INFO 2021-02-24 17:55:15 train.py: 78] Epoch 0, iter 1800/6416, lr 0.100000, loss 14.731436 +INFO 2021-02-24 18:00:48 train.py: 78] Epoch 0, iter 2000/6416, lr 0.100000, loss 14.503152 +INFO 2021-02-24 18:06:21 train.py: 78] Epoch 0, iter 2200/6416, lr 0.100000, loss 14.254705 +INFO 2021-02-24 18:11:55 train.py: 78] Epoch 0, iter 2400/6416, lr 0.100000, loss 13.988201 +INFO 2021-02-24 18:17:28 train.py: 78] Epoch 0, iter 2600/6416, lr 0.100000, loss 13.714421 +INFO 2021-02-24 18:23:02 train.py: 78] Epoch 0, iter 2800/6416, lr 0.100000, loss 13.426085 +INFO 2021-02-24 18:28:34 train.py: 91] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2021-02-24 18:28:36 train.py: 78] Epoch 0, iter 3000/6416, lr 0.100000, loss 13.129318 +INFO 2021-02-24 18:34:09 train.py: 78] Epoch 0, iter 3200/6416, lr 0.100000, loss 12.801013 +INFO 2021-02-24 18:39:43 train.py: 78] Epoch 0, iter 3400/6416, lr 0.100000, loss 12.485551 +INFO 2021-02-24 18:45:16 train.py: 78] Epoch 0, iter 3600/6416, lr 0.100000, loss 12.217961 +INFO 2021-02-24 18:50:50 train.py: 78] Epoch 0, iter 3800/6416, lr 0.100000, loss 11.977710 +INFO 2021-02-24 18:56:23 train.py: 78] Epoch 0, iter 4000/6416, lr 0.100000, loss 11.816155 +INFO 2021-02-24 19:01:55 train.py: 78] Epoch 0, iter 4200/6416, lr 0.100000, loss 11.793206 +INFO 2021-02-24 19:07:27 train.py: 78] Epoch 0, iter 4400/6416, lr 0.100000, loss 11.890083 +INFO 2021-02-24 19:12:59 train.py: 78] Epoch 0, iter 4600/6416, lr 0.100000, loss 12.079075 +INFO 2021-02-24 19:18:31 train.py: 78] Epoch 0, iter 4800/6416, lr 0.100000, loss 12.349208 +INFO 2021-02-24 19:24:01 train.py: 78] Epoch 0, iter 5000/6416, lr 0.100000, loss 12.663674 +INFO 2021-02-24 19:29:32 train.py: 78] Epoch 0, iter 5200/6416, lr 0.100000, loss 12.983118 +INFO 2021-02-24 19:35:02 train.py: 78] Epoch 0, iter 5400/6416, lr 0.100000, loss 13.257001 +INFO 2021-02-24 19:40:32 train.py: 78] Epoch 0, iter 5600/6416, lr 0.100000, loss 13.512850 +INFO 2021-02-24 19:46:02 train.py: 78] Epoch 0, iter 5800/6416, lr 0.100000, loss 13.716488 +INFO 2021-02-24 19:51:30 train.py: 91] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2021-02-24 19:51:32 train.py: 78] Epoch 0, iter 6000/6416, lr 0.100000, loss 13.848291 +INFO 2021-02-24 19:57:01 train.py: 78] Epoch 0, iter 6200/6416, lr 0.100000, loss 13.889544 +INFO 2021-02-24 20:02:30 train.py: 78] Epoch 0, iter 6400/6416, lr 0.100000, loss 13.888664 +INFO 2021-02-24 20:02:54 train.py: 96] Save checkpoint Epoch_0.pt to disk... +INFO 2021-02-24 20:02:56 train.py: 78] Epoch 1, iter 0/6416, lr 0.100000, loss 13.808955 +INFO 2021-02-24 20:08:25 train.py: 78] Epoch 1, iter 200/6416, lr 0.100000, loss 13.758435 +INFO 2021-02-24 20:13:53 train.py: 78] Epoch 1, iter 400/6416, lr 0.100000, loss 13.620849 +INFO 2021-02-24 20:19:21 train.py: 78] Epoch 1, iter 600/6416, lr 0.100000, loss 13.442502 +INFO 2021-02-24 20:24:49 train.py: 78] Epoch 1, iter 800/6416, lr 0.100000, loss 13.226353 +INFO 2021-02-24 20:30:16 train.py: 78] Epoch 1, iter 1000/6416, lr 0.100000, loss 12.996416 +INFO 2021-02-24 20:35:44 train.py: 78] Epoch 1, iter 1200/6416, lr 0.100000, loss 12.742379 +INFO 2021-02-24 20:41:11 train.py: 78] Epoch 1, iter 1400/6416, lr 0.100000, loss 12.504958 +INFO 2021-02-24 20:46:39 train.py: 78] Epoch 1, iter 1600/6416, lr 0.100000, loss 12.231348 +INFO 2021-02-24 20:52:07 train.py: 78] Epoch 1, iter 1800/6416, lr 0.100000, loss 11.963732 +INFO 2021-02-24 20:57:34 train.py: 78] Epoch 1, iter 2000/6416, lr 0.100000, loss 11.657655 +INFO 2021-02-24 21:03:02 train.py: 78] Epoch 1, iter 2200/6416, lr 0.100000, loss 11.404816 +INFO 2021-02-24 21:08:30 train.py: 78] Epoch 1, iter 2400/6416, lr 0.100000, loss 11.153934 +INFO 2021-02-24 21:13:57 train.py: 78] Epoch 1, iter 2600/6416, lr 0.100000, loss 10.886155 +INFO 2021-02-24 21:19:25 train.py: 78] Epoch 1, iter 2800/6416, lr 0.100000, loss 10.667871 +INFO 2021-02-24 21:24:52 train.py: 91] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2021-02-24 21:24:53 train.py: 78] Epoch 1, iter 3000/6416, lr 0.100000, loss 10.421691 +INFO 2021-02-24 21:30:21 train.py: 78] Epoch 1, iter 3200/6416, lr 0.100000, loss 10.206822 +INFO 2021-02-24 21:35:49 train.py: 78] Epoch 1, iter 3400/6416, lr 0.100000, loss 9.992142 +INFO 2021-02-24 21:41:16 train.py: 78] Epoch 1, iter 3600/6416, lr 0.100000, loss 9.818099 +INFO 2021-02-24 21:46:44 train.py: 78] Epoch 1, iter 3800/6416, lr 0.100000, loss 9.645288 +INFO 2021-02-24 21:52:12 train.py: 78] Epoch 1, iter 4000/6416, lr 0.100000, loss 9.474552 +INFO 2021-02-24 21:57:39 train.py: 78] Epoch 1, iter 4200/6416, lr 0.100000, loss 9.332040 +INFO 2021-02-24 22:03:07 train.py: 78] Epoch 1, iter 4400/6416, lr 0.100000, loss 9.165296 +INFO 2021-02-24 22:08:35 train.py: 78] Epoch 1, iter 4600/6416, lr 0.100000, loss 9.037102 +INFO 2021-02-24 22:14:03 train.py: 78] Epoch 1, iter 4800/6416, lr 0.100000, loss 8.872455 +INFO 2021-02-24 22:19:31 train.py: 78] Epoch 1, iter 5000/6416, lr 0.100000, loss 8.755043 +INFO 2021-02-24 22:24:59 train.py: 78] Epoch 1, iter 5200/6416, lr 0.100000, loss 8.623330 +INFO 2021-02-24 22:30:26 train.py: 78] Epoch 1, iter 5400/6416, lr 0.100000, loss 8.477971 +INFO 2021-02-24 22:35:54 train.py: 78] Epoch 1, iter 5600/6416, lr 0.100000, loss 8.392763 +INFO 2021-02-24 22:41:22 train.py: 78] Epoch 1, iter 5800/6416, lr 0.100000, loss 8.297782 +INFO 2021-02-24 22:46:49 train.py: 91] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2021-02-24 22:46:50 train.py: 78] Epoch 1, iter 6000/6416, lr 0.100000, loss 8.201840 +INFO 2021-02-24 22:52:18 train.py: 78] Epoch 1, iter 6200/6416, lr 0.100000, loss 8.099176 +INFO 2021-02-24 22:57:46 train.py: 78] Epoch 1, iter 6400/6416, lr 0.100000, loss 7.983228 +INFO 2021-02-24 22:58:10 train.py: 96] Save checkpoint Epoch_1.pt to disk... +INFO 2021-02-24 22:58:13 train.py: 78] Epoch 2, iter 0/6416, lr 0.100000, loss 7.863767 +INFO 2021-02-24 23:03:40 train.py: 78] Epoch 2, iter 200/6416, lr 0.100000, loss 7.333290 +INFO 2021-02-24 23:09:07 train.py: 78] Epoch 2, iter 400/6416, lr 0.100000, loss 7.314851 +INFO 2021-02-24 23:14:34 train.py: 78] Epoch 2, iter 600/6416, lr 0.100000, loss 7.328369 +INFO 2021-02-24 23:20:01 train.py: 78] Epoch 2, iter 800/6416, lr 0.100000, loss 7.328868 +INFO 2021-02-24 23:25:27 train.py: 78] Epoch 2, iter 1000/6416, lr 0.100000, loss 7.342762 +INFO 2021-02-24 23:30:54 train.py: 78] Epoch 2, iter 1200/6416, lr 0.100000, loss 7.317062 +INFO 2021-02-24 23:36:21 train.py: 78] Epoch 2, iter 1400/6416, lr 0.100000, loss 7.302503 +INFO 2021-02-24 23:41:48 train.py: 78] Epoch 2, iter 1600/6416, lr 0.100000, loss 7.279334 +INFO 2021-02-24 23:47:15 train.py: 78] Epoch 2, iter 1800/6416, lr 0.100000, loss 7.227969 +INFO 2021-02-24 23:52:43 train.py: 78] Epoch 2, iter 2000/6416, lr 0.100000, loss 7.190882 +INFO 2021-02-24 23:58:10 train.py: 78] Epoch 2, iter 2200/6416, lr 0.100000, loss 7.155687 +INFO 2021-02-25 00:03:37 train.py: 78] Epoch 2, iter 2400/6416, lr 0.100000, loss 7.101299 +INFO 2021-02-25 00:09:05 train.py: 78] Epoch 2, iter 2600/6416, lr 0.100000, loss 7.038573 +INFO 2021-02-25 00:14:32 train.py: 78] Epoch 2, iter 2800/6416, lr 0.100000, loss 6.990323 +INFO 2021-02-25 00:19:58 train.py: 91] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2021-02-25 00:20:00 train.py: 78] Epoch 2, iter 3000/6416, lr 0.100000, loss 6.954301 +INFO 2021-02-25 00:25:28 train.py: 78] Epoch 2, iter 3200/6416, lr 0.100000, loss 6.909274 +INFO 2021-02-25 00:30:55 train.py: 78] Epoch 2, iter 3400/6416, lr 0.100000, loss 6.849148 +INFO 2021-02-25 00:36:23 train.py: 78] Epoch 2, iter 3600/6416, lr 0.100000, loss 6.829742 +INFO 2021-02-25 00:41:51 train.py: 78] Epoch 2, iter 3800/6416, lr 0.100000, loss 6.808652 +INFO 2021-02-25 00:47:18 train.py: 78] Epoch 2, iter 4000/6416, lr 0.100000, loss 6.728413 +INFO 2021-02-25 00:52:46 train.py: 78] Epoch 2, iter 4200/6416, lr 0.100000, loss 6.722016 +INFO 2021-02-25 00:58:14 train.py: 78] Epoch 2, iter 4400/6416, lr 0.100000, loss 6.668323 +INFO 2021-02-25 01:03:41 train.py: 78] Epoch 2, iter 4600/6416, lr 0.100000, loss 6.618915 +INFO 2021-02-25 01:09:09 train.py: 78] Epoch 2, iter 4800/6416, lr 0.100000, loss 6.585573 +INFO 2021-02-25 01:14:36 train.py: 78] Epoch 2, iter 5000/6416, lr 0.100000, loss 6.551705 +INFO 2021-02-25 01:20:04 train.py: 78] Epoch 2, iter 5200/6416, lr 0.100000, loss 6.519191 +INFO 2021-02-25 01:25:32 train.py: 78] Epoch 2, iter 5400/6416, lr 0.100000, loss 6.463274 +INFO 2021-02-25 01:30:59 train.py: 78] Epoch 2, iter 5600/6416, lr 0.100000, loss 6.418169 +INFO 2021-02-25 01:36:27 train.py: 78] Epoch 2, iter 5800/6416, lr 0.100000, loss 6.364018 +INFO 2021-02-25 01:41:54 train.py: 91] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2021-02-25 01:41:55 train.py: 78] Epoch 2, iter 6000/6416, lr 0.100000, loss 6.359388 +INFO 2021-02-25 01:47:23 train.py: 78] Epoch 2, iter 6200/6416, lr 0.100000, loss 6.282158 +INFO 2021-02-25 01:52:51 train.py: 78] Epoch 2, iter 6400/6416, lr 0.100000, loss 6.291159 +INFO 2021-02-25 01:53:15 train.py: 96] Save checkpoint Epoch_2.pt to disk... +INFO 2021-02-25 01:53:18 train.py: 78] Epoch 3, iter 0/6416, lr 0.100000, loss 6.288440 +INFO 2021-02-25 01:58:45 train.py: 78] Epoch 3, iter 200/6416, lr 0.100000, loss 5.738819 +INFO 2021-02-25 02:04:11 train.py: 78] Epoch 3, iter 400/6416, lr 0.100000, loss 5.688125 +INFO 2021-02-25 02:09:38 train.py: 78] Epoch 3, iter 600/6416, lr 0.100000, loss 5.752232 +INFO 2021-02-25 02:15:05 train.py: 78] Epoch 3, iter 800/6416, lr 0.100000, loss 5.803626 +INFO 2021-02-25 02:20:32 train.py: 78] Epoch 3, iter 1000/6416, lr 0.100000, loss 5.864418 +INFO 2021-02-25 02:25:58 train.py: 78] Epoch 3, iter 1200/6416, lr 0.100000, loss 5.874163 +INFO 2021-02-25 02:31:25 train.py: 78] Epoch 3, iter 1400/6416, lr 0.100000, loss 5.866870 +INFO 2021-02-25 02:36:52 train.py: 78] Epoch 3, iter 1600/6416, lr 0.100000, loss 5.891690 +INFO 2021-02-25 02:42:19 train.py: 78] Epoch 3, iter 1800/6416, lr 0.100000, loss 5.888111 +INFO 2021-02-25 02:47:46 train.py: 78] Epoch 3, iter 2000/6416, lr 0.100000, loss 5.898130 +INFO 2021-02-25 02:53:14 train.py: 78] Epoch 3, iter 2200/6416, lr 0.100000, loss 5.867494 +INFO 2021-02-25 02:58:41 train.py: 78] Epoch 3, iter 2400/6416, lr 0.100000, loss 5.864499 +INFO 2021-02-25 03:04:08 train.py: 78] Epoch 3, iter 2600/6416, lr 0.100000, loss 5.830463 +INFO 2021-02-25 03:09:35 train.py: 78] Epoch 3, iter 2800/6416, lr 0.100000, loss 5.830445 +INFO 2021-02-25 03:15:01 train.py: 91] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2021-02-25 03:15:03 train.py: 78] Epoch 3, iter 3000/6416, lr 0.100000, loss 5.800021 +INFO 2021-02-25 03:20:31 train.py: 78] Epoch 3, iter 3200/6416, lr 0.100000, loss 5.813142 +INFO 2021-02-25 03:25:58 train.py: 78] Epoch 3, iter 3400/6416, lr 0.100000, loss 5.759068 +INFO 2021-02-25 03:31:25 train.py: 78] Epoch 3, iter 3600/6416, lr 0.100000, loss 5.764986 +INFO 2021-02-25 03:36:53 train.py: 78] Epoch 3, iter 3800/6416, lr 0.100000, loss 5.711055 +INFO 2021-02-25 03:42:21 train.py: 78] Epoch 3, iter 4000/6416, lr 0.100000, loss 5.737976 +INFO 2021-02-25 03:47:48 train.py: 78] Epoch 3, iter 4200/6416, lr 0.100000, loss 5.713059 +INFO 2021-02-25 03:53:16 train.py: 78] Epoch 3, iter 4400/6416, lr 0.100000, loss 5.680029 +INFO 2021-02-25 03:58:43 train.py: 78] Epoch 3, iter 4600/6416, lr 0.100000, loss 5.661024 +INFO 2021-02-25 04:04:11 train.py: 78] Epoch 3, iter 4800/6416, lr 0.100000, loss 5.640687 +INFO 2021-02-25 04:09:39 train.py: 78] Epoch 3, iter 5000/6416, lr 0.100000, loss 5.629790 +INFO 2021-02-25 04:15:06 train.py: 78] Epoch 3, iter 5200/6416, lr 0.100000, loss 5.582526 +INFO 2021-02-25 04:20:34 train.py: 78] Epoch 3, iter 5400/6416, lr 0.100000, loss 5.605536 +INFO 2021-02-25 04:26:01 train.py: 78] Epoch 3, iter 5600/6416, lr 0.100000, loss 5.551062 +INFO 2021-02-25 04:31:29 train.py: 78] Epoch 3, iter 5800/6416, lr 0.100000, loss 5.555254 +INFO 2021-02-25 04:36:56 train.py: 91] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2021-02-25 04:36:57 train.py: 78] Epoch 3, iter 6000/6416, lr 0.100000, loss 5.545827 +INFO 2021-02-25 04:42:25 train.py: 78] Epoch 3, iter 6200/6416, lr 0.100000, loss 5.550858 +INFO 2021-02-25 04:47:53 train.py: 78] Epoch 3, iter 6400/6416, lr 0.100000, loss 5.506866 +INFO 2021-02-25 04:48:17 train.py: 96] Save checkpoint Epoch_3.pt to disk... +INFO 2021-02-25 04:48:19 train.py: 78] Epoch 4, iter 0/6416, lr 0.100000, loss 5.477970 +INFO 2021-02-25 04:53:47 train.py: 78] Epoch 4, iter 200/6416, lr 0.100000, loss 4.973440 +INFO 2021-02-25 04:59:13 train.py: 78] Epoch 4, iter 400/6416, lr 0.100000, loss 4.942978 +INFO 2021-02-25 05:04:40 train.py: 78] Epoch 4, iter 600/6416, lr 0.100000, loss 5.004058 +INFO 2021-02-25 05:10:07 train.py: 78] Epoch 4, iter 800/6416, lr 0.100000, loss 5.066273 +INFO 2021-02-25 05:15:34 train.py: 78] Epoch 4, iter 1000/6416, lr 0.100000, loss 5.140277 +INFO 2021-02-25 05:21:01 train.py: 78] Epoch 4, iter 1200/6416, lr 0.100000, loss 5.154495 +INFO 2021-02-25 05:26:27 train.py: 78] Epoch 4, iter 1400/6416, lr 0.100000, loss 5.166434 +INFO 2021-02-25 05:31:54 train.py: 78] Epoch 4, iter 1600/6416, lr 0.100000, loss 5.229045 +INFO 2021-02-25 05:37:22 train.py: 78] Epoch 4, iter 1800/6416, lr 0.100000, loss 5.174682 +INFO 2021-02-25 05:42:49 train.py: 78] Epoch 4, iter 2000/6416, lr 0.100000, loss 5.207808 +INFO 2021-02-25 05:48:16 train.py: 78] Epoch 4, iter 2200/6416, lr 0.100000, loss 5.174642 +INFO 2021-02-25 05:53:43 train.py: 78] Epoch 4, iter 2400/6416, lr 0.100000, loss 5.227486 +INFO 2021-02-25 05:59:10 train.py: 78] Epoch 4, iter 2600/6416, lr 0.100000, loss 5.223038 +INFO 2021-02-25 06:04:37 train.py: 78] Epoch 4, iter 2800/6416, lr 0.100000, loss 5.245311 +INFO 2021-02-25 06:10:04 train.py: 91] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2021-02-25 06:10:05 train.py: 78] Epoch 4, iter 3000/6416, lr 0.100000, loss 5.222831 +INFO 2021-02-25 06:15:33 train.py: 78] Epoch 4, iter 3200/6416, lr 0.100000, loss 5.221403 +INFO 2021-02-25 06:21:00 train.py: 78] Epoch 4, iter 3400/6416, lr 0.100000, loss 5.200797 +INFO 2021-02-25 06:26:28 train.py: 78] Epoch 4, iter 3600/6416, lr 0.100000, loss 5.169596 +INFO 2021-02-25 06:31:55 train.py: 78] Epoch 4, iter 3800/6416, lr 0.100000, loss 5.160110 +INFO 2021-02-25 06:37:23 train.py: 78] Epoch 4, iter 4000/6416, lr 0.100000, loss 5.199481 +INFO 2021-02-25 06:42:51 train.py: 78] Epoch 4, iter 4200/6416, lr 0.100000, loss 5.213140 +INFO 2021-02-25 06:48:18 train.py: 78] Epoch 4, iter 4400/6416, lr 0.100000, loss 5.141887 +INFO 2021-02-25 06:53:46 train.py: 78] Epoch 4, iter 4600/6416, lr 0.100000, loss 5.106738 +INFO 2021-02-25 06:59:13 train.py: 78] Epoch 4, iter 4800/6416, lr 0.100000, loss 5.107464 +INFO 2021-02-25 07:04:41 train.py: 78] Epoch 4, iter 5000/6416, lr 0.100000, loss 5.093096 +INFO 2021-02-25 07:10:08 train.py: 78] Epoch 4, iter 5200/6416, lr 0.100000, loss 5.106639 +INFO 2021-02-25 07:15:36 train.py: 78] Epoch 4, iter 5400/6416, lr 0.100000, loss 5.129879 +INFO 2021-02-25 07:21:04 train.py: 78] Epoch 4, iter 5600/6416, lr 0.100000, loss 5.071923 +INFO 2021-02-25 07:26:31 train.py: 78] Epoch 4, iter 5800/6416, lr 0.100000, loss 5.059435 +INFO 2021-02-25 07:31:58 train.py: 91] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2021-02-25 07:31:59 train.py: 78] Epoch 4, iter 6000/6416, lr 0.100000, loss 5.066874 +INFO 2021-02-25 07:37:27 train.py: 78] Epoch 4, iter 6200/6416, lr 0.100000, loss 5.043874 +INFO 2021-02-25 07:42:55 train.py: 78] Epoch 4, iter 6400/6416, lr 0.100000, loss 5.045064 +INFO 2021-02-25 07:43:19 train.py: 96] Save checkpoint Epoch_4.pt to disk... +INFO 2021-02-25 07:43:21 train.py: 78] Epoch 5, iter 0/6416, lr 0.100000, loss 5.080495 +INFO 2021-02-25 07:48:48 train.py: 78] Epoch 5, iter 200/6416, lr 0.100000, loss 4.551879 +INFO 2021-02-25 07:54:15 train.py: 78] Epoch 5, iter 400/6416, lr 0.100000, loss 4.528073 +INFO 2021-02-25 07:59:42 train.py: 78] Epoch 5, iter 600/6416, lr 0.100000, loss 4.571969 +INFO 2021-02-25 08:05:09 train.py: 78] Epoch 5, iter 800/6416, lr 0.100000, loss 4.628106 +INFO 2021-02-25 08:10:35 train.py: 78] Epoch 5, iter 1000/6416, lr 0.100000, loss 4.701971 +INFO 2021-02-25 08:16:02 train.py: 78] Epoch 5, iter 1200/6416, lr 0.100000, loss 4.717321 +INFO 2021-02-25 08:21:29 train.py: 78] Epoch 5, iter 1400/6416, lr 0.100000, loss 4.721839 +INFO 2021-02-25 08:26:56 train.py: 78] Epoch 5, iter 1600/6416, lr 0.100000, loss 4.806374 +INFO 2021-02-25 08:32:23 train.py: 78] Epoch 5, iter 1800/6416, lr 0.100000, loss 4.805767 +INFO 2021-02-25 08:37:50 train.py: 78] Epoch 5, iter 2000/6416, lr 0.100000, loss 4.847204 +INFO 2021-02-25 08:43:17 train.py: 78] Epoch 5, iter 2200/6416, lr 0.100000, loss 4.826196 +INFO 2021-02-25 08:48:44 train.py: 78] Epoch 5, iter 2400/6416, lr 0.100000, loss 4.859384 +INFO 2021-02-25 08:54:11 train.py: 78] Epoch 5, iter 2600/6416, lr 0.100000, loss 4.812125 +INFO 2021-02-25 08:59:39 train.py: 78] Epoch 5, iter 2800/6416, lr 0.100000, loss 4.866214 +INFO 2021-02-25 09:05:05 train.py: 91] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2021-02-25 09:05:06 train.py: 78] Epoch 5, iter 3000/6416, lr 0.100000, loss 4.841835 +INFO 2021-02-25 09:10:34 train.py: 78] Epoch 5, iter 3200/6416, lr 0.100000, loss 4.802345 +INFO 2021-02-25 09:16:01 train.py: 78] Epoch 5, iter 3400/6416, lr 0.100000, loss 4.830935 +INFO 2021-02-25 09:21:29 train.py: 78] Epoch 5, iter 3600/6416, lr 0.100000, loss 4.829578 +INFO 2021-02-25 09:26:56 train.py: 78] Epoch 5, iter 3800/6416, lr 0.100000, loss 4.852716 +INFO 2021-02-25 09:32:24 train.py: 78] Epoch 5, iter 4000/6416, lr 0.100000, loss 4.806939 +INFO 2021-02-25 09:37:51 train.py: 78] Epoch 5, iter 4200/6416, lr 0.100000, loss 4.786034 +INFO 2021-02-25 09:43:19 train.py: 78] Epoch 5, iter 4400/6416, lr 0.100000, loss 4.837186 +INFO 2021-02-25 09:48:46 train.py: 78] Epoch 5, iter 4600/6416, lr 0.100000, loss 4.794805 +INFO 2021-02-25 09:54:14 train.py: 78] Epoch 5, iter 4800/6416, lr 0.100000, loss 4.805823 +INFO 2021-02-25 09:59:42 train.py: 78] Epoch 5, iter 5000/6416, lr 0.100000, loss 4.787804 +INFO 2021-02-25 10:05:09 train.py: 78] Epoch 5, iter 5200/6416, lr 0.100000, loss 4.806678 +INFO 2021-02-25 10:10:37 train.py: 78] Epoch 5, iter 5400/6416, lr 0.100000, loss 4.790378 +INFO 2021-02-25 10:16:04 train.py: 78] Epoch 5, iter 5600/6416, lr 0.100000, loss 4.740289 +INFO 2021-02-25 10:21:32 train.py: 78] Epoch 5, iter 5800/6416, lr 0.100000, loss 4.763237 +INFO 2021-02-25 10:26:59 train.py: 91] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2021-02-25 10:27:00 train.py: 78] Epoch 5, iter 6000/6416, lr 0.100000, loss 4.789376 +INFO 2021-02-25 10:32:28 train.py: 78] Epoch 5, iter 6200/6416, lr 0.100000, loss 4.766370 +INFO 2021-02-25 10:37:56 train.py: 78] Epoch 5, iter 6400/6416, lr 0.100000, loss 4.724789 +INFO 2021-02-25 10:38:20 train.py: 96] Save checkpoint Epoch_5.pt to disk... +INFO 2021-02-25 10:38:23 train.py: 78] Epoch 6, iter 0/6416, lr 0.100000, loss 4.732681 +INFO 2021-02-25 10:43:50 train.py: 78] Epoch 6, iter 200/6416, lr 0.100000, loss 4.254043 +INFO 2021-02-25 10:49:16 train.py: 78] Epoch 6, iter 400/6416, lr 0.100000, loss 4.230677 +INFO 2021-02-25 10:54:43 train.py: 78] Epoch 6, iter 600/6416, lr 0.100000, loss 4.279142 +INFO 2021-02-25 11:00:09 train.py: 78] Epoch 6, iter 800/6416, lr 0.100000, loss 4.355736 +INFO 2021-02-25 11:05:36 train.py: 78] Epoch 6, iter 1000/6416, lr 0.100000, loss 4.426550 +INFO 2021-02-25 11:11:03 train.py: 78] Epoch 6, iter 1200/6416, lr 0.100000, loss 4.426828 +INFO 2021-02-25 11:16:30 train.py: 78] Epoch 6, iter 1400/6416, lr 0.100000, loss 4.444814 +INFO 2021-02-25 11:21:57 train.py: 78] Epoch 6, iter 1600/6416, lr 0.100000, loss 4.523520 +INFO 2021-02-25 11:27:24 train.py: 78] Epoch 6, iter 1800/6416, lr 0.100000, loss 4.514382 +INFO 2021-02-25 11:32:51 train.py: 78] Epoch 6, iter 2000/6416, lr 0.100000, loss 4.556363 +INFO 2021-02-25 11:38:18 train.py: 78] Epoch 6, iter 2200/6416, lr 0.100000, loss 4.552444 +INFO 2021-02-25 11:43:45 train.py: 78] Epoch 6, iter 2400/6416, lr 0.100000, loss 4.560605 +INFO 2021-02-25 11:49:13 train.py: 78] Epoch 6, iter 2600/6416, lr 0.100000, loss 4.588173 +INFO 2021-02-25 11:54:40 train.py: 78] Epoch 6, iter 2800/6416, lr 0.100000, loss 4.595977 +INFO 2021-02-25 12:00:06 train.py: 91] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2021-02-25 12:00:08 train.py: 78] Epoch 6, iter 3000/6416, lr 0.100000, loss 4.560906 +INFO 2021-02-25 12:05:35 train.py: 78] Epoch 6, iter 3200/6416, lr 0.100000, loss 4.562175 +INFO 2021-02-25 12:11:03 train.py: 78] Epoch 6, iter 3400/6416, lr 0.100000, loss 4.587999 +INFO 2021-02-25 12:16:30 train.py: 78] Epoch 6, iter 3600/6416, lr 0.100000, loss 4.587679 +INFO 2021-02-25 12:21:58 train.py: 78] Epoch 6, iter 3800/6416, lr 0.100000, loss 4.566212 +INFO 2021-02-25 12:27:25 train.py: 78] Epoch 6, iter 4000/6416, lr 0.100000, loss 4.623884 +INFO 2021-02-25 12:32:53 train.py: 78] Epoch 6, iter 4200/6416, lr 0.100000, loss 4.578886 +INFO 2021-02-25 12:38:20 train.py: 78] Epoch 6, iter 4400/6416, lr 0.100000, loss 4.588638 +INFO 2021-02-25 12:43:48 train.py: 78] Epoch 6, iter 4600/6416, lr 0.100000, loss 4.579136 +INFO 2021-02-25 12:49:15 train.py: 78] Epoch 6, iter 4800/6416, lr 0.100000, loss 4.584031 +INFO 2021-02-25 12:54:43 train.py: 78] Epoch 6, iter 5000/6416, lr 0.100000, loss 4.551115 +INFO 2021-02-25 13:00:10 train.py: 78] Epoch 6, iter 5200/6416, lr 0.100000, loss 4.582152 +INFO 2021-02-25 13:05:38 train.py: 78] Epoch 6, iter 5400/6416, lr 0.100000, loss 4.565033 +INFO 2021-02-25 13:11:06 train.py: 78] Epoch 6, iter 5600/6416, lr 0.100000, loss 4.562807 +INFO 2021-02-25 13:16:33 train.py: 78] Epoch 6, iter 5800/6416, lr 0.100000, loss 4.568973 +INFO 2021-02-25 13:22:00 train.py: 91] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2021-02-25 13:22:02 train.py: 78] Epoch 6, iter 6000/6416, lr 0.100000, loss 4.570001 +INFO 2021-02-25 13:27:29 train.py: 78] Epoch 6, iter 6200/6416, lr 0.100000, loss 4.504335 +INFO 2021-02-25 13:32:57 train.py: 78] Epoch 6, iter 6400/6416, lr 0.100000, loss 4.541264 +INFO 2021-02-25 13:33:21 train.py: 96] Save checkpoint Epoch_6.pt to disk... +INFO 2021-02-25 13:33:23 train.py: 78] Epoch 7, iter 0/6416, lr 0.100000, loss 4.483522 +INFO 2021-02-25 13:38:50 train.py: 78] Epoch 7, iter 200/6416, lr 0.100000, loss 4.046358 +INFO 2021-02-25 13:44:17 train.py: 78] Epoch 7, iter 400/6416, lr 0.100000, loss 3.995566 +INFO 2021-02-25 13:49:44 train.py: 78] Epoch 7, iter 600/6416, lr 0.100000, loss 4.119862 +INFO 2021-02-25 13:55:10 train.py: 78] Epoch 7, iter 800/6416, lr 0.100000, loss 4.127078 +INFO 2021-02-25 14:00:37 train.py: 78] Epoch 7, iter 1000/6416, lr 0.100000, loss 4.214201 +INFO 2021-02-25 14:06:04 train.py: 78] Epoch 7, iter 1200/6416, lr 0.100000, loss 4.245915 +INFO 2021-02-25 14:11:30 train.py: 78] Epoch 7, iter 1400/6416, lr 0.100000, loss 4.296237 +INFO 2021-02-25 14:16:57 train.py: 78] Epoch 7, iter 1600/6416, lr 0.100000, loss 4.285793 +INFO 2021-02-25 14:22:24 train.py: 78] Epoch 7, iter 1800/6416, lr 0.100000, loss 4.356745 +INFO 2021-02-25 14:27:51 train.py: 78] Epoch 7, iter 2000/6416, lr 0.100000, loss 4.336755 +INFO 2021-02-25 14:33:18 train.py: 78] Epoch 7, iter 2200/6416, lr 0.100000, loss 4.378328 +INFO 2021-02-25 14:38:46 train.py: 78] Epoch 7, iter 2400/6416, lr 0.100000, loss 4.395332 +INFO 2021-02-25 14:44:13 train.py: 78] Epoch 7, iter 2600/6416, lr 0.100000, loss 4.380206 +INFO 2021-02-25 14:49:40 train.py: 78] Epoch 7, iter 2800/6416, lr 0.100000, loss 4.390752 +INFO 2021-02-25 14:55:06 train.py: 91] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2021-02-25 14:55:08 train.py: 78] Epoch 7, iter 3000/6416, lr 0.100000, loss 4.419343 +INFO 2021-02-25 15:00:35 train.py: 78] Epoch 7, iter 3200/6416, lr 0.100000, loss 4.423469 +INFO 2021-02-25 15:06:03 train.py: 78] Epoch 7, iter 3400/6416, lr 0.100000, loss 4.410455 +INFO 2021-02-25 15:11:30 train.py: 78] Epoch 7, iter 3600/6416, lr 0.100000, loss 4.400200 +INFO 2021-02-25 15:16:58 train.py: 78] Epoch 7, iter 3800/6416, lr 0.100000, loss 4.373593 +INFO 2021-02-25 15:22:25 train.py: 78] Epoch 7, iter 4000/6416, lr 0.100000, loss 4.406134 +INFO 2021-02-25 15:27:53 train.py: 78] Epoch 7, iter 4200/6416, lr 0.100000, loss 4.391583 +INFO 2021-02-25 15:33:20 train.py: 78] Epoch 7, iter 4400/6416, lr 0.100000, loss 4.379079 +INFO 2021-02-25 15:38:48 train.py: 78] Epoch 7, iter 4600/6416, lr 0.100000, loss 4.405875 +INFO 2021-02-25 15:44:16 train.py: 78] Epoch 7, iter 4800/6416, lr 0.100000, loss 4.433525 +INFO 2021-02-25 15:49:43 train.py: 78] Epoch 7, iter 5000/6416, lr 0.100000, loss 4.402329 +INFO 2021-02-25 15:55:11 train.py: 78] Epoch 7, iter 5200/6416, lr 0.100000, loss 4.397792 +INFO 2021-02-25 16:00:38 train.py: 78] Epoch 7, iter 5400/6416, lr 0.100000, loss 4.399441 +INFO 2021-02-25 16:06:06 train.py: 78] Epoch 7, iter 5600/6416, lr 0.100000, loss 4.375682 +INFO 2021-02-25 16:11:33 train.py: 78] Epoch 7, iter 5800/6416, lr 0.100000, loss 4.394716 +INFO 2021-02-25 16:17:00 train.py: 91] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2021-02-25 16:17:01 train.py: 78] Epoch 7, iter 6000/6416, lr 0.100000, loss 4.397713 +INFO 2021-02-25 16:22:29 train.py: 78] Epoch 7, iter 6200/6416, lr 0.100000, loss 4.375446 +INFO 2021-02-25 16:27:57 train.py: 78] Epoch 7, iter 6400/6416, lr 0.100000, loss 4.380827 +INFO 2021-02-25 16:28:21 train.py: 96] Save checkpoint Epoch_7.pt to disk... +INFO 2021-02-25 16:28:23 train.py: 78] Epoch 8, iter 0/6416, lr 0.100000, loss 4.354991 +INFO 2021-02-25 16:33:50 train.py: 78] Epoch 8, iter 200/6416, lr 0.100000, loss 3.899804 +INFO 2021-02-25 16:39:17 train.py: 78] Epoch 8, iter 400/6416, lr 0.100000, loss 3.872152 +INFO 2021-02-25 16:44:44 train.py: 78] Epoch 8, iter 600/6416, lr 0.100000, loss 3.933592 +INFO 2021-02-25 16:50:10 train.py: 78] Epoch 8, iter 800/6416, lr 0.100000, loss 3.973056 +INFO 2021-02-25 16:55:37 train.py: 78] Epoch 8, iter 1000/6416, lr 0.100000, loss 4.077531 +INFO 2021-02-25 17:01:04 train.py: 78] Epoch 8, iter 1200/6416, lr 0.100000, loss 4.107879 +INFO 2021-02-25 17:06:30 train.py: 78] Epoch 8, iter 1400/6416, lr 0.100000, loss 4.137148 +INFO 2021-02-25 17:11:57 train.py: 78] Epoch 8, iter 1600/6416, lr 0.100000, loss 4.176589 +INFO 2021-02-25 17:17:24 train.py: 78] Epoch 8, iter 1800/6416, lr 0.100000, loss 4.210612 +INFO 2021-02-25 17:22:51 train.py: 78] Epoch 8, iter 2000/6416, lr 0.100000, loss 4.188962 +INFO 2021-02-25 17:28:18 train.py: 78] Epoch 8, iter 2200/6416, lr 0.100000, loss 4.257363 +INFO 2021-02-25 17:33:45 train.py: 78] Epoch 8, iter 2400/6416, lr 0.100000, loss 4.228372 +INFO 2021-02-25 17:39:13 train.py: 78] Epoch 8, iter 2600/6416, lr 0.100000, loss 4.261803 +INFO 2021-02-25 17:44:40 train.py: 78] Epoch 8, iter 2800/6416, lr 0.100000, loss 4.272180 +INFO 2021-02-25 17:50:06 train.py: 91] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2021-02-25 17:50:08 train.py: 78] Epoch 8, iter 3000/6416, lr 0.100000, loss 4.275108 +INFO 2021-02-25 17:55:35 train.py: 78] Epoch 8, iter 3200/6416, lr 0.100000, loss 4.239371 +INFO 2021-02-25 18:01:03 train.py: 78] Epoch 8, iter 3400/6416, lr 0.100000, loss 4.262291 +INFO 2021-02-25 18:06:30 train.py: 78] Epoch 8, iter 3600/6416, lr 0.100000, loss 4.235420 +INFO 2021-02-25 18:11:57 train.py: 78] Epoch 8, iter 3800/6416, lr 0.100000, loss 4.271760 +INFO 2021-02-25 18:17:25 train.py: 78] Epoch 8, iter 4000/6416, lr 0.100000, loss 4.280106 +INFO 2021-02-25 18:22:52 train.py: 78] Epoch 8, iter 4200/6416, lr 0.100000, loss 4.258138 +INFO 2021-02-25 18:28:20 train.py: 78] Epoch 8, iter 4400/6416, lr 0.100000, loss 4.259981 +INFO 2021-02-25 18:33:47 train.py: 78] Epoch 8, iter 4600/6416, lr 0.100000, loss 4.248852 +INFO 2021-02-25 18:39:15 train.py: 78] Epoch 8, iter 4800/6416, lr 0.100000, loss 4.266390 +INFO 2021-02-25 18:44:42 train.py: 78] Epoch 8, iter 5000/6416, lr 0.100000, loss 4.267292 +INFO 2021-02-25 18:50:10 train.py: 78] Epoch 8, iter 5200/6416, lr 0.100000, loss 4.244896 +INFO 2021-02-25 18:55:37 train.py: 78] Epoch 8, iter 5400/6416, lr 0.100000, loss 4.239629 +INFO 2021-02-25 19:01:05 train.py: 78] Epoch 8, iter 5600/6416, lr 0.100000, loss 4.265155 +INFO 2021-02-25 19:06:32 train.py: 78] Epoch 8, iter 5800/6416, lr 0.100000, loss 4.271514 +INFO 2021-02-25 19:11:59 train.py: 91] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2021-02-25 19:12:01 train.py: 78] Epoch 8, iter 6000/6416, lr 0.100000, loss 4.259593 +INFO 2021-02-25 19:17:28 train.py: 78] Epoch 8, iter 6200/6416, lr 0.100000, loss 4.270696 +INFO 2021-02-25 19:22:56 train.py: 78] Epoch 8, iter 6400/6416, lr 0.100000, loss 4.234374 +INFO 2021-02-25 19:23:20 train.py: 96] Save checkpoint Epoch_8.pt to disk... +INFO 2021-02-25 19:23:23 train.py: 78] Epoch 9, iter 0/6416, lr 0.100000, loss 4.238643 +INFO 2021-02-25 19:28:50 train.py: 78] Epoch 9, iter 200/6416, lr 0.100000, loss 3.798645 +INFO 2021-02-25 19:34:16 train.py: 78] Epoch 9, iter 400/6416, lr 0.100000, loss 3.755003 +INFO 2021-02-25 19:39:43 train.py: 78] Epoch 9, iter 600/6416, lr 0.100000, loss 3.782248 +INFO 2021-02-25 19:45:10 train.py: 78] Epoch 9, iter 800/6416, lr 0.100000, loss 3.853883 +INFO 2021-02-25 19:50:36 train.py: 78] Epoch 9, iter 1000/6416, lr 0.100000, loss 3.912669 +INFO 2021-02-25 19:56:03 train.py: 78] Epoch 9, iter 1200/6416, lr 0.100000, loss 3.974457 +INFO 2021-02-25 20:01:30 train.py: 78] Epoch 9, iter 1400/6416, lr 0.100000, loss 4.023855 +INFO 2021-02-25 20:06:57 train.py: 78] Epoch 9, iter 1600/6416, lr 0.100000, loss 4.063848 +INFO 2021-02-25 20:12:24 train.py: 78] Epoch 9, iter 1800/6416, lr 0.100000, loss 4.115235 +INFO 2021-02-25 20:17:51 train.py: 78] Epoch 9, iter 2000/6416, lr 0.100000, loss 4.103210 +INFO 2021-02-25 20:23:18 train.py: 78] Epoch 9, iter 2200/6416, lr 0.100000, loss 4.101963 +INFO 2021-02-25 20:28:45 train.py: 78] Epoch 9, iter 2400/6416, lr 0.100000, loss 4.115857 +INFO 2021-02-25 20:34:12 train.py: 78] Epoch 9, iter 2600/6416, lr 0.100000, loss 4.122640 +INFO 2021-02-25 20:39:39 train.py: 78] Epoch 9, iter 2800/6416, lr 0.100000, loss 4.126902 +INFO 2021-02-25 20:45:06 train.py: 91] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2021-02-25 20:45:07 train.py: 78] Epoch 9, iter 3000/6416, lr 0.100000, loss 4.129934 +INFO 2021-02-25 20:50:35 train.py: 78] Epoch 9, iter 3200/6416, lr 0.100000, loss 4.138831 +INFO 2021-02-25 20:56:02 train.py: 78] Epoch 9, iter 3400/6416, lr 0.100000, loss 4.154145 +INFO 2021-02-25 21:01:29 train.py: 78] Epoch 9, iter 3600/6416, lr 0.100000, loss 4.180038 +INFO 2021-02-25 21:06:57 train.py: 78] Epoch 9, iter 3800/6416, lr 0.100000, loss 4.174316 +INFO 2021-02-25 21:12:24 train.py: 78] Epoch 9, iter 4000/6416, lr 0.100000, loss 4.173374 +INFO 2021-02-25 21:17:51 train.py: 78] Epoch 9, iter 4200/6416, lr 0.100000, loss 4.168531 +INFO 2021-02-25 21:23:19 train.py: 78] Epoch 9, iter 4400/6416, lr 0.100000, loss 4.179376 +INFO 2021-02-25 21:28:46 train.py: 78] Epoch 9, iter 4600/6416, lr 0.100000, loss 4.158136 +INFO 2021-02-25 21:34:14 train.py: 78] Epoch 9, iter 4800/6416, lr 0.100000, loss 4.158712 +INFO 2021-02-25 21:39:42 train.py: 78] Epoch 9, iter 5000/6416, lr 0.100000, loss 4.154439 +INFO 2021-02-25 21:45:09 train.py: 78] Epoch 9, iter 5200/6416, lr 0.100000, loss 4.156886 +INFO 2021-02-25 21:50:37 train.py: 78] Epoch 9, iter 5400/6416, lr 0.100000, loss 4.141296 +INFO 2021-02-25 21:56:04 train.py: 78] Epoch 9, iter 5600/6416, lr 0.100000, loss 4.186354 +INFO 2021-02-25 22:01:32 train.py: 78] Epoch 9, iter 5800/6416, lr 0.100000, loss 4.128818 +INFO 2021-02-25 22:06:58 train.py: 91] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2021-02-25 22:07:00 train.py: 78] Epoch 9, iter 6000/6416, lr 0.100000, loss 4.139489 +INFO 2021-02-25 22:12:27 train.py: 78] Epoch 9, iter 6200/6416, lr 0.100000, loss 4.139924 +INFO 2021-02-25 22:17:55 train.py: 78] Epoch 9, iter 6400/6416, lr 0.100000, loss 4.156645 +INFO 2021-02-25 22:18:19 train.py: 96] Save checkpoint Epoch_9.pt to disk... +INFO 2021-02-25 22:18:22 train.py: 78] Epoch 10, iter 0/6416, lr 0.010000, loss 4.117951 +INFO 2021-02-25 22:23:49 train.py: 78] Epoch 10, iter 200/6416, lr 0.010000, loss 3.038555 +INFO 2021-02-25 22:29:15 train.py: 78] Epoch 10, iter 400/6416, lr 0.010000, loss 2.809822 +INFO 2021-02-25 22:34:42 train.py: 78] Epoch 10, iter 600/6416, lr 0.010000, loss 2.720037 +INFO 2021-02-25 22:40:08 train.py: 78] Epoch 10, iter 800/6416, lr 0.010000, loss 2.629070 +INFO 2021-02-25 22:45:35 train.py: 78] Epoch 10, iter 1000/6416, lr 0.010000, loss 2.594028 +INFO 2021-02-25 22:51:02 train.py: 78] Epoch 10, iter 1200/6416, lr 0.010000, loss 2.536712 +INFO 2021-02-25 22:56:28 train.py: 78] Epoch 10, iter 1400/6416, lr 0.010000, loss 2.492130 +INFO 2021-02-25 23:01:55 train.py: 78] Epoch 10, iter 1600/6416, lr 0.010000, loss 2.450587 +INFO 2021-02-25 23:07:22 train.py: 78] Epoch 10, iter 1800/6416, lr 0.010000, loss 2.433430 +INFO 2021-02-25 23:12:49 train.py: 78] Epoch 10, iter 2000/6416, lr 0.010000, loss 2.401746 +INFO 2021-02-25 23:18:16 train.py: 78] Epoch 10, iter 2200/6416, lr 0.010000, loss 2.348785 +INFO 2021-02-25 23:23:43 train.py: 78] Epoch 10, iter 2400/6416, lr 0.010000, loss 2.343040 +INFO 2021-02-25 23:29:10 train.py: 78] Epoch 10, iter 2600/6416, lr 0.010000, loss 2.335307 +INFO 2021-02-25 23:34:38 train.py: 78] Epoch 10, iter 2800/6416, lr 0.010000, loss 2.312495 +INFO 2021-02-25 23:40:04 train.py: 91] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2021-02-25 23:40:05 train.py: 78] Epoch 10, iter 3000/6416, lr 0.010000, loss 2.290390 +INFO 2021-02-25 23:45:33 train.py: 78] Epoch 10, iter 3200/6416, lr 0.010000, loss 2.272417 +INFO 2021-02-25 23:51:00 train.py: 78] Epoch 10, iter 3400/6416, lr 0.010000, loss 2.255538 +INFO 2021-02-25 23:56:27 train.py: 78] Epoch 10, iter 3600/6416, lr 0.010000, loss 2.240760 +INFO 2021-02-26 00:01:55 train.py: 78] Epoch 10, iter 3800/6416, lr 0.010000, loss 2.198393 +INFO 2021-02-26 00:07:22 train.py: 78] Epoch 10, iter 4000/6416, lr 0.010000, loss 2.194825 +INFO 2021-02-26 00:12:50 train.py: 78] Epoch 10, iter 4200/6416, lr 0.010000, loss 2.175206 +INFO 2021-02-26 00:18:17 train.py: 78] Epoch 10, iter 4400/6416, lr 0.010000, loss 2.189447 +INFO 2021-02-26 00:23:45 train.py: 78] Epoch 10, iter 4600/6416, lr 0.010000, loss 2.169700 +INFO 2021-02-26 00:29:12 train.py: 78] Epoch 10, iter 4800/6416, lr 0.010000, loss 2.133254 +INFO 2021-02-26 00:34:40 train.py: 78] Epoch 10, iter 5000/6416, lr 0.010000, loss 2.138729 +INFO 2021-02-26 00:40:07 train.py: 78] Epoch 10, iter 5200/6416, lr 0.010000, loss 2.114797 +INFO 2021-02-26 00:45:35 train.py: 78] Epoch 10, iter 5400/6416, lr 0.010000, loss 2.117085 +INFO 2021-02-26 00:51:02 train.py: 78] Epoch 10, iter 5600/6416, lr 0.010000, loss 2.105980 +INFO 2021-02-26 00:56:30 train.py: 78] Epoch 10, iter 5800/6416, lr 0.010000, loss 2.089937 +INFO 2021-02-26 01:01:56 train.py: 91] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2021-02-26 01:01:58 train.py: 78] Epoch 10, iter 6000/6416, lr 0.010000, loss 2.066743 +INFO 2021-02-26 01:07:25 train.py: 78] Epoch 10, iter 6200/6416, lr 0.010000, loss 2.068470 +INFO 2021-02-26 01:12:53 train.py: 78] Epoch 10, iter 6400/6416, lr 0.010000, loss 2.055863 +INFO 2021-02-26 01:13:17 train.py: 96] Save checkpoint Epoch_10.pt to disk... +INFO 2021-02-26 01:13:20 train.py: 78] Epoch 11, iter 0/6416, lr 0.010000, loss 1.989165 +INFO 2021-02-26 01:18:47 train.py: 78] Epoch 11, iter 200/6416, lr 0.010000, loss 1.758327 +INFO 2021-02-26 01:24:13 train.py: 78] Epoch 11, iter 400/6416, lr 0.010000, loss 1.759515 +INFO 2021-02-26 01:29:40 train.py: 78] Epoch 11, iter 600/6416, lr 0.010000, loss 1.751019 +INFO 2021-02-26 01:35:06 train.py: 78] Epoch 11, iter 800/6416, lr 0.010000, loss 1.763562 +INFO 2021-02-26 01:40:33 train.py: 78] Epoch 11, iter 1000/6416, lr 0.010000, loss 1.762703 +INFO 2021-02-26 01:45:59 train.py: 78] Epoch 11, iter 1200/6416, lr 0.010000, loss 1.751586 +INFO 2021-02-26 01:51:26 train.py: 78] Epoch 11, iter 1400/6416, lr 0.010000, loss 1.742817 +INFO 2021-02-26 01:56:53 train.py: 78] Epoch 11, iter 1600/6416, lr 0.010000, loss 1.752074 +INFO 2021-02-26 02:02:20 train.py: 78] Epoch 11, iter 1800/6416, lr 0.010000, loss 1.753101 +INFO 2021-02-26 02:07:47 train.py: 78] Epoch 11, iter 2000/6416, lr 0.010000, loss 1.726724 +INFO 2021-02-26 02:13:14 train.py: 78] Epoch 11, iter 2200/6416, lr 0.010000, loss 1.742941 +INFO 2021-02-26 02:18:41 train.py: 78] Epoch 11, iter 2400/6416, lr 0.010000, loss 1.757681 +INFO 2021-02-26 02:24:08 train.py: 78] Epoch 11, iter 2600/6416, lr 0.010000, loss 1.760140 +INFO 2021-02-26 02:29:35 train.py: 78] Epoch 11, iter 2800/6416, lr 0.010000, loss 1.748676 +INFO 2021-02-26 02:35:01 train.py: 91] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2021-02-26 02:35:03 train.py: 78] Epoch 11, iter 3000/6416, lr 0.010000, loss 1.750115 +INFO 2021-02-26 02:40:30 train.py: 78] Epoch 11, iter 3200/6416, lr 0.010000, loss 1.736650 +INFO 2021-02-26 02:45:57 train.py: 78] Epoch 11, iter 3400/6416, lr 0.010000, loss 1.769724 +INFO 2021-02-26 02:51:25 train.py: 78] Epoch 11, iter 3600/6416, lr 0.010000, loss 1.763623 +INFO 2021-02-26 02:56:52 train.py: 78] Epoch 11, iter 3800/6416, lr 0.010000, loss 1.746507 +INFO 2021-02-26 03:02:20 train.py: 78] Epoch 11, iter 4000/6416, lr 0.010000, loss 1.756656 +INFO 2021-02-26 03:07:47 train.py: 78] Epoch 11, iter 4200/6416, lr 0.010000, loss 1.716344 +INFO 2021-02-26 03:13:15 train.py: 78] Epoch 11, iter 4400/6416, lr 0.010000, loss 1.754668 +INFO 2021-02-26 03:18:42 train.py: 78] Epoch 11, iter 4600/6416, lr 0.010000, loss 1.736323 +INFO 2021-02-26 03:24:10 train.py: 78] Epoch 11, iter 4800/6416, lr 0.010000, loss 1.745712 +INFO 2021-02-26 03:29:37 train.py: 78] Epoch 11, iter 5000/6416, lr 0.010000, loss 1.739246 +INFO 2021-02-26 03:35:05 train.py: 78] Epoch 11, iter 5200/6416, lr 0.010000, loss 1.738633 +INFO 2021-02-26 03:40:32 train.py: 78] Epoch 11, iter 5400/6416, lr 0.010000, loss 1.740162 +INFO 2021-02-26 03:46:00 train.py: 78] Epoch 11, iter 5600/6416, lr 0.010000, loss 1.720936 +INFO 2021-02-26 03:51:27 train.py: 78] Epoch 11, iter 5800/6416, lr 0.010000, loss 1.733776 +INFO 2021-02-26 03:56:54 train.py: 91] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2021-02-26 03:56:55 train.py: 78] Epoch 11, iter 6000/6416, lr 0.010000, loss 1.732810 +INFO 2021-02-26 04:02:23 train.py: 78] Epoch 11, iter 6200/6416, lr 0.010000, loss 1.732687 +INFO 2021-02-26 04:07:51 train.py: 78] Epoch 11, iter 6400/6416, lr 0.010000, loss 1.751937 +INFO 2021-02-26 04:08:15 train.py: 96] Save checkpoint Epoch_11.pt to disk... +INFO 2021-02-26 04:08:17 train.py: 78] Epoch 12, iter 0/6416, lr 0.010000, loss 1.712993 +INFO 2021-02-26 04:13:44 train.py: 78] Epoch 12, iter 200/6416, lr 0.010000, loss 1.466138 +INFO 2021-02-26 04:19:11 train.py: 78] Epoch 12, iter 400/6416, lr 0.010000, loss 1.469204 +INFO 2021-02-26 04:24:38 train.py: 78] Epoch 12, iter 600/6416, lr 0.010000, loss 1.479212 +INFO 2021-02-26 04:30:04 train.py: 78] Epoch 12, iter 800/6416, lr 0.010000, loss 1.474471 +INFO 2021-02-26 04:35:31 train.py: 78] Epoch 12, iter 1000/6416, lr 0.010000, loss 1.480727 +INFO 2021-02-26 04:40:58 train.py: 78] Epoch 12, iter 1200/6416, lr 0.010000, loss 1.484029 +INFO 2021-02-26 04:46:25 train.py: 78] Epoch 12, iter 1400/6416, lr 0.010000, loss 1.480404 +INFO 2021-02-26 04:51:52 train.py: 78] Epoch 12, iter 1600/6416, lr 0.010000, loss 1.479380 +INFO 2021-02-26 04:57:19 train.py: 78] Epoch 12, iter 1800/6416, lr 0.010000, loss 1.493175 +INFO 2021-02-26 05:02:46 train.py: 78] Epoch 12, iter 2000/6416, lr 0.010000, loss 1.504001 +INFO 2021-02-26 05:08:13 train.py: 78] Epoch 12, iter 2200/6416, lr 0.010000, loss 1.519298 +INFO 2021-02-26 05:13:40 train.py: 78] Epoch 12, iter 2400/6416, lr 0.010000, loss 1.532432 +INFO 2021-02-26 05:19:07 train.py: 78] Epoch 12, iter 2600/6416, lr 0.010000, loss 1.519235 +INFO 2021-02-26 05:24:35 train.py: 78] Epoch 12, iter 2800/6416, lr 0.010000, loss 1.517812 +INFO 2021-02-26 05:30:01 train.py: 91] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2021-02-26 05:30:03 train.py: 78] Epoch 12, iter 3000/6416, lr 0.010000, loss 1.518538 +INFO 2021-02-26 05:35:30 train.py: 78] Epoch 12, iter 3200/6416, lr 0.010000, loss 1.524167 +INFO 2021-02-26 05:40:57 train.py: 78] Epoch 12, iter 3400/6416, lr 0.010000, loss 1.525306 +INFO 2021-02-26 05:46:25 train.py: 78] Epoch 12, iter 3600/6416, lr 0.010000, loss 1.546135 +INFO 2021-02-26 05:51:52 train.py: 78] Epoch 12, iter 3800/6416, lr 0.010000, loss 1.546478 +INFO 2021-02-26 05:57:20 train.py: 78] Epoch 12, iter 4000/6416, lr 0.010000, loss 1.545730 +INFO 2021-02-26 06:02:47 train.py: 78] Epoch 12, iter 4200/6416, lr 0.010000, loss 1.560959 +INFO 2021-02-26 06:08:15 train.py: 78] Epoch 12, iter 4400/6416, lr 0.010000, loss 1.541709 +INFO 2021-02-26 06:13:43 train.py: 78] Epoch 12, iter 4600/6416, lr 0.010000, loss 1.551759 +INFO 2021-02-26 06:19:10 train.py: 78] Epoch 12, iter 4800/6416, lr 0.010000, loss 1.542566 +INFO 2021-02-26 06:24:37 train.py: 78] Epoch 12, iter 5000/6416, lr 0.010000, loss 1.554449 +INFO 2021-02-26 06:30:05 train.py: 78] Epoch 12, iter 5200/6416, lr 0.010000, loss 1.571143 +INFO 2021-02-26 06:35:32 train.py: 78] Epoch 12, iter 5400/6416, lr 0.010000, loss 1.577824 +INFO 2021-02-26 06:41:00 train.py: 78] Epoch 12, iter 5600/6416, lr 0.010000, loss 1.581001 +INFO 2021-02-26 06:46:27 train.py: 78] Epoch 12, iter 5800/6416, lr 0.010000, loss 1.564784 +INFO 2021-02-26 06:51:54 train.py: 91] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2021-02-26 06:51:56 train.py: 78] Epoch 12, iter 6000/6416, lr 0.010000, loss 1.577631 +INFO 2021-02-26 06:57:23 train.py: 78] Epoch 12, iter 6200/6416, lr 0.010000, loss 1.584215 +INFO 2021-02-26 07:02:51 train.py: 78] Epoch 12, iter 6400/6416, lr 0.010000, loss 1.562081 +INFO 2021-02-26 07:03:15 train.py: 96] Save checkpoint Epoch_12.pt to disk... +INFO 2021-02-26 07:03:17 train.py: 78] Epoch 13, iter 0/6416, lr 0.001000, loss 1.562756 +INFO 2021-02-26 07:08:44 train.py: 78] Epoch 13, iter 200/6416, lr 0.001000, loss 1.277383 +INFO 2021-02-26 07:14:11 train.py: 78] Epoch 13, iter 400/6416, lr 0.001000, loss 1.236589 +INFO 2021-02-26 07:19:38 train.py: 78] Epoch 13, iter 600/6416, lr 0.001000, loss 1.251469 +INFO 2021-02-26 07:25:04 train.py: 78] Epoch 13, iter 800/6416, lr 0.001000, loss 1.230098 +INFO 2021-02-26 07:30:31 train.py: 78] Epoch 13, iter 1000/6416, lr 0.001000, loss 1.233839 +INFO 2021-02-26 07:35:58 train.py: 78] Epoch 13, iter 1200/6416, lr 0.001000, loss 1.245220 +INFO 2021-02-26 07:41:25 train.py: 78] Epoch 13, iter 1400/6416, lr 0.001000, loss 1.226836 +INFO 2021-02-26 07:46:51 train.py: 78] Epoch 13, iter 1600/6416, lr 0.001000, loss 1.228899 +INFO 2021-02-26 07:52:18 train.py: 78] Epoch 13, iter 1800/6416, lr 0.001000, loss 1.219979 +INFO 2021-02-26 07:57:45 train.py: 78] Epoch 13, iter 2000/6416, lr 0.001000, loss 1.227166 +INFO 2021-02-26 08:03:12 train.py: 78] Epoch 13, iter 2200/6416, lr 0.001000, loss 1.213129 +INFO 2021-02-26 08:08:40 train.py: 78] Epoch 13, iter 2400/6416, lr 0.001000, loss 1.225888 +INFO 2021-02-26 08:14:07 train.py: 78] Epoch 13, iter 2600/6416, lr 0.001000, loss 1.224813 +INFO 2021-02-26 08:19:34 train.py: 78] Epoch 13, iter 2800/6416, lr 0.001000, loss 1.217198 +INFO 2021-02-26 08:25:00 train.py: 91] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2021-02-26 08:25:02 train.py: 78] Epoch 13, iter 3000/6416, lr 0.001000, loss 1.222988 +INFO 2021-02-26 08:30:29 train.py: 78] Epoch 13, iter 3200/6416, lr 0.001000, loss 1.213856 +INFO 2021-02-26 08:35:57 train.py: 78] Epoch 13, iter 3400/6416, lr 0.001000, loss 1.216411 +INFO 2021-02-26 08:41:24 train.py: 78] Epoch 13, iter 3600/6416, lr 0.001000, loss 1.210488 +INFO 2021-02-26 08:46:52 train.py: 78] Epoch 13, iter 3800/6416, lr 0.001000, loss 1.210495 +INFO 2021-02-26 08:52:19 train.py: 78] Epoch 13, iter 4000/6416, lr 0.001000, loss 1.221563 +INFO 2021-02-26 08:57:47 train.py: 78] Epoch 13, iter 4200/6416, lr 0.001000, loss 1.220773 +INFO 2021-02-26 09:03:14 train.py: 78] Epoch 13, iter 4400/6416, lr 0.001000, loss 1.220611 +INFO 2021-02-26 09:08:42 train.py: 78] Epoch 13, iter 4600/6416, lr 0.001000, loss 1.225989 +INFO 2021-02-26 09:14:09 train.py: 78] Epoch 13, iter 4800/6416, lr 0.001000, loss 1.212040 +INFO 2021-02-26 09:19:37 train.py: 78] Epoch 13, iter 5000/6416, lr 0.001000, loss 1.217591 +INFO 2021-02-26 09:25:04 train.py: 78] Epoch 13, iter 5200/6416, lr 0.001000, loss 1.217382 +INFO 2021-02-26 09:30:32 train.py: 78] Epoch 13, iter 5400/6416, lr 0.001000, loss 1.212948 +INFO 2021-02-26 09:35:59 train.py: 78] Epoch 13, iter 5600/6416, lr 0.001000, loss 1.223484 +INFO 2021-02-26 09:41:27 train.py: 78] Epoch 13, iter 5800/6416, lr 0.001000, loss 1.219447 +INFO 2021-02-26 09:46:53 train.py: 91] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2021-02-26 09:46:55 train.py: 78] Epoch 13, iter 6000/6416, lr 0.001000, loss 1.212093 +INFO 2021-02-26 09:52:23 train.py: 78] Epoch 13, iter 6200/6416, lr 0.001000, loss 1.229453 +INFO 2021-02-26 09:57:50 train.py: 78] Epoch 13, iter 6400/6416, lr 0.001000, loss 1.230379 +INFO 2021-02-26 09:58:14 train.py: 96] Save checkpoint Epoch_13.pt to disk... +INFO 2021-02-26 09:58:17 train.py: 78] Epoch 14, iter 0/6416, lr 0.001000, loss 1.201706 +INFO 2021-02-26 10:03:44 train.py: 78] Epoch 14, iter 200/6416, lr 0.001000, loss 1.182069 +INFO 2021-02-26 10:09:11 train.py: 78] Epoch 14, iter 400/6416, lr 0.001000, loss 1.181349 +INFO 2021-02-26 10:14:37 train.py: 78] Epoch 14, iter 600/6416, lr 0.001000, loss 1.177843 +INFO 2021-02-26 10:20:04 train.py: 78] Epoch 14, iter 800/6416, lr 0.001000, loss 1.169752 +INFO 2021-02-26 10:25:30 train.py: 78] Epoch 14, iter 1000/6416, lr 0.001000, loss 1.178197 +INFO 2021-02-26 10:30:57 train.py: 78] Epoch 14, iter 1200/6416, lr 0.001000, loss 1.171137 +INFO 2021-02-26 10:36:24 train.py: 78] Epoch 14, iter 1400/6416, lr 0.001000, loss 1.177152 +INFO 2021-02-26 10:41:51 train.py: 78] Epoch 14, iter 1600/6416, lr 0.001000, loss 1.175818 +INFO 2021-02-26 10:47:17 train.py: 78] Epoch 14, iter 1800/6416, lr 0.001000, loss 1.201867 +INFO 2021-02-26 10:52:44 train.py: 78] Epoch 14, iter 2000/6416, lr 0.001000, loss 1.177558 +INFO 2021-02-26 10:58:11 train.py: 78] Epoch 14, iter 2200/6416, lr 0.001000, loss 1.184976 +INFO 2021-02-26 11:03:38 train.py: 78] Epoch 14, iter 2400/6416, lr 0.001000, loss 1.176128 +INFO 2021-02-26 11:09:05 train.py: 78] Epoch 14, iter 2600/6416, lr 0.001000, loss 1.182863 +INFO 2021-02-26 11:14:33 train.py: 78] Epoch 14, iter 2800/6416, lr 0.001000, loss 1.199468 +INFO 2021-02-26 11:19:59 train.py: 91] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2021-02-26 11:20:00 train.py: 78] Epoch 14, iter 3000/6416, lr 0.001000, loss 1.187565 +INFO 2021-02-26 11:25:28 train.py: 78] Epoch 14, iter 3200/6416, lr 0.001000, loss 1.174894 +INFO 2021-02-26 11:30:55 train.py: 78] Epoch 14, iter 3400/6416, lr 0.001000, loss 1.182255 +INFO 2021-02-26 11:36:23 train.py: 78] Epoch 14, iter 3600/6416, lr 0.001000, loss 1.182152 +INFO 2021-02-26 11:41:50 train.py: 78] Epoch 14, iter 3800/6416, lr 0.001000, loss 1.202862 +INFO 2021-02-26 11:47:17 train.py: 78] Epoch 14, iter 4000/6416, lr 0.001000, loss 1.190542 +INFO 2021-02-26 11:52:45 train.py: 78] Epoch 14, iter 4200/6416, lr 0.001000, loss 1.185105 +INFO 2021-02-26 11:58:12 train.py: 78] Epoch 14, iter 4400/6416, lr 0.001000, loss 1.184710 +INFO 2021-02-26 12:03:40 train.py: 78] Epoch 14, iter 4600/6416, lr 0.001000, loss 1.183482 +INFO 2021-02-26 12:09:07 train.py: 78] Epoch 14, iter 4800/6416, lr 0.001000, loss 1.187509 +INFO 2021-02-26 12:14:35 train.py: 78] Epoch 14, iter 5000/6416, lr 0.001000, loss 1.189766 +INFO 2021-02-26 12:20:02 train.py: 78] Epoch 14, iter 5200/6416, lr 0.001000, loss 1.188259 +INFO 2021-02-26 12:25:30 train.py: 78] Epoch 14, iter 5400/6416, lr 0.001000, loss 1.192548 +INFO 2021-02-26 12:30:57 train.py: 78] Epoch 14, iter 5600/6416, lr 0.001000, loss 1.185499 +INFO 2021-02-26 12:36:25 train.py: 78] Epoch 14, iter 5800/6416, lr 0.001000, loss 1.188568 +INFO 2021-02-26 12:41:51 train.py: 91] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2021-02-26 12:41:53 train.py: 78] Epoch 14, iter 6000/6416, lr 0.001000, loss 1.189552 +INFO 2021-02-26 12:47:21 train.py: 78] Epoch 14, iter 6200/6416, lr 0.001000, loss 1.181539 +INFO 2021-02-26 12:52:48 train.py: 78] Epoch 14, iter 6400/6416, lr 0.001000, loss 1.185364 +INFO 2021-02-26 12:53:12 train.py: 96] Save checkpoint Epoch_14.pt to disk... +INFO 2021-02-26 12:53:15 train.py: 78] Epoch 15, iter 0/6416, lr 0.001000, loss 1.213076 +INFO 2021-02-26 12:58:42 train.py: 78] Epoch 15, iter 200/6416, lr 0.001000, loss 1.142559 +INFO 2021-02-26 13:04:09 train.py: 78] Epoch 15, iter 400/6416, lr 0.001000, loss 1.171237 +INFO 2021-02-26 13:09:35 train.py: 78] Epoch 15, iter 600/6416, lr 0.001000, loss 1.154295 +INFO 2021-02-26 13:15:02 train.py: 78] Epoch 15, iter 800/6416, lr 0.001000, loss 1.154924 +INFO 2021-02-26 13:20:28 train.py: 78] Epoch 15, iter 1000/6416, lr 0.001000, loss 1.146455 +INFO 2021-02-26 13:25:55 train.py: 78] Epoch 15, iter 1200/6416, lr 0.001000, loss 1.150984 +INFO 2021-02-26 13:31:22 train.py: 78] Epoch 15, iter 1400/6416, lr 0.001000, loss 1.164542 +INFO 2021-02-26 13:36:48 train.py: 78] Epoch 15, iter 1600/6416, lr 0.001000, loss 1.146822 +INFO 2021-02-26 13:42:15 train.py: 78] Epoch 15, iter 1800/6416, lr 0.001000, loss 1.166525 +INFO 2021-02-26 13:47:42 train.py: 78] Epoch 15, iter 2000/6416, lr 0.001000, loss 1.159171 +INFO 2021-02-26 13:53:09 train.py: 78] Epoch 15, iter 2200/6416, lr 0.001000, loss 1.159972 +INFO 2021-02-26 13:58:36 train.py: 78] Epoch 15, iter 2400/6416, lr 0.001000, loss 1.156786 +INFO 2021-02-26 14:04:03 train.py: 78] Epoch 15, iter 2600/6416, lr 0.001000, loss 1.147948 +INFO 2021-02-26 14:09:31 train.py: 78] Epoch 15, iter 2800/6416, lr 0.001000, loss 1.150009 +INFO 2021-02-26 14:14:57 train.py: 91] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2021-02-26 14:14:58 train.py: 78] Epoch 15, iter 3000/6416, lr 0.001000, loss 1.157991 +INFO 2021-02-26 14:20:26 train.py: 78] Epoch 15, iter 3200/6416, lr 0.001000, loss 1.153339 +INFO 2021-02-26 14:25:53 train.py: 78] Epoch 15, iter 3400/6416, lr 0.001000, loss 1.164965 +INFO 2021-02-26 14:31:21 train.py: 78] Epoch 15, iter 3600/6416, lr 0.001000, loss 1.152254 +INFO 2021-02-26 14:36:48 train.py: 78] Epoch 15, iter 3800/6416, lr 0.001000, loss 1.155359 +INFO 2021-02-26 14:42:16 train.py: 78] Epoch 15, iter 4000/6416, lr 0.001000, loss 1.165722 +INFO 2021-02-26 14:47:43 train.py: 78] Epoch 15, iter 4200/6416, lr 0.001000, loss 1.168520 +INFO 2021-02-26 14:53:11 train.py: 78] Epoch 15, iter 4400/6416, lr 0.001000, loss 1.150805 +INFO 2021-02-26 14:58:39 train.py: 78] Epoch 15, iter 4600/6416, lr 0.001000, loss 1.170032 +INFO 2021-02-26 15:04:06 train.py: 78] Epoch 15, iter 4800/6416, lr 0.001000, loss 1.157200 +INFO 2021-02-26 15:09:34 train.py: 78] Epoch 15, iter 5000/6416, lr 0.001000, loss 1.170168 +INFO 2021-02-26 15:15:01 train.py: 78] Epoch 15, iter 5200/6416, lr 0.001000, loss 1.169286 +INFO 2021-02-26 15:20:29 train.py: 78] Epoch 15, iter 5400/6416, lr 0.001000, loss 1.155026 +INFO 2021-02-26 15:25:56 train.py: 78] Epoch 15, iter 5600/6416, lr 0.001000, loss 1.164509 +INFO 2021-02-26 15:31:24 train.py: 78] Epoch 15, iter 5800/6416, lr 0.001000, loss 1.159596 +INFO 2021-02-26 15:36:50 train.py: 91] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2021-02-26 15:36:52 train.py: 78] Epoch 15, iter 6000/6416, lr 0.001000, loss 1.173726 +INFO 2021-02-26 15:42:19 train.py: 78] Epoch 15, iter 6200/6416, lr 0.001000, loss 1.176526 +INFO 2021-02-26 15:47:47 train.py: 78] Epoch 15, iter 6400/6416, lr 0.001000, loss 1.163946 +INFO 2021-02-26 15:48:11 train.py: 96] Save checkpoint Epoch_15.pt to disk... +INFO 2021-02-26 15:48:14 train.py: 78] Epoch 16, iter 0/6416, lr 0.000100, loss 1.158254 +INFO 2021-02-26 15:53:41 train.py: 78] Epoch 16, iter 200/6416, lr 0.000100, loss 1.120436 +INFO 2021-02-26 15:59:07 train.py: 78] Epoch 16, iter 400/6416, lr 0.000100, loss 1.124684 +INFO 2021-02-26 16:04:34 train.py: 78] Epoch 16, iter 600/6416, lr 0.000100, loss 1.140950 +INFO 2021-02-26 16:10:01 train.py: 78] Epoch 16, iter 800/6416, lr 0.000100, loss 1.122044 +INFO 2021-02-26 16:15:27 train.py: 78] Epoch 16, iter 1000/6416, lr 0.000100, loss 1.135761 +INFO 2021-02-26 16:20:54 train.py: 78] Epoch 16, iter 1200/6416, lr 0.000100, loss 1.118623 +INFO 2021-02-26 16:26:21 train.py: 78] Epoch 16, iter 1400/6416, lr 0.000100, loss 1.137746 +INFO 2021-02-26 16:31:48 train.py: 78] Epoch 16, iter 1600/6416, lr 0.000100, loss 1.117278 +INFO 2021-02-26 16:37:14 train.py: 78] Epoch 16, iter 1800/6416, lr 0.000100, loss 1.122779 +INFO 2021-02-26 16:42:41 train.py: 78] Epoch 16, iter 2000/6416, lr 0.000100, loss 1.112222 +INFO 2021-02-26 16:48:08 train.py: 78] Epoch 16, iter 2200/6416, lr 0.000100, loss 1.114890 +INFO 2021-02-26 16:53:36 train.py: 78] Epoch 16, iter 2400/6416, lr 0.000100, loss 1.127713 +INFO 2021-02-26 16:59:03 train.py: 78] Epoch 16, iter 2600/6416, lr 0.000100, loss 1.123855 +INFO 2021-02-26 17:04:30 train.py: 78] Epoch 16, iter 2800/6416, lr 0.000100, loss 1.130603 +INFO 2021-02-26 17:09:56 train.py: 91] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2021-02-26 17:09:58 train.py: 78] Epoch 16, iter 3000/6416, lr 0.000100, loss 1.123724 +INFO 2021-02-26 17:15:25 train.py: 78] Epoch 16, iter 3200/6416, lr 0.000100, loss 1.118672 +INFO 2021-02-26 17:20:53 train.py: 78] Epoch 16, iter 3400/6416, lr 0.000100, loss 1.126539 +INFO 2021-02-26 17:26:20 train.py: 78] Epoch 16, iter 3600/6416, lr 0.000100, loss 1.126895 +INFO 2021-02-26 17:31:47 train.py: 78] Epoch 16, iter 3800/6416, lr 0.000100, loss 1.132515 +INFO 2021-02-26 17:37:15 train.py: 78] Epoch 16, iter 4000/6416, lr 0.000100, loss 1.122580 +INFO 2021-02-26 17:42:42 train.py: 78] Epoch 16, iter 4200/6416, lr 0.000100, loss 1.127590 +INFO 2021-02-26 17:48:10 train.py: 78] Epoch 16, iter 4400/6416, lr 0.000100, loss 1.119929 +INFO 2021-02-26 17:53:37 train.py: 78] Epoch 16, iter 4600/6416, lr 0.000100, loss 1.117680 +INFO 2021-02-26 17:59:05 train.py: 78] Epoch 16, iter 4800/6416, lr 0.000100, loss 1.123241 +INFO 2021-02-26 18:04:32 train.py: 78] Epoch 16, iter 5000/6416, lr 0.000100, loss 1.125865 +INFO 2021-02-26 18:10:00 train.py: 78] Epoch 16, iter 5200/6416, lr 0.000100, loss 1.121079 +INFO 2021-02-26 18:15:27 train.py: 78] Epoch 16, iter 5400/6416, lr 0.000100, loss 1.118097 +INFO 2021-02-26 18:20:55 train.py: 78] Epoch 16, iter 5600/6416, lr 0.000100, loss 1.114844 +INFO 2021-02-26 18:26:22 train.py: 78] Epoch 16, iter 5800/6416, lr 0.000100, loss 1.125234 +INFO 2021-02-26 18:31:49 train.py: 91] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2021-02-26 18:31:50 train.py: 78] Epoch 16, iter 6000/6416, lr 0.000100, loss 1.118507 +INFO 2021-02-26 18:37:18 train.py: 78] Epoch 16, iter 6200/6416, lr 0.000100, loss 1.116235 +INFO 2021-02-26 18:42:46 train.py: 78] Epoch 16, iter 6400/6416, lr 0.000100, loss 1.107636 +INFO 2021-02-26 18:43:10 train.py: 96] Save checkpoint Epoch_16.pt to disk... +INFO 2021-02-26 18:43:12 train.py: 78] Epoch 17, iter 0/6416, lr 0.000100, loss 1.136899 +INFO 2021-02-26 18:48:39 train.py: 78] Epoch 17, iter 200/6416, lr 0.000100, loss 1.116615 +INFO 2021-02-26 18:54:06 train.py: 78] Epoch 17, iter 400/6416, lr 0.000100, loss 1.118499 +INFO 2021-02-26 18:59:33 train.py: 78] Epoch 17, iter 600/6416, lr 0.000100, loss 1.118284 +INFO 2021-02-26 19:04:59 train.py: 78] Epoch 17, iter 800/6416, lr 0.000100, loss 1.121926 +INFO 2021-02-26 19:10:26 train.py: 78] Epoch 17, iter 1000/6416, lr 0.000100, loss 1.118190 +INFO 2021-02-26 19:15:53 train.py: 78] Epoch 17, iter 1200/6416, lr 0.000100, loss 1.123708 +INFO 2021-02-26 19:21:20 train.py: 78] Epoch 17, iter 1400/6416, lr 0.000100, loss 1.118808 +INFO 2021-02-26 19:26:47 train.py: 78] Epoch 17, iter 1600/6416, lr 0.000100, loss 1.123949 +INFO 2021-02-26 19:32:14 train.py: 78] Epoch 17, iter 1800/6416, lr 0.000100, loss 1.122720 +INFO 2021-02-26 19:37:41 train.py: 78] Epoch 17, iter 2000/6416, lr 0.000100, loss 1.119571 +INFO 2021-02-26 19:43:08 train.py: 78] Epoch 17, iter 2200/6416, lr 0.000100, loss 1.112629 +INFO 2021-02-26 19:48:35 train.py: 78] Epoch 17, iter 2400/6416, lr 0.000100, loss 1.120738 +INFO 2021-02-26 19:54:02 train.py: 78] Epoch 17, iter 2600/6416, lr 0.000100, loss 1.121630 +INFO 2021-02-26 19:59:29 train.py: 78] Epoch 17, iter 2800/6416, lr 0.000100, loss 1.128484 +INFO 2021-02-26 20:04:55 train.py: 91] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2021-02-26 20:04:57 train.py: 78] Epoch 17, iter 3000/6416, lr 0.000100, loss 1.116445 +INFO 2021-02-26 20:10:25 train.py: 78] Epoch 17, iter 3200/6416, lr 0.000100, loss 1.121110 +INFO 2021-02-26 20:15:52 train.py: 78] Epoch 17, iter 3400/6416, lr 0.000100, loss 1.128289 +INFO 2021-02-26 20:21:19 train.py: 78] Epoch 17, iter 3600/6416, lr 0.000100, loss 1.110137 +INFO 2021-02-26 20:26:47 train.py: 78] Epoch 17, iter 3800/6416, lr 0.000100, loss 1.122043 +INFO 2021-02-26 20:32:14 train.py: 78] Epoch 17, iter 4000/6416, lr 0.000100, loss 1.120359 +INFO 2021-02-26 20:37:42 train.py: 78] Epoch 17, iter 4200/6416, lr 0.000100, loss 1.109291 +INFO 2021-02-26 20:43:09 train.py: 78] Epoch 17, iter 4400/6416, lr 0.000100, loss 1.123513 +INFO 2021-02-26 20:48:37 train.py: 78] Epoch 17, iter 4600/6416, lr 0.000100, loss 1.116357 +INFO 2021-02-26 20:54:04 train.py: 78] Epoch 17, iter 4800/6416, lr 0.000100, loss 1.134884 +INFO 2021-02-26 20:59:31 train.py: 78] Epoch 17, iter 5000/6416, lr 0.000100, loss 1.121153 +INFO 2021-02-26 21:04:59 train.py: 78] Epoch 17, iter 5200/6416, lr 0.000100, loss 1.126199 +INFO 2021-02-26 21:10:26 train.py: 78] Epoch 17, iter 5400/6416, lr 0.000100, loss 1.130628 +INFO 2021-02-26 21:15:54 train.py: 78] Epoch 17, iter 5600/6416, lr 0.000100, loss 1.118594 +INFO 2021-02-26 21:21:22 train.py: 78] Epoch 17, iter 5800/6416, lr 0.000100, loss 1.104147 +INFO 2021-02-26 21:26:48 train.py: 91] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2021-02-26 21:26:50 train.py: 78] Epoch 17, iter 6000/6416, lr 0.000100, loss 1.119507 +INFO 2021-02-26 21:32:17 train.py: 78] Epoch 17, iter 6200/6416, lr 0.000100, loss 1.104828 +INFO 2021-02-26 21:37:45 train.py: 78] Epoch 17, iter 6400/6416, lr 0.000100, loss 1.123017 +INFO 2021-02-26 21:38:09 train.py: 96] Save checkpoint Epoch_17.pt to disk... +INFO 2021-02-26 21:38:10 train.py: 179] Optimization done! diff --git a/bob/bio/facexzoo/models/backbones/ResNet152_irse/.gitkeep b/bob/bio/facexzoo/models/backbones/ResNet152_irse/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..3d21c6d25dc492bacc8123c474b9d2ed709978f8 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_agedb.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_2999.pt | 0.9813333333333334 | 0.0025555555555555535 | +| Epoch_17_batch_5999.pt | 0.9810000000000001 | 0.0026434171674156273 | +| Epoch_16.pt | 0.9803333333333335 | 0.002696591355447021 | +| Epoch_15_batch_5999.pt | 0.9803333333333333 | 0.003010270485365345 | +| Epoch_12_batch_5999.pt | 0.9801666666666667 | 0.002514771177279177 | +| Epoch_13_batch_2999.pt | 0.9798333333333333 | 0.0025873624493766723 | +| Epoch_15_batch_2999.pt | 0.9798333333333333 | 0.0029757248312982424 | +| Epoch_15.pt | 0.9798333333333333 | 0.0026579719364234807 | +| Epoch_16_batch_5999.pt | 0.9798333333333333 | 0.0029549080326604898 | +| Epoch_14.pt | 0.9796666666666667 | 0.0025915341754867926 | +| Epoch_11_batch_5999.pt | 0.9795 | 0.001988392240908136 | +| Epoch_13_batch_5999.pt | 0.9793333333333335 | 0.0028240588949197407 | +| Epoch_14_batch_2999.pt | 0.9790000000000001 | 0.0027577052546646327 | +| Epoch_14_batch_5999.pt | 0.9790000000000001 | 0.0027577052546646327 | +| Epoch_17.pt | 0.9789999999999999 | 0.00293131243517176 | +| Epoch_12_batch_2999.pt | 0.9788333333333334 | 0.002166666666666665 | +| Epoch_17_batch_2999.pt | 0.9788333333333334 | 0.002756025945513878 | +| Epoch_13.pt | 0.9786666666666669 | 0.0029585615457098555 | +| Epoch_10_batch_2999.pt | 0.9781666666666666 | 0.002692582403567246 | +| Epoch_11.pt | 0.9781666666666666 | 0.0024273391416614986 | +| Epoch_11_batch_2999.pt | 0.9780000000000001 | 0.0023544022333796717 | +| Epoch_12.pt | 0.9778333333333332 | 0.002897955856832214 | +| Epoch_10_batch_5999.pt | 0.9768333333333334 | 0.002055555555555559 | +| Epoch_10.pt | 0.9765 | 0.0023888888888888883 | +| Epoch_7_batch_5999.pt | 0.9729999999999999 | 0.002469567863432539 | +| Epoch_9_batch_5999.pt | 0.9726666666666667 | 0.0014740554623801753 | +| Epoch_9_batch_2999.pt | 0.9713333333333333 | 0.002567604446286962 | +| Epoch_6_batch_2999.pt | 0.9708333333333332 | 0.0020971762320196536 | +| Epoch_8_batch_5999.pt | 0.9706666666666667 | 0.0030852096393144002 | +| Epoch_8_batch_2999.pt | 0.9701666666666668 | 0.002622904807580643 | +| Epoch_5.pt | 0.9698333333333334 | 0.0016187558093703899 | +| Epoch_7.pt | 0.9696666666666667 | 0.002045772515502442 | +| Epoch_6_batch_5999.pt | 0.9691666666666668 | 0.0022532555322970246 | +| Epoch_3_batch_5999.pt | 0.9686666666666668 | 0.002719386277893431 | +| Epoch_8.pt | 0.9685 | 0.0027267535981795677 | +| Epoch_5_batch_2999.pt | 0.9681666666666665 | 0.0024526377838493454 | +| Epoch_5_batch_5999.pt | 0.968 | 0.0030510067150546594 | +| Epoch_4_batch_5999.pt | 0.9678333333333333 | 0.002422247706287962 | +| Epoch_7_batch_2999.pt | 0.9676666666666668 | 0.0023985592383247655 | +| Epoch_9.pt | 0.9675 | 0.0031254629286744965 | +| Epoch_4_batch_2999.pt | 0.9648333333333333 | 0.0028158501994387177 | +| Epoch_4.pt | 0.9643333333333335 | 0.002372684056006958 | +| Epoch_6.pt | 0.9636666666666667 | 0.0024444444444444414 | +| Epoch_3_batch_2999.pt | 0.9628333333333334 | 0.002629955639676581 | +| Epoch_3.pt | 0.9628333333333334 | 0.0027108606441679727 | +| Epoch_2_batch_5999.pt | 0.9613333333333334 | 0.0031210159789307017 | +| Epoch_2.pt | 0.9565000000000001 | 0.0029963970133692875 | +| Epoch_2_batch_2999.pt | 0.9561666666666667 | 0.003575033454043592 | +| Epoch_1_batch_5999.pt | 0.9514999999999999 | 0.0028808649249920386 | +| Epoch_1.pt | 0.9503333333333334 | 0.0038232556742411657 | +| Epoch_1_batch_2999.pt | 0.9316666666666666 | 0.004849589520621147 | +| Epoch_0.pt | 0.8753333333333334 | 0.005873144571734449 | +| Epoch_0_batch_5999.pt | 0.8705 | 0.007762087348130007 | +| Epoch_0_batch_2999.pt | 0.6849999999999999 | 0.00524698620138559 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..6529b50e5ded48f011658789480708378876fbda --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_calfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14.pt | 0.9555000000000001 | 0.0035228530805528255 | +| Epoch_12_batch_5999.pt | 0.9553333333333333 | 0.0033035708327374532 | +| Epoch_12_batch_2999.pt | 0.9551666666666667 | 0.0036552853665768868 | +| Epoch_13_batch_2999.pt | 0.9550000000000001 | 0.003415650255319869 | +| Epoch_15_batch_5999.pt | 0.9550000000000001 | 0.0035048467323527824 | +| Epoch_15.pt | 0.9550000000000001 | 0.003469443332443559 | +| Epoch_17_batch_2999.pt | 0.9550000000000001 | 0.003451605459335352 | +| Epoch_13.pt | 0.9548333333333334 | 0.003482318654269964 | +| Epoch_16_batch_2999.pt | 0.9548333333333334 | 0.0033834199952411386 | +| Epoch_11_batch_5999.pt | 0.9546666666666669 | 0.0036666666666666636 | +| Epoch_13_batch_5999.pt | 0.9546666666666667 | 0.0035642255405212153 | +| Epoch_14_batch_2999.pt | 0.9546666666666667 | 0.003782676562344275 | +| Epoch_14_batch_5999.pt | 0.9546666666666667 | 0.0036158089100606665 | +| Epoch_12.pt | 0.9545 | 0.003478771600989619 | +| Epoch_15_batch_2999.pt | 0.9545 | 0.003592258480072717 | +| Epoch_16_batch_5999.pt | 0.9545 | 0.0035663897434897846 | +| Epoch_17_batch_5999.pt | 0.9545 | 0.0038333333333333388 | +| Epoch_16.pt | 0.9543333333333335 | 0.0033351846710674804 | +| Epoch_11_batch_2999.pt | 0.9541666666666668 | 0.0036955929710139096 | +| Epoch_11.pt | 0.9540000000000001 | 0.0035676876351116303 | +| Epoch_10.pt | 0.9538333333333334 | 0.003668770440244244 | +| Epoch_17.pt | 0.9538333333333334 | 0.0032683480177961646 | +| Epoch_10_batch_2999.pt | 0.9536666666666667 | 0.003581502546952496 | +| Epoch_10_batch_5999.pt | 0.9531666666666666 | 0.0036213529972738425 | +| Epoch_9_batch_5999.pt | 0.9511666666666667 | 0.0033152286106301497 | +| Epoch_8_batch_5999.pt | 0.9503333333333334 | 0.004065816547451553 | +| Epoch_7_batch_2999.pt | 0.9491666666666667 | 0.0038268866887321102 | +| Epoch_8_batch_2999.pt | 0.9490000000000001 | 0.003567687635111631 | +| Epoch_8.pt | 0.9481666666666667 | 0.0037634532343199896 | +| Epoch_5_batch_2999.pt | 0.9481666666666666 | 0.003672133971035721 | +| Epoch_9_batch_2999.pt | 0.9473333333333335 | 0.00271256791460748 | +| Epoch_6_batch_5999.pt | 0.9470000000000001 | 0.003130889511912304 | +| Epoch_6.pt | 0.9469999999999998 | 0.0037333994703136505 | +| Epoch_5.pt | 0.9465 | 0.004070747800382749 | +| Epoch_6_batch_2999.pt | 0.9463333333333332 | 0.0032087842395985876 | +| Epoch_7_batch_5999.pt | 0.9454999999999998 | 0.0036687704402442313 | +| Epoch_3.pt | 0.945 | 0.00405973909032113 | +| Epoch_4_batch_5999.pt | 0.945 | 0.003676753801727619 | +| Epoch_7.pt | 0.945 | 0.003181738014061412 | +| Epoch_4_batch_2999.pt | 0.9448333333333332 | 0.0029963970133692844 | +| Epoch_4.pt | 0.9443333333333334 | 0.004319064827905955 | +| Epoch_5_batch_5999.pt | 0.9441666666666666 | 0.0033170900530062612 | +| Epoch_9.pt | 0.9434999999999999 | 0.0036298658275376963 | +| Epoch_3_batch_5999.pt | 0.9433333333333334 | 0.003617515688022157 | +| Epoch_3_batch_2999.pt | 0.9425000000000001 | 0.004446180216603749 | +| Epoch_2_batch_5999.pt | 0.9404999999999999 | 0.0037271940261598873 | +| Epoch_2.pt | 0.9393333333333335 | 0.0030449310235654884 | +| Epoch_2_batch_2999.pt | 0.9381666666666666 | 0.0037222222222222244 | +| Epoch_1_batch_5999.pt | 0.9325000000000001 | 0.003524604872347089 | +| Epoch_1.pt | 0.9285 | 0.004788424829281446 | +| Epoch_1_batch_2999.pt | 0.9228333333333334 | 0.004444791653104356 | +| Epoch_0.pt | 0.883 | 0.005004935835357867 | +| Epoch_0_batch_5999.pt | 0.8643333333333333 | 0.003584947956644817 | +| Epoch_0_batch_2999.pt | 0.6809999999999999 | 0.0062321349610578464 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..41e91bd0b279754471107992e360f33c427b54f4 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_cplfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_2999.pt | 0.8971666666666666 | 0.00495691311748764 | +| Epoch_13.pt | 0.8968333333333334 | 0.004877828397611301 | +| Epoch_15_batch_2999.pt | 0.8965 | 0.005640735877043695 | +| Epoch_13_batch_5999.pt | 0.8963333333333333 | 0.0050844716393989116 | +| Epoch_11_batch_5999.pt | 0.8961666666666668 | 0.004944444444444445 | +| Epoch_16.pt | 0.8961666666666668 | 0.0055890656035680695 | +| Epoch_15_batch_5999.pt | 0.8958333333333334 | 0.005512331854046509 | +| Epoch_14.pt | 0.8956666666666667 | 0.005573304979548648 | +| Epoch_14_batch_5999.pt | 0.8955 | 0.005863940865078349 | +| Epoch_12.pt | 0.8953333333333335 | 0.00519852780679537 | +| Epoch_14_batch_2999.pt | 0.8953333333333335 | 0.005379430416404531 | +| Epoch_17_batch_5999.pt | 0.8953333333333333 | 0.00587839736284947 | +| Epoch_16_batch_2999.pt | 0.8951666666666668 | 0.005668028158881761 | +| Epoch_17.pt | 0.8950000000000001 | 0.005561108336107648 | +| Epoch_12_batch_2999.pt | 0.8946666666666667 | 0.006145358581788812 | +| Epoch_16_batch_5999.pt | 0.8946666666666667 | 0.00571331561430331 | +| Epoch_17_batch_2999.pt | 0.8946666666666665 | 0.005783117190965826 | +| Epoch_10.pt | 0.8945000000000001 | 0.005550275268448907 | +| Epoch_12_batch_5999.pt | 0.8939999999999999 | 0.006030785220049735 | +| Epoch_11.pt | 0.8934999999999998 | 0.005290627632024459 | +| Epoch_15.pt | 0.8931666666666667 | 0.0056734708604996124 | +| Epoch_11_batch_2999.pt | 0.8925000000000001 | 0.005484264808871577 | +| Epoch_10_batch_5999.pt | 0.8903333333333334 | 0.005447844743169452 | +| Epoch_10_batch_2999.pt | 0.8871666666666667 | 0.0050494468588397744 | +| Epoch_9_batch_2999.pt | 0.8666666666666668 | 0.006295206877429018 | +| Epoch_6_batch_2999.pt | 0.8665 | 0.0059340511425975155 | +| Epoch_4_batch_5999.pt | 0.8651666666666668 | 0.005743756674924583 | +| Epoch_9_batch_5999.pt | 0.8644999999999999 | 0.006587727085129446 | +| Epoch_7_batch_2999.pt | 0.8640000000000001 | 0.005358735800794444 | +| Epoch_5_batch_2999.pt | 0.8636666666666667 | 0.004477653706579981 | +| Epoch_6_batch_5999.pt | 0.8633333333333333 | 0.005091750772173148 | +| Epoch_5.pt | 0.8629999999999999 | 0.006434858771364556 | +| Epoch_7.pt | 0.8621666666666667 | 0.005957928631684579 | +| Epoch_3_batch_5999.pt | 0.8619999999999999 | 0.00703957069398096 | +| Epoch_8_batch_5999.pt | 0.8616666666666667 | 0.006662035428409452 | +| Epoch_2_batch_5999.pt | 0.8601666666666666 | 0.006032064527932027 | +| Epoch_8_batch_2999.pt | 0.8596666666666668 | 0.0048673769141798886 | +| Epoch_8.pt | 0.8583333333333334 | 0.006196374886043859 | +| Epoch_7_batch_5999.pt | 0.8578333333333334 | 0.0051523098020495985 | +| Epoch_5_batch_5999.pt | 0.857 | 0.005576626707257601 | +| Epoch_4_batch_2999.pt | 0.8551666666666666 | 0.006976371054238714 | +| Epoch_6.pt | 0.8546666666666667 | 0.007083278866892988 | +| Epoch_3.pt | 0.8545 | 0.006440851488835504 | +| Epoch_4.pt | 0.8543333333333335 | 0.005806552280201743 | +| Epoch_9.pt | 0.8526666666666667 | 0.006667592528301102 | +| Epoch_3_batch_2999.pt | 0.8526666666666666 | 0.005693834655697309 | +| Epoch_2_batch_2999.pt | 0.8458333333333334 | 0.003745367509040703 | +| Epoch_1_batch_5999.pt | 0.8423333333333334 | 0.005595412583117408 | +| Epoch_2.pt | 0.8401666666666665 | 0.006188649506641124 | +| Epoch_1.pt | 0.8381666666666666 | 0.007198465199927541 | +| Epoch_1_batch_2999.pt | 0.8153333333333332 | 0.006357653111519986 | +| Epoch_0.pt | 0.7558333333333334 | 0.006827911127890455 | +| Epoch_0_batch_5999.pt | 0.7536666666666667 | 0.007118052168020876 | +| Epoch_0_batch_2999.pt | 0.6213333333333333 | 0.007229910437776639 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..65e2c0bed80184c1d3493bb2df6501b53e3bea7c --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_11_batch_2999.pt | 0.9984999999999999 | 0.000524110062892033 | +| Epoch_13_batch_2999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_13_batch_5999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_13.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_14_batch_5999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_15_batch_2999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_15.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_16_batch_2999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_16_batch_5999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_16.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_17_batch_2999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_17_batch_5999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_17.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_11.pt | 0.9983333333333333 | 0.000608580619450185 | +| Epoch_10_batch_5999.pt | 0.9981666666666668 | 0.0005800170282728054 | +| Epoch_10.pt | 0.9981666666666668 | 0.0005800170282728054 | +| Epoch_12_batch_2999.pt | 0.9981666666666665 | 0.0006309898162000297 | +| Epoch_12.pt | 0.9981666666666665 | 0.0006309898162000297 | +| Epoch_10_batch_2999.pt | 0.998 | 0.000544331053951814 | +| Epoch_11_batch_5999.pt | 0.998 | 0.0007370277311900908 | +| Epoch_12_batch_5999.pt | 0.998 | 0.0005983516452371637 | +| Epoch_14_batch_2999.pt | 0.9978333333333333 | 0.0008258927081843653 | +| Epoch_15_batch_5999.pt | 0.9978333333333333 | 0.0007049209744694192 | +| Epoch_7.pt | 0.9976666666666667 | 0.0007535922203472518 | +| Epoch_14.pt | 0.9976666666666667 | 0.0008678055195451877 | +| Epoch_8_batch_5999.pt | 0.9973333333333333 | 0.0009686442096757044 | +| Epoch_9_batch_2999.pt | 0.9973333333333333 | 0.000753592220347253 | +| Epoch_8_batch_2999.pt | 0.9971666666666668 | 0.0009638528651609697 | +| Epoch_7_batch_2999.pt | 0.9971666666666665 | 0.0009953596037316056 | +| Epoch_4.pt | 0.9969999999999999 | 0.0007370277311900913 | +| Epoch_3.pt | 0.9968333333333333 | 0.0009111788592698171 | +| Epoch_6_batch_2999.pt | 0.9968333333333333 | 0.0008766518798921921 | +| Epoch_6.pt | 0.9968333333333333 | 0.0008031573497111664 | +| Epoch_9_batch_5999.pt | 0.9968333333333333 | 0.0008407081083567489 | +| Epoch_2_batch_2999.pt | 0.9964999999999999 | 0.0007637626158259766 | +| Epoch_3_batch_2999.pt | 0.9964999999999999 | 0.0009765775461803867 | +| Epoch_6_batch_5999.pt | 0.9964999999999999 | 0.0012533904636309393 | +| Epoch_8.pt | 0.9964999999999999 | 0.0006309898162000248 | +| Epoch_2_batch_5999.pt | 0.9963333333333333 | 0.0010183501544346332 | +| Epoch_4_batch_2999.pt | 0.9963333333333333 | 0.0012372809695177837 | +| Epoch_9.pt | 0.9961666666666666 | 0.0009953596037316098 | +| Epoch_1_batch_5999.pt | 0.9959999999999999 | 0.0009686442096757069 | +| Epoch_3_batch_5999.pt | 0.9959999999999999 | 0.0009026709338484409 | +| Epoch_7_batch_5999.pt | 0.9959999999999999 | 0.0011439589045541155 | +| Epoch_5_batch_2999.pt | 0.9958333333333332 | 0.0012729376930432825 | +| Epoch_1.pt | 0.9956666666666667 | 0.0009026709338484367 | +| Epoch_2.pt | 0.9956666666666667 | 0.0009026709338484435 | +| Epoch_5.pt | 0.9956666666666667 | 0.0009362388636862605 | +| Epoch_4_batch_5999.pt | 0.9953333333333333 | 0.0011600340565456116 | +| Epoch_5_batch_5999.pt | 0.9953333333333333 | 0.0011331154474650662 | +| Epoch_1_batch_2999.pt | 0.9945 | 0.0010258991840344132 | +| Epoch_0.pt | 0.9848333333333332 | 0.0019317042945237446 | +| Epoch_0_batch_5999.pt | 0.984 | 0.002701165729142936 | +| Epoch_0_batch_2999.pt | 0.9145000000000001 | 0.005533567598789261 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_rfw_African.txt b/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_rfw_African.txt new file mode 100644 index 0000000000000000000000000000000000000000..90d6de2396abfcd7db92afb43ab88cb160a96c90 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_rfw_African.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_12_batch_5999.pt | 0.9585000000000001 | 0.002114762923408262 | +| Epoch_15_batch_5999.pt | 0.9581666666666667 | 0.002870131411797666 | +| Epoch_17_batch_2999.pt | 0.9576666666666668 | 0.002701165729142934 | +| Epoch_16.pt | 0.9573333333333334 | 0.002824058894919745 | +| Epoch_11.pt | 0.9570000000000001 | 0.0031991511219751087 | +| Epoch_16_batch_2999.pt | 0.9568333333333335 | 0.0028158501994387094 | +| Epoch_16_batch_5999.pt | 0.9568333333333335 | 0.0026463345252921264 | +| Epoch_14_batch_5999.pt | 0.9566666666666667 | 0.0030832082056692542 | +| Epoch_12_batch_2999.pt | 0.9566666666666664 | 0.0030731814857643033 | +| Epoch_15.pt | 0.9565000000000001 | 0.0028915585954829154 | +| Epoch_15_batch_2999.pt | 0.9560000000000001 | 0.0025962936545662106 | +| Epoch_17_batch_5999.pt | 0.9558333333333333 | 0.002548904388212106 | +| Epoch_14_batch_2999.pt | 0.9556666666666669 | 0.002867441755680878 | +| Epoch_10_batch_5999.pt | 0.9556666666666667 | 0.0028349668493717955 | +| Epoch_14.pt | 0.9555 | 0.002756025945513882 | +| Epoch_17.pt | 0.9555 | 0.0028114624286399987 | +| Epoch_11_batch_2999.pt | 0.9551666666666666 | 0.0027267535981795677 | +| Epoch_10.pt | 0.9550000000000001 | 0.00262936879248872 | +| Epoch_13_batch_5999.pt | 0.9550000000000001 | 0.003113094605804871 | +| Epoch_13_batch_2999.pt | 0.9548333333333332 | 0.002539198862672544 | +| Epoch_13.pt | 0.9546666666666667 | 0.0030510067150546646 | +| Epoch_11_batch_5999.pt | 0.9545 | 0.0022089883724523405 | +| Epoch_10_batch_2999.pt | 0.9520000000000002 | 0.0036158089100606656 | +| Epoch_12.pt | 0.9506666666666665 | 0.0023200681130912263 | +| Epoch_8_batch_2999.pt | 0.9353333333333333 | 0.003020506048681821 | +| Epoch_9_batch_2999.pt | 0.9336666666666668 | 0.0031111111111111096 | +| Epoch_8_batch_5999.pt | 0.9321666666666667 | 0.004105476619298289 | +| Epoch_7_batch_5999.pt | 0.9285 | 0.0050396575427451495 | +| Epoch_9_batch_5999.pt | 0.9283333333333333 | 0.004059739090321137 | +| Epoch_6.pt | 0.9261666666666667 | 0.0033888888888888914 | +| Epoch_5.pt | 0.9260000000000002 | 0.005410323921751044 | +| Epoch_7_batch_2999.pt | 0.9251666666666665 | 0.003318950451387522 | +| Epoch_4_batch_5999.pt | 0.9245000000000001 | 0.004142895152778256 | +| Epoch_4_batch_2999.pt | 0.9235 | 0.0033002992756175904 | +| Epoch_6_batch_5999.pt | 0.9231666666666667 | 0.0034016154477425845 | +| Epoch_5_batch_2999.pt | 0.9226666666666666 | 0.003818408950542123 | +| Epoch_6_batch_2999.pt | 0.9219999999999999 | 0.004170738750916325 | +| Epoch_8.pt | 0.9198333333333334 | 0.003047464033756107 | +| Epoch_7.pt | 0.9191666666666667 | 0.004383259399460977 | +| Epoch_3_batch_5999.pt | 0.9176666666666666 | 0.0041514537093932016 | +| Epoch_9.pt | 0.9163333333333334 | 0.003887301263230207 | +| Epoch_3_batch_2999.pt | 0.9159999999999998 | 0.004007708621526988 | +| Epoch_3.pt | 0.9153333333333332 | 0.0033774853674601504 | +| Epoch_5_batch_5999.pt | 0.9136666666666665 | 0.0052340292059172835 | +| Epoch_2.pt | 0.9121666666666666 | 0.0045409657970932075 | +| Epoch_4.pt | 0.9105000000000001 | 0.005140315117400181 | +| Epoch_2_batch_5999.pt | 0.9091666666666667 | 0.003703935177951839 | +| Epoch_1_batch_5999.pt | 0.8968333333333334 | 0.0029128281619818504 | +| Epoch_2_batch_2999.pt | 0.8956666666666667 | 0.005271633850789535 | +| Epoch_1.pt | 0.8773333333333333 | 0.004114113018127469 | +| Epoch_1_batch_2999.pt | 0.8480000000000001 | 0.004660048216780169 | +| Epoch_0_batch_5999.pt | 0.766 | 0.005562218227015034 | +| Epoch_0.pt | 0.7656666666666666 | 0.007180219742846001 | +| Epoch_0_batch_2999.pt | 0.588 | 0.010020965676341762 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_rfw_Asian.txt b/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_rfw_Asian.txt new file mode 100644 index 0000000000000000000000000000000000000000..88bdd36f6fe13a56dbc3d6a2f469333eb429747c --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_rfw_Asian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_2999.pt | 0.9543333333333335 | 0.002712567914607495 | +| Epoch_16_batch_2999.pt | 0.9540000000000001 | 0.0028566578071516557 | +| Epoch_14_batch_2999.pt | 0.954 | 0.0029418227321941636 | +| Epoch_13_batch_5999.pt | 0.9536666666666666 | 0.0027532248207475327 | +| Epoch_13.pt | 0.9535 | 0.0026810952248919277 | +| Epoch_16.pt | 0.9535 | 0.002715410979966658 | +| Epoch_12_batch_5999.pt | 0.9531666666666666 | 0.0022005891467042583 | +| Epoch_14_batch_5999.pt | 0.9531666666666666 | 0.0030776975521032367 | +| Epoch_14.pt | 0.953 | 0.0029270977494043372 | +| Epoch_15_batch_2999.pt | 0.9528333333333334 | 0.002833333333333332 | +| Epoch_17_batch_5999.pt | 0.9528333333333332 | 0.0030332519321597125 | +| Epoch_15_batch_5999.pt | 0.9525 | 0.0031841621957571357 | +| Epoch_15.pt | 0.9525 | 0.0025609845714702514 | +| Epoch_17_batch_2999.pt | 0.9523333333333334 | 0.003055050463303896 | +| Epoch_16_batch_5999.pt | 0.9518333333333333 | 0.0029339435392246424 | +| Epoch_17.pt | 0.9515 | 0.0028048679025254124 | +| Epoch_11.pt | 0.9503333333333333 | 0.002494438257849298 | +| Epoch_12_batch_2999.pt | 0.9501666666666667 | 0.002527014536787585 | +| Epoch_11_batch_5999.pt | 0.9498333333333331 | 0.0021293075440818763 | +| Epoch_12.pt | 0.9496666666666667 | 0.0025312857221987824 | +| Epoch_10_batch_5999.pt | 0.9490000000000001 | 0.002436856911051256 | +| Epoch_10.pt | 0.9481666666666666 | 0.0027716599296147572 | +| Epoch_10_batch_2999.pt | 0.9456666666666667 | 0.0015355861067872512 | +| Epoch_11_batch_2999.pt | 0.9441666666666666 | 0.0026323017201071385 | +| Epoch_9_batch_5999.pt | 0.9259999999999999 | 0.0031348302177035244 | +| Epoch_8_batch_5999.pt | 0.9231666666666667 | 0.003097689302100148 | +| Epoch_7_batch_5999.pt | 0.923 | 0.002863133050383362 | +| Epoch_8_batch_2999.pt | 0.9221666666666668 | 0.0036094013046179493 | +| Epoch_5_batch_2999.pt | 0.922 | 0.0025555555555555596 | +| Epoch_5.pt | 0.9215 | 0.0038204291659898297 | +| Epoch_6_batch_2999.pt | 0.9209999999999999 | 0.00347122207818074 | +| Epoch_7_batch_2999.pt | 0.9208333333333334 | 0.004254627110787955 | +| Epoch_9_batch_2999.pt | 0.9199999999999999 | 0.003998456492321463 | +| Epoch_4_batch_5999.pt | 0.9175000000000001 | 0.0031451510788262677 | +| Epoch_6_batch_5999.pt | 0.917 | 0.0028846122190549287 | +| Epoch_8.pt | 0.917 | 0.004058218303944369 | +| Epoch_3_batch_5999.pt | 0.9163333333333332 | 0.003511884584284245 | +| Epoch_3_batch_2999.pt | 0.9146666666666666 | 0.003349958540373629 | +| Epoch_4_batch_2999.pt | 0.9138333333333334 | 0.003913020367320081 | +| Epoch_7.pt | 0.9125 | 0.003515837184954837 | +| Epoch_6.pt | 0.9118333333333333 | 0.003629865827537696 | +| Epoch_5_batch_5999.pt | 0.9101666666666667 | 0.0025754059969998306 | +| Epoch_2_batch_5999.pt | 0.9096666666666666 | 0.004784233364802442 | +| Epoch_3.pt | 0.9011666666666667 | 0.004805154125815265 | +| Epoch_2.pt | 0.8965 | 0.0029860788111948223 | +| Epoch_9.pt | 0.8965 | 0.0039003798485484713 | +| Epoch_4.pt | 0.8944999999999999 | 0.004238637680047214 | +| Epoch_1_batch_5999.pt | 0.8873333333333333 | 0.003471222078180738 | +| Epoch_2_batch_2999.pt | 0.8833333333333332 | 0.0037515428924742534 | +| Epoch_1.pt | 0.8821666666666665 | 0.005122270426382004 | +| Epoch_1_batch_2999.pt | 0.8546666666666667 | 0.004936635531449569 | +| Epoch_0.pt | 0.7931666666666667 | 0.006052496679006336 | +| Epoch_0_batch_5999.pt | 0.7801666666666667 | 0.004405734198423739 | +| Epoch_0_batch_2999.pt | 0.6598333333333334 | 0.007241214344651393 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_rfw_Caucasian.txt b/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_rfw_Caucasian.txt new file mode 100644 index 0000000000000000000000000000000000000000..5bac63d14fbd36cda12e00c6f789523ba91336be --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_rfw_Caucasian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_5999.pt | 0.9908333333333333 | 0.0008695819912499194 | +| Epoch_13_batch_2999.pt | 0.9906666666666666 | 0.0007535922203472496 | +| Epoch_13.pt | 0.9906666666666666 | 0.0009362388636862635 | +| Epoch_14_batch_5999.pt | 0.9906666666666666 | 0.0008678055195451845 | +| Epoch_14.pt | 0.9904999999999999 | 0.0008624541497922234 | +| Epoch_15_batch_2999.pt | 0.9903333333333334 | 0.0009229582069908943 | +| Epoch_16_batch_5999.pt | 0.9903333333333333 | 0.0010772621905369623 | +| Epoch_15_batch_5999.pt | 0.9901666666666665 | 0.0009444444444444424 | +| Epoch_17_batch_2999.pt | 0.9901666666666665 | 0.0010076865081787242 | +| Epoch_11.pt | 0.9899999999999999 | 0.0010540925533894627 | +| Epoch_15.pt | 0.9898333333333333 | 0.0011772011166898408 | +| Epoch_12_batch_2999.pt | 0.9898333333333331 | 0.0009765775461803873 | +| Epoch_14_batch_2999.pt | 0.9894999999999999 | 0.000825892708184358 | +| Epoch_17_batch_5999.pt | 0.9894999999999999 | 0.000963852865160968 | +| Epoch_10.pt | 0.9893333333333333 | 0.0010304020550550815 | +| Epoch_12.pt | 0.9893333333333333 | 0.0007535922203472558 | +| Epoch_10_batch_5999.pt | 0.9891666666666665 | 0.0011180339887499004 | +| Epoch_16_batch_2999.pt | 0.9891666666666665 | 0.0009043789220055396 | +| Epoch_11_batch_5999.pt | 0.9889999999999999 | 0.0010886621079036394 | +| Epoch_17.pt | 0.9888333333333332 | 0.0009312808119022304 | +| Epoch_12_batch_5999.pt | 0.9884999999999998 | 0.0009444444444444462 | +| Epoch_16.pt | 0.9883333333333333 | 0.0011111111111111087 | +| Epoch_10_batch_2999.pt | 0.9881666666666666 | 0.0011235415786753741 | +| Epoch_11_batch_2999.pt | 0.9881666666666666 | 0.001177201116689838 | +| Epoch_9_batch_5999.pt | 0.9790000000000001 | 0.0013877773329774217 | +| Epoch_9_batch_2999.pt | 0.976 | 0.0014315665251916796 | +| Epoch_8_batch_2999.pt | 0.9753333333333334 | 0.0026270200927859784 | +| Epoch_6_batch_2999.pt | 0.9736666666666667 | 0.0014010578014353875 | +| Epoch_7_batch_5999.pt | 0.9734999999999999 | 0.001458267194267411 | +| Epoch_4_batch_5999.pt | 0.9730000000000001 | 0.001567415108851769 | +| Epoch_6_batch_5999.pt | 0.9726666666666667 | 0.0023465235646603203 | +| Epoch_8_batch_5999.pt | 0.9721666666666667 | 0.0018600743380870254 | +| Epoch_7_batch_2999.pt | 0.9718333333333333 | 0.0025633937766798513 | +| Epoch_7.pt | 0.9701666666666664 | 0.002269633135090615 | +| Epoch_5.pt | 0.97 | 0.0030530292586742366 | +| Epoch_5_batch_2999.pt | 0.9693333333333334 | 0.0012472191289246478 | +| Epoch_8.pt | 0.9683333333333334 | 0.0028109134757052343 | +| Epoch_5_batch_5999.pt | 0.9678333333333334 | 0.002222916558193617 | +| Epoch_3_batch_2999.pt | 0.9676666666666668 | 0.0023200681130912397 | +| Epoch_3.pt | 0.9666666666666666 | 0.0018921540406584946 | +| Epoch_4_batch_2999.pt | 0.9665000000000001 | 0.001915659961062966 | +| Epoch_3_batch_5999.pt | 0.9663333333333334 | 0.001855921454276676 | +| Epoch_9.pt | 0.9646666666666668 | 0.002650413431528127 | +| Epoch_4.pt | 0.9646666666666665 | 0.0024317854031377004 | +| Epoch_2_batch_5999.pt | 0.9644999999999999 | 0.002208988372452337 | +| Epoch_6.pt | 0.9639999999999999 | 0.0018790593916986366 | +| Epoch_2.pt | 0.9628333333333334 | 0.0026063786901644255 | +| Epoch_2_batch_2999.pt | 0.9559999999999998 | 0.0029627314724385272 | +| Epoch_1_batch_5999.pt | 0.9478333333333333 | 0.002629955639676583 | +| Epoch_1.pt | 0.9470000000000001 | 0.003081205471969342 | +| Epoch_1_batch_2999.pt | 0.9291666666666666 | 0.003035286306588386 | +| Epoch_0.pt | 0.8735000000000002 | 0.0022966696231771534 | +| Epoch_0_batch_5999.pt | 0.8663333333333334 | 0.005498596902959382 | +| Epoch_0_batch_2999.pt | 0.7356666666666667 | 0.005074749887408547 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_rfw_Indian.txt b/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_rfw_Indian.txt new file mode 100644 index 0000000000000000000000000000000000000000..79947719bf218f1d0fb4d7dd7acf14e0d1a1a5b1 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNet152_irse/accu_files/accu_rfw_Indian.txt @@ -0,0 +1,40 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_2999.pt | 0.9626666666666667 | 0.0017777777777777796 | +| Epoch_15_batch_5999.pt | 0.9626666666666667 | 0.0020214894887400333 | +| Epoch_16.pt | 0.9625 | 0.001829963232444516 | +| Epoch_17_batch_5999.pt | 0.9623333333333333 | 0.0022662308949301267 | +| Epoch_14_batch_5999.pt | 0.9623333333333332 | 0.002051798368068823 | +| Epoch_12_batch_2999.pt | 0.9621666666666666 | 0.002277777777777779 | +| Epoch_16_batch_2999.pt | 0.9620000000000001 | 0.0017177360926378088 | +| Epoch_17.pt | 0.962 | 0.0019212907184211804 | +| Epoch_13.pt | 0.9618333333333334 | 0.0018994801108087572 | +| Epoch_16_batch_5999.pt | 0.9618333333333332 | 0.0019945914523351368 | +| Epoch_17_batch_2999.pt | 0.9615 | 0.0017293758240303758 | +| Epoch_13_batch_5999.pt | 0.9613333333333334 | 0.0021631024815479787 | +| Epoch_14_batch_2999.pt | 0.961 | 0.0022662308949301267 | +| Epoch_14.pt | 0.9601666666666666 | 0.0020705161281760255 | +| Epoch_15.pt | 0.9601666666666666 | 0.0017471316881684884 | +| Epoch_13_batch_2999.pt | 0.96 | 0.002263505420829262 | +| Epoch_11.pt | 0.9599999999999997 | 0.0022222222222222244 | +| Epoch_12_batch_5999.pt | 0.9594999999999999 | 0.002331348362039706 | +| Epoch_10_batch_5999.pt | 0.959 | 0.0024993826398226654 | +| Epoch_11_batch_5999.pt | 0.9586666666666666 | 0.0018392161508052006 | +| Epoch_11_batch_2999.pt | 0.9573333333333334 | 0.002140151142695358 | +| Epoch_12.pt | 0.9571666666666667 | 0.0019092044752710689 | +| Epoch_10_batch_2999.pt | 0.9564999999999999 | 0.0018666997351568324 | +| Epoch_10.pt | 0.9563333333333333 | 0.0021914536581462258 | +| Epoch_8_batch_2999.pt | 0.9448333333333332 | 0.0022696331350906137 | +| Epoch_9_batch_5999.pt | 0.9443333333333334 | 0.002655067365633006 | +| Epoch_6_batch_2999.pt | 0.9421666666666667 | 0.0025343321617682267 | +| Epoch_7_batch_5999.pt | 0.9421666666666667 | 0.002865826750339763 | +| Epoch_7.pt | 0.942 | 0.0027866524897743198 | +| Epoch_5.pt | 0.9403333333333335 | 0.002775554665954841 | +| Epoch_7_batch_2999.pt | 0.9395 | 0.0019883922409081414 | +| Epoch_3_batch_5999.pt | 0.9393333333333332 | 0.0031249691356500485 | +| Epoch_9_batch_2999.pt | 0.9383333333333332 | 0.0028867513459481286 | +| Epoch_8_batch_5999.pt | 0.9378333333333332 | 0.002618193703988476 | +| Epoch_5_batch_2999.pt | 0.9375 | 0.0028246052930858104 | +| Epoch_4_batch_5999.pt | 0.9368333333333334 | 0.0025633937766798456 | +| Epoch_4_batch_2999.pt | 0.9356666666666665 | 0.0032979604621457353 | diff --git a/bob/bio/facexzoo/models/backbones/ResNet152_irse/log.log b/bob/bio/facexzoo/models/backbones/ResNet152_irse/log.log new file mode 100644 index 0000000000000000000000000000000000000000..71ec8397a0b012137ab35ef285551943759ca0e4 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNet152_irse/log.log @@ -0,0 +1,655 @@ +INFO 2020-12-02 16:32:30 train.py: 177] Start optimization. +INFO 2020-12-02 16:32:30 train.py: 178] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='ResNet', batch_size=512, data_root='/export/home/wangjun492/wj_data/faceX-Zoo/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='MV-Softmax', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='mv-resnet152', train_file='/export/home/wangjun492/wj_data/faceX-Zoo/deepglint/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7f24172304a8>) +backbone param: +{'depth': 152, 'drop_ratio': 0.4, 'net_mode': 'ir_se', 'feat_dim': 512, 'out_h': 7, 'out_w': 7} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +INFO 2020-12-02 16:32:52 train.py: 79] Epoch 0, iter 0/6416, lr 0.100000, loss 16.178095 +INFO 2020-12-02 16:38:23 train.py: 79] Epoch 0, iter 200/6416, lr 0.100000, loss 15.722174 +INFO 2020-12-02 16:43:54 train.py: 79] Epoch 0, iter 400/6416, lr 0.100000, loss 15.293269 +INFO 2020-12-02 16:49:25 train.py: 79] Epoch 0, iter 600/6416, lr 0.100000, loss 15.186101 +INFO 2020-12-02 16:54:56 train.py: 79] Epoch 0, iter 800/6416, lr 0.100000, loss 15.095860 +INFO 2020-12-02 17:00:28 train.py: 79] Epoch 0, iter 1000/6416, lr 0.100000, loss 14.994113 +INFO 2020-12-02 17:06:00 train.py: 79] Epoch 0, iter 1200/6416, lr 0.100000, loss 14.869156 +INFO 2020-12-02 17:11:32 train.py: 79] Epoch 0, iter 1400/6416, lr 0.100000, loss 14.682795 +INFO 2020-12-02 17:17:04 train.py: 79] Epoch 0, iter 1600/6416, lr 0.100000, loss 14.429536 +INFO 2020-12-02 17:22:36 train.py: 79] Epoch 0, iter 1800/6416, lr 0.100000, loss 14.161485 +INFO 2020-12-02 17:28:08 train.py: 79] Epoch 0, iter 2000/6416, lr 0.100000, loss 13.890918 +INFO 2020-12-02 17:33:40 train.py: 79] Epoch 0, iter 2200/6416, lr 0.100000, loss 13.619366 +INFO 2020-12-02 17:39:12 train.py: 79] Epoch 0, iter 2400/6416, lr 0.100000, loss 13.314948 +INFO 2020-12-02 17:44:43 train.py: 79] Epoch 0, iter 2600/6416, lr 0.100000, loss 13.002598 +INFO 2020-12-02 17:50:15 train.py: 79] Epoch 0, iter 2800/6416, lr 0.100000, loss 12.655731 +INFO 2020-12-02 17:55:45 train.py: 92] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2020-12-02 17:55:47 train.py: 79] Epoch 0, iter 3000/6416, lr 0.100000, loss 12.355666 +INFO 2020-12-02 18:01:19 train.py: 79] Epoch 0, iter 3200/6416, lr 0.100000, loss 12.111276 +INFO 2020-12-02 18:06:50 train.py: 79] Epoch 0, iter 3400/6416, lr 0.100000, loss 11.970935 +INFO 2020-12-02 18:12:21 train.py: 79] Epoch 0, iter 3600/6416, lr 0.100000, loss 12.004759 +INFO 2020-12-02 18:17:51 train.py: 79] Epoch 0, iter 3800/6416, lr 0.100000, loss 12.173104 +INFO 2020-12-02 18:23:22 train.py: 79] Epoch 0, iter 4000/6416, lr 0.100000, loss 12.465508 +INFO 2020-12-02 18:28:51 train.py: 79] Epoch 0, iter 4200/6416, lr 0.100000, loss 12.848047 +INFO 2020-12-02 18:34:21 train.py: 79] Epoch 0, iter 4400/6416, lr 0.100000, loss 13.270324 +INFO 2020-12-02 18:39:50 train.py: 79] Epoch 0, iter 4600/6416, lr 0.100000, loss 13.661355 +INFO 2020-12-02 18:45:18 train.py: 79] Epoch 0, iter 4800/6416, lr 0.100000, loss 13.982073 +INFO 2020-12-02 18:50:47 train.py: 79] Epoch 0, iter 5000/6416, lr 0.100000, loss 14.266946 +INFO 2020-12-02 18:56:15 train.py: 79] Epoch 0, iter 5200/6416, lr 0.100000, loss 14.419807 +INFO 2020-12-02 19:01:42 train.py: 79] Epoch 0, iter 5400/6416, lr 0.100000, loss 14.488699 +INFO 2020-12-02 19:07:10 train.py: 79] Epoch 0, iter 5600/6416, lr 0.100000, loss 14.469730 +INFO 2020-12-02 19:12:37 train.py: 79] Epoch 0, iter 5800/6416, lr 0.100000, loss 14.368183 +INFO 2020-12-02 19:18:03 train.py: 92] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2020-12-02 19:18:05 train.py: 79] Epoch 0, iter 6000/6416, lr 0.100000, loss 14.185414 +INFO 2020-12-02 19:23:32 train.py: 79] Epoch 0, iter 6200/6416, lr 0.100000, loss 13.941561 +INFO 2020-12-02 19:28:58 train.py: 79] Epoch 0, iter 6400/6416, lr 0.100000, loss 13.675249 +INFO 2020-12-02 19:29:22 train.py: 97] Save checkpoint Epoch_0.pt to disk... +INFO 2020-12-02 19:29:25 train.py: 79] Epoch 1, iter 0/6416, lr 0.100000, loss 13.437862 +INFO 2020-12-02 19:34:52 train.py: 79] Epoch 1, iter 200/6416, lr 0.100000, loss 13.193642 +INFO 2020-12-02 19:40:18 train.py: 79] Epoch 1, iter 400/6416, lr 0.100000, loss 12.860866 +INFO 2020-12-02 19:45:45 train.py: 79] Epoch 1, iter 600/6416, lr 0.100000, loss 12.522454 +INFO 2020-12-02 19:51:11 train.py: 79] Epoch 1, iter 800/6416, lr 0.100000, loss 12.201575 +INFO 2020-12-02 19:56:37 train.py: 79] Epoch 1, iter 1000/6416, lr 0.100000, loss 11.883126 +INFO 2020-12-02 20:02:03 train.py: 79] Epoch 1, iter 1200/6416, lr 0.100000, loss 11.625596 +INFO 2020-12-02 20:07:29 train.py: 79] Epoch 1, iter 1400/6416, lr 0.100000, loss 11.293950 +INFO 2020-12-02 20:12:56 train.py: 79] Epoch 1, iter 1600/6416, lr 0.100000, loss 11.037240 +INFO 2020-12-02 20:18:22 train.py: 79] Epoch 1, iter 1800/6416, lr 0.100000, loss 10.740246 +INFO 2020-12-02 20:23:48 train.py: 79] Epoch 1, iter 2000/6416, lr 0.100000, loss 10.469370 +INFO 2020-12-02 20:29:14 train.py: 79] Epoch 1, iter 2200/6416, lr 0.100000, loss 10.215419 +INFO 2020-12-02 20:34:41 train.py: 79] Epoch 1, iter 2400/6416, lr 0.100000, loss 9.969037 +INFO 2020-12-02 20:40:07 train.py: 79] Epoch 1, iter 2600/6416, lr 0.100000, loss 9.750741 +INFO 2020-12-02 20:45:33 train.py: 79] Epoch 1, iter 2800/6416, lr 0.100000, loss 9.539316 +INFO 2020-12-02 20:50:58 train.py: 92] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2020-12-02 20:51:00 train.py: 79] Epoch 1, iter 3000/6416, lr 0.100000, loss 9.350437 +INFO 2020-12-02 20:56:26 train.py: 79] Epoch 1, iter 3200/6416, lr 0.100000, loss 9.149724 +INFO 2020-12-02 21:01:52 train.py: 79] Epoch 1, iter 3400/6416, lr 0.100000, loss 9.004838 +INFO 2020-12-02 21:07:17 train.py: 79] Epoch 1, iter 3600/6416, lr 0.100000, loss 8.810904 +INFO 2020-12-02 21:12:43 train.py: 79] Epoch 1, iter 3800/6416, lr 0.100000, loss 8.683816 +INFO 2020-12-02 21:18:09 train.py: 79] Epoch 1, iter 4000/6416, lr 0.100000, loss 8.540958 +INFO 2020-12-02 21:23:36 train.py: 79] Epoch 1, iter 4200/6416, lr 0.100000, loss 8.400602 +INFO 2020-12-02 21:29:02 train.py: 79] Epoch 1, iter 4400/6416, lr 0.100000, loss 8.271969 +INFO 2020-12-02 21:34:28 train.py: 79] Epoch 1, iter 4600/6416, lr 0.100000, loss 8.164128 +INFO 2020-12-02 21:39:54 train.py: 79] Epoch 1, iter 4800/6416, lr 0.100000, loss 8.013629 +INFO 2020-12-02 21:45:20 train.py: 79] Epoch 1, iter 5000/6416, lr 0.100000, loss 7.945607 +INFO 2020-12-02 21:50:45 train.py: 79] Epoch 1, iter 5200/6416, lr 0.100000, loss 7.818117 +INFO 2020-12-02 21:56:11 train.py: 79] Epoch 1, iter 5400/6416, lr 0.100000, loss 7.735166 +INFO 2020-12-02 22:01:37 train.py: 79] Epoch 1, iter 5600/6416, lr 0.100000, loss 7.675649 +INFO 2020-12-02 22:07:03 train.py: 79] Epoch 1, iter 5800/6416, lr 0.100000, loss 7.530980 +INFO 2020-12-02 22:12:28 train.py: 92] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2020-12-02 22:12:30 train.py: 79] Epoch 1, iter 6000/6416, lr 0.100000, loss 7.466132 +INFO 2020-12-02 22:17:56 train.py: 79] Epoch 1, iter 6200/6416, lr 0.100000, loss 7.415678 +INFO 2020-12-02 22:23:21 train.py: 79] Epoch 1, iter 6400/6416, lr 0.100000, loss 7.315983 +INFO 2020-12-02 22:23:45 train.py: 97] Save checkpoint Epoch_1.pt to disk... +INFO 2020-12-02 22:23:48 train.py: 79] Epoch 2, iter 0/6416, lr 0.100000, loss 7.279906 +INFO 2020-12-02 22:29:14 train.py: 79] Epoch 2, iter 200/6416, lr 0.100000, loss 6.741915 +INFO 2020-12-02 22:34:40 train.py: 79] Epoch 2, iter 400/6416, lr 0.100000, loss 6.704193 +INFO 2020-12-02 22:40:06 train.py: 79] Epoch 2, iter 600/6416, lr 0.100000, loss 6.755705 +INFO 2020-12-02 22:45:31 train.py: 79] Epoch 2, iter 800/6416, lr 0.100000, loss 6.749712 +INFO 2020-12-02 22:50:58 train.py: 79] Epoch 2, iter 1000/6416, lr 0.100000, loss 6.715226 +INFO 2020-12-02 22:56:23 train.py: 79] Epoch 2, iter 1200/6416, lr 0.100000, loss 6.709964 +INFO 2020-12-02 23:01:49 train.py: 79] Epoch 2, iter 1400/6416, lr 0.100000, loss 6.712732 +INFO 2020-12-02 23:07:15 train.py: 79] Epoch 2, iter 1600/6416, lr 0.100000, loss 6.657225 +INFO 2020-12-02 23:12:41 train.py: 79] Epoch 2, iter 1800/6416, lr 0.100000, loss 6.636164 +INFO 2020-12-02 23:18:06 train.py: 79] Epoch 2, iter 2000/6416, lr 0.100000, loss 6.612790 +INFO 2020-12-02 23:23:32 train.py: 79] Epoch 2, iter 2200/6416, lr 0.100000, loss 6.584645 +INFO 2020-12-02 23:28:58 train.py: 79] Epoch 2, iter 2400/6416, lr 0.100000, loss 6.568062 +INFO 2020-12-02 23:34:24 train.py: 79] Epoch 2, iter 2600/6416, lr 0.100000, loss 6.504225 +INFO 2020-12-02 23:39:50 train.py: 79] Epoch 2, iter 2800/6416, lr 0.100000, loss 6.490968 +INFO 2020-12-02 23:45:15 train.py: 92] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2020-12-02 23:45:17 train.py: 79] Epoch 2, iter 3000/6416, lr 0.100000, loss 6.462917 +INFO 2020-12-02 23:50:43 train.py: 79] Epoch 2, iter 3200/6416, lr 0.100000, loss 6.406101 +INFO 2020-12-02 23:56:09 train.py: 79] Epoch 2, iter 3400/6416, lr 0.100000, loss 6.382000 +INFO 2020-12-03 00:01:34 train.py: 79] Epoch 2, iter 3600/6416, lr 0.100000, loss 6.336562 +INFO 2020-12-03 00:07:01 train.py: 79] Epoch 2, iter 3800/6416, lr 0.100000, loss 6.274786 +INFO 2020-12-03 00:12:27 train.py: 79] Epoch 2, iter 4000/6416, lr 0.100000, loss 6.282790 +INFO 2020-12-03 00:17:53 train.py: 79] Epoch 2, iter 4200/6416, lr 0.100000, loss 6.250135 +INFO 2020-12-03 00:23:18 train.py: 79] Epoch 2, iter 4400/6416, lr 0.100000, loss 6.208534 +INFO 2020-12-03 00:28:45 train.py: 79] Epoch 2, iter 4600/6416, lr 0.100000, loss 6.142354 +INFO 2020-12-03 00:34:11 train.py: 79] Epoch 2, iter 4800/6416, lr 0.100000, loss 6.137732 +INFO 2020-12-03 00:39:37 train.py: 79] Epoch 2, iter 5000/6416, lr 0.100000, loss 6.095399 +INFO 2020-12-03 00:45:03 train.py: 79] Epoch 2, iter 5200/6416, lr 0.100000, loss 6.076461 +INFO 2020-12-03 00:50:29 train.py: 79] Epoch 2, iter 5400/6416, lr 0.100000, loss 6.044541 +INFO 2020-12-03 00:55:54 train.py: 79] Epoch 2, iter 5600/6416, lr 0.100000, loss 6.026438 +INFO 2020-12-03 01:01:20 train.py: 79] Epoch 2, iter 5800/6416, lr 0.100000, loss 5.990023 +INFO 2020-12-03 01:06:45 train.py: 92] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2020-12-03 01:06:47 train.py: 79] Epoch 2, iter 6000/6416, lr 0.100000, loss 5.941019 +INFO 2020-12-03 01:12:13 train.py: 79] Epoch 2, iter 6200/6416, lr 0.100000, loss 5.895717 +INFO 2020-12-03 01:17:39 train.py: 79] Epoch 2, iter 6400/6416, lr 0.100000, loss 5.911855 +INFO 2020-12-03 01:18:02 train.py: 97] Save checkpoint Epoch_2.pt to disk... +INFO 2020-12-03 01:18:05 train.py: 79] Epoch 3, iter 0/6416, lr 0.100000, loss 5.816688 +INFO 2020-12-03 01:23:31 train.py: 79] Epoch 3, iter 200/6416, lr 0.100000, loss 5.340988 +INFO 2020-12-03 01:28:57 train.py: 79] Epoch 3, iter 400/6416, lr 0.100000, loss 5.316447 +INFO 2020-12-03 01:34:23 train.py: 79] Epoch 3, iter 600/6416, lr 0.100000, loss 5.390077 +INFO 2020-12-03 01:39:48 train.py: 79] Epoch 3, iter 800/6416, lr 0.100000, loss 5.470877 +INFO 2020-12-03 01:45:14 train.py: 79] Epoch 3, iter 1000/6416, lr 0.100000, loss 5.502773 +INFO 2020-12-03 01:50:40 train.py: 79] Epoch 3, iter 1200/6416, lr 0.100000, loss 5.506761 +INFO 2020-12-03 01:56:05 train.py: 79] Epoch 3, iter 1400/6416, lr 0.100000, loss 5.522129 +INFO 2020-12-03 02:01:31 train.py: 79] Epoch 3, iter 1600/6416, lr 0.100000, loss 5.550251 +INFO 2020-12-03 02:06:57 train.py: 79] Epoch 3, iter 1800/6416, lr 0.100000, loss 5.540093 +INFO 2020-12-03 02:12:22 train.py: 79] Epoch 3, iter 2000/6416, lr 0.100000, loss 5.519903 +INFO 2020-12-03 02:17:48 train.py: 79] Epoch 3, iter 2200/6416, lr 0.100000, loss 5.533010 +INFO 2020-12-03 02:23:14 train.py: 79] Epoch 3, iter 2400/6416, lr 0.100000, loss 5.524664 +INFO 2020-12-03 02:28:39 train.py: 79] Epoch 3, iter 2600/6416, lr 0.100000, loss 5.506803 +INFO 2020-12-03 02:34:05 train.py: 79] Epoch 3, iter 2800/6416, lr 0.100000, loss 5.503340 +INFO 2020-12-03 02:39:30 train.py: 92] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2020-12-03 02:39:31 train.py: 79] Epoch 3, iter 3000/6416, lr 0.100000, loss 5.485541 +INFO 2020-12-03 02:44:57 train.py: 79] Epoch 3, iter 3200/6416, lr 0.100000, loss 5.475738 +INFO 2020-12-03 02:50:22 train.py: 79] Epoch 3, iter 3400/6416, lr 0.100000, loss 5.460465 +INFO 2020-12-03 02:55:48 train.py: 79] Epoch 3, iter 3600/6416, lr 0.100000, loss 5.451768 +INFO 2020-12-03 03:01:14 train.py: 79] Epoch 3, iter 3800/6416, lr 0.100000, loss 5.438681 +INFO 2020-12-03 03:06:39 train.py: 79] Epoch 3, iter 4000/6416, lr 0.100000, loss 5.395285 +INFO 2020-12-03 03:12:05 train.py: 79] Epoch 3, iter 4200/6416, lr 0.100000, loss 5.405740 +INFO 2020-12-03 03:17:30 train.py: 79] Epoch 3, iter 4400/6416, lr 0.100000, loss 5.387588 +INFO 2020-12-03 03:22:56 train.py: 79] Epoch 3, iter 4600/6416, lr 0.100000, loss 5.382697 +INFO 2020-12-03 03:28:21 train.py: 79] Epoch 3, iter 4800/6416, lr 0.100000, loss 5.338904 +INFO 2020-12-03 03:33:47 train.py: 79] Epoch 3, iter 5000/6416, lr 0.100000, loss 5.325464 +INFO 2020-12-03 03:39:12 train.py: 79] Epoch 3, iter 5200/6416, lr 0.100000, loss 5.323090 +INFO 2020-12-03 03:44:38 train.py: 79] Epoch 3, iter 5400/6416, lr 0.100000, loss 5.322617 +INFO 2020-12-03 03:50:04 train.py: 79] Epoch 3, iter 5600/6416, lr 0.100000, loss 5.282720 +INFO 2020-12-03 03:55:29 train.py: 79] Epoch 3, iter 5800/6416, lr 0.100000, loss 5.246655 +INFO 2020-12-03 04:00:54 train.py: 92] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2020-12-03 04:00:55 train.py: 79] Epoch 3, iter 6000/6416, lr 0.100000, loss 5.282314 +INFO 2020-12-03 04:06:21 train.py: 79] Epoch 3, iter 6200/6416, lr 0.100000, loss 5.250553 +INFO 2020-12-03 04:11:47 train.py: 79] Epoch 3, iter 6400/6416, lr 0.100000, loss 5.219490 +INFO 2020-12-03 04:12:11 train.py: 97] Save checkpoint Epoch_3.pt to disk... +INFO 2020-12-03 04:12:14 train.py: 79] Epoch 4, iter 0/6416, lr 0.100000, loss 5.258139 +INFO 2020-12-03 04:17:39 train.py: 79] Epoch 4, iter 200/6416, lr 0.100000, loss 4.713236 +INFO 2020-12-03 04:23:05 train.py: 79] Epoch 4, iter 400/6416, lr 0.100000, loss 4.693161 +INFO 2020-12-03 04:28:31 train.py: 79] Epoch 4, iter 600/6416, lr 0.100000, loss 4.773143 +INFO 2020-12-03 04:33:57 train.py: 79] Epoch 4, iter 800/6416, lr 0.100000, loss 4.850218 +INFO 2020-12-03 04:39:22 train.py: 79] Epoch 4, iter 1000/6416, lr 0.100000, loss 4.858812 +INFO 2020-12-03 04:44:48 train.py: 79] Epoch 4, iter 1200/6416, lr 0.100000, loss 4.919182 +INFO 2020-12-03 04:50:14 train.py: 79] Epoch 4, iter 1400/6416, lr 0.100000, loss 4.929719 +INFO 2020-12-03 04:55:39 train.py: 79] Epoch 4, iter 1600/6416, lr 0.100000, loss 4.975892 +INFO 2020-12-03 05:01:05 train.py: 79] Epoch 4, iter 1800/6416, lr 0.100000, loss 4.952683 +INFO 2020-12-03 05:06:30 train.py: 79] Epoch 4, iter 2000/6416, lr 0.100000, loss 4.979694 +INFO 2020-12-03 05:11:55 train.py: 79] Epoch 4, iter 2200/6416, lr 0.100000, loss 5.015690 +INFO 2020-12-03 05:17:21 train.py: 79] Epoch 4, iter 2400/6416, lr 0.100000, loss 5.009107 +INFO 2020-12-03 05:22:46 train.py: 79] Epoch 4, iter 2600/6416, lr 0.100000, loss 4.987703 +INFO 2020-12-03 05:28:12 train.py: 79] Epoch 4, iter 2800/6416, lr 0.100000, loss 4.990482 +INFO 2020-12-03 05:33:36 train.py: 92] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2020-12-03 05:33:37 train.py: 79] Epoch 4, iter 3000/6416, lr 0.100000, loss 4.973592 +INFO 2020-12-03 05:39:02 train.py: 79] Epoch 4, iter 3200/6416, lr 0.100000, loss 4.944998 +INFO 2020-12-03 05:44:28 train.py: 79] Epoch 4, iter 3400/6416, lr 0.100000, loss 4.968152 +INFO 2020-12-03 05:49:53 train.py: 79] Epoch 4, iter 3600/6416, lr 0.100000, loss 4.961744 +INFO 2020-12-03 05:55:19 train.py: 79] Epoch 4, iter 3800/6416, lr 0.100000, loss 4.953355 +INFO 2020-12-03 06:00:44 train.py: 79] Epoch 4, iter 4000/6416, lr 0.100000, loss 4.941136 +INFO 2020-12-03 06:06:09 train.py: 79] Epoch 4, iter 4200/6416, lr 0.100000, loss 4.954097 +INFO 2020-12-03 06:11:34 train.py: 79] Epoch 4, iter 4400/6416, lr 0.100000, loss 4.926616 +INFO 2020-12-03 06:16:59 train.py: 79] Epoch 4, iter 4600/6416, lr 0.100000, loss 4.929985 +INFO 2020-12-03 06:22:25 train.py: 79] Epoch 4, iter 4800/6416, lr 0.100000, loss 4.916453 +INFO 2020-12-03 06:27:50 train.py: 79] Epoch 4, iter 5000/6416, lr 0.100000, loss 4.874083 +INFO 2020-12-03 06:33:15 train.py: 79] Epoch 4, iter 5200/6416, lr 0.100000, loss 4.899871 +INFO 2020-12-03 06:38:40 train.py: 79] Epoch 4, iter 5400/6416, lr 0.100000, loss 4.897398 +INFO 2020-12-03 06:44:05 train.py: 79] Epoch 4, iter 5600/6416, lr 0.100000, loss 4.879323 +INFO 2020-12-03 06:49:31 train.py: 79] Epoch 4, iter 5800/6416, lr 0.100000, loss 4.858275 +INFO 2020-12-03 06:54:55 train.py: 92] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2020-12-03 06:54:56 train.py: 79] Epoch 4, iter 6000/6416, lr 0.100000, loss 4.884626 +INFO 2020-12-03 07:00:22 train.py: 79] Epoch 4, iter 6200/6416, lr 0.100000, loss 4.869890 +INFO 2020-12-03 07:05:47 train.py: 79] Epoch 4, iter 6400/6416, lr 0.100000, loss 4.850183 +INFO 2020-12-03 07:06:11 train.py: 97] Save checkpoint Epoch_4.pt to disk... +INFO 2020-12-03 07:06:14 train.py: 79] Epoch 5, iter 0/6416, lr 0.100000, loss 4.767923 +INFO 2020-12-03 07:11:40 train.py: 79] Epoch 5, iter 200/6416, lr 0.100000, loss 4.354355 +INFO 2020-12-03 07:17:05 train.py: 79] Epoch 5, iter 400/6416, lr 0.100000, loss 4.337549 +INFO 2020-12-03 07:22:31 train.py: 79] Epoch 5, iter 600/6416, lr 0.100000, loss 4.402054 +INFO 2020-12-03 07:27:57 train.py: 79] Epoch 5, iter 800/6416, lr 0.100000, loss 4.495166 +INFO 2020-12-03 07:33:22 train.py: 79] Epoch 5, iter 1000/6416, lr 0.100000, loss 4.532663 +INFO 2020-12-03 07:38:48 train.py: 79] Epoch 5, iter 1200/6416, lr 0.100000, loss 4.553198 +INFO 2020-12-03 07:44:13 train.py: 79] Epoch 5, iter 1400/6416, lr 0.100000, loss 4.594005 +INFO 2020-12-03 07:49:38 train.py: 79] Epoch 5, iter 1600/6416, lr 0.100000, loss 4.625065 +INFO 2020-12-03 07:55:03 train.py: 79] Epoch 5, iter 1800/6416, lr 0.100000, loss 4.628173 +INFO 2020-12-03 08:00:28 train.py: 79] Epoch 5, iter 2000/6416, lr 0.100000, loss 4.648198 +INFO 2020-12-03 08:05:54 train.py: 79] Epoch 5, iter 2200/6416, lr 0.100000, loss 4.649925 +INFO 2020-12-03 08:11:19 train.py: 79] Epoch 5, iter 2400/6416, lr 0.100000, loss 4.667757 +INFO 2020-12-03 08:16:44 train.py: 79] Epoch 5, iter 2600/6416, lr 0.100000, loss 4.626384 +INFO 2020-12-03 08:22:09 train.py: 79] Epoch 5, iter 2800/6416, lr 0.100000, loss 4.668897 +INFO 2020-12-03 08:27:33 train.py: 92] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2020-12-03 08:27:35 train.py: 79] Epoch 5, iter 3000/6416, lr 0.100000, loss 4.646401 +INFO 2020-12-03 08:33:00 train.py: 79] Epoch 5, iter 3200/6416, lr 0.100000, loss 4.678051 +INFO 2020-12-03 08:38:26 train.py: 79] Epoch 5, iter 3400/6416, lr 0.100000, loss 4.677237 +INFO 2020-12-03 08:43:51 train.py: 79] Epoch 5, iter 3600/6416, lr 0.100000, loss 4.660041 +INFO 2020-12-03 08:49:16 train.py: 79] Epoch 5, iter 3800/6416, lr 0.100000, loss 4.656218 +INFO 2020-12-03 08:54:41 train.py: 79] Epoch 5, iter 4000/6416, lr 0.100000, loss 4.652777 +INFO 2020-12-03 09:00:07 train.py: 79] Epoch 5, iter 4200/6416, lr 0.100000, loss 4.661610 +INFO 2020-12-03 09:05:32 train.py: 79] Epoch 5, iter 4400/6416, lr 0.100000, loss 4.635444 +INFO 2020-12-03 09:10:57 train.py: 79] Epoch 5, iter 4600/6416, lr 0.100000, loss 4.652587 +INFO 2020-12-03 09:16:22 train.py: 79] Epoch 5, iter 4800/6416, lr 0.100000, loss 4.638926 +INFO 2020-12-03 09:21:47 train.py: 79] Epoch 5, iter 5000/6416, lr 0.100000, loss 4.647194 +INFO 2020-12-03 09:27:13 train.py: 79] Epoch 5, iter 5200/6416, lr 0.100000, loss 4.620812 +INFO 2020-12-03 09:32:38 train.py: 79] Epoch 5, iter 5400/6416, lr 0.100000, loss 4.613374 +INFO 2020-12-03 09:38:03 train.py: 79] Epoch 5, iter 5600/6416, lr 0.100000, loss 4.584471 +INFO 2020-12-03 09:43:28 train.py: 79] Epoch 5, iter 5800/6416, lr 0.100000, loss 4.587631 +INFO 2020-12-03 09:48:53 train.py: 92] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2020-12-03 09:48:55 train.py: 79] Epoch 5, iter 6000/6416, lr 0.100000, loss 4.581571 +INFO 2020-12-03 09:54:20 train.py: 79] Epoch 5, iter 6200/6416, lr 0.100000, loss 4.601777 +INFO 2020-12-03 09:59:45 train.py: 79] Epoch 5, iter 6400/6416, lr 0.100000, loss 4.588366 +INFO 2020-12-03 10:00:09 train.py: 97] Save checkpoint Epoch_5.pt to disk... +INFO 2020-12-03 10:00:12 train.py: 79] Epoch 6, iter 0/6416, lr 0.100000, loss 4.574776 +INFO 2020-12-03 10:05:38 train.py: 79] Epoch 6, iter 200/6416, lr 0.100000, loss 4.083318 +INFO 2020-12-03 10:11:03 train.py: 79] Epoch 6, iter 400/6416, lr 0.100000, loss 4.079606 +INFO 2020-12-03 10:16:29 train.py: 79] Epoch 6, iter 600/6416, lr 0.100000, loss 4.155832 +INFO 2020-12-03 10:21:54 train.py: 79] Epoch 6, iter 800/6416, lr 0.100000, loss 4.191371 +INFO 2020-12-03 10:27:19 train.py: 79] Epoch 6, iter 1000/6416, lr 0.100000, loss 4.276350 +INFO 2020-12-03 10:32:44 train.py: 79] Epoch 6, iter 1200/6416, lr 0.100000, loss 4.286451 +INFO 2020-12-03 10:38:10 train.py: 79] Epoch 6, iter 1400/6416, lr 0.100000, loss 4.369414 +INFO 2020-12-03 10:43:35 train.py: 79] Epoch 6, iter 1600/6416, lr 0.100000, loss 4.371112 +INFO 2020-12-03 10:49:00 train.py: 79] Epoch 6, iter 1800/6416, lr 0.100000, loss 4.390935 +INFO 2020-12-03 10:54:25 train.py: 79] Epoch 6, iter 2000/6416, lr 0.100000, loss 4.412332 +INFO 2020-12-03 10:59:51 train.py: 79] Epoch 6, iter 2200/6416, lr 0.100000, loss 4.432450 +INFO 2020-12-03 11:05:16 train.py: 79] Epoch 6, iter 2400/6416, lr 0.100000, loss 4.451447 +INFO 2020-12-03 11:10:41 train.py: 79] Epoch 6, iter 2600/6416, lr 0.100000, loss 4.434381 +INFO 2020-12-03 11:16:07 train.py: 79] Epoch 6, iter 2800/6416, lr 0.100000, loss 4.440942 +INFO 2020-12-03 11:21:30 train.py: 92] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2020-12-03 11:21:32 train.py: 79] Epoch 6, iter 3000/6416, lr 0.100000, loss 4.422063 +INFO 2020-12-03 11:26:57 train.py: 79] Epoch 6, iter 3200/6416, lr 0.100000, loss 4.434628 +INFO 2020-12-03 11:32:22 train.py: 79] Epoch 6, iter 3400/6416, lr 0.100000, loss 4.463880 +INFO 2020-12-03 11:37:48 train.py: 79] Epoch 6, iter 3600/6416, lr 0.100000, loss 4.454169 +INFO 2020-12-03 11:43:13 train.py: 79] Epoch 6, iter 3800/6416, lr 0.100000, loss 4.428558 +INFO 2020-12-03 11:48:38 train.py: 79] Epoch 6, iter 4000/6416, lr 0.100000, loss 4.453789 +INFO 2020-12-03 11:54:04 train.py: 79] Epoch 6, iter 4200/6416, lr 0.100000, loss 4.443664 +INFO 2020-12-03 11:59:29 train.py: 79] Epoch 6, iter 4400/6416, lr 0.100000, loss 4.467308 +INFO 2020-12-03 12:04:54 train.py: 79] Epoch 6, iter 4600/6416, lr 0.100000, loss 4.413052 +INFO 2020-12-03 12:10:19 train.py: 79] Epoch 6, iter 4800/6416, lr 0.100000, loss 4.444799 +INFO 2020-12-03 12:15:45 train.py: 79] Epoch 6, iter 5000/6416, lr 0.100000, loss 4.390673 +INFO 2020-12-03 12:21:10 train.py: 79] Epoch 6, iter 5200/6416, lr 0.100000, loss 4.460484 +INFO 2020-12-03 12:26:35 train.py: 79] Epoch 6, iter 5400/6416, lr 0.100000, loss 4.422217 +INFO 2020-12-03 12:32:00 train.py: 79] Epoch 6, iter 5600/6416, lr 0.100000, loss 4.445330 +INFO 2020-12-03 12:37:26 train.py: 79] Epoch 6, iter 5800/6416, lr 0.100000, loss 4.444832 +INFO 2020-12-03 12:42:50 train.py: 92] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2020-12-03 12:42:52 train.py: 79] Epoch 6, iter 6000/6416, lr 0.100000, loss 4.398113 +INFO 2020-12-03 12:48:17 train.py: 79] Epoch 6, iter 6200/6416, lr 0.100000, loss 4.422164 +INFO 2020-12-03 12:53:42 train.py: 79] Epoch 6, iter 6400/6416, lr 0.100000, loss 4.419172 +INFO 2020-12-03 12:54:06 train.py: 97] Save checkpoint Epoch_6.pt to disk... +INFO 2020-12-03 12:54:09 train.py: 79] Epoch 7, iter 0/6416, lr 0.100000, loss 4.392308 +INFO 2020-12-03 12:59:35 train.py: 79] Epoch 7, iter 200/6416, lr 0.100000, loss 3.921637 +INFO 2020-12-03 13:05:01 train.py: 79] Epoch 7, iter 400/6416, lr 0.100000, loss 3.914008 +INFO 2020-12-03 13:10:26 train.py: 79] Epoch 7, iter 600/6416, lr 0.100000, loss 3.993223 +INFO 2020-12-03 13:15:52 train.py: 79] Epoch 7, iter 800/6416, lr 0.100000, loss 4.034022 +INFO 2020-12-03 13:21:17 train.py: 79] Epoch 7, iter 1000/6416, lr 0.100000, loss 4.083853 +INFO 2020-12-03 13:26:43 train.py: 79] Epoch 7, iter 1200/6416, lr 0.100000, loss 4.128044 +INFO 2020-12-03 13:32:08 train.py: 79] Epoch 7, iter 1400/6416, lr 0.100000, loss 4.176273 +INFO 2020-12-03 13:37:33 train.py: 79] Epoch 7, iter 1600/6416, lr 0.100000, loss 4.194730 +INFO 2020-12-03 13:42:58 train.py: 79] Epoch 7, iter 1800/6416, lr 0.100000, loss 4.216888 +INFO 2020-12-03 13:48:24 train.py: 79] Epoch 7, iter 2000/6416, lr 0.100000, loss 4.232902 +INFO 2020-12-03 13:53:49 train.py: 79] Epoch 7, iter 2200/6416, lr 0.100000, loss 4.280568 +INFO 2020-12-03 13:59:14 train.py: 79] Epoch 7, iter 2400/6416, lr 0.100000, loss 4.276624 +INFO 2020-12-03 14:04:39 train.py: 79] Epoch 7, iter 2600/6416, lr 0.100000, loss 4.268450 +INFO 2020-12-03 14:10:04 train.py: 79] Epoch 7, iter 2800/6416, lr 0.100000, loss 4.270746 +INFO 2020-12-03 14:15:28 train.py: 92] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2020-12-03 14:15:30 train.py: 79] Epoch 7, iter 3000/6416, lr 0.100000, loss 4.261979 +INFO 2020-12-03 14:20:55 train.py: 79] Epoch 7, iter 3200/6416, lr 0.100000, loss 4.285834 +INFO 2020-12-03 14:26:20 train.py: 79] Epoch 7, iter 3400/6416, lr 0.100000, loss 4.295862 +INFO 2020-12-03 14:31:46 train.py: 79] Epoch 7, iter 3600/6416, lr 0.100000, loss 4.283829 +INFO 2020-12-03 14:37:11 train.py: 79] Epoch 7, iter 3800/6416, lr 0.100000, loss 4.259717 +INFO 2020-12-03 14:42:36 train.py: 79] Epoch 7, iter 4000/6416, lr 0.100000, loss 4.292408 +INFO 2020-12-03 14:48:01 train.py: 79] Epoch 7, iter 4200/6416, lr 0.100000, loss 4.278243 +INFO 2020-12-03 14:53:27 train.py: 79] Epoch 7, iter 4400/6416, lr 0.100000, loss 4.305061 +INFO 2020-12-03 14:58:52 train.py: 79] Epoch 7, iter 4600/6416, lr 0.100000, loss 4.289528 +INFO 2020-12-03 15:04:17 train.py: 79] Epoch 7, iter 4800/6416, lr 0.100000, loss 4.306961 +INFO 2020-12-03 15:09:42 train.py: 79] Epoch 7, iter 5000/6416, lr 0.100000, loss 4.303247 +INFO 2020-12-03 15:15:07 train.py: 79] Epoch 7, iter 5200/6416, lr 0.100000, loss 4.255533 +INFO 2020-12-03 15:20:33 train.py: 79] Epoch 7, iter 5400/6416, lr 0.100000, loss 4.290896 +INFO 2020-12-03 15:25:58 train.py: 79] Epoch 7, iter 5600/6416, lr 0.100000, loss 4.242422 +INFO 2020-12-03 15:31:23 train.py: 79] Epoch 7, iter 5800/6416, lr 0.100000, loss 4.237866 +INFO 2020-12-03 15:36:47 train.py: 92] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2020-12-03 15:36:49 train.py: 79] Epoch 7, iter 6000/6416, lr 0.100000, loss 4.258237 +INFO 2020-12-03 15:42:14 train.py: 79] Epoch 7, iter 6200/6416, lr 0.100000, loss 4.272571 +INFO 2020-12-03 15:47:39 train.py: 79] Epoch 7, iter 6400/6416, lr 0.100000, loss 4.270667 +INFO 2020-12-03 15:48:03 train.py: 97] Save checkpoint Epoch_7.pt to disk... +INFO 2020-12-03 15:48:06 train.py: 79] Epoch 8, iter 0/6416, lr 0.100000, loss 4.248033 +INFO 2020-12-03 15:53:32 train.py: 79] Epoch 8, iter 200/6416, lr 0.100000, loss 3.778519 +INFO 2020-12-03 15:58:57 train.py: 79] Epoch 8, iter 400/6416, lr 0.100000, loss 3.747538 +INFO 2020-12-03 16:04:22 train.py: 79] Epoch 8, iter 600/6416, lr 0.100000, loss 3.809143 +INFO 2020-12-03 16:09:48 train.py: 79] Epoch 8, iter 800/6416, lr 0.100000, loss 3.911213 +INFO 2020-12-03 16:15:12 train.py: 79] Epoch 8, iter 1000/6416, lr 0.100000, loss 3.968898 +INFO 2020-12-03 16:20:37 train.py: 79] Epoch 8, iter 1200/6416, lr 0.100000, loss 4.009813 +INFO 2020-12-03 16:26:02 train.py: 79] Epoch 8, iter 1400/6416, lr 0.100000, loss 4.036713 +INFO 2020-12-03 16:31:28 train.py: 79] Epoch 8, iter 1600/6416, lr 0.100000, loss 4.058011 +INFO 2020-12-03 16:36:53 train.py: 79] Epoch 8, iter 1800/6416, lr 0.100000, loss 4.090811 +INFO 2020-12-03 16:42:18 train.py: 79] Epoch 8, iter 2000/6416, lr 0.100000, loss 4.086257 +INFO 2020-12-03 16:47:43 train.py: 79] Epoch 8, iter 2200/6416, lr 0.100000, loss 4.135278 +INFO 2020-12-03 16:53:08 train.py: 79] Epoch 8, iter 2400/6416, lr 0.100000, loss 4.140927 +INFO 2020-12-03 16:58:33 train.py: 79] Epoch 8, iter 2600/6416, lr 0.100000, loss 4.124890 +INFO 2020-12-03 17:03:58 train.py: 79] Epoch 8, iter 2800/6416, lr 0.100000, loss 4.173703 +INFO 2020-12-03 17:09:22 train.py: 92] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2020-12-03 17:09:24 train.py: 79] Epoch 8, iter 3000/6416, lr 0.100000, loss 4.184023 +INFO 2020-12-03 17:14:49 train.py: 79] Epoch 8, iter 3200/6416, lr 0.100000, loss 4.165257 +INFO 2020-12-03 17:20:14 train.py: 79] Epoch 8, iter 3400/6416, lr 0.100000, loss 4.146530 +INFO 2020-12-03 17:25:40 train.py: 79] Epoch 8, iter 3600/6416, lr 0.100000, loss 4.154909 +INFO 2020-12-03 17:31:05 train.py: 79] Epoch 8, iter 3800/6416, lr 0.100000, loss 4.171395 +INFO 2020-12-03 17:36:30 train.py: 79] Epoch 8, iter 4000/6416, lr 0.100000, loss 4.131770 +INFO 2020-12-03 17:41:55 train.py: 79] Epoch 8, iter 4200/6416, lr 0.100000, loss 4.159292 +INFO 2020-12-03 17:47:20 train.py: 79] Epoch 8, iter 4400/6416, lr 0.100000, loss 4.159086 +INFO 2020-12-03 17:52:45 train.py: 79] Epoch 8, iter 4600/6416, lr 0.100000, loss 4.161169 +INFO 2020-12-03 17:58:11 train.py: 79] Epoch 8, iter 4800/6416, lr 0.100000, loss 4.176258 +INFO 2020-12-03 18:03:36 train.py: 79] Epoch 8, iter 5000/6416, lr 0.100000, loss 4.174733 +INFO 2020-12-03 18:09:01 train.py: 79] Epoch 8, iter 5200/6416, lr 0.100000, loss 4.162446 +INFO 2020-12-03 18:14:26 train.py: 79] Epoch 8, iter 5400/6416, lr 0.100000, loss 4.163522 +INFO 2020-12-03 18:19:51 train.py: 79] Epoch 8, iter 5600/6416, lr 0.100000, loss 4.156853 +INFO 2020-12-03 18:25:16 train.py: 79] Epoch 8, iter 5800/6416, lr 0.100000, loss 4.143952 +INFO 2020-12-03 18:30:40 train.py: 92] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2020-12-03 18:30:42 train.py: 79] Epoch 8, iter 6000/6416, lr 0.100000, loss 4.175537 +INFO 2020-12-03 18:36:07 train.py: 79] Epoch 8, iter 6200/6416, lr 0.100000, loss 4.148403 +INFO 2020-12-03 18:41:32 train.py: 79] Epoch 8, iter 6400/6416, lr 0.100000, loss 4.140968 +INFO 2020-12-03 18:41:56 train.py: 97] Save checkpoint Epoch_8.pt to disk... +INFO 2020-12-03 18:41:59 train.py: 79] Epoch 9, iter 0/6416, lr 0.100000, loss 4.117626 +INFO 2020-12-03 18:47:25 train.py: 79] Epoch 9, iter 200/6416, lr 0.100000, loss 3.670153 +INFO 2020-12-03 18:52:50 train.py: 79] Epoch 9, iter 400/6416, lr 0.100000, loss 3.637191 +INFO 2020-12-03 18:58:16 train.py: 79] Epoch 9, iter 600/6416, lr 0.100000, loss 3.723079 +INFO 2020-12-03 19:03:41 train.py: 79] Epoch 9, iter 800/6416, lr 0.100000, loss 3.782626 +INFO 2020-12-03 19:09:06 train.py: 79] Epoch 9, iter 1000/6416, lr 0.100000, loss 3.825913 +INFO 2020-12-03 19:14:32 train.py: 79] Epoch 9, iter 1200/6416, lr 0.100000, loss 3.869075 +INFO 2020-12-03 19:19:57 train.py: 79] Epoch 9, iter 1400/6416, lr 0.100000, loss 3.910492 +INFO 2020-12-03 19:25:22 train.py: 79] Epoch 9, iter 1600/6416, lr 0.100000, loss 3.942527 +INFO 2020-12-03 19:30:48 train.py: 79] Epoch 9, iter 1800/6416, lr 0.100000, loss 3.973456 +INFO 2020-12-03 19:36:13 train.py: 79] Epoch 9, iter 2000/6416, lr 0.100000, loss 4.017191 +INFO 2020-12-03 19:41:38 train.py: 79] Epoch 9, iter 2200/6416, lr 0.100000, loss 4.030699 +INFO 2020-12-03 19:47:03 train.py: 79] Epoch 9, iter 2400/6416, lr 0.100000, loss 4.042986 +INFO 2020-12-03 19:52:29 train.py: 79] Epoch 9, iter 2600/6416, lr 0.100000, loss 4.053050 +INFO 2020-12-03 19:57:54 train.py: 79] Epoch 9, iter 2800/6416, lr 0.100000, loss 4.034845 +INFO 2020-12-03 20:03:19 train.py: 92] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2020-12-03 20:03:20 train.py: 79] Epoch 9, iter 3000/6416, lr 0.100000, loss 4.062791 +INFO 2020-12-03 20:08:46 train.py: 79] Epoch 9, iter 3200/6416, lr 0.100000, loss 4.053587 +INFO 2020-12-03 20:14:12 train.py: 79] Epoch 9, iter 3400/6416, lr 0.100000, loss 4.057787 +INFO 2020-12-03 20:19:37 train.py: 79] Epoch 9, iter 3600/6416, lr 0.100000, loss 4.053538 +INFO 2020-12-03 20:25:03 train.py: 79] Epoch 9, iter 3800/6416, lr 0.100000, loss 4.068157 +INFO 2020-12-03 20:30:28 train.py: 79] Epoch 9, iter 4000/6416, lr 0.100000, loss 4.116380 +INFO 2020-12-03 20:35:53 train.py: 79] Epoch 9, iter 4200/6416, lr 0.100000, loss 4.055538 +INFO 2020-12-03 20:41:18 train.py: 79] Epoch 9, iter 4400/6416, lr 0.100000, loss 4.080986 +INFO 2020-12-03 20:46:43 train.py: 79] Epoch 9, iter 4600/6416, lr 0.100000, loss 4.066792 +INFO 2020-12-03 20:52:09 train.py: 79] Epoch 9, iter 4800/6416, lr 0.100000, loss 4.083648 +INFO 2020-12-03 20:57:34 train.py: 79] Epoch 9, iter 5000/6416, lr 0.100000, loss 4.043272 +INFO 2020-12-03 21:02:59 train.py: 79] Epoch 9, iter 5200/6416, lr 0.100000, loss 4.077645 +INFO 2020-12-03 21:08:25 train.py: 79] Epoch 9, iter 5400/6416, lr 0.100000, loss 4.080447 +INFO 2020-12-03 21:13:51 train.py: 79] Epoch 9, iter 5600/6416, lr 0.100000, loss 4.072473 +INFO 2020-12-03 21:19:16 train.py: 79] Epoch 9, iter 5800/6416, lr 0.100000, loss 4.057376 +INFO 2020-12-03 21:24:40 train.py: 92] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2020-12-03 21:24:42 train.py: 79] Epoch 9, iter 6000/6416, lr 0.100000, loss 4.046439 +INFO 2020-12-03 21:30:07 train.py: 79] Epoch 9, iter 6200/6416, lr 0.100000, loss 4.045076 +INFO 2020-12-03 21:35:33 train.py: 79] Epoch 9, iter 6400/6416, lr 0.100000, loss 4.044658 +INFO 2020-12-03 21:35:57 train.py: 97] Save checkpoint Epoch_9.pt to disk... +INFO 2020-12-03 21:36:00 train.py: 79] Epoch 10, iter 0/6416, lr 0.010000, loss 4.014374 +INFO 2020-12-03 21:41:25 train.py: 79] Epoch 10, iter 200/6416, lr 0.010000, loss 3.045075 +INFO 2020-12-03 21:46:51 train.py: 79] Epoch 10, iter 400/6416, lr 0.010000, loss 2.772279 +INFO 2020-12-03 21:52:16 train.py: 79] Epoch 10, iter 600/6416, lr 0.010000, loss 2.661138 +INFO 2020-12-03 21:57:41 train.py: 79] Epoch 10, iter 800/6416, lr 0.010000, loss 2.591469 +INFO 2020-12-03 22:03:06 train.py: 79] Epoch 10, iter 1000/6416, lr 0.010000, loss 2.528380 +INFO 2020-12-03 22:08:32 train.py: 79] Epoch 10, iter 1200/6416, lr 0.010000, loss 2.488472 +INFO 2020-12-03 22:13:57 train.py: 79] Epoch 10, iter 1400/6416, lr 0.010000, loss 2.453629 +INFO 2020-12-03 22:19:22 train.py: 79] Epoch 10, iter 1600/6416, lr 0.010000, loss 2.428982 +INFO 2020-12-03 22:24:47 train.py: 79] Epoch 10, iter 1800/6416, lr 0.010000, loss 2.373689 +INFO 2020-12-03 22:30:12 train.py: 79] Epoch 10, iter 2000/6416, lr 0.010000, loss 2.351944 +INFO 2020-12-03 22:35:37 train.py: 79] Epoch 10, iter 2200/6416, lr 0.010000, loss 2.322801 +INFO 2020-12-03 22:41:02 train.py: 79] Epoch 10, iter 2400/6416, lr 0.010000, loss 2.277094 +INFO 2020-12-03 22:46:27 train.py: 79] Epoch 10, iter 2600/6416, lr 0.010000, loss 2.283659 +INFO 2020-12-03 22:51:52 train.py: 79] Epoch 10, iter 2800/6416, lr 0.010000, loss 2.256703 +INFO 2020-12-03 22:57:15 train.py: 92] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2020-12-03 22:57:17 train.py: 79] Epoch 10, iter 3000/6416, lr 0.010000, loss 2.237671 +INFO 2020-12-03 23:02:42 train.py: 79] Epoch 10, iter 3200/6416, lr 0.010000, loss 2.204354 +INFO 2020-12-03 23:08:07 train.py: 79] Epoch 10, iter 3400/6416, lr 0.010000, loss 2.196482 +INFO 2020-12-03 23:13:32 train.py: 79] Epoch 10, iter 3600/6416, lr 0.010000, loss 2.171479 +INFO 2020-12-03 23:18:57 train.py: 79] Epoch 10, iter 3800/6416, lr 0.010000, loss 2.157480 +INFO 2020-12-03 23:24:22 train.py: 79] Epoch 10, iter 4000/6416, lr 0.010000, loss 2.142582 +INFO 2020-12-03 23:29:47 train.py: 79] Epoch 10, iter 4200/6416, lr 0.010000, loss 2.118018 +INFO 2020-12-03 23:35:13 train.py: 79] Epoch 10, iter 4400/6416, lr 0.010000, loss 2.128270 +INFO 2020-12-03 23:40:38 train.py: 79] Epoch 10, iter 4600/6416, lr 0.010000, loss 2.094376 +INFO 2020-12-03 23:46:03 train.py: 79] Epoch 10, iter 4800/6416, lr 0.010000, loss 2.072259 +INFO 2020-12-03 23:51:28 train.py: 79] Epoch 10, iter 5000/6416, lr 0.010000, loss 2.081495 +INFO 2020-12-03 23:56:53 train.py: 79] Epoch 10, iter 5200/6416, lr 0.010000, loss 2.045563 +INFO 2020-12-04 00:02:18 train.py: 79] Epoch 10, iter 5400/6416, lr 0.010000, loss 2.044969 +INFO 2020-12-04 00:07:44 train.py: 79] Epoch 10, iter 5600/6416, lr 0.010000, loss 2.032908 +INFO 2020-12-04 00:13:09 train.py: 79] Epoch 10, iter 5800/6416, lr 0.010000, loss 2.007562 +INFO 2020-12-04 00:18:33 train.py: 92] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2020-12-04 00:18:35 train.py: 79] Epoch 10, iter 6000/6416, lr 0.010000, loss 1.989081 +INFO 2020-12-04 00:24:00 train.py: 79] Epoch 10, iter 6200/6416, lr 0.010000, loss 2.007318 +INFO 2020-12-04 00:29:25 train.py: 79] Epoch 10, iter 6400/6416, lr 0.010000, loss 1.985579 +INFO 2020-12-04 00:29:50 train.py: 97] Save checkpoint Epoch_10.pt to disk... +INFO 2020-12-04 00:29:53 train.py: 79] Epoch 11, iter 0/6416, lr 0.010000, loss 1.945808 +INFO 2020-12-04 00:35:18 train.py: 79] Epoch 11, iter 200/6416, lr 0.010000, loss 1.689300 +INFO 2020-12-04 00:40:43 train.py: 79] Epoch 11, iter 400/6416, lr 0.010000, loss 1.669825 +INFO 2020-12-04 00:46:08 train.py: 79] Epoch 11, iter 600/6416, lr 0.010000, loss 1.684342 +INFO 2020-12-04 00:51:33 train.py: 79] Epoch 11, iter 800/6416, lr 0.010000, loss 1.675694 +INFO 2020-12-04 00:56:58 train.py: 79] Epoch 11, iter 1000/6416, lr 0.010000, loss 1.672571 +INFO 2020-12-04 01:02:23 train.py: 79] Epoch 11, iter 1200/6416, lr 0.010000, loss 1.673412 +INFO 2020-12-04 01:07:48 train.py: 79] Epoch 11, iter 1400/6416, lr 0.010000, loss 1.673887 +INFO 2020-12-04 01:13:13 train.py: 79] Epoch 11, iter 1600/6416, lr 0.010000, loss 1.668809 +INFO 2020-12-04 01:18:38 train.py: 79] Epoch 11, iter 1800/6416, lr 0.010000, loss 1.665705 +INFO 2020-12-04 01:24:03 train.py: 79] Epoch 11, iter 2000/6416, lr 0.010000, loss 1.669471 +INFO 2020-12-04 01:29:28 train.py: 79] Epoch 11, iter 2200/6416, lr 0.010000, loss 1.661018 +INFO 2020-12-04 01:34:53 train.py: 79] Epoch 11, iter 2400/6416, lr 0.010000, loss 1.677115 +INFO 2020-12-04 01:40:18 train.py: 79] Epoch 11, iter 2600/6416, lr 0.010000, loss 1.666816 +INFO 2020-12-04 01:45:43 train.py: 79] Epoch 11, iter 2800/6416, lr 0.010000, loss 1.664066 +INFO 2020-12-04 01:51:07 train.py: 92] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2020-12-04 01:51:08 train.py: 79] Epoch 11, iter 3000/6416, lr 0.010000, loss 1.676867 +INFO 2020-12-04 01:56:33 train.py: 79] Epoch 11, iter 3200/6416, lr 0.010000, loss 1.662786 +INFO 2020-12-04 02:01:58 train.py: 79] Epoch 11, iter 3400/6416, lr 0.010000, loss 1.664614 +INFO 2020-12-04 02:07:23 train.py: 79] Epoch 11, iter 3600/6416, lr 0.010000, loss 1.664018 +INFO 2020-12-04 02:12:48 train.py: 79] Epoch 11, iter 3800/6416, lr 0.010000, loss 1.661976 +INFO 2020-12-04 02:18:13 train.py: 79] Epoch 11, iter 4000/6416, lr 0.010000, loss 1.641390 +INFO 2020-12-04 02:23:38 train.py: 79] Epoch 11, iter 4200/6416, lr 0.010000, loss 1.648104 +INFO 2020-12-04 02:29:03 train.py: 79] Epoch 11, iter 4400/6416, lr 0.010000, loss 1.665530 +INFO 2020-12-04 02:34:28 train.py: 79] Epoch 11, iter 4600/6416, lr 0.010000, loss 1.624464 +INFO 2020-12-04 02:39:53 train.py: 79] Epoch 11, iter 4800/6416, lr 0.010000, loss 1.646179 +INFO 2020-12-04 02:45:18 train.py: 79] Epoch 11, iter 5000/6416, lr 0.010000, loss 1.651610 +INFO 2020-12-04 02:50:43 train.py: 79] Epoch 11, iter 5200/6416, lr 0.010000, loss 1.644582 +INFO 2020-12-04 02:56:08 train.py: 79] Epoch 11, iter 5400/6416, lr 0.010000, loss 1.655777 +INFO 2020-12-04 03:01:33 train.py: 79] Epoch 11, iter 5600/6416, lr 0.010000, loss 1.652178 +INFO 2020-12-04 03:06:58 train.py: 79] Epoch 11, iter 5800/6416, lr 0.010000, loss 1.646212 +INFO 2020-12-04 03:12:22 train.py: 92] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2020-12-04 03:12:23 train.py: 79] Epoch 11, iter 6000/6416, lr 0.010000, loss 1.635665 +INFO 2020-12-04 03:17:48 train.py: 79] Epoch 11, iter 6200/6416, lr 0.010000, loss 1.637378 +INFO 2020-12-04 03:23:14 train.py: 79] Epoch 11, iter 6400/6416, lr 0.010000, loss 1.637290 +INFO 2020-12-04 03:23:38 train.py: 97] Save checkpoint Epoch_11.pt to disk... +INFO 2020-12-04 03:23:41 train.py: 79] Epoch 12, iter 0/6416, lr 0.010000, loss 1.586589 +INFO 2020-12-04 03:29:06 train.py: 79] Epoch 12, iter 200/6416, lr 0.010000, loss 1.378230 +INFO 2020-12-04 03:34:31 train.py: 79] Epoch 12, iter 400/6416, lr 0.010000, loss 1.359621 +INFO 2020-12-04 03:39:56 train.py: 79] Epoch 12, iter 600/6416, lr 0.010000, loss 1.374209 +INFO 2020-12-04 03:45:22 train.py: 79] Epoch 12, iter 800/6416, lr 0.010000, loss 1.361567 +INFO 2020-12-04 03:50:47 train.py: 79] Epoch 12, iter 1000/6416, lr 0.010000, loss 1.370249 +INFO 2020-12-04 03:56:12 train.py: 79] Epoch 12, iter 1200/6416, lr 0.010000, loss 1.384933 +INFO 2020-12-04 04:01:37 train.py: 79] Epoch 12, iter 1400/6416, lr 0.010000, loss 1.401534 +INFO 2020-12-04 04:07:02 train.py: 79] Epoch 12, iter 1600/6416, lr 0.010000, loss 1.404983 +INFO 2020-12-04 04:12:27 train.py: 79] Epoch 12, iter 1800/6416, lr 0.010000, loss 1.388584 +INFO 2020-12-04 04:17:52 train.py: 79] Epoch 12, iter 2000/6416, lr 0.010000, loss 1.404521 +INFO 2020-12-04 04:23:17 train.py: 79] Epoch 12, iter 2200/6416, lr 0.010000, loss 1.395233 +INFO 2020-12-04 04:28:42 train.py: 79] Epoch 12, iter 2400/6416, lr 0.010000, loss 1.399625 +INFO 2020-12-04 04:34:08 train.py: 79] Epoch 12, iter 2600/6416, lr 0.010000, loss 1.407339 +INFO 2020-12-04 04:39:33 train.py: 79] Epoch 12, iter 2800/6416, lr 0.010000, loss 1.416177 +INFO 2020-12-04 04:44:57 train.py: 92] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2020-12-04 04:44:59 train.py: 79] Epoch 12, iter 3000/6416, lr 0.010000, loss 1.404588 +INFO 2020-12-04 04:50:24 train.py: 79] Epoch 12, iter 3200/6416, lr 0.010000, loss 1.425275 +INFO 2020-12-04 04:55:49 train.py: 79] Epoch 12, iter 3400/6416, lr 0.010000, loss 1.436283 +INFO 2020-12-04 05:01:15 train.py: 79] Epoch 12, iter 3600/6416, lr 0.010000, loss 1.432694 +INFO 2020-12-04 05:06:40 train.py: 79] Epoch 12, iter 3800/6416, lr 0.010000, loss 1.446021 +INFO 2020-12-04 05:12:05 train.py: 79] Epoch 12, iter 4000/6416, lr 0.010000, loss 1.451524 +INFO 2020-12-04 05:17:30 train.py: 79] Epoch 12, iter 4200/6416, lr 0.010000, loss 1.435503 +INFO 2020-12-04 05:22:55 train.py: 79] Epoch 12, iter 4400/6416, lr 0.010000, loss 1.445245 +INFO 2020-12-04 05:28:20 train.py: 79] Epoch 12, iter 4600/6416, lr 0.010000, loss 1.455817 +INFO 2020-12-04 05:33:46 train.py: 79] Epoch 12, iter 4800/6416, lr 0.010000, loss 1.450810 +INFO 2020-12-04 05:39:11 train.py: 79] Epoch 12, iter 5000/6416, lr 0.010000, loss 1.447359 +INFO 2020-12-04 05:44:36 train.py: 79] Epoch 12, iter 5200/6416, lr 0.010000, loss 1.457142 +INFO 2020-12-04 05:50:01 train.py: 79] Epoch 12, iter 5400/6416, lr 0.010000, loss 1.455452 +INFO 2020-12-04 05:55:26 train.py: 79] Epoch 12, iter 5600/6416, lr 0.010000, loss 1.463986 +INFO 2020-12-04 06:00:51 train.py: 79] Epoch 12, iter 5800/6416, lr 0.010000, loss 1.465392 +INFO 2020-12-04 06:06:15 train.py: 92] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2020-12-04 06:06:16 train.py: 79] Epoch 12, iter 6000/6416, lr 0.010000, loss 1.475555 +INFO 2020-12-04 06:11:41 train.py: 79] Epoch 12, iter 6200/6416, lr 0.010000, loss 1.478011 +INFO 2020-12-04 06:17:06 train.py: 79] Epoch 12, iter 6400/6416, lr 0.010000, loss 1.482399 +INFO 2020-12-04 06:17:30 train.py: 97] Save checkpoint Epoch_12.pt to disk... +INFO 2020-12-04 06:17:33 train.py: 79] Epoch 13, iter 0/6416, lr 0.001000, loss 1.496635 +INFO 2020-12-04 06:22:58 train.py: 79] Epoch 13, iter 200/6416, lr 0.001000, loss 1.166110 +INFO 2020-12-04 06:28:23 train.py: 79] Epoch 13, iter 400/6416, lr 0.001000, loss 1.137528 +INFO 2020-12-04 06:33:49 train.py: 79] Epoch 13, iter 600/6416, lr 0.001000, loss 1.144449 +INFO 2020-12-04 06:39:14 train.py: 79] Epoch 13, iter 800/6416, lr 0.001000, loss 1.136726 +INFO 2020-12-04 06:44:39 train.py: 79] Epoch 13, iter 1000/6416, lr 0.001000, loss 1.123902 +INFO 2020-12-04 06:50:04 train.py: 79] Epoch 13, iter 1200/6416, lr 0.001000, loss 1.135582 +INFO 2020-12-04 06:55:29 train.py: 79] Epoch 13, iter 1400/6416, lr 0.001000, loss 1.114972 +INFO 2020-12-04 07:00:55 train.py: 79] Epoch 13, iter 1600/6416, lr 0.001000, loss 1.126917 +INFO 2020-12-04 07:06:20 train.py: 79] Epoch 13, iter 1800/6416, lr 0.001000, loss 1.113411 +INFO 2020-12-04 07:11:45 train.py: 79] Epoch 13, iter 2000/6416, lr 0.001000, loss 1.121289 +INFO 2020-12-04 07:17:10 train.py: 79] Epoch 13, iter 2200/6416, lr 0.001000, loss 1.122110 +INFO 2020-12-04 07:22:35 train.py: 79] Epoch 13, iter 2400/6416, lr 0.001000, loss 1.119020 +INFO 2020-12-04 07:28:00 train.py: 79] Epoch 13, iter 2600/6416, lr 0.001000, loss 1.113377 +INFO 2020-12-04 07:33:25 train.py: 79] Epoch 13, iter 2800/6416, lr 0.001000, loss 1.116419 +INFO 2020-12-04 07:38:49 train.py: 92] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2020-12-04 07:38:51 train.py: 79] Epoch 13, iter 3000/6416, lr 0.001000, loss 1.117171 +INFO 2020-12-04 07:44:16 train.py: 79] Epoch 13, iter 3200/6416, lr 0.001000, loss 1.109928 +INFO 2020-12-04 07:49:41 train.py: 79] Epoch 13, iter 3400/6416, lr 0.001000, loss 1.110337 +INFO 2020-12-04 07:55:06 train.py: 79] Epoch 13, iter 3600/6416, lr 0.001000, loss 1.106861 +INFO 2020-12-04 08:00:31 train.py: 79] Epoch 13, iter 3800/6416, lr 0.001000, loss 1.119624 +INFO 2020-12-04 08:05:56 train.py: 79] Epoch 13, iter 4000/6416, lr 0.001000, loss 1.117525 +INFO 2020-12-04 08:11:21 train.py: 79] Epoch 13, iter 4200/6416, lr 0.001000, loss 1.108125 +INFO 2020-12-04 08:16:46 train.py: 79] Epoch 13, iter 4400/6416, lr 0.001000, loss 1.112367 +INFO 2020-12-04 08:22:11 train.py: 79] Epoch 13, iter 4600/6416, lr 0.001000, loss 1.112227 +INFO 2020-12-04 08:27:36 train.py: 79] Epoch 13, iter 4800/6416, lr 0.001000, loss 1.110203 +INFO 2020-12-04 08:33:02 train.py: 79] Epoch 13, iter 5000/6416, lr 0.001000, loss 1.106777 +INFO 2020-12-04 08:38:27 train.py: 79] Epoch 13, iter 5200/6416, lr 0.001000, loss 1.111004 +INFO 2020-12-04 08:43:52 train.py: 79] Epoch 13, iter 5400/6416, lr 0.001000, loss 1.104399 +INFO 2020-12-04 08:49:17 train.py: 79] Epoch 13, iter 5600/6416, lr 0.001000, loss 1.113798 +INFO 2020-12-04 08:54:42 train.py: 79] Epoch 13, iter 5800/6416, lr 0.001000, loss 1.113383 +INFO 2020-12-04 09:00:06 train.py: 92] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2020-12-04 09:00:08 train.py: 79] Epoch 13, iter 6000/6416, lr 0.001000, loss 1.111207 +INFO 2020-12-04 09:05:33 train.py: 79] Epoch 13, iter 6200/6416, lr 0.001000, loss 1.116616 +INFO 2020-12-04 09:10:58 train.py: 79] Epoch 13, iter 6400/6416, lr 0.001000, loss 1.118895 +INFO 2020-12-04 09:11:22 train.py: 97] Save checkpoint Epoch_13.pt to disk... +INFO 2020-12-04 09:11:24 train.py: 79] Epoch 14, iter 0/6416, lr 0.001000, loss 1.123141 +INFO 2020-12-04 09:16:50 train.py: 79] Epoch 14, iter 200/6416, lr 0.001000, loss 1.068512 +INFO 2020-12-04 09:22:15 train.py: 79] Epoch 14, iter 400/6416, lr 0.001000, loss 1.069994 +INFO 2020-12-04 09:27:40 train.py: 79] Epoch 14, iter 600/6416, lr 0.001000, loss 1.073890 +INFO 2020-12-04 09:33:05 train.py: 79] Epoch 14, iter 800/6416, lr 0.001000, loss 1.077538 +INFO 2020-12-04 09:38:31 train.py: 79] Epoch 14, iter 1000/6416, lr 0.001000, loss 1.068196 +INFO 2020-12-04 09:43:56 train.py: 79] Epoch 14, iter 1200/6416, lr 0.001000, loss 1.070067 +INFO 2020-12-04 09:49:21 train.py: 79] Epoch 14, iter 1400/6416, lr 0.001000, loss 1.079795 +INFO 2020-12-04 09:54:46 train.py: 79] Epoch 14, iter 1600/6416, lr 0.001000, loss 1.072936 +INFO 2020-12-04 10:00:11 train.py: 79] Epoch 14, iter 1800/6416, lr 0.001000, loss 1.078108 +INFO 2020-12-04 10:05:35 train.py: 79] Epoch 14, iter 2000/6416, lr 0.001000, loss 1.064167 +INFO 2020-12-04 10:11:00 train.py: 79] Epoch 14, iter 2200/6416, lr 0.001000, loss 1.068662 +INFO 2020-12-04 10:16:25 train.py: 79] Epoch 14, iter 2400/6416, lr 0.001000, loss 1.074293 +INFO 2020-12-04 10:21:50 train.py: 79] Epoch 14, iter 2600/6416, lr 0.001000, loss 1.075261 +INFO 2020-12-04 10:27:15 train.py: 79] Epoch 14, iter 2800/6416, lr 0.001000, loss 1.078322 +INFO 2020-12-04 10:32:39 train.py: 92] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2020-12-04 10:32:41 train.py: 79] Epoch 14, iter 3000/6416, lr 0.001000, loss 1.058165 +INFO 2020-12-04 10:38:06 train.py: 79] Epoch 14, iter 3200/6416, lr 0.001000, loss 1.084067 +INFO 2020-12-04 10:43:31 train.py: 79] Epoch 14, iter 3400/6416, lr 0.001000, loss 1.093464 +INFO 2020-12-04 10:48:56 train.py: 79] Epoch 14, iter 3600/6416, lr 0.001000, loss 1.072578 +INFO 2020-12-04 10:54:21 train.py: 79] Epoch 14, iter 3800/6416, lr 0.001000, loss 1.069096 +INFO 2020-12-04 10:59:46 train.py: 79] Epoch 14, iter 4000/6416, lr 0.001000, loss 1.077155 +INFO 2020-12-04 11:05:11 train.py: 79] Epoch 14, iter 4200/6416, lr 0.001000, loss 1.077070 +INFO 2020-12-04 11:10:36 train.py: 79] Epoch 14, iter 4400/6416, lr 0.001000, loss 1.075185 +INFO 2020-12-04 11:16:01 train.py: 79] Epoch 14, iter 4600/6416, lr 0.001000, loss 1.078912 +INFO 2020-12-04 11:21:26 train.py: 79] Epoch 14, iter 4800/6416, lr 0.001000, loss 1.079929 +INFO 2020-12-04 11:26:51 train.py: 79] Epoch 14, iter 5000/6416, lr 0.001000, loss 1.070700 +INFO 2020-12-04 11:32:16 train.py: 79] Epoch 14, iter 5200/6416, lr 0.001000, loss 1.069580 +INFO 2020-12-04 11:37:41 train.py: 79] Epoch 14, iter 5400/6416, lr 0.001000, loss 1.073560 +INFO 2020-12-04 11:43:07 train.py: 79] Epoch 14, iter 5600/6416, lr 0.001000, loss 1.066351 +INFO 2020-12-04 11:48:32 train.py: 79] Epoch 14, iter 5800/6416, lr 0.001000, loss 1.082068 +INFO 2020-12-04 11:53:56 train.py: 92] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2020-12-04 11:53:58 train.py: 79] Epoch 14, iter 6000/6416, lr 0.001000, loss 1.076696 +INFO 2020-12-04 11:59:23 train.py: 79] Epoch 14, iter 6200/6416, lr 0.001000, loss 1.072486 +INFO 2020-12-04 12:04:48 train.py: 79] Epoch 14, iter 6400/6416, lr 0.001000, loss 1.075122 +INFO 2020-12-04 12:05:12 train.py: 97] Save checkpoint Epoch_14.pt to disk... +INFO 2020-12-04 12:05:15 train.py: 79] Epoch 15, iter 0/6416, lr 0.001000, loss 1.093127 +INFO 2020-12-04 12:10:40 train.py: 79] Epoch 15, iter 200/6416, lr 0.001000, loss 1.038921 +INFO 2020-12-04 12:16:05 train.py: 79] Epoch 15, iter 400/6416, lr 0.001000, loss 1.021710 +INFO 2020-12-04 12:21:30 train.py: 79] Epoch 15, iter 600/6416, lr 0.001000, loss 1.036300 +INFO 2020-12-04 12:26:55 train.py: 79] Epoch 15, iter 800/6416, lr 0.001000, loss 1.036481 +INFO 2020-12-04 12:32:21 train.py: 79] Epoch 15, iter 1000/6416, lr 0.001000, loss 1.035608 +INFO 2020-12-04 12:37:46 train.py: 79] Epoch 15, iter 1200/6416, lr 0.001000, loss 1.034641 +INFO 2020-12-04 12:43:11 train.py: 79] Epoch 15, iter 1400/6416, lr 0.001000, loss 1.038440 +INFO 2020-12-04 12:48:36 train.py: 79] Epoch 15, iter 1600/6416, lr 0.001000, loss 1.043738 +INFO 2020-12-04 12:54:01 train.py: 79] Epoch 15, iter 1800/6416, lr 0.001000, loss 1.039400 +INFO 2020-12-04 12:59:26 train.py: 79] Epoch 15, iter 2000/6416, lr 0.001000, loss 1.043403 +INFO 2020-12-04 13:04:51 train.py: 79] Epoch 15, iter 2200/6416, lr 0.001000, loss 1.052029 +INFO 2020-12-04 13:10:16 train.py: 79] Epoch 15, iter 2400/6416, lr 0.001000, loss 1.031198 +INFO 2020-12-04 13:15:41 train.py: 79] Epoch 15, iter 2600/6416, lr 0.001000, loss 1.038019 +INFO 2020-12-04 13:21:05 train.py: 79] Epoch 15, iter 2800/6416, lr 0.001000, loss 1.044535 +INFO 2020-12-04 13:26:29 train.py: 92] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2020-12-04 13:26:31 train.py: 79] Epoch 15, iter 3000/6416, lr 0.001000, loss 1.046154 +INFO 2020-12-04 13:31:56 train.py: 79] Epoch 15, iter 3200/6416, lr 0.001000, loss 1.046215 +INFO 2020-12-04 13:37:21 train.py: 79] Epoch 15, iter 3400/6416, lr 0.001000, loss 1.036994 +INFO 2020-12-04 13:42:46 train.py: 79] Epoch 15, iter 3600/6416, lr 0.001000, loss 1.042916 +INFO 2020-12-04 13:48:11 train.py: 79] Epoch 15, iter 3800/6416, lr 0.001000, loss 1.053086 +INFO 2020-12-04 13:53:36 train.py: 79] Epoch 15, iter 4000/6416, lr 0.001000, loss 1.046281 +INFO 2020-12-04 13:59:01 train.py: 79] Epoch 15, iter 4200/6416, lr 0.001000, loss 1.046119 +INFO 2020-12-04 14:04:26 train.py: 79] Epoch 15, iter 4400/6416, lr 0.001000, loss 1.068466 +INFO 2020-12-04 14:09:51 train.py: 79] Epoch 15, iter 4600/6416, lr 0.001000, loss 1.052074 +INFO 2020-12-04 14:15:16 train.py: 79] Epoch 15, iter 4800/6416, lr 0.001000, loss 1.048229 +INFO 2020-12-04 14:20:42 train.py: 79] Epoch 15, iter 5000/6416, lr 0.001000, loss 1.043999 +INFO 2020-12-04 14:26:07 train.py: 79] Epoch 15, iter 5200/6416, lr 0.001000, loss 1.038350 +INFO 2020-12-04 14:31:31 train.py: 79] Epoch 15, iter 5400/6416, lr 0.001000, loss 1.055580 +INFO 2020-12-04 14:36:56 train.py: 79] Epoch 15, iter 5600/6416, lr 0.001000, loss 1.042690 +INFO 2020-12-04 14:42:21 train.py: 79] Epoch 15, iter 5800/6416, lr 0.001000, loss 1.051873 +INFO 2020-12-04 14:47:45 train.py: 92] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2020-12-04 14:47:47 train.py: 79] Epoch 15, iter 6000/6416, lr 0.001000, loss 1.061339 +INFO 2020-12-04 14:53:12 train.py: 79] Epoch 15, iter 6200/6416, lr 0.001000, loss 1.056667 +INFO 2020-12-04 14:58:37 train.py: 79] Epoch 15, iter 6400/6416, lr 0.001000, loss 1.052175 +INFO 2020-12-04 14:59:01 train.py: 97] Save checkpoint Epoch_15.pt to disk... +INFO 2020-12-04 14:59:04 train.py: 79] Epoch 16, iter 0/6416, lr 0.000100, loss 1.035008 +INFO 2020-12-04 15:04:29 train.py: 79] Epoch 16, iter 200/6416, lr 0.000100, loss 0.999609 +INFO 2020-12-04 15:09:55 train.py: 79] Epoch 16, iter 400/6416, lr 0.000100, loss 1.001416 +INFO 2020-12-04 15:15:20 train.py: 79] Epoch 16, iter 600/6416, lr 0.000100, loss 0.997739 +INFO 2020-12-04 15:20:45 train.py: 79] Epoch 16, iter 800/6416, lr 0.000100, loss 1.007479 +INFO 2020-12-04 15:26:10 train.py: 79] Epoch 16, iter 1000/6416, lr 0.000100, loss 1.007760 +INFO 2020-12-04 15:31:35 train.py: 79] Epoch 16, iter 1200/6416, lr 0.000100, loss 1.008566 +INFO 2020-12-04 15:37:00 train.py: 79] Epoch 16, iter 1400/6416, lr 0.000100, loss 1.005205 +INFO 2020-12-04 15:42:25 train.py: 79] Epoch 16, iter 1600/6416, lr 0.000100, loss 1.015564 +INFO 2020-12-04 15:47:50 train.py: 79] Epoch 16, iter 1800/6416, lr 0.000100, loss 1.006663 +INFO 2020-12-04 15:53:14 train.py: 79] Epoch 16, iter 2000/6416, lr 0.000100, loss 0.998463 +INFO 2020-12-04 15:58:39 train.py: 79] Epoch 16, iter 2200/6416, lr 0.000100, loss 1.000941 +INFO 2020-12-04 16:04:04 train.py: 79] Epoch 16, iter 2400/6416, lr 0.000100, loss 1.019119 +INFO 2020-12-04 16:09:29 train.py: 79] Epoch 16, iter 2600/6416, lr 0.000100, loss 0.996453 +INFO 2020-12-04 16:14:54 train.py: 79] Epoch 16, iter 2800/6416, lr 0.000100, loss 1.002589 +INFO 2020-12-04 16:20:18 train.py: 92] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2020-12-04 16:20:19 train.py: 79] Epoch 16, iter 3000/6416, lr 0.000100, loss 1.004591 +INFO 2020-12-04 16:25:45 train.py: 79] Epoch 16, iter 3200/6416, lr 0.000100, loss 1.006190 +INFO 2020-12-04 16:31:10 train.py: 79] Epoch 16, iter 3400/6416, lr 0.000100, loss 0.997385 +INFO 2020-12-04 16:36:35 train.py: 79] Epoch 16, iter 3600/6416, lr 0.000100, loss 0.998832 +INFO 2020-12-04 16:42:00 train.py: 79] Epoch 16, iter 3800/6416, lr 0.000100, loss 1.007833 +INFO 2020-12-04 16:47:25 train.py: 79] Epoch 16, iter 4000/6416, lr 0.000100, loss 0.999878 +INFO 2020-12-04 16:52:50 train.py: 79] Epoch 16, iter 4200/6416, lr 0.000100, loss 1.002242 +INFO 2020-12-04 16:58:15 train.py: 79] Epoch 16, iter 4400/6416, lr 0.000100, loss 1.008763 +INFO 2020-12-04 17:03:40 train.py: 79] Epoch 16, iter 4600/6416, lr 0.000100, loss 1.017141 +INFO 2020-12-04 17:09:05 train.py: 79] Epoch 16, iter 4800/6416, lr 0.000100, loss 0.994520 +INFO 2020-12-04 17:14:31 train.py: 79] Epoch 16, iter 5000/6416, lr 0.000100, loss 0.995979 +INFO 2020-12-04 17:19:56 train.py: 79] Epoch 16, iter 5200/6416, lr 0.000100, loss 1.001580 +INFO 2020-12-04 17:25:21 train.py: 79] Epoch 16, iter 5400/6416, lr 0.000100, loss 1.002718 +INFO 2020-12-04 17:30:46 train.py: 79] Epoch 16, iter 5600/6416, lr 0.000100, loss 1.018163 +INFO 2020-12-04 17:36:11 train.py: 79] Epoch 16, iter 5800/6416, lr 0.000100, loss 1.001848 +INFO 2020-12-04 17:41:34 train.py: 92] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2020-12-04 17:41:36 train.py: 79] Epoch 16, iter 6000/6416, lr 0.000100, loss 1.019192 +INFO 2020-12-04 17:47:01 train.py: 79] Epoch 16, iter 6200/6416, lr 0.000100, loss 1.004056 +INFO 2020-12-04 17:52:26 train.py: 79] Epoch 16, iter 6400/6416, lr 0.000100, loss 1.012894 +INFO 2020-12-04 17:52:50 train.py: 97] Save checkpoint Epoch_16.pt to disk... +INFO 2020-12-04 17:52:52 train.py: 79] Epoch 17, iter 0/6416, lr 0.000100, loss 1.016697 +INFO 2020-12-04 17:58:18 train.py: 79] Epoch 17, iter 200/6416, lr 0.000100, loss 1.003436 +INFO 2020-12-04 18:03:43 train.py: 79] Epoch 17, iter 400/6416, lr 0.000100, loss 1.001899 +INFO 2020-12-04 18:09:09 train.py: 79] Epoch 17, iter 600/6416, lr 0.000100, loss 0.997006 +INFO 2020-12-04 18:14:34 train.py: 79] Epoch 17, iter 800/6416, lr 0.000100, loss 1.003413 +INFO 2020-12-04 18:19:58 train.py: 79] Epoch 17, iter 1000/6416, lr 0.000100, loss 1.013359 +INFO 2020-12-04 18:25:23 train.py: 79] Epoch 17, iter 1200/6416, lr 0.000100, loss 1.005548 +INFO 2020-12-04 18:30:48 train.py: 79] Epoch 17, iter 1400/6416, lr 0.000100, loss 0.993645 +INFO 2020-12-04 18:36:13 train.py: 79] Epoch 17, iter 1600/6416, lr 0.000100, loss 1.007651 +INFO 2020-12-04 18:41:38 train.py: 79] Epoch 17, iter 1800/6416, lr 0.000100, loss 0.993668 +INFO 2020-12-04 18:47:03 train.py: 79] Epoch 17, iter 2000/6416, lr 0.000100, loss 1.001400 +INFO 2020-12-04 18:52:28 train.py: 79] Epoch 17, iter 2200/6416, lr 0.000100, loss 0.999513 +INFO 2020-12-04 18:57:53 train.py: 79] Epoch 17, iter 2400/6416, lr 0.000100, loss 1.002893 +INFO 2020-12-04 19:03:18 train.py: 79] Epoch 17, iter 2600/6416, lr 0.000100, loss 0.996499 +INFO 2020-12-04 19:08:43 train.py: 79] Epoch 17, iter 2800/6416, lr 0.000100, loss 0.999717 +INFO 2020-12-04 19:14:06 train.py: 92] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2020-12-04 19:14:08 train.py: 79] Epoch 17, iter 3000/6416, lr 0.000100, loss 0.987270 +INFO 2020-12-04 19:19:33 train.py: 79] Epoch 17, iter 3200/6416, lr 0.000100, loss 0.994398 +INFO 2020-12-04 19:24:58 train.py: 79] Epoch 17, iter 3400/6416, lr 0.000100, loss 1.003996 +INFO 2020-12-04 19:30:23 train.py: 79] Epoch 17, iter 3600/6416, lr 0.000100, loss 1.006844 +INFO 2020-12-04 19:35:48 train.py: 79] Epoch 17, iter 3800/6416, lr 0.000100, loss 0.998328 +INFO 2020-12-04 19:41:13 train.py: 79] Epoch 17, iter 4000/6416, lr 0.000100, loss 1.009933 +INFO 2020-12-04 19:46:38 train.py: 79] Epoch 17, iter 4200/6416, lr 0.000100, loss 0.999123 +INFO 2020-12-04 19:52:03 train.py: 79] Epoch 17, iter 4400/6416, lr 0.000100, loss 1.008997 +INFO 2020-12-04 19:57:28 train.py: 79] Epoch 17, iter 4600/6416, lr 0.000100, loss 1.004571 +INFO 2020-12-04 20:02:53 train.py: 79] Epoch 17, iter 4800/6416, lr 0.000100, loss 0.997180 +INFO 2020-12-04 20:08:18 train.py: 79] Epoch 17, iter 5000/6416, lr 0.000100, loss 0.998194 +INFO 2020-12-04 20:13:43 train.py: 79] Epoch 17, iter 5200/6416, lr 0.000100, loss 0.999965 +INFO 2020-12-04 20:19:08 train.py: 79] Epoch 17, iter 5400/6416, lr 0.000100, loss 0.998162 +INFO 2020-12-04 20:24:33 train.py: 79] Epoch 17, iter 5600/6416, lr 0.000100, loss 1.007894 +INFO 2020-12-04 20:29:58 train.py: 79] Epoch 17, iter 5800/6416, lr 0.000100, loss 1.006676 +INFO 2020-12-04 20:35:22 train.py: 92] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2020-12-04 20:35:23 train.py: 79] Epoch 17, iter 6000/6416, lr 0.000100, loss 1.004134 +INFO 2020-12-04 20:40:48 train.py: 79] Epoch 17, iter 6200/6416, lr 0.000100, loss 1.004713 +INFO 2020-12-04 20:46:13 train.py: 79] Epoch 17, iter 6400/6416, lr 0.000100, loss 0.991361 +INFO 2020-12-04 20:46:37 train.py: 97] Save checkpoint Epoch_17.pt to disk... +INFO 2020-12-04 20:46:38 train.py: 180] Optimization done! diff --git a/bob/bio/facexzoo/models/backbones/ResNet50_ir/.gitkeep b/bob/bio/facexzoo/models/backbones/ResNet50_ir/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..0b6d7cbc25c28e40f70c9ec7827fe96722080c49 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_agedb.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_5999.pt | 0.9776666666666667 | 0.0028458329944145975 | +| Epoch_15.pt | 0.977 | 0.002819683897877668 | +| Epoch_14.pt | 0.9766666666666668 | 0.00275546594836383 | +| Epoch_17_batch_2999.pt | 0.9763333333333334 | 0.0027419917065006766 | +| Epoch_16_batch_5999.pt | 0.9761666666666666 | 0.0028114624286399953 | +| Epoch_14_batch_2999.pt | 0.976 | 0.0027352296944646985 | +| Epoch_12_batch_2999.pt | 0.976 | 0.0030651364942519315 | +| Epoch_16.pt | 0.976 | 0.002487003253955483 | +| Epoch_11_batch_2999.pt | 0.9758333333333333 | 0.0029943362173804177 | +| Epoch_13.pt | 0.9758333333333333 | 0.00290008514136404 | +| Epoch_17_batch_5999.pt | 0.9756666666666666 | 0.00263171539607266 | +| Epoch_11_batch_5999.pt | 0.9755 | 0.0034609818060383313 | +| Epoch_11.pt | 0.9754999999999999 | 0.0029297326385411587 | +| Epoch_17.pt | 0.9753333333333332 | 0.002730712383876551 | +| Epoch_15_batch_2999.pt | 0.975 | 0.0026988795114424634 | +| Epoch_16_batch_2999.pt | 0.9749999999999999 | 0.002744242007828548 | +| Epoch_10_batch_2999.pt | 0.9748333333333333 | 0.002954908032660492 | +| Epoch_13_batch_2999.pt | 0.9746666666666668 | 0.002916534388534813 | +| Epoch_14_batch_5999.pt | 0.9746666666666666 | 0.002968975381308303 | +| Epoch_15_batch_5999.pt | 0.9741666666666667 | 0.0023992025424099048 | +| Epoch_10.pt | 0.9741666666666667 | 0.0027916321169780232 | +| Epoch_12.pt | 0.9739999999999999 | 0.0025843785221362193 | +| Epoch_10_batch_5999.pt | 0.9736666666666668 | 0.0030307070437746303 | +| Epoch_12_batch_5999.pt | 0.9731666666666667 | 0.0029339435392246407 | +| Epoch_9_batch_5999.pt | 0.969 | 0.002779999111821524 | +| Epoch_7_batch_5999.pt | 0.9686666666666666 | 0.003431876713662339 | +| Epoch_8_batch_2999.pt | 0.9683333333333332 | 0.002810913475705229 | +| Epoch_5_batch_5999.pt | 0.9671666666666665 | 0.002291287847477926 | +| Epoch_5.pt | 0.9666666666666666 | 0.002865288212939474 | +| Epoch_7_batch_2999.pt | 0.9661666666666667 | 0.003152991916369494 | +| Epoch_8_batch_5999.pt | 0.9658333333333335 | 0.003745367509040708 | +| Epoch_6_batch_5999.pt | 0.9654999999999999 | 0.0027448042948968127 | +| Epoch_7.pt | 0.9648333333333333 | 0.0025391988626725457 | +| Epoch_4_batch_2999.pt | 0.9648333333333332 | 0.0025754059969998384 | +| Epoch_8.pt | 0.9638333333333333 | 0.0025098571106836665 | +| Epoch_9.pt | 0.9636666666666669 | 0.003256522419945082 | +| Epoch_6_batch_2999.pt | 0.9635 | 0.0029234049148717527 | +| Epoch_9_batch_2999.pt | 0.9635 | 0.004241549332583639 | +| Epoch_3_batch_5999.pt | 0.9628333333333332 | 0.0032871804872193367 | +| Epoch_5_batch_2999.pt | 0.961 | 0.003124969135650052 | +| Epoch_4_batch_5999.pt | 0.9606666666666666 | 0.0033259176771323943 | +| Epoch_6.pt | 0.9603333333333334 | 0.003733399470313658 | +| Epoch_3_batch_2999.pt | 0.9594999999999999 | 0.0027672020900916207 | +| Epoch_4.pt | 0.9570000000000001 | 0.003208784239598593 | +| Epoch_2_batch_5999.pt | 0.9564999999999999 | 0.00204048529691189 | +| Epoch_3.pt | 0.9538333333333332 | 0.003881341883268571 | +| Epoch_2_batch_2999.pt | 0.9505000000000001 | 0.0039366119417904195 | +| Epoch_2.pt | 0.9483333333333335 | 0.0036599264648890296 | +| Epoch_1_batch_5999.pt | 0.9398333333333332 | 0.004489012649559063 | +| Epoch_1.pt | 0.9380000000000001 | 0.005504207145111479 | +| Epoch_1_batch_2999.pt | 0.922 | 0.005017254179944729 | +| Epoch_0_batch_5999.pt | 0.8675 | 0.007475267863403268 | +| Epoch_0.pt | 0.8576666666666666 | 0.00704132423011326 | +| Epoch_0_batch_2999.pt | 0.6758333333333334 | 0.004225510415512534 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..78899a887edd07a16b7d8a78ef63801fe90b295d --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_calfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_12_batch_2999.pt | 0.9546666666666669 | 0.0031991511219751022 | +| Epoch_14.pt | 0.9546666666666667 | 0.003312900336861243 | +| Epoch_13.pt | 0.9543333333333335 | 0.0033536418383970207 | +| Epoch_11_batch_5999.pt | 0.9543333333333335 | 0.0036868133384526888 | +| Epoch_15_batch_2999.pt | 0.9541666666666668 | 0.0032131097202047253 | +| Epoch_17_batch_2999.pt | 0.9541666666666668 | 0.0032417987690878153 | +| Epoch_13_batch_2999.pt | 0.9541666666666668 | 0.0033448873829978647 | +| Epoch_14_batch_2999.pt | 0.9540000000000001 | 0.0032885885748775018 | +| Epoch_10_batch_2999.pt | 0.9538333333333334 | 0.003258890972458331 | +| Epoch_15.pt | 0.9536666666666667 | 0.003256522419945083 | +| Epoch_12.pt | 0.9535 | 0.0038204291659898184 | +| Epoch_17.pt | 0.9531666666666666 | 0.003224615969095881 | +| Epoch_10_batch_5999.pt | 0.9530000000000001 | 0.0033499585403736335 | +| Epoch_14_batch_5999.pt | 0.9528333333333334 | 0.0034251250315107465 | +| Epoch_16.pt | 0.9528333333333334 | 0.003531603350069519 | +| Epoch_12_batch_5999.pt | 0.9526666666666668 | 0.0033536418383970194 | +| Epoch_15_batch_5999.pt | 0.9523333333333334 | 0.0033444259873983135 | +| Epoch_16_batch_2999.pt | 0.9523333333333334 | 0.0034174569998288227 | +| Epoch_16_batch_5999.pt | 0.9521666666666666 | 0.003333796264150556 | +| Epoch_11_batch_2999.pt | 0.952 | 0.0034587516480607556 | +| Epoch_13_batch_5999.pt | 0.952 | 0.003395712619985805 | +| Epoch_17_batch_5999.pt | 0.952 | 0.003349958540373629 | +| Epoch_10.pt | 0.9518333333333334 | 0.0034466838598324672 | +| Epoch_11.pt | 0.9518333333333334 | 0.0036468318738391774 | +| Epoch_7_batch_5999.pt | 0.9486666666666668 | 0.003520662115056637 | +| Epoch_7_batch_2999.pt | 0.9484999999999999 | 0.0028593576072128367 | +| Epoch_6_batch_2999.pt | 0.9471666666666667 | 0.00223675801546638 | +| Epoch_9_batch_5999.pt | 0.9470000000000001 | 0.003958114029012637 | +| Epoch_8_batch_5999.pt | 0.9463333333333332 | 0.0034318767136623336 | +| Epoch_8.pt | 0.9461666666666666 | 0.003776552088746075 | +| Epoch_7.pt | 0.9458333333333334 | 0.0032322640461752952 | +| Epoch_4.pt | 0.9456666666666665 | 0.003515398226568084 | +| Epoch_4_batch_5999.pt | 0.9446666666666665 | 0.0031700761372638006 | +| Epoch_8_batch_2999.pt | 0.9445 | 0.0035140810224152117 | +| Epoch_5_batch_2999.pt | 0.9443333333333334 | 0.0030041124076879435 | +| Epoch_5.pt | 0.9441666666666666 | 0.0032322640461753017 | +| Epoch_5_batch_5999.pt | 0.944 | 0.0028995529668221945 | +| Epoch_3_batch_5999.pt | 0.9431666666666665 | 0.0033742854753467133 | +| Epoch_9.pt | 0.9418333333333333 | 0.0042488197344441965 | +| Epoch_6_batch_5999.pt | 0.9410000000000001 | 0.004562325592810626 | +| Epoch_4_batch_2999.pt | 0.9403333333333335 | 0.0039969123885788705 | +| Epoch_9_batch_2999.pt | 0.9400000000000001 | 0.00352241499647719 | +| Epoch_3_batch_2999.pt | 0.9386666666666666 | 0.003020506048681815 | +| Epoch_6.pt | 0.9386666666666665 | 0.003973678831610592 | +| Epoch_3.pt | 0.9371666666666666 | 0.002897955856832215 | +| Epoch_2_batch_5999.pt | 0.933 | 0.00424409538995206 | +| Epoch_2_batch_2999.pt | 0.9321666666666667 | 0.0034251250315107465 | +| Epoch_2.pt | 0.93 | 0.002641080960889938 | +| Epoch_1_batch_5999.pt | 0.9268333333333334 | 0.0032150302880511773 | +| Epoch_1.pt | 0.9178333333333335 | 0.002152374514201173 | +| Epoch_1_batch_2999.pt | 0.9146666666666666 | 0.004686465935325139 | +| Epoch_0_batch_5999.pt | 0.8631666666666666 | 0.005541370780182171 | +| Epoch_0.pt | 0.8554999999999999 | 0.004135438531988101 | +| Epoch_0_batch_2999.pt | 0.6685 | 0.007578600476683353 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..ca43adc87ad14ab2b7c81f239f2585fc792f63a5 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_cplfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_5999.pt | 0.882 | 0.005675374572943168 | +| Epoch_17.pt | 0.882 | 0.006230153675056075 | +| Epoch_14_batch_5999.pt | 0.8816666666666666 | 0.005947299418254502 | +| Epoch_15_batch_2999.pt | 0.8805 | 0.00566039958455144 | +| Epoch_16_batch_2999.pt | 0.8801666666666668 | 0.006645568466799031 | +| Epoch_13_batch_5999.pt | 0.8801666666666665 | 0.005907987896708517 | +| Epoch_14_batch_2999.pt | 0.8800000000000001 | 0.006191391873668908 | +| Epoch_13_batch_2999.pt | 0.8793333333333335 | 0.00636929362131845 | +| Epoch_17_batch_2999.pt | 0.8793333333333333 | 0.006446359868604571 | +| Epoch_12.pt | 0.8791666666666667 | 0.0065886640396335665 | +| Epoch_16.pt | 0.8788333333333334 | 0.00644085148883551 | +| Epoch_15.pt | 0.8786666666666667 | 0.00617041927862881 | +| Epoch_12_batch_2999.pt | 0.8779999999999999 | 0.005745637099487944 | +| Epoch_11_batch_5999.pt | 0.8779999999999999 | 0.006235105709599201 | +| Epoch_16_batch_5999.pt | 0.8776666666666666 | 0.006662961933584421 | +| Epoch_13.pt | 0.8773333333333333 | 0.006403124237432855 | +| Epoch_11.pt | 0.8771666666666667 | 0.006620441595058467 | +| Epoch_17_batch_5999.pt | 0.8771666666666667 | 0.006597090641962685 | +| Epoch_10.pt | 0.8771666666666664 | 0.006161659628924347 | +| Epoch_14.pt | 0.8766666666666667 | 0.006662035428409453 | +| Epoch_12_batch_5999.pt | 0.8756666666666668 | 0.006475023237481537 | +| Epoch_10_batch_2999.pt | 0.8745 | 0.005555833326389239 | +| Epoch_11_batch_2999.pt | 0.8728333333333333 | 0.0067222222222222275 | +| Epoch_10_batch_5999.pt | 0.8728333333333333 | 0.006161659628924348 | +| Epoch_5_batch_2999.pt | 0.8539999999999999 | 0.007036939570475114 | +| Epoch_9_batch_2999.pt | 0.8526666666666667 | 0.005600925849390468 | +| Epoch_5_batch_5999.pt | 0.8511666666666666 | 0.005931970297037756 | +| Epoch_7_batch_5999.pt | 0.8508333333333334 | 0.006316009444945595 | +| Epoch_8_batch_2999.pt | 0.8504999999999999 | 0.005176215787285458 | +| Epoch_9_batch_5999.pt | 0.8488333333333331 | 0.006772538958958988 | +| Epoch_6_batch_5999.pt | 0.8476666666666667 | 0.006795968303721347 | +| Epoch_8_batch_5999.pt | 0.8473333333333335 | 0.007714824594151085 | +| Epoch_7_batch_2999.pt | 0.8466666666666667 | 0.007888106377466154 | +| Epoch_3_batch_5999.pt | 0.8460000000000001 | 0.005720873627491551 | +| Epoch_7.pt | 0.8451666666666668 | 0.006173669697259828 | +| Epoch_6_batch_2999.pt | 0.8451666666666666 | 0.007434695108612373 | +| Epoch_6.pt | 0.8441666666666666 | 0.006311120892011203 | +| Epoch_8.pt | 0.844 | 0.007573508083534208 | +| Epoch_4_batch_2999.pt | 0.8438333333333334 | 0.006979025012382233 | +| Epoch_4_batch_5999.pt | 0.8435 | 0.005695189653135811 | +| Epoch_3_batch_2999.pt | 0.8426666666666666 | 0.00791622805802528 | +| Epoch_5.pt | 0.8408333333333333 | 0.00634526167143739 | +| Epoch_9.pt | 0.8391666666666666 | 0.007214739713655818 | +| Epoch_2_batch_5999.pt | 0.8376666666666667 | 0.0063059838327389865 | +| Epoch_4.pt | 0.836 | 0.006667592528301113 | +| Epoch_3.pt | 0.8343333333333334 | 0.007978365809340552 | +| Epoch_2.pt | 0.8236666666666667 | 0.006986759965449988 | +| Epoch_2_batch_2999.pt | 0.8206666666666667 | 0.006939776208723194 | +| Epoch_1_batch_5999.pt | 0.8201666666666666 | 0.007566372975210781 | +| Epoch_1.pt | 0.8175000000000001 | 0.007594060382063062 | +| Epoch_1_batch_2999.pt | 0.8056666666666666 | 0.008931149539603814 | +| Epoch_0_batch_5999.pt | 0.7378333333333333 | 0.010030970559739987 | +| Epoch_0.pt | 0.7271666666666666 | 0.008039447496525035 | +| Epoch_0_batch_2999.pt | 0.6039999999999999 | 0.007396195218063386 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..d6ad8b7d8ae4616045f191b2fafda5030e2445cf --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_10.pt | 0.9978333333333333 | 0.0008258927081843653 | +| Epoch_11_batch_2999.pt | 0.9976666666666667 | 0.0009362388636862609 | +| Epoch_12_batch_5999.pt | 0.9974999999999999 | 0.0009043789220055372 | +| Epoch_16.pt | 0.9974999999999999 | 0.0010015420209622187 | +| Epoch_17.pt | 0.9973333333333333 | 0.0009686442096757043 | +| Epoch_10_batch_2999.pt | 0.9973333333333333 | 0.0010599324460188297 | +| Epoch_14_batch_5999.pt | 0.9973333333333333 | 0.0009686442096757043 | +| Epoch_16_batch_5999.pt | 0.9973333333333333 | 0.0009686442096757043 | +| Epoch_9.pt | 0.9971666666666665 | 0.0008624541497922207 | +| Epoch_10_batch_5999.pt | 0.9971666666666665 | 0.0009312808119022322 | +| Epoch_14.pt | 0.9971666666666665 | 0.0009312808119022322 | +| Epoch_11.pt | 0.9970000000000001 | 0.0010772621905369634 | +| Epoch_15_batch_2999.pt | 0.9970000000000001 | 0.0010482201257840677 | +| Epoch_13_batch_2999.pt | 0.9970000000000001 | 0.0009875771574795094 | +| Epoch_11_batch_5999.pt | 0.9970000000000001 | 0.0010772621905369634 | +| Epoch_15.pt | 0.9969999999999999 | 0.0008888888888888863 | +| Epoch_14_batch_2999.pt | 0.9968333333333333 | 0.0008766518798921921 | +| Epoch_6_batch_2999.pt | 0.9968333333333333 | 0.0007637626158259699 | +| Epoch_13.pt | 0.9968333333333333 | 0.001007686508178725 | +| Epoch_8_batch_2999.pt | 0.9968333333333333 | 0.001007686508178725 | +| Epoch_16_batch_2999.pt | 0.9968333333333333 | 0.001007686508178725 | +| Epoch_15_batch_5999.pt | 0.9966666666666667 | 0.0009938079899999067 | +| Epoch_13_batch_5999.pt | 0.9966666666666667 | 0.0008958064164776142 | +| Epoch_4_batch_5999.pt | 0.9966666666666667 | 0.0012668615834434834 | +| Epoch_12.pt | 0.9966666666666667 | 0.0008240220541217368 | +| Epoch_17_batch_2999.pt | 0.9966666666666667 | 0.0009938079899999067 | +| Epoch_6.pt | 0.9966666666666667 | 0.0009296222517045275 | +| Epoch_17_batch_5999.pt | 0.9966666666666667 | 0.0009938079899999067 | +| Epoch_7_batch_5999.pt | 0.9964999999999999 | 0.0011235415786753746 | +| Epoch_5_batch_2999.pt | 0.9964999999999999 | 0.0010378634273483015 | +| Epoch_12_batch_2999.pt | 0.9964999999999999 | 0.0008407081083567495 | +| Epoch_9_batch_5999.pt | 0.9963333333333333 | 0.001160034056545621 | +| Epoch_4_batch_2999.pt | 0.9963333333333333 | 0.0011055415967851372 | +| Epoch_2_batch_5999.pt | 0.9963333333333333 | 0.0011331154474650631 | +| Epoch_5_batch_5999.pt | 0.9963333333333333 | 0.0012120791238484144 | +| Epoch_8_batch_5999.pt | 0.9961666666666666 | 0.0008258927081843622 | +| Epoch_3.pt | 0.9959999999999999 | 0.0010304020550550763 | +| Epoch_4.pt | 0.9959999999999999 | 0.0009026709338484372 | +| Epoch_5.pt | 0.9956666666666667 | 0.0010886621079036305 | +| Epoch_6_batch_5999.pt | 0.9956666666666665 | 0.0009026709338484367 | +| Epoch_7.pt | 0.9956666666666665 | 0.0010599324460188332 | +| Epoch_8.pt | 0.9955 | 0.0010844011831079527 | +| Epoch_7_batch_2999.pt | 0.9954999999999998 | 0.0010844011831079527 | +| Epoch_2.pt | 0.9953333333333333 | 0.0009229582069908945 | +| Epoch_3_batch_2999.pt | 0.9953333333333332 | 0.0008164965809277296 | +| Epoch_3_batch_5999.pt | 0.9951666666666666 | 0.0010957268290731133 | +| Epoch_9_batch_2999.pt | 0.9948333333333335 | 0.0011772011166898413 | +| Epoch_1.pt | 0.9946666666666667 | 0.0009229582069908971 | +| Epoch_1_batch_5999.pt | 0.9941666666666666 | 0.0009043789220055396 | +| Epoch_2_batch_2999.pt | 0.9941666666666664 | 0.0011453071182271246 | +| Epoch_1_batch_2999.pt | 0.9911666666666668 | 0.0014497764834110972 | +| Epoch_0_batch_5999.pt | 0.9789999999999999 | 0.0019436506316150984 | +| Epoch_0.pt | 0.9748333333333333 | 0.0026925824035672567 | +| Epoch_0_batch_2999.pt | 0.9081666666666666 | 0.00527309733985212 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_rfw_African.txt b/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_rfw_African.txt new file mode 100644 index 0000000000000000000000000000000000000000..1227308f139401ce190099b032c307d19b16cd59 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_rfw_African.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_2999.pt | 0.9524999999999999 | 0.0022939803135625047 | +| Epoch_16_batch_5999.pt | 0.9521666666666666 | 0.00234454976066769 | +| Epoch_17_batch_2999.pt | 0.9516666666666665 | 0.002675909906398299 | +| Epoch_16.pt | 0.9511666666666667 | 0.0023445497606676847 | +| Epoch_14_batch_5999.pt | 0.9508333333333333 | 0.0024876236863597945 | +| Epoch_11_batch_2999.pt | 0.9506666666666668 | 0.002834966849371794 | +| Epoch_17.pt | 0.9505000000000001 | 0.0024349563334234606 | +| Epoch_15_batch_2999.pt | 0.9501666666666667 | 0.002634645711417646 | +| Epoch_15_batch_5999.pt | 0.95 | 0.002557969874049184 | +| Epoch_12.pt | 0.95 | 0.0018425693279752213 | +| Epoch_14.pt | 0.9493333333333333 | 0.002655067365633006 | +| Epoch_13_batch_2999.pt | 0.9491666666666665 | 0.002052550355767911 | +| Epoch_17_batch_5999.pt | 0.9489999999999998 | 0.002643417167415624 | +| Epoch_13.pt | 0.9488333333333335 | 0.0025221243250702625 | +| Epoch_12_batch_5999.pt | 0.9488333333333333 | 0.0031135902820449007 | +| Epoch_13_batch_5999.pt | 0.9484999999999999 | 0.002527014536787587 | +| Epoch_14_batch_2999.pt | 0.9476666666666667 | 0.002499382639822663 | +| Epoch_11_batch_5999.pt | 0.9471666666666667 | 0.0031627656283311797 | +| Epoch_15.pt | 0.9471666666666666 | 0.002618193703988486 | +| Epoch_11.pt | 0.9456666666666665 | 0.003567687635111629 | +| Epoch_10_batch_5999.pt | 0.9455 | 0.0026994512473902986 | +| Epoch_12_batch_2999.pt | 0.9453333333333334 | 0.0030205060486818173 | +| Epoch_10.pt | 0.9451666666666666 | 0.002575405996999833 | +| Epoch_10_batch_2999.pt | 0.9416666666666667 | 0.0029397236789606516 | +| Epoch_7_batch_2999.pt | 0.9174999999999999 | 0.0033541019662496844 | +| Epoch_9_batch_5999.pt | 0.9173333333333332 | 0.0029627314724385355 | +| Epoch_6_batch_5999.pt | 0.9168333333333333 | 0.003290934048804416 | +| Epoch_8_batch_2999.pt | 0.9133333333333334 | 0.0046080980785172775 | +| Epoch_9_batch_2999.pt | 0.9119999999999999 | 0.004525647078759181 | +| Epoch_7_batch_5999.pt | 0.9118333333333333 | 0.0034645470728153108 | +| Epoch_7.pt | 0.9108333333333334 | 0.003222701113838484 | +| Epoch_8_batch_5999.pt | 0.9048333333333334 | 0.003986474044646721 | +| Epoch_3_batch_5999.pt | 0.9046666666666667 | 0.003911047979288454 | +| Epoch_6.pt | 0.9031666666666667 | 0.0051487143307100665 | +| Epoch_4_batch_2999.pt | 0.9016666666666666 | 0.004540625942600565 | +| Epoch_5_batch_2999.pt | 0.9015000000000001 | 0.002880864924992031 | +| Epoch_5_batch_5999.pt | 0.9013333333333332 | 0.003807075933113734 | +| Epoch_6_batch_2999.pt | 0.8963333333333334 | 0.005526591162420401 | +| Epoch_4.pt | 0.8961666666666666 | 0.0047143725607948425 | +| Epoch_3.pt | 0.8955 | 0.004931944248881376 | +| Epoch_9.pt | 0.8950000000000001 | 0.004746668747398624 | +| Epoch_2.pt | 0.8941666666666667 | 0.004663027681720735 | +| Epoch_8.pt | 0.8926666666666667 | 0.005277485372016852 | +| Epoch_5.pt | 0.8924999999999998 | 0.005026166101414908 | +| Epoch_4_batch_5999.pt | 0.8888333333333334 | 0.0048879418274609164 | +| Epoch_3_batch_2999.pt | 0.8861666666666667 | 0.004655078204114267 | +| Epoch_2_batch_2999.pt | 0.8860000000000001 | 0.004964068423041923 | +| Epoch_2_batch_5999.pt | 0.8795 | 0.0044724810139063756 | +| Epoch_1_batch_5999.pt | 0.8723333333333333 | 0.004857220665420977 | +| Epoch_1.pt | 0.8636666666666667 | 0.0031797973380564867 | +| Epoch_1_batch_2999.pt | 0.8298333333333334 | 0.00554137078018218 | +| Epoch_0_batch_5999.pt | 0.7493333333333333 | 0.003961231882216864 | +| Epoch_0.pt | 0.733 | 0.005459163776239215 | +| Epoch_0_batch_2999.pt | 0.5816666666666668 | 0.008465616732800198 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_rfw_Asian.txt b/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_rfw_Asian.txt new file mode 100644 index 0000000000000000000000000000000000000000..ceb19d29b909d653b375be0bc344a82bd8848440 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_rfw_Asian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_12_batch_5999.pt | 0.9395 | 0.003211188003692987 | +| Epoch_17_batch_5999.pt | 0.9395 | 0.003760171390892827 | +| Epoch_13_batch_5999.pt | 0.9383333333333335 | 0.003478327964999673 | +| Epoch_13_batch_2999.pt | 0.9380000000000001 | 0.003377485367460146 | +| Epoch_14_batch_2999.pt | 0.9376666666666666 | 0.0031446603773521917 | +| Epoch_14_batch_5999.pt | 0.9376666666666666 | 0.003203007845644349 | +| Epoch_12_batch_2999.pt | 0.9376666666666665 | 0.003670032125536394 | +| Epoch_15_batch_2999.pt | 0.9375 | 0.003426926780731359 | +| Epoch_17_batch_2999.pt | 0.9375 | 0.003335647344950685 | +| Epoch_16.pt | 0.9373333333333334 | 0.0030951973949298046 | +| Epoch_15_batch_5999.pt | 0.937 | 0.003449816599168893 | +| Epoch_16_batch_2999.pt | 0.9365 | 0.0030976893021001438 | +| Epoch_12.pt | 0.9363333333333334 | 0.0026736020923368753 | +| Epoch_13.pt | 0.9359999999999999 | 0.003686813338452678 | +| Epoch_10_batch_5999.pt | 0.9353333333333333 | 0.0036582394740342934 | +| Epoch_14.pt | 0.9353333333333333 | 0.003590109871423003 | +| Epoch_11_batch_5999.pt | 0.9349999999999999 | 0.003042903097250916 | +| Epoch_15.pt | 0.9348333333333333 | 0.003365126160201735 | +| Epoch_17.pt | 0.9346666666666668 | 0.003081205471969343 | +| Epoch_10.pt | 0.9343333333333333 | 0.0036531738272830233 | +| Epoch_16_batch_5999.pt | 0.9341666666666667 | 0.0030756912301480844 | +| Epoch_11.pt | 0.9334999999999999 | 0.0035175924707281595 | +| Epoch_11_batch_2999.pt | 0.9331666666666667 | 0.0037387691907536068 | +| Epoch_10_batch_2999.pt | 0.9306666666666666 | 0.004396968652757644 | +| Epoch_7_batch_5999.pt | 0.9091666666666667 | 0.004521894610027698 | +| Epoch_9.pt | 0.9061666666666668 | 0.0032207851201412822 | +| Epoch_6_batch_5999.pt | 0.9061666666666668 | 0.004938198301925088 | +| Epoch_9_batch_5999.pt | 0.9038333333333333 | 0.0045680722357048275 | +| Epoch_7_batch_2999.pt | 0.9021666666666667 | 0.0027672020900916133 | +| Epoch_6_batch_2999.pt | 0.9008333333333335 | 0.004319422114983375 | +| Epoch_9_batch_2999.pt | 0.9005000000000001 | 0.004465574769801906 | +| Epoch_3_batch_5999.pt | 0.8988333333333334 | 0.00399111667903596 | +| Epoch_5_batch_2999.pt | 0.8983333333333332 | 0.0034066021592790855 | +| Epoch_8_batch_5999.pt | 0.8983333333333332 | 0.002876039801232168 | +| Epoch_4_batch_2999.pt | 0.8981666666666668 | 0.0037305048809332286 | +| Epoch_4_batch_5999.pt | 0.8975 | 0.003381595065229603 | +| Epoch_5_batch_5999.pt | 0.8965000000000002 | 0.0032626770800057788 | +| Epoch_8_batch_2999.pt | 0.8963333333333333 | 0.003981438414926426 | +| Epoch_7.pt | 0.8963333333333333 | 0.003989182904670284 | +| Epoch_6.pt | 0.8946666666666665 | 0.004192880503136269 | +| Epoch_5.pt | 0.8931666666666667 | 0.004197662488858571 | +| Epoch_8.pt | 0.892 | 0.005004935835357872 | +| Epoch_2.pt | 0.8913333333333334 | 0.0027532248207475193 | +| Epoch_3_batch_2999.pt | 0.8905 | 0.0038892856940415826 | +| Epoch_3.pt | 0.8858333333333335 | 0.0030555555555555583 | +| Epoch_2_batch_2999.pt | 0.8846666666666667 | 0.00406581654745155 | +| Epoch_4.pt | 0.8838333333333332 | 0.004635144863025813 | +| Epoch_2_batch_5999.pt | 0.8783333333333333 | 0.004614791034954483 | +| Epoch_1_batch_5999.pt | 0.8683333333333334 | 0.004843221048378527 | +| Epoch_1.pt | 0.8538333333333332 | 0.004963135707330871 | +| Epoch_1_batch_2999.pt | 0.8418333333333333 | 0.004807722696959985 | +| Epoch_0.pt | 0.7705000000000001 | 0.005633070342316123 | +| Epoch_0_batch_5999.pt | 0.7628333333333334 | 0.005911121553875487 | +| Epoch_0_batch_2999.pt | 0.6415 | 0.005844961954274267 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_rfw_Caucasian.txt b/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_rfw_Caucasian.txt new file mode 100644 index 0000000000000000000000000000000000000000..45267fd5d3bdfd4667a74735b6264aec367705c3 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_rfw_Caucasian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_2999.pt | 0.9856666666666666 | 0.0011439589045541066 | +| Epoch_14_batch_2999.pt | 0.9850000000000001 | 0.001405456737852613 | +| Epoch_13_batch_2999.pt | 0.9848333333333332 | 0.0016187558093703764 | +| Epoch_16.pt | 0.9846666666666668 | 0.0012862041003100216 | +| Epoch_13_batch_5999.pt | 0.9843333333333334 | 0.0014315665251916788 | +| Epoch_17.pt | 0.9841666666666666 | 0.0017435949807194596 | +| Epoch_16_batch_5999.pt | 0.9841666666666666 | 0.001296957503325412 | +| Epoch_13.pt | 0.9840000000000002 | 0.0015752718754175373 | +| Epoch_17_batch_2999.pt | 0.984 | 0.0015355861067872468 | +| Epoch_17_batch_5999.pt | 0.9838333333333334 | 0.0014497764834110966 | +| Epoch_15_batch_5999.pt | 0.9835 | 0.0014153043558729952 | +| Epoch_14_batch_5999.pt | 0.9835 | 0.0016377114414426249 | +| Epoch_14.pt | 0.9834999999999999 | 0.001599575560987542 | +| Epoch_10.pt | 0.9833333333333334 | 0.001791612832955228 | +| Epoch_16_batch_2999.pt | 0.9833333333333334 | 0.0018257418583505463 | +| Epoch_15.pt | 0.983 | 0.001606314699422323 | +| Epoch_10_batch_5999.pt | 0.9823333333333334 | 0.0023465235646603173 | +| Epoch_11_batch_5999.pt | 0.9821666666666667 | 0.0020495407495218533 | +| Epoch_12_batch_5999.pt | 0.982 | 0.0017356110390903657 | +| Epoch_12_batch_2999.pt | 0.9819999999999999 | 0.0020608041101101504 | +| Epoch_11_batch_2999.pt | 0.9810000000000001 | 0.0022662308949301297 | +| Epoch_12.pt | 0.9806666666666667 | 0.0013425606637327238 | +| Epoch_11.pt | 0.9801666666666666 | 0.0019476164603286774 | +| Epoch_10_batch_2999.pt | 0.9798333333333333 | 0.002283191398670498 | +| Epoch_7_batch_2999.pt | 0.9701666666666668 | 0.002760501833067743 | +| Epoch_9_batch_2999.pt | 0.9654999999999999 | 0.0026879934229784405 | +| Epoch_6_batch_5999.pt | 0.9651666666666667 | 0.0023498095536174024 | +| Epoch_8_batch_5999.pt | 0.9651666666666667 | 0.0025992639033976866 | +| Epoch_7_batch_5999.pt | 0.9648333333333333 | 0.001994591452335135 | +| Epoch_9_batch_5999.pt | 0.9644999999999999 | 0.0020645449084513395 | +| Epoch_6_batch_2999.pt | 0.9636666666666667 | 0.002591534175486804 | +| Epoch_8_batch_2999.pt | 0.9631666666666667 | 0.0033002992756175965 | +| Epoch_5_batch_5999.pt | 0.9631666666666667 | 0.0023100692095879834 | +| Epoch_5_batch_2999.pt | 0.9626666666666667 | 0.002723922371584722 | +| Epoch_4_batch_5999.pt | 0.9603333333333334 | 0.0023013683530231114 | +| Epoch_5.pt | 0.9591666666666668 | 0.0026902888917340537 | +| Epoch_9.pt | 0.9586666666666666 | 0.0016996731711975911 | +| Epoch_8.pt | 0.9583333333333333 | 0.003181738014061419 | +| Epoch_6.pt | 0.9576666666666667 | 0.0014740554623801836 | +| Epoch_4.pt | 0.9576666666666667 | 0.0028131086447049218 | +| Epoch_7.pt | 0.9568333333333333 | 0.0026695586170519957 | +| Epoch_3_batch_5999.pt | 0.9563333333333333 | 0.0032942149067496872 | +| Epoch_4_batch_2999.pt | 0.9550000000000001 | 0.0021942686286812777 | +| Epoch_3.pt | 0.954 | 0.002746490465401836 | +| Epoch_3_batch_2999.pt | 0.9536666666666667 | 0.00268512132746546 | +| Epoch_2_batch_5999.pt | 0.9516666666666665 | 0.0034426518632954795 | +| Epoch_2.pt | 0.9426666666666665 | 0.002962731472438525 | +| Epoch_2_batch_2999.pt | 0.9410000000000001 | 0.003914203323068566 | +| Epoch_1_batch_5999.pt | 0.932 | 0.0036497928234792984 | +| Epoch_1.pt | 0.932 | 0.003150543750835068 | +| Epoch_1_batch_2999.pt | 0.9201666666666668 | 0.0027716599296147624 | +| Epoch_0_batch_5999.pt | 0.8571666666666667 | 0.0027783332777888818 | +| Epoch_0.pt | 0.8404999999999999 | 0.0042313497831843565 | +| Epoch_0_batch_2999.pt | 0.7184999999999999 | 0.005802564354354004 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_rfw_Indian.txt b/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_rfw_Indian.txt new file mode 100644 index 0000000000000000000000000000000000000000..ab56551770ef0a67a9caf8adaa938fb7125a08d3 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNet50_ir/accu_files/accu_rfw_Indian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_2999.pt | 0.958 | 0.0041335722750529555 | +| Epoch_17_batch_5999.pt | 0.9573333333333334 | 0.004210510071443643 | +| Epoch_14_batch_2999.pt | 0.9568333333333333 | 0.003868597857456373 | +| Epoch_13_batch_5999.pt | 0.9568333333333332 | 0.003892458679022968 | +| Epoch_15.pt | 0.9566666666666667 | 0.003767961101736262 | +| Epoch_17.pt | 0.9566666666666667 | 0.0037267799624996494 | +| Epoch_13_batch_2999.pt | 0.9565000000000001 | 0.0033189504513875204 | +| Epoch_15_batch_2999.pt | 0.9563333333333333 | 0.0034942633763369703 | +| Epoch_14_batch_5999.pt | 0.9561666666666666 | 0.003849402711404451 | +| Epoch_16_batch_5999.pt | 0.9560000000000002 | 0.003874576838702822 | +| Epoch_15_batch_5999.pt | 0.9560000000000001 | 0.0035416394334464966 | +| Epoch_12.pt | 0.9558333333333333 | 0.003977172517576765 | +| Epoch_16.pt | 0.9558333333333333 | 0.0039616214413349055 | +| Epoch_14.pt | 0.9556666666666664 | 0.003850605211369658 | +| Epoch_10.pt | 0.9555 | 0.0032965563775881708 | +| Epoch_17_batch_2999.pt | 0.9553333333333335 | 0.0038151743807531995 | +| Epoch_11_batch_5999.pt | 0.9553333333333333 | 0.0030408738185342303 | +| Epoch_11.pt | 0.9551666666666667 | 0.002323391518480724 | +| Epoch_13.pt | 0.9551666666666666 | 0.0038845213569807377 | +| Epoch_12_batch_5999.pt | 0.9546666666666667 | 0.0035815025469524884 | +| Epoch_11_batch_2999.pt | 0.9536666666666667 | 0.003520662115056636 | +| Epoch_12_batch_2999.pt | 0.9535 | 0.002490103870112778 | +| Epoch_10_batch_5999.pt | 0.9528333333333332 | 0.002855036701673241 | +| Epoch_10_batch_2999.pt | 0.9473333333333332 | 0.0032317865716108853 | +| Epoch_7_batch_2999.pt | 0.9323333333333332 | 0.0048381202349060525 | +| Epoch_9_batch_2999.pt | 0.9313333333333335 | 0.0034587516480607504 | +| Epoch_7.pt | 0.9313333333333332 | 0.00310117460821174 | +| Epoch_9_batch_5999.pt | 0.9311666666666667 | 0.0023707320325946427 | +| Epoch_6_batch_2999.pt | 0.931 | 0.003417456999828825 | +| Epoch_8_batch_5999.pt | 0.9305 | 0.004317992789294008 | +| Epoch_7_batch_5999.pt | 0.9288333333333334 | 0.00418735604138028 | +| Epoch_8_batch_2999.pt | 0.9281666666666666 | 0.002826789829601903 | +| Epoch_6_batch_5999.pt | 0.9259999999999999 | 0.0031739681904634897 | +| Epoch_4_batch_5999.pt | 0.9248333333333335 | 0.0029234049148717505 | +| Epoch_4.pt | 0.9246666666666666 | 0.0030408738185342186 | +| Epoch_5_batch_5999.pt | 0.9245000000000001 | 0.0016301556390134705 | +| Epoch_8.pt | 0.9235000000000001 | 0.003057575090181562 | +| Epoch_4_batch_2999.pt | 0.9221666666666668 | 0.004014249311000032 | +| Epoch_5.pt | 0.9221666666666668 | 0.003889285694041591 | +| Epoch_3.pt | 0.9215 | 0.0049156464729385885 | +| Epoch_3_batch_5999.pt | 0.9208333333333334 | 0.0029736497091272527 | +| Epoch_5_batch_2999.pt | 0.9206666666666667 | 0.003362832433427013 | +| Epoch_6.pt | 0.9194999999999999 | 0.002981941533404366 | +| Epoch_9.pt | 0.917 | 0.0023412563895228336 | +| Epoch_3_batch_2999.pt | 0.9119999999999999 | 0.005004935835357869 | +| Epoch_2_batch_5999.pt | 0.9113333333333333 | 0.004566382797341006 | +| Epoch_2_batch_2999.pt | 0.9066666666666666 | 0.0025939150066508366 | +| Epoch_2.pt | 0.9033333333333333 | 0.004527010841658525 | +| Epoch_1_batch_5999.pt | 0.8918333333333333 | 0.0035525160619440366 | +| Epoch_1.pt | 0.8881666666666668 | 0.003947573094109001 | +| Epoch_1_batch_2999.pt | 0.8846666666666666 | 0.004861031745383853 | +| Epoch_0_batch_5999.pt | 0.8125 | 0.006695539329552194 | +| Epoch_0.pt | 0.7993333333333332 | 0.004569085598878245 | +| Epoch_0_batch_2999.pt | 0.6751666666666666 | 0.003820429165989821 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/ResNet50_ir/log.log b/bob/bio/facexzoo/models/backbones/ResNet50_ir/log.log new file mode 100644 index 0000000000000000000000000000000000000000..64fe918d8d4b71e3e5504ada20df22f1c35a40d0 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/ResNet50_ir/log.log @@ -0,0 +1,657 @@ +INFO 2020-12-02 16:24:52 driver.py: 124] Generating grammar tables from /usr/lib/python3.6/lib2to3/Grammar.txt +INFO 2020-12-02 16:24:52 driver.py: 124] Generating grammar tables from /usr/lib/python3.6/lib2to3/PatternGrammar.txt +INFO 2020-12-02 16:24:52 train.py: 177] Start optimization. +INFO 2020-12-02 16:24:52 train.py: 178] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='ResNet', batch_size=512, data_root='/home/wangjun492/wj_data/facex-zoo/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='MV-Softmax', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10,13,16', tensorboardx_logdir='mv-resnet50', train_file='/home/wangjun492/wj_data/facex-zoo/deepglint/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7f0c45f14e48>) +backbone param: +{'depth': 50, 'drop_ratio': 0.4, 'net_mode': 'ir', 'feat_dim': 512, 'out_h': 7, 'out_w': 7} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +INFO 2020-12-02 16:25:20 train.py: 79] Epoch 0, iter 0/6416, lr 0.100000, loss 16.332954 +INFO 2020-12-02 16:28:32 train.py: 79] Epoch 0, iter 200/6416, lr 0.100000, loss 15.724994 +INFO 2020-12-02 16:31:45 train.py: 79] Epoch 0, iter 400/6416, lr 0.100000, loss 15.269594 +INFO 2020-12-02 16:34:58 train.py: 79] Epoch 0, iter 600/6416, lr 0.100000, loss 15.151460 +INFO 2020-12-02 16:38:11 train.py: 79] Epoch 0, iter 800/6416, lr 0.100000, loss 15.060672 +INFO 2020-12-02 16:41:25 train.py: 79] Epoch 0, iter 1000/6416, lr 0.100000, loss 14.924791 +INFO 2020-12-02 16:44:38 train.py: 79] Epoch 0, iter 1200/6416, lr 0.100000, loss 14.762907 +INFO 2020-12-02 16:47:51 train.py: 79] Epoch 0, iter 1400/6416, lr 0.100000, loss 14.583320 +INFO 2020-12-02 16:51:04 train.py: 79] Epoch 0, iter 1600/6416, lr 0.100000, loss 14.378530 +INFO 2020-12-02 16:54:17 train.py: 79] Epoch 0, iter 1800/6416, lr 0.100000, loss 14.124073 +INFO 2020-12-02 16:57:31 train.py: 79] Epoch 0, iter 2000/6416, lr 0.100000, loss 13.869375 +INFO 2020-12-02 17:00:44 train.py: 79] Epoch 0, iter 2200/6416, lr 0.100000, loss 13.614476 +INFO 2020-12-02 17:03:57 train.py: 79] Epoch 0, iter 2400/6416, lr 0.100000, loss 13.330109 +INFO 2020-12-02 17:07:11 train.py: 79] Epoch 0, iter 2600/6416, lr 0.100000, loss 13.028246 +INFO 2020-12-02 17:10:24 train.py: 79] Epoch 0, iter 2800/6416, lr 0.100000, loss 12.702374 +INFO 2020-12-02 17:13:36 train.py: 92] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2020-12-02 17:13:37 train.py: 79] Epoch 0, iter 3000/6416, lr 0.100000, loss 12.396822 +INFO 2020-12-02 17:16:50 train.py: 79] Epoch 0, iter 3200/6416, lr 0.100000, loss 12.155658 +INFO 2020-12-02 17:20:03 train.py: 79] Epoch 0, iter 3400/6416, lr 0.100000, loss 12.003897 +INFO 2020-12-02 17:23:15 train.py: 79] Epoch 0, iter 3600/6416, lr 0.100000, loss 12.011105 +INFO 2020-12-02 17:26:27 train.py: 79] Epoch 0, iter 3800/6416, lr 0.100000, loss 12.183243 +INFO 2020-12-02 17:29:39 train.py: 79] Epoch 0, iter 4000/6416, lr 0.100000, loss 12.469275 +INFO 2020-12-02 17:32:50 train.py: 79] Epoch 0, iter 4200/6416, lr 0.100000, loss 12.898298 +INFO 2020-12-02 17:36:01 train.py: 79] Epoch 0, iter 4400/6416, lr 0.100000, loss 13.308281 +INFO 2020-12-02 17:39:11 train.py: 79] Epoch 0, iter 4600/6416, lr 0.100000, loss 13.742956 +INFO 2020-12-02 17:42:21 train.py: 79] Epoch 0, iter 4800/6416, lr 0.100000, loss 14.099098 +INFO 2020-12-02 17:45:31 train.py: 79] Epoch 0, iter 5000/6416, lr 0.100000, loss 14.386579 +INFO 2020-12-02 17:48:40 train.py: 79] Epoch 0, iter 5200/6416, lr 0.100000, loss 14.528618 +INFO 2020-12-02 17:51:49 train.py: 79] Epoch 0, iter 5400/6416, lr 0.100000, loss 14.624579 +INFO 2020-12-02 17:54:57 train.py: 79] Epoch 0, iter 5600/6416, lr 0.100000, loss 14.632182 +INFO 2020-12-02 17:58:06 train.py: 79] Epoch 0, iter 5800/6416, lr 0.100000, loss 14.546628 +INFO 2020-12-02 18:01:14 train.py: 92] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2020-12-02 18:01:15 train.py: 79] Epoch 0, iter 6000/6416, lr 0.100000, loss 14.422989 +INFO 2020-12-02 18:04:22 train.py: 79] Epoch 0, iter 6200/6416, lr 0.100000, loss 14.221948 +INFO 2020-12-02 18:07:29 train.py: 79] Epoch 0, iter 6400/6416, lr 0.100000, loss 13.978512 +INFO 2020-12-02 18:07:43 train.py: 97] Save checkpoint Epoch_0.pt to disk... +INFO 2020-12-02 18:07:45 train.py: 79] Epoch 1, iter 0/6416, lr 0.100000, loss 13.879437 +INFO 2020-12-02 18:10:52 train.py: 79] Epoch 1, iter 200/6416, lr 0.100000, loss 13.540010 +INFO 2020-12-02 18:13:59 train.py: 79] Epoch 1, iter 400/6416, lr 0.100000, loss 13.260385 +INFO 2020-12-02 18:17:06 train.py: 79] Epoch 1, iter 600/6416, lr 0.100000, loss 13.009260 +INFO 2020-12-02 18:20:13 train.py: 79] Epoch 1, iter 800/6416, lr 0.100000, loss 12.713784 +INFO 2020-12-02 18:23:20 train.py: 79] Epoch 1, iter 1000/6416, lr 0.100000, loss 12.434011 +INFO 2020-12-02 18:26:26 train.py: 79] Epoch 1, iter 1200/6416, lr 0.100000, loss 12.122822 +INFO 2020-12-02 18:29:33 train.py: 79] Epoch 1, iter 1400/6416, lr 0.100000, loss 11.863502 +INFO 2020-12-02 18:32:40 train.py: 79] Epoch 1, iter 1600/6416, lr 0.100000, loss 11.586728 +INFO 2020-12-02 18:35:46 train.py: 79] Epoch 1, iter 1800/6416, lr 0.100000, loss 11.311850 +INFO 2020-12-02 18:38:53 train.py: 79] Epoch 1, iter 2000/6416, lr 0.100000, loss 11.063287 +INFO 2020-12-02 18:41:59 train.py: 79] Epoch 1, iter 2200/6416, lr 0.100000, loss 10.864117 +INFO 2020-12-02 18:45:06 train.py: 79] Epoch 1, iter 2400/6416, lr 0.100000, loss 10.600532 +INFO 2020-12-02 18:48:13 train.py: 79] Epoch 1, iter 2600/6416, lr 0.100000, loss 10.403338 +INFO 2020-12-02 18:51:20 train.py: 79] Epoch 1, iter 2800/6416, lr 0.100000, loss 10.214808 +INFO 2020-12-02 18:54:26 train.py: 92] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2020-12-02 18:54:27 train.py: 79] Epoch 1, iter 3000/6416, lr 0.100000, loss 10.005656 +INFO 2020-12-02 18:57:34 train.py: 79] Epoch 1, iter 3200/6416, lr 0.100000, loss 9.837706 +INFO 2020-12-02 19:00:42 train.py: 79] Epoch 1, iter 3400/6416, lr 0.100000, loss 9.649582 +INFO 2020-12-02 19:03:49 train.py: 79] Epoch 1, iter 3600/6416, lr 0.100000, loss 9.496042 +INFO 2020-12-02 19:06:57 train.py: 79] Epoch 1, iter 3800/6416, lr 0.100000, loss 9.386625 +INFO 2020-12-02 19:10:04 train.py: 79] Epoch 1, iter 4000/6416, lr 0.100000, loss 9.236245 +INFO 2020-12-02 19:13:12 train.py: 79] Epoch 1, iter 4200/6416, lr 0.100000, loss 9.107701 +INFO 2020-12-02 19:16:19 train.py: 79] Epoch 1, iter 4400/6416, lr 0.100000, loss 8.984832 +INFO 2020-12-02 19:19:27 train.py: 79] Epoch 1, iter 4600/6416, lr 0.100000, loss 8.868542 +INFO 2020-12-02 19:22:35 train.py: 79] Epoch 1, iter 4800/6416, lr 0.100000, loss 8.713447 +INFO 2020-12-02 19:25:42 train.py: 79] Epoch 1, iter 5000/6416, lr 0.100000, loss 8.605859 +INFO 2020-12-02 19:28:50 train.py: 79] Epoch 1, iter 5200/6416, lr 0.100000, loss 8.533835 +INFO 2020-12-02 19:31:58 train.py: 79] Epoch 1, iter 5400/6416, lr 0.100000, loss 8.405970 +INFO 2020-12-02 19:35:06 train.py: 79] Epoch 1, iter 5600/6416, lr 0.100000, loss 8.326429 +INFO 2020-12-02 19:38:14 train.py: 79] Epoch 1, iter 5800/6416, lr 0.100000, loss 8.217263 +INFO 2020-12-02 19:41:21 train.py: 92] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2020-12-02 19:41:22 train.py: 79] Epoch 1, iter 6000/6416, lr 0.100000, loss 8.140155 +INFO 2020-12-02 19:44:30 train.py: 79] Epoch 1, iter 6200/6416, lr 0.100000, loss 8.101199 +INFO 2020-12-02 19:47:37 train.py: 79] Epoch 1, iter 6400/6416, lr 0.100000, loss 8.014781 +INFO 2020-12-02 19:47:52 train.py: 97] Save checkpoint Epoch_1.pt to disk... +INFO 2020-12-02 19:47:54 train.py: 79] Epoch 2, iter 0/6416, lr 0.100000, loss 7.922591 +INFO 2020-12-02 19:51:01 train.py: 79] Epoch 2, iter 200/6416, lr 0.100000, loss 7.404116 +INFO 2020-12-02 19:54:08 train.py: 79] Epoch 2, iter 400/6416, lr 0.100000, loss 7.376579 +INFO 2020-12-02 19:57:15 train.py: 79] Epoch 2, iter 600/6416, lr 0.100000, loss 7.398144 +INFO 2020-12-02 20:00:22 train.py: 79] Epoch 2, iter 800/6416, lr 0.100000, loss 7.432407 +INFO 2020-12-02 20:03:29 train.py: 79] Epoch 2, iter 1000/6416, lr 0.100000, loss 7.419043 +INFO 2020-12-02 20:06:36 train.py: 79] Epoch 2, iter 1200/6416, lr 0.100000, loss 7.417946 +INFO 2020-12-02 20:09:43 train.py: 79] Epoch 2, iter 1400/6416, lr 0.100000, loss 7.426534 +INFO 2020-12-02 20:12:50 train.py: 79] Epoch 2, iter 1600/6416, lr 0.100000, loss 7.341967 +INFO 2020-12-02 20:15:57 train.py: 79] Epoch 2, iter 1800/6416, lr 0.100000, loss 7.347022 +INFO 2020-12-02 20:19:04 train.py: 79] Epoch 2, iter 2000/6416, lr 0.100000, loss 7.309699 +INFO 2020-12-02 20:22:11 train.py: 79] Epoch 2, iter 2200/6416, lr 0.100000, loss 7.240558 +INFO 2020-12-02 20:25:18 train.py: 79] Epoch 2, iter 2400/6416, lr 0.100000, loss 7.219714 +INFO 2020-12-02 20:28:25 train.py: 79] Epoch 2, iter 2600/6416, lr 0.100000, loss 7.212546 +INFO 2020-12-02 20:31:32 train.py: 79] Epoch 2, iter 2800/6416, lr 0.100000, loss 7.145501 +INFO 2020-12-02 20:34:39 train.py: 92] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2020-12-02 20:34:40 train.py: 79] Epoch 2, iter 3000/6416, lr 0.100000, loss 7.139050 +INFO 2020-12-02 20:37:47 train.py: 79] Epoch 2, iter 3200/6416, lr 0.100000, loss 7.083629 +INFO 2020-12-02 20:40:55 train.py: 79] Epoch 2, iter 3400/6416, lr 0.100000, loss 7.039036 +INFO 2020-12-02 20:44:02 train.py: 79] Epoch 2, iter 3600/6416, lr 0.100000, loss 7.006894 +INFO 2020-12-02 20:47:09 train.py: 79] Epoch 2, iter 3800/6416, lr 0.100000, loss 6.950217 +INFO 2020-12-02 20:50:17 train.py: 79] Epoch 2, iter 4000/6416, lr 0.100000, loss 6.927581 +INFO 2020-12-02 20:53:24 train.py: 79] Epoch 2, iter 4200/6416, lr 0.100000, loss 6.886845 +INFO 2020-12-02 20:56:32 train.py: 79] Epoch 2, iter 4400/6416, lr 0.100000, loss 6.854423 +INFO 2020-12-02 20:59:40 train.py: 79] Epoch 2, iter 4600/6416, lr 0.100000, loss 6.819378 +INFO 2020-12-02 21:02:47 train.py: 79] Epoch 2, iter 4800/6416, lr 0.100000, loss 6.809598 +INFO 2020-12-02 21:05:55 train.py: 79] Epoch 2, iter 5000/6416, lr 0.100000, loss 6.793162 +INFO 2020-12-02 21:09:03 train.py: 79] Epoch 2, iter 5200/6416, lr 0.100000, loss 6.764558 +INFO 2020-12-02 21:12:10 train.py: 79] Epoch 2, iter 5400/6416, lr 0.100000, loss 6.706105 +INFO 2020-12-02 21:15:18 train.py: 79] Epoch 2, iter 5600/6416, lr 0.100000, loss 6.642517 +INFO 2020-12-02 21:18:26 train.py: 79] Epoch 2, iter 5800/6416, lr 0.100000, loss 6.652111 +INFO 2020-12-02 21:21:33 train.py: 92] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2020-12-02 21:21:34 train.py: 79] Epoch 2, iter 6000/6416, lr 0.100000, loss 6.628229 +INFO 2020-12-02 21:24:41 train.py: 79] Epoch 2, iter 6200/6416, lr 0.100000, loss 6.598334 +INFO 2020-12-02 21:27:48 train.py: 79] Epoch 2, iter 6400/6416, lr 0.100000, loss 6.545922 +INFO 2020-12-02 21:28:02 train.py: 97] Save checkpoint Epoch_2.pt to disk... +INFO 2020-12-02 21:28:04 train.py: 79] Epoch 3, iter 0/6416, lr 0.100000, loss 6.495420 +INFO 2020-12-02 21:31:11 train.py: 79] Epoch 3, iter 200/6416, lr 0.100000, loss 5.970732 +INFO 2020-12-02 21:34:17 train.py: 79] Epoch 3, iter 400/6416, lr 0.100000, loss 6.001810 +INFO 2020-12-02 21:37:24 train.py: 79] Epoch 3, iter 600/6416, lr 0.100000, loss 6.091019 +INFO 2020-12-02 21:40:30 train.py: 79] Epoch 3, iter 800/6416, lr 0.100000, loss 6.105414 +INFO 2020-12-02 21:43:36 train.py: 79] Epoch 3, iter 1000/6416, lr 0.100000, loss 6.161345 +INFO 2020-12-02 21:46:43 train.py: 79] Epoch 3, iter 1200/6416, lr 0.100000, loss 6.203309 +INFO 2020-12-02 21:49:49 train.py: 79] Epoch 3, iter 1400/6416, lr 0.100000, loss 6.194657 +INFO 2020-12-02 21:52:55 train.py: 79] Epoch 3, iter 1600/6416, lr 0.100000, loss 6.185114 +INFO 2020-12-02 21:56:02 train.py: 79] Epoch 3, iter 1800/6416, lr 0.100000, loss 6.222416 +INFO 2020-12-02 21:59:08 train.py: 79] Epoch 3, iter 2000/6416, lr 0.100000, loss 6.181895 +INFO 2020-12-02 22:02:14 train.py: 79] Epoch 3, iter 2200/6416, lr 0.100000, loss 6.180269 +INFO 2020-12-02 22:05:21 train.py: 79] Epoch 3, iter 2400/6416, lr 0.100000, loss 6.176522 +INFO 2020-12-02 22:08:27 train.py: 79] Epoch 3, iter 2600/6416, lr 0.100000, loss 6.180500 +INFO 2020-12-02 22:11:34 train.py: 79] Epoch 3, iter 2800/6416, lr 0.100000, loss 6.137156 +INFO 2020-12-02 22:14:40 train.py: 92] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2020-12-02 22:14:41 train.py: 79] Epoch 3, iter 3000/6416, lr 0.100000, loss 6.180045 +INFO 2020-12-02 22:17:48 train.py: 79] Epoch 3, iter 3200/6416, lr 0.100000, loss 6.166514 +INFO 2020-12-02 22:20:56 train.py: 79] Epoch 3, iter 3400/6416, lr 0.100000, loss 6.101875 +INFO 2020-12-02 22:24:03 train.py: 79] Epoch 3, iter 3600/6416, lr 0.100000, loss 6.092663 +INFO 2020-12-02 22:27:11 train.py: 79] Epoch 3, iter 3800/6416, lr 0.100000, loss 6.091960 +INFO 2020-12-02 22:30:18 train.py: 79] Epoch 3, iter 4000/6416, lr 0.100000, loss 6.051987 +INFO 2020-12-02 22:33:26 train.py: 79] Epoch 3, iter 4200/6416, lr 0.100000, loss 6.017490 +INFO 2020-12-02 22:36:33 train.py: 79] Epoch 3, iter 4400/6416, lr 0.100000, loss 6.035057 +INFO 2020-12-02 22:39:41 train.py: 79] Epoch 3, iter 4600/6416, lr 0.100000, loss 6.036681 +INFO 2020-12-02 22:42:49 train.py: 79] Epoch 3, iter 4800/6416, lr 0.100000, loss 6.002127 +INFO 2020-12-02 22:45:56 train.py: 79] Epoch 3, iter 5000/6416, lr 0.100000, loss 5.985600 +INFO 2020-12-02 22:49:04 train.py: 79] Epoch 3, iter 5200/6416, lr 0.100000, loss 5.980595 +INFO 2020-12-02 22:52:12 train.py: 79] Epoch 3, iter 5400/6416, lr 0.100000, loss 5.925722 +INFO 2020-12-02 22:55:20 train.py: 79] Epoch 3, iter 5600/6416, lr 0.100000, loss 5.970767 +INFO 2020-12-02 22:58:27 train.py: 79] Epoch 3, iter 5800/6416, lr 0.100000, loss 5.918377 +INFO 2020-12-02 23:01:34 train.py: 92] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2020-12-02 23:01:35 train.py: 79] Epoch 3, iter 6000/6416, lr 0.100000, loss 5.911398 +INFO 2020-12-02 23:04:43 train.py: 79] Epoch 3, iter 6200/6416, lr 0.100000, loss 5.876962 +INFO 2020-12-02 23:07:51 train.py: 79] Epoch 3, iter 6400/6416, lr 0.100000, loss 5.840898 +INFO 2020-12-02 23:08:05 train.py: 97] Save checkpoint Epoch_3.pt to disk... +INFO 2020-12-02 23:08:07 train.py: 79] Epoch 4, iter 0/6416, lr 0.100000, loss 5.867492 +INFO 2020-12-02 23:11:14 train.py: 79] Epoch 4, iter 200/6416, lr 0.100000, loss 5.366016 +INFO 2020-12-02 23:14:21 train.py: 79] Epoch 4, iter 400/6416, lr 0.100000, loss 5.328521 +INFO 2020-12-02 23:17:28 train.py: 79] Epoch 4, iter 600/6416, lr 0.100000, loss 5.403710 +INFO 2020-12-02 23:20:35 train.py: 79] Epoch 4, iter 800/6416, lr 0.100000, loss 5.461301 +INFO 2020-12-02 23:23:42 train.py: 79] Epoch 4, iter 1000/6416, lr 0.100000, loss 5.519482 +INFO 2020-12-02 23:26:49 train.py: 79] Epoch 4, iter 1200/6416, lr 0.100000, loss 5.591844 +INFO 2020-12-02 23:29:56 train.py: 79] Epoch 4, iter 1400/6416, lr 0.100000, loss 5.600097 +INFO 2020-12-02 23:33:03 train.py: 79] Epoch 4, iter 1600/6416, lr 0.100000, loss 5.605669 +INFO 2020-12-02 23:36:10 train.py: 79] Epoch 4, iter 1800/6416, lr 0.100000, loss 5.576889 +INFO 2020-12-02 23:39:17 train.py: 79] Epoch 4, iter 2000/6416, lr 0.100000, loss 5.612118 +INFO 2020-12-02 23:42:24 train.py: 79] Epoch 4, iter 2200/6416, lr 0.100000, loss 5.645781 +INFO 2020-12-02 23:45:31 train.py: 79] Epoch 4, iter 2400/6416, lr 0.100000, loss 5.601656 +INFO 2020-12-02 23:48:38 train.py: 79] Epoch 4, iter 2600/6416, lr 0.100000, loss 5.605802 +INFO 2020-12-02 23:51:45 train.py: 79] Epoch 4, iter 2800/6416, lr 0.100000, loss 5.630188 +INFO 2020-12-02 23:54:52 train.py: 92] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2020-12-02 23:54:53 train.py: 79] Epoch 4, iter 3000/6416, lr 0.100000, loss 5.618637 +INFO 2020-12-02 23:58:00 train.py: 79] Epoch 4, iter 3200/6416, lr 0.100000, loss 5.612096 +INFO 2020-12-03 00:01:07 train.py: 79] Epoch 4, iter 3400/6416, lr 0.100000, loss 5.594699 +INFO 2020-12-03 00:04:15 train.py: 79] Epoch 4, iter 3600/6416, lr 0.100000, loss 5.594811 +INFO 2020-12-03 00:07:22 train.py: 79] Epoch 4, iter 3800/6416, lr 0.100000, loss 5.576285 +INFO 2020-12-03 00:10:30 train.py: 79] Epoch 4, iter 4000/6416, lr 0.100000, loss 5.578566 +INFO 2020-12-03 00:13:37 train.py: 79] Epoch 4, iter 4200/6416, lr 0.100000, loss 5.579606 +INFO 2020-12-03 00:16:45 train.py: 79] Epoch 4, iter 4400/6416, lr 0.100000, loss 5.560446 +INFO 2020-12-03 00:19:53 train.py: 79] Epoch 4, iter 4600/6416, lr 0.100000, loss 5.560880 +INFO 2020-12-03 00:23:00 train.py: 79] Epoch 4, iter 4800/6416, lr 0.100000, loss 5.541731 +INFO 2020-12-03 00:26:08 train.py: 79] Epoch 4, iter 5000/6416, lr 0.100000, loss 5.540355 +INFO 2020-12-03 00:29:15 train.py: 79] Epoch 4, iter 5200/6416, lr 0.100000, loss 5.524416 +INFO 2020-12-03 00:32:23 train.py: 79] Epoch 4, iter 5400/6416, lr 0.100000, loss 5.523820 +INFO 2020-12-03 00:35:31 train.py: 79] Epoch 4, iter 5600/6416, lr 0.100000, loss 5.498184 +INFO 2020-12-03 00:38:38 train.py: 79] Epoch 4, iter 5800/6416, lr 0.100000, loss 5.482068 +INFO 2020-12-03 00:41:46 train.py: 92] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2020-12-03 00:41:46 train.py: 79] Epoch 4, iter 6000/6416, lr 0.100000, loss 5.487048 +INFO 2020-12-03 00:44:54 train.py: 79] Epoch 4, iter 6200/6416, lr 0.100000, loss 5.471176 +INFO 2020-12-03 00:48:01 train.py: 79] Epoch 4, iter 6400/6416, lr 0.100000, loss 5.465708 +INFO 2020-12-03 00:48:15 train.py: 97] Save checkpoint Epoch_4.pt to disk... +INFO 2020-12-03 00:48:17 train.py: 79] Epoch 5, iter 0/6416, lr 0.100000, loss 5.451878 +INFO 2020-12-03 00:51:23 train.py: 79] Epoch 5, iter 200/6416, lr 0.100000, loss 4.967053 +INFO 2020-12-03 00:54:30 train.py: 79] Epoch 5, iter 400/6416, lr 0.100000, loss 4.949885 +INFO 2020-12-03 00:57:36 train.py: 79] Epoch 5, iter 600/6416, lr 0.100000, loss 5.028063 +INFO 2020-12-03 01:00:42 train.py: 79] Epoch 5, iter 800/6416, lr 0.100000, loss 5.128778 +INFO 2020-12-03 01:03:48 train.py: 79] Epoch 5, iter 1000/6416, lr 0.100000, loss 5.130865 +INFO 2020-12-03 01:06:55 train.py: 79] Epoch 5, iter 1200/6416, lr 0.100000, loss 5.188409 +INFO 2020-12-03 01:10:01 train.py: 79] Epoch 5, iter 1400/6416, lr 0.100000, loss 5.182377 +INFO 2020-12-03 01:13:07 train.py: 79] Epoch 5, iter 1600/6416, lr 0.100000, loss 5.228963 +INFO 2020-12-03 01:16:14 train.py: 79] Epoch 5, iter 1800/6416, lr 0.100000, loss 5.249112 +INFO 2020-12-03 01:19:20 train.py: 79] Epoch 5, iter 2000/6416, lr 0.100000, loss 5.271594 +INFO 2020-12-03 01:22:26 train.py: 79] Epoch 5, iter 2200/6416, lr 0.100000, loss 5.273448 +INFO 2020-12-03 01:25:33 train.py: 79] Epoch 5, iter 2400/6416, lr 0.100000, loss 5.280648 +INFO 2020-12-03 01:28:39 train.py: 79] Epoch 5, iter 2600/6416, lr 0.100000, loss 5.272331 +INFO 2020-12-03 01:31:46 train.py: 79] Epoch 5, iter 2800/6416, lr 0.100000, loss 5.284181 +INFO 2020-12-03 01:34:52 train.py: 92] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2020-12-03 01:34:53 train.py: 79] Epoch 5, iter 3000/6416, lr 0.100000, loss 5.274477 +INFO 2020-12-03 01:38:00 train.py: 79] Epoch 5, iter 3200/6416, lr 0.100000, loss 5.293002 +INFO 2020-12-03 01:41:08 train.py: 79] Epoch 5, iter 3400/6416, lr 0.100000, loss 5.278444 +INFO 2020-12-03 01:44:15 train.py: 79] Epoch 5, iter 3600/6416, lr 0.100000, loss 5.219957 +INFO 2020-12-03 01:47:23 train.py: 79] Epoch 5, iter 3800/6416, lr 0.100000, loss 5.263780 +INFO 2020-12-03 01:50:30 train.py: 79] Epoch 5, iter 4000/6416, lr 0.100000, loss 5.216983 +INFO 2020-12-03 01:53:38 train.py: 79] Epoch 5, iter 4200/6416, lr 0.100000, loss 5.261914 +INFO 2020-12-03 01:56:45 train.py: 79] Epoch 5, iter 4400/6416, lr 0.100000, loss 5.258034 +INFO 2020-12-03 01:59:53 train.py: 79] Epoch 5, iter 4600/6416, lr 0.100000, loss 5.222422 +INFO 2020-12-03 02:03:00 train.py: 79] Epoch 5, iter 4800/6416, lr 0.100000, loss 5.210544 +INFO 2020-12-03 02:06:08 train.py: 79] Epoch 5, iter 5000/6416, lr 0.100000, loss 5.223289 +INFO 2020-12-03 02:09:16 train.py: 79] Epoch 5, iter 5200/6416, lr 0.100000, loss 5.235448 +INFO 2020-12-03 02:12:23 train.py: 79] Epoch 5, iter 5400/6416, lr 0.100000, loss 5.218714 +INFO 2020-12-03 02:15:31 train.py: 79] Epoch 5, iter 5600/6416, lr 0.100000, loss 5.199490 +INFO 2020-12-03 02:18:39 train.py: 79] Epoch 5, iter 5800/6416, lr 0.100000, loss 5.235230 +INFO 2020-12-03 02:21:46 train.py: 92] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2020-12-03 02:21:47 train.py: 79] Epoch 5, iter 6000/6416, lr 0.100000, loss 5.208253 +INFO 2020-12-03 02:24:55 train.py: 79] Epoch 5, iter 6200/6416, lr 0.100000, loss 5.216329 +INFO 2020-12-03 02:28:03 train.py: 79] Epoch 5, iter 6400/6416, lr 0.100000, loss 5.189704 +INFO 2020-12-03 02:28:17 train.py: 97] Save checkpoint Epoch_5.pt to disk... +INFO 2020-12-03 02:28:19 train.py: 79] Epoch 6, iter 0/6416, lr 0.100000, loss 5.104144 +INFO 2020-12-03 02:31:26 train.py: 79] Epoch 6, iter 200/6416, lr 0.100000, loss 4.670524 +INFO 2020-12-03 02:34:33 train.py: 79] Epoch 6, iter 400/6416, lr 0.100000, loss 4.665509 +INFO 2020-12-03 02:37:40 train.py: 79] Epoch 6, iter 600/6416, lr 0.100000, loss 4.749700 +INFO 2020-12-03 02:40:47 train.py: 79] Epoch 6, iter 800/6416, lr 0.100000, loss 4.823609 +INFO 2020-12-03 02:43:54 train.py: 79] Epoch 6, iter 1000/6416, lr 0.100000, loss 4.862002 +INFO 2020-12-03 02:47:01 train.py: 79] Epoch 6, iter 1200/6416, lr 0.100000, loss 4.931015 +INFO 2020-12-03 02:50:08 train.py: 79] Epoch 6, iter 1400/6416, lr 0.100000, loss 4.945732 +INFO 2020-12-03 02:53:15 train.py: 79] Epoch 6, iter 1600/6416, lr 0.100000, loss 4.949572 +INFO 2020-12-03 02:56:22 train.py: 79] Epoch 6, iter 1800/6416, lr 0.100000, loss 4.985425 +INFO 2020-12-03 02:59:29 train.py: 79] Epoch 6, iter 2000/6416, lr 0.100000, loss 4.988755 +INFO 2020-12-03 03:02:36 train.py: 79] Epoch 6, iter 2200/6416, lr 0.100000, loss 5.008859 +INFO 2020-12-03 03:05:43 train.py: 79] Epoch 6, iter 2400/6416, lr 0.100000, loss 5.048368 +INFO 2020-12-03 03:08:50 train.py: 79] Epoch 6, iter 2600/6416, lr 0.100000, loss 5.053820 +INFO 2020-12-03 03:11:57 train.py: 79] Epoch 6, iter 2800/6416, lr 0.100000, loss 5.033558 +INFO 2020-12-03 03:15:04 train.py: 92] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2020-12-03 03:15:05 train.py: 79] Epoch 6, iter 3000/6416, lr 0.100000, loss 5.036939 +INFO 2020-12-03 03:18:12 train.py: 79] Epoch 6, iter 3200/6416, lr 0.100000, loss 5.029966 +INFO 2020-12-03 03:21:20 train.py: 79] Epoch 6, iter 3400/6416, lr 0.100000, loss 5.043766 +INFO 2020-12-03 03:24:27 train.py: 79] Epoch 6, iter 3600/6416, lr 0.100000, loss 5.056108 +INFO 2020-12-03 03:27:35 train.py: 79] Epoch 6, iter 3800/6416, lr 0.100000, loss 5.014114 +INFO 2020-12-03 03:30:42 train.py: 79] Epoch 6, iter 4000/6416, lr 0.100000, loss 5.028921 +INFO 2020-12-03 03:33:50 train.py: 79] Epoch 6, iter 4200/6416, lr 0.100000, loss 5.063586 +INFO 2020-12-03 03:36:57 train.py: 79] Epoch 6, iter 4400/6416, lr 0.100000, loss 5.039221 +INFO 2020-12-03 03:40:05 train.py: 79] Epoch 6, iter 4600/6416, lr 0.100000, loss 5.033477 +INFO 2020-12-03 03:43:12 train.py: 79] Epoch 6, iter 4800/6416, lr 0.100000, loss 5.026603 +INFO 2020-12-03 03:46:20 train.py: 79] Epoch 6, iter 5000/6416, lr 0.100000, loss 5.009321 +INFO 2020-12-03 03:49:27 train.py: 79] Epoch 6, iter 5200/6416, lr 0.100000, loss 5.043872 +INFO 2020-12-03 03:52:35 train.py: 79] Epoch 6, iter 5400/6416, lr 0.100000, loss 5.000646 +INFO 2020-12-03 03:55:43 train.py: 79] Epoch 6, iter 5600/6416, lr 0.100000, loss 5.012944 +INFO 2020-12-03 03:58:50 train.py: 79] Epoch 6, iter 5800/6416, lr 0.100000, loss 5.008230 +INFO 2020-12-03 04:01:58 train.py: 92] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2020-12-03 04:01:59 train.py: 79] Epoch 6, iter 6000/6416, lr 0.100000, loss 5.013476 +INFO 2020-12-03 04:05:06 train.py: 79] Epoch 6, iter 6200/6416, lr 0.100000, loss 4.998242 +INFO 2020-12-03 04:08:13 train.py: 79] Epoch 6, iter 6400/6416, lr 0.100000, loss 4.975437 +INFO 2020-12-03 04:08:27 train.py: 97] Save checkpoint Epoch_6.pt to disk... +INFO 2020-12-03 04:08:29 train.py: 79] Epoch 7, iter 0/6416, lr 0.100000, loss 5.022930 +INFO 2020-12-03 04:11:35 train.py: 79] Epoch 7, iter 200/6416, lr 0.100000, loss 4.513452 +INFO 2020-12-03 04:14:42 train.py: 79] Epoch 7, iter 400/6416, lr 0.100000, loss 4.482976 +INFO 2020-12-03 04:17:48 train.py: 79] Epoch 7, iter 600/6416, lr 0.100000, loss 4.583296 +INFO 2020-12-03 04:20:54 train.py: 79] Epoch 7, iter 800/6416, lr 0.100000, loss 4.615423 +INFO 2020-12-03 04:24:01 train.py: 79] Epoch 7, iter 1000/6416, lr 0.100000, loss 4.688656 +INFO 2020-12-03 04:27:07 train.py: 79] Epoch 7, iter 1200/6416, lr 0.100000, loss 4.745344 +INFO 2020-12-03 04:30:13 train.py: 79] Epoch 7, iter 1400/6416, lr 0.100000, loss 4.792305 +INFO 2020-12-03 04:33:20 train.py: 79] Epoch 7, iter 1600/6416, lr 0.100000, loss 4.783717 +INFO 2020-12-03 04:36:26 train.py: 79] Epoch 7, iter 1800/6416, lr 0.100000, loss 4.811773 +INFO 2020-12-03 04:39:33 train.py: 79] Epoch 7, iter 2000/6416, lr 0.100000, loss 4.817311 +INFO 2020-12-03 04:42:39 train.py: 79] Epoch 7, iter 2200/6416, lr 0.100000, loss 4.844831 +INFO 2020-12-03 04:45:46 train.py: 79] Epoch 7, iter 2400/6416, lr 0.100000, loss 4.856340 +INFO 2020-12-03 04:48:52 train.py: 79] Epoch 7, iter 2600/6416, lr 0.100000, loss 4.874803 +INFO 2020-12-03 04:51:59 train.py: 79] Epoch 7, iter 2800/6416, lr 0.100000, loss 4.854270 +INFO 2020-12-03 04:55:05 train.py: 92] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2020-12-03 04:55:06 train.py: 79] Epoch 7, iter 3000/6416, lr 0.100000, loss 4.856605 +INFO 2020-12-03 04:58:13 train.py: 79] Epoch 7, iter 3200/6416, lr 0.100000, loss 4.843140 +INFO 2020-12-03 05:01:20 train.py: 79] Epoch 7, iter 3400/6416, lr 0.100000, loss 4.901404 +INFO 2020-12-03 05:04:28 train.py: 79] Epoch 7, iter 3600/6416, lr 0.100000, loss 4.851626 +INFO 2020-12-03 05:07:35 train.py: 79] Epoch 7, iter 3800/6416, lr 0.100000, loss 4.883711 +INFO 2020-12-03 05:10:43 train.py: 79] Epoch 7, iter 4000/6416, lr 0.100000, loss 4.856796 +INFO 2020-12-03 05:13:50 train.py: 79] Epoch 7, iter 4200/6416, lr 0.100000, loss 4.874653 +INFO 2020-12-03 05:16:58 train.py: 79] Epoch 7, iter 4400/6416, lr 0.100000, loss 4.836083 +INFO 2020-12-03 05:20:05 train.py: 79] Epoch 7, iter 4600/6416, lr 0.100000, loss 4.861144 +INFO 2020-12-03 05:23:13 train.py: 79] Epoch 7, iter 4800/6416, lr 0.100000, loss 4.899105 +INFO 2020-12-03 05:26:20 train.py: 79] Epoch 7, iter 5000/6416, lr 0.100000, loss 4.867728 +INFO 2020-12-03 05:29:28 train.py: 79] Epoch 7, iter 5200/6416, lr 0.100000, loss 4.843084 +INFO 2020-12-03 05:32:36 train.py: 79] Epoch 7, iter 5400/6416, lr 0.100000, loss 4.857403 +INFO 2020-12-03 05:35:43 train.py: 79] Epoch 7, iter 5600/6416, lr 0.100000, loss 4.876713 +INFO 2020-12-03 05:38:51 train.py: 79] Epoch 7, iter 5800/6416, lr 0.100000, loss 4.839580 +INFO 2020-12-03 05:41:58 train.py: 92] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2020-12-03 05:41:59 train.py: 79] Epoch 7, iter 6000/6416, lr 0.100000, loss 4.879442 +INFO 2020-12-03 05:45:07 train.py: 79] Epoch 7, iter 6200/6416, lr 0.100000, loss 4.835701 +INFO 2020-12-03 05:48:15 train.py: 79] Epoch 7, iter 6400/6416, lr 0.100000, loss 4.831005 +INFO 2020-12-03 05:48:29 train.py: 97] Save checkpoint Epoch_7.pt to disk... +INFO 2020-12-03 05:48:31 train.py: 79] Epoch 8, iter 0/6416, lr 0.100000, loss 4.855350 +INFO 2020-12-03 05:51:38 train.py: 79] Epoch 8, iter 200/6416, lr 0.100000, loss 4.334920 +INFO 2020-12-03 05:54:45 train.py: 79] Epoch 8, iter 400/6416, lr 0.100000, loss 4.316042 +INFO 2020-12-03 05:57:52 train.py: 79] Epoch 8, iter 600/6416, lr 0.100000, loss 4.422725 +INFO 2020-12-03 06:00:59 train.py: 79] Epoch 8, iter 800/6416, lr 0.100000, loss 4.480498 +INFO 2020-12-03 06:04:06 train.py: 79] Epoch 8, iter 1000/6416, lr 0.100000, loss 4.541036 +INFO 2020-12-03 06:07:13 train.py: 79] Epoch 8, iter 1200/6416, lr 0.100000, loss 4.578566 +INFO 2020-12-03 06:10:20 train.py: 79] Epoch 8, iter 1400/6416, lr 0.100000, loss 4.642581 +INFO 2020-12-03 06:13:27 train.py: 79] Epoch 8, iter 1600/6416, lr 0.100000, loss 4.655586 +INFO 2020-12-03 06:16:34 train.py: 79] Epoch 8, iter 1800/6416, lr 0.100000, loss 4.634501 +INFO 2020-12-03 06:19:41 train.py: 79] Epoch 8, iter 2000/6416, lr 0.100000, loss 4.697801 +INFO 2020-12-03 06:22:48 train.py: 79] Epoch 8, iter 2200/6416, lr 0.100000, loss 4.690633 +INFO 2020-12-03 06:25:55 train.py: 79] Epoch 8, iter 2400/6416, lr 0.100000, loss 4.763088 +INFO 2020-12-03 06:29:02 train.py: 79] Epoch 8, iter 2600/6416, lr 0.100000, loss 4.749126 +INFO 2020-12-03 06:32:09 train.py: 79] Epoch 8, iter 2800/6416, lr 0.100000, loss 4.736125 +INFO 2020-12-03 06:35:16 train.py: 92] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2020-12-03 06:35:17 train.py: 79] Epoch 8, iter 3000/6416, lr 0.100000, loss 4.752036 +INFO 2020-12-03 06:38:24 train.py: 79] Epoch 8, iter 3200/6416, lr 0.100000, loss 4.745572 +INFO 2020-12-03 06:41:32 train.py: 79] Epoch 8, iter 3400/6416, lr 0.100000, loss 4.758962 +INFO 2020-12-03 06:44:39 train.py: 79] Epoch 8, iter 3600/6416, lr 0.100000, loss 4.771978 +INFO 2020-12-03 06:47:47 train.py: 79] Epoch 8, iter 3800/6416, lr 0.100000, loss 4.740541 +INFO 2020-12-03 06:50:54 train.py: 79] Epoch 8, iter 4000/6416, lr 0.100000, loss 4.732087 +INFO 2020-12-03 06:54:02 train.py: 79] Epoch 8, iter 4200/6416, lr 0.100000, loss 4.743392 +INFO 2020-12-03 06:57:09 train.py: 79] Epoch 8, iter 4400/6416, lr 0.100000, loss 4.722718 +INFO 2020-12-03 07:00:17 train.py: 79] Epoch 8, iter 4600/6416, lr 0.100000, loss 4.774203 +INFO 2020-12-03 07:03:24 train.py: 79] Epoch 8, iter 4800/6416, lr 0.100000, loss 4.736959 +INFO 2020-12-03 07:06:32 train.py: 79] Epoch 8, iter 5000/6416, lr 0.100000, loss 4.745756 +INFO 2020-12-03 07:09:40 train.py: 79] Epoch 8, iter 5200/6416, lr 0.100000, loss 4.745374 +INFO 2020-12-03 07:12:47 train.py: 79] Epoch 8, iter 5400/6416, lr 0.100000, loss 4.709741 +INFO 2020-12-03 07:15:55 train.py: 79] Epoch 8, iter 5600/6416, lr 0.100000, loss 4.747218 +INFO 2020-12-03 07:19:03 train.py: 79] Epoch 8, iter 5800/6416, lr 0.100000, loss 4.730891 +INFO 2020-12-03 07:22:10 train.py: 92] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2020-12-03 07:22:11 train.py: 79] Epoch 8, iter 6000/6416, lr 0.100000, loss 4.718416 +INFO 2020-12-03 07:25:18 train.py: 79] Epoch 8, iter 6200/6416, lr 0.100000, loss 4.721629 +INFO 2020-12-03 07:28:25 train.py: 79] Epoch 8, iter 6400/6416, lr 0.100000, loss 4.725244 +INFO 2020-12-03 07:28:39 train.py: 97] Save checkpoint Epoch_8.pt to disk... +INFO 2020-12-03 07:28:41 train.py: 79] Epoch 9, iter 0/6416, lr 0.100000, loss 4.708601 +INFO 2020-12-03 07:31:49 train.py: 79] Epoch 9, iter 200/6416, lr 0.100000, loss 4.243455 +INFO 2020-12-03 07:34:56 train.py: 79] Epoch 9, iter 400/6416, lr 0.100000, loss 4.201859 +INFO 2020-12-03 07:38:02 train.py: 79] Epoch 9, iter 600/6416, lr 0.100000, loss 4.286142 +INFO 2020-12-03 07:41:09 train.py: 79] Epoch 9, iter 800/6416, lr 0.100000, loss 4.379097 +INFO 2020-12-03 07:44:16 train.py: 79] Epoch 9, iter 1000/6416, lr 0.100000, loss 4.433232 +INFO 2020-12-03 07:47:23 train.py: 79] Epoch 9, iter 1200/6416, lr 0.100000, loss 4.478835 +INFO 2020-12-03 07:50:30 train.py: 79] Epoch 9, iter 1400/6416, lr 0.100000, loss 4.501469 +INFO 2020-12-03 07:53:37 train.py: 79] Epoch 9, iter 1600/6416, lr 0.100000, loss 4.549438 +INFO 2020-12-03 07:56:44 train.py: 79] Epoch 9, iter 1800/6416, lr 0.100000, loss 4.564158 +INFO 2020-12-03 07:59:51 train.py: 79] Epoch 9, iter 2000/6416, lr 0.100000, loss 4.566252 +INFO 2020-12-03 08:02:58 train.py: 79] Epoch 9, iter 2200/6416, lr 0.100000, loss 4.587315 +INFO 2020-12-03 08:06:05 train.py: 79] Epoch 9, iter 2400/6416, lr 0.100000, loss 4.598708 +INFO 2020-12-03 08:09:12 train.py: 79] Epoch 9, iter 2600/6416, lr 0.100000, loss 4.576349 +INFO 2020-12-03 08:12:19 train.py: 79] Epoch 9, iter 2800/6416, lr 0.100000, loss 4.634216 +INFO 2020-12-03 08:15:26 train.py: 92] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2020-12-03 08:15:27 train.py: 79] Epoch 9, iter 3000/6416, lr 0.100000, loss 4.616995 +INFO 2020-12-03 08:18:34 train.py: 79] Epoch 9, iter 3200/6416, lr 0.100000, loss 4.627426 +INFO 2020-12-03 08:21:40 train.py: 79] Epoch 9, iter 3400/6416, lr 0.100000, loss 4.630696 +INFO 2020-12-03 08:24:47 train.py: 79] Epoch 9, iter 3600/6416, lr 0.100000, loss 4.654315 +INFO 2020-12-03 08:27:54 train.py: 79] Epoch 9, iter 3800/6416, lr 0.100000, loss 4.634898 +INFO 2020-12-03 08:31:01 train.py: 79] Epoch 9, iter 4000/6416, lr 0.100000, loss 4.635881 +INFO 2020-12-03 08:34:08 train.py: 79] Epoch 9, iter 4200/6416, lr 0.100000, loss 4.645761 +INFO 2020-12-03 08:37:15 train.py: 79] Epoch 9, iter 4400/6416, lr 0.100000, loss 4.660442 +INFO 2020-12-03 08:40:22 train.py: 79] Epoch 9, iter 4600/6416, lr 0.100000, loss 4.654919 +INFO 2020-12-03 08:43:29 train.py: 79] Epoch 9, iter 4800/6416, lr 0.100000, loss 4.661503 +INFO 2020-12-03 08:46:36 train.py: 79] Epoch 9, iter 5000/6416, lr 0.100000, loss 4.637967 +INFO 2020-12-03 08:49:43 train.py: 79] Epoch 9, iter 5200/6416, lr 0.100000, loss 4.638848 +INFO 2020-12-03 08:52:50 train.py: 79] Epoch 9, iter 5400/6416, lr 0.100000, loss 4.634365 +INFO 2020-12-03 08:55:57 train.py: 79] Epoch 9, iter 5600/6416, lr 0.100000, loss 4.619052 +INFO 2020-12-03 08:59:04 train.py: 79] Epoch 9, iter 5800/6416, lr 0.100000, loss 4.669011 +INFO 2020-12-03 09:02:10 train.py: 92] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2020-12-03 09:02:11 train.py: 79] Epoch 9, iter 6000/6416, lr 0.100000, loss 4.644300 +INFO 2020-12-03 09:05:19 train.py: 79] Epoch 9, iter 6200/6416, lr 0.100000, loss 4.620329 +INFO 2020-12-03 09:08:27 train.py: 79] Epoch 9, iter 6400/6416, lr 0.100000, loss 4.648147 +INFO 2020-12-03 09:08:41 train.py: 97] Save checkpoint Epoch_9.pt to disk... +INFO 2020-12-03 09:08:43 train.py: 79] Epoch 10, iter 0/6416, lr 0.010000, loss 4.587415 +INFO 2020-12-03 09:11:50 train.py: 79] Epoch 10, iter 200/6416, lr 0.010000, loss 3.600639 +INFO 2020-12-03 09:14:57 train.py: 79] Epoch 10, iter 400/6416, lr 0.010000, loss 3.326887 +INFO 2020-12-03 09:18:04 train.py: 79] Epoch 10, iter 600/6416, lr 0.010000, loss 3.218004 +INFO 2020-12-03 09:21:11 train.py: 79] Epoch 10, iter 800/6416, lr 0.010000, loss 3.135760 +INFO 2020-12-03 09:24:18 train.py: 79] Epoch 10, iter 1000/6416, lr 0.010000, loss 3.111210 +INFO 2020-12-03 09:27:25 train.py: 79] Epoch 10, iter 1200/6416, lr 0.010000, loss 3.050307 +INFO 2020-12-03 09:30:32 train.py: 79] Epoch 10, iter 1400/6416, lr 0.010000, loss 2.967692 +INFO 2020-12-03 09:33:39 train.py: 79] Epoch 10, iter 1600/6416, lr 0.010000, loss 2.966347 +INFO 2020-12-03 09:36:45 train.py: 79] Epoch 10, iter 1800/6416, lr 0.010000, loss 2.902957 +INFO 2020-12-03 09:39:52 train.py: 79] Epoch 10, iter 2000/6416, lr 0.010000, loss 2.886213 +INFO 2020-12-03 09:42:59 train.py: 79] Epoch 10, iter 2200/6416, lr 0.010000, loss 2.868429 +INFO 2020-12-03 09:46:06 train.py: 79] Epoch 10, iter 2400/6416, lr 0.010000, loss 2.804226 +INFO 2020-12-03 09:49:14 train.py: 79] Epoch 10, iter 2600/6416, lr 0.010000, loss 2.800321 +INFO 2020-12-03 09:52:21 train.py: 79] Epoch 10, iter 2800/6416, lr 0.010000, loss 2.782938 +INFO 2020-12-03 09:55:27 train.py: 92] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2020-12-03 09:55:28 train.py: 79] Epoch 10, iter 3000/6416, lr 0.010000, loss 2.750414 +INFO 2020-12-03 09:58:36 train.py: 79] Epoch 10, iter 3200/6416, lr 0.010000, loss 2.738220 +INFO 2020-12-03 10:01:43 train.py: 79] Epoch 10, iter 3400/6416, lr 0.010000, loss 2.730819 +INFO 2020-12-03 10:04:50 train.py: 79] Epoch 10, iter 3600/6416, lr 0.010000, loss 2.689711 +INFO 2020-12-03 10:07:58 train.py: 79] Epoch 10, iter 3800/6416, lr 0.010000, loss 2.681723 +INFO 2020-12-03 10:11:05 train.py: 79] Epoch 10, iter 4000/6416, lr 0.010000, loss 2.657805 +INFO 2020-12-03 10:14:12 train.py: 79] Epoch 10, iter 4200/6416, lr 0.010000, loss 2.661914 +INFO 2020-12-03 10:17:20 train.py: 79] Epoch 10, iter 4400/6416, lr 0.010000, loss 2.620412 +INFO 2020-12-03 10:20:27 train.py: 79] Epoch 10, iter 4600/6416, lr 0.010000, loss 2.592250 +INFO 2020-12-03 10:23:35 train.py: 79] Epoch 10, iter 4800/6416, lr 0.010000, loss 2.569926 +INFO 2020-12-03 10:26:42 train.py: 79] Epoch 10, iter 5000/6416, lr 0.010000, loss 2.583932 +INFO 2020-12-03 10:29:50 train.py: 79] Epoch 10, iter 5200/6416, lr 0.010000, loss 2.553929 +INFO 2020-12-03 10:32:58 train.py: 79] Epoch 10, iter 5400/6416, lr 0.010000, loss 2.567436 +INFO 2020-12-03 10:36:05 train.py: 79] Epoch 10, iter 5600/6416, lr 0.010000, loss 2.529675 +INFO 2020-12-03 10:39:13 train.py: 79] Epoch 10, iter 5800/6416, lr 0.010000, loss 2.534601 +INFO 2020-12-03 10:42:20 train.py: 92] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2020-12-03 10:42:21 train.py: 79] Epoch 10, iter 6000/6416, lr 0.010000, loss 2.517062 +INFO 2020-12-03 10:45:28 train.py: 79] Epoch 10, iter 6200/6416, lr 0.010000, loss 2.511272 +INFO 2020-12-03 10:48:36 train.py: 79] Epoch 10, iter 6400/6416, lr 0.010000, loss 2.504296 +INFO 2020-12-03 10:48:50 train.py: 97] Save checkpoint Epoch_10.pt to disk... +INFO 2020-12-03 10:48:52 train.py: 79] Epoch 11, iter 0/6416, lr 0.010000, loss 2.511902 +INFO 2020-12-03 10:51:59 train.py: 79] Epoch 11, iter 200/6416, lr 0.010000, loss 2.179786 +INFO 2020-12-03 10:55:06 train.py: 79] Epoch 11, iter 400/6416, lr 0.010000, loss 2.178046 +INFO 2020-12-03 10:58:13 train.py: 79] Epoch 11, iter 600/6416, lr 0.010000, loss 2.180389 +INFO 2020-12-03 11:01:20 train.py: 79] Epoch 11, iter 800/6416, lr 0.010000, loss 2.173076 +INFO 2020-12-03 11:04:27 train.py: 79] Epoch 11, iter 1000/6416, lr 0.010000, loss 2.158977 +INFO 2020-12-03 11:07:34 train.py: 79] Epoch 11, iter 1200/6416, lr 0.010000, loss 2.160206 +INFO 2020-12-03 11:10:41 train.py: 79] Epoch 11, iter 1400/6416, lr 0.010000, loss 2.185351 +INFO 2020-12-03 11:13:48 train.py: 79] Epoch 11, iter 1600/6416, lr 0.010000, loss 2.181845 +INFO 2020-12-03 11:16:54 train.py: 79] Epoch 11, iter 1800/6416, lr 0.010000, loss 2.176098 +INFO 2020-12-03 11:20:01 train.py: 79] Epoch 11, iter 2000/6416, lr 0.010000, loss 2.155652 +INFO 2020-12-03 11:23:08 train.py: 79] Epoch 11, iter 2200/6416, lr 0.010000, loss 2.177292 +INFO 2020-12-03 11:26:15 train.py: 79] Epoch 11, iter 2400/6416, lr 0.010000, loss 2.169880 +INFO 2020-12-03 11:29:23 train.py: 79] Epoch 11, iter 2600/6416, lr 0.010000, loss 2.178358 +INFO 2020-12-03 11:32:30 train.py: 79] Epoch 11, iter 2800/6416, lr 0.010000, loss 2.159219 +INFO 2020-12-03 11:35:36 train.py: 92] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2020-12-03 11:35:37 train.py: 79] Epoch 11, iter 3000/6416, lr 0.010000, loss 2.171988 +INFO 2020-12-03 11:38:44 train.py: 79] Epoch 11, iter 3200/6416, lr 0.010000, loss 2.153228 +INFO 2020-12-03 11:41:50 train.py: 79] Epoch 11, iter 3400/6416, lr 0.010000, loss 2.171687 +INFO 2020-12-03 11:44:57 train.py: 79] Epoch 11, iter 3600/6416, lr 0.010000, loss 2.160353 +INFO 2020-12-03 11:48:04 train.py: 79] Epoch 11, iter 3800/6416, lr 0.010000, loss 2.179015 +INFO 2020-12-03 11:51:11 train.py: 79] Epoch 11, iter 4000/6416, lr 0.010000, loss 2.152023 +INFO 2020-12-03 11:54:18 train.py: 79] Epoch 11, iter 4200/6416, lr 0.010000, loss 2.167601 +INFO 2020-12-03 11:57:24 train.py: 79] Epoch 11, iter 4400/6416, lr 0.010000, loss 2.177003 +INFO 2020-12-03 12:00:31 train.py: 79] Epoch 11, iter 4600/6416, lr 0.010000, loss 2.156524 +INFO 2020-12-03 12:03:38 train.py: 79] Epoch 11, iter 4800/6416, lr 0.010000, loss 2.149799 +INFO 2020-12-03 12:06:45 train.py: 79] Epoch 11, iter 5000/6416, lr 0.010000, loss 2.166937 +INFO 2020-12-03 12:09:52 train.py: 79] Epoch 11, iter 5200/6416, lr 0.010000, loss 2.144454 +INFO 2020-12-03 12:12:59 train.py: 79] Epoch 11, iter 5400/6416, lr 0.010000, loss 2.136277 +INFO 2020-12-03 12:16:06 train.py: 79] Epoch 11, iter 5600/6416, lr 0.010000, loss 2.132223 +INFO 2020-12-03 12:19:13 train.py: 79] Epoch 11, iter 5800/6416, lr 0.010000, loss 2.149768 +INFO 2020-12-03 12:22:20 train.py: 92] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2020-12-03 12:22:21 train.py: 79] Epoch 11, iter 6000/6416, lr 0.010000, loss 2.152355 +INFO 2020-12-03 12:25:28 train.py: 79] Epoch 11, iter 6200/6416, lr 0.010000, loss 2.158323 +INFO 2020-12-03 12:28:36 train.py: 79] Epoch 11, iter 6400/6416, lr 0.010000, loss 2.155531 +INFO 2020-12-03 12:28:50 train.py: 97] Save checkpoint Epoch_11.pt to disk... +INFO 2020-12-03 12:28:52 train.py: 79] Epoch 12, iter 0/6416, lr 0.010000, loss 2.192659 +INFO 2020-12-03 12:32:00 train.py: 79] Epoch 12, iter 200/6416, lr 0.010000, loss 1.861888 +INFO 2020-12-03 12:35:06 train.py: 79] Epoch 12, iter 400/6416, lr 0.010000, loss 1.850325 +INFO 2020-12-03 12:38:13 train.py: 79] Epoch 12, iter 600/6416, lr 0.010000, loss 1.858519 +INFO 2020-12-03 12:41:20 train.py: 79] Epoch 12, iter 800/6416, lr 0.010000, loss 1.868805 +INFO 2020-12-03 12:44:27 train.py: 79] Epoch 12, iter 1000/6416, lr 0.010000, loss 1.875272 +INFO 2020-12-03 12:47:34 train.py: 79] Epoch 12, iter 1200/6416, lr 0.010000, loss 1.878553 +INFO 2020-12-03 12:50:41 train.py: 79] Epoch 12, iter 1400/6416, lr 0.010000, loss 1.884702 +INFO 2020-12-03 12:53:48 train.py: 79] Epoch 12, iter 1600/6416, lr 0.010000, loss 1.899908 +INFO 2020-12-03 12:56:55 train.py: 79] Epoch 12, iter 1800/6416, lr 0.010000, loss 1.894162 +INFO 2020-12-03 13:00:02 train.py: 79] Epoch 12, iter 2000/6416, lr 0.010000, loss 1.905304 +INFO 2020-12-03 13:03:09 train.py: 79] Epoch 12, iter 2200/6416, lr 0.010000, loss 1.923799 +INFO 2020-12-03 13:06:16 train.py: 79] Epoch 12, iter 2400/6416, lr 0.010000, loss 1.894776 +INFO 2020-12-03 13:09:23 train.py: 79] Epoch 12, iter 2600/6416, lr 0.010000, loss 1.924357 +INFO 2020-12-03 13:12:30 train.py: 79] Epoch 12, iter 2800/6416, lr 0.010000, loss 1.928320 +INFO 2020-12-03 13:15:37 train.py: 92] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2020-12-03 13:15:38 train.py: 79] Epoch 12, iter 3000/6416, lr 0.010000, loss 1.917324 +INFO 2020-12-03 13:18:45 train.py: 79] Epoch 12, iter 3200/6416, lr 0.010000, loss 1.932692 +INFO 2020-12-03 13:21:52 train.py: 79] Epoch 12, iter 3400/6416, lr 0.010000, loss 1.943242 +INFO 2020-12-03 13:25:00 train.py: 79] Epoch 12, iter 3600/6416, lr 0.010000, loss 1.958510 +INFO 2020-12-03 13:28:07 train.py: 79] Epoch 12, iter 3800/6416, lr 0.010000, loss 1.947445 +INFO 2020-12-03 13:31:15 train.py: 79] Epoch 12, iter 4000/6416, lr 0.010000, loss 1.955349 +INFO 2020-12-03 13:34:22 train.py: 79] Epoch 12, iter 4200/6416, lr 0.010000, loss 1.950447 +INFO 2020-12-03 13:37:30 train.py: 79] Epoch 12, iter 4400/6416, lr 0.010000, loss 1.966869 +INFO 2020-12-03 13:40:37 train.py: 79] Epoch 12, iter 4600/6416, lr 0.010000, loss 1.966571 +INFO 2020-12-03 13:43:45 train.py: 79] Epoch 12, iter 4800/6416, lr 0.010000, loss 1.961027 +INFO 2020-12-03 13:46:52 train.py: 79] Epoch 12, iter 5000/6416, lr 0.010000, loss 1.972043 +INFO 2020-12-03 13:50:00 train.py: 79] Epoch 12, iter 5200/6416, lr 0.010000, loss 1.966379 +INFO 2020-12-03 13:53:07 train.py: 79] Epoch 12, iter 5400/6416, lr 0.010000, loss 1.981322 +INFO 2020-12-03 13:56:15 train.py: 79] Epoch 12, iter 5600/6416, lr 0.010000, loss 1.978793 +INFO 2020-12-03 13:59:23 train.py: 79] Epoch 12, iter 5800/6416, lr 0.010000, loss 2.013717 +INFO 2020-12-03 14:02:30 train.py: 92] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2020-12-03 14:02:31 train.py: 79] Epoch 12, iter 6000/6416, lr 0.010000, loss 1.972498 +INFO 2020-12-03 14:05:38 train.py: 79] Epoch 12, iter 6200/6416, lr 0.010000, loss 2.001041 +INFO 2020-12-03 14:08:46 train.py: 79] Epoch 12, iter 6400/6416, lr 0.010000, loss 1.989047 +INFO 2020-12-03 14:09:00 train.py: 97] Save checkpoint Epoch_12.pt to disk... +INFO 2020-12-03 14:09:02 train.py: 79] Epoch 13, iter 0/6416, lr 0.001000, loss 1.978062 +INFO 2020-12-03 14:12:09 train.py: 79] Epoch 13, iter 200/6416, lr 0.001000, loss 1.652931 +INFO 2020-12-03 14:15:16 train.py: 79] Epoch 13, iter 400/6416, lr 0.001000, loss 1.631869 +INFO 2020-12-03 14:18:23 train.py: 79] Epoch 13, iter 600/6416, lr 0.001000, loss 1.645035 +INFO 2020-12-03 14:21:30 train.py: 79] Epoch 13, iter 800/6416, lr 0.001000, loss 1.620876 +INFO 2020-12-03 14:24:37 train.py: 79] Epoch 13, iter 1000/6416, lr 0.001000, loss 1.602443 +INFO 2020-12-03 14:27:44 train.py: 79] Epoch 13, iter 1200/6416, lr 0.001000, loss 1.621005 +INFO 2020-12-03 14:30:51 train.py: 79] Epoch 13, iter 1400/6416, lr 0.001000, loss 1.589904 +INFO 2020-12-03 14:33:58 train.py: 79] Epoch 13, iter 1600/6416, lr 0.001000, loss 1.603842 +INFO 2020-12-03 14:37:04 train.py: 79] Epoch 13, iter 1800/6416, lr 0.001000, loss 1.589838 +INFO 2020-12-03 14:40:11 train.py: 79] Epoch 13, iter 2000/6416, lr 0.001000, loss 1.607866 +INFO 2020-12-03 14:43:18 train.py: 79] Epoch 13, iter 2200/6416, lr 0.001000, loss 1.591209 +INFO 2020-12-03 14:46:25 train.py: 79] Epoch 13, iter 2400/6416, lr 0.001000, loss 1.585208 +INFO 2020-12-03 14:49:32 train.py: 79] Epoch 13, iter 2600/6416, lr 0.001000, loss 1.606543 +INFO 2020-12-03 14:52:39 train.py: 79] Epoch 13, iter 2800/6416, lr 0.001000, loss 1.567105 +INFO 2020-12-03 14:55:45 train.py: 92] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2020-12-03 14:55:46 train.py: 79] Epoch 13, iter 3000/6416, lr 0.001000, loss 1.606321 +INFO 2020-12-03 14:58:53 train.py: 79] Epoch 13, iter 3200/6416, lr 0.001000, loss 1.589099 +INFO 2020-12-03 15:01:59 train.py: 79] Epoch 13, iter 3400/6416, lr 0.001000, loss 1.600815 +INFO 2020-12-03 15:05:05 train.py: 79] Epoch 13, iter 3600/6416, lr 0.001000, loss 1.606442 +INFO 2020-12-03 15:08:12 train.py: 79] Epoch 13, iter 3800/6416, lr 0.001000, loss 1.589249 +INFO 2020-12-03 15:11:18 train.py: 79] Epoch 13, iter 4000/6416, lr 0.001000, loss 1.589843 +INFO 2020-12-03 15:14:25 train.py: 79] Epoch 13, iter 4200/6416, lr 0.001000, loss 1.585513 +INFO 2020-12-03 15:17:31 train.py: 79] Epoch 13, iter 4400/6416, lr 0.001000, loss 1.573967 +INFO 2020-12-03 15:20:38 train.py: 79] Epoch 13, iter 4600/6416, lr 0.001000, loss 1.598693 +INFO 2020-12-03 15:23:44 train.py: 79] Epoch 13, iter 4800/6416, lr 0.001000, loss 1.588592 +INFO 2020-12-03 15:26:51 train.py: 79] Epoch 13, iter 5000/6416, lr 0.001000, loss 1.591285 +INFO 2020-12-03 15:29:57 train.py: 79] Epoch 13, iter 5200/6416, lr 0.001000, loss 1.609549 +INFO 2020-12-03 15:33:04 train.py: 79] Epoch 13, iter 5400/6416, lr 0.001000, loss 1.593667 +INFO 2020-12-03 15:36:11 train.py: 79] Epoch 13, iter 5600/6416, lr 0.001000, loss 1.592378 +INFO 2020-12-03 15:39:18 train.py: 79] Epoch 13, iter 5800/6416, lr 0.001000, loss 1.602734 +INFO 2020-12-03 15:42:24 train.py: 92] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2020-12-03 15:42:25 train.py: 79] Epoch 13, iter 6000/6416, lr 0.001000, loss 1.602092 +INFO 2020-12-03 15:45:32 train.py: 79] Epoch 13, iter 6200/6416, lr 0.001000, loss 1.602258 +INFO 2020-12-03 15:48:40 train.py: 79] Epoch 13, iter 6400/6416, lr 0.001000, loss 1.602071 +INFO 2020-12-03 15:48:54 train.py: 97] Save checkpoint Epoch_13.pt to disk... +INFO 2020-12-03 15:48:56 train.py: 79] Epoch 14, iter 0/6416, lr 0.001000, loss 1.627704 +INFO 2020-12-03 15:52:03 train.py: 79] Epoch 14, iter 200/6416, lr 0.001000, loss 1.550562 +INFO 2020-12-03 15:55:10 train.py: 79] Epoch 14, iter 400/6416, lr 0.001000, loss 1.546345 +INFO 2020-12-03 15:58:17 train.py: 79] Epoch 14, iter 600/6416, lr 0.001000, loss 1.544102 +INFO 2020-12-03 16:01:24 train.py: 79] Epoch 14, iter 800/6416, lr 0.001000, loss 1.545626 +INFO 2020-12-03 16:04:31 train.py: 79] Epoch 14, iter 1000/6416, lr 0.001000, loss 1.560231 +INFO 2020-12-03 16:07:38 train.py: 79] Epoch 14, iter 1200/6416, lr 0.001000, loss 1.546803 +INFO 2020-12-03 16:10:45 train.py: 79] Epoch 14, iter 1400/6416, lr 0.001000, loss 1.558189 +INFO 2020-12-03 16:13:51 train.py: 79] Epoch 14, iter 1600/6416, lr 0.001000, loss 1.550768 +INFO 2020-12-03 16:16:58 train.py: 79] Epoch 14, iter 1800/6416, lr 0.001000, loss 1.547268 +INFO 2020-12-03 16:20:05 train.py: 79] Epoch 14, iter 2000/6416, lr 0.001000, loss 1.545094 +INFO 2020-12-03 16:23:12 train.py: 79] Epoch 14, iter 2200/6416, lr 0.001000, loss 1.555121 +INFO 2020-12-03 16:26:19 train.py: 79] Epoch 14, iter 2400/6416, lr 0.001000, loss 1.552616 +INFO 2020-12-03 16:29:26 train.py: 79] Epoch 14, iter 2600/6416, lr 0.001000, loss 1.560406 +INFO 2020-12-03 16:32:33 train.py: 79] Epoch 14, iter 2800/6416, lr 0.001000, loss 1.553938 +INFO 2020-12-03 16:35:39 train.py: 92] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2020-12-03 16:35:40 train.py: 79] Epoch 14, iter 3000/6416, lr 0.001000, loss 1.533452 +INFO 2020-12-03 16:38:47 train.py: 79] Epoch 14, iter 3200/6416, lr 0.001000, loss 1.552535 +INFO 2020-12-03 16:41:54 train.py: 79] Epoch 14, iter 3400/6416, lr 0.001000, loss 1.558537 +INFO 2020-12-03 16:45:01 train.py: 79] Epoch 14, iter 3600/6416, lr 0.001000, loss 1.553029 +INFO 2020-12-03 16:48:08 train.py: 79] Epoch 14, iter 3800/6416, lr 0.001000, loss 1.547475 +INFO 2020-12-03 16:51:15 train.py: 79] Epoch 14, iter 4000/6416, lr 0.001000, loss 1.553226 +INFO 2020-12-03 16:54:23 train.py: 79] Epoch 14, iter 4200/6416, lr 0.001000, loss 1.559306 +INFO 2020-12-03 16:57:30 train.py: 79] Epoch 14, iter 4400/6416, lr 0.001000, loss 1.568083 +INFO 2020-12-03 17:00:37 train.py: 79] Epoch 14, iter 4600/6416, lr 0.001000, loss 1.573283 +INFO 2020-12-03 17:03:44 train.py: 79] Epoch 14, iter 4800/6416, lr 0.001000, loss 1.564634 +INFO 2020-12-03 17:06:51 train.py: 79] Epoch 14, iter 5000/6416, lr 0.001000, loss 1.553898 +INFO 2020-12-03 17:09:59 train.py: 79] Epoch 14, iter 5200/6416, lr 0.001000, loss 1.559875 +INFO 2020-12-03 17:13:06 train.py: 79] Epoch 14, iter 5400/6416, lr 0.001000, loss 1.555709 +INFO 2020-12-03 17:16:13 train.py: 79] Epoch 14, iter 5600/6416, lr 0.001000, loss 1.556728 +INFO 2020-12-03 17:19:21 train.py: 79] Epoch 14, iter 5800/6416, lr 0.001000, loss 1.559506 +INFO 2020-12-03 17:22:28 train.py: 92] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2020-12-03 17:22:29 train.py: 79] Epoch 14, iter 6000/6416, lr 0.001000, loss 1.532555 +INFO 2020-12-03 17:25:36 train.py: 79] Epoch 14, iter 6200/6416, lr 0.001000, loss 1.559591 +INFO 2020-12-03 17:28:43 train.py: 79] Epoch 14, iter 6400/6416, lr 0.001000, loss 1.561863 +INFO 2020-12-03 17:28:58 train.py: 97] Save checkpoint Epoch_14.pt to disk... +INFO 2020-12-03 17:29:00 train.py: 79] Epoch 15, iter 0/6416, lr 0.001000, loss 1.585972 +INFO 2020-12-03 17:32:07 train.py: 79] Epoch 15, iter 200/6416, lr 0.001000, loss 1.504678 +INFO 2020-12-03 17:35:14 train.py: 79] Epoch 15, iter 400/6416, lr 0.001000, loss 1.511323 +INFO 2020-12-03 17:38:21 train.py: 79] Epoch 15, iter 600/6416, lr 0.001000, loss 1.500655 +INFO 2020-12-03 17:41:27 train.py: 79] Epoch 15, iter 800/6416, lr 0.001000, loss 1.511984 +INFO 2020-12-03 17:44:34 train.py: 79] Epoch 15, iter 1000/6416, lr 0.001000, loss 1.519356 +INFO 2020-12-03 17:47:41 train.py: 79] Epoch 15, iter 1200/6416, lr 0.001000, loss 1.518752 +INFO 2020-12-03 17:50:48 train.py: 79] Epoch 15, iter 1400/6416, lr 0.001000, loss 1.514031 +INFO 2020-12-03 17:53:55 train.py: 79] Epoch 15, iter 1600/6416, lr 0.001000, loss 1.516873 +INFO 2020-12-03 17:57:02 train.py: 79] Epoch 15, iter 1800/6416, lr 0.001000, loss 1.516810 +INFO 2020-12-03 18:00:09 train.py: 79] Epoch 15, iter 2000/6416, lr 0.001000, loss 1.520707 +INFO 2020-12-03 18:03:15 train.py: 79] Epoch 15, iter 2200/6416, lr 0.001000, loss 1.516459 +INFO 2020-12-03 18:06:22 train.py: 79] Epoch 15, iter 2400/6416, lr 0.001000, loss 1.508329 +INFO 2020-12-03 18:09:29 train.py: 79] Epoch 15, iter 2600/6416, lr 0.001000, loss 1.522004 +INFO 2020-12-03 18:12:36 train.py: 79] Epoch 15, iter 2800/6416, lr 0.001000, loss 1.524256 +INFO 2020-12-03 18:15:43 train.py: 92] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2020-12-03 18:15:44 train.py: 79] Epoch 15, iter 3000/6416, lr 0.001000, loss 1.528647 +INFO 2020-12-03 18:18:50 train.py: 79] Epoch 15, iter 3200/6416, lr 0.001000, loss 1.533105 +INFO 2020-12-03 18:21:56 train.py: 79] Epoch 15, iter 3400/6416, lr 0.001000, loss 1.531813 +INFO 2020-12-03 18:25:03 train.py: 79] Epoch 15, iter 3600/6416, lr 0.001000, loss 1.527862 +INFO 2020-12-03 18:28:09 train.py: 79] Epoch 15, iter 3800/6416, lr 0.001000, loss 1.521715 +INFO 2020-12-03 18:31:16 train.py: 79] Epoch 15, iter 4000/6416, lr 0.001000, loss 1.536820 +INFO 2020-12-03 18:34:22 train.py: 79] Epoch 15, iter 4200/6416, lr 0.001000, loss 1.528713 +INFO 2020-12-03 18:37:29 train.py: 79] Epoch 15, iter 4400/6416, lr 0.001000, loss 1.528955 +INFO 2020-12-03 18:40:36 train.py: 79] Epoch 15, iter 4600/6416, lr 0.001000, loss 1.520924 +INFO 2020-12-03 18:43:42 train.py: 79] Epoch 15, iter 4800/6416, lr 0.001000, loss 1.531768 +INFO 2020-12-03 18:46:49 train.py: 79] Epoch 15, iter 5000/6416, lr 0.001000, loss 1.539711 +INFO 2020-12-03 18:49:56 train.py: 79] Epoch 15, iter 5200/6416, lr 0.001000, loss 1.533245 +INFO 2020-12-03 18:53:02 train.py: 79] Epoch 15, iter 5400/6416, lr 0.001000, loss 1.537295 +INFO 2020-12-03 18:56:09 train.py: 79] Epoch 15, iter 5600/6416, lr 0.001000, loss 1.528401 +INFO 2020-12-03 18:59:16 train.py: 79] Epoch 15, iter 5800/6416, lr 0.001000, loss 1.543341 +INFO 2020-12-03 19:02:22 train.py: 92] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2020-12-03 19:02:23 train.py: 79] Epoch 15, iter 6000/6416, lr 0.001000, loss 1.547450 +INFO 2020-12-03 19:05:30 train.py: 79] Epoch 15, iter 6200/6416, lr 0.001000, loss 1.565476 +INFO 2020-12-03 19:08:38 train.py: 79] Epoch 15, iter 6400/6416, lr 0.001000, loss 1.542237 +INFO 2020-12-03 19:08:52 train.py: 97] Save checkpoint Epoch_15.pt to disk... +INFO 2020-12-03 19:08:54 train.py: 79] Epoch 16, iter 0/6416, lr 0.000100, loss 1.563744 +INFO 2020-12-03 19:12:01 train.py: 79] Epoch 16, iter 200/6416, lr 0.000100, loss 1.482822 +INFO 2020-12-03 19:15:08 train.py: 79] Epoch 16, iter 400/6416, lr 0.000100, loss 1.488903 +INFO 2020-12-03 19:18:15 train.py: 79] Epoch 16, iter 600/6416, lr 0.000100, loss 1.476458 +INFO 2020-12-03 19:21:22 train.py: 79] Epoch 16, iter 800/6416, lr 0.000100, loss 1.488819 +INFO 2020-12-03 19:24:29 train.py: 79] Epoch 16, iter 1000/6416, lr 0.000100, loss 1.493010 +INFO 2020-12-03 19:27:36 train.py: 79] Epoch 16, iter 1200/6416, lr 0.000100, loss 1.479292 +INFO 2020-12-03 19:30:42 train.py: 79] Epoch 16, iter 1400/6416, lr 0.000100, loss 1.487100 +INFO 2020-12-03 19:33:49 train.py: 79] Epoch 16, iter 1600/6416, lr 0.000100, loss 1.482532 +INFO 2020-12-03 19:36:56 train.py: 79] Epoch 16, iter 1800/6416, lr 0.000100, loss 1.482536 +INFO 2020-12-03 19:40:03 train.py: 79] Epoch 16, iter 2000/6416, lr 0.000100, loss 1.494960 +INFO 2020-12-03 19:43:10 train.py: 79] Epoch 16, iter 2200/6416, lr 0.000100, loss 1.490512 +INFO 2020-12-03 19:46:17 train.py: 79] Epoch 16, iter 2400/6416, lr 0.000100, loss 1.468600 +INFO 2020-12-03 19:49:24 train.py: 79] Epoch 16, iter 2600/6416, lr 0.000100, loss 1.488502 +INFO 2020-12-03 19:52:31 train.py: 79] Epoch 16, iter 2800/6416, lr 0.000100, loss 1.480113 +INFO 2020-12-03 19:55:37 train.py: 92] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2020-12-03 19:55:38 train.py: 79] Epoch 16, iter 3000/6416, lr 0.000100, loss 1.489426 +INFO 2020-12-03 19:58:45 train.py: 79] Epoch 16, iter 3200/6416, lr 0.000100, loss 1.484256 +INFO 2020-12-03 20:01:52 train.py: 79] Epoch 16, iter 3400/6416, lr 0.000100, loss 1.472291 +INFO 2020-12-03 20:04:59 train.py: 79] Epoch 16, iter 3600/6416, lr 0.000100, loss 1.482397 +INFO 2020-12-03 20:08:06 train.py: 79] Epoch 16, iter 3800/6416, lr 0.000100, loss 1.483921 +INFO 2020-12-03 20:11:13 train.py: 79] Epoch 16, iter 4000/6416, lr 0.000100, loss 1.485047 +INFO 2020-12-03 20:14:20 train.py: 79] Epoch 16, iter 4200/6416, lr 0.000100, loss 1.478618 +INFO 2020-12-03 20:17:27 train.py: 79] Epoch 16, iter 4400/6416, lr 0.000100, loss 1.475264 +INFO 2020-12-03 20:20:35 train.py: 79] Epoch 16, iter 4600/6416, lr 0.000100, loss 1.467394 +INFO 2020-12-03 20:23:42 train.py: 79] Epoch 16, iter 4800/6416, lr 0.000100, loss 1.483348 +INFO 2020-12-03 20:26:49 train.py: 79] Epoch 16, iter 5000/6416, lr 0.000100, loss 1.473250 +INFO 2020-12-03 20:29:56 train.py: 79] Epoch 16, iter 5200/6416, lr 0.000100, loss 1.479615 +INFO 2020-12-03 20:33:04 train.py: 79] Epoch 16, iter 5400/6416, lr 0.000100, loss 1.499258 +INFO 2020-12-03 20:36:11 train.py: 79] Epoch 16, iter 5600/6416, lr 0.000100, loss 1.486454 +INFO 2020-12-03 20:39:18 train.py: 79] Epoch 16, iter 5800/6416, lr 0.000100, loss 1.484143 +INFO 2020-12-03 20:42:25 train.py: 92] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2020-12-03 20:42:26 train.py: 79] Epoch 16, iter 6000/6416, lr 0.000100, loss 1.484250 +INFO 2020-12-03 20:45:33 train.py: 79] Epoch 16, iter 6200/6416, lr 0.000100, loss 1.485810 +INFO 2020-12-03 20:48:41 train.py: 79] Epoch 16, iter 6400/6416, lr 0.000100, loss 1.488005 +INFO 2020-12-03 20:48:55 train.py: 97] Save checkpoint Epoch_16.pt to disk... +INFO 2020-12-03 20:48:57 train.py: 79] Epoch 17, iter 0/6416, lr 0.000100, loss 1.527157 +INFO 2020-12-03 20:52:04 train.py: 79] Epoch 17, iter 200/6416, lr 0.000100, loss 1.465263 +INFO 2020-12-03 20:55:11 train.py: 79] Epoch 17, iter 400/6416, lr 0.000100, loss 1.473775 +INFO 2020-12-03 20:58:18 train.py: 79] Epoch 17, iter 600/6416, lr 0.000100, loss 1.486029 +INFO 2020-12-03 21:01:25 train.py: 79] Epoch 17, iter 800/6416, lr 0.000100, loss 1.479593 +INFO 2020-12-03 21:04:31 train.py: 79] Epoch 17, iter 1000/6416, lr 0.000100, loss 1.465834 +INFO 2020-12-03 21:07:38 train.py: 79] Epoch 17, iter 1200/6416, lr 0.000100, loss 1.476643 +INFO 2020-12-03 21:10:45 train.py: 79] Epoch 17, iter 1400/6416, lr 0.000100, loss 1.474023 +INFO 2020-12-03 21:13:52 train.py: 79] Epoch 17, iter 1600/6416, lr 0.000100, loss 1.475308 +INFO 2020-12-03 21:16:59 train.py: 79] Epoch 17, iter 1800/6416, lr 0.000100, loss 1.492811 +INFO 2020-12-03 21:20:06 train.py: 79] Epoch 17, iter 2000/6416, lr 0.000100, loss 1.484967 +INFO 2020-12-03 21:23:13 train.py: 79] Epoch 17, iter 2200/6416, lr 0.000100, loss 1.474637 +INFO 2020-12-03 21:26:19 train.py: 79] Epoch 17, iter 2400/6416, lr 0.000100, loss 1.474549 +INFO 2020-12-03 21:29:26 train.py: 79] Epoch 17, iter 2600/6416, lr 0.000100, loss 1.474134 +INFO 2020-12-03 21:32:33 train.py: 79] Epoch 17, iter 2800/6416, lr 0.000100, loss 1.480024 +INFO 2020-12-03 21:35:39 train.py: 92] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2020-12-03 21:35:40 train.py: 79] Epoch 17, iter 3000/6416, lr 0.000100, loss 1.482449 +INFO 2020-12-03 21:38:47 train.py: 79] Epoch 17, iter 3200/6416, lr 0.000100, loss 1.483054 +INFO 2020-12-03 21:41:53 train.py: 79] Epoch 17, iter 3400/6416, lr 0.000100, loss 1.478087 +INFO 2020-12-03 21:44:59 train.py: 79] Epoch 17, iter 3600/6416, lr 0.000100, loss 1.483813 +INFO 2020-12-03 21:48:06 train.py: 79] Epoch 17, iter 3800/6416, lr 0.000100, loss 1.489746 +INFO 2020-12-03 21:51:12 train.py: 79] Epoch 17, iter 4000/6416, lr 0.000100, loss 1.497122 +INFO 2020-12-03 21:54:19 train.py: 79] Epoch 17, iter 4200/6416, lr 0.000100, loss 1.471576 +INFO 2020-12-03 21:57:25 train.py: 79] Epoch 17, iter 4400/6416, lr 0.000100, loss 1.495841 +INFO 2020-12-03 22:00:32 train.py: 79] Epoch 17, iter 4600/6416, lr 0.000100, loss 1.474587 +INFO 2020-12-03 22:03:39 train.py: 79] Epoch 17, iter 4800/6416, lr 0.000100, loss 1.471644 +INFO 2020-12-03 22:06:45 train.py: 79] Epoch 17, iter 5000/6416, lr 0.000100, loss 1.479576 +INFO 2020-12-03 22:09:52 train.py: 79] Epoch 17, iter 5200/6416, lr 0.000100, loss 1.481074 +INFO 2020-12-03 22:12:59 train.py: 79] Epoch 17, iter 5400/6416, lr 0.000100, loss 1.467576 +INFO 2020-12-03 22:16:06 train.py: 79] Epoch 17, iter 5600/6416, lr 0.000100, loss 1.485052 +INFO 2020-12-03 22:19:12 train.py: 79] Epoch 17, iter 5800/6416, lr 0.000100, loss 1.473696 +INFO 2020-12-03 22:22:19 train.py: 92] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2020-12-03 22:22:19 train.py: 79] Epoch 17, iter 6000/6416, lr 0.000100, loss 1.480181 +INFO 2020-12-03 22:25:27 train.py: 79] Epoch 17, iter 6200/6416, lr 0.000100, loss 1.472788 +INFO 2020-12-03 22:28:34 train.py: 79] Epoch 17, iter 6400/6416, lr 0.000100, loss 1.485880 +INFO 2020-12-03 22:28:48 train.py: 97] Save checkpoint Epoch_17.pt to disk... +INFO 2020-12-03 22:28:49 train.py: 180] Optimization done! diff --git a/bob/bio/facexzoo/models/backbones/SwinTransformer_S/.gitkeep b/bob/bio/facexzoo/models/backbones/SwinTransformer_S/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/backbones/SwinTransformer_S/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/backbones/SwinTransformer_S/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..f176c5f8baf9291b6e46f8757a4ba4b8d92e78d4 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/SwinTransformer_S/accu_files/accu_agedb.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_2999.pt | 0.9805000000000001 | 0.0021808651584878315 | +| Epoch_16.pt | 0.9804999999999999 | 0.002277777777777769 | +| Epoch_15_batch_5999.pt | 0.9801666666666667 | 0.0021865187393504864 | +| Epoch_16_batch_5999.pt | 0.9801666666666667 | 0.0021147629234082475 | +| Epoch_14.pt | 0.9801666666666666 | 0.001963399671896915 | +| Epoch_17.pt | 0.9800000000000001 | 0.0021801574300387306 | +| Epoch_15.pt | 0.9800000000000001 | 0.002222222222222217 | +| Epoch_13.pt | 0.9800000000000001 | 0.001940472132952549 | +| Epoch_12_batch_5999.pt | 0.9798333333333333 | 0.001994591452335138 | +| Epoch_14_batch_2999.pt | 0.9798333333333333 | 0.0019633996718969207 | +| Epoch_11_batch_2999.pt | 0.9798333333333333 | 0.0021147629234082466 | +| Epoch_17_batch_2999.pt | 0.9796666666666669 | 0.0020757268546965943 | +| Epoch_17_batch_5999.pt | 0.9795 | 0.002208988372452335 | +| Epoch_13_batch_5999.pt | 0.9793333333333335 | 0.0021545243810739217 | +| Epoch_15_batch_2999.pt | 0.9793333333333335 | 0.0020517983680688142 | +| Epoch_14_batch_5999.pt | 0.9793333333333335 | 0.0020964402515681285 | +| Epoch_11.pt | 0.9785 | 0.002129307544081864 | +| Epoch_13_batch_2999.pt | 0.9783333333333335 | 0.0021942686286812708 | +| Epoch_12_batch_2999.pt | 0.9783333333333333 | 0.0020786985482077404 | +| Epoch_10_batch_2999.pt | 0.9783333333333333 | 0.0022082896571501928 | +| Epoch_11_batch_5999.pt | 0.9778333333333334 | 0.0022641870969238704 | +| Epoch_12.pt | 0.9776666666666667 | 0.0022249982660556373 | +| Epoch_10.pt | 0.9776666666666667 | 0.0016329931618554526 | +| Epoch_9_batch_5999.pt | 0.977 | 0.002444444444444445 | +| Epoch_10_batch_5999.pt | 0.9768333333333334 | 0.0023629078131262994 | +| Epoch_8_batch_2999.pt | 0.9765 | 0.002599263903397687 | +| Epoch_9_batch_2999.pt | 0.9758333333333333 | 0.0020824072015545913 | +| Epoch_8_batch_5999.pt | 0.9756666666666668 | 0.0022388268532899875 | +| Epoch_6_batch_2999.pt | 0.9756666666666666 | 0.00260815435429011 | +| Epoch_6.pt | 0.9754999999999999 | 0.0022367580154663757 | +| Epoch_7_batch_5999.pt | 0.9753333333333334 | 0.002177324215807262 | +| Epoch_6_batch_5999.pt | 0.9751666666666667 | 0.0028485430540653896 | +| Epoch_9.pt | 0.975 | 0.0020184335693983237 | +| Epoch_8.pt | 0.9745000000000001 | 0.001809610830544702 | +| Epoch_7_batch_2999.pt | 0.9743333333333334 | 0.0019751543149590166 | +| Epoch_5.pt | 0.9743333333333334 | 0.002140151142695358 | +| Epoch_7.pt | 0.9743333333333333 | 0.0018291197370171465 | +| Epoch_4_batch_5999.pt | 0.9731666666666665 | 0.0024651897480370928 | +| Epoch_5_batch_2999.pt | 0.9730000000000001 | 0.0029165343885348173 | +| Epoch_5_batch_5999.pt | 0.9726666666666667 | 0.0019751543149590157 | +| Epoch_4.pt | 0.9725000000000001 | 0.0025968879761156085 | +| Epoch_4_batch_2999.pt | 0.9698333333333334 | 0.0027492984514796872 | +| Epoch_3.pt | 0.9678333333333334 | 0.001572330188676106 | +| Epoch_3_batch_5999.pt | 0.966 | 0.0030347778408328146 | +| Epoch_3_batch_2999.pt | 0.9628333333333334 | 0.0019253026056848255 | +| Epoch_2_batch_5999.pt | 0.9580000000000002 | 0.003189488909868296 | +| Epoch_2.pt | 0.9555 | 0.002844205719148935 | +| Epoch_2_batch_2999.pt | 0.9436666666666668 | 0.0038634085890474888 | +| Epoch_1.pt | 0.9148333333333335 | 0.005629781918018179 | +| Epoch_1_batch_5999.pt | 0.8988333333333335 | 0.005741606864172785 | +| Epoch_1_batch_2999.pt | 0.8113333333333334 | 0.006679617051195168 | +| Epoch_0.pt | 0.6483333333333334 | 0.005246986201385589 | +| Epoch_0_batch_5999.pt | 0.5900000000000001 | 0.005488484015657096 | +| Epoch_0_batch_2999.pt | 0.4993333333333333 | 0.00563389214848321 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/SwinTransformer_S/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/backbones/SwinTransformer_S/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..cebba977d786b930af86e6f3f310995ed43cfdd0 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/SwinTransformer_S/accu_files/accu_calfw.txt @@ -0,0 +1,58 @@ ++------------------------+---------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+---------------------+-----------------------+ +| Epoch_16_batch_2999.pt | 0.9591666666666667 | 0.004069231128273333 | +| Epoch_16.pt | 0.9588333333333333 | 0.0038733817807896373 | +| Epoch_17.pt | 0.9586666666666666 | 0.003942487777602259 | +| Epoch_16_batch_5999.pt | 0.9585000000000001 | 0.004017323597731317 | +| Epoch_14_batch_5999.pt | 0.9585000000000001 | 0.003963179294891511 | +| Epoch_15.pt | 0.9583333333333334 | 0.003840974670543025 | +| Epoch_13_batch_2999.pt | 0.9581666666666668 | 0.004130958098893623 | +| Epoch_13_batch_5999.pt | 0.9581666666666667 | 0.003931904950937899 | +| Epoch_17_batch_2999.pt | 0.958 | 0.0039110479792884515 | +| Epoch_17_batch_5999.pt | 0.958 | 0.004050605807457375 | +| Epoch_14.pt | 0.9578333333333331 | 0.004157768276015038 | +| Epoch_14_batch_2999.pt | 0.9576666666666668 | 0.004061259307221574 | +| Epoch_12.pt | 0.9576666666666667 | 0.004166296279833932 | +| Epoch_13.pt | 0.9576666666666667 | 0.0038904758666692433 | +| Epoch_12_batch_5999.pt | 0.9576666666666667 | 0.004061259307221576 | +| Epoch_11_batch_5999.pt | 0.9571666666666667 | 0.004097951912424451 | +| Epoch_11_batch_2999.pt | 0.9570000000000001 | 0.004058218303944377 | +| Epoch_15_batch_2999.pt | 0.9568333333333335 | 0.00372222222222222 | +| Epoch_15_batch_5999.pt | 0.9568333333333333 | 0.004070747800382751 | +| Epoch_12_batch_2999.pt | 0.9566666666666667 | 0.0038570122128243995 | +| Epoch_10_batch_5999.pt | 0.9563333333333333 | 0.004351812450570253 | +| Epoch_10_batch_2999.pt | 0.9561666666666667 | 0.0038972133127323535 | +| Epoch_11.pt | 0.9560000000000001 | 0.004217833976911622 | +| Epoch_9_batch_2999.pt | 0.9556666666666669 | 0.003670032125536384 | +| Epoch_10.pt | 0.9550000000000001 | 0.004067334492827362 | +| Epoch_8.pt | 0.9543333333333335 | 0.004268749491621904 | +| Epoch_7.pt | 0.9541666666666668 | 0.0036955929710139074 | +| Epoch_8_batch_5999.pt | 0.9540000000000001 | 0.0037777777777777822 | +| Epoch_9_batch_5999.pt | 0.954 | 0.003976784481816277 | +| Epoch_6_batch_2999.pt | 0.9538333333333334 | 0.0036603480911175826 | +| Epoch_9.pt | 0.9536666666666667 | 0.004027681991198194 | +| Epoch_8_batch_2999.pt | 0.9531666666666668 | 0.003804237403504441 | +| Epoch_7_batch_2999.pt | 0.9530000000000001 | 0.0034942633763369742 | +| Epoch_6.pt | 0.9526666666666668 | 0.0042251451870736765 | +| Epoch_7_batch_5999.pt | 0.9525 | 0.003914597562211731 | +| Epoch_6_batch_5999.pt | 0.9521666666666666 | 0.00401424931100003 | +| Epoch_5_batch_2999.pt | 0.9513333333333334 | 0.0038952329206573496 | +| Epoch_5_batch_5999.pt | 0.9508333333333333 | 0.003435921354681382 | +| Epoch_4_batch_5999.pt | 0.9506666666666665 | 0.004076430295076477 | +| Epoch_4.pt | 0.9504999999999999 | 0.004067713890663442 | +| Epoch_5.pt | 0.9501666666666667 | 0.004024999041484438 | +| Epoch_4_batch_2999.pt | 0.9476666666666667 | 0.004361730316975678 | +| Epoch_3.pt | 0.9465 | 0.004175546094247453 | +| Epoch_3_batch_5999.pt | 0.9455 | 0.0038171963080670854 | +| Epoch_3_batch_2999.pt | 0.9418333333333333 | 0.005045778090959789 | +| Epoch_2_batch_5999.pt | 0.9349999999999999 | 0.0035832256659104667 | +| Epoch_2.pt | 0.9343333333333332 | 0.0040612593072215765 | +| Epoch_2_batch_2999.pt | 0.9241666666666667 | 0.0037288498210110775 | +| Epoch_1.pt | 0.9086666666666667 | 0.0029896942326830527 | +| Epoch_1_batch_5999.pt | 0.8951666666666667 | 0.004078322700496203 | +| Epoch_1_batch_2999.pt | 0.8278333333333334 | 0.004150338376804396 | +| Epoch_0.pt | 0.6188333333333335 | 0.004060119197909653 | +| Epoch_0_batch_5999.pt | 0.5845 | 0.005369380496256557 | +| Epoch_0_batch_2999.pt | 0.49800000000000005 | 0.002730712383876561 | ++------------------------+---------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/SwinTransformer_S/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/backbones/SwinTransformer_S/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..5f7864bd4f671e0a58710d35d0fc2b1298272a36 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/SwinTransformer_S/accu_files/accu_cplfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_2999.pt | 0.9003333333333334 | 0.005350666279037561 | +| Epoch_17.pt | 0.9001666666666667 | 0.005278947238855234 | +| Epoch_15.pt | 0.9001666666666667 | 0.005172636932890826 | +| Epoch_15_batch_5999.pt | 0.8998333333333333 | 0.005411749905255888 | +| Epoch_16_batch_5999.pt | 0.8995000000000001 | 0.00520001187083165 | +| Epoch_15_batch_2999.pt | 0.8993333333333334 | 0.005248162523830909 | +| Epoch_17_batch_5999.pt | 0.8983333333333334 | 0.00512196914294049 | +| Epoch_17_batch_2999.pt | 0.898 | 0.00530431922768 | +| Epoch_16.pt | 0.898 | 0.005114733016215065 | +| Epoch_14_batch_2999.pt | 0.8979999999999999 | 0.004809969071536302 | +| Epoch_14.pt | 0.8976666666666668 | 0.004818944098266985 | +| Epoch_12.pt | 0.8959999999999999 | 0.005628411174183975 | +| Epoch_14_batch_5999.pt | 0.8959999999999999 | 0.004669311419877936 | +| Epoch_11.pt | 0.8948333333333333 | 0.0049966037848438605 | +| Epoch_11_batch_5999.pt | 0.8946666666666667 | 0.0056152350082192305 | +| Epoch_12_batch_2999.pt | 0.8941666666666664 | 0.005068968775248516 | +| Epoch_13_batch_2999.pt | 0.8939999999999999 | 0.005105068892293394 | +| Epoch_13.pt | 0.8933333333333333 | 0.005660126945311127 | +| Epoch_13_batch_5999.pt | 0.8928333333333335 | 0.005522401070209128 | +| Epoch_12_batch_5999.pt | 0.8918333333333333 | 0.006218500871304899 | +| Epoch_10.pt | 0.8916666666666666 | 0.005522121617684078 | +| Epoch_10_batch_5999.pt | 0.8901666666666666 | 0.00510658011724355 | +| Epoch_10_batch_2999.pt | 0.8896666666666666 | 0.005951449662596485 | +| Epoch_9_batch_5999.pt | 0.8891666666666668 | 0.00552910369357647 | +| Epoch_9_batch_2999.pt | 0.8891666666666668 | 0.004709132183951299 | +| Epoch_11_batch_2999.pt | 0.889 | 0.004741464065189305 | +| Epoch_9.pt | 0.8885 | 0.005348646996330758 | +| Epoch_8_batch_2999.pt | 0.8883333333333333 | 0.005414885747116089 | +| Epoch_8.pt | 0.8876666666666665 | 0.0053644923131436935 | +| Epoch_7.pt | 0.8861666666666667 | 0.005170249653689989 | +| Epoch_7_batch_2999.pt | 0.8859999999999999 | 0.005500841686438479 | +| Epoch_8_batch_5999.pt | 0.884 | 0.005183068350973608 | +| Epoch_5.pt | 0.8833333333333334 | 0.0044025806124797645 | +| Epoch_6_batch_5999.pt | 0.8826666666666666 | 0.005289168993516405 | +| Epoch_7_batch_5999.pt | 0.8815 | 0.00547976074092453 | +| Epoch_6_batch_2999.pt | 0.8785000000000001 | 0.005296458168984485 | +| Epoch_5_batch_2999.pt | 0.8768333333333335 | 0.005635261559103196 | +| Epoch_6.pt | 0.8761666666666666 | 0.005730845713556826 | +| Epoch_5_batch_5999.pt | 0.8753333333333334 | 0.0049553562491061725 | +| Epoch_4_batch_5999.pt | 0.8729999999999999 | 0.005487359211051443 | +| Epoch_4.pt | 0.8718333333333332 | 0.005354414355129774 | +| Epoch_4_batch_2999.pt | 0.8671666666666666 | 0.0056712944066512365 | +| Epoch_3_batch_5999.pt | 0.867 | 0.003934651379916842 | +| Epoch_3.pt | 0.8651666666666668 | 0.0052201532544552676 | +| Epoch_3_batch_2999.pt | 0.8563333333333333 | 0.004525647078759182 | +| Epoch_2.pt | 0.8483333333333333 | 0.004987639041658537 | +| Epoch_2_batch_5999.pt | 0.8468333333333333 | 0.005231964907195335 | +| Epoch_2_batch_2999.pt | 0.8215 | 0.006316986701557505 | +| Epoch_1.pt | 0.7905 | 0.00675428533379886 | +| Epoch_1_batch_5999.pt | 0.7828333333333333 | 0.006713033205251915 | +| Epoch_1_batch_2999.pt | 0.6838333333333335 | 0.010018655438237383 | +| Epoch_0_batch_5999.pt | 0.5638333333333333 | 0.006952439841745232 | +| Epoch_0.pt | 0.5498333333333333 | 0.006778916115700475 | +| Epoch_0_batch_2999.pt | 0.5228333333333334 | 0.00609112894723563 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/SwinTransformer_S/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/backbones/SwinTransformer_S/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..59942c888f1705f9cb5476f8061938bddfc0e1c7 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/SwinTransformer_S/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17_batch_2999.pt | 0.9984999999999999 | 0.0005800170282728065 | +| Epoch_15_batch_5999.pt | 0.9984999999999999 | 0.0005800170282728065 | +| Epoch_16.pt | 0.9984999999999999 | 0.0005800170282728065 | +| Epoch_14.pt | 0.9984999999999999 | 0.0005800170282728065 | +| Epoch_17.pt | 0.9984999999999999 | 0.0005800170282728065 | +| Epoch_15.pt | 0.9984999999999999 | 0.0005800170282728065 | +| Epoch_8_batch_2999.pt | 0.9984999999999999 | 0.0005800170282728065 | +| Epoch_17_batch_5999.pt | 0.9984999999999999 | 0.0005800170282728065 | +| Epoch_9_batch_2999.pt | 0.9984999999999999 | 0.0005800170282728065 | +| Epoch_15_batch_2999.pt | 0.9984999999999999 | 0.0005800170282728065 | +| Epoch_16_batch_2999.pt | 0.9984999999999999 | 0.0005800170282728065 | +| Epoch_16_batch_5999.pt | 0.9984999999999999 | 0.0005800170282728065 | +| Epoch_14_batch_5999.pt | 0.9984999999999999 | 0.0005800170282728065 | +| Epoch_7_batch_2999.pt | 0.9981666666666668 | 0.0005241100628920312 | +| Epoch_7.pt | 0.9981666666666668 | 0.0005241100628920312 | +| Epoch_13_batch_2999.pt | 0.9981666666666665 | 0.0006309898162000297 | +| Epoch_14_batch_2999.pt | 0.9981666666666665 | 0.0006309898162000297 | +| Epoch_12_batch_2999.pt | 0.9981666666666665 | 0.0006309898162000297 | +| Epoch_10_batch_2999.pt | 0.9981666666666665 | 0.0006309898162000297 | +| Epoch_9_batch_5999.pt | 0.998 | 0.0005983516452371659 | +| Epoch_13.pt | 0.998 | 0.0005983516452371659 | +| Epoch_9.pt | 0.998 | 0.000544331053951814 | +| Epoch_8_batch_5999.pt | 0.998 | 0.0005983516452371637 | +| Epoch_10.pt | 0.9978333333333333 | 0.000611111111111109 | +| Epoch_11.pt | 0.9978333333333333 | 0.000611111111111109 | +| Epoch_6.pt | 0.9978333333333333 | 0.0005583264233956013 | +| Epoch_12_batch_5999.pt | 0.9978333333333333 | 0.0007049209744694192 | +| Epoch_11_batch_2999.pt | 0.9978333333333333 | 0.0007049209744694192 | +| Epoch_12.pt | 0.9976666666666667 | 0.0007934920476158739 | +| Epoch_5_batch_5999.pt | 0.9976666666666667 | 0.000566557723732528 | +| Epoch_10_batch_5999.pt | 0.9976666666666667 | 0.000618640484758889 | +| Epoch_11_batch_5999.pt | 0.9976666666666667 | 0.0005665577237325287 | +| Epoch_13_batch_5999.pt | 0.9976666666666667 | 0.0006666666666666672 | +| Epoch_5_batch_2999.pt | 0.9976666666666667 | 0.0006666666666666653 | +| Epoch_5.pt | 0.9974999999999999 | 0.0005692750425533078 | +| Epoch_6_batch_5999.pt | 0.9974999999999999 | 0.0007136240321480632 | +| Epoch_8.pt | 0.9974999999999999 | 0.0007556372504853035 | +| Epoch_6_batch_2999.pt | 0.9973333333333333 | 0.00071145824860365 | +| Epoch_4.pt | 0.9971666666666665 | 0.000611111111111109 | +| Epoch_7_batch_5999.pt | 0.9971666666666665 | 0.0007049209744694181 | +| Epoch_4_batch_5999.pt | 0.9968333333333333 | 0.0005800170282728054 | +| Epoch_4_batch_2999.pt | 0.9964999999999999 | 0.0006309898162000309 | +| Epoch_3_batch_5999.pt | 0.9963333333333333 | 0.0006478835438717003 | +| Epoch_2.pt | 0.9961666666666666 | 0.0008624541497922222 | +| Epoch_3.pt | 0.9961666666666666 | 0.0007876359377087665 | +| Epoch_2_batch_2999.pt | 0.9953333333333333 | 0.0008534606386520708 | +| Epoch_2_batch_5999.pt | 0.9951666666666666 | 0.0006781419786518758 | +| Epoch_3_batch_2999.pt | 0.9946666666666666 | 0.0008888888888888913 | +| Epoch_1.pt | 0.9904999999999999 | 0.0014283289035758226 | +| Epoch_1_batch_5999.pt | 0.9891666666666665 | 0.0017959144305827281 | +| Epoch_1_batch_2999.pt | 0.9663333333333334 | 0.002380476142847616 | +| Epoch_0_batch_5999.pt | 0.8395000000000001 | 0.008165154810927945 | +| Epoch_0.pt | 0.8291666666666666 | 0.0054390562906935745 | +| Epoch_0_batch_2999.pt | 0.5998333333333333 | 0.005662580225905394 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/SwinTransformer_S/accu_files/accu_megaface.txt b/bob/bio/facexzoo/models/backbones/SwinTransformer_S/accu_files/accu_megaface.txt new file mode 100644 index 0000000000000000000000000000000000000000..0fea3884dc57d07850f2907c41964049f90d7b2d --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/SwinTransformer_S/accu_files/accu_megaface.txt @@ -0,0 +1,14 @@ ++------+--------------------+ +| rank | accuracy | ++------+--------------------+ +| 1 | 0.981722795735319 | +| 2 | 0.9867347071611753 | +| 3 | 0.9885897652863298 | +| 4 | 0.9893448064881472 | +| 5 | 0.9900868297382089 | +| 6 | 0.9906010388325501 | +| 7 | 0.9910306312404806 | +| 8 | 0.9913821159378783 | +| 9 | 0.9916294570212323 | +| 10 | 0.9918051993699312 | ++------+--------------------+ diff --git a/bob/bio/facexzoo/models/backbones/SwinTransformer_S/log.log b/bob/bio/facexzoo/models/backbones/SwinTransformer_S/log.log new file mode 100644 index 0000000000000000000000000000000000000000..ee99137bc508f0e95123d2925677e2f1ac20b19a --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/SwinTransformer_S/log.log @@ -0,0 +1,887 @@ +Use GPU: 0 for training +Use GPU: 1 for training +Use GPU: 3 for training +Use GPU: 2 for training +backbone param: +{'img_size': 224, 'patch_size': 4, 'in_chans': 3, 'embed_dim': 96, 'depths': [2, 2, 18, 2], 'num_heads': [3, 6, 12, 24], 'window_size': 7, 'mlp_ratio': 4.0, 'drop_rate': 0.0, 'drop_path_rate': 0.3} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +backbone param: +{'img_size': 224, 'patch_size': 4, 'in_chans': 3, 'embed_dim': 96, 'depths': [2, 2, 18, 2], 'num_heads': [3, 6, 12, 24], 'window_size': 7, 'mlp_ratio': 4.0, 'drop_rate': 0.0, 'drop_path_rate': 0.3} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +backbone param: +{'img_size': 224, 'patch_size': 4, 'in_chans': 3, 'embed_dim': 96, 'depths': [2, 2, 18, 2], 'num_heads': [3, 6, 12, 24], 'window_size': 7, 'mlp_ratio': 4.0, 'drop_rate': 0.0, 'drop_path_rate': 0.3} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +backbone param: +{'img_size': 224, 'patch_size': 4, 'in_chans': 3, 'embed_dim': 96, 'depths': [2, 2, 18, 2], 'num_heads': [3, 6, 12, 24], 'window_size': 7, 'mlp_ratio': 4.0, 'drop_rate': 0.0, 'drop_path_rate': 0.3} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +Selected optimization level O1: Insert automatic casts around Pytorch functions and Tensor methods. + +Defaults for this optimization level are: +enabled : True +opt_level : O1 +cast_model_type : None +patch_torch_functions : True +keep_batchnorm_fp32 : None +master_weights : None +loss_scale : dynamic +Processing user overrides (additional kwargs that are not None)... +After processing overrides, optimization options are: +enabled : True +opt_level : O1 +cast_model_type : None +patch_torch_functions : True +keep_batchnorm_fp32 : None +master_weights : None +loss_scale : dynamic +INFO 2021-11-05 10:23:21 train.py: 88] Epoch 0, iter 0/6416, lr 0.000000, loss 16.274643 +INFO 2021-11-05 10:23:21 distributed.py: 607] Reducer buckets have been rebuilt in this iteration. +INFO 2021-11-05 10:23:21 distributed.py: 607] Reducer buckets have been rebuilt in this iteration. +INFO 2021-11-05 10:23:21 distributed.py: 607] Reducer buckets have been rebuilt in this iteration. +INFO 2021-11-05 10:23:21 distributed.py: 607] Reducer buckets have been rebuilt in this iteration. +INFO 2021-11-05 10:30:28 train.py: 88] Epoch 0, iter 200/6416, lr 0.000016, loss 16.222235 +INFO 2021-11-05 10:37:33 train.py: 88] Epoch 0, iter 400/6416, lr 0.000032, loss 15.818622 +INFO 2021-11-05 10:44:36 train.py: 88] Epoch 0, iter 600/6416, lr 0.000047, loss 15.370561 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +INFO 2021-11-05 10:51:41 train.py: 88] Epoch 0, iter 800/6416, lr 0.000063, loss 15.145919 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +INFO 2021-11-05 10:58:50 train.py: 88] Epoch 0, iter 1000/6416, lr 0.000078, loss 15.074239 +INFO 2021-11-05 11:06:04 train.py: 88] Epoch 0, iter 1200/6416, lr 0.000094, loss 15.021375 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 4096.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 4096.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 4096.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 4096.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 2048.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 2048.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 2048.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 2048.0 +INFO 2021-11-05 11:13:19 train.py: 88] Epoch 0, iter 1400/6416, lr 0.000109, loss 15.002815 +INFO 2021-11-05 11:20:25 train.py: 88] Epoch 0, iter 1600/6416, lr 0.000125, loss 15.003175 +INFO 2021-11-05 11:27:27 train.py: 88] Epoch 0, iter 1800/6416, lr 0.000141, loss 15.014103 +INFO 2021-11-05 11:34:26 train.py: 88] Epoch 0, iter 2000/6416, lr 0.000156, loss 15.034289 +INFO 2021-11-05 11:41:31 train.py: 88] Epoch 0, iter 2200/6416, lr 0.000172, loss 15.048180 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 1024.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 1024.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 1024.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 1024.0 +INFO 2021-11-05 11:48:38 train.py: 88] Epoch 0, iter 2400/6416, lr 0.000187, loss 15.052229 +INFO 2021-11-05 11:55:50 train.py: 88] Epoch 0, iter 2600/6416, lr 0.000203, loss 15.064821 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 512.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 512.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 512.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 512.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 256.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 256.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 256.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 256.0 +INFO 2021-11-05 12:02:55 train.py: 88] Epoch 0, iter 2800/6416, lr 0.000218, loss 15.392186 +INFO 2021-11-05 12:10:10 train.py: 101] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2021-11-05 12:10:12 train.py: 88] Epoch 0, iter 3000/6416, lr 0.000234, loss 15.513644 +INFO 2021-11-05 12:17:18 train.py: 88] Epoch 0, iter 3200/6416, lr 0.000250, loss 15.508453 +INFO 2021-11-05 12:24:24 train.py: 88] Epoch 0, iter 3400/6416, lr 0.000265, loss 15.534392 +INFO 2021-11-05 12:31:33 train.py: 88] Epoch 0, iter 3600/6416, lr 0.000281, loss 15.556318 +INFO 2021-11-05 12:38:32 train.py: 88] Epoch 0, iter 3800/6416, lr 0.000296, loss 15.588835 +INFO 2021-11-05 12:45:37 train.py: 88] Epoch 0, iter 4000/6416, lr 0.000312, loss 15.578653 +INFO 2021-11-05 12:52:43 train.py: 88] Epoch 0, iter 4200/6416, lr 0.000327, loss 15.604295 +INFO 2021-11-05 12:59:52 train.py: 88] Epoch 0, iter 4400/6416, lr 0.000343, loss 15.616197 +INFO 2021-11-05 13:06:54 train.py: 88] Epoch 0, iter 4600/6416, lr 0.000359, loss 15.523668 +INFO 2021-11-05 13:14:02 train.py: 88] Epoch 0, iter 4800/6416, lr 0.000374, loss 15.387649 +INFO 2021-11-05 13:21:08 train.py: 88] Epoch 0, iter 5000/6416, lr 0.000390, loss 15.169683 +INFO 2021-11-05 13:28:20 train.py: 88] Epoch 0, iter 5200/6416, lr 0.000405, loss 14.932817 +INFO 2021-11-05 13:35:32 train.py: 88] Epoch 0, iter 5400/6416, lr 0.000421, loss 14.694200 +INFO 2021-11-05 13:42:45 train.py: 88] Epoch 0, iter 5600/6416, lr 0.000436, loss 14.368824 +INFO 2021-11-05 13:49:57 train.py: 88] Epoch 0, iter 5800/6416, lr 0.000452, loss 14.007963 +INFO 2021-11-05 13:57:00 train.py: 101] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2021-11-05 13:57:02 train.py: 88] Epoch 0, iter 6000/6416, lr 0.000468, loss 13.635418 +INFO 2021-11-05 14:04:04 train.py: 88] Epoch 0, iter 6200/6416, lr 0.000483, loss 13.300804 +INFO 2021-11-05 14:11:14 train.py: 88] Epoch 0, iter 6400/6416, lr 0.000499, loss 12.910882 +INFO 2021-11-05 14:11:51 train.py: 108] Save checkpoint Epoch_0.pt to disk... +INFO 2021-11-05 14:11:53 train.py: 88] Epoch 1, iter 0/6416, lr 0.000496, loss 12.714586 +INFO 2021-11-05 14:19:00 train.py: 88] Epoch 1, iter 200/6416, lr 0.000496, loss 12.648638 +INFO 2021-11-05 14:26:07 train.py: 88] Epoch 1, iter 400/6416, lr 0.000496, loss 12.275591 +INFO 2021-11-05 14:33:12 train.py: 88] Epoch 1, iter 600/6416, lr 0.000496, loss 12.020270 +INFO 2021-11-05 14:40:22 train.py: 88] Epoch 1, iter 800/6416, lr 0.000495, loss 11.813366 +INFO 2021-11-05 14:47:25 train.py: 88] Epoch 1, iter 1000/6416, lr 0.000495, loss 11.774437 +INFO 2021-11-05 14:54:34 train.py: 88] Epoch 1, iter 1200/6416, lr 0.000495, loss 11.780509 +INFO 2021-11-05 15:01:44 train.py: 88] Epoch 1, iter 1400/6416, lr 0.000494, loss 11.809932 +INFO 2021-11-05 15:08:50 train.py: 88] Epoch 1, iter 1600/6416, lr 0.000494, loss 12.056637 +INFO 2021-11-05 15:15:59 train.py: 88] Epoch 1, iter 1800/6416, lr 0.000494, loss 12.179423 +INFO 2021-11-05 15:23:04 train.py: 88] Epoch 1, iter 2000/6416, lr 0.000494, loss 12.385912 +INFO 2021-11-05 15:30:06 train.py: 88] Epoch 1, iter 2200/6416, lr 0.000493, loss 12.678529 +INFO 2021-11-05 15:37:16 train.py: 88] Epoch 1, iter 2400/6416, lr 0.000493, loss 12.902084 +INFO 2021-11-05 15:44:21 train.py: 88] Epoch 1, iter 2600/6416, lr 0.000493, loss 13.031389 +INFO 2021-11-05 15:51:23 train.py: 88] Epoch 1, iter 2800/6416, lr 0.000492, loss 13.233134 +INFO 2021-11-05 15:58:31 train.py: 101] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2021-11-05 15:58:33 train.py: 88] Epoch 1, iter 3000/6416, lr 0.000492, loss 13.376003 +INFO 2021-11-05 16:05:41 train.py: 88] Epoch 1, iter 3200/6416, lr 0.000492, loss 13.400894 +INFO 2021-11-05 16:12:50 train.py: 88] Epoch 1, iter 3400/6416, lr 0.000491, loss 13.399327 +INFO 2021-11-05 16:19:53 train.py: 88] Epoch 1, iter 3600/6416, lr 0.000491, loss 13.403037 +INFO 2021-11-05 16:26:55 train.py: 88] Epoch 1, iter 3800/6416, lr 0.000491, loss 13.345497 +INFO 2021-11-05 16:33:58 train.py: 88] Epoch 1, iter 4000/6416, lr 0.000490, loss 13.233253 +INFO 2021-11-05 16:41:05 train.py: 88] Epoch 1, iter 4200/6416, lr 0.000490, loss 13.084278 +INFO 2021-11-05 16:48:10 train.py: 88] Epoch 1, iter 4400/6416, lr 0.000489, loss 12.913297 +INFO 2021-11-05 16:55:14 train.py: 88] Epoch 1, iter 4600/6416, lr 0.000489, loss 12.767326 +INFO 2021-11-05 17:02:21 train.py: 88] Epoch 1, iter 4800/6416, lr 0.000489, loss 12.515195 +INFO 2021-11-05 17:09:30 train.py: 88] Epoch 1, iter 5000/6416, lr 0.000488, loss 12.256249 +INFO 2021-11-05 17:16:43 train.py: 88] Epoch 1, iter 5200/6416, lr 0.000488, loss 12.054113 +INFO 2021-11-05 17:23:51 train.py: 88] Epoch 1, iter 5400/6416, lr 0.000487, loss 11.833332 +INFO 2021-11-05 17:31:01 train.py: 88] Epoch 1, iter 5600/6416, lr 0.000487, loss 11.609206 +INFO 2021-11-05 17:38:17 train.py: 88] Epoch 1, iter 5800/6416, lr 0.000486, loss 11.389999 +INFO 2021-11-05 17:45:36 train.py: 101] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2021-11-05 17:45:38 train.py: 88] Epoch 1, iter 6000/6416, lr 0.000486, loss 10.981157 +INFO 2021-11-05 17:52:47 train.py: 88] Epoch 1, iter 6200/6416, lr 0.000486, loss 10.848667 +INFO 2021-11-05 17:59:58 train.py: 88] Epoch 1, iter 6400/6416, lr 0.000485, loss 10.582276 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 4096.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 4096.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 4096.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 4096.0 +INFO 2021-11-05 18:00:33 train.py: 108] Save checkpoint Epoch_1.pt to disk... +INFO 2021-11-05 18:00:35 train.py: 88] Epoch 2, iter 0/6416, lr 0.000485, loss 10.323736 +INFO 2021-11-05 18:08:31 train.py: 88] Epoch 2, iter 200/6416, lr 0.000485, loss 10.283372 +INFO 2021-11-05 18:16:47 train.py: 88] Epoch 2, iter 400/6416, lr 0.000484, loss 10.132700 +INFO 2021-11-05 18:24:55 train.py: 88] Epoch 2, iter 600/6416, lr 0.000484, loss 9.871738 +INFO 2021-11-05 18:33:00 train.py: 88] Epoch 2, iter 800/6416, lr 0.000483, loss 9.703248 +INFO 2021-11-05 18:41:01 train.py: 88] Epoch 2, iter 1000/6416, lr 0.000483, loss 9.534842 +INFO 2021-11-05 18:48:48 train.py: 88] Epoch 2, iter 1200/6416, lr 0.000482, loss 9.295459 +INFO 2021-11-05 18:56:30 train.py: 88] Epoch 2, iter 1400/6416, lr 0.000482, loss 9.072993 +INFO 2021-11-05 19:04:16 train.py: 88] Epoch 2, iter 1600/6416, lr 0.000481, loss 8.939991 +INFO 2021-11-05 19:12:10 train.py: 88] Epoch 2, iter 1800/6416, lr 0.000481, loss 8.662765 +INFO 2021-11-05 19:19:47 train.py: 88] Epoch 2, iter 2000/6416, lr 0.000480, loss 8.524214 +INFO 2021-11-05 19:27:29 train.py: 88] Epoch 2, iter 2200/6416, lr 0.000480, loss 8.402646 +INFO 2021-11-05 19:35:19 train.py: 88] Epoch 2, iter 2400/6416, lr 0.000479, loss 8.219456 +INFO 2021-11-05 19:43:08 train.py: 88] Epoch 2, iter 2600/6416, lr 0.000479, loss 8.178787 +INFO 2021-11-05 19:51:15 train.py: 88] Epoch 2, iter 2800/6416, lr 0.000478, loss 7.999471 +INFO 2021-11-05 19:58:53 train.py: 101] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2021-11-05 19:58:55 train.py: 88] Epoch 2, iter 3000/6416, lr 0.000477, loss 7.870890 +INFO 2021-11-05 20:06:39 train.py: 88] Epoch 2, iter 3200/6416, lr 0.000477, loss 7.646556 +INFO 2021-11-05 20:14:20 train.py: 88] Epoch 2, iter 3400/6416, lr 0.000476, loss 7.601601 +INFO 2021-11-05 20:22:03 train.py: 88] Epoch 2, iter 3600/6416, lr 0.000476, loss 7.535017 +INFO 2021-11-05 20:29:53 train.py: 88] Epoch 2, iter 3800/6416, lr 0.000475, loss 7.368255 +INFO 2021-11-05 20:37:39 train.py: 88] Epoch 2, iter 4000/6416, lr 0.000475, loss 7.289487 +INFO 2021-11-05 20:45:30 train.py: 88] Epoch 2, iter 4200/6416, lr 0.000474, loss 7.137532 +INFO 2021-11-05 20:52:59 train.py: 88] Epoch 2, iter 4400/6416, lr 0.000473, loss 7.077837 +INFO 2021-11-05 21:00:49 train.py: 88] Epoch 2, iter 4600/6416, lr 0.000473, loss 6.949704 +INFO 2021-11-05 21:08:31 train.py: 88] Epoch 2, iter 4800/6416, lr 0.000472, loss 6.817141 +INFO 2021-11-05 21:16:18 train.py: 88] Epoch 2, iter 5000/6416, lr 0.000471, loss 6.814206 +INFO 2021-11-05 21:24:29 train.py: 88] Epoch 2, iter 5200/6416, lr 0.000471, loss 6.726458 +INFO 2021-11-05 21:32:15 train.py: 88] Epoch 2, iter 5400/6416, lr 0.000470, loss 6.606023 +INFO 2021-11-05 21:40:10 train.py: 88] Epoch 2, iter 5600/6416, lr 0.000470, loss 6.547344 +INFO 2021-11-05 21:47:58 train.py: 88] Epoch 2, iter 5800/6416, lr 0.000469, loss 6.472251 +INFO 2021-11-05 21:55:44 train.py: 101] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2021-11-05 21:55:46 train.py: 88] Epoch 2, iter 6000/6416, lr 0.000468, loss 6.325722 +INFO 2021-11-05 22:03:34 train.py: 88] Epoch 2, iter 6200/6416, lr 0.000468, loss 6.352963 +INFO 2021-11-05 22:11:30 train.py: 88] Epoch 2, iter 6400/6416, lr 0.000467, loss 6.214425 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +INFO 2021-11-05 22:12:13 train.py: 108] Save checkpoint Epoch_2.pt to disk... +INFO 2021-11-05 22:12:15 train.py: 88] Epoch 3, iter 0/6416, lr 0.000467, loss 6.221016 +INFO 2021-11-05 22:19:32 train.py: 88] Epoch 3, iter 200/6416, lr 0.000466, loss 6.161653 +INFO 2021-11-05 22:26:44 train.py: 88] Epoch 3, iter 400/6416, lr 0.000465, loss 6.143535 +INFO 2021-11-05 22:33:54 train.py: 88] Epoch 3, iter 600/6416, lr 0.000465, loss 6.091019 +INFO 2021-11-05 22:41:07 train.py: 88] Epoch 3, iter 800/6416, lr 0.000464, loss 6.007750 +INFO 2021-11-05 22:48:18 train.py: 88] Epoch 3, iter 1000/6416, lr 0.000463, loss 6.018930 +INFO 2021-11-05 22:55:29 train.py: 88] Epoch 3, iter 1200/6416, lr 0.000463, loss 5.880804 +INFO 2021-11-05 23:02:38 train.py: 88] Epoch 3, iter 1400/6416, lr 0.000462, loss 5.794622 +INFO 2021-11-05 23:09:52 train.py: 88] Epoch 3, iter 1600/6416, lr 0.000461, loss 5.821633 +INFO 2021-11-05 23:17:00 train.py: 88] Epoch 3, iter 1800/6416, lr 0.000461, loss 5.645156 +INFO 2021-11-05 23:24:13 train.py: 88] Epoch 3, iter 2000/6416, lr 0.000460, loss 5.603906 +INFO 2021-11-05 23:31:25 train.py: 88] Epoch 3, iter 2200/6416, lr 0.000459, loss 5.597737 +INFO 2021-11-05 23:38:39 train.py: 88] Epoch 3, iter 2400/6416, lr 0.000458, loss 5.525972 +INFO 2021-11-05 23:45:49 train.py: 88] Epoch 3, iter 2600/6416, lr 0.000458, loss 5.574679 +INFO 2021-11-05 23:53:04 train.py: 88] Epoch 3, iter 2800/6416, lr 0.000457, loss 5.506074 +INFO 2021-11-06 00:00:15 train.py: 101] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2021-11-06 00:00:17 train.py: 88] Epoch 3, iter 3000/6416, lr 0.000456, loss 5.434778 +INFO 2021-11-06 00:07:26 train.py: 88] Epoch 3, iter 3200/6416, lr 0.000455, loss 5.344736 +INFO 2021-11-06 00:14:30 train.py: 88] Epoch 3, iter 3400/6416, lr 0.000454, loss 5.336427 +INFO 2021-11-06 00:21:41 train.py: 88] Epoch 3, iter 3600/6416, lr 0.000454, loss 5.319012 +INFO 2021-11-06 00:28:50 train.py: 88] Epoch 3, iter 3800/6416, lr 0.000453, loss 5.224000 +INFO 2021-11-06 00:36:00 train.py: 88] Epoch 3, iter 4000/6416, lr 0.000452, loss 5.236565 +INFO 2021-11-06 00:43:08 train.py: 88] Epoch 3, iter 4200/6416, lr 0.000451, loss 5.119843 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-06 00:50:17 train.py: 88] Epoch 3, iter 4400/6416, lr 0.000451, loss 5.129462 +INFO 2021-11-06 00:57:25 train.py: 88] Epoch 3, iter 4600/6416, lr 0.000450, loss 5.104172 +INFO 2021-11-06 01:04:34 train.py: 88] Epoch 3, iter 4800/6416, lr 0.000449, loss 5.008277 +INFO 2021-11-06 01:11:48 train.py: 88] Epoch 3, iter 5000/6416, lr 0.000448, loss 5.048250 +INFO 2021-11-06 01:18:59 train.py: 88] Epoch 3, iter 5200/6416, lr 0.000447, loss 5.022131 +INFO 2021-11-06 01:26:02 train.py: 88] Epoch 3, iter 5400/6416, lr 0.000446, loss 4.935270 +INFO 2021-11-06 01:33:11 train.py: 88] Epoch 3, iter 5600/6416, lr 0.000446, loss 4.925240 +INFO 2021-11-06 01:40:17 train.py: 88] Epoch 3, iter 5800/6416, lr 0.000445, loss 4.867109 +INFO 2021-11-06 01:47:26 train.py: 101] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2021-11-06 01:47:28 train.py: 88] Epoch 3, iter 6000/6416, lr 0.000444, loss 4.813902 +INFO 2021-11-06 01:54:31 train.py: 88] Epoch 3, iter 6200/6416, lr 0.000443, loss 4.847055 +INFO 2021-11-06 02:01:40 train.py: 88] Epoch 3, iter 6400/6416, lr 0.000442, loss 4.778060 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-06 02:02:16 train.py: 108] Save checkpoint Epoch_3.pt to disk... +INFO 2021-11-06 02:02:18 train.py: 88] Epoch 4, iter 0/6416, lr 0.000442, loss 4.727170 +INFO 2021-11-06 02:09:32 train.py: 88] Epoch 4, iter 200/6416, lr 0.000441, loss 4.738089 +INFO 2021-11-06 02:16:41 train.py: 88] Epoch 4, iter 400/6416, lr 0.000440, loss 4.739438 +INFO 2021-11-06 02:23:49 train.py: 88] Epoch 4, iter 600/6416, lr 0.000439, loss 4.730593 +INFO 2021-11-06 02:30:55 train.py: 88] Epoch 4, iter 800/6416, lr 0.000439, loss 4.658415 +INFO 2021-11-06 02:38:02 train.py: 88] Epoch 4, iter 1000/6416, lr 0.000438, loss 4.691971 +INFO 2021-11-06 02:45:13 train.py: 88] Epoch 4, iter 1200/6416, lr 0.000437, loss 4.617151 +INFO 2021-11-06 02:52:19 train.py: 88] Epoch 4, iter 1400/6416, lr 0.000436, loss 4.556927 +INFO 2021-11-06 02:59:23 train.py: 88] Epoch 4, iter 1600/6416, lr 0.000435, loss 4.608335 +INFO 2021-11-06 03:06:33 train.py: 88] Epoch 4, iter 1800/6416, lr 0.000434, loss 4.456906 +INFO 2021-11-06 03:13:34 train.py: 88] Epoch 4, iter 2000/6416, lr 0.000433, loss 4.457605 +INFO 2021-11-06 03:20:40 train.py: 88] Epoch 4, iter 2200/6416, lr 0.000432, loss 4.447750 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-06 03:27:52 train.py: 88] Epoch 4, iter 2400/6416, lr 0.000431, loss 4.418313 +INFO 2021-11-06 03:34:56 train.py: 88] Epoch 4, iter 2600/6416, lr 0.000430, loss 4.442612 +INFO 2021-11-06 03:42:08 train.py: 88] Epoch 4, iter 2800/6416, lr 0.000429, loss 4.422268 +INFO 2021-11-06 03:49:18 train.py: 101] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2021-11-06 03:49:20 train.py: 88] Epoch 4, iter 3000/6416, lr 0.000428, loss 4.391550 +INFO 2021-11-06 03:56:24 train.py: 88] Epoch 4, iter 3200/6416, lr 0.000428, loss 4.308499 +INFO 2021-11-06 04:03:31 train.py: 88] Epoch 4, iter 3400/6416, lr 0.000427, loss 4.308353 +INFO 2021-11-06 04:10:38 train.py: 88] Epoch 4, iter 3600/6416, lr 0.000426, loss 4.309207 +INFO 2021-11-06 04:17:45 train.py: 88] Epoch 4, iter 3800/6416, lr 0.000425, loss 4.238269 +INFO 2021-11-06 04:24:59 train.py: 88] Epoch 4, iter 4000/6416, lr 0.000424, loss 4.236058 +INFO 2021-11-06 04:32:06 train.py: 88] Epoch 4, iter 4200/6416, lr 0.000423, loss 4.157394 +INFO 2021-11-06 04:39:16 train.py: 88] Epoch 4, iter 4400/6416, lr 0.000422, loss 4.195104 +INFO 2021-11-06 04:46:23 train.py: 88] Epoch 4, iter 4600/6416, lr 0.000421, loss 4.181349 +INFO 2021-11-06 04:53:32 train.py: 88] Epoch 4, iter 4800/6416, lr 0.000420, loss 4.107947 +INFO 2021-11-06 05:00:39 train.py: 88] Epoch 4, iter 5000/6416, lr 0.000419, loss 4.151203 +INFO 2021-11-06 05:07:48 train.py: 88] Epoch 4, iter 5200/6416, lr 0.000418, loss 4.135777 +INFO 2021-11-06 05:15:00 train.py: 88] Epoch 4, iter 5400/6416, lr 0.000417, loss 4.061098 +INFO 2021-11-06 05:22:04 train.py: 88] Epoch 4, iter 5600/6416, lr 0.000416, loss 4.061317 +INFO 2021-11-06 05:29:07 train.py: 88] Epoch 4, iter 5800/6416, lr 0.000415, loss 4.035901 +INFO 2021-11-06 05:36:01 train.py: 101] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2021-11-06 05:36:02 train.py: 88] Epoch 4, iter 6000/6416, lr 0.000414, loss 4.004453 +INFO 2021-11-06 05:42:52 train.py: 88] Epoch 4, iter 6200/6416, lr 0.000413, loss 4.008494 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +INFO 2021-11-06 05:49:47 train.py: 88] Epoch 4, iter 6400/6416, lr 0.000412, loss 3.967295 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-06 05:50:22 train.py: 108] Save checkpoint Epoch_4.pt to disk... +INFO 2021-11-06 05:50:24 train.py: 88] Epoch 5, iter 0/6416, lr 0.000412, loss 3.980309 +INFO 2021-11-06 05:57:14 train.py: 88] Epoch 5, iter 200/6416, lr 0.000411, loss 3.943311 +INFO 2021-11-06 06:04:01 train.py: 88] Epoch 5, iter 400/6416, lr 0.000410, loss 3.959548 +INFO 2021-11-06 06:10:54 train.py: 88] Epoch 5, iter 600/6416, lr 0.000408, loss 3.945531 +INFO 2021-11-06 06:17:43 train.py: 88] Epoch 5, iter 800/6416, lr 0.000407, loss 3.915572 +INFO 2021-11-06 06:24:32 train.py: 88] Epoch 5, iter 1000/6416, lr 0.000406, loss 3.952650 +INFO 2021-11-06 06:31:22 train.py: 88] Epoch 5, iter 1200/6416, lr 0.000405, loss 3.878313 +INFO 2021-11-06 06:38:09 train.py: 88] Epoch 5, iter 1400/6416, lr 0.000404, loss 3.822669 +INFO 2021-11-06 06:44:56 train.py: 88] Epoch 5, iter 1600/6416, lr 0.000403, loss 3.878812 +INFO 2021-11-06 06:51:45 train.py: 88] Epoch 5, iter 1800/6416, lr 0.000402, loss 3.750864 +INFO 2021-11-06 06:58:32 train.py: 88] Epoch 5, iter 2000/6416, lr 0.000401, loss 3.758655 +INFO 2021-11-06 07:05:26 train.py: 88] Epoch 5, iter 2200/6416, lr 0.000400, loss 3.770638 +INFO 2021-11-06 07:12:12 train.py: 88] Epoch 5, iter 2400/6416, lr 0.000399, loss 3.718840 +INFO 2021-11-06 07:19:04 train.py: 88] Epoch 5, iter 2600/6416, lr 0.000398, loss 3.750132 +INFO 2021-11-06 07:26:01 train.py: 88] Epoch 5, iter 2800/6416, lr 0.000397, loss 3.745643 +INFO 2021-11-06 07:32:56 train.py: 101] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2021-11-06 07:32:57 train.py: 88] Epoch 5, iter 3000/6416, lr 0.000396, loss 3.713246 +INFO 2021-11-06 07:39:46 train.py: 88] Epoch 5, iter 3200/6416, lr 0.000395, loss 3.665213 +INFO 2021-11-06 07:46:34 train.py: 88] Epoch 5, iter 3400/6416, lr 0.000393, loss 3.661409 +INFO 2021-11-06 07:53:22 train.py: 88] Epoch 5, iter 3600/6416, lr 0.000392, loss 3.668914 +INFO 2021-11-06 08:00:11 train.py: 88] Epoch 5, iter 3800/6416, lr 0.000391, loss 3.600594 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +INFO 2021-11-06 08:06:59 train.py: 88] Epoch 5, iter 4000/6416, lr 0.000390, loss 3.632864 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-06 08:13:49 train.py: 88] Epoch 5, iter 4200/6416, lr 0.000389, loss 3.538527 +INFO 2021-11-06 08:20:42 train.py: 88] Epoch 5, iter 4400/6416, lr 0.000388, loss 3.595721 +INFO 2021-11-06 08:27:37 train.py: 88] Epoch 5, iter 4600/6416, lr 0.000387, loss 3.579950 +INFO 2021-11-06 08:34:22 train.py: 88] Epoch 5, iter 4800/6416, lr 0.000386, loss 3.528899 +INFO 2021-11-06 08:41:16 train.py: 88] Epoch 5, iter 5000/6416, lr 0.000384, loss 3.554575 +INFO 2021-11-06 08:48:08 train.py: 88] Epoch 5, iter 5200/6416, lr 0.000383, loss 3.550355 +INFO 2021-11-06 08:54:51 train.py: 88] Epoch 5, iter 5400/6416, lr 0.000382, loss 3.480871 +INFO 2021-11-06 09:01:45 train.py: 88] Epoch 5, iter 5600/6416, lr 0.000381, loss 3.502277 +INFO 2021-11-06 09:08:37 train.py: 88] Epoch 5, iter 5800/6416, lr 0.000380, loss 3.456603 +INFO 2021-11-06 09:15:34 train.py: 101] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2021-11-06 09:15:36 train.py: 88] Epoch 5, iter 6000/6416, lr 0.000379, loss 3.454415 +INFO 2021-11-06 09:22:26 train.py: 88] Epoch 5, iter 6200/6416, lr 0.000378, loss 3.462584 +INFO 2021-11-06 09:29:13 train.py: 88] Epoch 5, iter 6400/6416, lr 0.000376, loss 3.434576 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-06 09:29:46 train.py: 108] Save checkpoint Epoch_5.pt to disk... +INFO 2021-11-06 09:29:48 train.py: 88] Epoch 6, iter 0/6416, lr 0.000376, loss 3.415257 +INFO 2021-11-06 09:36:40 train.py: 88] Epoch 6, iter 200/6416, lr 0.000375, loss 3.398793 +INFO 2021-11-06 09:43:33 train.py: 88] Epoch 6, iter 400/6416, lr 0.000374, loss 3.426743 +INFO 2021-11-06 09:50:27 train.py: 88] Epoch 6, iter 600/6416, lr 0.000373, loss 3.421948 +INFO 2021-11-06 09:57:20 train.py: 88] Epoch 6, iter 800/6416, lr 0.000372, loss 3.386297 +INFO 2021-11-06 10:04:17 train.py: 88] Epoch 6, iter 1000/6416, lr 0.000370, loss 3.435088 +INFO 2021-11-06 10:11:10 train.py: 88] Epoch 6, iter 1200/6416, lr 0.000369, loss 3.350302 +INFO 2021-11-06 10:18:04 train.py: 88] Epoch 6, iter 1400/6416, lr 0.000368, loss 3.306239 +INFO 2021-11-06 10:24:51 train.py: 88] Epoch 6, iter 1600/6416, lr 0.000367, loss 3.372015 +INFO 2021-11-06 10:31:36 train.py: 88] Epoch 6, iter 1800/6416, lr 0.000366, loss 3.270989 +INFO 2021-11-06 10:38:31 train.py: 88] Epoch 6, iter 2000/6416, lr 0.000364, loss 3.266378 +INFO 2021-11-06 10:45:24 train.py: 88] Epoch 6, iter 2200/6416, lr 0.000363, loss 3.264796 +INFO 2021-11-06 10:52:19 train.py: 88] Epoch 6, iter 2400/6416, lr 0.000362, loss 3.223176 +INFO 2021-11-06 10:59:10 train.py: 88] Epoch 6, iter 2600/6416, lr 0.000361, loss 3.282731 +INFO 2021-11-06 11:05:57 train.py: 88] Epoch 6, iter 2800/6416, lr 0.000360, loss 3.263794 +INFO 2021-11-06 11:12:47 train.py: 101] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2021-11-06 11:12:49 train.py: 88] Epoch 6, iter 3000/6416, lr 0.000358, loss 3.240334 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-06 11:19:37 train.py: 88] Epoch 6, iter 3200/6416, lr 0.000357, loss 3.195197 +INFO 2021-11-06 11:26:26 train.py: 88] Epoch 6, iter 3400/6416, lr 0.000356, loss 3.179522 +INFO 2021-11-06 11:33:15 train.py: 88] Epoch 6, iter 3600/6416, lr 0.000355, loss 3.195714 +INFO 2021-11-06 11:40:04 train.py: 88] Epoch 6, iter 3800/6416, lr 0.000353, loss 3.132245 +INFO 2021-11-06 11:46:48 train.py: 88] Epoch 6, iter 4000/6416, lr 0.000352, loss 3.182484 +INFO 2021-11-06 11:53:46 train.py: 88] Epoch 6, iter 4200/6416, lr 0.000351, loss 3.099346 +INFO 2021-11-06 12:00:38 train.py: 88] Epoch 6, iter 4400/6416, lr 0.000350, loss 3.141692 +INFO 2021-11-06 12:07:30 train.py: 88] Epoch 6, iter 4600/6416, lr 0.000349, loss 3.126413 +INFO 2021-11-06 12:14:20 train.py: 88] Epoch 6, iter 4800/6416, lr 0.000347, loss 3.080857 +INFO 2021-11-06 12:21:16 train.py: 88] Epoch 6, iter 5000/6416, lr 0.000346, loss 3.132587 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-06 12:28:08 train.py: 88] Epoch 6, iter 5200/6416, lr 0.000345, loss 3.106201 +INFO 2021-11-06 12:35:02 train.py: 88] Epoch 6, iter 5400/6416, lr 0.000344, loss 3.064733 +INFO 2021-11-06 12:41:52 train.py: 88] Epoch 6, iter 5600/6416, lr 0.000342, loss 3.069506 +INFO 2021-11-06 12:48:43 train.py: 88] Epoch 6, iter 5800/6416, lr 0.000341, loss 3.029465 +INFO 2021-11-06 12:55:36 train.py: 101] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2021-11-06 12:55:38 train.py: 88] Epoch 6, iter 6000/6416, lr 0.000340, loss 3.035294 +INFO 2021-11-06 13:02:29 train.py: 88] Epoch 6, iter 6200/6416, lr 0.000339, loss 3.042550 +INFO 2021-11-06 13:09:25 train.py: 88] Epoch 6, iter 6400/6416, lr 0.000337, loss 3.020754 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +INFO 2021-11-06 13:09:58 train.py: 108] Save checkpoint Epoch_6.pt to disk... +INFO 2021-11-06 13:10:00 train.py: 88] Epoch 7, iter 0/6416, lr 0.000337, loss 2.999156 +INFO 2021-11-06 13:16:55 train.py: 88] Epoch 7, iter 200/6416, lr 0.000336, loss 2.985685 +INFO 2021-11-06 13:23:47 train.py: 88] Epoch 7, iter 400/6416, lr 0.000335, loss 2.992421 +INFO 2021-11-06 13:30:36 train.py: 88] Epoch 7, iter 600/6416, lr 0.000333, loss 3.019848 +INFO 2021-11-06 13:37:29 train.py: 88] Epoch 7, iter 800/6416, lr 0.000332, loss 2.986077 +INFO 2021-11-06 13:44:21 train.py: 88] Epoch 7, iter 1000/6416, lr 0.000331, loss 3.009750 +INFO 2021-11-06 13:51:09 train.py: 88] Epoch 7, iter 1200/6416, lr 0.000330, loss 2.954818 +INFO 2021-11-06 13:57:56 train.py: 88] Epoch 7, iter 1400/6416, lr 0.000328, loss 2.903799 +INFO 2021-11-06 14:04:43 train.py: 88] Epoch 7, iter 1600/6416, lr 0.000327, loss 2.949513 +INFO 2021-11-06 14:11:32 train.py: 88] Epoch 7, iter 1800/6416, lr 0.000326, loss 2.864682 +INFO 2021-11-06 14:18:21 train.py: 88] Epoch 7, iter 2000/6416, lr 0.000324, loss 2.884796 +INFO 2021-11-06 14:25:19 train.py: 88] Epoch 7, iter 2200/6416, lr 0.000323, loss 2.894090 +INFO 2021-11-06 14:32:00 train.py: 88] Epoch 7, iter 2400/6416, lr 0.000322, loss 2.848664 +INFO 2021-11-06 14:38:50 train.py: 88] Epoch 7, iter 2600/6416, lr 0.000321, loss 2.875024 +INFO 2021-11-06 14:45:43 train.py: 88] Epoch 7, iter 2800/6416, lr 0.000319, loss 2.882685 +INFO 2021-11-06 14:52:34 train.py: 101] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2021-11-06 14:52:36 train.py: 88] Epoch 7, iter 3000/6416, lr 0.000318, loss 2.871736 +INFO 2021-11-06 14:59:23 train.py: 88] Epoch 7, iter 3200/6416, lr 0.000317, loss 2.824761 +INFO 2021-11-06 15:06:14 train.py: 88] Epoch 7, iter 3400/6416, lr 0.000315, loss 2.818186 +INFO 2021-11-06 15:13:08 train.py: 88] Epoch 7, iter 3600/6416, lr 0.000314, loss 2.813882 +INFO 2021-11-06 15:20:05 train.py: 88] Epoch 7, iter 3800/6416, lr 0.000313, loss 2.756519 +INFO 2021-11-06 15:26:55 train.py: 88] Epoch 7, iter 4000/6416, lr 0.000311, loss 2.799995 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-06 15:33:46 train.py: 88] Epoch 7, iter 4200/6416, lr 0.000310, loss 2.729271 +INFO 2021-11-06 15:40:37 train.py: 88] Epoch 7, iter 4400/6416, lr 0.000309, loss 2.779209 +INFO 2021-11-06 15:47:29 train.py: 88] Epoch 7, iter 4600/6416, lr 0.000307, loss 2.770328 +INFO 2021-11-06 15:54:26 train.py: 88] Epoch 7, iter 4800/6416, lr 0.000306, loss 2.729695 +INFO 2021-11-06 16:01:19 train.py: 88] Epoch 7, iter 5000/6416, lr 0.000305, loss 2.780403 +INFO 2021-11-06 16:08:12 train.py: 88] Epoch 7, iter 5200/6416, lr 0.000304, loss 2.746901 +INFO 2021-11-06 16:15:02 train.py: 88] Epoch 7, iter 5400/6416, lr 0.000302, loss 2.696840 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +INFO 2021-11-06 16:21:58 train.py: 88] Epoch 7, iter 5600/6416, lr 0.000301, loss 2.718681 +INFO 2021-11-06 16:28:54 train.py: 88] Epoch 7, iter 5800/6416, lr 0.000300, loss 2.677439 +INFO 2021-11-06 16:35:52 train.py: 101] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2021-11-06 16:35:54 train.py: 88] Epoch 7, iter 6000/6416, lr 0.000298, loss 2.675162 +INFO 2021-11-06 16:42:50 train.py: 88] Epoch 7, iter 6200/6416, lr 0.000297, loss 2.690852 +INFO 2021-11-06 16:49:43 train.py: 88] Epoch 7, iter 6400/6416, lr 0.000296, loss 2.684395 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +INFO 2021-11-06 16:50:16 train.py: 108] Save checkpoint Epoch_7.pt to disk... +INFO 2021-11-06 16:50:18 train.py: 88] Epoch 8, iter 0/6416, lr 0.000295, loss 2.669463 +INFO 2021-11-06 16:57:14 train.py: 88] Epoch 8, iter 200/6416, lr 0.000294, loss 2.644270 +INFO 2021-11-06 17:04:07 train.py: 88] Epoch 8, iter 400/6416, lr 0.000293, loss 2.665808 +INFO 2021-11-06 17:11:02 train.py: 88] Epoch 8, iter 600/6416, lr 0.000291, loss 2.675715 +INFO 2021-11-06 17:18:00 train.py: 88] Epoch 8, iter 800/6416, lr 0.000290, loss 2.638412 +INFO 2021-11-06 17:24:58 train.py: 88] Epoch 8, iter 1000/6416, lr 0.000289, loss 2.676718 +INFO 2021-11-06 17:31:52 train.py: 88] Epoch 8, iter 1200/6416, lr 0.000287, loss 2.616763 +INFO 2021-11-06 17:38:44 train.py: 88] Epoch 8, iter 1400/6416, lr 0.000286, loss 2.564106 +INFO 2021-11-06 17:45:39 train.py: 88] Epoch 8, iter 1600/6416, lr 0.000285, loss 2.622060 +INFO 2021-11-06 17:52:42 train.py: 88] Epoch 8, iter 1800/6416, lr 0.000283, loss 2.540723 +INFO 2021-11-06 17:59:39 train.py: 88] Epoch 8, iter 2000/6416, lr 0.000282, loss 2.553938 +INFO 2021-11-06 18:06:40 train.py: 88] Epoch 8, iter 2200/6416, lr 0.000281, loss 2.549358 +INFO 2021-11-06 18:13:36 train.py: 88] Epoch 8, iter 2400/6416, lr 0.000279, loss 2.516490 +INFO 2021-11-06 18:20:40 train.py: 88] Epoch 8, iter 2600/6416, lr 0.000278, loss 2.546188 +INFO 2021-11-06 18:27:38 train.py: 88] Epoch 8, iter 2800/6416, lr 0.000277, loss 2.571529 +INFO 2021-11-06 18:34:45 train.py: 101] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2021-11-06 18:34:47 train.py: 88] Epoch 8, iter 3000/6416, lr 0.000275, loss 2.548459 +INFO 2021-11-06 18:41:42 train.py: 88] Epoch 8, iter 3200/6416, lr 0.000274, loss 2.497961 +INFO 2021-11-06 18:48:39 train.py: 88] Epoch 8, iter 3400/6416, lr 0.000273, loss 2.494363 +INFO 2021-11-06 18:55:39 train.py: 88] Epoch 8, iter 3600/6416, lr 0.000271, loss 2.513804 +INFO 2021-11-06 19:02:41 train.py: 88] Epoch 8, iter 3800/6416, lr 0.000270, loss 2.446475 +INFO 2021-11-06 19:09:46 train.py: 88] Epoch 8, iter 4000/6416, lr 0.000269, loss 2.500524 +INFO 2021-11-06 19:16:49 train.py: 88] Epoch 8, iter 4200/6416, lr 0.000267, loss 2.407533 +INFO 2021-11-06 19:23:50 train.py: 88] Epoch 8, iter 4400/6416, lr 0.000266, loss 2.460430 +INFO 2021-11-06 19:30:47 train.py: 88] Epoch 8, iter 4600/6416, lr 0.000265, loss 2.446950 +INFO 2021-11-06 19:37:47 train.py: 88] Epoch 8, iter 4800/6416, lr 0.000263, loss 2.423938 +INFO 2021-11-06 19:44:51 train.py: 88] Epoch 8, iter 5000/6416, lr 0.000262, loss 2.455807 +INFO 2021-11-06 19:51:48 train.py: 88] Epoch 8, iter 5200/6416, lr 0.000261, loss 2.424536 +INFO 2021-11-06 19:58:56 train.py: 88] Epoch 8, iter 5400/6416, lr 0.000259, loss 2.408734 +INFO 2021-11-06 20:05:54 train.py: 88] Epoch 8, iter 5600/6416, lr 0.000258, loss 2.401375 +INFO 2021-11-06 20:12:54 train.py: 88] Epoch 8, iter 5800/6416, lr 0.000257, loss 2.383591 +INFO 2021-11-06 20:19:52 train.py: 101] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2021-11-06 20:19:54 train.py: 88] Epoch 8, iter 6000/6416, lr 0.000255, loss 2.397859 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-06 20:26:54 train.py: 88] Epoch 8, iter 6200/6416, lr 0.000254, loss 2.396250 +INFO 2021-11-06 20:33:54 train.py: 88] Epoch 8, iter 6400/6416, lr 0.000253, loss 2.365418 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +INFO 2021-11-06 20:34:29 train.py: 108] Save checkpoint Epoch_8.pt to disk... +INFO 2021-11-06 20:34:31 train.py: 88] Epoch 9, iter 0/6416, lr 0.000253, loss 2.369200 +INFO 2021-11-06 20:42:20 train.py: 88] Epoch 9, iter 200/6416, lr 0.000251, loss 2.352967 +INFO 2021-11-06 20:50:12 train.py: 88] Epoch 9, iter 400/6416, lr 0.000250, loss 2.359061 +INFO 2021-11-06 20:58:09 train.py: 88] Epoch 9, iter 600/6416, lr 0.000248, loss 2.375999 +INFO 2021-11-06 21:05:42 train.py: 88] Epoch 9, iter 800/6416, lr 0.000247, loss 2.344395 +INFO 2021-11-06 21:13:36 train.py: 88] Epoch 9, iter 1000/6416, lr 0.000246, loss 2.400711 +INFO 2021-11-06 21:21:18 train.py: 88] Epoch 9, iter 1200/6416, lr 0.000244, loss 2.325335 +INFO 2021-11-06 21:29:02 train.py: 88] Epoch 9, iter 1400/6416, lr 0.000243, loss 2.266354 +INFO 2021-11-06 21:36:36 train.py: 88] Epoch 9, iter 1600/6416, lr 0.000242, loss 2.338721 +INFO 2021-11-06 21:44:13 train.py: 88] Epoch 9, iter 1800/6416, lr 0.000240, loss 2.260129 +INFO 2021-11-06 21:51:45 train.py: 88] Epoch 9, iter 2000/6416, lr 0.000239, loss 2.262438 +INFO 2021-11-06 21:59:34 train.py: 88] Epoch 9, iter 2200/6416, lr 0.000238, loss 2.262319 +INFO 2021-11-06 22:07:28 train.py: 88] Epoch 9, iter 2400/6416, lr 0.000236, loss 2.239283 +INFO 2021-11-06 22:15:19 train.py: 88] Epoch 9, iter 2600/6416, lr 0.000235, loss 2.267560 +INFO 2021-11-06 22:22:51 train.py: 88] Epoch 9, iter 2800/6416, lr 0.000234, loss 2.262765 +INFO 2021-11-06 22:30:01 train.py: 101] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2021-11-06 22:30:03 train.py: 88] Epoch 9, iter 3000/6416, lr 0.000232, loss 2.263784 +INFO 2021-11-06 22:37:23 train.py: 88] Epoch 9, iter 3200/6416, lr 0.000231, loss 2.213395 +INFO 2021-11-06 22:45:09 train.py: 88] Epoch 9, iter 3400/6416, lr 0.000230, loss 2.218716 +INFO 2021-11-06 22:52:39 train.py: 88] Epoch 9, iter 3600/6416, lr 0.000228, loss 2.221739 +INFO 2021-11-06 22:59:52 train.py: 88] Epoch 9, iter 3800/6416, lr 0.000227, loss 2.157623 +INFO 2021-11-06 23:07:04 train.py: 88] Epoch 9, iter 4000/6416, lr 0.000226, loss 2.221776 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-06 23:14:32 train.py: 88] Epoch 9, iter 4200/6416, lr 0.000224, loss 2.145635 +INFO 2021-11-06 23:22:11 train.py: 88] Epoch 9, iter 4400/6416, lr 0.000223, loss 2.170148 +INFO 2021-11-06 23:29:35 train.py: 88] Epoch 9, iter 4600/6416, lr 0.000222, loss 2.175371 +INFO 2021-11-06 23:37:02 train.py: 88] Epoch 9, iter 4800/6416, lr 0.000220, loss 2.161735 +INFO 2021-11-06 23:44:16 train.py: 88] Epoch 9, iter 5000/6416, lr 0.000219, loss 2.186107 +INFO 2021-11-06 23:51:47 train.py: 88] Epoch 9, iter 5200/6416, lr 0.000218, loss 2.147041 +INFO 2021-11-06 23:59:15 train.py: 88] Epoch 9, iter 5400/6416, lr 0.000216, loss 2.134002 +INFO 2021-11-07 00:06:33 train.py: 88] Epoch 9, iter 5600/6416, lr 0.000215, loss 2.133852 +INFO 2021-11-07 00:13:53 train.py: 88] Epoch 9, iter 5800/6416, lr 0.000214, loss 2.095229 +INFO 2021-11-07 00:21:10 train.py: 101] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2021-11-07 00:21:12 train.py: 88] Epoch 9, iter 6000/6416, lr 0.000212, loss 2.109279 +INFO 2021-11-07 00:28:32 train.py: 88] Epoch 9, iter 6200/6416, lr 0.000211, loss 2.134581 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-07 00:36:09 train.py: 88] Epoch 9, iter 6400/6416, lr 0.000210, loss 2.109606 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +INFO 2021-11-07 00:36:42 train.py: 108] Save checkpoint Epoch_9.pt to disk... +INFO 2021-11-07 00:36:44 train.py: 88] Epoch 10, iter 0/6416, lr 0.000210, loss 2.086751 +INFO 2021-11-07 00:43:33 train.py: 88] Epoch 10, iter 200/6416, lr 0.000208, loss 2.099767 +INFO 2021-11-07 00:50:25 train.py: 88] Epoch 10, iter 400/6416, lr 0.000207, loss 2.098388 +INFO 2021-11-07 00:57:11 train.py: 88] Epoch 10, iter 600/6416, lr 0.000206, loss 2.101931 +INFO 2021-11-07 01:04:02 train.py: 88] Epoch 10, iter 800/6416, lr 0.000204, loss 2.082929 +INFO 2021-11-07 01:10:54 train.py: 88] Epoch 10, iter 1000/6416, lr 0.000203, loss 2.109219 +INFO 2021-11-07 01:17:54 train.py: 88] Epoch 10, iter 1200/6416, lr 0.000202, loss 2.060676 +INFO 2021-11-07 01:24:43 train.py: 88] Epoch 10, iter 1400/6416, lr 0.000200, loss 2.013363 +INFO 2021-11-07 01:31:35 train.py: 88] Epoch 10, iter 1600/6416, lr 0.000199, loss 2.060205 +INFO 2021-11-07 01:38:27 train.py: 88] Epoch 10, iter 1800/6416, lr 0.000198, loss 2.001704 +INFO 2021-11-07 01:45:22 train.py: 88] Epoch 10, iter 2000/6416, lr 0.000196, loss 2.006452 +INFO 2021-11-07 01:52:15 train.py: 88] Epoch 10, iter 2200/6416, lr 0.000195, loss 1.997370 +INFO 2021-11-07 01:59:12 train.py: 88] Epoch 10, iter 2400/6416, lr 0.000194, loss 1.979525 +INFO 2021-11-07 02:06:07 train.py: 88] Epoch 10, iter 2600/6416, lr 0.000192, loss 1.987469 +INFO 2021-11-07 02:12:54 train.py: 88] Epoch 10, iter 2800/6416, lr 0.000191, loss 2.022716 +INFO 2021-11-07 02:19:43 train.py: 101] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2021-11-07 02:19:45 train.py: 88] Epoch 10, iter 3000/6416, lr 0.000190, loss 2.000076 +INFO 2021-11-07 02:26:35 train.py: 88] Epoch 10, iter 3200/6416, lr 0.000188, loss 1.966920 +INFO 2021-11-07 02:33:20 train.py: 88] Epoch 10, iter 3400/6416, lr 0.000187, loss 1.956708 +INFO 2021-11-07 02:40:12 train.py: 88] Epoch 10, iter 3600/6416, lr 0.000186, loss 1.966688 +INFO 2021-11-07 02:47:00 train.py: 88] Epoch 10, iter 3800/6416, lr 0.000185, loss 1.898777 +INFO 2021-11-07 02:53:54 train.py: 88] Epoch 10, iter 4000/6416, lr 0.000183, loss 1.966120 +INFO 2021-11-07 03:00:41 train.py: 88] Epoch 10, iter 4200/6416, lr 0.000182, loss 1.894511 +INFO 2021-11-07 03:07:30 train.py: 88] Epoch 10, iter 4400/6416, lr 0.000181, loss 1.924982 +INFO 2021-11-07 03:14:23 train.py: 88] Epoch 10, iter 4600/6416, lr 0.000179, loss 1.931672 +INFO 2021-11-07 03:21:15 train.py: 88] Epoch 10, iter 4800/6416, lr 0.000178, loss 1.905511 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-07 03:28:06 train.py: 88] Epoch 10, iter 5000/6416, lr 0.000177, loss 1.935831 +INFO 2021-11-07 03:34:56 train.py: 88] Epoch 10, iter 5200/6416, lr 0.000176, loss 1.904486 +INFO 2021-11-07 03:41:49 train.py: 88] Epoch 10, iter 5400/6416, lr 0.000174, loss 1.877272 +INFO 2021-11-07 03:48:40 train.py: 88] Epoch 10, iter 5600/6416, lr 0.000173, loss 1.888271 +INFO 2021-11-07 03:55:39 train.py: 88] Epoch 10, iter 5800/6416, lr 0.000172, loss 1.863815 +INFO 2021-11-07 04:02:33 train.py: 101] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2021-11-07 04:02:35 train.py: 88] Epoch 10, iter 6000/6416, lr 0.000170, loss 1.881692 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +INFO 2021-11-07 04:09:28 train.py: 88] Epoch 10, iter 6200/6416, lr 0.000169, loss 1.885417 +INFO 2021-11-07 04:16:20 train.py: 88] Epoch 10, iter 6400/6416, lr 0.000168, loss 1.872222 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +INFO 2021-11-07 04:16:52 train.py: 108] Save checkpoint Epoch_10.pt to disk... +INFO 2021-11-07 04:16:54 train.py: 88] Epoch 11, iter 0/6416, lr 0.000168, loss 1.871913 +INFO 2021-11-07 04:23:49 train.py: 88] Epoch 11, iter 200/6416, lr 0.000167, loss 1.848261 +INFO 2021-11-07 04:30:41 train.py: 88] Epoch 11, iter 400/6416, lr 0.000165, loss 1.833693 +INFO 2021-11-07 04:37:31 train.py: 88] Epoch 11, iter 600/6416, lr 0.000164, loss 1.859055 +INFO 2021-11-07 04:44:25 train.py: 88] Epoch 11, iter 800/6416, lr 0.000163, loss 1.829220 +INFO 2021-11-07 04:51:23 train.py: 88] Epoch 11, iter 1000/6416, lr 0.000162, loss 1.854977 +INFO 2021-11-07 04:58:20 train.py: 88] Epoch 11, iter 1200/6416, lr 0.000160, loss 1.823928 +INFO 2021-11-07 05:05:16 train.py: 88] Epoch 11, iter 1400/6416, lr 0.000159, loss 1.766915 +INFO 2021-11-07 05:12:06 train.py: 88] Epoch 11, iter 1600/6416, lr 0.000158, loss 1.828711 +INFO 2021-11-07 05:18:58 train.py: 88] Epoch 11, iter 1800/6416, lr 0.000157, loss 1.766249 +INFO 2021-11-07 05:25:52 train.py: 88] Epoch 11, iter 2000/6416, lr 0.000155, loss 1.760022 +INFO 2021-11-07 05:32:49 train.py: 88] Epoch 11, iter 2200/6416, lr 0.000154, loss 1.759000 +INFO 2021-11-07 05:39:38 train.py: 88] Epoch 11, iter 2400/6416, lr 0.000153, loss 1.750986 +INFO 2021-11-07 05:46:30 train.py: 88] Epoch 11, iter 2600/6416, lr 0.000152, loss 1.769970 +INFO 2021-11-07 05:53:18 train.py: 88] Epoch 11, iter 2800/6416, lr 0.000150, loss 1.772384 +INFO 2021-11-07 06:00:09 train.py: 101] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2021-11-07 06:00:11 train.py: 88] Epoch 11, iter 3000/6416, lr 0.000149, loss 1.770960 +INFO 2021-11-07 06:06:58 train.py: 88] Epoch 11, iter 3200/6416, lr 0.000148, loss 1.729162 +INFO 2021-11-07 06:13:49 train.py: 88] Epoch 11, iter 3400/6416, lr 0.000147, loss 1.742616 +INFO 2021-11-07 06:20:39 train.py: 88] Epoch 11, iter 3600/6416, lr 0.000146, loss 1.732729 +INFO 2021-11-07 06:27:27 train.py: 88] Epoch 11, iter 3800/6416, lr 0.000144, loss 1.679888 +INFO 2021-11-07 06:34:18 train.py: 88] Epoch 11, iter 4000/6416, lr 0.000143, loss 1.744265 +INFO 2021-11-07 06:41:05 train.py: 88] Epoch 11, iter 4200/6416, lr 0.000142, loss 1.667845 +INFO 2021-11-07 06:47:53 train.py: 88] Epoch 11, iter 4400/6416, lr 0.000141, loss 1.692872 +INFO 2021-11-07 06:54:41 train.py: 88] Epoch 11, iter 4600/6416, lr 0.000139, loss 1.700547 +INFO 2021-11-07 07:01:30 train.py: 88] Epoch 11, iter 4800/6416, lr 0.000138, loss 1.686599 +INFO 2021-11-07 07:08:24 train.py: 88] Epoch 11, iter 5000/6416, lr 0.000137, loss 1.699951 +INFO 2021-11-07 07:15:17 train.py: 88] Epoch 11, iter 5200/6416, lr 0.000136, loss 1.681832 +INFO 2021-11-07 07:22:06 train.py: 88] Epoch 11, iter 5400/6416, lr 0.000135, loss 1.657159 +INFO 2021-11-07 07:28:52 train.py: 88] Epoch 11, iter 5600/6416, lr 0.000134, loss 1.661121 +INFO 2021-11-07 07:35:44 train.py: 88] Epoch 11, iter 5800/6416, lr 0.000132, loss 1.640726 +INFO 2021-11-07 07:42:34 train.py: 101] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2021-11-07 07:42:37 train.py: 88] Epoch 11, iter 6000/6416, lr 0.000131, loss 1.661956 +INFO 2021-11-07 07:49:26 train.py: 88] Epoch 11, iter 6200/6416, lr 0.000130, loss 1.664726 +INFO 2021-11-07 07:56:13 train.py: 88] Epoch 11, iter 6400/6416, lr 0.000129, loss 1.641801 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-07 07:56:45 train.py: 108] Save checkpoint Epoch_11.pt to disk... +INFO 2021-11-07 07:56:47 train.py: 88] Epoch 12, iter 0/6416, lr 0.000129, loss 1.635231 +INFO 2021-11-07 08:03:30 train.py: 88] Epoch 12, iter 200/6416, lr 0.000128, loss 1.641065 +INFO 2021-11-07 08:10:17 train.py: 88] Epoch 12, iter 400/6416, lr 0.000126, loss 1.622131 +INFO 2021-11-07 08:17:05 train.py: 88] Epoch 12, iter 600/6416, lr 0.000125, loss 1.645248 +INFO 2021-11-07 08:23:55 train.py: 88] Epoch 12, iter 800/6416, lr 0.000124, loss 1.608267 +INFO 2021-11-07 08:30:47 train.py: 88] Epoch 12, iter 1000/6416, lr 0.000123, loss 1.629783 +INFO 2021-11-07 08:37:39 train.py: 88] Epoch 12, iter 1200/6416, lr 0.000122, loss 1.608606 +INFO 2021-11-07 08:44:22 train.py: 88] Epoch 12, iter 1400/6416, lr 0.000121, loss 1.558950 +INFO 2021-11-07 08:51:15 train.py: 88] Epoch 12, iter 1600/6416, lr 0.000120, loss 1.615986 +INFO 2021-11-07 08:58:03 train.py: 88] Epoch 12, iter 1800/6416, lr 0.000118, loss 1.550936 +INFO 2021-11-07 09:04:49 train.py: 88] Epoch 12, iter 2000/6416, lr 0.000117, loss 1.556552 +INFO 2021-11-07 09:11:38 train.py: 88] Epoch 12, iter 2200/6416, lr 0.000116, loss 1.546049 +INFO 2021-11-07 09:18:27 train.py: 88] Epoch 12, iter 2400/6416, lr 0.000115, loss 1.540118 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-07 09:25:23 train.py: 88] Epoch 12, iter 2600/6416, lr 0.000114, loss 1.554523 +INFO 2021-11-07 09:32:09 train.py: 88] Epoch 12, iter 2800/6416, lr 0.000113, loss 1.582650 +INFO 2021-11-07 09:39:03 train.py: 101] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2021-11-07 09:39:05 train.py: 88] Epoch 12, iter 3000/6416, lr 0.000112, loss 1.538779 +INFO 2021-11-07 09:45:51 train.py: 88] Epoch 12, iter 3200/6416, lr 0.000111, loss 1.521763 +INFO 2021-11-07 09:52:42 train.py: 88] Epoch 12, iter 3400/6416, lr 0.000109, loss 1.541065 +INFO 2021-11-07 09:59:33 train.py: 88] Epoch 12, iter 3600/6416, lr 0.000108, loss 1.531970 +INFO 2021-11-07 10:06:15 train.py: 88] Epoch 12, iter 3800/6416, lr 0.000107, loss 1.485012 +INFO 2021-11-07 10:13:03 train.py: 88] Epoch 12, iter 4000/6416, lr 0.000106, loss 1.548506 +INFO 2021-11-07 10:19:52 train.py: 88] Epoch 12, iter 4200/6416, lr 0.000105, loss 1.476993 +INFO 2021-11-07 10:26:40 train.py: 88] Epoch 12, iter 4400/6416, lr 0.000104, loss 1.486938 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-07 10:33:26 train.py: 88] Epoch 12, iter 4600/6416, lr 0.000103, loss 1.489733 +INFO 2021-11-07 10:40:16 train.py: 88] Epoch 12, iter 4800/6416, lr 0.000102, loss 1.477284 +INFO 2021-11-07 10:46:59 train.py: 88] Epoch 12, iter 5000/6416, lr 0.000101, loss 1.500890 +INFO 2021-11-07 10:53:50 train.py: 88] Epoch 12, iter 5200/6416, lr 0.000100, loss 1.485094 +INFO 2021-11-07 11:00:33 train.py: 88] Epoch 12, iter 5400/6416, lr 0.000099, loss 1.449405 +INFO 2021-11-07 11:07:27 train.py: 88] Epoch 12, iter 5600/6416, lr 0.000098, loss 1.457030 +INFO 2021-11-07 11:14:18 train.py: 88] Epoch 12, iter 5800/6416, lr 0.000097, loss 1.442909 +INFO 2021-11-07 11:21:04 train.py: 101] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2021-11-07 11:21:07 train.py: 88] Epoch 12, iter 6000/6416, lr 0.000096, loss 1.456157 +INFO 2021-11-07 11:27:55 train.py: 88] Epoch 12, iter 6200/6416, lr 0.000095, loss 1.453426 +INFO 2021-11-07 11:34:40 train.py: 88] Epoch 12, iter 6400/6416, lr 0.000093, loss 1.476685 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +INFO 2021-11-07 11:35:12 train.py: 108] Save checkpoint Epoch_12.pt to disk... +INFO 2021-11-07 11:35:14 train.py: 88] Epoch 13, iter 0/6416, lr 0.000093, loss 1.430794 +INFO 2021-11-07 11:42:13 train.py: 88] Epoch 13, iter 200/6416, lr 0.000092, loss 1.446974 +INFO 2021-11-07 11:49:08 train.py: 88] Epoch 13, iter 400/6416, lr 0.000091, loss 1.429229 +INFO 2021-11-07 11:55:58 train.py: 88] Epoch 13, iter 600/6416, lr 0.000090, loss 1.456690 +INFO 2021-11-07 12:02:51 train.py: 88] Epoch 13, iter 800/6416, lr 0.000089, loss 1.425573 +INFO 2021-11-07 12:09:36 train.py: 88] Epoch 13, iter 1000/6416, lr 0.000088, loss 1.450044 +INFO 2021-11-07 12:16:22 train.py: 88] Epoch 13, iter 1200/6416, lr 0.000087, loss 1.426263 +INFO 2021-11-07 12:23:07 train.py: 88] Epoch 13, iter 1400/6416, lr 0.000086, loss 1.373677 +INFO 2021-11-07 12:29:48 train.py: 88] Epoch 13, iter 1600/6416, lr 0.000085, loss 1.428967 +INFO 2021-11-07 12:36:36 train.py: 88] Epoch 13, iter 1800/6416, lr 0.000084, loss 1.377697 +INFO 2021-11-07 12:43:17 train.py: 88] Epoch 13, iter 2000/6416, lr 0.000083, loss 1.379910 +INFO 2021-11-07 12:49:58 train.py: 88] Epoch 13, iter 2200/6416, lr 0.000082, loss 1.373246 +INFO 2021-11-07 12:56:43 train.py: 88] Epoch 13, iter 2400/6416, lr 0.000081, loss 1.366846 +INFO 2021-11-07 13:03:33 train.py: 88] Epoch 13, iter 2600/6416, lr 0.000080, loss 1.371527 +INFO 2021-11-07 13:10:14 train.py: 88] Epoch 13, iter 2800/6416, lr 0.000079, loss 1.396763 +INFO 2021-11-07 13:17:01 train.py: 101] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2021-11-07 13:17:03 train.py: 88] Epoch 13, iter 3000/6416, lr 0.000078, loss 1.356363 +INFO 2021-11-07 13:23:50 train.py: 88] Epoch 13, iter 3200/6416, lr 0.000078, loss 1.349428 +INFO 2021-11-07 13:30:42 train.py: 88] Epoch 13, iter 3400/6416, lr 0.000077, loss 1.342755 +INFO 2021-11-07 13:37:31 train.py: 88] Epoch 13, iter 3600/6416, lr 0.000076, loss 1.339078 +INFO 2021-11-07 13:44:22 train.py: 88] Epoch 13, iter 3800/6416, lr 0.000075, loss 1.307975 +INFO 2021-11-07 13:51:15 train.py: 88] Epoch 13, iter 4000/6416, lr 0.000074, loss 1.361762 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-07 13:58:04 train.py: 88] Epoch 13, iter 4200/6416, lr 0.000073, loss 1.308019 +INFO 2021-11-07 14:04:47 train.py: 88] Epoch 13, iter 4400/6416, lr 0.000072, loss 1.315427 +INFO 2021-11-07 14:11:32 train.py: 88] Epoch 13, iter 4600/6416, lr 0.000071, loss 1.328882 +INFO 2021-11-07 14:18:25 train.py: 88] Epoch 13, iter 4800/6416, lr 0.000070, loss 1.294228 +INFO 2021-11-07 14:25:13 train.py: 88] Epoch 13, iter 5000/6416, lr 0.000069, loss 1.329374 +INFO 2021-11-07 14:31:58 train.py: 88] Epoch 13, iter 5200/6416, lr 0.000068, loss 1.317093 +INFO 2021-11-07 14:38:43 train.py: 88] Epoch 13, iter 5400/6416, lr 0.000067, loss 1.291690 +INFO 2021-11-07 14:45:26 train.py: 88] Epoch 13, iter 5600/6416, lr 0.000066, loss 1.305910 +INFO 2021-11-07 14:52:19 train.py: 88] Epoch 13, iter 5800/6416, lr 0.000066, loss 1.283950 +INFO 2021-11-07 14:59:03 train.py: 101] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2021-11-07 14:59:05 train.py: 88] Epoch 13, iter 6000/6416, lr 0.000065, loss 1.298038 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-07 15:05:59 train.py: 88] Epoch 13, iter 6200/6416, lr 0.000064, loss 1.293516 +INFO 2021-11-07 15:12:44 train.py: 88] Epoch 13, iter 6400/6416, lr 0.000063, loss 1.296222 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +INFO 2021-11-07 15:13:16 train.py: 108] Save checkpoint Epoch_13.pt to disk... +INFO 2021-11-07 15:13:18 train.py: 88] Epoch 14, iter 0/6416, lr 0.000063, loss 1.259523 +INFO 2021-11-07 15:20:06 train.py: 88] Epoch 14, iter 200/6416, lr 0.000062, loss 1.282866 +INFO 2021-11-07 15:26:51 train.py: 88] Epoch 14, iter 400/6416, lr 0.000061, loss 1.278429 +INFO 2021-11-07 15:33:42 train.py: 88] Epoch 14, iter 600/6416, lr 0.000060, loss 1.304096 +INFO 2021-11-07 15:40:27 train.py: 88] Epoch 14, iter 800/6416, lr 0.000059, loss 1.263985 +INFO 2021-11-07 15:47:20 train.py: 88] Epoch 14, iter 1000/6416, lr 0.000059, loss 1.286399 +INFO 2021-11-07 15:54:11 train.py: 88] Epoch 14, iter 1200/6416, lr 0.000058, loss 1.272722 +INFO 2021-11-07 16:01:06 train.py: 88] Epoch 14, iter 1400/6416, lr 0.000057, loss 1.219060 +INFO 2021-11-07 16:07:57 train.py: 88] Epoch 14, iter 1600/6416, lr 0.000056, loss 1.276336 +INFO 2021-11-07 16:14:45 train.py: 88] Epoch 14, iter 1800/6416, lr 0.000055, loss 1.226711 +INFO 2021-11-07 16:21:32 train.py: 88] Epoch 14, iter 2000/6416, lr 0.000055, loss 1.234672 +INFO 2021-11-07 16:28:21 train.py: 88] Epoch 14, iter 2200/6416, lr 0.000054, loss 1.226858 +INFO 2021-11-07 16:35:14 train.py: 88] Epoch 14, iter 2400/6416, lr 0.000053, loss 1.217566 +INFO 2021-11-07 16:42:04 train.py: 88] Epoch 14, iter 2600/6416, lr 0.000052, loss 1.210259 +INFO 2021-11-07 16:49:00 train.py: 88] Epoch 14, iter 2800/6416, lr 0.000051, loss 1.233618 +INFO 2021-11-07 16:55:52 train.py: 101] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2021-11-07 16:55:53 train.py: 88] Epoch 14, iter 3000/6416, lr 0.000051, loss 1.224489 +INFO 2021-11-07 17:02:46 train.py: 88] Epoch 14, iter 3200/6416, lr 0.000050, loss 1.206357 +INFO 2021-11-07 17:09:39 train.py: 88] Epoch 14, iter 3400/6416, lr 0.000049, loss 1.206064 +INFO 2021-11-07 17:16:30 train.py: 88] Epoch 14, iter 3600/6416, lr 0.000048, loss 1.199699 +INFO 2021-11-07 17:23:20 train.py: 88] Epoch 14, iter 3800/6416, lr 0.000048, loss 1.161058 +INFO 2021-11-07 17:30:14 train.py: 88] Epoch 14, iter 4000/6416, lr 0.000047, loss 1.217640 +INFO 2021-11-07 17:37:04 train.py: 88] Epoch 14, iter 4200/6416, lr 0.000046, loss 1.174307 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-07 17:43:55 train.py: 88] Epoch 14, iter 4400/6416, lr 0.000045, loss 1.188214 +INFO 2021-11-07 17:50:45 train.py: 88] Epoch 14, iter 4600/6416, lr 0.000045, loss 1.196620 +INFO 2021-11-07 17:57:41 train.py: 88] Epoch 14, iter 4800/6416, lr 0.000044, loss 1.170810 +INFO 2021-11-07 18:04:36 train.py: 88] Epoch 14, iter 5000/6416, lr 0.000043, loss 1.196106 +INFO 2021-11-07 18:11:30 train.py: 88] Epoch 14, iter 5200/6416, lr 0.000042, loss 1.179906 +INFO 2021-11-07 18:18:27 train.py: 88] Epoch 14, iter 5400/6416, lr 0.000042, loss 1.148387 +INFO 2021-11-07 18:25:23 train.py: 88] Epoch 14, iter 5600/6416, lr 0.000041, loss 1.161857 +INFO 2021-11-07 18:32:16 train.py: 88] Epoch 14, iter 5800/6416, lr 0.000040, loss 1.148571 +INFO 2021-11-07 18:39:08 train.py: 101] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2021-11-07 18:39:10 train.py: 88] Epoch 14, iter 6000/6416, lr 0.000040, loss 1.171037 +INFO 2021-11-07 18:46:05 train.py: 88] Epoch 14, iter 6200/6416, lr 0.000039, loss 1.177743 +INFO 2021-11-07 18:53:00 train.py: 88] Epoch 14, iter 6400/6416, lr 0.000038, loss 1.167124 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-07 18:53:32 train.py: 108] Save checkpoint Epoch_14.pt to disk... +INFO 2021-11-07 18:53:35 train.py: 88] Epoch 15, iter 0/6416, lr 0.000038, loss 1.140286 +INFO 2021-11-07 19:00:29 train.py: 88] Epoch 15, iter 200/6416, lr 0.000037, loss 1.159364 +INFO 2021-11-07 19:07:25 train.py: 88] Epoch 15, iter 400/6416, lr 0.000037, loss 1.141635 +INFO 2021-11-07 19:14:20 train.py: 88] Epoch 15, iter 600/6416, lr 0.000036, loss 1.168675 +INFO 2021-11-07 19:21:15 train.py: 88] Epoch 15, iter 800/6416, lr 0.000036, loss 1.148305 +INFO 2021-11-07 19:28:09 train.py: 88] Epoch 15, iter 1000/6416, lr 0.000035, loss 1.169405 +INFO 2021-11-07 19:35:11 train.py: 88] Epoch 15, iter 1200/6416, lr 0.000034, loss 1.149939 +INFO 2021-11-07 19:42:08 train.py: 88] Epoch 15, iter 1400/6416, lr 0.000034, loss 1.109310 +INFO 2021-11-07 19:49:06 train.py: 88] Epoch 15, iter 1600/6416, lr 0.000033, loss 1.149165 +INFO 2021-11-07 19:56:02 train.py: 88] Epoch 15, iter 1800/6416, lr 0.000032, loss 1.103462 +INFO 2021-11-07 20:03:09 train.py: 88] Epoch 15, iter 2000/6416, lr 0.000032, loss 1.108025 +INFO 2021-11-07 20:10:03 train.py: 88] Epoch 15, iter 2200/6416, lr 0.000031, loss 1.112653 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-07 20:17:03 train.py: 88] Epoch 15, iter 2400/6416, lr 0.000031, loss 1.108122 +INFO 2021-11-07 20:24:01 train.py: 88] Epoch 15, iter 2600/6416, lr 0.000030, loss 1.101269 +INFO 2021-11-07 20:31:02 train.py: 88] Epoch 15, iter 2800/6416, lr 0.000029, loss 1.133066 +INFO 2021-11-07 20:37:57 train.py: 101] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2021-11-07 20:37:59 train.py: 88] Epoch 15, iter 3000/6416, lr 0.000029, loss 1.103648 +INFO 2021-11-07 20:44:50 train.py: 88] Epoch 15, iter 3200/6416, lr 0.000028, loss 1.097744 +INFO 2021-11-07 20:51:53 train.py: 88] Epoch 15, iter 3400/6416, lr 0.000028, loss 1.100097 +INFO 2021-11-07 20:58:47 train.py: 88] Epoch 15, iter 3600/6416, lr 0.000027, loss 1.093784 +INFO 2021-11-07 21:05:43 train.py: 88] Epoch 15, iter 3800/6416, lr 0.000027, loss 1.056752 +INFO 2021-11-07 21:12:42 train.py: 88] Epoch 15, iter 4000/6416, lr 0.000026, loss 1.106672 +INFO 2021-11-07 21:19:40 train.py: 88] Epoch 15, iter 4200/6416, lr 0.000025, loss 1.071153 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-07 21:26:41 train.py: 88] Epoch 15, iter 4400/6416, lr 0.000025, loss 1.081791 +INFO 2021-11-07 21:33:43 train.py: 88] Epoch 15, iter 4600/6416, lr 0.000024, loss 1.094822 +INFO 2021-11-07 21:40:42 train.py: 88] Epoch 15, iter 4800/6416, lr 0.000024, loss 1.068287 +INFO 2021-11-07 21:47:36 train.py: 88] Epoch 15, iter 5000/6416, lr 0.000023, loss 1.094929 +INFO 2021-11-07 21:54:25 train.py: 88] Epoch 15, iter 5200/6416, lr 0.000023, loss 1.083551 +INFO 2021-11-07 22:01:18 train.py: 88] Epoch 15, iter 5400/6416, lr 0.000022, loss 1.053417 +INFO 2021-11-07 22:08:12 train.py: 88] Epoch 15, iter 5600/6416, lr 0.000022, loss 1.066749 +INFO 2021-11-07 22:15:06 train.py: 88] Epoch 15, iter 5800/6416, lr 0.000021, loss 1.060041 +INFO 2021-11-07 22:21:57 train.py: 101] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2021-11-07 22:21:59 train.py: 88] Epoch 15, iter 6000/6416, lr 0.000021, loss 1.078213 +INFO 2021-11-07 22:28:55 train.py: 88] Epoch 15, iter 6200/6416, lr 0.000020, loss 1.080530 +INFO 2021-11-07 22:35:46 train.py: 88] Epoch 15, iter 6400/6416, lr 0.000020, loss 1.077898 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-07 22:36:18 train.py: 108] Save checkpoint Epoch_15.pt to disk... +INFO 2021-11-07 22:36:20 train.py: 88] Epoch 16, iter 0/6416, lr 0.000020, loss 1.017158 +INFO 2021-11-07 22:44:38 train.py: 88] Epoch 16, iter 200/6416, lr 0.000019, loss 1.068190 +INFO 2021-11-07 22:52:30 train.py: 88] Epoch 16, iter 400/6416, lr 0.000019, loss 1.050526 +INFO 2021-11-07 22:59:56 train.py: 88] Epoch 16, iter 600/6416, lr 0.000019, loss 1.089178 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +INFO 2021-11-07 23:08:12 train.py: 88] Epoch 16, iter 800/6416, lr 0.000018, loss 1.044952 +INFO 2021-11-07 23:15:59 train.py: 88] Epoch 16, iter 1000/6416, lr 0.000018, loss 1.074805 +INFO 2021-11-07 23:23:25 train.py: 88] Epoch 16, iter 1200/6416, lr 0.000017, loss 1.056154 +INFO 2021-11-07 23:30:46 train.py: 88] Epoch 16, iter 1400/6416, lr 0.000017, loss 1.021646 +INFO 2021-11-07 23:37:54 train.py: 88] Epoch 16, iter 1600/6416, lr 0.000016, loss 1.062962 +INFO 2021-11-07 23:45:05 train.py: 88] Epoch 16, iter 1800/6416, lr 0.000016, loss 1.031611 +INFO 2021-11-07 23:52:15 train.py: 88] Epoch 16, iter 2000/6416, lr 0.000016, loss 1.042913 +INFO 2021-11-07 23:59:46 train.py: 88] Epoch 16, iter 2200/6416, lr 0.000015, loss 1.020936 +INFO 2021-11-08 00:07:12 train.py: 88] Epoch 16, iter 2400/6416, lr 0.000015, loss 1.034180 +INFO 2021-11-08 00:14:38 train.py: 88] Epoch 16, iter 2600/6416, lr 0.000015, loss 1.031583 +INFO 2021-11-08 00:21:34 train.py: 88] Epoch 16, iter 2800/6416, lr 0.000014, loss 1.057401 +INFO 2021-11-08 00:28:45 train.py: 101] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2021-11-08 00:28:47 train.py: 88] Epoch 16, iter 3000/6416, lr 0.000014, loss 1.036593 +INFO 2021-11-08 00:36:19 train.py: 88] Epoch 16, iter 3200/6416, lr 0.000013, loss 1.019005 +INFO 2021-11-08 00:43:42 train.py: 88] Epoch 16, iter 3400/6416, lr 0.000013, loss 1.033647 +INFO 2021-11-08 00:51:07 train.py: 88] Epoch 16, iter 3600/6416, lr 0.000013, loss 1.026655 +INFO 2021-11-08 00:58:36 train.py: 88] Epoch 16, iter 3800/6416, lr 0.000012, loss 0.996125 +INFO 2021-11-08 01:05:55 train.py: 88] Epoch 16, iter 4000/6416, lr 0.000012, loss 1.045330 +INFO 2021-11-08 01:13:14 train.py: 88] Epoch 16, iter 4200/6416, lr 0.000012, loss 1.010357 +INFO 2021-11-08 01:20:54 train.py: 88] Epoch 16, iter 4400/6416, lr 0.000011, loss 1.025883 +INFO 2021-11-08 01:28:20 train.py: 88] Epoch 16, iter 4600/6416, lr 0.000011, loss 1.022122 +INFO 2021-11-08 01:35:30 train.py: 88] Epoch 16, iter 4800/6416, lr 0.000011, loss 1.006844 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-08 01:43:00 train.py: 88] Epoch 16, iter 5000/6416, lr 0.000011, loss 1.026209 +INFO 2021-11-08 01:50:51 train.py: 88] Epoch 16, iter 5200/6416, lr 0.000010, loss 1.023270 +INFO 2021-11-08 01:58:05 train.py: 88] Epoch 16, iter 5400/6416, lr 0.000010, loss 0.994332 +INFO 2021-11-08 02:05:13 train.py: 88] Epoch 16, iter 5600/6416, lr 0.000010, loss 1.003676 +INFO 2021-11-08 02:12:42 train.py: 88] Epoch 16, iter 5800/6416, lr 0.000010, loss 1.003138 +INFO 2021-11-08 02:20:40 train.py: 101] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2021-11-08 02:20:42 train.py: 88] Epoch 16, iter 6000/6416, lr 0.000009, loss 1.017384 +INFO 2021-11-08 02:28:14 train.py: 88] Epoch 16, iter 6200/6416, lr 0.000009, loss 1.011799 +INFO 2021-11-08 02:35:28 train.py: 88] Epoch 16, iter 6400/6416, lr 0.000009, loss 1.028454 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +INFO 2021-11-08 02:36:03 train.py: 108] Save checkpoint Epoch_16.pt to disk... +INFO 2021-11-08 02:36:05 train.py: 88] Epoch 17, iter 0/6416, lr 0.000009, loss 1.017879 +INFO 2021-11-08 02:42:54 train.py: 88] Epoch 17, iter 200/6416, lr 0.000009, loss 1.022501 +INFO 2021-11-08 02:49:43 train.py: 88] Epoch 17, iter 400/6416, lr 0.000008, loss 0.992820 +INFO 2021-11-08 02:56:36 train.py: 88] Epoch 17, iter 600/6416, lr 0.000008, loss 1.030340 +INFO 2021-11-08 03:03:38 train.py: 88] Epoch 17, iter 800/6416, lr 0.000008, loss 0.992674 +INFO 2021-11-08 03:10:45 train.py: 88] Epoch 17, iter 1000/6416, lr 0.000008, loss 1.009708 +INFO 2021-11-08 03:17:48 train.py: 88] Epoch 17, iter 1200/6416, lr 0.000007, loss 1.012903 +INFO 2021-11-08 03:24:49 train.py: 88] Epoch 17, iter 1400/6416, lr 0.000007, loss 0.966573 +INFO 2021-11-08 03:31:53 train.py: 88] Epoch 17, iter 1600/6416, lr 0.000007, loss 1.007244 +INFO 2021-11-08 03:38:58 train.py: 88] Epoch 17, iter 1800/6416, lr 0.000007, loss 0.977010 +INFO 2021-11-08 03:46:04 train.py: 88] Epoch 17, iter 2000/6416, lr 0.000007, loss 0.982413 +INFO 2021-11-08 03:53:07 train.py: 88] Epoch 17, iter 2200/6416, lr 0.000007, loss 0.980783 +INFO 2021-11-08 04:00:11 train.py: 88] Epoch 17, iter 2400/6416, lr 0.000006, loss 0.986870 +INFO 2021-11-08 04:07:14 train.py: 88] Epoch 17, iter 2600/6416, lr 0.000006, loss 0.982425 +INFO 2021-11-08 04:14:13 train.py: 88] Epoch 17, iter 2800/6416, lr 0.000006, loss 1.019400 +INFO 2021-11-08 04:21:14 train.py: 101] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2021-11-08 04:21:15 train.py: 88] Epoch 17, iter 3000/6416, lr 0.000006, loss 0.992717 +INFO 2021-11-08 04:28:16 train.py: 88] Epoch 17, iter 3200/6416, lr 0.000006, loss 0.988175 +INFO 2021-11-08 04:35:23 train.py: 88] Epoch 17, iter 3400/6416, lr 0.000006, loss 0.990665 +INFO 2021-11-08 04:42:27 train.py: 88] Epoch 17, iter 3600/6416, lr 0.000006, loss 0.991908 +INFO 2021-11-08 04:49:32 train.py: 88] Epoch 17, iter 3800/6416, lr 0.000006, loss 0.952285 +INFO 2021-11-08 04:56:37 train.py: 88] Epoch 17, iter 4000/6416, lr 0.000006, loss 1.004719 +INFO 2021-11-08 05:03:47 train.py: 88] Epoch 17, iter 4200/6416, lr 0.000005, loss 0.964050 +INFO 2021-11-08 05:10:44 train.py: 88] Epoch 17, iter 4400/6416, lr 0.000005, loss 0.990251 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-11-08 05:17:49 train.py: 88] Epoch 17, iter 4600/6416, lr 0.000005, loss 0.992029 +INFO 2021-11-08 05:24:55 train.py: 88] Epoch 17, iter 4800/6416, lr 0.000005, loss 0.984346 +INFO 2021-11-08 05:31:58 train.py: 88] Epoch 17, iter 5000/6416, lr 0.000005, loss 0.991912 +INFO 2021-11-08 05:39:02 train.py: 88] Epoch 17, iter 5200/6416, lr 0.000005, loss 0.987374 +INFO 2021-11-08 05:46:05 train.py: 88] Epoch 17, iter 5400/6416, lr 0.000005, loss 0.970941 +INFO 2021-11-08 05:53:13 train.py: 88] Epoch 17, iter 5600/6416, lr 0.000005, loss 0.988832 +INFO 2021-11-08 06:00:22 train.py: 88] Epoch 17, iter 5800/6416, lr 0.000005, loss 0.964585 +INFO 2021-11-08 06:07:28 train.py: 101] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2021-11-08 06:07:30 train.py: 88] Epoch 17, iter 6000/6416, lr 0.000005, loss 0.984010 +INFO 2021-11-08 06:14:30 train.py: 88] Epoch 17, iter 6200/6416, lr 0.000005, loss 0.994161 +INFO 2021-11-08 06:21:30 train.py: 88] Epoch 17, iter 6400/6416, lr 0.000005, loss 0.993996 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +INFO 2021-11-08 06:22:04 train.py: 108] Save checkpoint Epoch_17.pt to disk... diff --git a/bob/bio/facexzoo/models/backbones/SwinTransformer_T/.gitkeep b/bob/bio/facexzoo/models/backbones/SwinTransformer_T/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/Swin_Transformer.py b/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/Swin_Transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..f42c1a96ca445fa8e236c953bb63458fee2690ee --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/Swin_Transformer.py @@ -0,0 +1,593 @@ +# -------------------------------------------------------- +# Swin Transformer +# Copyright (c) 2021 Microsoft +# Licensed under The MIT License [see LICENSE for details] +# Written by Ze Liu +# -------------------------------------------------------- + +import torch +import torch.nn as nn +import torch.utils.checkpoint as checkpoint +from timm.models.layers import DropPath, to_2tuple, trunc_normal_ + + +class Flatten(nn.Module): + def forward(self, input): + return input.view(input.size(0), -1) + + +class Mlp(nn.Module): + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x + + +def window_partition(x, window_size): + """ + Args: + x: (B, H, W, C) + window_size (int): window size + + Returns: + windows: (num_windows*B, window_size, window_size, C) + """ + B, H, W, C = x.shape + x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + return windows + + +def window_reverse(windows, window_size, H, W): + """ + Args: + windows: (num_windows*B, window_size, window_size, C) + window_size (int): Window size + H (int): Height of image + W (int): Width of image + + Returns: + x: (B, H, W, C) + """ + B = int(windows.shape[0] / (H * W / window_size / window_size)) + x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) + return x + + +class WindowAttention(nn.Module): + r""" Window based multi-head self attention (W-MSA) module with relative position bias. + It supports both of shifted and non-shifted window. + + Args: + dim (int): Number of input channels. + window_size (tuple[int]): The height and width of the window. + num_heads (int): Number of attention heads. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set + attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 + proj_drop (float, optional): Dropout ratio of output. Default: 0.0 + """ + + def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): + + super().__init__() + self.dim = dim + self.window_size = window_size # Wh, Ww + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = qk_scale or head_dim ** -0.5 + + # define a parameter table of relative position bias + self.relative_position_bias_table = nn.Parameter( + torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(self.window_size[0]) + coords_w = torch.arange(self.window_size[1]) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += self.window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 + relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + self.register_buffer("relative_position_index", relative_position_index) + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + trunc_normal_(self.relative_position_bias_table, std=.02) + self.softmax = nn.Softmax(dim=-1) + + def forward(self, x, mask=None): + """ + Args: + x: input features with shape of (num_windows*B, N, C) + mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None + """ + B_, N, C = x.shape + qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) + + q = q * self.scale + attn = (q @ k.transpose(-2, -1)) + + relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + attn = attn + relative_position_bias.unsqueeze(0) + + if mask is not None: + nW = mask.shape[0] + attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) + attn = attn.view(-1, self.num_heads, N, N) + attn = self.softmax(attn) + else: + attn = self.softmax(attn) + + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B_, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + def extra_repr(self) -> str: + return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}' + + def flops(self, N): + # calculate flops for 1 window with token length of N + flops = 0 + # qkv = self.qkv(x) + flops += N * self.dim * 3 * self.dim + # attn = (q @ k.transpose(-2, -1)) + flops += self.num_heads * N * (self.dim // self.num_heads) * N + # x = (attn @ v) + flops += self.num_heads * N * N * (self.dim // self.num_heads) + # x = self.proj(x) + flops += N * self.dim * self.dim + return flops + + +class SwinTransformerBlock(nn.Module): + r""" Swin Transformer Block. + + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resulotion. + num_heads (int): Number of attention heads. + window_size (int): Window size. + shift_size (int): Shift size for SW-MSA. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float, optional): Stochastic depth rate. Default: 0.0 + act_layer (nn.Module, optional): Activation layer. Default: nn.GELU + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, + mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., + act_layer=nn.GELU, norm_layer=nn.LayerNorm): + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.num_heads = num_heads + self.window_size = window_size + self.shift_size = shift_size + self.mlp_ratio = mlp_ratio + if min(self.input_resolution) <= self.window_size: + # if window size is larger than input resolution, we don't partition windows + self.shift_size = 0 + self.window_size = min(self.input_resolution) + assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" + + self.norm1 = norm_layer(dim) + self.attn = WindowAttention( + dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, + qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) + + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) + + if self.shift_size > 0: + # calculate attention mask for SW-MSA + H, W = self.input_resolution + img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 + h_slices = (slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None)) + w_slices = (slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None)) + cnt = 0 + for h in h_slices: + for w in w_slices: + img_mask[:, h, w, :] = cnt + cnt += 1 + + mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 + mask_windows = mask_windows.view(-1, self.window_size * self.window_size) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) + else: + attn_mask = None + + self.register_buffer("attn_mask", attn_mask) + + def forward(self, x): + H, W = self.input_resolution + B, L, C = x.shape + assert L == H * W, "input feature has wrong size" + + shortcut = x + x = self.norm1(x) + x = x.view(B, H, W, C) + + # cyclic shift + if self.shift_size > 0: + shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) + else: + shifted_x = x + + # partition windows + x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C + x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C + + # W-MSA/SW-MSA + attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C + + # merge windows + attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) + shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C + + # reverse cyclic shift + if self.shift_size > 0: + x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) + else: + x = shifted_x + x = x.view(B, H * W, C) + + # FFN + x = shortcut + self.drop_path(x) + x = x + self.drop_path(self.mlp(self.norm2(x))) + + return x + + def extra_repr(self) -> str: + return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ + f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" + + def flops(self): + flops = 0 + H, W = self.input_resolution + # norm1 + flops += self.dim * H * W + # W-MSA/SW-MSA + nW = H * W / self.window_size / self.window_size + flops += nW * self.attn.flops(self.window_size * self.window_size) + # mlp + flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio + # norm2 + flops += self.dim * H * W + return flops + + +class PatchMerging(nn.Module): + r""" Patch Merging Layer. + + Args: + input_resolution (tuple[int]): Resolution of input feature. + dim (int): Number of input channels. + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): + super().__init__() + self.input_resolution = input_resolution + self.dim = dim + self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) + self.norm = norm_layer(4 * dim) + + def forward(self, x): + """ + x: B, H*W, C + """ + H, W = self.input_resolution + B, L, C = x.shape + assert L == H * W, "input feature has wrong size" + assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." + + x = x.view(B, H, W, C) + + x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C + x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C + x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C + x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C + x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C + x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C + + x = self.norm(x) + x = self.reduction(x) + + return x + + def extra_repr(self) -> str: + return f"input_resolution={self.input_resolution}, dim={self.dim}" + + def flops(self): + H, W = self.input_resolution + flops = H * W * self.dim + flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim + return flops + + +class BasicLayer(nn.Module): + """ A basic Swin Transformer layer for one stage. + + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + window_size (int): Local window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + """ + + def __init__(self, dim, input_resolution, depth, num_heads, window_size, + mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., + drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): + + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.depth = depth + self.use_checkpoint = use_checkpoint + + # build blocks + self.blocks = nn.ModuleList([ + SwinTransformerBlock(dim=dim, input_resolution=input_resolution, + num_heads=num_heads, window_size=window_size, + shift_size=0 if (i % 2 == 0) else window_size // 2, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, qk_scale=qk_scale, + drop=drop, attn_drop=attn_drop, + drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, + norm_layer=norm_layer) + for i in range(depth)]) + + # patch merging layer + if downsample is not None: + self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) + else: + self.downsample = None + + def forward(self, x): + for blk in self.blocks: + if self.use_checkpoint: + x = checkpoint.checkpoint(blk, x) + else: + x = blk(x) + if self.downsample is not None: + x = self.downsample(x) + return x + + def extra_repr(self) -> str: + return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" + + def flops(self): + flops = 0 + for blk in self.blocks: + flops += blk.flops() + if self.downsample is not None: + flops += self.downsample.flops() + return flops + + +class PatchEmbed(nn.Module): + r""" Image to Patch Embedding + + Args: + img_size (int): Image size. Default: 224. + patch_size (int): Patch token size. Default: 4. + in_chans (int): Number of input image channels. Default: 3. + embed_dim (int): Number of linear projection output channels. Default: 96. + norm_layer (nn.Module, optional): Normalization layer. Default: None + """ + + def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] + self.img_size = img_size + self.patch_size = patch_size + self.patches_resolution = patches_resolution + self.num_patches = patches_resolution[0] * patches_resolution[1] + + self.in_chans = in_chans + self.embed_dim = embed_dim + + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) + if norm_layer is not None: + self.norm = norm_layer(embed_dim) + else: + self.norm = None + + def forward(self, x): + B, C, H, W = x.shape + # FIXME look at relaxing size constraints + assert H == self.img_size[0] and W == self.img_size[1], \ + f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C + if self.norm is not None: + x = self.norm(x) + return x + + def flops(self): + Ho, Wo = self.patches_resolution + flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) + if self.norm is not None: + flops += Ho * Wo * self.embed_dim + return flops + + +class SwinTransformer(nn.Module): + r""" Swin Transformer + A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - + https://arxiv.org/pdf/2103.14030 + + Args: + img_size (int | tuple(int)): Input image size. Default 224 + patch_size (int | tuple(int)): Patch size. Default: 4 + in_chans (int): Number of input image channels. Default: 3 + num_classes (int): Number of classes for classification head. Default: 1000 + embed_dim (int): Patch embedding dimension. Default: 96 + depths (tuple(int)): Depth of each Swin Transformer layer. + num_heads (tuple(int)): Number of attention heads in different layers. + window_size (int): Window size. Default: 7 + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None + drop_rate (float): Dropout rate. Default: 0 + attn_drop_rate (float): Attention dropout rate. Default: 0 + drop_path_rate (float): Stochastic depth rate. Default: 0.1 + norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. + ape (bool): If True, add absolute position embedding to the patch embedding. Default: False + patch_norm (bool): If True, add normalization after patch embedding. Default: True + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False + """ + + def __init__(self, img_size=224, patch_size=4, in_chans=3, + embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], + window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, + drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, + norm_layer=nn.LayerNorm, ape=False, patch_norm=True, + use_checkpoint=False, **kwargs): + super().__init__() + + self.num_layers = len(depths) + self.embed_dim = embed_dim + self.ape = ape + self.patch_norm = patch_norm + self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) + self.mlp_ratio = mlp_ratio + + # split image into non-overlapping patches + self.patch_embed = PatchEmbed( + img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, + norm_layer=norm_layer if self.patch_norm else None) + num_patches = self.patch_embed.num_patches + patches_resolution = self.patch_embed.patches_resolution + self.patches_resolution = patches_resolution + + # absolute position embedding + if self.ape: + self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) + trunc_normal_(self.absolute_pos_embed, std=.02) + + self.pos_drop = nn.Dropout(p=drop_rate) + + # stochastic depth + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule + + # build layers + self.layers = nn.ModuleList() + for i_layer in range(self.num_layers): + layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer), + input_resolution=(patches_resolution[0] // (2 ** i_layer), + patches_resolution[1] // (2 ** i_layer)), + depth=depths[i_layer], + num_heads=num_heads[i_layer], + window_size=window_size, + mlp_ratio=self.mlp_ratio, + qkv_bias=qkv_bias, qk_scale=qk_scale, + drop=drop_rate, attn_drop=attn_drop_rate, + drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], + norm_layer=norm_layer, + downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, + use_checkpoint=use_checkpoint) + self.layers.append(layer) + + #self.norm = norm_layer(self.num_features) + #self.avgpool = nn.AdaptiveAvgPool1d(1) + self.output_layer = nn.Sequential(norm_layer(self.num_features), + Flatten(), + nn.Linear(49*768, 512), + nn.BatchNorm1d(512)) + + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'absolute_pos_embed'} + + @torch.jit.ignore + def no_weight_decay_keywords(self): + return {'relative_position_bias_table'} + + def forward_features(self, x): + x = self.patch_embed(x) + if self.ape: + x = x + self.absolute_pos_embed + x = self.pos_drop(x) + + for layer in self.layers: + x = layer(x) + + #x = self.norm(x) # B L C --> [128, 49, 768] + #x = self.avgpool(x.transpose(1, 2)) # B C 1 --> [128, 768, 1] + #x = torch.flatten(x, 1) + x = self.output_layer(x) + return x + + def forward(self, x): + x = self.forward_features(x) #[128,768] + return x + ''' + def flops(self): + flops = 0 + flops += self.patch_embed.flops() + for i, layer in enumerate(self.layers): + flops += layer.flops() + flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers) + flops += self.num_features * self.num_classes + return flops + ''' diff --git a/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..13438aa8be7f3b742edcf76ae1c6eb6da8c14ab7 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/accu_agedb.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13.pt | 0.9789999999999999 | 0.0020964402515681337 | +| Epoch_15_batch_2999.pt | 0.9789999999999999 | 0.002051798368068822 | +| Epoch_13_batch_5999.pt | 0.9788333333333332 | 0.002166666666666662 | +| Epoch_15_batch_5999.pt | 0.9785 | 0.0023233915184807195 | +| Epoch_17_batch_5999.pt | 0.9784999999999998 | 0.0023366378716458977 | +| Epoch_14_batch_5999.pt | 0.9783333333333333 | 0.002151657414559674 | +| Epoch_12_batch_2999.pt | 0.9776666666666667 | 0.002320068113091231 | +| Epoch_17.pt | 0.9775 | 0.002386303510546058 | +| Epoch_16_batch_5999.pt | 0.9774999999999998 | 0.0023207331749117116 | +| Epoch_14_batch_2999.pt | 0.9773333333333334 | 0.002346523564660313 | +| Epoch_15.pt | 0.9773333333333334 | 0.002536158269002962 | +| Epoch_16_batch_2999.pt | 0.9771666666666668 | 0.0022641870969238665 | +| Epoch_16.pt | 0.9771666666666666 | 0.0023313483620396964 | +| Epoch_14.pt | 0.977 | 0.002380476142847612 | +| Epoch_12.pt | 0.9766666666666666 | 0.001956312984628775 | +| Epoch_12_batch_5999.pt | 0.9765 | 0.002452637783849342 | +| Epoch_17_batch_2999.pt | 0.9765 | 0.0021293075440818616 | +| Epoch_13_batch_2999.pt | 0.9763333333333334 | 0.002233305693582418 | +| Epoch_11_batch_5999.pt | 0.9763333333333334 | 0.002662033011269096 | +| Epoch_10_batch_5999.pt | 0.9763333333333332 | 0.00227438772116207 | +| Epoch_11_batch_2999.pt | 0.9761666666666666 | 0.0021379868227659796 | +| Epoch_10_batch_2999.pt | 0.9758333333333333 | 0.0021118419787498 | +| Epoch_9_batch_2999.pt | 0.9756666666666666 | 0.0020816659994661296 | +| Epoch_9_batch_5999.pt | 0.9756666666666666 | 0.002735229694464701 | +| Epoch_8_batch_5999.pt | 0.9754999999999999 | 0.0021808651584878298 | +| Epoch_11.pt | 0.9754999999999999 | 0.002422247706287954 | +| Epoch_7_batch_2999.pt | 0.975 | 0.0018425693279752213 | +| Epoch_7_batch_5999.pt | 0.9746666666666666 | 0.0025190631219454704 | +| Epoch_7.pt | 0.9744999999999999 | 0.002472690342696427 | +| Epoch_10.pt | 0.9744999999999999 | 0.002357677241546987 | +| Epoch_8.pt | 0.9741666666666667 | 0.0025849755831404055 | +| Epoch_9.pt | 0.9736666666666667 | 0.0024695678634325405 | +| Epoch_8_batch_2999.pt | 0.9733333333333334 | 0.0017033010796395469 | +| Epoch_6_batch_2999.pt | 0.9726666666666665 | 0.0018790593916986357 | +| Epoch_5_batch_5999.pt | 0.9716666666666667 | 0.002434322477800738 | +| Epoch_6_batch_5999.pt | 0.9715 | 0.0022284634577923994 | +| Epoch_5_batch_2999.pt | 0.9713333333333333 | 0.0023147407395555193 | +| Epoch_6.pt | 0.9709999999999999 | 0.0028674417556808773 | +| Epoch_5.pt | 0.9704999999999998 | 0.0032207851201412783 | +| Epoch_4.pt | 0.9693333333333334 | 0.002619961360567027 | +| Epoch_4_batch_5999.pt | 0.9691666666666668 | 0.0025123153454655596 | +| Epoch_4_batch_2999.pt | 0.9676666666666666 | 0.002372684056006962 | +| Epoch_3_batch_5999.pt | 0.9656666666666667 | 0.002320068113091238 | +| Epoch_3.pt | 0.9645000000000001 | 0.002534332161768239 | +| Epoch_3_batch_2999.pt | 0.9621666666666666 | 0.002019197982820704 | +| Epoch_2_batch_5999.pt | 0.9603333333333332 | 0.0022743877211620816 | +| Epoch_2.pt | 0.9586666666666666 | 0.0026851213274654622 | +| Epoch_2_batch_2999.pt | 0.9526666666666666 | 0.0034084137000395453 | +| Epoch_1_batch_5999.pt | 0.942 | 0.005245809615161278 | +| Epoch_1.pt | 0.9388333333333334 | 0.004694690986294 | +| Epoch_1_batch_2999.pt | 0.9116666666666665 | 0.005962847939999437 | +| Epoch_0.pt | 0.7963333333333333 | 0.005504207145111483 | +| Epoch_0_batch_5999.pt | 0.7736666666666666 | 0.006911254017815107 | +| Epoch_0_batch_2999.pt | 0.537 | 0.008351092188494912 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..8723cf0334fff7f7e44a1e815d727cb054853235 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/accu_calfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15.pt | 0.9555000000000001 | 0.0038733817807896347 | +| Epoch_14_batch_2999.pt | 0.9551666666666667 | 0.003595693583396535 | +| Epoch_12.pt | 0.9550000000000001 | 0.0035918288611654714 | +| Epoch_11.pt | 0.9548333333333334 | 0.003978724282176413 | +| Epoch_14.pt | 0.9546666666666667 | 0.003632840605393736 | +| Epoch_13_batch_2999.pt | 0.9546666666666667 | 0.003546864377669419 | +| Epoch_13.pt | 0.9546666666666667 | 0.003815174380753196 | +| Epoch_14_batch_5999.pt | 0.9546666666666667 | 0.0038232556742411714 | +| Epoch_12_batch_5999.pt | 0.9543333333333333 | 0.003882534491034705 | +| Epoch_10_batch_2999.pt | 0.9543333333333333 | 0.0038425814368423573 | +| Epoch_16_batch_2999.pt | 0.9541666666666668 | 0.0037205634778340506 | +| Epoch_17_batch_5999.pt | 0.9541666666666666 | 0.003593976442141304 | +| Epoch_16.pt | 0.9541666666666666 | 0.003745367509040709 | +| Epoch_15_batch_2999.pt | 0.9540000000000001 | 0.0036447154370792666 | +| Epoch_11_batch_5999.pt | 0.9540000000000001 | 0.0038184089505421286 | +| Epoch_11_batch_2999.pt | 0.9538333333333334 | 0.0039678491857042435 | +| Epoch_10.pt | 0.9538333333333334 | 0.004105476619298288 | +| Epoch_17_batch_2999.pt | 0.9533333333333334 | 0.003896817314833374 | +| Epoch_12_batch_2999.pt | 0.9533333333333334 | 0.003975231959999623 | +| Epoch_17.pt | 0.9533333333333331 | 0.003936219907537408 | +| Epoch_13_batch_5999.pt | 0.9531666666666666 | 0.003939746811442535 | +| Epoch_15_batch_5999.pt | 0.9531666666666666 | 0.003939746811442537 | +| Epoch_10_batch_5999.pt | 0.9531666666666666 | 0.004017323597731322 | +| Epoch_16_batch_5999.pt | 0.9528333333333332 | 0.0038813418832685733 | +| Epoch_9.pt | 0.9525 | 0.004091922184071176 | +| Epoch_8_batch_5999.pt | 0.9523333333333334 | 0.003559026084010433 | +| Epoch_9_batch_5999.pt | 0.9523333333333334 | 0.0038586123009300773 | +| Epoch_6.pt | 0.9521666666666666 | 0.004388888888888891 | +| Epoch_7.pt | 0.952 | 0.004163331998932267 | +| Epoch_7_batch_5999.pt | 0.952 | 0.003926799343793843 | +| Epoch_8.pt | 0.9516666666666665 | 0.0044025806124797645 | +| Epoch_8_batch_2999.pt | 0.9506666666666668 | 0.00447351603093276 | +| Epoch_9_batch_2999.pt | 0.9506666666666665 | 0.004015402444353923 | +| Epoch_7_batch_2999.pt | 0.9504999999999999 | 0.0038733817807896356 | +| Epoch_6_batch_2999.pt | 0.9496666666666667 | 0.004309048762147846 | +| Epoch_5.pt | 0.9494999999999999 | 0.004075294430020738 | +| Epoch_5_batch_5999.pt | 0.9494999999999999 | 0.003651906317676626 | +| Epoch_6_batch_5999.pt | 0.9488333333333333 | 0.0033797691498344703 | +| Epoch_4.pt | 0.9476666666666669 | 0.004076430295076477 | +| Epoch_4_batch_5999.pt | 0.9471666666666666 | 0.0042167362020324286 | +| Epoch_5_batch_2999.pt | 0.9470000000000001 | 0.004222222222222223 | +| Epoch_4_batch_2999.pt | 0.9465 | 0.00439170092754926 | +| Epoch_3_batch_5999.pt | 0.9450000000000001 | 0.004082482904638631 | +| Epoch_3.pt | 0.9431666666666667 | 0.003955383891406127 | +| Epoch_3_batch_2999.pt | 0.9423333333333334 | 0.004487293445846371 | +| Epoch_2_batch_5999.pt | 0.9391666666666667 | 0.004084372505713955 | +| Epoch_2.pt | 0.9388333333333334 | 0.003514081022415213 | +| Epoch_2_batch_2999.pt | 0.9355 | 0.004157768276015032 | +| Epoch_1_batch_5999.pt | 0.9248333333333333 | 0.004577521567803228 | +| Epoch_1.pt | 0.9245000000000001 | 0.004097951912424451 | +| Epoch_1_batch_2999.pt | 0.9048333333333334 | 0.0036213529972738347 | +| Epoch_0.pt | 0.8025 | 0.00537053001039866 | +| Epoch_0_batch_5999.pt | 0.7623333333333333 | 0.00561193613296639 | +| Epoch_0_batch_2999.pt | 0.5131666666666668 | 0.004833333333333333 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..716edbf8efdc7c731f990da3742facdc2b7879d6 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/accu_cplfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.8856666666666666 | 0.005551109331909688 | +| Epoch_14_batch_2999.pt | 0.8853333333333333 | 0.005734883511361748 | +| Epoch_17_batch_5999.pt | 0.8845000000000001 | 0.005352108157389486 | +| Epoch_16.pt | 0.8845000000000001 | 0.005544711639075007 | +| Epoch_15.pt | 0.8845000000000001 | 0.005714665992637489 | +| Epoch_16_batch_5999.pt | 0.8843333333333334 | 0.0054557705320848505 | +| Epoch_14_batch_5999.pt | 0.8836666666666668 | 0.005408041566061312 | +| Epoch_15_batch_5999.pt | 0.8835 | 0.005462837412242163 | +| Epoch_15_batch_2999.pt | 0.8835 | 0.00569518965313581 | +| Epoch_16_batch_2999.pt | 0.8833333333333334 | 0.005555555555555556 | +| Epoch_14.pt | 0.8831666666666667 | 0.005290627632024463 | +| Epoch_13_batch_5999.pt | 0.8823333333333332 | 0.0052422782720379785 | +| Epoch_17_batch_2999.pt | 0.8823333333333332 | 0.00537024265493092 | +| Epoch_12.pt | 0.8818333333333334 | 0.005684340629753082 | +| Epoch_13.pt | 0.8816666666666666 | 0.005465943944999482 | +| Epoch_13_batch_2999.pt | 0.8803333333333334 | 0.0052044615238357175 | +| Epoch_12_batch_2999.pt | 0.8796666666666667 | 0.0057133156143033 | +| Epoch_11_batch_2999.pt | 0.8795 | 0.005200011870831654 | +| Epoch_11.pt | 0.8793333333333333 | 0.00571547606649408 | +| Epoch_9.pt | 0.8788333333333334 | 0.005826980667867682 | +| Epoch_10.pt | 0.8788333333333334 | 0.005499999999999995 | +| Epoch_11_batch_5999.pt | 0.8781666666666667 | 0.0056734708604996185 | +| Epoch_12_batch_5999.pt | 0.8778333333333335 | 0.005352108157389483 | +| Epoch_9_batch_2999.pt | 0.8776666666666667 | 0.004741464065189298 | +| Epoch_10_batch_2999.pt | 0.8773333333333333 | 0.005715476066494082 | +| Epoch_9_batch_5999.pt | 0.8770000000000001 | 0.005593205754956988 | +| Epoch_7.pt | 0.8766666666666666 | 0.004950370979987884 | +| Epoch_10_batch_5999.pt | 0.8758333333333335 | 0.00524845656324755 | +| Epoch_8_batch_5999.pt | 0.8755000000000001 | 0.005369380496256552 | +| Epoch_8.pt | 0.875 | 0.005978356023250932 | +| Epoch_7_batch_5999.pt | 0.8741666666666668 | 0.004636476418601404 | +| Epoch_8_batch_2999.pt | 0.8734999999999999 | 0.004846087896565083 | +| Epoch_7_batch_2999.pt | 0.8728333333333333 | 0.005471869700997213 | +| Epoch_5.pt | 0.8693333333333333 | 0.00567754946268498 | +| Epoch_6_batch_5999.pt | 0.8673333333333334 | 0.004951617767812703 | +| Epoch_6.pt | 0.8673333333333334 | 0.005347204184673765 | +| Epoch_6_batch_2999.pt | 0.8658333333333333 | 0.005721143371869073 | +| Epoch_5_batch_2999.pt | 0.8638333333333333 | 0.006863078890108422 | +| Epoch_5_batch_5999.pt | 0.8626666666666667 | 0.0049203532945521124 | +| Epoch_4.pt | 0.8620000000000001 | 0.006544246365612095 | +| Epoch_4_batch_5999.pt | 0.8603333333333334 | 0.005920251913225428 | +| Epoch_3_batch_5999.pt | 0.8581666666666665 | 0.006153639894454119 | +| Epoch_3.pt | 0.8566666666666667 | 0.006974379922877868 | +| Epoch_4_batch_2999.pt | 0.8559999999999999 | 0.006315765107165472 | +| Epoch_2_batch_5999.pt | 0.85 | 0.006740333728045818 | +| Epoch_3_batch_2999.pt | 0.8460000000000001 | 0.00634501846011966 | +| Epoch_2.pt | 0.8403333333333333 | 0.007753135566408666 | +| Epoch_2_batch_2999.pt | 0.834 | 0.005461424767753113 | +| Epoch_1.pt | 0.8218333333333334 | 0.0067194668365802065 | +| Epoch_1_batch_5999.pt | 0.8153333333333332 | 0.00611515018036312 | +| Epoch_1_batch_2999.pt | 0.7763333333333333 | 0.007808668813695153 | +| Epoch_0.pt | 0.6738333333333333 | 0.009529194905948533 | +| Epoch_0_batch_5999.pt | 0.6609999999999999 | 0.009353153558104427 | +| Epoch_0_batch_2999.pt | 0.5210000000000001 | 0.004812535072823931 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..3ebdf5fd3102aae6c01335a2acc61888c1338fac --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_2999.pt | 0.9986666666666666 | 0.0005443310539518171 | +| Epoch_13_batch_5999.pt | 0.9984999999999999 | 0.000524110062892033 | +| Epoch_15.pt | 0.9984999999999999 | 0.0005800170282728065 | +| Epoch_16_batch_5999.pt | 0.9984999999999999 | 0.000524110062892033 | +| Epoch_13_batch_2999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_11_batch_2999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_12_batch_5999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_12.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_14_batch_5999.pt | 0.9983333333333334 | 0.0005555555555555536 | +| Epoch_14.pt | 0.9983333333333333 | 0.0005555555555555536 | +| Epoch_15_batch_5999.pt | 0.9983333333333333 | 0.0005555555555555536 | +| Epoch_14_batch_2999.pt | 0.9983333333333333 | 0.0005555555555555536 | +| Epoch_13.pt | 0.9983333333333333 | 0.0005555555555555536 | +| Epoch_17.pt | 0.9983333333333333 | 0.0005555555555555536 | +| Epoch_17_batch_5999.pt | 0.9983333333333333 | 0.0005555555555555536 | +| Epoch_16_batch_2999.pt | 0.9983333333333333 | 0.0005555555555555536 | +| Epoch_16.pt | 0.9983333333333333 | 0.0005555555555555536 | +| Epoch_17_batch_2999.pt | 0.9983333333333333 | 0.0005555555555555536 | +| Epoch_11.pt | 0.9983333333333333 | 0.0004969039949999524 | +| Epoch_8_batch_5999.pt | 0.9981666666666668 | 0.0005241100628920312 | +| Epoch_9.pt | 0.9981666666666668 | 0.0005241100628920312 | +| Epoch_10_batch_2999.pt | 0.9981666666666665 | 0.0005800170282728054 | +| Epoch_6_batch_5999.pt | 0.998 | 0.0005983516452371637 | +| Epoch_7_batch_5999.pt | 0.998 | 0.000544331053951814 | +| Epoch_10.pt | 0.998 | 0.000544331053951814 | +| Epoch_8.pt | 0.9978333333333333 | 0.0006596856715021059 | +| Epoch_10_batch_5999.pt | 0.9978333333333333 | 0.0005583264233956013 | +| Epoch_5.pt | 0.9978333333333333 | 0.0004999999999999959 | +| Epoch_6_batch_2999.pt | 0.9978333333333333 | 0.0006596856715021046 | +| Epoch_4.pt | 0.9978333333333333 | 0.0005583264233956013 | +| Epoch_12_batch_2999.pt | 0.9978333333333333 | 0.000611111111111109 | +| Epoch_4_batch_2999.pt | 0.9978333333333333 | 0.0006596856715021046 | +| Epoch_5_batch_5999.pt | 0.9978333333333333 | 0.0006596856715021046 | +| Epoch_3.pt | 0.9976666666666667 | 0.0007114582486036489 | +| Epoch_8_batch_2999.pt | 0.9976666666666667 | 0.0006186404847588889 | +| Epoch_9_batch_2999.pt | 0.9976666666666667 | 0.0006186404847588889 | +| Epoch_9_batch_5999.pt | 0.9976666666666667 | 0.0006186404847588889 | +| Epoch_6.pt | 0.9976666666666667 | 0.0006186404847588889 | +| Epoch_11_batch_5999.pt | 0.9976666666666667 | 0.0006186404847588889 | +| Epoch_7.pt | 0.9974999999999999 | 0.0007136240321480618 | +| Epoch_7_batch_2999.pt | 0.9974999999999999 | 0.0007136240321480632 | +| Epoch_3_batch_5999.pt | 0.9974999999999999 | 0.0007136240321480632 | +| Epoch_4_batch_5999.pt | 0.9973333333333333 | 0.0006186404847588889 | +| Epoch_5_batch_2999.pt | 0.9971666666666665 | 0.0005583264233956028 | +| Epoch_2_batch_5999.pt | 0.9968333333333333 | 0.0008031573497111664 | +| Epoch_2.pt | 0.9963333333333333 | 0.0009558139185602936 | +| Epoch_3_batch_2999.pt | 0.9963333333333333 | 0.0009558139185602873 | +| Epoch_2_batch_2999.pt | 0.9955 | 0.0008975274678557484 | +| Epoch_1_batch_5999.pt | 0.994 | 0.0010000000000000028 | +| Epoch_1.pt | 0.9938333333333335 | 0.0014497764834110998 | +| Epoch_1_batch_2999.pt | 0.9894999999999999 | 0.001572330188676104 | +| Epoch_0.pt | 0.9651666666666667 | 0.0027492984514797 | +| Epoch_0_batch_5999.pt | 0.9511666666666667 | 0.0038091021592048745 | +| Epoch_0_batch_2999.pt | 0.7126666666666666 | 0.006546132587402417 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/accu_megaface.txt b/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/accu_megaface.txt new file mode 100644 index 0000000000000000000000000000000000000000..2805140e4f6af6d9ad203dededcf52b447fe1ea4 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/accu_megaface.txt @@ -0,0 +1,14 @@ ++------+--------------------+ +| rank | accuracy | ++------+--------------------+ +| 1 | 0.9782990744236302 | +| 2 | 0.9840790450030592 | +| 3 | 0.9860642826457685 | +| 4 | 0.9872554252313941 | +| 5 | 0.9880039574573337 | +| 6 | 0.9886418370933517 | +| 7 | 0.9891885910670815 | +| 8 | 0.989592147571501 | +| 9 | 0.9899110873895102 | +| 10 | 0.9902039913040083 | ++------+--------------------+ diff --git a/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/backbone_conf.yaml b/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/backbone_conf.yaml new file mode 100644 index 0000000000000000000000000000000000000000..6af5e97b33060573c8adb6149d42e1c8c5ef513a --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/SwinTransformer_T/accu_files/backbone_conf.yaml @@ -0,0 +1,158 @@ +MobileFaceNet: + feat_dim: 512 + out_h: 7 + out_w: 7 + +ResNet: + depth: 152 + drop_ratio: 0.4 + net_mode: ir_se + feat_dim: 512 + out_h: 7 + out_w: 7 + +EfficientNet: + width: 1.0 + depth: 1.0 + image_size: 112 + drop_ratio: 0.2 + out_h: 7 + out_w: 7 + feat_dim: 512 + +HRNet: + NAME: cls_hrnet + out_h: 7 + out_w: 7 + feat_dim: 512 + IMAGE_SIZE: + - 112 + - 112 + EXTRA: + STAGE1: + NUM_MODULES: 1 + NUM_RANCHES: 1 + BLOCK: BOTTLENECK + NUM_BLOCKS: + - 4 + NUM_CHANNELS: + - 64 + FUSE_METHOD: SUM + STAGE2: + NUM_MODULES: 1 + NUM_BRANCHES: 2 + BLOCK: BASIC + NUM_BLOCKS: + - 4 + - 4 + NUM_CHANNELS: + - 18 + - 36 + FUSE_METHOD: SUM + STAGE3: + NUM_MODULES: 4 + NUM_BRANCHES: 3 + BLOCK: BASIC + NUM_BLOCKS: + - 4 + - 4 + - 4 + NUM_CHANNELS: + - 18 + - 36 + - 72 + FUSE_METHOD: SUM + STAGE4: + NUM_MODULES: 3 + NUM_BRANCHES: 4 + BLOCK: BASIC + NUM_BLOCKS: + - 4 + - 4 + - 4 + - 4 + NUM_CHANNELS: + - 18 + - 36 + - 72 + - 144 + FUSE_METHOD: SUM + +GhostNet: + width: 1.0 + drop_ratio: 0.2 + out_h: 7 + out_w: 7 + feat_dim: 512 + +AttentionNet: + stage1_modules: 1 + stage2_modules: 1 + stage3_modules: 1 + feat_dim: 512 + out_h: 7 + out_w: 7 + +TF-NAS: + feat_dim: 512 + drop_ratio: 0.2 + out_h: 7 + out_w: 7 + +ResNeSt: + depth: 50 + drop_ratio: 0.4 + feat_dim: 512 + out_h: 7 + out_w: 7 + +ReXNet: + input_ch: 16 + final_ch: 180 + width_mult: 1.0 + depth_mult: 1.0 + use_se: 0 + se_ratio: 12 + out_h: 7 + out_w: 7 + feat_dim: 512 + dropout_ratio: 0.2 + +LightCNN: + depth: 29 + out_h: 7 + out_w: 7 + feat_dim: 512 + dropout_ratio: 0.2 + +RepVGG: + blocks1: 4 + blocks2: 6 + blocks3: 16 + blocks4: 1 + width1: 2 + width2: 2 + width3: 2 + width4: 4 + out_h: 7 + out_w: 7 + feat_dim: 512 +SwinTransformer: + img_size: 224 + patch_size: 4 + in_chans: 3 + embed_dim: 96 + depths: + - 2 + - 2 + - 6 + - 2 + num_heads: + - 3 + - 6 + - 12 + - 24 + window_size: 7 + mlp_ratio: 4.0 + drop_rate: 0.0 + drop_path_rate: 0.2 \ No newline at end of file diff --git a/bob/bio/facexzoo/models/backbones/SwinTransformer_T/log.log_ b/bob/bio/facexzoo/models/backbones/SwinTransformer_T/log.log_ new file mode 100644 index 0000000000000000000000000000000000000000..9e2452b06e3deacfa16cb0c82c1fc312940092f1 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/SwinTransformer_T/log.log_ @@ -0,0 +1,871 @@ +Use GPU: 2 for training +Use GPU: 3 for training +Use GPU: 0 for training +Use GPU: 1 for training +backbone param: +{'img_size': 224, 'patch_size': 4, 'in_chans': 3, 'embed_dim': 96, 'depths': [2, 2, 6, 2], 'num_heads': [3, 6, 12, 24], 'window_size': 7, 'mlp_ratio': 4.0, 'drop_rate': 0.0, 'drop_path_rate': 0.2} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +backbone param: +{'img_size': 224, 'patch_size': 4, 'in_chans': 3, 'embed_dim': 96, 'depths': [2, 2, 6, 2], 'num_heads': [3, 6, 12, 24], 'window_size': 7, 'mlp_ratio': 4.0, 'drop_rate': 0.0, 'drop_path_rate': 0.2} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +backbone param: +{'img_size': 224, 'patch_size': 4, 'in_chans': 3, 'embed_dim': 96, 'depths': [2, 2, 6, 2], 'num_heads': [3, 6, 12, 24], 'window_size': 7, 'mlp_ratio': 4.0, 'drop_rate': 0.0, 'drop_path_rate': 0.2} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +backbone param: +{'img_size': 224, 'patch_size': 4, 'in_chans': 3, 'embed_dim': 96, 'depths': [2, 2, 6, 2], 'num_heads': [3, 6, 12, 24], 'window_size': 7, 'mlp_ratio': 4.0, 'drop_rate': 0.0, 'drop_path_rate': 0.2} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +Selected optimization level O1: Insert automatic casts around Pytorch functions and Tensor methods. + +Defaults for this optimization level are: +enabled : True +opt_level : O1 +cast_model_type : None +patch_torch_functions : True +keep_batchnorm_fp32 : None +master_weights : None +loss_scale : dynamic +Processing user overrides (additional kwargs that are not None)... +After processing overrides, optimization options are: +enabled : True +opt_level : O1 +cast_model_type : None +patch_torch_functions : True +keep_batchnorm_fp32 : None +master_weights : None +loss_scale : dynamic +INFO 2021-10-27 19:45:30 train.py: 89] Epoch 0, iter 0/6416, lr 0.000000, loss 16.308924 +INFO 2021-10-27 19:45:30 distributed.py: 607] Reducer buckets have been rebuilt in this iteration. +INFO 2021-10-27 19:45:30 distributed.py: 607] Reducer buckets have been rebuilt in this iteration. +INFO 2021-10-27 19:45:30 distributed.py: 607] Reducer buckets have been rebuilt in this iteration. +INFO 2021-10-27 19:45:30 distributed.py: 607] Reducer buckets have been rebuilt in this iteration. +INFO 2021-10-27 19:49:00 train.py: 89] Epoch 0, iter 200/6416, lr 0.000016, loss 16.205033 +INFO 2021-10-27 19:52:43 train.py: 89] Epoch 0, iter 400/6416, lr 0.000032, loss 15.805516 +INFO 2021-10-27 20:02:18 train.py: 89] Epoch 0, iter 600/6416, lr 0.000047, loss 15.338665 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +INFO 2021-10-27 20:10:37 train.py: 89] Epoch 0, iter 800/6416, lr 0.000063, loss 15.030042 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +INFO 2021-10-27 20:19:06 train.py: 89] Epoch 0, iter 1000/6416, lr 0.000078, loss 14.953949 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 4096.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 4096.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 4096.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 4096.0 +INFO 2021-10-27 20:28:00 train.py: 89] Epoch 0, iter 1200/6416, lr 0.000094, loss 14.956697 +INFO 2021-10-27 20:36:02 train.py: 89] Epoch 0, iter 1400/6416, lr 0.000109, loss 14.965466 +INFO 2021-10-27 20:44:48 train.py: 89] Epoch 0, iter 1600/6416, lr 0.000125, loss 14.979692 +INFO 2021-10-27 20:52:39 train.py: 89] Epoch 0, iter 1800/6416, lr 0.000141, loss 14.992545 +INFO 2021-10-27 21:01:05 train.py: 89] Epoch 0, iter 2000/6416, lr 0.000156, loss 14.996153 +INFO 2021-10-27 21:09:37 train.py: 89] Epoch 0, iter 2200/6416, lr 0.000172, loss 15.012541 +INFO 2021-10-27 21:17:55 train.py: 89] Epoch 0, iter 2400/6416, lr 0.000187, loss 14.999665 +INFO 2021-10-27 21:26:33 train.py: 89] Epoch 0, iter 2600/6416, lr 0.000203, loss 14.988519 +INFO 2021-10-27 21:35:05 train.py: 89] Epoch 0, iter 2800/6416, lr 0.000218, loss 14.942005 +INFO 2021-10-27 21:43:07 train.py: 101] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2021-10-27 21:43:08 train.py: 89] Epoch 0, iter 3000/6416, lr 0.000234, loss 14.865995 +INFO 2021-10-27 21:51:16 train.py: 89] Epoch 0, iter 3200/6416, lr 0.000250, loss 14.720523 +INFO 2021-10-27 21:59:47 train.py: 89] Epoch 0, iter 3400/6416, lr 0.000265, loss 14.571263 +INFO 2021-10-27 22:07:55 train.py: 89] Epoch 0, iter 3600/6416, lr 0.000281, loss 14.371213 +INFO 2021-10-27 22:16:10 train.py: 89] Epoch 0, iter 3800/6416, lr 0.000296, loss 14.128887 +INFO 2021-10-27 22:24:19 train.py: 89] Epoch 0, iter 4000/6416, lr 0.000312, loss 13.889157 +INFO 2021-10-27 22:32:54 train.py: 89] Epoch 0, iter 4200/6416, lr 0.000327, loss 13.596615 +INFO 2021-10-27 22:41:09 train.py: 89] Epoch 0, iter 4400/6416, lr 0.000343, loss 13.282345 +INFO 2021-10-27 22:49:16 train.py: 89] Epoch 0, iter 4600/6416, lr 0.000359, loss 12.950714 +INFO 2021-10-27 22:57:55 train.py: 89] Epoch 0, iter 4800/6416, lr 0.000374, loss 12.586951 +INFO 2021-10-27 23:06:24 train.py: 89] Epoch 0, iter 5000/6416, lr 0.000390, loss 12.181788 +INFO 2021-10-27 23:14:45 train.py: 89] Epoch 0, iter 5200/6416, lr 0.000405, loss 11.810964 +INFO 2021-10-27 23:23:25 train.py: 89] Epoch 0, iter 5400/6416, lr 0.000421, loss 11.537682 +INFO 2021-10-27 23:31:45 train.py: 89] Epoch 0, iter 5600/6416, lr 0.000436, loss 11.368209 +INFO 2021-10-27 23:40:32 train.py: 89] Epoch 0, iter 5800/6416, lr 0.000452, loss 11.323373 +INFO 2021-10-27 23:48:40 train.py: 101] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2021-10-27 23:48:41 train.py: 89] Epoch 0, iter 6000/6416, lr 0.000468, loss 11.393962 +INFO 2021-10-27 23:57:36 train.py: 89] Epoch 0, iter 6200/6416, lr 0.000483, loss 11.585024 +INFO 2021-10-28 00:05:37 train.py: 89] Epoch 0, iter 6400/6416, lr 0.000499, loss 11.859979 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 +INFO 2021-10-28 00:06:15 train.py: 108] Save checkpoint Epoch_0.pt to disk... +INFO 2021-10-28 00:06:16 train.py: 89] Epoch 1, iter 0/6416, lr 0.000496, loss 11.960120 +INFO 2021-10-28 00:09:44 train.py: 89] Epoch 1, iter 200/6416, lr 0.000496, loss 12.161499 +INFO 2021-10-28 00:13:11 train.py: 89] Epoch 1, iter 400/6416, lr 0.000496, loss 12.452237 +INFO 2021-10-28 00:16:38 train.py: 89] Epoch 1, iter 600/6416, lr 0.000496, loss 12.631589 +INFO 2021-10-28 00:20:04 train.py: 89] Epoch 1, iter 800/6416, lr 0.000495, loss 12.769428 +INFO 2021-10-28 00:23:30 train.py: 89] Epoch 1, iter 1000/6416, lr 0.000495, loss 12.910998 +INFO 2021-10-28 00:26:54 train.py: 89] Epoch 1, iter 1200/6416, lr 0.000495, loss 12.902616 +INFO 2021-10-28 00:30:17 train.py: 89] Epoch 1, iter 1400/6416, lr 0.000494, loss 12.860602 +INFO 2021-10-28 00:33:40 train.py: 89] Epoch 1, iter 1600/6416, lr 0.000494, loss 12.762770 +INFO 2021-10-28 00:37:02 train.py: 89] Epoch 1, iter 1800/6416, lr 0.000494, loss 12.690929 +INFO 2021-10-28 00:40:24 train.py: 89] Epoch 1, iter 2000/6416, lr 0.000494, loss 12.452563 +INFO 2021-10-28 00:43:44 train.py: 89] Epoch 1, iter 2200/6416, lr 0.000493, loss 12.270658 +INFO 2021-10-28 00:47:06 train.py: 89] Epoch 1, iter 2400/6416, lr 0.000493, loss 12.026586 +INFO 2021-10-28 00:50:28 train.py: 89] Epoch 1, iter 2600/6416, lr 0.000493, loss 11.823563 +INFO 2021-10-28 00:53:49 train.py: 89] Epoch 1, iter 2800/6416, lr 0.000492, loss 11.601190 +INFO 2021-10-28 00:57:10 train.py: 101] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2021-10-28 00:57:11 train.py: 89] Epoch 1, iter 3000/6416, lr 0.000492, loss 11.326194 +INFO 2021-10-28 01:00:31 train.py: 89] Epoch 1, iter 3200/6416, lr 0.000492, loss 11.030585 +INFO 2021-10-28 01:03:50 train.py: 89] Epoch 1, iter 3400/6416, lr 0.000491, loss 10.827321 +INFO 2021-10-28 01:07:10 train.py: 89] Epoch 1, iter 3600/6416, lr 0.000491, loss 10.609490 +INFO 2021-10-28 01:10:29 train.py: 89] Epoch 1, iter 3800/6416, lr 0.000491, loss 10.353394 +INFO 2021-10-28 01:13:49 train.py: 89] Epoch 1, iter 4000/6416, lr 0.000490, loss 10.128440 +INFO 2021-10-28 01:17:09 train.py: 89] Epoch 1, iter 4200/6416, lr 0.000490, loss 9.852172 +INFO 2021-10-28 01:20:31 train.py: 89] Epoch 1, iter 4400/6416, lr 0.000489, loss 9.687043 +INFO 2021-10-28 01:23:49 train.py: 89] Epoch 1, iter 4600/6416, lr 0.000489, loss 9.468055 +INFO 2021-10-28 01:27:11 train.py: 89] Epoch 1, iter 4800/6416, lr 0.000489, loss 9.270857 +INFO 2021-10-28 01:30:33 train.py: 89] Epoch 1, iter 5000/6416, lr 0.000488, loss 9.079371 +INFO 2021-10-28 01:33:54 train.py: 89] Epoch 1, iter 5200/6416, lr 0.000488, loss 8.894046 +INFO 2021-10-28 01:37:14 train.py: 89] Epoch 1, iter 5400/6416, lr 0.000487, loss 8.731286 +INFO 2021-10-28 01:40:35 train.py: 89] Epoch 1, iter 5600/6416, lr 0.000487, loss 8.599285 +INFO 2021-10-28 01:43:57 train.py: 89] Epoch 1, iter 5800/6416, lr 0.000486, loss 8.439380 +INFO 2021-10-28 01:47:18 train.py: 101] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2021-10-28 01:47:19 train.py: 89] Epoch 1, iter 6000/6416, lr 0.000486, loss 8.233267 +INFO 2021-10-28 01:50:40 train.py: 89] Epoch 1, iter 6200/6416, lr 0.000486, loss 8.157759 +INFO 2021-10-28 01:54:01 train.py: 89] Epoch 1, iter 6400/6416, lr 0.000485, loss 7.971182 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-28 01:54:17 train.py: 108] Save checkpoint Epoch_1.pt to disk... +INFO 2021-10-28 01:54:18 train.py: 89] Epoch 2, iter 0/6416, lr 0.000485, loss 7.945005 +INFO 2021-10-28 01:57:38 train.py: 89] Epoch 2, iter 200/6416, lr 0.000485, loss 7.874197 +INFO 2021-10-28 02:00:59 train.py: 89] Epoch 2, iter 400/6416, lr 0.000484, loss 7.727359 +INFO 2021-10-28 02:04:18 train.py: 89] Epoch 2, iter 600/6416, lr 0.000484, loss 7.657552 +INFO 2021-10-28 02:07:38 train.py: 89] Epoch 2, iter 800/6416, lr 0.000483, loss 7.560459 +INFO 2021-10-28 02:10:58 train.py: 89] Epoch 2, iter 1000/6416, lr 0.000483, loss 7.466606 +INFO 2021-10-28 02:14:19 train.py: 89] Epoch 2, iter 1200/6416, lr 0.000482, loss 7.344927 +INFO 2021-10-28 02:17:41 train.py: 89] Epoch 2, iter 1400/6416, lr 0.000482, loss 7.279073 +INFO 2021-10-28 02:21:02 train.py: 89] Epoch 2, iter 1600/6416, lr 0.000481, loss 7.179081 +INFO 2021-10-28 02:24:22 train.py: 89] Epoch 2, iter 1800/6416, lr 0.000481, loss 7.030001 +INFO 2021-10-28 02:27:43 train.py: 89] Epoch 2, iter 2000/6416, lr 0.000480, loss 6.925757 +INFO 2021-10-28 02:31:02 train.py: 89] Epoch 2, iter 2200/6416, lr 0.000480, loss 6.895507 +INFO 2021-10-28 02:34:20 train.py: 89] Epoch 2, iter 2400/6416, lr 0.000479, loss 6.804717 +INFO 2021-10-28 02:37:39 train.py: 89] Epoch 2, iter 2600/6416, lr 0.000479, loss 6.774853 +INFO 2021-10-28 02:40:59 train.py: 89] Epoch 2, iter 2800/6416, lr 0.000478, loss 6.731346 +INFO 2021-10-28 02:44:19 train.py: 101] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2021-10-28 02:44:20 train.py: 89] Epoch 2, iter 3000/6416, lr 0.000477, loss 6.601882 +INFO 2021-10-28 02:47:39 train.py: 89] Epoch 2, iter 3200/6416, lr 0.000477, loss 6.513037 +INFO 2021-10-28 02:50:58 train.py: 89] Epoch 2, iter 3400/6416, lr 0.000476, loss 6.489415 +INFO 2021-10-28 02:54:18 train.py: 89] Epoch 2, iter 3600/6416, lr 0.000476, loss 6.449724 +INFO 2021-10-28 02:57:37 train.py: 89] Epoch 2, iter 3800/6416, lr 0.000475, loss 6.345946 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +INFO 2021-10-28 03:00:57 train.py: 89] Epoch 2, iter 4000/6416, lr 0.000475, loss 6.313829 +INFO 2021-10-28 03:04:16 train.py: 89] Epoch 2, iter 4200/6416, lr 0.000474, loss 6.215627 +INFO 2021-10-28 03:07:34 train.py: 89] Epoch 2, iter 4400/6416, lr 0.000473, loss 6.190373 +INFO 2021-10-28 03:10:54 train.py: 89] Epoch 2, iter 4600/6416, lr 0.000473, loss 6.158196 +INFO 2021-10-28 03:14:13 train.py: 89] Epoch 2, iter 4800/6416, lr 0.000472, loss 6.060778 +INFO 2021-10-28 03:17:32 train.py: 89] Epoch 2, iter 5000/6416, lr 0.000471, loss 6.031413 +INFO 2021-10-28 03:20:52 train.py: 89] Epoch 2, iter 5200/6416, lr 0.000471, loss 5.983041 +INFO 2021-10-28 03:24:12 train.py: 89] Epoch 2, iter 5400/6416, lr 0.000470, loss 5.902842 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-28 03:27:31 train.py: 89] Epoch 2, iter 5600/6416, lr 0.000470, loss 5.901454 +INFO 2021-10-28 03:30:51 train.py: 89] Epoch 2, iter 5800/6416, lr 0.000469, loss 5.850066 +INFO 2021-10-28 03:34:11 train.py: 101] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2021-10-28 03:34:12 train.py: 89] Epoch 2, iter 6000/6416, lr 0.000468, loss 5.772196 +INFO 2021-10-28 03:37:31 train.py: 89] Epoch 2, iter 6200/6416, lr 0.000468, loss 5.763667 +INFO 2021-10-28 03:40:50 train.py: 89] Epoch 2, iter 6400/6416, lr 0.000467, loss 5.689551 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +INFO 2021-10-28 03:41:06 train.py: 108] Save checkpoint Epoch_2.pt to disk... +INFO 2021-10-28 03:41:07 train.py: 89] Epoch 3, iter 0/6416, lr 0.000467, loss 5.721676 +INFO 2021-10-28 03:44:26 train.py: 89] Epoch 3, iter 200/6416, lr 0.000466, loss 5.679465 +INFO 2021-10-28 03:47:45 train.py: 89] Epoch 3, iter 400/6416, lr 0.000465, loss 5.610471 +INFO 2021-10-28 03:51:05 train.py: 89] Epoch 3, iter 600/6416, lr 0.000465, loss 5.618477 +INFO 2021-10-28 03:54:25 train.py: 89] Epoch 3, iter 800/6416, lr 0.000464, loss 5.579800 +INFO 2021-10-28 03:57:45 train.py: 89] Epoch 3, iter 1000/6416, lr 0.000463, loss 5.564950 +INFO 2021-10-28 04:01:07 train.py: 89] Epoch 3, iter 1200/6416, lr 0.000463, loss 5.478641 +INFO 2021-10-28 04:04:28 train.py: 89] Epoch 3, iter 1400/6416, lr 0.000462, loss 5.480149 +INFO 2021-10-28 04:07:48 train.py: 89] Epoch 3, iter 1600/6416, lr 0.000461, loss 5.442156 +INFO 2021-10-28 04:11:08 train.py: 89] Epoch 3, iter 1800/6416, lr 0.000461, loss 5.344044 +INFO 2021-10-28 04:14:30 train.py: 89] Epoch 3, iter 2000/6416, lr 0.000460, loss 5.308675 +INFO 2021-10-28 04:17:49 train.py: 89] Epoch 3, iter 2200/6416, lr 0.000459, loss 5.287351 +INFO 2021-10-28 04:21:08 train.py: 89] Epoch 3, iter 2400/6416, lr 0.000458, loss 5.278140 +INFO 2021-10-28 04:24:28 train.py: 89] Epoch 3, iter 2600/6416, lr 0.000458, loss 5.264993 +INFO 2021-10-28 04:27:47 train.py: 89] Epoch 3, iter 2800/6416, lr 0.000457, loss 5.252692 +INFO 2021-10-28 04:31:06 train.py: 101] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2021-10-28 04:31:07 train.py: 89] Epoch 3, iter 3000/6416, lr 0.000456, loss 5.195883 +INFO 2021-10-28 04:34:26 train.py: 89] Epoch 3, iter 3200/6416, lr 0.000455, loss 5.144471 +INFO 2021-10-28 04:37:45 train.py: 89] Epoch 3, iter 3400/6416, lr 0.000454, loss 5.122191 +INFO 2021-10-28 04:41:05 train.py: 89] Epoch 3, iter 3600/6416, lr 0.000454, loss 5.127404 +INFO 2021-10-28 04:44:25 train.py: 89] Epoch 3, iter 3800/6416, lr 0.000453, loss 5.040150 +INFO 2021-10-28 04:47:45 train.py: 89] Epoch 3, iter 4000/6416, lr 0.000452, loss 5.053704 +INFO 2021-10-28 04:51:06 train.py: 89] Epoch 3, iter 4200/6416, lr 0.000451, loss 5.003899 +INFO 2021-10-28 04:54:26 train.py: 89] Epoch 3, iter 4400/6416, lr 0.000451, loss 4.972808 +INFO 2021-10-28 04:57:46 train.py: 89] Epoch 3, iter 4600/6416, lr 0.000450, loss 4.966010 +INFO 2021-10-28 05:01:06 train.py: 89] Epoch 3, iter 4800/6416, lr 0.000449, loss 4.902362 +INFO 2021-10-28 05:04:26 train.py: 89] Epoch 3, iter 5000/6416, lr 0.000448, loss 4.902580 +INFO 2021-10-28 05:07:47 train.py: 89] Epoch 3, iter 5200/6416, lr 0.000447, loss 4.894835 +INFO 2021-10-28 05:11:06 train.py: 89] Epoch 3, iter 5400/6416, lr 0.000446, loss 4.813634 +INFO 2021-10-28 05:14:26 train.py: 89] Epoch 3, iter 5600/6416, lr 0.000446, loss 4.815355 +INFO 2021-10-28 05:17:47 train.py: 89] Epoch 3, iter 5800/6416, lr 0.000445, loss 4.802002 +INFO 2021-10-28 05:21:08 train.py: 101] Save checkpoint Epoch_3_batch_5999.pt to disk. +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +INFO 2021-10-28 05:21:09 train.py: 89] Epoch 3, iter 6000/6416, lr 0.000444, loss 4.739605 +INFO 2021-10-28 05:24:28 train.py: 89] Epoch 3, iter 6200/6416, lr 0.000443, loss 4.760175 +INFO 2021-10-28 05:27:48 train.py: 89] Epoch 3, iter 6400/6416, lr 0.000442, loss 4.738929 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-28 05:28:04 train.py: 108] Save checkpoint Epoch_3.pt to disk... +INFO 2021-10-28 05:28:06 train.py: 89] Epoch 4, iter 0/6416, lr 0.000442, loss 4.712062 +INFO 2021-10-28 05:31:26 train.py: 89] Epoch 4, iter 200/6416, lr 0.000441, loss 4.701935 +INFO 2021-10-28 05:34:47 train.py: 89] Epoch 4, iter 400/6416, lr 0.000440, loss 4.674354 +INFO 2021-10-28 05:38:05 train.py: 89] Epoch 4, iter 600/6416, lr 0.000439, loss 4.697434 +INFO 2021-10-28 05:41:26 train.py: 89] Epoch 4, iter 800/6416, lr 0.000439, loss 4.677425 +INFO 2021-10-28 05:44:46 train.py: 89] Epoch 4, iter 1000/6416, lr 0.000438, loss 4.665173 +INFO 2021-10-28 05:48:05 train.py: 89] Epoch 4, iter 1200/6416, lr 0.000437, loss 4.594268 +INFO 2021-10-28 05:51:28 train.py: 89] Epoch 4, iter 1400/6416, lr 0.000436, loss 4.593345 +INFO 2021-10-28 05:54:48 train.py: 89] Epoch 4, iter 1600/6416, lr 0.000435, loss 4.590036 +INFO 2021-10-28 05:58:08 train.py: 89] Epoch 4, iter 1800/6416, lr 0.000434, loss 4.499436 +INFO 2021-10-28 06:01:28 train.py: 89] Epoch 4, iter 2000/6416, lr 0.000433, loss 4.463434 +INFO 2021-10-28 06:04:47 train.py: 89] Epoch 4, iter 2200/6416, lr 0.000432, loss 4.499488 +INFO 2021-10-28 06:08:08 train.py: 89] Epoch 4, iter 2400/6416, lr 0.000431, loss 4.476484 +INFO 2021-10-28 06:11:27 train.py: 89] Epoch 4, iter 2600/6416, lr 0.000430, loss 4.474912 +INFO 2021-10-28 06:14:47 train.py: 89] Epoch 4, iter 2800/6416, lr 0.000429, loss 4.470611 +INFO 2021-10-28 06:18:08 train.py: 101] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2021-10-28 06:18:09 train.py: 89] Epoch 4, iter 3000/6416, lr 0.000428, loss 4.437052 +INFO 2021-10-28 06:21:27 train.py: 89] Epoch 4, iter 3200/6416, lr 0.000428, loss 4.383440 +INFO 2021-10-28 06:24:47 train.py: 89] Epoch 4, iter 3400/6416, lr 0.000427, loss 4.366967 +INFO 2021-10-28 06:28:08 train.py: 89] Epoch 4, iter 3600/6416, lr 0.000426, loss 4.397078 +INFO 2021-10-28 06:31:28 train.py: 89] Epoch 4, iter 3800/6416, lr 0.000425, loss 4.307374 +INFO 2021-10-28 06:34:46 train.py: 89] Epoch 4, iter 4000/6416, lr 0.000424, loss 4.333356 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +INFO 2021-10-28 06:38:05 train.py: 89] Epoch 4, iter 4200/6416, lr 0.000423, loss 4.299256 +INFO 2021-10-28 06:41:24 train.py: 89] Epoch 4, iter 4400/6416, lr 0.000422, loss 4.279603 +INFO 2021-10-28 06:44:44 train.py: 89] Epoch 4, iter 4600/6416, lr 0.000421, loss 4.297715 +INFO 2021-10-28 06:48:03 train.py: 89] Epoch 4, iter 4800/6416, lr 0.000420, loss 4.235661 +INFO 2021-10-28 06:51:26 train.py: 89] Epoch 4, iter 5000/6416, lr 0.000419, loss 4.245424 +INFO 2021-10-28 06:54:46 train.py: 89] Epoch 4, iter 5200/6416, lr 0.000418, loss 4.227683 +INFO 2021-10-28 06:58:06 train.py: 89] Epoch 4, iter 5400/6416, lr 0.000417, loss 4.168996 +INFO 2021-10-28 07:01:26 train.py: 89] Epoch 4, iter 5600/6416, lr 0.000416, loss 4.189912 +INFO 2021-10-28 07:04:45 train.py: 89] Epoch 4, iter 5800/6416, lr 0.000415, loss 4.156153 +INFO 2021-10-28 07:08:05 train.py: 101] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2021-10-28 07:08:06 train.py: 89] Epoch 4, iter 6000/6416, lr 0.000414, loss 4.144393 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +INFO 2021-10-28 07:11:26 train.py: 89] Epoch 4, iter 6200/6416, lr 0.000413, loss 4.149570 +INFO 2021-10-28 07:14:46 train.py: 89] Epoch 4, iter 6400/6416, lr 0.000412, loss 4.118135 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-28 07:15:02 train.py: 108] Save checkpoint Epoch_4.pt to disk... +INFO 2021-10-28 07:15:03 train.py: 89] Epoch 5, iter 0/6416, lr 0.000412, loss 4.106445 +INFO 2021-10-28 07:18:23 train.py: 89] Epoch 5, iter 200/6416, lr 0.000411, loss 4.103658 +INFO 2021-10-28 07:21:43 train.py: 89] Epoch 5, iter 400/6416, lr 0.000410, loss 4.069567 +INFO 2021-10-28 07:25:02 train.py: 89] Epoch 5, iter 600/6416, lr 0.000408, loss 4.116186 +INFO 2021-10-28 07:28:22 train.py: 89] Epoch 5, iter 800/6416, lr 0.000407, loss 4.094658 +INFO 2021-10-28 07:31:41 train.py: 89] Epoch 5, iter 1000/6416, lr 0.000406, loss 4.083572 +INFO 2021-10-28 07:35:02 train.py: 89] Epoch 5, iter 1200/6416, lr 0.000405, loss 4.029658 +INFO 2021-10-28 07:38:21 train.py: 89] Epoch 5, iter 1400/6416, lr 0.000404, loss 4.022752 +INFO 2021-10-28 07:41:40 train.py: 89] Epoch 5, iter 1600/6416, lr 0.000403, loss 4.024136 +INFO 2021-10-28 07:45:00 train.py: 89] Epoch 5, iter 1800/6416, lr 0.000402, loss 3.950005 +INFO 2021-10-28 07:48:19 train.py: 89] Epoch 5, iter 2000/6416, lr 0.000401, loss 3.927258 +INFO 2021-10-28 07:51:38 train.py: 89] Epoch 5, iter 2200/6416, lr 0.000400, loss 3.961413 +INFO 2021-10-28 07:54:57 train.py: 89] Epoch 5, iter 2400/6416, lr 0.000399, loss 3.932422 +INFO 2021-10-28 07:58:18 train.py: 89] Epoch 5, iter 2600/6416, lr 0.000398, loss 3.949419 +INFO 2021-10-28 08:01:39 train.py: 89] Epoch 5, iter 2800/6416, lr 0.000397, loss 3.934371 +INFO 2021-10-28 08:04:58 train.py: 101] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2021-10-28 08:04:59 train.py: 89] Epoch 5, iter 3000/6416, lr 0.000396, loss 3.913483 +INFO 2021-10-28 08:08:20 train.py: 89] Epoch 5, iter 3200/6416, lr 0.000395, loss 3.871430 +INFO 2021-10-28 08:11:38 train.py: 89] Epoch 5, iter 3400/6416, lr 0.000393, loss 3.881252 +INFO 2021-10-28 08:14:59 train.py: 89] Epoch 5, iter 3600/6416, lr 0.000392, loss 3.894050 +INFO 2021-10-28 08:18:18 train.py: 89] Epoch 5, iter 3800/6416, lr 0.000391, loss 3.827464 +INFO 2021-10-28 08:21:37 train.py: 89] Epoch 5, iter 4000/6416, lr 0.000390, loss 3.841538 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +INFO 2021-10-28 08:24:56 train.py: 89] Epoch 5, iter 4200/6416, lr 0.000389, loss 3.802447 +INFO 2021-10-28 08:28:15 train.py: 89] Epoch 5, iter 4400/6416, lr 0.000388, loss 3.790499 +INFO 2021-10-28 08:31:34 train.py: 89] Epoch 5, iter 4600/6416, lr 0.000387, loss 3.819048 +INFO 2021-10-28 08:34:53 train.py: 89] Epoch 5, iter 4800/6416, lr 0.000386, loss 3.738784 +INFO 2021-10-28 08:38:13 train.py: 89] Epoch 5, iter 5000/6416, lr 0.000384, loss 3.775999 +INFO 2021-10-28 08:41:33 train.py: 89] Epoch 5, iter 5200/6416, lr 0.000383, loss 3.751282 +INFO 2021-10-28 08:44:52 train.py: 89] Epoch 5, iter 5400/6416, lr 0.000382, loss 3.698726 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-28 08:48:12 train.py: 89] Epoch 5, iter 5600/6416, lr 0.000381, loss 3.717989 +INFO 2021-10-28 08:51:33 train.py: 89] Epoch 5, iter 5800/6416, lr 0.000380, loss 3.713844 +INFO 2021-10-28 08:54:54 train.py: 101] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2021-10-28 08:54:55 train.py: 89] Epoch 5, iter 6000/6416, lr 0.000379, loss 3.690298 +INFO 2021-10-28 08:58:15 train.py: 89] Epoch 5, iter 6200/6416, lr 0.000378, loss 3.697322 +INFO 2021-10-28 09:01:34 train.py: 89] Epoch 5, iter 6400/6416, lr 0.000376, loss 3.670910 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +INFO 2021-10-28 09:01:50 train.py: 108] Save checkpoint Epoch_5.pt to disk... +INFO 2021-10-28 09:01:51 train.py: 89] Epoch 6, iter 0/6416, lr 0.000376, loss 3.712390 +INFO 2021-10-28 09:05:11 train.py: 89] Epoch 6, iter 200/6416, lr 0.000375, loss 3.670777 +INFO 2021-10-28 09:08:31 train.py: 89] Epoch 6, iter 400/6416, lr 0.000374, loss 3.631060 +INFO 2021-10-28 09:11:50 train.py: 89] Epoch 6, iter 600/6416, lr 0.000373, loss 3.680791 +INFO 2021-10-28 09:15:10 train.py: 89] Epoch 6, iter 800/6416, lr 0.000372, loss 3.658321 +INFO 2021-10-28 09:18:29 train.py: 89] Epoch 6, iter 1000/6416, lr 0.000370, loss 3.655869 +INFO 2021-10-28 09:21:49 train.py: 89] Epoch 6, iter 1200/6416, lr 0.000369, loss 3.607072 +INFO 2021-10-28 09:25:08 train.py: 89] Epoch 6, iter 1400/6416, lr 0.000368, loss 3.594422 +INFO 2021-10-28 09:28:29 train.py: 89] Epoch 6, iter 1600/6416, lr 0.000367, loss 3.610397 +INFO 2021-10-28 09:31:48 train.py: 89] Epoch 6, iter 1800/6416, lr 0.000366, loss 3.553388 +INFO 2021-10-28 09:35:06 train.py: 89] Epoch 6, iter 2000/6416, lr 0.000364, loss 3.517313 +INFO 2021-10-28 09:38:25 train.py: 89] Epoch 6, iter 2200/6416, lr 0.000363, loss 3.547160 +INFO 2021-10-28 09:41:45 train.py: 89] Epoch 6, iter 2400/6416, lr 0.000362, loss 3.544881 +INFO 2021-10-28 09:45:04 train.py: 89] Epoch 6, iter 2600/6416, lr 0.000361, loss 3.546773 +INFO 2021-10-28 09:48:24 train.py: 89] Epoch 6, iter 2800/6416, lr 0.000360, loss 3.531729 +INFO 2021-10-28 09:51:44 train.py: 101] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2021-10-28 09:51:45 train.py: 89] Epoch 6, iter 3000/6416, lr 0.000358, loss 3.524637 +INFO 2021-10-28 09:55:04 train.py: 89] Epoch 6, iter 3200/6416, lr 0.000357, loss 3.478864 +INFO 2021-10-28 09:58:23 train.py: 89] Epoch 6, iter 3400/6416, lr 0.000356, loss 3.470553 +INFO 2021-10-28 10:01:42 train.py: 89] Epoch 6, iter 3600/6416, lr 0.000355, loss 3.496517 +INFO 2021-10-28 10:05:01 train.py: 89] Epoch 6, iter 3800/6416, lr 0.000353, loss 3.432307 +INFO 2021-10-28 10:08:21 train.py: 89] Epoch 6, iter 4000/6416, lr 0.000352, loss 3.446772 +INFO 2021-10-28 10:11:40 train.py: 89] Epoch 6, iter 4200/6416, lr 0.000351, loss 3.428196 +INFO 2021-10-28 10:14:58 train.py: 89] Epoch 6, iter 4400/6416, lr 0.000350, loss 3.412509 +INFO 2021-10-28 10:18:18 train.py: 89] Epoch 6, iter 4600/6416, lr 0.000349, loss 3.428365 +INFO 2021-10-28 10:21:38 train.py: 89] Epoch 6, iter 4800/6416, lr 0.000347, loss 3.372309 +INFO 2021-10-28 10:24:56 train.py: 89] Epoch 6, iter 5000/6416, lr 0.000346, loss 3.405291 +INFO 2021-10-28 10:28:15 train.py: 89] Epoch 6, iter 5200/6416, lr 0.000345, loss 3.384060 +INFO 2021-10-28 10:31:35 train.py: 89] Epoch 6, iter 5400/6416, lr 0.000344, loss 3.331648 +INFO 2021-10-28 10:34:55 train.py: 89] Epoch 6, iter 5600/6416, lr 0.000342, loss 3.351478 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-28 10:38:15 train.py: 89] Epoch 6, iter 5800/6416, lr 0.000341, loss 3.343926 +INFO 2021-10-28 10:41:34 train.py: 101] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2021-10-28 10:41:35 train.py: 89] Epoch 6, iter 6000/6416, lr 0.000340, loss 3.342539 +INFO 2021-10-28 10:44:54 train.py: 89] Epoch 6, iter 6200/6416, lr 0.000339, loss 3.323385 +INFO 2021-10-28 10:48:14 train.py: 89] Epoch 6, iter 6400/6416, lr 0.000337, loss 3.329841 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +INFO 2021-10-28 10:48:30 train.py: 108] Save checkpoint Epoch_6.pt to disk... +INFO 2021-10-28 10:48:31 train.py: 89] Epoch 7, iter 0/6416, lr 0.000337, loss 3.344971 +INFO 2021-10-28 10:51:50 train.py: 89] Epoch 7, iter 200/6416, lr 0.000336, loss 3.302571 +INFO 2021-10-28 10:55:11 train.py: 89] Epoch 7, iter 400/6416, lr 0.000335, loss 3.287852 +INFO 2021-10-28 10:58:30 train.py: 89] Epoch 7, iter 600/6416, lr 0.000333, loss 3.334028 +INFO 2021-10-28 11:01:48 train.py: 89] Epoch 7, iter 800/6416, lr 0.000332, loss 3.294619 +INFO 2021-10-28 11:05:06 train.py: 89] Epoch 7, iter 1000/6416, lr 0.000331, loss 3.302449 +INFO 2021-10-28 11:08:27 train.py: 89] Epoch 7, iter 1200/6416, lr 0.000330, loss 3.249785 +INFO 2021-10-28 11:11:46 train.py: 89] Epoch 7, iter 1400/6416, lr 0.000328, loss 3.255981 +INFO 2021-10-28 11:15:06 train.py: 89] Epoch 7, iter 1600/6416, lr 0.000327, loss 3.274777 +INFO 2021-10-28 11:18:26 train.py: 89] Epoch 7, iter 1800/6416, lr 0.000326, loss 3.203267 +INFO 2021-10-28 11:21:45 train.py: 89] Epoch 7, iter 2000/6416, lr 0.000324, loss 3.186509 +INFO 2021-10-28 11:25:06 train.py: 89] Epoch 7, iter 2200/6416, lr 0.000323, loss 3.229299 +INFO 2021-10-28 11:28:26 train.py: 89] Epoch 7, iter 2400/6416, lr 0.000322, loss 3.212539 +INFO 2021-10-28 11:31:46 train.py: 89] Epoch 7, iter 2600/6416, lr 0.000321, loss 3.215443 +INFO 2021-10-28 11:35:05 train.py: 89] Epoch 7, iter 2800/6416, lr 0.000319, loss 3.197864 +INFO 2021-10-28 11:38:25 train.py: 101] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2021-10-28 11:38:26 train.py: 89] Epoch 7, iter 3000/6416, lr 0.000318, loss 3.179902 +INFO 2021-10-28 11:41:44 train.py: 89] Epoch 7, iter 3200/6416, lr 0.000317, loss 3.153305 +INFO 2021-10-28 11:45:05 train.py: 89] Epoch 7, iter 3400/6416, lr 0.000315, loss 3.143844 +INFO 2021-10-28 11:48:25 train.py: 89] Epoch 7, iter 3600/6416, lr 0.000314, loss 3.175027 +INFO 2021-10-28 11:51:44 train.py: 89] Epoch 7, iter 3800/6416, lr 0.000313, loss 3.111098 +INFO 2021-10-28 11:55:04 train.py: 89] Epoch 7, iter 4000/6416, lr 0.000311, loss 3.121993 +INFO 2021-10-28 11:58:24 train.py: 89] Epoch 7, iter 4200/6416, lr 0.000310, loss 3.106656 +INFO 2021-10-28 12:01:44 train.py: 89] Epoch 7, iter 4400/6416, lr 0.000309, loss 3.091902 +INFO 2021-10-28 12:05:04 train.py: 89] Epoch 7, iter 4600/6416, lr 0.000307, loss 3.122038 +INFO 2021-10-28 12:08:23 train.py: 89] Epoch 7, iter 4800/6416, lr 0.000306, loss 3.055590 +INFO 2021-10-28 12:11:43 train.py: 89] Epoch 7, iter 5000/6416, lr 0.000305, loss 3.088864 +INFO 2021-10-28 12:15:03 train.py: 89] Epoch 7, iter 5200/6416, lr 0.000304, loss 3.074753 +INFO 2021-10-28 12:18:23 train.py: 89] Epoch 7, iter 5400/6416, lr 0.000302, loss 3.023677 +INFO 2021-10-28 12:21:42 train.py: 89] Epoch 7, iter 5600/6416, lr 0.000301, loss 3.042343 +INFO 2021-10-28 12:25:01 train.py: 89] Epoch 7, iter 5800/6416, lr 0.000300, loss 3.039879 +INFO 2021-10-28 12:28:20 train.py: 101] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2021-10-28 12:28:21 train.py: 89] Epoch 7, iter 6000/6416, lr 0.000298, loss 3.016025 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +INFO 2021-10-28 12:31:41 train.py: 89] Epoch 7, iter 6200/6416, lr 0.000297, loss 3.023507 +INFO 2021-10-28 12:34:59 train.py: 89] Epoch 7, iter 6400/6416, lr 0.000296, loss 3.021032 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-28 12:35:15 train.py: 108] Save checkpoint Epoch_7.pt to disk... +INFO 2021-10-28 12:35:16 train.py: 89] Epoch 8, iter 0/6416, lr 0.000295, loss 3.034137 +INFO 2021-10-28 12:38:36 train.py: 89] Epoch 8, iter 200/6416, lr 0.000294, loss 3.011912 +INFO 2021-10-28 12:41:55 train.py: 89] Epoch 8, iter 400/6416, lr 0.000293, loss 2.986379 +INFO 2021-10-28 12:45:16 train.py: 89] Epoch 8, iter 600/6416, lr 0.000291, loss 3.010782 +INFO 2021-10-28 12:48:37 train.py: 89] Epoch 8, iter 800/6416, lr 0.000290, loss 2.988311 +INFO 2021-10-28 12:51:57 train.py: 89] Epoch 8, iter 1000/6416, lr 0.000289, loss 2.996471 +INFO 2021-10-28 12:55:16 train.py: 89] Epoch 8, iter 1200/6416, lr 0.000287, loss 2.945526 +INFO 2021-10-28 12:58:36 train.py: 89] Epoch 8, iter 1400/6416, lr 0.000286, loss 2.957708 +INFO 2021-10-28 13:01:56 train.py: 89] Epoch 8, iter 1600/6416, lr 0.000285, loss 2.966754 +INFO 2021-10-28 13:05:14 train.py: 89] Epoch 8, iter 1800/6416, lr 0.000283, loss 2.917854 +INFO 2021-10-28 13:08:33 train.py: 89] Epoch 8, iter 2000/6416, lr 0.000282, loss 2.886562 +INFO 2021-10-28 13:11:52 train.py: 89] Epoch 8, iter 2200/6416, lr 0.000281, loss 2.930095 +INFO 2021-10-28 13:15:12 train.py: 89] Epoch 8, iter 2400/6416, lr 0.000279, loss 2.904232 +INFO 2021-10-28 13:18:31 train.py: 89] Epoch 8, iter 2600/6416, lr 0.000278, loss 2.918377 +INFO 2021-10-28 13:21:53 train.py: 89] Epoch 8, iter 2800/6416, lr 0.000277, loss 2.899135 +INFO 2021-10-28 13:25:14 train.py: 101] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2021-10-28 13:25:14 train.py: 89] Epoch 8, iter 3000/6416, lr 0.000275, loss 2.898554 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-28 13:28:35 train.py: 89] Epoch 8, iter 3200/6416, lr 0.000274, loss 2.866500 +INFO 2021-10-28 13:31:55 train.py: 89] Epoch 8, iter 3400/6416, lr 0.000273, loss 2.862508 +INFO 2021-10-28 13:35:14 train.py: 89] Epoch 8, iter 3600/6416, lr 0.000271, loss 2.878355 +INFO 2021-10-28 13:38:33 train.py: 89] Epoch 8, iter 3800/6416, lr 0.000270, loss 2.822844 +INFO 2021-10-28 13:41:52 train.py: 89] Epoch 8, iter 4000/6416, lr 0.000269, loss 2.858157 +INFO 2021-10-28 13:45:11 train.py: 89] Epoch 8, iter 4200/6416, lr 0.000267, loss 2.833464 +INFO 2021-10-28 13:48:31 train.py: 89] Epoch 8, iter 4400/6416, lr 0.000266, loss 2.814546 +INFO 2021-10-28 13:51:50 train.py: 89] Epoch 8, iter 4600/6416, lr 0.000265, loss 2.829329 +INFO 2021-10-28 13:55:09 train.py: 89] Epoch 8, iter 4800/6416, lr 0.000263, loss 2.787915 +INFO 2021-10-28 13:58:30 train.py: 89] Epoch 8, iter 5000/6416, lr 0.000262, loss 2.815309 +INFO 2021-10-28 14:01:48 train.py: 89] Epoch 8, iter 5200/6416, lr 0.000261, loss 2.797039 +INFO 2021-10-28 14:05:08 train.py: 89] Epoch 8, iter 5400/6416, lr 0.000259, loss 2.748207 +INFO 2021-10-28 14:08:27 train.py: 89] Epoch 8, iter 5600/6416, lr 0.000258, loss 2.782927 +INFO 2021-10-28 14:11:47 train.py: 89] Epoch 8, iter 5800/6416, lr 0.000257, loss 2.787326 +INFO 2021-10-28 14:15:08 train.py: 101] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2021-10-28 14:15:09 train.py: 89] Epoch 8, iter 6000/6416, lr 0.000255, loss 2.749455 +INFO 2021-10-28 14:18:29 train.py: 89] Epoch 8, iter 6200/6416, lr 0.000254, loss 2.739642 +INFO 2021-10-28 14:21:48 train.py: 89] Epoch 8, iter 6400/6416, lr 0.000253, loss 2.740048 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-28 14:22:04 train.py: 108] Save checkpoint Epoch_8.pt to disk... +INFO 2021-10-28 14:22:05 train.py: 89] Epoch 9, iter 0/6416, lr 0.000253, loss 2.784332 +INFO 2021-10-28 14:25:23 train.py: 89] Epoch 9, iter 200/6416, lr 0.000251, loss 2.744047 +INFO 2021-10-28 14:28:41 train.py: 89] Epoch 9, iter 400/6416, lr 0.000250, loss 2.712745 +INFO 2021-10-28 14:32:00 train.py: 89] Epoch 9, iter 600/6416, lr 0.000248, loss 2.746047 +INFO 2021-10-28 14:35:19 train.py: 89] Epoch 9, iter 800/6416, lr 0.000247, loss 2.714920 +INFO 2021-10-28 14:38:38 train.py: 89] Epoch 9, iter 1000/6416, lr 0.000246, loss 2.720971 +INFO 2021-10-28 14:41:58 train.py: 89] Epoch 9, iter 1200/6416, lr 0.000244, loss 2.686197 +INFO 2021-10-28 14:45:16 train.py: 89] Epoch 9, iter 1400/6416, lr 0.000243, loss 2.683106 +INFO 2021-10-28 14:48:37 train.py: 89] Epoch 9, iter 1600/6416, lr 0.000242, loss 2.693393 +INFO 2021-10-28 14:51:57 train.py: 89] Epoch 9, iter 1800/6416, lr 0.000240, loss 2.633042 +INFO 2021-10-28 14:55:16 train.py: 89] Epoch 9, iter 2000/6416, lr 0.000239, loss 2.633354 +INFO 2021-10-28 14:58:35 train.py: 89] Epoch 9, iter 2200/6416, lr 0.000238, loss 2.666727 +INFO 2021-10-28 15:01:54 train.py: 89] Epoch 9, iter 2400/6416, lr 0.000236, loss 2.643372 +INFO 2021-10-28 15:05:14 train.py: 89] Epoch 9, iter 2600/6416, lr 0.000235, loss 2.659169 +INFO 2021-10-28 15:08:34 train.py: 89] Epoch 9, iter 2800/6416, lr 0.000234, loss 2.636055 +INFO 2021-10-28 15:11:55 train.py: 101] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2021-10-28 15:11:56 train.py: 89] Epoch 9, iter 3000/6416, lr 0.000232, loss 2.627908 +INFO 2021-10-28 15:15:13 train.py: 89] Epoch 9, iter 3200/6416, lr 0.000231, loss 2.600309 +INFO 2021-10-28 15:18:33 train.py: 89] Epoch 9, iter 3400/6416, lr 0.000230, loss 2.605260 +INFO 2021-10-28 15:21:53 train.py: 89] Epoch 9, iter 3600/6416, lr 0.000228, loss 2.630783 +INFO 2021-10-28 15:25:13 train.py: 89] Epoch 9, iter 3800/6416, lr 0.000227, loss 2.553965 +INFO 2021-10-28 15:28:33 train.py: 89] Epoch 9, iter 4000/6416, lr 0.000226, loss 2.591634 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +INFO 2021-10-28 15:31:52 train.py: 89] Epoch 9, iter 4200/6416, lr 0.000224, loss 2.570424 +INFO 2021-10-28 15:35:11 train.py: 89] Epoch 9, iter 4400/6416, lr 0.000223, loss 2.543214 +INFO 2021-10-28 15:38:31 train.py: 89] Epoch 9, iter 4600/6416, lr 0.000222, loss 2.574642 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-28 15:41:50 train.py: 89] Epoch 9, iter 4800/6416, lr 0.000220, loss 2.524163 +INFO 2021-10-28 15:45:08 train.py: 89] Epoch 9, iter 5000/6416, lr 0.000219, loss 2.556397 +INFO 2021-10-28 15:48:28 train.py: 89] Epoch 9, iter 5200/6416, lr 0.000218, loss 2.530255 +INFO 2021-10-28 15:51:47 train.py: 89] Epoch 9, iter 5400/6416, lr 0.000216, loss 2.501259 +INFO 2021-10-28 15:55:08 train.py: 89] Epoch 9, iter 5600/6416, lr 0.000215, loss 2.529827 +INFO 2021-10-28 15:58:28 train.py: 89] Epoch 9, iter 5800/6416, lr 0.000214, loss 2.532809 +INFO 2021-10-28 16:01:48 train.py: 101] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2021-10-28 16:01:48 train.py: 89] Epoch 9, iter 6000/6416, lr 0.000212, loss 2.504846 +INFO 2021-10-28 16:05:06 train.py: 89] Epoch 9, iter 6200/6416, lr 0.000211, loss 2.493524 +INFO 2021-10-28 16:08:26 train.py: 89] Epoch 9, iter 6400/6416, lr 0.000210, loss 2.490000 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +INFO 2021-10-28 16:08:42 train.py: 108] Save checkpoint Epoch_9.pt to disk... +INFO 2021-10-28 16:08:43 train.py: 89] Epoch 10, iter 0/6416, lr 0.000210, loss 2.525472 +INFO 2021-10-28 16:12:03 train.py: 89] Epoch 10, iter 200/6416, lr 0.000208, loss 2.486344 +INFO 2021-10-28 16:15:23 train.py: 89] Epoch 10, iter 400/6416, lr 0.000207, loss 2.469940 +INFO 2021-10-28 16:18:43 train.py: 89] Epoch 10, iter 600/6416, lr 0.000206, loss 2.489966 +INFO 2021-10-28 16:22:02 train.py: 89] Epoch 10, iter 800/6416, lr 0.000204, loss 2.483110 +INFO 2021-10-28 16:25:22 train.py: 89] Epoch 10, iter 1000/6416, lr 0.000203, loss 2.486994 +INFO 2021-10-28 16:28:43 train.py: 89] Epoch 10, iter 1200/6416, lr 0.000202, loss 2.435380 +INFO 2021-10-28 16:32:02 train.py: 89] Epoch 10, iter 1400/6416, lr 0.000200, loss 2.439600 +INFO 2021-10-28 16:35:20 train.py: 89] Epoch 10, iter 1600/6416, lr 0.000199, loss 2.455162 +INFO 2021-10-28 16:38:40 train.py: 89] Epoch 10, iter 1800/6416, lr 0.000198, loss 2.405398 +INFO 2021-10-28 16:41:59 train.py: 89] Epoch 10, iter 2000/6416, lr 0.000196, loss 2.378120 +INFO 2021-10-28 16:45:18 train.py: 89] Epoch 10, iter 2200/6416, lr 0.000195, loss 2.420234 +INFO 2021-10-28 16:48:38 train.py: 89] Epoch 10, iter 2400/6416, lr 0.000194, loss 2.418369 +INFO 2021-10-28 16:51:58 train.py: 89] Epoch 10, iter 2600/6416, lr 0.000192, loss 2.414467 +INFO 2021-10-28 16:55:16 train.py: 89] Epoch 10, iter 2800/6416, lr 0.000191, loss 2.412433 +INFO 2021-10-28 16:58:36 train.py: 101] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2021-10-28 16:58:37 train.py: 89] Epoch 10, iter 3000/6416, lr 0.000190, loss 2.391040 +INFO 2021-10-28 17:01:55 train.py: 89] Epoch 10, iter 3200/6416, lr 0.000188, loss 2.360694 +INFO 2021-10-28 17:05:16 train.py: 89] Epoch 10, iter 3400/6416, lr 0.000187, loss 2.370609 +INFO 2021-10-28 17:08:35 train.py: 89] Epoch 10, iter 3600/6416, lr 0.000186, loss 2.376378 +INFO 2021-10-28 17:11:53 train.py: 89] Epoch 10, iter 3800/6416, lr 0.000185, loss 2.322251 +INFO 2021-10-28 17:15:13 train.py: 89] Epoch 10, iter 4000/6416, lr 0.000183, loss 2.361513 +INFO 2021-10-28 17:18:33 train.py: 89] Epoch 10, iter 4200/6416, lr 0.000182, loss 2.327074 +INFO 2021-10-28 17:21:52 train.py: 89] Epoch 10, iter 4400/6416, lr 0.000181, loss 2.309213 +INFO 2021-10-28 17:25:12 train.py: 89] Epoch 10, iter 4600/6416, lr 0.000179, loss 2.355231 +INFO 2021-10-28 17:28:32 train.py: 89] Epoch 10, iter 4800/6416, lr 0.000178, loss 2.307535 +INFO 2021-10-28 17:31:51 train.py: 89] Epoch 10, iter 5000/6416, lr 0.000177, loss 2.328193 +INFO 2021-10-28 17:35:11 train.py: 89] Epoch 10, iter 5200/6416, lr 0.000176, loss 2.297734 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-28 17:38:31 train.py: 89] Epoch 10, iter 5400/6416, lr 0.000174, loss 2.263825 +INFO 2021-10-28 17:41:50 train.py: 89] Epoch 10, iter 5600/6416, lr 0.000173, loss 2.282416 +INFO 2021-10-28 17:45:10 train.py: 89] Epoch 10, iter 5800/6416, lr 0.000172, loss 2.277420 +INFO 2021-10-28 17:48:29 train.py: 101] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2021-10-28 17:48:30 train.py: 89] Epoch 10, iter 6000/6416, lr 0.000170, loss 2.269950 +INFO 2021-10-28 17:51:51 train.py: 89] Epoch 10, iter 6200/6416, lr 0.000169, loss 2.250397 +INFO 2021-10-28 17:55:10 train.py: 89] Epoch 10, iter 6400/6416, lr 0.000168, loss 2.266215 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 +INFO 2021-10-28 17:55:26 train.py: 108] Save checkpoint Epoch_10.pt to disk... +INFO 2021-10-28 17:55:27 train.py: 89] Epoch 11, iter 0/6416, lr 0.000168, loss 2.287239 +INFO 2021-10-28 17:58:47 train.py: 89] Epoch 11, iter 200/6416, lr 0.000167, loss 2.263867 +INFO 2021-10-28 18:02:06 train.py: 89] Epoch 11, iter 400/6416, lr 0.000165, loss 2.240852 +INFO 2021-10-28 18:05:27 train.py: 89] Epoch 11, iter 600/6416, lr 0.000164, loss 2.262677 +INFO 2021-10-28 18:08:47 train.py: 89] Epoch 11, iter 800/6416, lr 0.000163, loss 2.248080 +INFO 2021-10-28 18:12:06 train.py: 89] Epoch 11, iter 1000/6416, lr 0.000162, loss 2.258660 +INFO 2021-10-28 18:15:25 train.py: 89] Epoch 11, iter 1200/6416, lr 0.000160, loss 2.210815 +INFO 2021-10-28 18:18:44 train.py: 89] Epoch 11, iter 1400/6416, lr 0.000159, loss 2.204155 +INFO 2021-10-28 18:22:03 train.py: 89] Epoch 11, iter 1600/6416, lr 0.000158, loss 2.227258 +INFO 2021-10-28 18:25:22 train.py: 89] Epoch 11, iter 1800/6416, lr 0.000157, loss 2.182560 +INFO 2021-10-28 18:28:41 train.py: 89] Epoch 11, iter 2000/6416, lr 0.000155, loss 2.170454 +INFO 2021-10-28 18:32:01 train.py: 89] Epoch 11, iter 2200/6416, lr 0.000154, loss 2.204617 +INFO 2021-10-28 18:35:20 train.py: 89] Epoch 11, iter 2400/6416, lr 0.000153, loss 2.170376 +INFO 2021-10-28 18:38:40 train.py: 89] Epoch 11, iter 2600/6416, lr 0.000152, loss 2.185701 +INFO 2021-10-28 18:41:59 train.py: 89] Epoch 11, iter 2800/6416, lr 0.000150, loss 2.184631 +INFO 2021-10-28 18:45:19 train.py: 101] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2021-10-28 18:45:20 train.py: 89] Epoch 11, iter 3000/6416, lr 0.000149, loss 2.170771 +INFO 2021-10-28 18:48:40 train.py: 89] Epoch 11, iter 3200/6416, lr 0.000148, loss 2.151940 +INFO 2021-10-28 18:52:00 train.py: 89] Epoch 11, iter 3400/6416, lr 0.000147, loss 2.139898 +INFO 2021-10-28 18:55:19 train.py: 89] Epoch 11, iter 3600/6416, lr 0.000146, loss 2.159178 +INFO 2021-10-28 18:58:39 train.py: 89] Epoch 11, iter 3800/6416, lr 0.000144, loss 2.116504 +INFO 2021-10-28 19:01:57 train.py: 89] Epoch 11, iter 4000/6416, lr 0.000143, loss 2.155296 +INFO 2021-10-28 19:05:17 train.py: 89] Epoch 11, iter 4200/6416, lr 0.000142, loss 2.114795 +INFO 2021-10-28 19:08:36 train.py: 89] Epoch 11, iter 4400/6416, lr 0.000141, loss 2.105746 +INFO 2021-10-28 19:11:56 train.py: 89] Epoch 11, iter 4600/6416, lr 0.000139, loss 2.129044 +INFO 2021-10-28 19:15:16 train.py: 89] Epoch 11, iter 4800/6416, lr 0.000138, loss 2.089457 +INFO 2021-10-28 19:18:36 train.py: 89] Epoch 11, iter 5000/6416, lr 0.000137, loss 2.097527 +INFO 2021-10-28 19:21:55 train.py: 89] Epoch 11, iter 5200/6416, lr 0.000136, loss 2.081058 +INFO 2021-10-28 19:25:15 train.py: 89] Epoch 11, iter 5400/6416, lr 0.000135, loss 2.052979 +INFO 2021-10-28 19:28:35 train.py: 89] Epoch 11, iter 5600/6416, lr 0.000134, loss 2.062901 +INFO 2021-10-28 19:31:55 train.py: 89] Epoch 11, iter 5800/6416, lr 0.000132, loss 2.059637 +INFO 2021-10-28 19:35:15 train.py: 101] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2021-10-28 19:35:16 train.py: 89] Epoch 11, iter 6000/6416, lr 0.000131, loss 2.049424 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +INFO 2021-10-28 19:38:36 train.py: 89] Epoch 11, iter 6200/6416, lr 0.000130, loss 2.046439 +INFO 2021-10-28 19:41:54 train.py: 89] Epoch 11, iter 6400/6416, lr 0.000129, loss 2.057654 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-28 19:42:10 train.py: 108] Save checkpoint Epoch_11.pt to disk... +INFO 2021-10-28 19:42:11 train.py: 89] Epoch 12, iter 0/6416, lr 0.000129, loss 2.092508 +INFO 2021-10-28 19:49:59 train.py: 89] Epoch 12, iter 200/6416, lr 0.000128, loss 2.060046 +INFO 2021-10-28 19:59:25 train.py: 89] Epoch 12, iter 400/6416, lr 0.000126, loss 2.035100 +INFO 2021-10-28 20:07:36 train.py: 89] Epoch 12, iter 600/6416, lr 0.000125, loss 2.070074 +INFO 2021-10-28 20:16:01 train.py: 89] Epoch 12, iter 800/6416, lr 0.000124, loss 2.038943 +INFO 2021-10-28 20:24:04 train.py: 89] Epoch 12, iter 1000/6416, lr 0.000123, loss 2.039655 +INFO 2021-10-28 20:32:21 train.py: 89] Epoch 12, iter 1200/6416, lr 0.000122, loss 2.007822 +INFO 2021-10-28 20:40:36 train.py: 89] Epoch 12, iter 1400/6416, lr 0.000121, loss 2.000669 +INFO 2021-10-28 20:48:41 train.py: 89] Epoch 12, iter 1600/6416, lr 0.000120, loss 2.024840 +INFO 2021-10-28 20:56:57 train.py: 89] Epoch 12, iter 1800/6416, lr 0.000118, loss 1.973704 +INFO 2021-10-28 21:04:52 train.py: 89] Epoch 12, iter 2000/6416, lr 0.000117, loss 1.958400 +INFO 2021-10-28 21:13:31 train.py: 89] Epoch 12, iter 2200/6416, lr 0.000116, loss 1.986368 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-28 21:21:42 train.py: 89] Epoch 12, iter 2400/6416, lr 0.000115, loss 1.980485 +INFO 2021-10-28 21:29:45 train.py: 89] Epoch 12, iter 2600/6416, lr 0.000114, loss 1.981403 +INFO 2021-10-28 21:37:52 train.py: 89] Epoch 12, iter 2800/6416, lr 0.000113, loss 1.976436 +INFO 2021-10-28 21:46:08 train.py: 101] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2021-10-28 21:46:22 train.py: 89] Epoch 12, iter 3000/6416, lr 0.000112, loss 1.963808 +INFO 2021-10-28 21:54:34 train.py: 89] Epoch 12, iter 3200/6416, lr 0.000111, loss 1.947435 +INFO 2021-10-28 22:02:37 train.py: 89] Epoch 12, iter 3400/6416, lr 0.000109, loss 1.942628 +INFO 2021-10-28 22:11:04 train.py: 89] Epoch 12, iter 3600/6416, lr 0.000108, loss 1.947086 +INFO 2021-10-28 22:19:15 train.py: 89] Epoch 12, iter 3800/6416, lr 0.000107, loss 1.910440 +INFO 2021-10-28 22:27:20 train.py: 89] Epoch 12, iter 4000/6416, lr 0.000106, loss 1.941989 +INFO 2021-10-28 22:35:23 train.py: 89] Epoch 12, iter 4200/6416, lr 0.000105, loss 1.913958 +INFO 2021-10-28 22:44:07 train.py: 89] Epoch 12, iter 4400/6416, lr 0.000104, loss 1.895913 +INFO 2021-10-28 22:52:13 train.py: 89] Epoch 12, iter 4600/6416, lr 0.000103, loss 1.920565 +INFO 2021-10-28 23:01:00 train.py: 89] Epoch 12, iter 4800/6416, lr 0.000102, loss 1.893225 +INFO 2021-10-28 23:09:21 train.py: 89] Epoch 12, iter 5000/6416, lr 0.000101, loss 1.909615 +INFO 2021-10-28 23:17:48 train.py: 89] Epoch 12, iter 5200/6416, lr 0.000100, loss 1.892094 +INFO 2021-10-28 23:25:48 train.py: 89] Epoch 12, iter 5400/6416, lr 0.000099, loss 1.861759 +INFO 2021-10-28 23:33:47 train.py: 89] Epoch 12, iter 5600/6416, lr 0.000098, loss 1.873800 +INFO 2021-10-28 23:42:25 train.py: 89] Epoch 12, iter 5800/6416, lr 0.000097, loss 1.875867 +INFO 2021-10-28 23:50:21 train.py: 101] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2021-10-28 23:50:27 train.py: 89] Epoch 12, iter 6000/6416, lr 0.000096, loss 1.862276 +INFO 2021-10-28 23:58:39 train.py: 89] Epoch 12, iter 6200/6416, lr 0.000095, loss 1.860097 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +INFO 2021-10-29 00:06:45 train.py: 89] Epoch 12, iter 6400/6416, lr 0.000093, loss 1.856626 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-29 00:07:35 train.py: 108] Save checkpoint Epoch_12.pt to disk... +INFO 2021-10-29 00:07:37 train.py: 89] Epoch 13, iter 0/6416, lr 0.000093, loss 1.884216 +INFO 2021-10-29 00:10:56 train.py: 89] Epoch 13, iter 200/6416, lr 0.000092, loss 1.860971 +INFO 2021-10-29 00:14:15 train.py: 89] Epoch 13, iter 400/6416, lr 0.000091, loss 1.839763 +INFO 2021-10-29 00:17:35 train.py: 89] Epoch 13, iter 600/6416, lr 0.000090, loss 1.864118 +INFO 2021-10-29 00:20:54 train.py: 89] Epoch 13, iter 800/6416, lr 0.000089, loss 1.843837 +INFO 2021-10-29 00:24:14 train.py: 89] Epoch 13, iter 1000/6416, lr 0.000088, loss 1.848595 +INFO 2021-10-29 00:27:34 train.py: 89] Epoch 13, iter 1200/6416, lr 0.000087, loss 1.837939 +INFO 2021-10-29 00:30:54 train.py: 89] Epoch 13, iter 1400/6416, lr 0.000086, loss 1.811434 +INFO 2021-10-29 00:34:14 train.py: 89] Epoch 13, iter 1600/6416, lr 0.000085, loss 1.830203 +INFO 2021-10-29 00:37:33 train.py: 89] Epoch 13, iter 1800/6416, lr 0.000084, loss 1.783875 +INFO 2021-10-29 00:40:53 train.py: 89] Epoch 13, iter 2000/6416, lr 0.000083, loss 1.780625 +INFO 2021-10-29 00:44:12 train.py: 89] Epoch 13, iter 2200/6416, lr 0.000082, loss 1.812669 +INFO 2021-10-29 00:47:31 train.py: 89] Epoch 13, iter 2400/6416, lr 0.000081, loss 1.800422 +INFO 2021-10-29 00:50:50 train.py: 89] Epoch 13, iter 2600/6416, lr 0.000080, loss 1.795023 +INFO 2021-10-29 00:54:10 train.py: 89] Epoch 13, iter 2800/6416, lr 0.000079, loss 1.795762 +INFO 2021-10-29 00:57:31 train.py: 101] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2021-10-29 00:57:31 train.py: 89] Epoch 13, iter 3000/6416, lr 0.000078, loss 1.779563 +INFO 2021-10-29 01:00:51 train.py: 89] Epoch 13, iter 3200/6416, lr 0.000078, loss 1.766444 +INFO 2021-10-29 01:04:11 train.py: 89] Epoch 13, iter 3400/6416, lr 0.000077, loss 1.776283 +INFO 2021-10-29 01:07:29 train.py: 89] Epoch 13, iter 3600/6416, lr 0.000076, loss 1.780677 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-29 01:10:49 train.py: 89] Epoch 13, iter 3800/6416, lr 0.000075, loss 1.731199 +INFO 2021-10-29 01:14:09 train.py: 89] Epoch 13, iter 4000/6416, lr 0.000074, loss 1.775170 +INFO 2021-10-29 01:17:29 train.py: 89] Epoch 13, iter 4200/6416, lr 0.000073, loss 1.738853 +INFO 2021-10-29 01:20:48 train.py: 89] Epoch 13, iter 4400/6416, lr 0.000072, loss 1.730463 +INFO 2021-10-29 01:24:08 train.py: 89] Epoch 13, iter 4600/6416, lr 0.000071, loss 1.757649 +INFO 2021-10-29 01:27:26 train.py: 89] Epoch 13, iter 4800/6416, lr 0.000070, loss 1.721404 +INFO 2021-10-29 01:30:45 train.py: 89] Epoch 13, iter 5000/6416, lr 0.000069, loss 1.737237 +INFO 2021-10-29 01:34:04 train.py: 89] Epoch 13, iter 5200/6416, lr 0.000068, loss 1.723513 +INFO 2021-10-29 01:37:23 train.py: 89] Epoch 13, iter 5400/6416, lr 0.000067, loss 1.682793 +INFO 2021-10-29 01:40:45 train.py: 89] Epoch 13, iter 5600/6416, lr 0.000066, loss 1.715812 +INFO 2021-10-29 01:44:04 train.py: 89] Epoch 13, iter 5800/6416, lr 0.000066, loss 1.710610 +INFO 2021-10-29 01:47:24 train.py: 101] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2021-10-29 01:47:25 train.py: 89] Epoch 13, iter 6000/6416, lr 0.000065, loss 1.698509 +INFO 2021-10-29 01:50:44 train.py: 89] Epoch 13, iter 6200/6416, lr 0.000064, loss 1.694478 +INFO 2021-10-29 01:54:04 train.py: 89] Epoch 13, iter 6400/6416, lr 0.000063, loss 1.701797 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-29 01:54:21 train.py: 108] Save checkpoint Epoch_13.pt to disk... +INFO 2021-10-29 01:54:22 train.py: 89] Epoch 14, iter 0/6416, lr 0.000063, loss 1.719011 +INFO 2021-10-29 01:57:41 train.py: 89] Epoch 14, iter 200/6416, lr 0.000062, loss 1.711288 +INFO 2021-10-29 02:01:01 train.py: 89] Epoch 14, iter 400/6416, lr 0.000061, loss 1.684729 +INFO 2021-10-29 02:04:20 train.py: 89] Epoch 14, iter 600/6416, lr 0.000060, loss 1.707041 +INFO 2021-10-29 02:07:40 train.py: 89] Epoch 14, iter 800/6416, lr 0.000059, loss 1.676569 +INFO 2021-10-29 02:11:02 train.py: 89] Epoch 14, iter 1000/6416, lr 0.000059, loss 1.684303 +INFO 2021-10-29 02:14:21 train.py: 89] Epoch 14, iter 1200/6416, lr 0.000058, loss 1.678350 +INFO 2021-10-29 02:17:41 train.py: 89] Epoch 14, iter 1400/6416, lr 0.000057, loss 1.649548 +INFO 2021-10-29 02:21:01 train.py: 89] Epoch 14, iter 1600/6416, lr 0.000056, loss 1.672499 +INFO 2021-10-29 02:24:21 train.py: 89] Epoch 14, iter 1800/6416, lr 0.000055, loss 1.636551 +INFO 2021-10-29 02:27:39 train.py: 89] Epoch 14, iter 2000/6416, lr 0.000055, loss 1.626832 +INFO 2021-10-29 02:30:58 train.py: 89] Epoch 14, iter 2200/6416, lr 0.000054, loss 1.652834 +INFO 2021-10-29 02:34:16 train.py: 89] Epoch 14, iter 2400/6416, lr 0.000053, loss 1.652167 +INFO 2021-10-29 02:37:36 train.py: 89] Epoch 14, iter 2600/6416, lr 0.000052, loss 1.641388 +INFO 2021-10-29 02:40:54 train.py: 89] Epoch 14, iter 2800/6416, lr 0.000051, loss 1.646133 +INFO 2021-10-29 02:44:13 train.py: 101] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2021-10-29 02:44:14 train.py: 89] Epoch 14, iter 3000/6416, lr 0.000051, loss 1.627837 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-29 02:47:35 train.py: 89] Epoch 14, iter 3200/6416, lr 0.000050, loss 1.615743 +INFO 2021-10-29 02:50:55 train.py: 89] Epoch 14, iter 3400/6416, lr 0.000049, loss 1.621257 +INFO 2021-10-29 02:54:13 train.py: 89] Epoch 14, iter 3600/6416, lr 0.000048, loss 1.625576 +INFO 2021-10-29 02:57:33 train.py: 89] Epoch 14, iter 3800/6416, lr 0.000048, loss 1.589151 +INFO 2021-10-29 03:00:53 train.py: 89] Epoch 14, iter 4000/6416, lr 0.000047, loss 1.636877 +INFO 2021-10-29 03:04:13 train.py: 89] Epoch 14, iter 4200/6416, lr 0.000046, loss 1.589705 +INFO 2021-10-29 03:07:32 train.py: 89] Epoch 14, iter 4400/6416, lr 0.000045, loss 1.580660 +INFO 2021-10-29 03:10:52 train.py: 89] Epoch 14, iter 4600/6416, lr 0.000045, loss 1.604650 +INFO 2021-10-29 03:14:11 train.py: 89] Epoch 14, iter 4800/6416, lr 0.000044, loss 1.585943 +INFO 2021-10-29 03:17:31 train.py: 89] Epoch 14, iter 5000/6416, lr 0.000043, loss 1.602329 +INFO 2021-10-29 03:20:51 train.py: 89] Epoch 14, iter 5200/6416, lr 0.000042, loss 1.578424 +INFO 2021-10-29 03:24:11 train.py: 89] Epoch 14, iter 5400/6416, lr 0.000042, loss 1.552562 +INFO 2021-10-29 03:27:30 train.py: 89] Epoch 14, iter 5600/6416, lr 0.000041, loss 1.567654 +INFO 2021-10-29 03:30:49 train.py: 89] Epoch 14, iter 5800/6416, lr 0.000040, loss 1.573535 +INFO 2021-10-29 03:34:11 train.py: 101] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2021-10-29 03:34:12 train.py: 89] Epoch 14, iter 6000/6416, lr 0.000040, loss 1.568791 +INFO 2021-10-29 03:37:31 train.py: 89] Epoch 14, iter 6200/6416, lr 0.000039, loss 1.557410 +INFO 2021-10-29 03:40:50 train.py: 89] Epoch 14, iter 6400/6416, lr 0.000038, loss 1.566284 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-29 03:41:05 train.py: 108] Save checkpoint Epoch_14.pt to disk... +INFO 2021-10-29 03:41:07 train.py: 89] Epoch 15, iter 0/6416, lr 0.000038, loss 1.591660 +INFO 2021-10-29 03:44:27 train.py: 89] Epoch 15, iter 200/6416, lr 0.000037, loss 1.578093 +INFO 2021-10-29 03:47:47 train.py: 89] Epoch 15, iter 400/6416, lr 0.000037, loss 1.550428 +INFO 2021-10-29 03:51:07 train.py: 89] Epoch 15, iter 600/6416, lr 0.000036, loss 1.582690 +INFO 2021-10-29 03:54:28 train.py: 89] Epoch 15, iter 800/6416, lr 0.000036, loss 1.546944 +INFO 2021-10-29 03:57:46 train.py: 89] Epoch 15, iter 1000/6416, lr 0.000035, loss 1.563195 +INFO 2021-10-29 04:01:07 train.py: 89] Epoch 15, iter 1200/6416, lr 0.000034, loss 1.548260 +INFO 2021-10-29 04:04:26 train.py: 89] Epoch 15, iter 1400/6416, lr 0.000034, loss 1.523338 +INFO 2021-10-29 04:07:47 train.py: 89] Epoch 15, iter 1600/6416, lr 0.000033, loss 1.551978 +INFO 2021-10-29 04:11:07 train.py: 89] Epoch 15, iter 1800/6416, lr 0.000032, loss 1.524203 +INFO 2021-10-29 04:14:28 train.py: 89] Epoch 15, iter 2000/6416, lr 0.000032, loss 1.509108 +INFO 2021-10-29 04:17:48 train.py: 89] Epoch 15, iter 2200/6416, lr 0.000031, loss 1.535697 +INFO 2021-10-29 04:21:07 train.py: 89] Epoch 15, iter 2400/6416, lr 0.000031, loss 1.531258 +INFO 2021-10-29 04:24:24 train.py: 89] Epoch 15, iter 2600/6416, lr 0.000030, loss 1.528870 +INFO 2021-10-29 04:27:44 train.py: 89] Epoch 15, iter 2800/6416, lr 0.000029, loss 1.535915 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-29 04:31:04 train.py: 101] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2021-10-29 04:31:05 train.py: 89] Epoch 15, iter 3000/6416, lr 0.000029, loss 1.516979 +INFO 2021-10-29 04:34:26 train.py: 89] Epoch 15, iter 3200/6416, lr 0.000028, loss 1.496399 +INFO 2021-10-29 04:37:46 train.py: 89] Epoch 15, iter 3400/6416, lr 0.000028, loss 1.506587 +INFO 2021-10-29 04:41:07 train.py: 89] Epoch 15, iter 3600/6416, lr 0.000027, loss 1.505540 +INFO 2021-10-29 04:44:26 train.py: 89] Epoch 15, iter 3800/6416, lr 0.000027, loss 1.484397 +INFO 2021-10-29 04:47:46 train.py: 89] Epoch 15, iter 4000/6416, lr 0.000026, loss 1.521520 +INFO 2021-10-29 04:51:06 train.py: 89] Epoch 15, iter 4200/6416, lr 0.000025, loss 1.489612 +INFO 2021-10-29 04:54:26 train.py: 89] Epoch 15, iter 4400/6416, lr 0.000025, loss 1.481175 +INFO 2021-10-29 04:57:45 train.py: 89] Epoch 15, iter 4600/6416, lr 0.000024, loss 1.513087 +INFO 2021-10-29 05:01:05 train.py: 89] Epoch 15, iter 4800/6416, lr 0.000024, loss 1.473940 +INFO 2021-10-29 05:04:25 train.py: 89] Epoch 15, iter 5000/6416, lr 0.000023, loss 1.491677 +INFO 2021-10-29 05:07:45 train.py: 89] Epoch 15, iter 5200/6416, lr 0.000023, loss 1.480122 +INFO 2021-10-29 05:11:06 train.py: 89] Epoch 15, iter 5400/6416, lr 0.000022, loss 1.459458 +INFO 2021-10-29 05:14:25 train.py: 89] Epoch 15, iter 5600/6416, lr 0.000022, loss 1.476707 +INFO 2021-10-29 05:17:46 train.py: 89] Epoch 15, iter 5800/6416, lr 0.000021, loss 1.475208 +INFO 2021-10-29 05:21:06 train.py: 101] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2021-10-29 05:21:07 train.py: 89] Epoch 15, iter 6000/6416, lr 0.000021, loss 1.477782 +INFO 2021-10-29 05:24:27 train.py: 89] Epoch 15, iter 6200/6416, lr 0.000020, loss 1.459215 +INFO 2021-10-29 05:27:48 train.py: 89] Epoch 15, iter 6400/6416, lr 0.000020, loss 1.477508 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-29 05:28:04 train.py: 108] Save checkpoint Epoch_15.pt to disk... +INFO 2021-10-29 05:28:05 train.py: 89] Epoch 16, iter 0/6416, lr 0.000020, loss 1.467504 +INFO 2021-10-29 05:31:26 train.py: 89] Epoch 16, iter 200/6416, lr 0.000019, loss 1.483658 +INFO 2021-10-29 05:34:48 train.py: 89] Epoch 16, iter 400/6416, lr 0.000019, loss 1.460342 +INFO 2021-10-29 05:38:10 train.py: 89] Epoch 16, iter 600/6416, lr 0.000019, loss 1.491294 +INFO 2021-10-29 05:41:30 train.py: 89] Epoch 16, iter 800/6416, lr 0.000018, loss 1.448856 +INFO 2021-10-29 05:44:50 train.py: 89] Epoch 16, iter 1000/6416, lr 0.000018, loss 1.456664 +INFO 2021-10-29 05:48:09 train.py: 89] Epoch 16, iter 1200/6416, lr 0.000017, loss 1.452737 +INFO 2021-10-29 05:51:28 train.py: 89] Epoch 16, iter 1400/6416, lr 0.000017, loss 1.442130 +INFO 2021-10-29 05:54:46 train.py: 89] Epoch 16, iter 1600/6416, lr 0.000016, loss 1.467303 +INFO 2021-10-29 05:58:06 train.py: 89] Epoch 16, iter 1800/6416, lr 0.000016, loss 1.435211 +INFO 2021-10-29 06:01:25 train.py: 89] Epoch 16, iter 2000/6416, lr 0.000016, loss 1.426680 +INFO 2021-10-29 06:04:43 train.py: 89] Epoch 16, iter 2200/6416, lr 0.000015, loss 1.445586 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-29 06:08:02 train.py: 89] Epoch 16, iter 2400/6416, lr 0.000015, loss 1.449211 +INFO 2021-10-29 06:11:22 train.py: 89] Epoch 16, iter 2600/6416, lr 0.000015, loss 1.445514 +INFO 2021-10-29 06:14:42 train.py: 89] Epoch 16, iter 2800/6416, lr 0.000014, loss 1.445417 +INFO 2021-10-29 06:18:02 train.py: 101] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2021-10-29 06:18:03 train.py: 89] Epoch 16, iter 3000/6416, lr 0.000014, loss 1.441951 +INFO 2021-10-29 06:21:24 train.py: 89] Epoch 16, iter 3200/6416, lr 0.000013, loss 1.435696 +INFO 2021-10-29 06:24:42 train.py: 89] Epoch 16, iter 3400/6416, lr 0.000013, loss 1.424956 +INFO 2021-10-29 06:28:02 train.py: 89] Epoch 16, iter 3600/6416, lr 0.000013, loss 1.444388 +INFO 2021-10-29 06:31:21 train.py: 89] Epoch 16, iter 3800/6416, lr 0.000012, loss 1.407472 +INFO 2021-10-29 06:34:41 train.py: 89] Epoch 16, iter 4000/6416, lr 0.000012, loss 1.460436 +INFO 2021-10-29 06:38:01 train.py: 89] Epoch 16, iter 4200/6416, lr 0.000012, loss 1.411899 +INFO 2021-10-29 06:41:22 train.py: 89] Epoch 16, iter 4400/6416, lr 0.000011, loss 1.408492 +INFO 2021-10-29 06:44:42 train.py: 89] Epoch 16, iter 4600/6416, lr 0.000011, loss 1.432907 +INFO 2021-10-29 06:48:01 train.py: 89] Epoch 16, iter 4800/6416, lr 0.000011, loss 1.410086 +INFO 2021-10-29 06:51:20 train.py: 89] Epoch 16, iter 5000/6416, lr 0.000011, loss 1.428360 +INFO 2021-10-29 06:54:40 train.py: 89] Epoch 16, iter 5200/6416, lr 0.000010, loss 1.409050 +INFO 2021-10-29 06:58:01 train.py: 89] Epoch 16, iter 5400/6416, lr 0.000010, loss 1.385086 +INFO 2021-10-29 07:01:21 train.py: 89] Epoch 16, iter 5600/6416, lr 0.000010, loss 1.404112 +INFO 2021-10-29 07:04:39 train.py: 89] Epoch 16, iter 5800/6416, lr 0.000010, loss 1.418528 +INFO 2021-10-29 07:08:00 train.py: 101] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2021-10-29 07:08:01 train.py: 89] Epoch 16, iter 6000/6416, lr 0.000009, loss 1.409249 +INFO 2021-10-29 07:11:21 train.py: 89] Epoch 16, iter 6200/6416, lr 0.000009, loss 1.412503 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +INFO 2021-10-29 07:14:41 train.py: 89] Epoch 16, iter 6400/6416, lr 0.000009, loss 1.410205 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-29 07:14:57 train.py: 108] Save checkpoint Epoch_16.pt to disk... +INFO 2021-10-29 07:14:58 train.py: 89] Epoch 17, iter 0/6416, lr 0.000009, loss 1.458197 +INFO 2021-10-29 07:18:18 train.py: 89] Epoch 17, iter 200/6416, lr 0.000009, loss 1.430702 +INFO 2021-10-29 07:21:38 train.py: 89] Epoch 17, iter 400/6416, lr 0.000008, loss 1.407919 +INFO 2021-10-29 07:24:57 train.py: 89] Epoch 17, iter 600/6416, lr 0.000008, loss 1.429480 +INFO 2021-10-29 07:28:16 train.py: 89] Epoch 17, iter 800/6416, lr 0.000008, loss 1.404181 +INFO 2021-10-29 07:31:36 train.py: 89] Epoch 17, iter 1000/6416, lr 0.000008, loss 1.416104 +INFO 2021-10-29 07:34:58 train.py: 89] Epoch 17, iter 1200/6416, lr 0.000007, loss 1.396715 +INFO 2021-10-29 07:38:17 train.py: 89] Epoch 17, iter 1400/6416, lr 0.000007, loss 1.386170 +INFO 2021-10-29 07:41:36 train.py: 89] Epoch 17, iter 1600/6416, lr 0.000007, loss 1.409991 +INFO 2021-10-29 07:44:54 train.py: 89] Epoch 17, iter 1800/6416, lr 0.000007, loss 1.378998 +INFO 2021-10-29 07:48:15 train.py: 89] Epoch 17, iter 2000/6416, lr 0.000007, loss 1.384717 +INFO 2021-10-29 07:51:34 train.py: 89] Epoch 17, iter 2200/6416, lr 0.000007, loss 1.398329 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-29 07:54:51 train.py: 89] Epoch 17, iter 2400/6416, lr 0.000006, loss 1.396066 +INFO 2021-10-29 07:58:11 train.py: 89] Epoch 17, iter 2600/6416, lr 0.000006, loss 1.404444 +INFO 2021-10-29 08:01:29 train.py: 89] Epoch 17, iter 2800/6416, lr 0.000006, loss 1.409084 +INFO 2021-10-29 08:04:50 train.py: 101] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2021-10-29 08:04:51 train.py: 89] Epoch 17, iter 3000/6416, lr 0.000006, loss 1.398937 +INFO 2021-10-29 08:08:11 train.py: 89] Epoch 17, iter 3200/6416, lr 0.000006, loss 1.387884 +INFO 2021-10-29 08:11:30 train.py: 89] Epoch 17, iter 3400/6416, lr 0.000006, loss 1.386974 +INFO 2021-10-29 08:14:50 train.py: 89] Epoch 17, iter 3600/6416, lr 0.000006, loss 1.391950 +INFO 2021-10-29 08:18:10 train.py: 89] Epoch 17, iter 3800/6416, lr 0.000006, loss 1.366216 +INFO 2021-10-29 08:21:29 train.py: 89] Epoch 17, iter 4000/6416, lr 0.000006, loss 1.401237 +INFO 2021-10-29 08:24:49 train.py: 89] Epoch 17, iter 4200/6416, lr 0.000005, loss 1.384945 +INFO 2021-10-29 08:28:08 train.py: 89] Epoch 17, iter 4400/6416, lr 0.000005, loss 1.372791 +INFO 2021-10-29 08:31:28 train.py: 89] Epoch 17, iter 4600/6416, lr 0.000005, loss 1.392185 +INFO 2021-10-29 08:34:47 train.py: 89] Epoch 17, iter 4800/6416, lr 0.000005, loss 1.375438 +INFO 2021-10-29 08:38:06 train.py: 89] Epoch 17, iter 5000/6416, lr 0.000005, loss 1.393828 +INFO 2021-10-29 08:41:25 train.py: 89] Epoch 17, iter 5200/6416, lr 0.000005, loss 1.375953 +INFO 2021-10-29 08:44:43 train.py: 89] Epoch 17, iter 5400/6416, lr 0.000005, loss 1.355519 +INFO 2021-10-29 08:48:02 train.py: 89] Epoch 17, iter 5600/6416, lr 0.000005, loss 1.369040 +INFO 2021-10-29 08:51:23 train.py: 89] Epoch 17, iter 5800/6416, lr 0.000005, loss 1.393012 +INFO 2021-10-29 08:54:43 train.py: 101] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2021-10-29 08:54:44 train.py: 89] Epoch 17, iter 6000/6416, lr 0.000005, loss 1.379958 +INFO 2021-10-29 08:58:03 train.py: 89] Epoch 17, iter 6200/6416, lr 0.000005, loss 1.375570 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 65536.0 +INFO 2021-10-29 09:01:23 train.py: 89] Epoch 17, iter 6400/6416, lr 0.000005, loss 1.388825 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 +INFO 2021-10-29 09:01:39 train.py: 108] Save checkpoint Epoch_17.pt to disk... diff --git a/bob/bio/facexzoo/models/backbones/TF_NAS_A/.gitkeep b/bob/bio/facexzoo/models/backbones/TF_NAS_A/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..64afb59008657584114c9e974256c2978de3bf6c --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_agedb.txt @@ -0,0 +1,37 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.9723333333333333 | 0.0024745619390355578 | +| Epoch_13.pt | 0.9713333333333335 | 0.0029999999999999988 | +| Epoch_16_batch_2999.pt | 0.9713333333333335 | 0.0031011746082117465 | +| Epoch_11_batch_5999.pt | 0.9711666666666667 | 0.0020344259359556154 | +| Epoch_16.pt | 0.9711666666666666 | 0.0027448042948968097 | +| Epoch_16_batch_5999.pt | 0.9710000000000001 | 0.0028021156028707733 | +| Epoch_17_batch_5999.pt | 0.9706666666666667 | 0.0024241582476968258 | +| Epoch_15_batch_5999.pt | 0.9704999999999998 | 0.002710860644167974 | +| Epoch_14_batch_2999.pt | 0.9703333333333333 | 0.002708012801545322 | +| Epoch_13_batch_5999.pt | 0.9701666666666668 | 0.002870131411797662 | +| Epoch_14_batch_5999.pt | 0.9701666666666668 | 0.002891558595482913 | +| Epoch_15_batch_2999.pt | 0.9701666666666668 | 0.0025873624493766715 | +| Epoch_14.pt | 0.9700000000000001 | 0.0031525024353580267 | +| Epoch_15.pt | 0.9696666666666667 | 0.002958561545709856 | +| Epoch_13_batch_2999.pt | 0.9695 | 0.00298194153340437 | +| Epoch_17_batch_2999.pt | 0.9693333333333334 | 0.0030651364942519423 | +| Epoch_12_batch_5999.pt | 0.9693333333333332 | 0.0026199613605670247 | +| Epoch_12_batch_2999.pt | 0.9691666666666666 | 0.002644000896509064 | +| Epoch_11_batch_2999.pt | 0.9691666666666666 | 0.002573008039313202 | +| Epoch_10_batch_5999.pt | 0.9685000000000002 | 0.0025754059969998327 | +| Epoch_11.pt | 0.9681666666666668 | 0.0023100692095879807 | +| Epoch_12.pt | 0.9678333333333333 | 0.0025825865109265506 | +| Epoch_10_batch_2999.pt | 0.9673333333333336 | 0.0030550504633038923 | +| Epoch_10.pt | 0.9663333333333334 | 0.00289529204906564 | +| Epoch_9_batch_5999.pt | 0.959 | 0.003362832433427014 | +| Epoch_9_batch_2999.pt | 0.958 | 0.0026965913554470207 | +| Epoch_7_batch_5999.pt | 0.9550000000000001 | 0.002290614236454262 | +| Epoch_8_batch_2999.pt | 0.9535 | 0.0038365525934710115 | +| Epoch_7_batch_2999.pt | 0.9516666666666668 | 0.004230985058813283 | +| Epoch_9.pt | 0.9510000000000002 | 0.00344444444444444 | +| Epoch_7.pt | 0.951 | 0.003559026084010438 | +| Epoch_8.pt | 0.9506666666666665 | 0.0034533933928711214 | +| Epoch_8_batch_5999.pt | 0.9486666666666667 | 0.002219442706159799 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..0ca66c3efa924882f3eea8d440e8f2c6a826239f --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_calfw.txt @@ -0,0 +1,37 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.9486666666666667 | 0.003476552854924892 | +| Epoch_12.pt | 0.9486666666666667 | 0.0033957126199858066 | +| Epoch_15_batch_2999.pt | 0.9486666666666667 | 0.003275422882885261 | +| Epoch_17_batch_5999.pt | 0.9483333333333333 | 0.003191423692521125 | +| Epoch_15_batch_5999.pt | 0.9476666666666667 | 0.0029731307022799183 | +| Epoch_10.pt | 0.9476666666666667 | 0.0033259176771323912 | +| Epoch_11_batch_2999.pt | 0.9475 | 0.003307772365912045 | +| Epoch_14_batch_5999.pt | 0.9471666666666667 | 0.0034251250315107456 | +| Epoch_16_batch_5999.pt | 0.9471666666666666 | 0.0032871804872193354 | +| Epoch_14_batch_2999.pt | 0.9471666666666666 | 0.003452052529534663 | +| Epoch_13_batch_2999.pt | 0.9470000000000001 | 0.0034676636742949378 | +| Epoch_10_batch_5999.pt | 0.9466666666666667 | 0.0033609963249453738 | +| Epoch_13.pt | 0.9466666666666667 | 0.003513641844631532 | +| Epoch_13_batch_5999.pt | 0.9465 | 0.003672133971035721 | +| Epoch_12_batch_2999.pt | 0.9465 | 0.0030877096070200546 | +| Epoch_16.pt | 0.9461666666666668 | 0.003549039167485431 | +| Epoch_11.pt | 0.9461666666666668 | 0.0033979841518606718 | +| Epoch_11_batch_5999.pt | 0.9456666666666667 | 0.003408413700039547 | +| Epoch_15.pt | 0.9455000000000002 | 0.0033245254000838173 | +| Epoch_12_batch_5999.pt | 0.9455 | 0.0036855573979159965 | +| Epoch_10_batch_2999.pt | 0.9455 | 0.003857412297075545 | +| Epoch_17_batch_2999.pt | 0.9455 | 0.003478771600989613 | +| Epoch_14.pt | 0.9445 | 0.0036349639562123512 | +| Epoch_16_batch_2999.pt | 0.9445 | 0.003514081022415214 | +| Epoch_7_batch_5999.pt | 0.9404999999999999 | 0.003702268240343582 | +| Epoch_8_batch_5999.pt | 0.9395000000000001 | 0.0039287638240526985 | +| Epoch_8_batch_2999.pt | 0.9385 | 0.0043422273399264695 | +| Epoch_9_batch_5999.pt | 0.9381666666666668 | 0.0039942087706708205 | +| Epoch_9_batch_2999.pt | 0.9375 | 0.004196191689062601 | +| Epoch_7_batch_2999.pt | 0.9353333333333333 | 0.003973678831610597 | +| Epoch_7.pt | 0.9343333333333333 | 0.0047088044667593495 | +| Epoch_8.pt | 0.9341666666666667 | 0.0036955929710139074 | +| Epoch_9.pt | 0.9280000000000002 | 0.004265856404544987 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..0ff4db3eb549c5090b4f2b4c6745de550826a07d --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_cplfw.txt @@ -0,0 +1,37 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16.pt | 0.859 | 0.00723161782012132 | +| Epoch_14_batch_5999.pt | 0.8584999999999999 | 0.007215595250207341 | +| Epoch_12_batch_2999.pt | 0.8583333333333332 | 0.006898738478344618 | +| Epoch_15_batch_2999.pt | 0.858 | 0.007469278643670357 | +| Epoch_15_batch_5999.pt | 0.8576666666666666 | 0.007282653159188418 | +| Epoch_13_batch_5999.pt | 0.8573333333333334 | 0.007450246495217864 | +| Epoch_17_batch_5999.pt | 0.8573333333333334 | 0.007528546496215526 | +| Epoch_16_batch_5999.pt | 0.857 | 0.007242705994547676 | +| Epoch_13_batch_2999.pt | 0.8568333333333333 | 0.007500823000112205 | +| Epoch_14_batch_2999.pt | 0.8563333333333334 | 0.0073190095801664206 | +| Epoch_11_batch_5999.pt | 0.8563333333333333 | 0.00699558943942097 | +| Epoch_17_batch_2999.pt | 0.8561666666666667 | 0.007260794433288209 | +| Epoch_15.pt | 0.8556666666666667 | 0.0073961952180633915 | +| Epoch_13.pt | 0.8553333333333333 | 0.007144021069190452 | +| Epoch_16_batch_2999.pt | 0.8548333333333333 | 0.007397238390268971 | +| Epoch_17.pt | 0.8546666666666667 | 0.0072085340370260384 | +| Epoch_12.pt | 0.8546666666666667 | 0.006274581290442431 | +| Epoch_14.pt | 0.8539999999999999 | 0.007516237566794556 | +| Epoch_12_batch_5999.pt | 0.8535 | 0.006380187311000883 | +| Epoch_11.pt | 0.8531666666666666 | 0.006001285870441881 | +| Epoch_11_batch_2999.pt | 0.8528333333333332 | 0.006601767440112783 | +| Epoch_10_batch_5999.pt | 0.8521666666666666 | 0.00639757863145729 | +| Epoch_10.pt | 0.8503333333333334 | 0.005804425727381765 | +| Epoch_10_batch_2999.pt | 0.8491666666666667 | 0.006935549859373218 | +| Epoch_9_batch_2999.pt | 0.825 | 0.007969850595746357 | +| Epoch_8_batch_5999.pt | 0.8241666666666667 | 0.006291528696058958 | +| Epoch_7_batch_2999.pt | 0.8233333333333335 | 0.007175059684872417 | +| Epoch_9_batch_5999.pt | 0.8196666666666668 | 0.00763277533137582 | +| Epoch_7_batch_5999.pt | 0.8183333333333334 | 0.006378010061584961 | +| Epoch_8_batch_2999.pt | 0.8178333333333333 | 0.006657632768039557 | +| Epoch_9.pt | 0.8139999999999998 | 0.00755718936583642 | +| Epoch_7.pt | 0.8126666666666666 | 0.005779914134951089 | +| Epoch_8.pt | 0.8126666666666666 | 0.005958705634574188 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..77ffe3e5d01805483ca0fa61027939e78ec1560f --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_lfw.txt @@ -0,0 +1,37 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_11.pt | 0.9974999999999999 | 0.000668977476599572 | +| Epoch_17.pt | 0.9973333333333333 | 0.0007934920476158734 | +| Epoch_16.pt | 0.9971666666666665 | 0.0007474235581707618 | +| Epoch_12_batch_5999.pt | 0.9971666666666665 | 0.0006111111111111101 | +| Epoch_16_batch_5999.pt | 0.9971666666666665 | 0.0006111111111111077 | +| Epoch_15.pt | 0.9971666666666665 | 0.0007474235581707618 | +| Epoch_13.pt | 0.9971666666666665 | 0.0006596856715021055 | +| Epoch_14_batch_2999.pt | 0.9971666666666665 | 0.0005583264233956013 | +| Epoch_17_batch_5999.pt | 0.9969999999999999 | 0.0006938886664887096 | +| Epoch_15_batch_5999.pt | 0.9969999999999999 | 0.0006938886664887096 | +| Epoch_12.pt | 0.9968333333333333 | 0.0005800170282728086 | +| Epoch_13_batch_2999.pt | 0.9968333333333333 | 0.00063098981620003 | +| Epoch_16_batch_2999.pt | 0.9968333333333332 | 0.0007637626158259738 | +| Epoch_10_batch_5999.pt | 0.9966666666666667 | 0.0007453559924999305 | +| Epoch_15_batch_2999.pt | 0.9966666666666667 | 0.0007453559924999305 | +| Epoch_11_batch_5999.pt | 0.9966666666666667 | 0.0005555555555555536 | +| Epoch_14.pt | 0.9964999999999999 | 0.0007222222222222236 | +| Epoch_14_batch_5999.pt | 0.9964999999999999 | 0.0007222222222222234 | +| Epoch_12_batch_2999.pt | 0.9964999999999999 | 0.0008407081083567494 | +| Epoch_9_batch_2999.pt | 0.9963333333333335 | 0.0011600340565456157 | +| Epoch_10.pt | 0.9963333333333333 | 0.0008534606386520708 | +| Epoch_13_batch_5999.pt | 0.9961666666666666 | 0.000747423558170758 | +| Epoch_17_batch_2999.pt | 0.9961666666666666 | 0.0008624541497922222 | +| Epoch_10_batch_2999.pt | 0.9959999999999999 | 0.0008314794192830944 | +| Epoch_11_batch_2999.pt | 0.9959999999999999 | 0.0007535922203472518 | +| Epoch_8_batch_5999.pt | 0.9953333333333335 | 0.0010482201257840705 | +| Epoch_8.pt | 0.9953333333333333 | 0.0010183501544346308 | +| Epoch_8_batch_2999.pt | 0.9953333333333332 | 0.0008534606386520666 | +| Epoch_7.pt | 0.9951666666666666 | 0.0009444444444444424 | +| Epoch_7_batch_5999.pt | 0.9946666666666666 | 0.0011331154474650675 | +| Epoch_9_batch_5999.pt | 0.9944999999999998 | 0.0011399046960379607 | +| Epoch_9.pt | 0.9943333333333333 | 0.0010599324460188284 | +| Epoch_7_batch_2999.pt | 0.9935 | 0.001203133768205986 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_rfw_African.txt b/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_rfw_African.txt new file mode 100644 index 0000000000000000000000000000000000000000..d946630259aa9fff6a9597cc738e604373d1ff20 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_rfw_African.txt @@ -0,0 +1,37 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17_batch_5999.pt | 0.9196666666666665 | 0.0048291808471334925 | +| Epoch_16_batch_5999.pt | 0.9191666666666667 | 0.00503230305864761 | +| Epoch_16_batch_2999.pt | 0.9189999999999999 | 0.004514722145313344 | +| Epoch_14_batch_2999.pt | 0.9173333333333333 | 0.005242278272037973 | +| Epoch_16.pt | 0.9173333333333332 | 0.004247003300803643 | +| Epoch_13.pt | 0.9171666666666667 | 0.00447248101390639 | +| Epoch_15.pt | 0.9165000000000001 | 0.005255508573903228 | +| Epoch_12.pt | 0.9164999999999999 | 0.004509591971906817 | +| Epoch_15_batch_5999.pt | 0.9163333333333334 | 0.005066228051190224 | +| Epoch_17.pt | 0.9163333333333332 | 0.005078397725345078 | +| Epoch_11_batch_5999.pt | 0.9161666666666667 | 0.004720914851703747 | +| Epoch_13_batch_2999.pt | 0.9161666666666666 | 0.004437842318564781 | +| Epoch_14_batch_5999.pt | 0.9158333333333335 | 0.004629814811111267 | +| Epoch_15_batch_2999.pt | 0.9158333333333333 | 0.00447386098339739 | +| Epoch_11_batch_2999.pt | 0.9158333333333333 | 0.003703935177951845 | +| Epoch_17_batch_2999.pt | 0.9153333333333334 | 0.004712735568988558 | +| Epoch_13_batch_5999.pt | 0.9146666666666668 | 0.005150811993999666 | +| Epoch_14.pt | 0.9146666666666666 | 0.004491418429201723 | +| Epoch_12_batch_2999.pt | 0.9145 | 0.004868961914356778 | +| Epoch_10_batch_5999.pt | 0.9139999999999999 | 0.004368800722519449 | +| Epoch_10_batch_2999.pt | 0.9120000000000001 | 0.004065816547451557 | +| Epoch_10.pt | 0.9119999999999999 | 0.003208784239598587 | +| Epoch_11.pt | 0.9113333333333333 | 0.00449141842920172 | +| Epoch_12_batch_5999.pt | 0.9093333333333333 | 0.005277485372016858 | +| Epoch_9_batch_5999.pt | 0.8931666666666667 | 0.004342227339926476 | +| Epoch_7_batch_5999.pt | 0.8845000000000001 | 0.0044239109003596545 | +| Epoch_8_batch_2999.pt | 0.883 | 0.0050356751971665165 | +| Epoch_7_batch_2999.pt | 0.8781666666666667 | 0.005208314814781896 | +| Epoch_9_batch_2999.pt | 0.8781666666666667 | 0.005190506528720616 | +| Epoch_8_batch_5999.pt | 0.8774999999999998 | 0.006644639536340649 | +| Epoch_9.pt | 0.8681666666666666 | 0.003215030288051179 | +| Epoch_7.pt | 0.8665 | 0.004858808978685827 | +| Epoch_8.pt | 0.8641666666666665 | 0.005512331854046502 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_rfw_Asian.txt b/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_rfw_Asian.txt new file mode 100644 index 0000000000000000000000000000000000000000..85b2d9f860af6c4c9ce43ec28ed2b8a825da7f7e --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_rfw_Asian.txt @@ -0,0 +1,37 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_5999.pt | 0.9161666666666667 | 0.003991116679035958 | +| Epoch_14.pt | 0.915 | 0.003912625969257557 | +| Epoch_16.pt | 0.9146666666666666 | 0.003911047979288456 | +| Epoch_17_batch_5999.pt | 0.9141666666666668 | 0.003712258638286253 | +| Epoch_15_batch_5999.pt | 0.9141666666666668 | 0.004076808846434962 | +| Epoch_16_batch_2999.pt | 0.9138333333333334 | 0.003452052529534663 | +| Epoch_13_batch_2999.pt | 0.9136666666666666 | 0.00368346321205573 | +| Epoch_12.pt | 0.913 | 0.004822785425380163 | +| Epoch_14_batch_2999.pt | 0.9128333333333334 | 0.0033979841518606713 | +| Epoch_17_batch_2999.pt | 0.9128333333333334 | 0.0035490391674854334 | +| Epoch_17.pt | 0.9126666666666667 | 0.003802208584948592 | +| Epoch_13_batch_5999.pt | 0.9125 | 0.0035246048723470945 | +| Epoch_13.pt | 0.9123333333333333 | 0.003842581436842349 | +| Epoch_14_batch_5999.pt | 0.9119999999999999 | 0.003581502546952488 | +| Epoch_15_batch_2999.pt | 0.9113333333333333 | 0.0036582394740342955 | +| Epoch_15.pt | 0.9091666666666665 | 0.004362084109434135 | +| Epoch_12_batch_5999.pt | 0.909 | 0.004368800722519447 | +| Epoch_10_batch_2999.pt | 0.9088333333333333 | 0.0039051248379533246 | +| Epoch_11_batch_5999.pt | 0.9066666666666666 | 0.0034336749200805485 | +| Epoch_12_batch_2999.pt | 0.9044999999999999 | 0.003928763824052703 | +| Epoch_10_batch_5999.pt | 0.9043333333333333 | 0.003744955454745048 | +| Epoch_11.pt | 0.9038333333333333 | 0.0035140810224152147 | +| Epoch_11_batch_2999.pt | 0.9031666666666667 | 0.003939746811442536 | +| Epoch_10.pt | 0.9031666666666667 | 0.004509591971906822 | +| Epoch_8_batch_5999.pt | 0.8818333333333334 | 0.004814138129086656 | +| Epoch_9_batch_5999.pt | 0.8811666666666668 | 0.004707821178306751 | +| Epoch_8_batch_2999.pt | 0.8775000000000001 | 0.004787135538781684 | +| Epoch_9_batch_2999.pt | 0.8753333333333334 | 0.004841946348777985 | +| Epoch_7_batch_2999.pt | 0.8734999999999999 | 0.004670963630191093 | +| Epoch_9.pt | 0.873 | 0.00428750697368327 | +| Epoch_7_batch_5999.pt | 0.8700000000000001 | 0.004274529791482523 | +| Epoch_7.pt | 0.8634999999999999 | 0.003939746811442535 | +| Epoch_8.pt | 0.8588333333333333 | 0.004849907724717204 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_rfw_Caucasian.txt b/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_rfw_Caucasian.txt new file mode 100644 index 0000000000000000000000000000000000000000..6a2e7da44e599822b650321a633915be2cb58907 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_rfw_Caucasian.txt @@ -0,0 +1,37 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14_batch_2999.pt | 0.9743333333333334 | 0.001845916413981794 | +| Epoch_13_batch_5999.pt | 0.974 | 0.0018954135676924459 | +| Epoch_14.pt | 0.974 | 0.0018121673811444593 | +| Epoch_15_batch_5999.pt | 0.9734999999999999 | 0.0015605079894653485 | +| Epoch_17_batch_2999.pt | 0.9734999999999999 | 0.0016933056282364591 | +| Epoch_16_batch_2999.pt | 0.9733333333333333 | 0.001490711984999854 | +| Epoch_17.pt | 0.9730000000000001 | 0.0017881641043812288 | +| Epoch_14_batch_5999.pt | 0.9730000000000001 | 0.001905158688831364 | +| Epoch_13.pt | 0.9728333333333335 | 0.001809610830544709 | +| Epoch_15.pt | 0.9726666666666667 | 0.0017427096823731166 | +| Epoch_13_batch_2999.pt | 0.9724999999999999 | 0.0019444444444444422 | +| Epoch_12_batch_5999.pt | 0.9721666666666666 | 0.0016489802310728674 | +| Epoch_16_batch_5999.pt | 0.9721666666666666 | 0.0015918387535438184 | +| Epoch_15_batch_2999.pt | 0.9718333333333333 | 0.001540602735984666 | +| Epoch_16.pt | 0.9716666666666667 | 0.001337954953199144 | +| Epoch_17_batch_5999.pt | 0.9708333333333335 | 0.0016339379077614214 | +| Epoch_12.pt | 0.97 | 0.0014487116456005894 | +| Epoch_10_batch_2999.pt | 0.97 | 0.0016850834320114576 | +| Epoch_11_batch_5999.pt | 0.9698333333333332 | 0.001963399671896923 | +| Epoch_12_batch_2999.pt | 0.9696666666666667 | 0.0016442942874387541 | +| Epoch_10_batch_5999.pt | 0.9690000000000001 | 0.00227980939207591 | +| Epoch_11_batch_2999.pt | 0.9690000000000001 | 0.0016329931618554569 | +| Epoch_10.pt | 0.9685 | 0.0018500917561496378 | +| Epoch_11.pt | 0.9665000000000001 | 0.0015605079894653493 | +| Epoch_9_batch_2999.pt | 0.9516666666666665 | 0.0028544961285922508 | +| Epoch_9_batch_5999.pt | 0.9501666666666665 | 0.0031471131196152335 | +| Epoch_8_batch_5999.pt | 0.9486666666666667 | 0.0028738927014172405 | +| Epoch_8_batch_2999.pt | 0.9483333333333335 | 0.0025215123817578303 | +| Epoch_7_batch_2999.pt | 0.9461666666666668 | 0.0032683480177961607 | +| Epoch_9.pt | 0.9418333333333333 | 0.0016933056282364598 | +| Epoch_8.pt | 0.9404999999999999 | 0.0029507270499754407 | +| Epoch_7_batch_5999.pt | 0.9399999999999998 | 0.00272165526975909 | +| Epoch_7.pt | 0.9375 | 0.003480545579483793 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_rfw_Indian.txt b/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_rfw_Indian.txt new file mode 100644 index 0000000000000000000000000000000000000000..ee07ebaa66d459e7738ac9196e714d2b65c4f7ea --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/TF_NAS_A/accu_files/accu_rfw_Indian.txt @@ -0,0 +1,37 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_2999.pt | 0.9333333333333333 | 0.0029917582261858294 | +| Epoch_13.pt | 0.9323333333333332 | 0.0027239223715847236 | +| Epoch_13_batch_2999.pt | 0.9318333333333333 | 0.0025754059969998358 | +| Epoch_17_batch_2999.pt | 0.9315 | 0.002323391518480717 | +| Epoch_17.pt | 0.9313333333333332 | 0.002506780927261885 | +| Epoch_12_batch_5999.pt | 0.9311666666666667 | 0.0024851410273716693 | +| Epoch_16_batch_5999.pt | 0.9311666666666667 | 0.0024975296436654405 | +| Epoch_14_batch_2999.pt | 0.931 | 0.001943650631615096 | +| Epoch_17_batch_5999.pt | 0.9308333333333334 | 0.0028246052930858117 | +| Epoch_14_batch_5999.pt | 0.9305 | 0.0030025709148603684 | +| Epoch_16_batch_2999.pt | 0.9303333333333335 | 0.0025067809272618802 | +| Epoch_12.pt | 0.9301666666666668 | 0.003290934048804412 | +| Epoch_15_batch_5999.pt | 0.93 | 0.002675909906398288 | +| Epoch_16.pt | 0.9291666666666668 | 0.00209717623201965 | +| Epoch_13_batch_5999.pt | 0.9291666666666668 | 0.0027357938338322487 | +| Epoch_11_batch_2999.pt | 0.9291666666666666 | 0.003213109720204717 | +| Epoch_15.pt | 0.9289999999999999 | 0.0022249982660556412 | +| Epoch_14.pt | 0.9288333333333334 | 0.0026879934229784327 | +| Epoch_10_batch_2999.pt | 0.9278333333333334 | 0.0031234872881934677 | +| Epoch_11_batch_5999.pt | 0.9271666666666667 | 0.003626463093415017 | +| Epoch_10_batch_5999.pt | 0.9266666666666667 | 0.0024969116726938022 | +| Epoch_10.pt | 0.9263333333333333 | 0.003061106069767977 | +| Epoch_12_batch_2999.pt | 0.9259999999999998 | 0.0029313124351717573 | +| Epoch_11.pt | 0.9256666666666667 | 0.0032697642154582594 | +| Epoch_9_batch_2999.pt | 0.9123333333333333 | 0.0040307460327149 | +| Epoch_9_batch_5999.pt | 0.9118333333333334 | 0.004085883557377088 | +| Epoch_8_batch_2999.pt | 0.9078333333333333 | 0.002485141027371676 | +| Epoch_8_batch_5999.pt | 0.9055 | 0.002733536577809458 | +| Epoch_7_batch_2999.pt | 0.9040000000000001 | 0.003390254733864971 | +| Epoch_7_batch_5999.pt | 0.8996666666666666 | 0.0038232556742411597 | +| Epoch_7.pt | 0.8969999999999999 | 0.003855411460643881 | +| Epoch_9.pt | 0.8939999999999999 | 0.004361730316975672 | +| Epoch_8.pt | 0.8924999999999998 | 0.003014880789158913 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/backbones/TF_NAS_A/log.log b/bob/bio/facexzoo/models/backbones/TF_NAS_A/log.log new file mode 100644 index 0000000000000000000000000000000000000000..ff57aa19ba751263adada903119a7d002f168182 --- /dev/null +++ b/bob/bio/facexzoo/models/backbones/TF_NAS_A/log.log @@ -0,0 +1,657 @@ +INFO 2020-12-16 10:57:33 driver.py: 124] Generating grammar tables from /usr/lib/python3.6/lib2to3/Grammar.txt +INFO 2020-12-16 10:57:33 driver.py: 124] Generating grammar tables from /usr/lib/python3.6/lib2to3/PatternGrammar.txt +INFO 2020-12-16 10:57:33 train.py: 177] Start optimization. +INFO 2020-12-16 10:57:33 train.py: 178] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='TF-NAS-A', batch_size=512, data_root='/home/wangjun492/wj_data/faceX-Zoo/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='MV-Softmax', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10,13,16', tensorboardx_logdir='mv-tfnas', train_file='/home/wangjun492/wj_data/faceX-Zoo/deepglint/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7f3484206b00>) +backbone param: +{'feat_dim': 512, 'drop_ratio': 0.2, 'out_h': 7, 'out_w': 7} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +INFO 2020-12-16 10:57:58 train.py: 79] Epoch 0, iter 0/6416, lr 0.100000, loss 16.294960 +INFO 2020-12-16 11:01:08 train.py: 79] Epoch 0, iter 200/6416, lr 0.100000, loss 15.628962 +INFO 2020-12-16 11:04:18 train.py: 79] Epoch 0, iter 400/6416, lr 0.100000, loss 15.347841 +INFO 2020-12-16 11:07:28 train.py: 79] Epoch 0, iter 600/6416, lr 0.100000, loss 15.309812 +INFO 2020-12-16 11:10:38 train.py: 79] Epoch 0, iter 800/6416, lr 0.100000, loss 15.309494 +INFO 2020-12-16 11:13:48 train.py: 79] Epoch 0, iter 1000/6416, lr 0.100000, loss 15.286847 +INFO 2020-12-16 11:16:58 train.py: 79] Epoch 0, iter 1200/6416, lr 0.100000, loss 15.272687 +INFO 2020-12-16 11:20:09 train.py: 79] Epoch 0, iter 1400/6416, lr 0.100000, loss 15.239681 +INFO 2020-12-16 11:23:19 train.py: 79] Epoch 0, iter 1600/6416, lr 0.100000, loss 15.144505 +INFO 2020-12-16 11:26:29 train.py: 79] Epoch 0, iter 1800/6416, lr 0.100000, loss 14.907998 +INFO 2020-12-16 11:29:39 train.py: 79] Epoch 0, iter 2000/6416, lr 0.100000, loss 14.635004 +INFO 2020-12-16 11:32:49 train.py: 79] Epoch 0, iter 2200/6416, lr 0.100000, loss 14.340544 +INFO 2020-12-16 11:35:59 train.py: 79] Epoch 0, iter 2400/6416, lr 0.100000, loss 14.012194 +INFO 2020-12-16 11:39:09 train.py: 79] Epoch 0, iter 2600/6416, lr 0.100000, loss 13.669523 +INFO 2020-12-16 11:42:19 train.py: 79] Epoch 0, iter 2800/6416, lr 0.100000, loss 13.328470 +INFO 2020-12-16 11:45:28 train.py: 92] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2020-12-16 11:45:29 train.py: 79] Epoch 0, iter 3000/6416, lr 0.100000, loss 12.987305 +INFO 2020-12-16 11:48:38 train.py: 79] Epoch 0, iter 3200/6416, lr 0.100000, loss 12.652747 +INFO 2020-12-16 11:51:48 train.py: 79] Epoch 0, iter 3400/6416, lr 0.100000, loss 12.352968 +INFO 2020-12-16 11:54:57 train.py: 79] Epoch 0, iter 3600/6416, lr 0.100000, loss 12.072103 +INFO 2020-12-16 11:58:06 train.py: 79] Epoch 0, iter 3800/6416, lr 0.100000, loss 11.911163 +INFO 2020-12-16 12:01:15 train.py: 79] Epoch 0, iter 4000/6416, lr 0.100000, loss 11.857078 +INFO 2020-12-16 12:04:23 train.py: 79] Epoch 0, iter 4200/6416, lr 0.100000, loss 11.922731 +INFO 2020-12-16 12:07:31 train.py: 79] Epoch 0, iter 4400/6416, lr 0.100000, loss 12.120648 +INFO 2020-12-16 12:10:39 train.py: 79] Epoch 0, iter 4600/6416, lr 0.100000, loss 12.409902 +INFO 2020-12-16 12:13:46 train.py: 79] Epoch 0, iter 4800/6416, lr 0.100000, loss 12.760713 +INFO 2020-12-16 12:16:53 train.py: 79] Epoch 0, iter 5000/6416, lr 0.100000, loss 13.104537 +INFO 2020-12-16 12:19:59 train.py: 79] Epoch 0, iter 5200/6416, lr 0.100000, loss 13.451702 +INFO 2020-12-16 12:23:05 train.py: 79] Epoch 0, iter 5400/6416, lr 0.100000, loss 13.739899 +INFO 2020-12-16 12:26:11 train.py: 79] Epoch 0, iter 5600/6416, lr 0.100000, loss 14.008614 +INFO 2020-12-16 12:29:16 train.py: 79] Epoch 0, iter 5800/6416, lr 0.100000, loss 14.199121 +INFO 2020-12-16 12:32:21 train.py: 92] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2020-12-16 12:32:22 train.py: 79] Epoch 0, iter 6000/6416, lr 0.100000, loss 14.361762 +INFO 2020-12-16 12:35:27 train.py: 79] Epoch 0, iter 6200/6416, lr 0.100000, loss 14.418223 +INFO 2020-12-16 12:38:31 train.py: 79] Epoch 0, iter 6400/6416, lr 0.100000, loss 14.439503 +INFO 2020-12-16 12:38:45 train.py: 97] Save checkpoint Epoch_0.pt to disk... +INFO 2020-12-16 12:38:47 train.py: 79] Epoch 1, iter 0/6416, lr 0.100000, loss 14.445541 +INFO 2020-12-16 12:41:52 train.py: 79] Epoch 1, iter 200/6416, lr 0.100000, loss 14.368868 +INFO 2020-12-16 12:44:57 train.py: 79] Epoch 1, iter 400/6416, lr 0.100000, loss 14.274350 +INFO 2020-12-16 12:48:02 train.py: 79] Epoch 1, iter 600/6416, lr 0.100000, loss 14.169469 +INFO 2020-12-16 12:51:06 train.py: 79] Epoch 1, iter 800/6416, lr 0.100000, loss 13.976274 +INFO 2020-12-16 12:54:10 train.py: 79] Epoch 1, iter 1000/6416, lr 0.100000, loss 13.831864 +INFO 2020-12-16 12:57:14 train.py: 79] Epoch 1, iter 1200/6416, lr 0.100000, loss 13.624695 +INFO 2020-12-16 13:00:18 train.py: 79] Epoch 1, iter 1400/6416, lr 0.100000, loss 13.438048 +INFO 2020-12-16 13:03:22 train.py: 79] Epoch 1, iter 1600/6416, lr 0.100000, loss 13.208371 +INFO 2020-12-16 13:06:26 train.py: 79] Epoch 1, iter 1800/6416, lr 0.100000, loss 13.018888 +INFO 2020-12-16 13:09:30 train.py: 79] Epoch 1, iter 2000/6416, lr 0.100000, loss 12.782446 +INFO 2020-12-16 13:12:34 train.py: 79] Epoch 1, iter 2200/6416, lr 0.100000, loss 12.595565 +INFO 2020-12-16 13:15:38 train.py: 79] Epoch 1, iter 2400/6416, lr 0.100000, loss 12.374886 +INFO 2020-12-16 13:18:43 train.py: 79] Epoch 1, iter 2600/6416, lr 0.100000, loss 12.191778 +INFO 2020-12-16 13:21:47 train.py: 79] Epoch 1, iter 2800/6416, lr 0.100000, loss 12.001840 +INFO 2020-12-16 13:24:50 train.py: 92] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2020-12-16 13:24:51 train.py: 79] Epoch 1, iter 3000/6416, lr 0.100000, loss 11.820816 +INFO 2020-12-16 13:27:55 train.py: 79] Epoch 1, iter 3200/6416, lr 0.100000, loss 11.634691 +INFO 2020-12-16 13:30:59 train.py: 79] Epoch 1, iter 3400/6416, lr 0.100000, loss 11.460390 +INFO 2020-12-16 13:34:03 train.py: 79] Epoch 1, iter 3600/6416, lr 0.100000, loss 11.296575 +INFO 2020-12-16 13:37:07 train.py: 79] Epoch 1, iter 3800/6416, lr 0.100000, loss 11.133909 +INFO 2020-12-16 13:40:11 train.py: 79] Epoch 1, iter 4000/6416, lr 0.100000, loss 10.998391 +INFO 2020-12-16 13:43:14 train.py: 79] Epoch 1, iter 4200/6416, lr 0.100000, loss 10.859886 +INFO 2020-12-16 13:46:18 train.py: 79] Epoch 1, iter 4400/6416, lr 0.100000, loss 10.732823 +INFO 2020-12-16 13:49:22 train.py: 79] Epoch 1, iter 4600/6416, lr 0.100000, loss 10.622386 +INFO 2020-12-16 13:52:25 train.py: 79] Epoch 1, iter 4800/6416, lr 0.100000, loss 10.526137 +INFO 2020-12-16 13:55:29 train.py: 79] Epoch 1, iter 5000/6416, lr 0.100000, loss 10.388890 +INFO 2020-12-16 13:58:33 train.py: 79] Epoch 1, iter 5200/6416, lr 0.100000, loss 10.319600 +INFO 2020-12-16 14:01:37 train.py: 79] Epoch 1, iter 5400/6416, lr 0.100000, loss 10.169680 +INFO 2020-12-16 14:04:40 train.py: 79] Epoch 1, iter 5600/6416, lr 0.100000, loss 10.059016 +INFO 2020-12-16 14:07:44 train.py: 79] Epoch 1, iter 5800/6416, lr 0.100000, loss 9.972363 +INFO 2020-12-16 14:10:47 train.py: 92] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2020-12-16 14:10:48 train.py: 79] Epoch 1, iter 6000/6416, lr 0.100000, loss 9.893893 +INFO 2020-12-16 14:13:52 train.py: 79] Epoch 1, iter 6200/6416, lr 0.100000, loss 9.828813 +INFO 2020-12-16 14:16:55 train.py: 79] Epoch 1, iter 6400/6416, lr 0.100000, loss 9.750626 +INFO 2020-12-16 14:17:09 train.py: 97] Save checkpoint Epoch_1.pt to disk... +INFO 2020-12-16 14:17:11 train.py: 79] Epoch 2, iter 0/6416, lr 0.100000, loss 9.628840 +INFO 2020-12-16 14:20:15 train.py: 79] Epoch 2, iter 200/6416, lr 0.100000, loss 9.140671 +INFO 2020-12-16 14:23:19 train.py: 79] Epoch 2, iter 400/6416, lr 0.100000, loss 9.117125 +INFO 2020-12-16 14:26:23 train.py: 79] Epoch 2, iter 600/6416, lr 0.100000, loss 9.107641 +INFO 2020-12-16 14:29:27 train.py: 79] Epoch 2, iter 800/6416, lr 0.100000, loss 9.125537 +INFO 2020-12-16 14:32:30 train.py: 79] Epoch 2, iter 1000/6416, lr 0.100000, loss 9.127542 +INFO 2020-12-16 14:35:34 train.py: 79] Epoch 2, iter 1200/6416, lr 0.100000, loss 9.128590 +INFO 2020-12-16 14:38:38 train.py: 79] Epoch 2, iter 1400/6416, lr 0.100000, loss 9.100560 +INFO 2020-12-16 14:41:41 train.py: 79] Epoch 2, iter 1600/6416, lr 0.100000, loss 9.047722 +INFO 2020-12-16 14:44:45 train.py: 79] Epoch 2, iter 1800/6416, lr 0.100000, loss 9.017468 +INFO 2020-12-16 14:47:48 train.py: 79] Epoch 2, iter 2000/6416, lr 0.100000, loss 8.979833 +INFO 2020-12-16 14:50:52 train.py: 79] Epoch 2, iter 2200/6416, lr 0.100000, loss 8.965562 +INFO 2020-12-16 14:53:56 train.py: 79] Epoch 2, iter 2400/6416, lr 0.100000, loss 8.879372 +INFO 2020-12-16 14:57:00 train.py: 79] Epoch 2, iter 2600/6416, lr 0.100000, loss 8.840598 +INFO 2020-12-16 15:00:03 train.py: 79] Epoch 2, iter 2800/6416, lr 0.100000, loss 8.810855 +INFO 2020-12-16 15:03:07 train.py: 92] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2020-12-16 15:03:08 train.py: 79] Epoch 2, iter 3000/6416, lr 0.100000, loss 8.737037 +INFO 2020-12-16 15:06:11 train.py: 79] Epoch 2, iter 3200/6416, lr 0.100000, loss 8.690072 +INFO 2020-12-16 15:09:15 train.py: 79] Epoch 2, iter 3400/6416, lr 0.100000, loss 8.631141 +INFO 2020-12-16 15:12:18 train.py: 79] Epoch 2, iter 3600/6416, lr 0.100000, loss 8.581275 +INFO 2020-12-16 15:15:22 train.py: 79] Epoch 2, iter 3800/6416, lr 0.100000, loss 8.567976 +INFO 2020-12-16 15:18:26 train.py: 79] Epoch 2, iter 4000/6416, lr 0.100000, loss 8.555046 +INFO 2020-12-16 15:21:29 train.py: 79] Epoch 2, iter 4200/6416, lr 0.100000, loss 8.484894 +INFO 2020-12-16 15:24:33 train.py: 79] Epoch 2, iter 4400/6416, lr 0.100000, loss 8.455214 +INFO 2020-12-16 15:27:37 train.py: 79] Epoch 2, iter 4600/6416, lr 0.100000, loss 8.422606 +INFO 2020-12-16 15:30:40 train.py: 79] Epoch 2, iter 4800/6416, lr 0.100000, loss 8.361818 +INFO 2020-12-16 15:33:44 train.py: 79] Epoch 2, iter 5000/6416, lr 0.100000, loss 8.353954 +INFO 2020-12-16 15:36:48 train.py: 79] Epoch 2, iter 5200/6416, lr 0.100000, loss 8.275327 +INFO 2020-12-16 15:39:51 train.py: 79] Epoch 2, iter 5400/6416, lr 0.100000, loss 8.234590 +INFO 2020-12-16 15:42:55 train.py: 79] Epoch 2, iter 5600/6416, lr 0.100000, loss 8.235253 +INFO 2020-12-16 15:45:58 train.py: 79] Epoch 2, iter 5800/6416, lr 0.100000, loss 8.185953 +INFO 2020-12-16 15:49:02 train.py: 92] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2020-12-16 15:49:02 train.py: 79] Epoch 2, iter 6000/6416, lr 0.100000, loss 8.157096 +INFO 2020-12-16 15:52:06 train.py: 79] Epoch 2, iter 6200/6416, lr 0.100000, loss 8.127464 +INFO 2020-12-16 15:55:10 train.py: 79] Epoch 2, iter 6400/6416, lr 0.100000, loss 8.068287 +INFO 2020-12-16 15:55:24 train.py: 97] Save checkpoint Epoch_2.pt to disk... +INFO 2020-12-16 15:55:26 train.py: 79] Epoch 3, iter 0/6416, lr 0.100000, loss 8.097464 +INFO 2020-12-16 15:58:30 train.py: 79] Epoch 3, iter 200/6416, lr 0.100000, loss 7.533775 +INFO 2020-12-16 16:01:33 train.py: 79] Epoch 3, iter 400/6416, lr 0.100000, loss 7.509258 +INFO 2020-12-16 16:04:37 train.py: 79] Epoch 3, iter 600/6416, lr 0.100000, loss 7.622495 +INFO 2020-12-16 16:07:41 train.py: 79] Epoch 3, iter 800/6416, lr 0.100000, loss 7.665167 +INFO 2020-12-16 16:10:44 train.py: 79] Epoch 3, iter 1000/6416, lr 0.100000, loss 7.698643 +INFO 2020-12-16 16:13:48 train.py: 79] Epoch 3, iter 1200/6416, lr 0.100000, loss 7.713717 +INFO 2020-12-16 16:16:51 train.py: 79] Epoch 3, iter 1400/6416, lr 0.100000, loss 7.722271 +INFO 2020-12-16 16:19:55 train.py: 79] Epoch 3, iter 1600/6416, lr 0.100000, loss 7.747544 +INFO 2020-12-16 16:22:58 train.py: 79] Epoch 3, iter 1800/6416, lr 0.100000, loss 7.709758 +INFO 2020-12-16 16:26:02 train.py: 79] Epoch 3, iter 2000/6416, lr 0.100000, loss 7.683169 +INFO 2020-12-16 16:29:05 train.py: 79] Epoch 3, iter 2200/6416, lr 0.100000, loss 7.743547 +INFO 2020-12-16 16:32:09 train.py: 79] Epoch 3, iter 2400/6416, lr 0.100000, loss 7.704084 +INFO 2020-12-16 16:35:12 train.py: 79] Epoch 3, iter 2600/6416, lr 0.100000, loss 7.653470 +INFO 2020-12-16 16:38:16 train.py: 79] Epoch 3, iter 2800/6416, lr 0.100000, loss 7.676525 +INFO 2020-12-16 16:41:20 train.py: 92] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2020-12-16 16:41:20 train.py: 79] Epoch 3, iter 3000/6416, lr 0.100000, loss 7.665897 +INFO 2020-12-16 16:44:24 train.py: 79] Epoch 3, iter 3200/6416, lr 0.100000, loss 7.595931 +INFO 2020-12-16 16:47:28 train.py: 79] Epoch 3, iter 3400/6416, lr 0.100000, loss 7.579141 +INFO 2020-12-16 16:50:31 train.py: 79] Epoch 3, iter 3600/6416, lr 0.100000, loss 7.594003 +INFO 2020-12-16 16:53:35 train.py: 79] Epoch 3, iter 3800/6416, lr 0.100000, loss 7.554896 +INFO 2020-12-16 16:56:38 train.py: 79] Epoch 3, iter 4000/6416, lr 0.100000, loss 7.532942 +INFO 2020-12-16 16:59:42 train.py: 79] Epoch 3, iter 4200/6416, lr 0.100000, loss 7.528585 +INFO 2020-12-16 17:02:45 train.py: 79] Epoch 3, iter 4400/6416, lr 0.100000, loss 7.520380 +INFO 2020-12-16 17:05:49 train.py: 79] Epoch 3, iter 4600/6416, lr 0.100000, loss 7.500985 +INFO 2020-12-16 17:08:53 train.py: 79] Epoch 3, iter 4800/6416, lr 0.100000, loss 7.484528 +INFO 2020-12-16 17:11:56 train.py: 79] Epoch 3, iter 5000/6416, lr 0.100000, loss 7.464162 +INFO 2020-12-16 17:15:00 train.py: 79] Epoch 3, iter 5200/6416, lr 0.100000, loss 7.440261 +INFO 2020-12-16 17:18:04 train.py: 79] Epoch 3, iter 5400/6416, lr 0.100000, loss 7.417208 +INFO 2020-12-16 17:21:07 train.py: 79] Epoch 3, iter 5600/6416, lr 0.100000, loss 7.410865 +INFO 2020-12-16 17:24:11 train.py: 79] Epoch 3, iter 5800/6416, lr 0.100000, loss 7.364992 +INFO 2020-12-16 17:27:14 train.py: 92] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2020-12-16 17:27:15 train.py: 79] Epoch 3, iter 6000/6416, lr 0.100000, loss 7.353658 +INFO 2020-12-16 17:30:19 train.py: 79] Epoch 3, iter 6200/6416, lr 0.100000, loss 7.362351 +INFO 2020-12-16 17:33:22 train.py: 79] Epoch 3, iter 6400/6416, lr 0.100000, loss 7.285520 +INFO 2020-12-16 17:33:36 train.py: 97] Save checkpoint Epoch_3.pt to disk... +INFO 2020-12-16 17:33:38 train.py: 79] Epoch 4, iter 0/6416, lr 0.100000, loss 7.220638 +INFO 2020-12-16 17:36:42 train.py: 79] Epoch 4, iter 200/6416, lr 0.100000, loss 6.813221 +INFO 2020-12-16 17:39:46 train.py: 79] Epoch 4, iter 400/6416, lr 0.100000, loss 6.796029 +INFO 2020-12-16 17:42:50 train.py: 79] Epoch 4, iter 600/6416, lr 0.100000, loss 6.908998 +INFO 2020-12-16 17:45:54 train.py: 79] Epoch 4, iter 800/6416, lr 0.100000, loss 6.986903 +INFO 2020-12-16 17:48:57 train.py: 79] Epoch 4, iter 1000/6416, lr 0.100000, loss 6.994841 +INFO 2020-12-16 17:52:01 train.py: 79] Epoch 4, iter 1200/6416, lr 0.100000, loss 7.036995 +INFO 2020-12-16 17:55:04 train.py: 79] Epoch 4, iter 1400/6416, lr 0.100000, loss 7.033270 +INFO 2020-12-16 17:58:08 train.py: 79] Epoch 4, iter 1600/6416, lr 0.100000, loss 7.053071 +INFO 2020-12-16 18:01:11 train.py: 79] Epoch 4, iter 1800/6416, lr 0.100000, loss 7.053654 +INFO 2020-12-16 18:04:15 train.py: 79] Epoch 4, iter 2000/6416, lr 0.100000, loss 7.041008 +INFO 2020-12-16 18:07:18 train.py: 79] Epoch 4, iter 2200/6416, lr 0.100000, loss 7.034623 +INFO 2020-12-16 18:10:22 train.py: 79] Epoch 4, iter 2400/6416, lr 0.100000, loss 7.047747 +INFO 2020-12-16 18:13:25 train.py: 79] Epoch 4, iter 2600/6416, lr 0.100000, loss 7.061938 +INFO 2020-12-16 18:16:29 train.py: 79] Epoch 4, iter 2800/6416, lr 0.100000, loss 7.041687 +INFO 2020-12-16 18:19:32 train.py: 92] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2020-12-16 18:19:33 train.py: 79] Epoch 4, iter 3000/6416, lr 0.100000, loss 7.010068 +INFO 2020-12-16 18:22:37 train.py: 79] Epoch 4, iter 3200/6416, lr 0.100000, loss 7.032898 +INFO 2020-12-16 18:25:41 train.py: 79] Epoch 4, iter 3400/6416, lr 0.100000, loss 6.985824 +INFO 2020-12-16 18:28:44 train.py: 79] Epoch 4, iter 3600/6416, lr 0.100000, loss 7.010521 +INFO 2020-12-16 18:31:48 train.py: 79] Epoch 4, iter 3800/6416, lr 0.100000, loss 6.984254 +INFO 2020-12-16 18:34:52 train.py: 79] Epoch 4, iter 4000/6416, lr 0.100000, loss 6.971621 +INFO 2020-12-16 18:37:55 train.py: 79] Epoch 4, iter 4200/6416, lr 0.100000, loss 6.998433 +INFO 2020-12-16 18:40:59 train.py: 79] Epoch 4, iter 4400/6416, lr 0.100000, loss 6.958774 +INFO 2020-12-16 18:44:03 train.py: 79] Epoch 4, iter 4600/6416, lr 0.100000, loss 6.944697 +INFO 2020-12-16 18:47:06 train.py: 79] Epoch 4, iter 4800/6416, lr 0.100000, loss 6.948095 +INFO 2020-12-16 18:50:10 train.py: 79] Epoch 4, iter 5000/6416, lr 0.100000, loss 6.935915 +INFO 2020-12-16 18:53:14 train.py: 79] Epoch 4, iter 5200/6416, lr 0.100000, loss 6.932230 +INFO 2020-12-16 18:56:17 train.py: 79] Epoch 4, iter 5400/6416, lr 0.100000, loss 6.942065 +INFO 2020-12-16 18:59:21 train.py: 79] Epoch 4, iter 5600/6416, lr 0.100000, loss 6.880897 +INFO 2020-12-16 19:02:25 train.py: 79] Epoch 4, iter 5800/6416, lr 0.100000, loss 6.858976 +INFO 2020-12-16 19:05:28 train.py: 92] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2020-12-16 19:05:29 train.py: 79] Epoch 4, iter 6000/6416, lr 0.100000, loss 6.882915 +INFO 2020-12-16 19:08:33 train.py: 79] Epoch 4, iter 6200/6416, lr 0.100000, loss 6.854021 +INFO 2020-12-16 19:11:36 train.py: 79] Epoch 4, iter 6400/6416, lr 0.100000, loss 6.868132 +INFO 2020-12-16 19:11:50 train.py: 97] Save checkpoint Epoch_4.pt to disk... +INFO 2020-12-16 19:11:53 train.py: 79] Epoch 5, iter 0/6416, lr 0.100000, loss 6.687169 +INFO 2020-12-16 19:14:56 train.py: 79] Epoch 5, iter 200/6416, lr 0.100000, loss 6.330479 +INFO 2020-12-16 19:18:00 train.py: 79] Epoch 5, iter 400/6416, lr 0.100000, loss 6.332625 +INFO 2020-12-16 19:21:04 train.py: 79] Epoch 5, iter 600/6416, lr 0.100000, loss 6.413189 +INFO 2020-12-16 19:24:07 train.py: 79] Epoch 5, iter 800/6416, lr 0.100000, loss 6.457377 +INFO 2020-12-16 19:27:11 train.py: 79] Epoch 5, iter 1000/6416, lr 0.100000, loss 6.523624 +INFO 2020-12-16 19:30:14 train.py: 79] Epoch 5, iter 1200/6416, lr 0.100000, loss 6.593338 +INFO 2020-12-16 19:33:18 train.py: 79] Epoch 5, iter 1400/6416, lr 0.100000, loss 6.596045 +INFO 2020-12-16 19:36:21 train.py: 79] Epoch 5, iter 1600/6416, lr 0.100000, loss 6.599684 +INFO 2020-12-16 19:39:25 train.py: 79] Epoch 5, iter 1800/6416, lr 0.100000, loss 6.650840 +INFO 2020-12-16 19:42:28 train.py: 79] Epoch 5, iter 2000/6416, lr 0.100000, loss 6.614480 +INFO 2020-12-16 19:45:32 train.py: 79] Epoch 5, iter 2200/6416, lr 0.100000, loss 6.666180 +INFO 2020-12-16 19:48:36 train.py: 79] Epoch 5, iter 2400/6416, lr 0.100000, loss 6.652113 +INFO 2020-12-16 19:51:39 train.py: 79] Epoch 5, iter 2600/6416, lr 0.100000, loss 6.670007 +INFO 2020-12-16 19:54:43 train.py: 79] Epoch 5, iter 2800/6416, lr 0.100000, loss 6.655893 +INFO 2020-12-16 19:57:46 train.py: 92] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2020-12-16 19:57:47 train.py: 79] Epoch 5, iter 3000/6416, lr 0.100000, loss 6.664842 +INFO 2020-12-16 20:00:51 train.py: 79] Epoch 5, iter 3200/6416, lr 0.100000, loss 6.657407 +INFO 2020-12-16 20:03:55 train.py: 79] Epoch 5, iter 3400/6416, lr 0.100000, loss 6.619209 +INFO 2020-12-16 20:06:59 train.py: 79] Epoch 5, iter 3600/6416, lr 0.100000, loss 6.687481 +INFO 2020-12-16 20:10:02 train.py: 79] Epoch 5, iter 3800/6416, lr 0.100000, loss 6.582684 +INFO 2020-12-16 20:13:06 train.py: 79] Epoch 5, iter 4000/6416, lr 0.100000, loss 6.588120 +INFO 2020-12-16 20:16:10 train.py: 79] Epoch 5, iter 4200/6416, lr 0.100000, loss 6.629578 +INFO 2020-12-16 20:19:14 train.py: 79] Epoch 5, iter 4400/6416, lr 0.100000, loss 6.611664 +INFO 2020-12-16 20:22:18 train.py: 79] Epoch 5, iter 4600/6416, lr 0.100000, loss 6.604345 +INFO 2020-12-16 20:25:21 train.py: 79] Epoch 5, iter 4800/6416, lr 0.100000, loss 6.581388 +INFO 2020-12-16 20:28:25 train.py: 79] Epoch 5, iter 5000/6416, lr 0.100000, loss 6.587704 +INFO 2020-12-16 20:31:29 train.py: 79] Epoch 5, iter 5200/6416, lr 0.100000, loss 6.566637 +INFO 2020-12-16 20:34:33 train.py: 79] Epoch 5, iter 5400/6416, lr 0.100000, loss 6.560541 +INFO 2020-12-16 20:37:37 train.py: 79] Epoch 5, iter 5600/6416, lr 0.100000, loss 6.570186 +INFO 2020-12-16 20:40:41 train.py: 79] Epoch 5, iter 5800/6416, lr 0.100000, loss 6.543714 +INFO 2020-12-16 20:43:44 train.py: 92] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2020-12-16 20:43:45 train.py: 79] Epoch 5, iter 6000/6416, lr 0.100000, loss 6.559604 +INFO 2020-12-16 20:46:49 train.py: 79] Epoch 5, iter 6200/6416, lr 0.100000, loss 6.551549 +INFO 2020-12-16 20:49:53 train.py: 79] Epoch 5, iter 6400/6416, lr 0.100000, loss 6.527905 +INFO 2020-12-16 20:50:06 train.py: 97] Save checkpoint Epoch_5.pt to disk... +INFO 2020-12-16 20:50:09 train.py: 79] Epoch 6, iter 0/6416, lr 0.100000, loss 6.550037 +INFO 2020-12-16 20:53:12 train.py: 79] Epoch 6, iter 200/6416, lr 0.100000, loss 5.998583 +INFO 2020-12-16 20:56:17 train.py: 79] Epoch 6, iter 400/6416, lr 0.100000, loss 6.006238 +INFO 2020-12-16 20:59:20 train.py: 79] Epoch 6, iter 600/6416, lr 0.100000, loss 6.111885 +INFO 2020-12-16 21:02:24 train.py: 79] Epoch 6, iter 800/6416, lr 0.100000, loss 6.202286 +INFO 2020-12-16 21:05:27 train.py: 79] Epoch 6, iter 1000/6416, lr 0.100000, loss 6.234919 +INFO 2020-12-16 21:08:31 train.py: 79] Epoch 6, iter 1200/6416, lr 0.100000, loss 6.274875 +INFO 2020-12-16 21:11:35 train.py: 79] Epoch 6, iter 1400/6416, lr 0.100000, loss 6.264605 +INFO 2020-12-16 21:14:38 train.py: 79] Epoch 6, iter 1600/6416, lr 0.100000, loss 6.301119 +INFO 2020-12-16 21:17:42 train.py: 79] Epoch 6, iter 1800/6416, lr 0.100000, loss 6.318995 +INFO 2020-12-16 21:20:46 train.py: 79] Epoch 6, iter 2000/6416, lr 0.100000, loss 6.324353 +INFO 2020-12-16 21:23:49 train.py: 79] Epoch 6, iter 2200/6416, lr 0.100000, loss 6.354859 +INFO 2020-12-16 21:26:53 train.py: 79] Epoch 6, iter 2400/6416, lr 0.100000, loss 6.373282 +INFO 2020-12-16 21:29:57 train.py: 79] Epoch 6, iter 2600/6416, lr 0.100000, loss 6.391004 +INFO 2020-12-16 21:33:00 train.py: 79] Epoch 6, iter 2800/6416, lr 0.100000, loss 6.355699 +INFO 2020-12-16 21:36:04 train.py: 92] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2020-12-16 21:36:05 train.py: 79] Epoch 6, iter 3000/6416, lr 0.100000, loss 6.374998 +INFO 2020-12-16 21:39:09 train.py: 79] Epoch 6, iter 3200/6416, lr 0.100000, loss 6.332537 +INFO 2020-12-16 21:42:13 train.py: 79] Epoch 6, iter 3400/6416, lr 0.100000, loss 6.375002 +INFO 2020-12-16 21:45:16 train.py: 79] Epoch 6, iter 3600/6416, lr 0.100000, loss 6.355496 +INFO 2020-12-16 21:48:20 train.py: 79] Epoch 6, iter 3800/6416, lr 0.100000, loss 6.362530 +INFO 2020-12-16 21:51:24 train.py: 79] Epoch 6, iter 4000/6416, lr 0.100000, loss 6.365120 +INFO 2020-12-16 21:54:28 train.py: 79] Epoch 6, iter 4200/6416, lr 0.100000, loss 6.342688 +INFO 2020-12-16 21:57:32 train.py: 79] Epoch 6, iter 4400/6416, lr 0.100000, loss 6.328660 +INFO 2020-12-16 22:00:36 train.py: 79] Epoch 6, iter 4600/6416, lr 0.100000, loss 6.347540 +INFO 2020-12-16 22:03:39 train.py: 79] Epoch 6, iter 4800/6416, lr 0.100000, loss 6.342310 +INFO 2020-12-16 22:06:43 train.py: 79] Epoch 6, iter 5000/6416, lr 0.100000, loss 6.342663 +INFO 2020-12-16 22:09:47 train.py: 79] Epoch 6, iter 5200/6416, lr 0.100000, loss 6.331906 +INFO 2020-12-16 22:12:51 train.py: 79] Epoch 6, iter 5400/6416, lr 0.100000, loss 6.304072 +INFO 2020-12-16 22:15:55 train.py: 79] Epoch 6, iter 5600/6416, lr 0.100000, loss 6.285095 +INFO 2020-12-16 22:18:59 train.py: 79] Epoch 6, iter 5800/6416, lr 0.100000, loss 6.282518 +INFO 2020-12-16 22:22:02 train.py: 92] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2020-12-16 22:22:03 train.py: 79] Epoch 6, iter 6000/6416, lr 0.100000, loss 6.259123 +INFO 2020-12-16 22:25:08 train.py: 79] Epoch 6, iter 6200/6416, lr 0.100000, loss 6.293265 +INFO 2020-12-16 22:28:11 train.py: 79] Epoch 6, iter 6400/6416, lr 0.100000, loss 6.283082 +INFO 2020-12-16 22:28:25 train.py: 97] Save checkpoint Epoch_6.pt to disk... +INFO 2020-12-16 22:28:27 train.py: 79] Epoch 7, iter 0/6416, lr 0.100000, loss 6.194263 +INFO 2020-12-16 22:31:31 train.py: 79] Epoch 7, iter 200/6416, lr 0.100000, loss 5.780380 +INFO 2020-12-16 22:34:35 train.py: 79] Epoch 7, iter 400/6416, lr 0.100000, loss 5.745367 +INFO 2020-12-16 22:37:39 train.py: 79] Epoch 7, iter 600/6416, lr 0.100000, loss 5.883271 +INFO 2020-12-16 22:40:43 train.py: 79] Epoch 7, iter 800/6416, lr 0.100000, loss 5.921427 +INFO 2020-12-16 22:43:47 train.py: 79] Epoch 7, iter 1000/6416, lr 0.100000, loss 5.963688 +INFO 2020-12-16 22:46:50 train.py: 79] Epoch 7, iter 1200/6416, lr 0.100000, loss 6.054396 +INFO 2020-12-16 22:49:54 train.py: 79] Epoch 7, iter 1400/6416, lr 0.100000, loss 6.047568 +INFO 2020-12-16 22:52:57 train.py: 79] Epoch 7, iter 1600/6416, lr 0.100000, loss 6.087585 +INFO 2020-12-16 22:56:01 train.py: 79] Epoch 7, iter 1800/6416, lr 0.100000, loss 6.113140 +INFO 2020-12-16 22:59:05 train.py: 79] Epoch 7, iter 2000/6416, lr 0.100000, loss 6.111894 +INFO 2020-12-16 23:02:09 train.py: 79] Epoch 7, iter 2200/6416, lr 0.100000, loss 6.125291 +INFO 2020-12-16 23:05:13 train.py: 79] Epoch 7, iter 2400/6416, lr 0.100000, loss 6.127479 +INFO 2020-12-16 23:08:17 train.py: 79] Epoch 7, iter 2600/6416, lr 0.100000, loss 6.141241 +INFO 2020-12-16 23:11:20 train.py: 79] Epoch 7, iter 2800/6416, lr 0.100000, loss 6.150876 +INFO 2020-12-16 23:14:24 train.py: 92] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2020-12-16 23:14:25 train.py: 79] Epoch 7, iter 3000/6416, lr 0.100000, loss 6.135567 +INFO 2020-12-16 23:17:29 train.py: 79] Epoch 7, iter 3200/6416, lr 0.100000, loss 6.122425 +INFO 2020-12-16 23:20:33 train.py: 79] Epoch 7, iter 3400/6416, lr 0.100000, loss 6.179848 +INFO 2020-12-16 23:23:37 train.py: 79] Epoch 7, iter 3600/6416, lr 0.100000, loss 6.112599 +INFO 2020-12-16 23:26:41 train.py: 79] Epoch 7, iter 3800/6416, lr 0.100000, loss 6.131287 +INFO 2020-12-16 23:29:45 train.py: 79] Epoch 7, iter 4000/6416, lr 0.100000, loss 6.169256 +INFO 2020-12-16 23:32:49 train.py: 79] Epoch 7, iter 4200/6416, lr 0.100000, loss 6.100719 +INFO 2020-12-16 23:35:53 train.py: 79] Epoch 7, iter 4400/6416, lr 0.100000, loss 6.111884 +INFO 2020-12-16 23:38:57 train.py: 79] Epoch 7, iter 4600/6416, lr 0.100000, loss 6.138353 +INFO 2020-12-16 23:42:01 train.py: 79] Epoch 7, iter 4800/6416, lr 0.100000, loss 6.122168 +INFO 2020-12-16 23:45:05 train.py: 79] Epoch 7, iter 5000/6416, lr 0.100000, loss 6.119304 +INFO 2020-12-16 23:48:09 train.py: 79] Epoch 7, iter 5200/6416, lr 0.100000, loss 6.130274 +INFO 2020-12-16 23:51:13 train.py: 79] Epoch 7, iter 5400/6416, lr 0.100000, loss 6.115806 +INFO 2020-12-16 23:54:17 train.py: 79] Epoch 7, iter 5600/6416, lr 0.100000, loss 6.110932 +INFO 2020-12-16 23:57:20 train.py: 79] Epoch 7, iter 5800/6416, lr 0.100000, loss 6.104609 +INFO 2020-12-17 00:00:24 train.py: 92] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2020-12-17 00:00:25 train.py: 79] Epoch 7, iter 6000/6416, lr 0.100000, loss 6.125439 +INFO 2020-12-17 00:03:29 train.py: 79] Epoch 7, iter 6200/6416, lr 0.100000, loss 6.079707 +INFO 2020-12-17 00:06:33 train.py: 79] Epoch 7, iter 6400/6416, lr 0.100000, loss 6.081316 +INFO 2020-12-17 00:06:47 train.py: 97] Save checkpoint Epoch_7.pt to disk... +INFO 2020-12-17 00:06:49 train.py: 79] Epoch 8, iter 0/6416, lr 0.100000, loss 6.092733 +INFO 2020-12-17 00:09:53 train.py: 79] Epoch 8, iter 200/6416, lr 0.100000, loss 5.553806 +INFO 2020-12-17 00:12:57 train.py: 79] Epoch 8, iter 400/6416, lr 0.100000, loss 5.557566 +INFO 2020-12-17 00:16:00 train.py: 79] Epoch 8, iter 600/6416, lr 0.100000, loss 5.667213 +INFO 2020-12-17 00:19:04 train.py: 79] Epoch 8, iter 800/6416, lr 0.100000, loss 5.740584 +INFO 2020-12-17 00:22:08 train.py: 79] Epoch 8, iter 1000/6416, lr 0.100000, loss 5.824890 +INFO 2020-12-17 00:25:12 train.py: 79] Epoch 8, iter 1200/6416, lr 0.100000, loss 5.858538 +INFO 2020-12-17 00:28:15 train.py: 79] Epoch 8, iter 1400/6416, lr 0.100000, loss 5.878859 +INFO 2020-12-17 00:31:19 train.py: 79] Epoch 8, iter 1600/6416, lr 0.100000, loss 5.925390 +INFO 2020-12-17 00:34:23 train.py: 79] Epoch 8, iter 1800/6416, lr 0.100000, loss 5.907194 +INFO 2020-12-17 00:37:27 train.py: 79] Epoch 8, iter 2000/6416, lr 0.100000, loss 5.959864 +INFO 2020-12-17 00:40:31 train.py: 79] Epoch 8, iter 2200/6416, lr 0.100000, loss 5.964619 +INFO 2020-12-17 00:43:34 train.py: 79] Epoch 8, iter 2400/6416, lr 0.100000, loss 5.939840 +INFO 2020-12-17 00:46:38 train.py: 79] Epoch 8, iter 2600/6416, lr 0.100000, loss 5.942517 +INFO 2020-12-17 00:49:42 train.py: 79] Epoch 8, iter 2800/6416, lr 0.100000, loss 6.001136 +INFO 2020-12-17 00:52:46 train.py: 92] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2020-12-17 00:52:47 train.py: 79] Epoch 8, iter 3000/6416, lr 0.100000, loss 5.995145 +INFO 2020-12-17 00:55:51 train.py: 79] Epoch 8, iter 3200/6416, lr 0.100000, loss 5.972148 +INFO 2020-12-17 00:58:55 train.py: 79] Epoch 8, iter 3400/6416, lr 0.100000, loss 5.972411 +INFO 2020-12-17 01:01:59 train.py: 79] Epoch 8, iter 3600/6416, lr 0.100000, loss 5.974967 +INFO 2020-12-17 01:05:03 train.py: 79] Epoch 8, iter 3800/6416, lr 0.100000, loss 5.949742 +INFO 2020-12-17 01:08:07 train.py: 79] Epoch 8, iter 4000/6416, lr 0.100000, loss 5.986706 +INFO 2020-12-17 01:11:11 train.py: 79] Epoch 8, iter 4200/6416, lr 0.100000, loss 5.954821 +INFO 2020-12-17 01:14:15 train.py: 79] Epoch 8, iter 4400/6416, lr 0.100000, loss 5.985813 +INFO 2020-12-17 01:17:19 train.py: 79] Epoch 8, iter 4600/6416, lr 0.100000, loss 5.952517 +INFO 2020-12-17 01:20:23 train.py: 79] Epoch 8, iter 4800/6416, lr 0.100000, loss 5.955298 +INFO 2020-12-17 01:23:27 train.py: 79] Epoch 8, iter 5000/6416, lr 0.100000, loss 5.966541 +INFO 2020-12-17 01:26:31 train.py: 79] Epoch 8, iter 5200/6416, lr 0.100000, loss 5.967509 +INFO 2020-12-17 01:29:35 train.py: 79] Epoch 8, iter 5400/6416, lr 0.100000, loss 5.932452 +INFO 2020-12-17 01:32:39 train.py: 79] Epoch 8, iter 5600/6416, lr 0.100000, loss 5.928681 +INFO 2020-12-17 01:35:43 train.py: 79] Epoch 8, iter 5800/6416, lr 0.100000, loss 5.972631 +INFO 2020-12-17 01:38:47 train.py: 92] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2020-12-17 01:38:48 train.py: 79] Epoch 8, iter 6000/6416, lr 0.100000, loss 5.937896 +INFO 2020-12-17 01:41:51 train.py: 79] Epoch 8, iter 6200/6416, lr 0.100000, loss 5.930704 +INFO 2020-12-17 01:44:55 train.py: 79] Epoch 8, iter 6400/6416, lr 0.100000, loss 5.927029 +INFO 2020-12-17 01:45:09 train.py: 97] Save checkpoint Epoch_8.pt to disk... +INFO 2020-12-17 01:45:11 train.py: 79] Epoch 9, iter 0/6416, lr 0.100000, loss 5.869226 +INFO 2020-12-17 01:48:15 train.py: 79] Epoch 9, iter 200/6416, lr 0.100000, loss 5.419071 +INFO 2020-12-17 01:51:19 train.py: 79] Epoch 9, iter 400/6416, lr 0.100000, loss 5.440582 +INFO 2020-12-17 01:54:23 train.py: 79] Epoch 9, iter 600/6416, lr 0.100000, loss 5.507678 +INFO 2020-12-17 01:57:27 train.py: 79] Epoch 9, iter 800/6416, lr 0.100000, loss 5.640536 +INFO 2020-12-17 02:00:30 train.py: 79] Epoch 9, iter 1000/6416, lr 0.100000, loss 5.660732 +INFO 2020-12-17 02:03:34 train.py: 79] Epoch 9, iter 1200/6416, lr 0.100000, loss 5.705915 +INFO 2020-12-17 02:06:38 train.py: 79] Epoch 9, iter 1400/6416, lr 0.100000, loss 5.732998 +INFO 2020-12-17 02:09:41 train.py: 79] Epoch 9, iter 1600/6416, lr 0.100000, loss 5.780678 +INFO 2020-12-17 02:12:45 train.py: 79] Epoch 9, iter 1800/6416, lr 0.100000, loss 5.761457 +INFO 2020-12-17 02:15:49 train.py: 79] Epoch 9, iter 2000/6416, lr 0.100000, loss 5.801741 +INFO 2020-12-17 02:18:53 train.py: 79] Epoch 9, iter 2200/6416, lr 0.100000, loss 5.787668 +INFO 2020-12-17 02:21:57 train.py: 79] Epoch 9, iter 2400/6416, lr 0.100000, loss 5.785251 +INFO 2020-12-17 02:25:01 train.py: 79] Epoch 9, iter 2600/6416, lr 0.100000, loss 5.852773 +INFO 2020-12-17 02:28:05 train.py: 79] Epoch 9, iter 2800/6416, lr 0.100000, loss 5.823755 +INFO 2020-12-17 02:31:08 train.py: 92] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2020-12-17 02:31:09 train.py: 79] Epoch 9, iter 3000/6416, lr 0.100000, loss 5.808953 +INFO 2020-12-17 02:34:13 train.py: 79] Epoch 9, iter 3200/6416, lr 0.100000, loss 5.833811 +INFO 2020-12-17 02:37:17 train.py: 79] Epoch 9, iter 3400/6416, lr 0.100000, loss 5.830485 +INFO 2020-12-17 02:40:21 train.py: 79] Epoch 9, iter 3600/6416, lr 0.100000, loss 5.844789 +INFO 2020-12-17 02:43:25 train.py: 79] Epoch 9, iter 3800/6416, lr 0.100000, loss 5.834277 +INFO 2020-12-17 02:46:29 train.py: 79] Epoch 9, iter 4000/6416, lr 0.100000, loss 5.850949 +INFO 2020-12-17 02:49:33 train.py: 79] Epoch 9, iter 4200/6416, lr 0.100000, loss 5.809742 +INFO 2020-12-17 02:52:37 train.py: 79] Epoch 9, iter 4400/6416, lr 0.100000, loss 5.834941 +INFO 2020-12-17 02:55:41 train.py: 79] Epoch 9, iter 4600/6416, lr 0.100000, loss 5.822046 +INFO 2020-12-17 02:58:45 train.py: 79] Epoch 9, iter 4800/6416, lr 0.100000, loss 5.821672 +INFO 2020-12-17 03:01:49 train.py: 79] Epoch 9, iter 5000/6416, lr 0.100000, loss 5.831677 +INFO 2020-12-17 03:04:53 train.py: 79] Epoch 9, iter 5200/6416, lr 0.100000, loss 5.825064 +INFO 2020-12-17 03:07:57 train.py: 79] Epoch 9, iter 5400/6416, lr 0.100000, loss 5.805704 +INFO 2020-12-17 03:11:01 train.py: 79] Epoch 9, iter 5600/6416, lr 0.100000, loss 5.826465 +INFO 2020-12-17 03:14:05 train.py: 79] Epoch 9, iter 5800/6416, lr 0.100000, loss 5.820823 +INFO 2020-12-17 03:17:09 train.py: 92] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2020-12-17 03:17:10 train.py: 79] Epoch 9, iter 6000/6416, lr 0.100000, loss 5.841555 +INFO 2020-12-17 03:20:14 train.py: 79] Epoch 9, iter 6200/6416, lr 0.100000, loss 5.823700 +INFO 2020-12-17 03:23:18 train.py: 79] Epoch 9, iter 6400/6416, lr 0.100000, loss 5.830068 +INFO 2020-12-17 03:23:32 train.py: 97] Save checkpoint Epoch_9.pt to disk... +INFO 2020-12-17 03:23:34 train.py: 79] Epoch 10, iter 0/6416, lr 0.010000, loss 5.826842 +INFO 2020-12-17 03:26:38 train.py: 79] Epoch 10, iter 200/6416, lr 0.010000, loss 4.548205 +INFO 2020-12-17 03:29:42 train.py: 79] Epoch 10, iter 400/6416, lr 0.010000, loss 4.211603 +INFO 2020-12-17 03:32:45 train.py: 79] Epoch 10, iter 600/6416, lr 0.010000, loss 4.126667 +INFO 2020-12-17 03:35:49 train.py: 79] Epoch 10, iter 800/6416, lr 0.010000, loss 4.055592 +INFO 2020-12-17 03:38:53 train.py: 79] Epoch 10, iter 1000/6416, lr 0.010000, loss 4.005355 +INFO 2020-12-17 03:41:57 train.py: 79] Epoch 10, iter 1200/6416, lr 0.010000, loss 3.973728 +INFO 2020-12-17 03:45:00 train.py: 79] Epoch 10, iter 1400/6416, lr 0.010000, loss 3.918247 +INFO 2020-12-17 03:48:04 train.py: 79] Epoch 10, iter 1600/6416, lr 0.010000, loss 3.893333 +INFO 2020-12-17 03:51:08 train.py: 79] Epoch 10, iter 1800/6416, lr 0.010000, loss 3.884688 +INFO 2020-12-17 03:54:12 train.py: 79] Epoch 10, iter 2000/6416, lr 0.010000, loss 3.809224 +INFO 2020-12-17 03:57:16 train.py: 79] Epoch 10, iter 2200/6416, lr 0.010000, loss 3.818752 +INFO 2020-12-17 04:00:20 train.py: 79] Epoch 10, iter 2400/6416, lr 0.010000, loss 3.792871 +INFO 2020-12-17 04:03:24 train.py: 79] Epoch 10, iter 2600/6416, lr 0.010000, loss 3.750689 +INFO 2020-12-17 04:06:28 train.py: 79] Epoch 10, iter 2800/6416, lr 0.010000, loss 3.748104 +INFO 2020-12-17 04:09:31 train.py: 92] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2020-12-17 04:09:32 train.py: 79] Epoch 10, iter 3000/6416, lr 0.010000, loss 3.714453 +INFO 2020-12-17 04:12:36 train.py: 79] Epoch 10, iter 3200/6416, lr 0.010000, loss 3.671531 +INFO 2020-12-17 04:15:40 train.py: 79] Epoch 10, iter 3400/6416, lr 0.010000, loss 3.664450 +INFO 2020-12-17 04:18:44 train.py: 79] Epoch 10, iter 3600/6416, lr 0.010000, loss 3.644666 +INFO 2020-12-17 04:21:47 train.py: 79] Epoch 10, iter 3800/6416, lr 0.010000, loss 3.634291 +INFO 2020-12-17 04:24:52 train.py: 79] Epoch 10, iter 4000/6416, lr 0.010000, loss 3.615768 +INFO 2020-12-17 04:27:55 train.py: 79] Epoch 10, iter 4200/6416, lr 0.010000, loss 3.607924 +INFO 2020-12-17 04:30:59 train.py: 79] Epoch 10, iter 4400/6416, lr 0.010000, loss 3.626286 +INFO 2020-12-17 04:34:03 train.py: 79] Epoch 10, iter 4600/6416, lr 0.010000, loss 3.587321 +INFO 2020-12-17 04:37:07 train.py: 79] Epoch 10, iter 4800/6416, lr 0.010000, loss 3.568344 +INFO 2020-12-17 04:40:11 train.py: 79] Epoch 10, iter 5000/6416, lr 0.010000, loss 3.561552 +INFO 2020-12-17 04:43:15 train.py: 79] Epoch 10, iter 5200/6416, lr 0.010000, loss 3.562436 +INFO 2020-12-17 04:46:19 train.py: 79] Epoch 10, iter 5400/6416, lr 0.010000, loss 3.546892 +INFO 2020-12-17 04:49:23 train.py: 79] Epoch 10, iter 5600/6416, lr 0.010000, loss 3.522081 +INFO 2020-12-17 04:52:27 train.py: 79] Epoch 10, iter 5800/6416, lr 0.010000, loss 3.495743 +INFO 2020-12-17 04:55:30 train.py: 92] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2020-12-17 04:55:31 train.py: 79] Epoch 10, iter 6000/6416, lr 0.010000, loss 3.492026 +INFO 2020-12-17 04:58:35 train.py: 79] Epoch 10, iter 6200/6416, lr 0.010000, loss 3.484539 +INFO 2020-12-17 05:01:39 train.py: 79] Epoch 10, iter 6400/6416, lr 0.010000, loss 3.469855 +INFO 2020-12-17 05:01:53 train.py: 97] Save checkpoint Epoch_10.pt to disk... +INFO 2020-12-17 05:01:55 train.py: 79] Epoch 11, iter 0/6416, lr 0.010000, loss 3.514514 +INFO 2020-12-17 05:04:59 train.py: 79] Epoch 11, iter 200/6416, lr 0.010000, loss 3.160030 +INFO 2020-12-17 05:08:03 train.py: 79] Epoch 11, iter 400/6416, lr 0.010000, loss 3.146543 +INFO 2020-12-17 05:11:07 train.py: 79] Epoch 11, iter 600/6416, lr 0.010000, loss 3.166033 +INFO 2020-12-17 05:14:10 train.py: 79] Epoch 11, iter 800/6416, lr 0.010000, loss 3.168596 +INFO 2020-12-17 05:17:14 train.py: 79] Epoch 11, iter 1000/6416, lr 0.010000, loss 3.177543 +INFO 2020-12-17 05:20:17 train.py: 79] Epoch 11, iter 1200/6416, lr 0.010000, loss 3.128748 +INFO 2020-12-17 05:23:21 train.py: 79] Epoch 11, iter 1400/6416, lr 0.010000, loss 3.164774 +INFO 2020-12-17 05:26:25 train.py: 79] Epoch 11, iter 1600/6416, lr 0.010000, loss 3.163165 +INFO 2020-12-17 05:29:29 train.py: 79] Epoch 11, iter 1800/6416, lr 0.010000, loss 3.175456 +INFO 2020-12-17 05:32:32 train.py: 79] Epoch 11, iter 2000/6416, lr 0.010000, loss 3.198288 +INFO 2020-12-17 05:35:36 train.py: 79] Epoch 11, iter 2200/6416, lr 0.010000, loss 3.167570 +INFO 2020-12-17 05:38:40 train.py: 79] Epoch 11, iter 2400/6416, lr 0.010000, loss 3.155572 +INFO 2020-12-17 05:41:43 train.py: 79] Epoch 11, iter 2600/6416, lr 0.010000, loss 3.179223 +INFO 2020-12-17 05:44:47 train.py: 79] Epoch 11, iter 2800/6416, lr 0.010000, loss 3.169990 +INFO 2020-12-17 05:47:51 train.py: 92] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2020-12-17 05:47:52 train.py: 79] Epoch 11, iter 3000/6416, lr 0.010000, loss 3.185505 +INFO 2020-12-17 05:50:55 train.py: 79] Epoch 11, iter 3200/6416, lr 0.010000, loss 3.146870 +INFO 2020-12-17 05:53:59 train.py: 79] Epoch 11, iter 3400/6416, lr 0.010000, loss 3.173579 +INFO 2020-12-17 05:57:03 train.py: 79] Epoch 11, iter 3600/6416, lr 0.010000, loss 3.168758 +INFO 2020-12-17 06:00:07 train.py: 79] Epoch 11, iter 3800/6416, lr 0.010000, loss 3.160528 +INFO 2020-12-17 06:03:10 train.py: 79] Epoch 11, iter 4000/6416, lr 0.010000, loss 3.180473 +INFO 2020-12-17 06:06:14 train.py: 79] Epoch 11, iter 4200/6416, lr 0.010000, loss 3.171116 +INFO 2020-12-17 06:09:18 train.py: 79] Epoch 11, iter 4400/6416, lr 0.010000, loss 3.154475 +INFO 2020-12-17 06:12:22 train.py: 79] Epoch 11, iter 4600/6416, lr 0.010000, loss 3.176243 +INFO 2020-12-17 06:15:26 train.py: 79] Epoch 11, iter 4800/6416, lr 0.010000, loss 3.171883 +INFO 2020-12-17 06:18:30 train.py: 79] Epoch 11, iter 5000/6416, lr 0.010000, loss 3.195679 +INFO 2020-12-17 06:21:34 train.py: 79] Epoch 11, iter 5200/6416, lr 0.010000, loss 3.175597 +INFO 2020-12-17 06:24:38 train.py: 79] Epoch 11, iter 5400/6416, lr 0.010000, loss 3.163461 +INFO 2020-12-17 06:27:42 train.py: 79] Epoch 11, iter 5600/6416, lr 0.010000, loss 3.163557 +INFO 2020-12-17 06:30:46 train.py: 79] Epoch 11, iter 5800/6416, lr 0.010000, loss 3.162324 +INFO 2020-12-17 06:33:50 train.py: 92] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2020-12-17 06:33:50 train.py: 79] Epoch 11, iter 6000/6416, lr 0.010000, loss 3.158371 +INFO 2020-12-17 06:36:54 train.py: 79] Epoch 11, iter 6200/6416, lr 0.010000, loss 3.154266 +INFO 2020-12-17 06:39:58 train.py: 79] Epoch 11, iter 6400/6416, lr 0.010000, loss 3.171731 +INFO 2020-12-17 06:40:12 train.py: 97] Save checkpoint Epoch_11.pt to disk... +INFO 2020-12-17 06:40:14 train.py: 79] Epoch 12, iter 0/6416, lr 0.010000, loss 3.129189 +INFO 2020-12-17 06:43:18 train.py: 79] Epoch 12, iter 200/6416, lr 0.010000, loss 2.860576 +INFO 2020-12-17 06:46:22 train.py: 79] Epoch 12, iter 400/6416, lr 0.010000, loss 2.850822 +INFO 2020-12-17 06:49:26 train.py: 79] Epoch 12, iter 600/6416, lr 0.010000, loss 2.881905 +INFO 2020-12-17 06:52:29 train.py: 79] Epoch 12, iter 800/6416, lr 0.010000, loss 2.882144 +INFO 2020-12-17 06:55:33 train.py: 79] Epoch 12, iter 1000/6416, lr 0.010000, loss 2.895373 +INFO 2020-12-17 06:58:36 train.py: 79] Epoch 12, iter 1200/6416, lr 0.010000, loss 2.908096 +INFO 2020-12-17 07:01:40 train.py: 79] Epoch 12, iter 1400/6416, lr 0.010000, loss 2.925051 +INFO 2020-12-17 07:04:43 train.py: 79] Epoch 12, iter 1600/6416, lr 0.010000, loss 2.935689 +INFO 2020-12-17 07:07:47 train.py: 79] Epoch 12, iter 1800/6416, lr 0.010000, loss 2.928721 +INFO 2020-12-17 07:10:51 train.py: 79] Epoch 12, iter 2000/6416, lr 0.010000, loss 2.924306 +INFO 2020-12-17 07:13:54 train.py: 79] Epoch 12, iter 2200/6416, lr 0.010000, loss 2.971523 +INFO 2020-12-17 07:16:58 train.py: 79] Epoch 12, iter 2400/6416, lr 0.010000, loss 2.974434 +INFO 2020-12-17 07:20:02 train.py: 79] Epoch 12, iter 2600/6416, lr 0.010000, loss 2.981440 +INFO 2020-12-17 07:23:06 train.py: 79] Epoch 12, iter 2800/6416, lr 0.010000, loss 2.982280 +INFO 2020-12-17 07:26:09 train.py: 92] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2020-12-17 07:26:10 train.py: 79] Epoch 12, iter 3000/6416, lr 0.010000, loss 2.991981 +INFO 2020-12-17 07:29:14 train.py: 79] Epoch 12, iter 3200/6416, lr 0.010000, loss 2.962047 +INFO 2020-12-17 07:32:18 train.py: 79] Epoch 12, iter 3400/6416, lr 0.010000, loss 2.991310 +INFO 2020-12-17 07:35:22 train.py: 79] Epoch 12, iter 3600/6416, lr 0.010000, loss 2.976563 +INFO 2020-12-17 07:38:25 train.py: 79] Epoch 12, iter 3800/6416, lr 0.010000, loss 3.016750 +INFO 2020-12-17 07:41:29 train.py: 79] Epoch 12, iter 4000/6416, lr 0.010000, loss 3.025505 +INFO 2020-12-17 07:44:33 train.py: 79] Epoch 12, iter 4200/6416, lr 0.010000, loss 3.000748 +INFO 2020-12-17 07:47:37 train.py: 79] Epoch 12, iter 4400/6416, lr 0.010000, loss 3.024861 +INFO 2020-12-17 07:50:41 train.py: 79] Epoch 12, iter 4600/6416, lr 0.010000, loss 3.037012 +INFO 2020-12-17 07:53:45 train.py: 79] Epoch 12, iter 4800/6416, lr 0.010000, loss 3.035897 +INFO 2020-12-17 07:56:49 train.py: 79] Epoch 12, iter 5000/6416, lr 0.010000, loss 3.052873 +INFO 2020-12-17 07:59:52 train.py: 79] Epoch 12, iter 5200/6416, lr 0.010000, loss 3.025014 +INFO 2020-12-17 08:02:56 train.py: 79] Epoch 12, iter 5400/6416, lr 0.010000, loss 3.047568 +INFO 2020-12-17 08:06:00 train.py: 79] Epoch 12, iter 5600/6416, lr 0.010000, loss 3.047303 +INFO 2020-12-17 08:09:04 train.py: 79] Epoch 12, iter 5800/6416, lr 0.010000, loss 3.069041 +INFO 2020-12-17 08:12:08 train.py: 92] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2020-12-17 08:12:09 train.py: 79] Epoch 12, iter 6000/6416, lr 0.010000, loss 3.057256 +INFO 2020-12-17 08:15:13 train.py: 79] Epoch 12, iter 6200/6416, lr 0.010000, loss 3.045071 +INFO 2020-12-17 08:18:16 train.py: 79] Epoch 12, iter 6400/6416, lr 0.010000, loss 3.071860 +INFO 2020-12-17 08:18:30 train.py: 97] Save checkpoint Epoch_12.pt to disk... +INFO 2020-12-17 08:18:33 train.py: 79] Epoch 13, iter 0/6416, lr 0.001000, loss 3.004036 +INFO 2020-12-17 08:21:36 train.py: 79] Epoch 13, iter 200/6416, lr 0.001000, loss 2.667893 +INFO 2020-12-17 08:24:40 train.py: 79] Epoch 13, iter 400/6416, lr 0.001000, loss 2.608168 +INFO 2020-12-17 08:27:44 train.py: 79] Epoch 13, iter 600/6416, lr 0.001000, loss 2.594166 +INFO 2020-12-17 08:30:48 train.py: 79] Epoch 13, iter 800/6416, lr 0.001000, loss 2.590228 +INFO 2020-12-17 08:33:51 train.py: 79] Epoch 13, iter 1000/6416, lr 0.001000, loss 2.588210 +INFO 2020-12-17 08:36:55 train.py: 79] Epoch 13, iter 1200/6416, lr 0.001000, loss 2.595686 +INFO 2020-12-17 08:39:58 train.py: 79] Epoch 13, iter 1400/6416, lr 0.001000, loss 2.577873 +INFO 2020-12-17 08:43:02 train.py: 79] Epoch 13, iter 1600/6416, lr 0.001000, loss 2.592464 +INFO 2020-12-17 08:46:06 train.py: 79] Epoch 13, iter 1800/6416, lr 0.001000, loss 2.583104 +INFO 2020-12-17 08:49:09 train.py: 79] Epoch 13, iter 2000/6416, lr 0.001000, loss 2.597395 +INFO 2020-12-17 08:52:13 train.py: 79] Epoch 13, iter 2200/6416, lr 0.001000, loss 2.590685 +INFO 2020-12-17 08:55:16 train.py: 79] Epoch 13, iter 2400/6416, lr 0.001000, loss 2.586631 +INFO 2020-12-17 08:58:20 train.py: 79] Epoch 13, iter 2600/6416, lr 0.001000, loss 2.571441 +INFO 2020-12-17 09:01:24 train.py: 79] Epoch 13, iter 2800/6416, lr 0.001000, loss 2.577548 +INFO 2020-12-17 09:04:27 train.py: 92] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2020-12-17 09:04:28 train.py: 79] Epoch 13, iter 3000/6416, lr 0.001000, loss 2.585470 +INFO 2020-12-17 09:07:32 train.py: 79] Epoch 13, iter 3200/6416, lr 0.001000, loss 2.580309 +INFO 2020-12-17 09:10:36 train.py: 79] Epoch 13, iter 3400/6416, lr 0.001000, loss 2.586393 +INFO 2020-12-17 09:13:40 train.py: 79] Epoch 13, iter 3600/6416, lr 0.001000, loss 2.589329 +INFO 2020-12-17 09:16:43 train.py: 79] Epoch 13, iter 3800/6416, lr 0.001000, loss 2.582097 +INFO 2020-12-17 09:19:47 train.py: 79] Epoch 13, iter 4000/6416, lr 0.001000, loss 2.582904 +INFO 2020-12-17 09:22:51 train.py: 79] Epoch 13, iter 4200/6416, lr 0.001000, loss 2.578104 +INFO 2020-12-17 09:25:55 train.py: 79] Epoch 13, iter 4400/6416, lr 0.001000, loss 2.596582 +INFO 2020-12-17 09:28:58 train.py: 79] Epoch 13, iter 4600/6416, lr 0.001000, loss 2.568332 +INFO 2020-12-17 09:32:02 train.py: 79] Epoch 13, iter 4800/6416, lr 0.001000, loss 2.572608 +INFO 2020-12-17 09:35:06 train.py: 79] Epoch 13, iter 5000/6416, lr 0.001000, loss 2.590468 +INFO 2020-12-17 09:38:10 train.py: 79] Epoch 13, iter 5200/6416, lr 0.001000, loss 2.592332 +INFO 2020-12-17 09:41:14 train.py: 79] Epoch 13, iter 5400/6416, lr 0.001000, loss 2.587129 +INFO 2020-12-17 09:44:18 train.py: 79] Epoch 13, iter 5600/6416, lr 0.001000, loss 2.601162 +INFO 2020-12-17 09:47:22 train.py: 79] Epoch 13, iter 5800/6416, lr 0.001000, loss 2.573307 +INFO 2020-12-17 09:50:26 train.py: 92] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2020-12-17 09:50:26 train.py: 79] Epoch 13, iter 6000/6416, lr 0.001000, loss 2.592083 +INFO 2020-12-17 09:53:30 train.py: 79] Epoch 13, iter 6200/6416, lr 0.001000, loss 2.587068 +INFO 2020-12-17 09:56:34 train.py: 79] Epoch 13, iter 6400/6416, lr 0.001000, loss 2.572470 +INFO 2020-12-17 09:56:48 train.py: 97] Save checkpoint Epoch_13.pt to disk... +INFO 2020-12-17 09:56:50 train.py: 79] Epoch 14, iter 0/6416, lr 0.001000, loss 2.583252 +INFO 2020-12-17 09:59:54 train.py: 79] Epoch 14, iter 200/6416, lr 0.001000, loss 2.510700 +INFO 2020-12-17 10:02:58 train.py: 79] Epoch 14, iter 400/6416, lr 0.001000, loss 2.536795 +INFO 2020-12-17 10:06:02 train.py: 79] Epoch 14, iter 600/6416, lr 0.001000, loss 2.539800 +INFO 2020-12-17 10:09:06 train.py: 79] Epoch 14, iter 800/6416, lr 0.001000, loss 2.521127 +INFO 2020-12-17 10:12:09 train.py: 79] Epoch 14, iter 1000/6416, lr 0.001000, loss 2.519733 +INFO 2020-12-17 10:15:13 train.py: 79] Epoch 14, iter 1200/6416, lr 0.001000, loss 2.540676 +INFO 2020-12-17 10:18:16 train.py: 79] Epoch 14, iter 1400/6416, lr 0.001000, loss 2.520579 +INFO 2020-12-17 10:21:20 train.py: 79] Epoch 14, iter 1600/6416, lr 0.001000, loss 2.537068 +INFO 2020-12-17 10:24:24 train.py: 79] Epoch 14, iter 1800/6416, lr 0.001000, loss 2.546813 +INFO 2020-12-17 10:27:27 train.py: 79] Epoch 14, iter 2000/6416, lr 0.001000, loss 2.556447 +INFO 2020-12-17 10:30:31 train.py: 79] Epoch 14, iter 2200/6416, lr 0.001000, loss 2.553732 +INFO 2020-12-17 10:33:35 train.py: 79] Epoch 14, iter 2400/6416, lr 0.001000, loss 2.555915 +INFO 2020-12-17 10:36:39 train.py: 79] Epoch 14, iter 2600/6416, lr 0.001000, loss 2.548276 +INFO 2020-12-17 10:39:43 train.py: 79] Epoch 14, iter 2800/6416, lr 0.001000, loss 2.545036 +INFO 2020-12-17 10:42:46 train.py: 92] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2020-12-17 10:42:47 train.py: 79] Epoch 14, iter 3000/6416, lr 0.001000, loss 2.560245 +INFO 2020-12-17 10:45:51 train.py: 79] Epoch 14, iter 3200/6416, lr 0.001000, loss 2.551805 +INFO 2020-12-17 10:48:55 train.py: 79] Epoch 14, iter 3400/6416, lr 0.001000, loss 2.553714 +INFO 2020-12-17 10:51:58 train.py: 79] Epoch 14, iter 3600/6416, lr 0.001000, loss 2.535960 +INFO 2020-12-17 10:55:02 train.py: 79] Epoch 14, iter 3800/6416, lr 0.001000, loss 2.540353 +INFO 2020-12-17 10:58:06 train.py: 79] Epoch 14, iter 4000/6416, lr 0.001000, loss 2.554041 +INFO 2020-12-17 11:01:10 train.py: 79] Epoch 14, iter 4200/6416, lr 0.001000, loss 2.564377 +INFO 2020-12-17 11:04:14 train.py: 79] Epoch 14, iter 4400/6416, lr 0.001000, loss 2.545202 +INFO 2020-12-17 11:07:18 train.py: 79] Epoch 14, iter 4600/6416, lr 0.001000, loss 2.564473 +INFO 2020-12-17 11:10:21 train.py: 79] Epoch 14, iter 4800/6416, lr 0.001000, loss 2.559647 +INFO 2020-12-17 11:13:25 train.py: 79] Epoch 14, iter 5000/6416, lr 0.001000, loss 2.546554 +INFO 2020-12-17 11:16:29 train.py: 79] Epoch 14, iter 5200/6416, lr 0.001000, loss 2.550266 +INFO 2020-12-17 11:19:33 train.py: 79] Epoch 14, iter 5400/6416, lr 0.001000, loss 2.553600 +INFO 2020-12-17 11:22:37 train.py: 79] Epoch 14, iter 5600/6416, lr 0.001000, loss 2.565816 +INFO 2020-12-17 11:25:41 train.py: 79] Epoch 14, iter 5800/6416, lr 0.001000, loss 2.548201 +INFO 2020-12-17 11:28:44 train.py: 92] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2020-12-17 11:28:45 train.py: 79] Epoch 14, iter 6000/6416, lr 0.001000, loss 2.562819 +INFO 2020-12-17 11:31:49 train.py: 79] Epoch 14, iter 6200/6416, lr 0.001000, loss 2.565471 +INFO 2020-12-17 11:34:53 train.py: 79] Epoch 14, iter 6400/6416, lr 0.001000, loss 2.579433 +INFO 2020-12-17 11:35:07 train.py: 97] Save checkpoint Epoch_14.pt to disk... +INFO 2020-12-17 11:35:09 train.py: 79] Epoch 15, iter 0/6416, lr 0.001000, loss 2.552524 +INFO 2020-12-17 11:38:13 train.py: 79] Epoch 15, iter 200/6416, lr 0.001000, loss 2.501346 +INFO 2020-12-17 11:41:17 train.py: 79] Epoch 15, iter 400/6416, lr 0.001000, loss 2.505867 +INFO 2020-12-17 11:44:20 train.py: 79] Epoch 15, iter 600/6416, lr 0.001000, loss 2.507808 +INFO 2020-12-17 11:47:24 train.py: 79] Epoch 15, iter 800/6416, lr 0.001000, loss 2.506381 +INFO 2020-12-17 11:50:28 train.py: 79] Epoch 15, iter 1000/6416, lr 0.001000, loss 2.520504 +INFO 2020-12-17 11:53:31 train.py: 79] Epoch 15, iter 1200/6416, lr 0.001000, loss 2.532223 +INFO 2020-12-17 11:56:35 train.py: 79] Epoch 15, iter 1400/6416, lr 0.001000, loss 2.500966 +INFO 2020-12-17 11:59:39 train.py: 79] Epoch 15, iter 1600/6416, lr 0.001000, loss 2.513043 +INFO 2020-12-17 12:02:42 train.py: 79] Epoch 15, iter 1800/6416, lr 0.001000, loss 2.507298 +INFO 2020-12-17 12:05:46 train.py: 79] Epoch 15, iter 2000/6416, lr 0.001000, loss 2.517797 +INFO 2020-12-17 12:08:49 train.py: 79] Epoch 15, iter 2200/6416, lr 0.001000, loss 2.539955 +INFO 2020-12-17 12:11:53 train.py: 79] Epoch 15, iter 2400/6416, lr 0.001000, loss 2.514410 +INFO 2020-12-17 12:14:57 train.py: 79] Epoch 15, iter 2600/6416, lr 0.001000, loss 2.520550 +INFO 2020-12-17 12:18:01 train.py: 79] Epoch 15, iter 2800/6416, lr 0.001000, loss 2.533944 +INFO 2020-12-17 12:21:04 train.py: 92] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2020-12-17 12:21:05 train.py: 79] Epoch 15, iter 3000/6416, lr 0.001000, loss 2.502836 +INFO 2020-12-17 12:24:09 train.py: 79] Epoch 15, iter 3200/6416, lr 0.001000, loss 2.525814 +INFO 2020-12-17 12:27:13 train.py: 79] Epoch 15, iter 3400/6416, lr 0.001000, loss 2.538511 +INFO 2020-12-17 12:30:16 train.py: 79] Epoch 15, iter 3600/6416, lr 0.001000, loss 2.548587 +INFO 2020-12-17 12:33:20 train.py: 79] Epoch 15, iter 3800/6416, lr 0.001000, loss 2.522662 +INFO 2020-12-17 12:36:24 train.py: 79] Epoch 15, iter 4000/6416, lr 0.001000, loss 2.538134 +INFO 2020-12-17 12:39:28 train.py: 79] Epoch 15, iter 4200/6416, lr 0.001000, loss 2.531150 +INFO 2020-12-17 12:42:32 train.py: 79] Epoch 15, iter 4400/6416, lr 0.001000, loss 2.524360 +INFO 2020-12-17 12:45:36 train.py: 79] Epoch 15, iter 4600/6416, lr 0.001000, loss 2.549406 +INFO 2020-12-17 12:48:40 train.py: 79] Epoch 15, iter 4800/6416, lr 0.001000, loss 2.528144 +INFO 2020-12-17 12:51:44 train.py: 79] Epoch 15, iter 5000/6416, lr 0.001000, loss 2.529887 +INFO 2020-12-17 12:54:48 train.py: 79] Epoch 15, iter 5200/6416, lr 0.001000, loss 2.521092 +INFO 2020-12-17 12:57:51 train.py: 79] Epoch 15, iter 5400/6416, lr 0.001000, loss 2.524156 +INFO 2020-12-17 13:00:55 train.py: 79] Epoch 15, iter 5600/6416, lr 0.001000, loss 2.532197 +INFO 2020-12-17 13:03:59 train.py: 79] Epoch 15, iter 5800/6416, lr 0.001000, loss 2.527621 +INFO 2020-12-17 13:07:03 train.py: 92] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2020-12-17 13:07:04 train.py: 79] Epoch 15, iter 6000/6416, lr 0.001000, loss 2.554056 +INFO 2020-12-17 13:10:08 train.py: 79] Epoch 15, iter 6200/6416, lr 0.001000, loss 2.539484 +INFO 2020-12-17 13:13:11 train.py: 79] Epoch 15, iter 6400/6416, lr 0.001000, loss 2.531550 +INFO 2020-12-17 13:13:25 train.py: 97] Save checkpoint Epoch_15.pt to disk... +INFO 2020-12-17 13:13:27 train.py: 79] Epoch 16, iter 0/6416, lr 0.000100, loss 2.556221 +INFO 2020-12-17 13:16:31 train.py: 79] Epoch 16, iter 200/6416, lr 0.000100, loss 2.476342 +INFO 2020-12-17 13:19:35 train.py: 79] Epoch 16, iter 400/6416, lr 0.000100, loss 2.477670 +INFO 2020-12-17 13:22:39 train.py: 79] Epoch 16, iter 600/6416, lr 0.000100, loss 2.482082 +INFO 2020-12-17 13:25:42 train.py: 79] Epoch 16, iter 800/6416, lr 0.000100, loss 2.466461 +INFO 2020-12-17 13:28:46 train.py: 79] Epoch 16, iter 1000/6416, lr 0.000100, loss 2.457624 +INFO 2020-12-17 13:31:49 train.py: 79] Epoch 16, iter 1200/6416, lr 0.000100, loss 2.492245 +INFO 2020-12-17 13:34:53 train.py: 79] Epoch 16, iter 1400/6416, lr 0.000100, loss 2.485995 +INFO 2020-12-17 13:37:57 train.py: 79] Epoch 16, iter 1600/6416, lr 0.000100, loss 2.482639 +INFO 2020-12-17 13:41:01 train.py: 79] Epoch 16, iter 1800/6416, lr 0.000100, loss 2.478015 +INFO 2020-12-17 13:44:04 train.py: 79] Epoch 16, iter 2000/6416, lr 0.000100, loss 2.480291 +INFO 2020-12-17 13:47:08 train.py: 79] Epoch 16, iter 2200/6416, lr 0.000100, loss 2.486277 +INFO 2020-12-17 13:50:12 train.py: 79] Epoch 16, iter 2400/6416, lr 0.000100, loss 2.472441 +INFO 2020-12-17 13:53:15 train.py: 79] Epoch 16, iter 2600/6416, lr 0.000100, loss 2.476300 +INFO 2020-12-17 13:56:19 train.py: 79] Epoch 16, iter 2800/6416, lr 0.000100, loss 2.463268 +INFO 2020-12-17 13:59:22 train.py: 92] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2020-12-17 13:59:23 train.py: 79] Epoch 16, iter 3000/6416, lr 0.000100, loss 2.488549 +INFO 2020-12-17 14:02:27 train.py: 79] Epoch 16, iter 3200/6416, lr 0.000100, loss 2.453056 +INFO 2020-12-17 14:05:31 train.py: 79] Epoch 16, iter 3400/6416, lr 0.000100, loss 2.476695 +INFO 2020-12-17 14:08:35 train.py: 79] Epoch 16, iter 3600/6416, lr 0.000100, loss 2.465886 +INFO 2020-12-17 14:11:39 train.py: 79] Epoch 16, iter 3800/6416, lr 0.000100, loss 2.471524 +INFO 2020-12-17 14:14:43 train.py: 79] Epoch 16, iter 4000/6416, lr 0.000100, loss 2.471558 +INFO 2020-12-17 14:17:46 train.py: 79] Epoch 16, iter 4200/6416, lr 0.000100, loss 2.480813 +INFO 2020-12-17 14:20:50 train.py: 79] Epoch 16, iter 4400/6416, lr 0.000100, loss 2.481037 +INFO 2020-12-17 14:23:54 train.py: 79] Epoch 16, iter 4600/6416, lr 0.000100, loss 2.467424 +INFO 2020-12-17 14:26:58 train.py: 79] Epoch 16, iter 4800/6416, lr 0.000100, loss 2.475681 +INFO 2020-12-17 14:30:02 train.py: 79] Epoch 16, iter 5000/6416, lr 0.000100, loss 2.470315 +INFO 2020-12-17 14:33:06 train.py: 79] Epoch 16, iter 5200/6416, lr 0.000100, loss 2.481494 +INFO 2020-12-17 14:36:09 train.py: 79] Epoch 16, iter 5400/6416, lr 0.000100, loss 2.473234 +INFO 2020-12-17 14:39:13 train.py: 79] Epoch 16, iter 5600/6416, lr 0.000100, loss 2.492355 +INFO 2020-12-17 14:42:17 train.py: 79] Epoch 16, iter 5800/6416, lr 0.000100, loss 2.479858 +INFO 2020-12-17 14:45:21 train.py: 92] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2020-12-17 14:45:22 train.py: 79] Epoch 16, iter 6000/6416, lr 0.000100, loss 2.476148 +INFO 2020-12-17 14:48:25 train.py: 79] Epoch 16, iter 6200/6416, lr 0.000100, loss 2.478741 +INFO 2020-12-17 14:51:29 train.py: 79] Epoch 16, iter 6400/6416, lr 0.000100, loss 2.479260 +INFO 2020-12-17 14:51:43 train.py: 97] Save checkpoint Epoch_16.pt to disk... +INFO 2020-12-17 14:51:45 train.py: 79] Epoch 17, iter 0/6416, lr 0.000100, loss 2.472111 +INFO 2020-12-17 14:54:49 train.py: 79] Epoch 17, iter 200/6416, lr 0.000100, loss 2.469867 +INFO 2020-12-17 14:57:53 train.py: 79] Epoch 17, iter 400/6416, lr 0.000100, loss 2.455912 +INFO 2020-12-17 15:00:57 train.py: 79] Epoch 17, iter 600/6416, lr 0.000100, loss 2.465573 +INFO 2020-12-17 15:04:00 train.py: 79] Epoch 17, iter 800/6416, lr 0.000100, loss 2.467211 +INFO 2020-12-17 15:07:04 train.py: 79] Epoch 17, iter 1000/6416, lr 0.000100, loss 2.473948 +INFO 2020-12-17 15:10:08 train.py: 79] Epoch 17, iter 1200/6416, lr 0.000100, loss 2.475249 +INFO 2020-12-17 15:13:11 train.py: 79] Epoch 17, iter 1400/6416, lr 0.000100, loss 2.472363 +INFO 2020-12-17 15:16:15 train.py: 79] Epoch 17, iter 1600/6416, lr 0.000100, loss 2.462654 +INFO 2020-12-17 15:19:19 train.py: 79] Epoch 17, iter 1800/6416, lr 0.000100, loss 2.477459 +INFO 2020-12-17 15:22:22 train.py: 79] Epoch 17, iter 2000/6416, lr 0.000100, loss 2.470119 +INFO 2020-12-17 15:25:26 train.py: 79] Epoch 17, iter 2200/6416, lr 0.000100, loss 2.500324 +INFO 2020-12-17 15:28:30 train.py: 79] Epoch 17, iter 2400/6416, lr 0.000100, loss 2.482650 +INFO 2020-12-17 15:31:34 train.py: 79] Epoch 17, iter 2600/6416, lr 0.000100, loss 2.462124 +INFO 2020-12-17 15:34:37 train.py: 79] Epoch 17, iter 2800/6416, lr 0.000100, loss 2.453094 +INFO 2020-12-17 15:37:41 train.py: 92] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2020-12-17 15:37:42 train.py: 79] Epoch 17, iter 3000/6416, lr 0.000100, loss 2.467537 +INFO 2020-12-17 15:40:46 train.py: 79] Epoch 17, iter 3200/6416, lr 0.000100, loss 2.460593 +INFO 2020-12-17 15:43:49 train.py: 79] Epoch 17, iter 3400/6416, lr 0.000100, loss 2.492480 +INFO 2020-12-17 15:46:53 train.py: 79] Epoch 17, iter 3600/6416, lr 0.000100, loss 2.493263 +INFO 2020-12-17 15:49:57 train.py: 79] Epoch 17, iter 3800/6416, lr 0.000100, loss 2.477044 +INFO 2020-12-17 15:53:01 train.py: 79] Epoch 17, iter 4000/6416, lr 0.000100, loss 2.453467 +INFO 2020-12-17 15:56:05 train.py: 79] Epoch 17, iter 4200/6416, lr 0.000100, loss 2.478751 +INFO 2020-12-17 15:59:09 train.py: 79] Epoch 17, iter 4400/6416, lr 0.000100, loss 2.472310 +INFO 2020-12-17 16:02:12 train.py: 79] Epoch 17, iter 4600/6416, lr 0.000100, loss 2.478181 +INFO 2020-12-17 16:05:16 train.py: 79] Epoch 17, iter 4800/6416, lr 0.000100, loss 2.477833 +INFO 2020-12-17 16:08:20 train.py: 79] Epoch 17, iter 5000/6416, lr 0.000100, loss 2.467330 +INFO 2020-12-17 16:11:24 train.py: 79] Epoch 17, iter 5200/6416, lr 0.000100, loss 2.464586 +INFO 2020-12-17 16:14:28 train.py: 79] Epoch 17, iter 5400/6416, lr 0.000100, loss 2.457134 +INFO 2020-12-17 16:17:32 train.py: 79] Epoch 17, iter 5600/6416, lr 0.000100, loss 2.487210 +INFO 2020-12-17 16:20:35 train.py: 79] Epoch 17, iter 5800/6416, lr 0.000100, loss 2.486697 +INFO 2020-12-17 16:23:39 train.py: 92] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2020-12-17 16:23:40 train.py: 79] Epoch 17, iter 6000/6416, lr 0.000100, loss 2.474871 +INFO 2020-12-17 16:26:44 train.py: 79] Epoch 17, iter 6200/6416, lr 0.000100, loss 2.468082 +INFO 2020-12-17 16:29:48 train.py: 79] Epoch 17, iter 6400/6416, lr 0.000100, loss 2.470948 +INFO 2020-12-17 16:30:01 train.py: 97] Save checkpoint Epoch_17.pt to disk... +INFO 2020-12-17 16:30:02 train.py: 180] Optimization done! diff --git a/bob/bio/facexzoo/models/heads/AM-Softmax/.gitkeep b/bob/bio/facexzoo/models/heads/AM-Softmax/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..21ed5a5c79f2593b9d13259d8c4ef10a18b0e06d --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_agedb.txt @@ -0,0 +1,38 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14_batch_2999.pt | 0.9584999999999999 | 0.002465189748037095 | +| Epoch_13.pt | 0.9583333333333334 | 0.0026988795114424712 | +| Epoch_16_batch_2999.pt | 0.9581666666666667 | 0.00211476292340825 | +| Epoch_16_batch_5999.pt | 0.9580000000000002 | 0.002431785403137706 | +| Epoch_15.pt | 0.9571666666666667 | 0.002472690342696438 | +| Epoch_17.pt | 0.9571666666666667 | 0.0024094720491334904 | +| Epoch_10_batch_5999.pt | 0.9570000000000001 | 0.002406267536411978 | +| Epoch_16.pt | 0.9570000000000001 | 0.0024695678634325466 | +| Epoch_15_batch_5999.pt | 0.9566666666666667 | 0.0026988795114424678 | +| Epoch_11.pt | 0.9564999999999999 | 0.0023366378716459025 | +| Epoch_13_batch_5999.pt | 0.9564999999999999 | 0.00238888888888889 | +| Epoch_10.pt | 0.9561666666666667 | 0.002733536577809457 | +| Epoch_11_batch_2999.pt | 0.9561666666666667 | 0.0024222477062879593 | +| Epoch_12_batch_5999.pt | 0.9561666666666667 | 0.0017042068500197742 | +| Epoch_17_batch_5999.pt | 0.9559999999999998 | 0.0027239223715847267 | +| Epoch_12_batch_2999.pt | 0.9558333333333333 | 0.003115572198402213 | +| Epoch_14.pt | 0.9558333333333332 | 0.003065639924738091 | +| Epoch_11_batch_5999.pt | 0.9556666666666667 | 0.0028995529668222023 | +| Epoch_14_batch_5999.pt | 0.9555 | 0.002811462428640004 | +| Epoch_17_batch_2999.pt | 0.9555 | 0.0025706078447242844 | +| Epoch_12.pt | 0.9550000000000001 | 0.003531166351571275 | +| Epoch_15_batch_2999.pt | 0.9549999999999998 | 0.0026527414191807454 | +| Epoch_10_batch_2999.pt | 0.9546666666666667 | 0.0031991511219751083 | +| Epoch_13_batch_2999.pt | 0.9546666666666667 | 0.0025795970591653158 | +| Epoch_9_batch_5999.pt | 0.9458333333333334 | 0.0031647167485835785 | +| Epoch_9.pt | 0.9446666666666668 | 0.003855411460643884 | +| Epoch_8_batch_5999.pt | 0.9406666666666667 | 0.00412908981690268 | +| Epoch_6_batch_2999.pt | 0.9404999999999999 | 0.004875296762097512 | +| Epoch_9_batch_2999.pt | 0.9401666666666666 | 0.0028158501994387073 | +| Epoch_7_batch_5999.pt | 0.9400000000000001 | 0.004310481053615731 | +| Epoch_8_batch_2999.pt | 0.9393333333333332 | 0.003506607519568777 | +| Epoch_5_batch_2999.pt | 0.9388333333333334 | 0.004135438531988093 | +| Epoch_6_batch_5999.pt | 0.9375 | 0.004643128468533759 | +| Epoch_7_batch_2999.pt | 0.9368333333333334 | 0.003908284963769236 | +| Epoch_7.pt | 0.9343333333333333 | 0.004247003300803639 | diff --git a/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..76dca7cb9efd3f50bb18e7ecbd75ddcd0b6ee265 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_calfw.txt @@ -0,0 +1,37 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_2999.pt | 0.9393333333333332 | 0.0037118429085533458 | +| Epoch_15_batch_5999.pt | 0.9393333333333332 | 0.0036106837353937593 | +| Epoch_14_batch_5999.pt | 0.9386666666666666 | 0.0038554114606438807 | +| Epoch_15.pt | 0.9386666666666666 | 0.0033591592128513212 | +| Epoch_17_batch_2999.pt | 0.9383333333333332 | 0.00405973909032114 | +| Epoch_13.pt | 0.9378333333333334 | 0.00396784918570424 | +| Epoch_16.pt | 0.9378333333333332 | 0.003668770440244238 | +| Epoch_15_batch_2999.pt | 0.9376666666666666 | 0.003914203323068559 | +| Epoch_16_batch_2999.pt | 0.9373333333333334 | 0.0040000000000000036 | +| Epoch_11_batch_2999.pt | 0.9371666666666666 | 0.004339383241150777 | +| Epoch_14_batch_2999.pt | 0.9371666666666666 | 0.003685557397915994 | +| Epoch_17_batch_5999.pt | 0.9371666666666666 | 0.0036349639562123543 | +| Epoch_14.pt | 0.9369999999999999 | 0.0037745083892140084 | +| Epoch_16_batch_5999.pt | 0.9366666666666665 | 0.0036260375271290504 | +| Epoch_17.pt | 0.9366666666666665 | 0.0039047296424012416 | +| Epoch_12.pt | 0.9365 | 0.004123479892003003 | +| Epoch_12_batch_2999.pt | 0.9363333333333334 | 0.004148478822798771 | +| Epoch_10_batch_5999.pt | 0.9353333333333333 | 0.0038473977095957253 | +| Epoch_11.pt | 0.9353333333333333 | 0.004586614986788948 | +| Epoch_13_batch_5999.pt | 0.9353333333333331 | 0.0037498971179302674 | +| Epoch_11_batch_5999.pt | 0.9351666666666667 | 0.004078322700496211 | +| Epoch_10.pt | 0.9348333333333334 | 0.004270556675772805 | +| Epoch_10_batch_2999.pt | 0.9340000000000002 | 0.004217833976911618 | +| Epoch_12_batch_5999.pt | 0.933 | 0.0040960685758148286 | +| Epoch_9_batch_2999.pt | 0.9256666666666666 | 0.005129195061148349 | +| Epoch_9_batch_5999.pt | 0.9243333333333332 | 0.003670032125536389 | +| Epoch_8_batch_5999.pt | 0.9238333333333332 | 0.0029085866917129824 | +| Epoch_6_batch_5999.pt | 0.9235000000000001 | 0.00414587404595681 | +| Epoch_7_batch_5999.pt | 0.9233333333333332 | 0.0031426968052735457 | +| Epoch_5_batch_2999.pt | 0.9225 | 0.00415925266316551 | +| Epoch_9.pt | 0.9213333333333334 | 0.0038713891978187473 | +| Epoch_8.pt | 0.9213333333333333 | 0.004784233364802444 | +| Epoch_7_batch_2999.pt | 0.9211666666666668 | 0.0047078211783067574 | +| Epoch_5_batch_5999.pt | 0.921 | 0.00362773949273656 | diff --git a/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..d9a882beb99e0ff02ada6c31ff75c1c08f86a255 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_cplfw.txt @@ -0,0 +1,37 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_2999.pt | 0.8363333333333334 | 0.006028737762778021 | +| Epoch_14_batch_5999.pt | 0.8361666666666666 | 0.0054831391387429535 | +| Epoch_17_batch_5999.pt | 0.8361666666666666 | 0.006024896905014171 | +| Epoch_16_batch_5999.pt | 0.8358333333333332 | 0.005382011648325939 | +| Epoch_16.pt | 0.8358333333333332 | 0.005512331854046501 | +| Epoch_17_batch_2999.pt | 0.8356666666666668 | 0.0056338921484832055 | +| Epoch_13_batch_5999.pt | 0.8356666666666666 | 0.0061121211286555895 | +| Epoch_15.pt | 0.8351666666666666 | 0.006612978261077343 | +| Epoch_16_batch_2999.pt | 0.8341666666666667 | 0.005927806414592915 | +| Epoch_17.pt | 0.8341666666666667 | 0.005694105680980364 | +| Epoch_15_batch_5999.pt | 0.8338333333333334 | 0.005816377473443434 | +| Epoch_11_batch_5999.pt | 0.8338333333333333 | 0.006662267066782587 | +| Epoch_12_batch_5999.pt | 0.8335000000000001 | 0.006233372945011793 | +| Epoch_11.pt | 0.833 | 0.005659036256998601 | +| Epoch_13.pt | 0.833 | 0.005680810236072985 | +| Epoch_13_batch_2999.pt | 0.8324999999999999 | 0.006152636692638772 | +| Epoch_14_batch_2999.pt | 0.8314999999999999 | 0.005897530347317501 | +| Epoch_10.pt | 0.8313333333333333 | 0.005543319859229525 | +| Epoch_10_batch_2999.pt | 0.8306666666666667 | 0.005937950762616611 | +| Epoch_12_batch_2999.pt | 0.8305 | 0.005789784532974571 | +| Epoch_11_batch_2999.pt | 0.8301666666666666 | 0.005325515102890156 | +| Epoch_14.pt | 0.829 | 0.005859465277082311 | +| Epoch_12.pt | 0.8276666666666668 | 0.005539978161030178 | +| Epoch_10_batch_5999.pt | 0.8248333333333333 | 0.004419722911821956 | +| Epoch_9_batch_2999.pt | 0.8066666666666669 | 0.006324555320336763 | +| Epoch_8_batch_5999.pt | 0.8059999999999998 | 0.007892800282301347 | +| Epoch_7_batch_5999.pt | 0.8013333333333333 | 0.007832348243812055 | +| Epoch_5_batch_2999.pt | 0.8011666666666667 | 0.007457906567554363 | +| Epoch_9.pt | 0.7998333333333334 | 0.008334999833366661 | +| Epoch_9_batch_5999.pt | 0.7998333333333332 | 0.007667673041838907 | +| Epoch_7.pt | 0.7995 | 0.007718224384812934 | +| Epoch_8_batch_2999.pt | 0.7995 | 0.006275810901320704 | +| Epoch_6_batch_5999.pt | 0.7993333333333335 | 0.007102425250887509 | +| Epoch_7_batch_2999.pt | 0.7989999999999999 | 0.006992941767804253 | diff --git a/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..e55447cb0049f3f48c92e2133025491a34d3cf33 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13.pt | 0.9958333333333332 | 0.0011453071182271274 | +| Epoch_16.pt | 0.9958333333333332 | 0.0011180339887498902 | +| Epoch_17.pt | 0.9958333333333332 | 0.0011979921473804322 | +| Epoch_12_batch_5999.pt | 0.9956666666666667 | 0.0011706281947614144 | +| Epoch_14.pt | 0.9956666666666665 | 0.0011967032904743316 | +| Epoch_15_batch_5999.pt | 0.9956666666666665 | 0.0011967032904743316 | +| Epoch_16_batch_2999.pt | 0.9956666666666665 | 0.0011967032904743316 | +| Epoch_10_batch_5999.pt | 0.9955 | 0.0011928283640879936 | +| Epoch_13_batch_2999.pt | 0.9955 | 0.0012184284555256265 | +| Epoch_15_batch_2999.pt | 0.9955 | 0.0012184284555256265 | +| Epoch_15.pt | 0.9955 | 0.0012921892610681118 | +| Epoch_11_batch_5999.pt | 0.9953333333333335 | 0.001160034056545619 | +| Epoch_11.pt | 0.9953333333333335 | 0.001160034056545619 | +| Epoch_12.pt | 0.9953333333333335 | 0.0010772621905369623 | +| Epoch_10.pt | 0.9953333333333333 | 0.0011863420280034786 | +| Epoch_11_batch_2999.pt | 0.9951666666666666 | 0.0013017082793177807 | +| Epoch_10_batch_2999.pt | 0.9950000000000001 | 0.0011653431646335038 | +| Epoch_12_batch_2999.pt | 0.9950000000000001 | 0.001337954953199147 | +| Epoch_14_batch_2999.pt | 0.9950000000000001 | 0.0013833221775543059 | +| Epoch_16_batch_5999.pt | 0.9950000000000001 | 0.0013833221775543059 | +| Epoch_17_batch_5999.pt | 0.9950000000000001 | 0.001337954953199147 | +| Epoch_14_batch_5999.pt | 0.9949999999999999 | 0.0013146843962443596 | +| Epoch_13_batch_5999.pt | 0.9948333333333335 | 0.0012777777777777798 | +| Epoch_17_batch_2999.pt | 0.9948333333333335 | 0.0013482956777235145 | +| Epoch_9.pt | 0.9945 | 0.0010555555555555537 | +| Epoch_6_batch_5999.pt | 0.9943333333333333 | 0.001143958904554113 | +| Epoch_8.pt | 0.994 | 0.0015355861067872475 | +| Epoch_8_batch_2999.pt | 0.9938333333333335 | 0.0013391078659104375 | +| Epoch_4_batch_2999.pt | 0.9933333333333334 | 0.0012668615834434832 | +| Epoch_5_batch_2999.pt | 0.9933333333333334 | 0.0012422599874998784 | +| Epoch_8_batch_5999.pt | 0.9933333333333334 | 0.0012909944487358084 | +| Epoch_9_batch_5999.pt | 0.9933333333333334 | 0.0014698618394803228 | +| Epoch_6_batch_2999.pt | 0.9931666666666666 | 0.0016377114414426284 | +| Epoch_7_batch_5999.pt | 0.9930000000000001 | 0.001378852627332321 | +| Epoch_9_batch_2999.pt | 0.993 | 0.0016254154264808637 | +| Epoch_4_batch_5999.pt | 0.9926666666666666 | 0.0010886621079036368 | +| Epoch_7_batch_2999.pt | 0.9926666666666666 | 0.0018121673811444558 | +| Epoch_5.pt | 0.9925 | 0.001223484196974741 | +| Epoch_7.pt | 0.9923333333333334 | 0.0019594657876164877 | +| Epoch_3.pt | 0.9921666666666666 | 0.001192828364087998 | +| Epoch_5_batch_5999.pt | 0.992 | 0.0015475986974649056 | +| Epoch_2_batch_5999.pt | 0.9911666666666668 | 0.001166666666666673 | +| Epoch_6.pt | 0.9911666666666665 | 0.0017924739783224046 | +| Epoch_3_batch_5999.pt | 0.991 | 0.0017950549357115021 | +| Epoch_3_batch_2999.pt | 0.9904999999999999 | 0.0016301556390134716 | +| Epoch_4.pt | 0.9904999999999999 | 0.0015525765124980132 | +| Epoch_2.pt | 0.9888333333333333 | 0.001722222222222219 | +| Epoch_2_batch_2999.pt | 0.9871666666666667 | 0.0013391078659104408 | +| Epoch_1_batch_5999.pt | 0.9863333333333333 | 0.0016442942874387437 | +| Epoch_1.pt | 0.9844999999999999 | 0.0020038543107634894 | +| Epoch_1_batch_2999.pt | 0.9835 | 0.0023366378716459003 | +| Epoch_0_batch_5999.pt | 0.9726666666666667 | 0.0027910792637956612 | +| Epoch_0.pt | 0.9700000000000001 | 0.0028760398012321717 | +| Epoch_0_batch_2999.pt | 0.9458333333333334 | 0.0028787214240070195 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_rfw_African.txt b/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_rfw_African.txt new file mode 100644 index 0000000000000000000000000000000000000000..fd622b0c68a76c44a893385b86fd9a2a1ca6d660 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_rfw_African.txt @@ -0,0 +1,40 @@ ++------------------------+--------------------+-----------------------+ [19/294] +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_5999.pt | 0.8838333333333332 | 0.004661703710177375 | +| Epoch_15_batch_2999.pt | 0.8833333333333334 | 0.005127991448539701 | +| Epoch_17.pt | 0.8833333333333332 | 0.005258737584977436 | +| Epoch_17_batch_5999.pt | 0.882 | 0.004552844721899531 | +| Epoch_14_batch_2999.pt | 0.8818333333333334 | 0.004826943413387952 | +| Epoch_17_batch_2999.pt | 0.8818333333333334 | 0.004270556675772805 | +| Epoch_13_batch_5999.pt | 0.8816666666666666 | 0.004260064336151301 | +| Epoch_16_batch_5999.pt | 0.8813333333333334 | 0.004207576939724776 | +| Epoch_14_batch_5999.pt | 0.8813333333333333 | 0.004764840364975905 | +| Epoch_13_batch_2999.pt | 0.8811666666666668 | 0.004568072235704827 | +| Epoch_15.pt | 0.8811666666666668 | 0.004388888888888883 | +| Epoch_16_batch_2999.pt | 0.8800000000000001 | 0.004267303193260341 | +| Epoch_14.pt | 0.8788333333333334 | 0.0049131343243278905 | +| Epoch_16.pt | 0.8783333333333333 | 0.003824869884013002 | +| Epoch_13.pt | 0.8771666666666667 | 0.004540965797093208 | +| Epoch_12_batch_5999.pt | 0.8768333333333335 | 0.00523196490719533 | +| Epoch_11_batch_2999.pt | 0.8766666666666667 | 0.005778846055087042 | +| Epoch_11_batch_5999.pt | 0.8763333333333334 | 0.004640136226182472 | +| Epoch_11.pt | 0.8763333333333334 | 0.005333333333333333 | +| Epoch_10_batch_5999.pt | 0.8758333333333332 | 0.004857538369621558 | +| Epoch_12.pt | 0.8741666666666668 | 0.004939448162310054 | +| Epoch_10_batch_2999.pt | 0.874 | 0.005289168993516396 | +| Epoch_10.pt | 0.8738333333333334 | 0.00466831981301016 | +| Epoch_12_batch_2999.pt | 0.8716666666666667 | 0.00571979452277055 | +| Epoch_9_batch_2999.pt | 0.8418333333333333 | 0.007355396104347599 | +| Epoch_6_batch_5999.pt | 0.8408333333333333 | 0.0047025735008465516 | +| Epoch_7_batch_2999.pt | 0.8406666666666667 | 0.004708804466759353 | +| Epoch_7_batch_5999.pt | 0.8388333333333333 | 0.0053057737011581235 | +| Epoch_8_batch_2999.pt | 0.8376666666666667 | 0.004535184807101898 | +| Epoch_8_batch_5999.pt | 0.8376666666666666 | 0.0052422782720379785 | +| Epoch_9_batch_5999.pt | 0.8371666666666666 | 0.005826980667867685 | +| Epoch_6_batch_2999.pt | 0.8368333333333334 | 0.005902761437885882 | +| Epoch_8.pt | 0.8361666666666666 | 0.00501879184714193 | +| Epoch_5_batch_5999.pt | 0.8348333333333333 | 0.0057812489572905265 | +| Epoch_9.pt | 0.8333333333333334 | 0.0036514837167011143 | +| Epoch_5_batch_2999.pt | 0.8331666666666667 | 0.006769804052820161 | +| Epoch_4_batch_5999.pt | 0.8308333333333333 | 0.004876562744139653 | diff --git a/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_rfw_Asian.txt b/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_rfw_Asian.txt new file mode 100644 index 0000000000000000000000000000000000000000..14a60b61c6ffe681e4fd937fc2a1145d3f638e76 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_rfw_Asian.txt @@ -0,0 +1,39 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_2999.pt | 0.8788333333333334 | 0.0038892856940415874 | +| Epoch_15_batch_2999.pt | 0.8786666666666667 | 0.0034676636742949464 | +| Epoch_17_batch_2999.pt | 0.8781666666666668 | 0.0038685978574563846 | +| Epoch_13_batch_5999.pt | 0.8776666666666666 | 0.004053652521545486 | +| Epoch_15.pt | 0.8776666666666666 | 0.003559026084010444 | +| Epoch_16.pt | 0.877 | 0.003926799343793848 | +| Epoch_16_batch_5999.pt | 0.8768333333333335 | 0.0035438174297371286 | +| Epoch_13.pt | 0.8766666666666667 | 0.0036767538017276266 | +| Epoch_13_batch_2999.pt | 0.8761666666666666 | 0.003685557397916 | +| Epoch_17.pt | 0.8756666666666668 | 0.00334442598739832 | +| Epoch_17_batch_5999.pt | 0.8755000000000001 | 0.003220785120141272 | +| Epoch_14_batch_2999.pt | 0.8753333333333334 | 0.003572874486847457 | +| Epoch_12_batch_5999.pt | 0.8751666666666666 | 0.004775516260631466 | +| Epoch_14_batch_5999.pt | 0.8751666666666665 | 0.003804237403504448 | +| Epoch_14.pt | 0.875 | 0.003379312516832349 | +| Epoch_11_batch_2999.pt | 0.8748333333333331 | 0.002427339141661499 | +| Epoch_15_batch_5999.pt | 0.8743333333333334 | 0.0035066075195687757 | +| Epoch_11.pt | 0.8721666666666665 | 0.0037105954398881243 | +| Epoch_10.pt | 0.8714999999999999 | 0.003963179294891518 | +| Epoch_12.pt | 0.8714999999999999 | 0.0032815420945827463 | +| Epoch_10_batch_5999.pt | 0.8713333333333333 | 0.004532461789860255 | +| Epoch_12_batch_2999.pt | 0.8696666666666667 | 0.00409606857581484 | +| Epoch_11_batch_5999.pt | 0.8691666666666666 | 0.003687231890232248 | +| Epoch_10_batch_2999.pt | 0.8686666666666667 | 0.004936635531449567 | +| Epoch_9_batch_5999.pt | 0.8473333333333333 | 0.004038395965641385 | +| Epoch_6_batch_5999.pt | 0.8466666666666667 | 0.004520187912623998 | +| Epoch_7_batch_5999.pt | 0.8443333333333334 | 0.003541639433446492 | +| Epoch_8_batch_2999.pt | 0.8403333333333334 | 0.0035468643776694125 | +| Epoch_8_batch_5999.pt | 0.8398333333333333 | 0.0042123422416149746 | +| Epoch_5_batch_5999.pt | 0.8386666666666669 | 0.0044982849955549275 | +| Epoch_9_batch_2999.pt | 0.8383333333333335 | 0.0035398960715719986 | +| Epoch_4_batch_2999.pt | 0.837 | 0.0038634085890475 | +| Epoch_8.pt | 0.8348333333333333 | 0.005002777006601213 | +| Epoch_7_batch_2999.pt | 0.8341666666666667 | 0.0032322640461753035 | +| Epoch_5_batch_2999.pt | 0.8321666666666667 | 0.004714372560794842 | +| Epoch_4_batch_5999.pt | 0.8318333333333332 | 0.004241549332583645 | diff --git a/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_rfw_Caucasian.txt b/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_rfw_Caucasian.txt new file mode 100644 index 0000000000000000000000000000000000000000..3cab9c4d0d51f26ac83fd2ffbf4a0b42595b6492 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_rfw_Caucasian.txt @@ -0,0 +1,40 @@ ++------------------------+--------------------+-----------------------+ [19/417] +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_5999.pt | 0.9555 | 0.003751954223311792 | +| Epoch_13_batch_5999.pt | 0.9545 | 0.003258890972458331 | +| Epoch_14_batch_2999.pt | 0.9543333333333333 | 0.0032791899029719442 | +| Epoch_16_batch_5999.pt | 0.9538333333333334 | 0.0037105954398881256 | +| Epoch_17.pt | 0.9535 | 0.003868597857456371 | +| Epoch_15_batch_2999.pt | 0.9533333333333335 | 0.0032203059435976576 | +| Epoch_17_batch_5999.pt | 0.9531666666666666 | 0.0036552853665768933 | +| Epoch_16_batch_2999.pt | 0.9528333333333334 | 0.003983375948942969 | +| Epoch_16.pt | 0.9528333333333334 | 0.0035490391674854334 | +| Epoch_12_batch_2999.pt | 0.9526666666666668 | 0.004247003300803647 | +| Epoch_15.pt | 0.9525 | 0.0035939764421413028 | +| Epoch_13.pt | 0.9523333333333331 | 0.0037035185138886576 | +| Epoch_14_batch_5999.pt | 0.9521666666666668 | 0.003905124837953329 | +| Epoch_12_batch_5999.pt | 0.9521666666666666 | 0.0031431878132923583 | +| Epoch_17_batch_2999.pt | 0.9516666666666668 | 0.00351364184463153 | +| Epoch_13_batch_2999.pt | 0.9514999999999999 | 0.0037387691907536055 | +| Epoch_11.pt | 0.9513333333333334 | 0.0036413265795942062 | +| Epoch_10_batch_5999.pt | 0.9506666666666665 | 0.003969015799887053 | +| Epoch_11_batch_2999.pt | 0.9506666666666665 | 0.0033259176771323956 | +| Epoch_14.pt | 0.9503333333333336 | 0.0044430553384738215 | +| Epoch_11_batch_5999.pt | 0.9503333333333334 | 0.00472581562625261 | +| Epoch_12.pt | 0.9496666666666668 | 0.003422871511277636 | +| Epoch_10.pt | 0.9481666666666667 | 0.004123479892002996 | +| Epoch_10_batch_2999.pt | 0.9451666666666668 | 0.0030373193184081455 | +| Epoch_9_batch_5999.pt | 0.9365 | 0.003482318654269958 | +| Epoch_9_batch_2999.pt | 0.9288333333333334 | 0.0046946909862939975 | +| Epoch_7_batch_5999.pt | 0.9283333333333333 | 0.005012330474951091 | +| Epoch_6_batch_5999.pt | 0.9256666666666667 | 0.00467591675833351 | +| Epoch_8_batch_2999.pt | 0.9233333333333335 | 0.004444444444444444 | +| Epoch_8_batch_5999.pt | 0.9231666666666669 | 0.004085883557377088 | +| Epoch_7_batch_2999.pt | 0.9223333333333334 | 0.004575835618216446 | +| Epoch_6_batch_2999.pt | 0.922 | 0.003150543750835079 | +| Epoch_9.pt | 0.9216666666666666 | 0.004260064336151288 | +| Epoch_8.pt | 0.9215 | 0.0032815420945827433 | +| Epoch_7.pt | 0.9198333333333333 | 0.004145874045956811 | +| Epoch_5_batch_5999.pt | 0.9186666666666667 | 0.004917843550295721 | +| Epoch_4_batch_5999.pt | 0.9179999999999999 | 0.003774508389214006 | diff --git a/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_rfw_Indian.txt b/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_rfw_Indian.txt new file mode 100644 index 0000000000000000000000000000000000000000..4edb29407f323949a4e04bae31a5fb78b1854736 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AM-Softmax/accu_files/accu_rfw_Indian.txt @@ -0,0 +1,40 @@ ++------------------------+--------------------+-----------------------+ [21/481] +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15.pt | 0.9118333333333333 | 0.0041309580988936265 | +| Epoch_17_batch_5999.pt | 0.9111666666666668 | 0.00314318781329237 | +| Epoch_16_batch_5999.pt | 0.9111666666666665 | 0.0034964708839021314 | +| Epoch_13_batch_5999.pt | 0.9108333333333333 | 0.003344887382997867 | +| Epoch_14_batch_2999.pt | 0.9098333333333335 | 0.0037716453494430384 | +| Epoch_16.pt | 0.9096666666666667 | 0.0037498971179302713 | +| Epoch_13.pt | 0.909 | 0.003212629398844659 | +| Epoch_13_batch_2999.pt | 0.9088333333333333 | 0.003230353724468144 | +| Epoch_15_batch_2999.pt | 0.9086666666666667 | 0.003140732005578355 | +| Epoch_14_batch_5999.pt | 0.9081666666666667 | 0.003337497399083468 | +| Epoch_11_batch_2999.pt | 0.908 | 0.0031407320055783557 | +| Epoch_17.pt | 0.9078333333333333 | 0.0033245254000838207 | +| Epoch_16_batch_2999.pt | 0.9076666666666666 | 0.0027910792637956617 | +| Epoch_12_batch_5999.pt | 0.907 | 0.003934651379916839 | +| Epoch_17_batch_2999.pt | 0.9066666666666666 | 0.003142696805273541 | +| Epoch_15_batch_5999.pt | 0.9065000000000001 | 0.003697262918216626 | +| Epoch_14.pt | 0.9065 | 0.003016927551641218 | +| Epoch_11.pt | 0.9055 | 0.00338888888888889 | +| Epoch_11_batch_5999.pt | 0.905 | 0.003608973726424821 | +| Epoch_10.pt | 0.9041666666666666 | 0.004643128468533763 | +| Epoch_12_batch_2999.pt | 0.9040000000000001 | 0.0035935470286213855 | +| Epoch_10_batch_5999.pt | 0.9038333333333334 | 0.0033430414185178603 | +| Epoch_12.pt | 0.9038333333333334 | 0.003751954223311792 | +| Epoch_10_batch_2999.pt | 0.9031666666666667 | 0.003755243248026935 | +| Epoch_9_batch_2999.pt | 0.8856666666666666 | 0.0031933573029333108 | +| Epoch_7_batch_5999.pt | 0.8818333333333334 | 0.0034106767729268537 | +| Epoch_9_batch_5999.pt | 0.8813333333333333 | 0.003725123247608941 | +| Epoch_8_batch_2999.pt | 0.8773333333333333 | 0.0041290898169026756 | +| Epoch_6_batch_5999.pt | 0.8736666666666668 | 0.005425135829214983 | +| Epoch_8_batch_5999.pt | 0.8716666666666667 | 0.0037515428924742547 | +| Epoch_7_batch_2999.pt | 0.8711666666666666 | 0.0017924739783224133 | +| Epoch_4_batch_5999.pt | 0.8705 | 0.0044447916531043545 | +| Epoch_9.pt | 0.8705 | 0.00472091485170375 | +| Epoch_8.pt | 0.8693333333333333 | 0.00384258143684235 | +| Epoch_5_batch_5999.pt | 0.8691666666666666 | 0.00426187520311348 | +| Epoch_6_batch_2999.pt | 0.8688333333333332 | 0.004479376610066948 | +| Epoch_7.pt | 0.8681666666666666 | 0.004664351277456082 | diff --git a/bob/bio/facexzoo/models/heads/AM-Softmax/log.log b/bob/bio/facexzoo/models/heads/AM-Softmax/log.log new file mode 100644 index 0000000000000000000000000000000000000000..26ce560faf0fd362ff705aca72437b25807d1d51 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AM-Softmax/log.log @@ -0,0 +1,651 @@ +INFO 2020-11-23 20:30:57 train.py: 172] Start optimization. +INFO 2020-11-23 20:30:57 train.py: 173] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='Mobilefacenets', batch_size=512, data_root='/export2/wangjun492/face_database/facex-zoo/private_file/train_data/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='am-softmax', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='am-resnet', train_file='/export2/wangjun492/face_database/facex-zoo/private_file/train_data/deepglint/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7f828ec1aba8>) +INFO 2020-11-23 20:31:23 train.py: 74] Epoch 0, iter 0/6416, lr 0.100000, loss 23.431353 +INFO 2020-11-23 20:37:31 train.py: 74] Epoch 0, iter 200/6416, lr 0.100000, loss 22.992578 +INFO 2020-11-23 20:43:32 train.py: 74] Epoch 0, iter 400/6416, lr 0.100000, loss 22.112193 +INFO 2020-11-23 20:49:05 train.py: 74] Epoch 0, iter 600/6416, lr 0.100000, loss 21.501875 +INFO 2020-11-23 20:54:20 train.py: 74] Epoch 0, iter 800/6416, lr 0.100000, loss 21.017682 +INFO 2020-11-23 20:59:30 train.py: 74] Epoch 0, iter 1000/6416, lr 0.100000, loss 20.586930 +INFO 2020-11-23 21:04:16 train.py: 74] Epoch 0, iter 1200/6416, lr 0.100000, loss 20.153704 +INFO 2020-11-23 21:09:07 train.py: 74] Epoch 0, iter 1400/6416, lr 0.100000, loss 19.735421 +INFO 2020-11-23 21:13:43 train.py: 74] Epoch 0, iter 1600/6416, lr 0.100000, loss 19.322450 +INFO 2020-11-23 21:18:16 train.py: 74] Epoch 0, iter 1800/6416, lr 0.100000, loss 18.932620 +INFO 2020-11-23 21:22:12 train.py: 74] Epoch 0, iter 2000/6416, lr 0.100000, loss 18.544820 +INFO 2020-11-23 21:26:14 train.py: 74] Epoch 0, iter 2200/6416, lr 0.100000, loss 18.146690 +INFO 2020-11-23 21:30:20 train.py: 74] Epoch 0, iter 2400/6416, lr 0.100000, loss 17.753865 +INFO 2020-11-23 21:34:11 train.py: 74] Epoch 0, iter 2600/6416, lr 0.100000, loss 17.327234 +INFO 2020-11-23 21:37:29 train.py: 74] Epoch 0, iter 2800/6416, lr 0.100000, loss 16.925471 +INFO 2020-11-23 21:40:49 train.py: 87] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2020-11-23 21:40:49 train.py: 74] Epoch 0, iter 3000/6416, lr 0.100000, loss 16.495277 +INFO 2020-11-23 21:44:05 train.py: 74] Epoch 0, iter 3200/6416, lr 0.100000, loss 16.070678 +INFO 2020-11-23 21:47:11 train.py: 74] Epoch 0, iter 3400/6416, lr 0.100000, loss 15.632312 +INFO 2020-11-23 21:50:13 train.py: 74] Epoch 0, iter 3600/6416, lr 0.100000, loss 15.213835 +INFO 2020-11-23 21:53:08 train.py: 74] Epoch 0, iter 3800/6416, lr 0.100000, loss 14.802538 +INFO 2020-11-23 21:55:48 train.py: 74] Epoch 0, iter 4000/6416, lr 0.100000, loss 14.382193 +INFO 2020-11-23 21:58:06 train.py: 74] Epoch 0, iter 4200/6416, lr 0.100000, loss 13.995301 +INFO 2020-11-23 22:00:32 train.py: 74] Epoch 0, iter 4400/6416, lr 0.100000, loss 13.619508 +INFO 2020-11-23 22:02:42 train.py: 74] Epoch 0, iter 4600/6416, lr 0.100000, loss 13.255566 +INFO 2020-11-23 22:04:50 train.py: 74] Epoch 0, iter 4800/6416, lr 0.100000, loss 12.891582 +INFO 2020-11-23 22:07:04 train.py: 74] Epoch 0, iter 5000/6416, lr 0.100000, loss 12.532326 +INFO 2020-11-23 22:08:54 train.py: 74] Epoch 0, iter 5200/6416, lr 0.100000, loss 12.189917 +INFO 2020-11-23 22:10:55 train.py: 74] Epoch 0, iter 5400/6416, lr 0.100000, loss 11.849234 +INFO 2020-11-23 22:12:52 train.py: 74] Epoch 0, iter 5600/6416, lr 0.100000, loss 11.559057 +INFO 2020-11-23 22:14:55 train.py: 74] Epoch 0, iter 5800/6416, lr 0.100000, loss 11.259521 +INFO 2020-11-23 22:16:21 train.py: 87] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2020-11-23 22:16:21 train.py: 74] Epoch 0, iter 6000/6416, lr 0.100000, loss 10.956776 +INFO 2020-11-23 22:17:37 train.py: 74] Epoch 0, iter 6200/6416, lr 0.100000, loss 10.676456 +INFO 2020-11-23 22:18:54 train.py: 74] Epoch 0, iter 6400/6416, lr 0.100000, loss 10.420154 +INFO 2020-11-23 22:18:59 train.py: 92] Save checkpoint Epoch_0.pt to disk... +INFO 2020-11-23 22:19:01 train.py: 74] Epoch 1, iter 0/6416, lr 0.100000, loss 10.197703 +INFO 2020-11-23 22:20:19 train.py: 74] Epoch 1, iter 200/6416, lr 0.100000, loss 9.851507 +INFO 2020-11-23 22:21:37 train.py: 74] Epoch 1, iter 400/6416, lr 0.100000, loss 9.637592 +INFO 2020-11-23 22:22:54 train.py: 74] Epoch 1, iter 600/6416, lr 0.100000, loss 9.476733 +INFO 2020-11-23 22:24:11 train.py: 74] Epoch 1, iter 800/6416, lr 0.100000, loss 9.324735 +INFO 2020-11-23 22:25:29 train.py: 74] Epoch 1, iter 1000/6416, lr 0.100000, loss 9.205025 +INFO 2020-11-23 22:26:46 train.py: 74] Epoch 1, iter 1200/6416, lr 0.100000, loss 9.032687 +INFO 2020-11-23 22:28:04 train.py: 74] Epoch 1, iter 1400/6416, lr 0.100000, loss 8.896845 +INFO 2020-11-23 22:29:21 train.py: 74] Epoch 1, iter 1600/6416, lr 0.100000, loss 8.755357 +INFO 2020-11-23 22:30:38 train.py: 74] Epoch 1, iter 1800/6416, lr 0.100000, loss 8.651207 +INFO 2020-11-23 22:31:56 train.py: 74] Epoch 1, iter 2000/6416, lr 0.100000, loss 8.502586 +INFO 2020-11-23 22:33:13 train.py: 74] Epoch 1, iter 2200/6416, lr 0.100000, loss 8.387458 +INFO 2020-11-23 22:34:31 train.py: 74] Epoch 1, iter 2400/6416, lr 0.100000, loss 8.265476 +INFO 2020-11-23 22:35:48 train.py: 74] Epoch 1, iter 2600/6416, lr 0.100000, loss 8.182377 +INFO 2020-11-23 22:37:05 train.py: 74] Epoch 1, iter 2800/6416, lr 0.100000, loss 8.071185 +INFO 2020-11-23 22:38:22 train.py: 87] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2020-11-23 22:38:23 train.py: 74] Epoch 1, iter 3000/6416, lr 0.100000, loss 7.976120 +INFO 2020-11-23 22:39:40 train.py: 74] Epoch 1, iter 3200/6416, lr 0.100000, loss 7.912530 +INFO 2020-11-23 22:40:58 train.py: 74] Epoch 1, iter 3400/6416, lr 0.100000, loss 7.808188 +INFO 2020-11-23 22:42:15 train.py: 74] Epoch 1, iter 3600/6416, lr 0.100000, loss 7.715766 +INFO 2020-11-23 22:43:32 train.py: 74] Epoch 1, iter 3800/6416, lr 0.100000, loss 7.646962 +INFO 2020-11-23 22:44:50 train.py: 74] Epoch 1, iter 4000/6416, lr 0.100000, loss 7.621099 +INFO 2020-11-23 22:46:07 train.py: 74] Epoch 1, iter 4200/6416, lr 0.100000, loss 7.518125 +INFO 2020-11-23 22:47:24 train.py: 74] Epoch 1, iter 4400/6416, lr 0.100000, loss 7.463833 +INFO 2020-11-23 22:48:42 train.py: 74] Epoch 1, iter 4600/6416, lr 0.100000, loss 7.397627 +INFO 2020-11-23 22:49:59 train.py: 74] Epoch 1, iter 4800/6416, lr 0.100000, loss 7.345807 +INFO 2020-11-23 22:51:17 train.py: 74] Epoch 1, iter 5000/6416, lr 0.100000, loss 7.290254 +INFO 2020-11-23 22:52:34 train.py: 74] Epoch 1, iter 5200/6416, lr 0.100000, loss 7.230198 +INFO 2020-11-23 22:53:52 train.py: 74] Epoch 1, iter 5400/6416, lr 0.100000, loss 7.203372 +INFO 2020-11-23 22:55:09 train.py: 74] Epoch 1, iter 5600/6416, lr 0.100000, loss 7.147704 +INFO 2020-11-23 22:56:26 train.py: 74] Epoch 1, iter 5800/6416, lr 0.100000, loss 7.095600 +INFO 2020-11-23 22:57:44 train.py: 87] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2020-11-23 22:57:44 train.py: 74] Epoch 1, iter 6000/6416, lr 0.100000, loss 7.073151 +INFO 2020-11-23 22:59:01 train.py: 74] Epoch 1, iter 6200/6416, lr 0.100000, loss 7.009332 +INFO 2020-11-23 23:00:19 train.py: 74] Epoch 1, iter 6400/6416, lr 0.100000, loss 6.971970 +INFO 2020-11-23 23:00:25 train.py: 92] Save checkpoint Epoch_1.pt to disk... +INFO 2020-11-23 23:00:26 train.py: 74] Epoch 2, iter 0/6416, lr 0.100000, loss 6.843241 +INFO 2020-11-23 23:01:44 train.py: 74] Epoch 2, iter 200/6416, lr 0.100000, loss 6.585406 +INFO 2020-11-23 23:03:01 train.py: 74] Epoch 2, iter 400/6416, lr 0.100000, loss 6.568176 +INFO 2020-11-23 23:04:18 train.py: 74] Epoch 2, iter 600/6416, lr 0.100000, loss 6.612730 +INFO 2020-11-23 23:05:36 train.py: 74] Epoch 2, iter 800/6416, lr 0.100000, loss 6.661861 +INFO 2020-11-23 23:06:53 train.py: 74] Epoch 2, iter 1000/6416, lr 0.100000, loss 6.646130 +INFO 2020-11-23 23:08:10 train.py: 74] Epoch 2, iter 1200/6416, lr 0.100000, loss 6.662672 +INFO 2020-11-23 23:09:27 train.py: 74] Epoch 2, iter 1400/6416, lr 0.100000, loss 6.649159 +INFO 2020-11-23 23:10:45 train.py: 74] Epoch 2, iter 1600/6416, lr 0.100000, loss 6.620708 +INFO 2020-11-23 23:12:02 train.py: 74] Epoch 2, iter 1800/6416, lr 0.100000, loss 6.643027 +INFO 2020-11-23 23:13:20 train.py: 74] Epoch 2, iter 2000/6416, lr 0.100000, loss 6.600493 +INFO 2020-11-23 23:14:37 train.py: 74] Epoch 2, iter 2200/6416, lr 0.100000, loss 6.572066 +INFO 2020-11-23 23:15:54 train.py: 74] Epoch 2, iter 2400/6416, lr 0.100000, loss 6.578855 +INFO 2020-11-23 23:17:11 train.py: 74] Epoch 2, iter 2600/6416, lr 0.100000, loss 6.548282 +INFO 2020-11-23 23:18:29 train.py: 74] Epoch 2, iter 2800/6416, lr 0.100000, loss 6.510382 +INFO 2020-11-23 23:19:46 train.py: 87] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2020-11-23 23:19:46 train.py: 74] Epoch 2, iter 3000/6416, lr 0.100000, loss 6.503403 +INFO 2020-11-23 23:21:03 train.py: 74] Epoch 2, iter 3200/6416, lr 0.100000, loss 6.485130 +INFO 2020-11-23 23:22:20 train.py: 74] Epoch 2, iter 3400/6416, lr 0.100000, loss 6.464876 +INFO 2020-11-23 23:23:38 train.py: 74] Epoch 2, iter 3600/6416, lr 0.100000, loss 6.433336 +INFO 2020-11-23 23:24:55 train.py: 74] Epoch 2, iter 3800/6416, lr 0.100000, loss 6.416342 +INFO 2020-11-23 23:26:12 train.py: 74] Epoch 2, iter 4000/6416, lr 0.100000, loss 6.420710 +INFO 2020-11-23 23:27:29 train.py: 74] Epoch 2, iter 4200/6416, lr 0.100000, loss 6.390684 +INFO 2020-11-23 23:28:47 train.py: 74] Epoch 2, iter 4400/6416, lr 0.100000, loss 6.371358 +INFO 2020-11-23 23:30:04 train.py: 74] Epoch 2, iter 4600/6416, lr 0.100000, loss 6.369870 +INFO 2020-11-23 23:31:21 train.py: 74] Epoch 2, iter 4800/6416, lr 0.100000, loss 6.312445 +INFO 2020-11-23 23:32:38 train.py: 74] Epoch 2, iter 5000/6416, lr 0.100000, loss 6.308288 +INFO 2020-11-23 23:33:55 train.py: 74] Epoch 2, iter 5200/6416, lr 0.100000, loss 6.256223 +INFO 2020-11-23 23:35:13 train.py: 74] Epoch 2, iter 5400/6416, lr 0.100000, loss 6.264229 +INFO 2020-11-23 23:36:30 train.py: 74] Epoch 2, iter 5600/6416, lr 0.100000, loss 6.231889 +INFO 2020-11-23 23:37:47 train.py: 74] Epoch 2, iter 5800/6416, lr 0.100000, loss 6.206432 +INFO 2020-11-23 23:39:04 train.py: 87] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2020-11-23 23:39:04 train.py: 74] Epoch 2, iter 6000/6416, lr 0.100000, loss 6.197555 +INFO 2020-11-23 23:40:22 train.py: 74] Epoch 2, iter 6200/6416, lr 0.100000, loss 6.170946 +INFO 2020-11-23 23:41:39 train.py: 74] Epoch 2, iter 6400/6416, lr 0.100000, loss 6.165020 +INFO 2020-11-23 23:41:45 train.py: 92] Save checkpoint Epoch_2.pt to disk... +INFO 2020-11-23 23:41:46 train.py: 74] Epoch 3, iter 0/6416, lr 0.100000, loss 6.170831 +INFO 2020-11-23 23:43:04 train.py: 74] Epoch 3, iter 200/6416, lr 0.100000, loss 5.832000 +INFO 2020-11-23 23:44:21 train.py: 74] Epoch 3, iter 400/6416, lr 0.100000, loss 5.814424 +INFO 2020-11-23 23:45:37 train.py: 74] Epoch 3, iter 600/6416, lr 0.100000, loss 5.887542 +INFO 2020-11-23 23:46:54 train.py: 74] Epoch 3, iter 800/6416, lr 0.100000, loss 5.900610 +INFO 2020-11-23 23:48:10 train.py: 74] Epoch 3, iter 1000/6416, lr 0.100000, loss 5.921929 +INFO 2020-11-23 23:49:27 train.py: 74] Epoch 3, iter 1200/6416, lr 0.100000, loss 5.967691 +INFO 2020-11-23 23:50:44 train.py: 74] Epoch 3, iter 1400/6416, lr 0.100000, loss 5.963248 +INFO 2020-11-23 23:52:00 train.py: 74] Epoch 3, iter 1600/6416, lr 0.100000, loss 5.979250 +INFO 2020-11-23 23:53:17 train.py: 74] Epoch 3, iter 1800/6416, lr 0.100000, loss 5.981584 +INFO 2020-11-23 23:54:33 train.py: 74] Epoch 3, iter 2000/6416, lr 0.100000, loss 5.963605 +INFO 2020-11-23 23:55:50 train.py: 74] Epoch 3, iter 2200/6416, lr 0.100000, loss 5.967984 +INFO 2020-11-23 23:57:06 train.py: 74] Epoch 3, iter 2400/6416, lr 0.100000, loss 5.962511 +INFO 2020-11-23 23:58:23 train.py: 74] Epoch 3, iter 2600/6416, lr 0.100000, loss 5.953251 +INFO 2020-11-23 23:59:39 train.py: 74] Epoch 3, iter 2800/6416, lr 0.100000, loss 5.938224 +INFO 2020-11-24 00:00:56 train.py: 87] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2020-11-24 00:00:56 train.py: 74] Epoch 3, iter 3000/6416, lr 0.100000, loss 5.926983 +INFO 2020-11-24 00:02:13 train.py: 74] Epoch 3, iter 3200/6416, lr 0.100000, loss 5.917728 +INFO 2020-11-24 00:03:30 train.py: 74] Epoch 3, iter 3400/6416, lr 0.100000, loss 5.908873 +INFO 2020-11-24 00:04:47 train.py: 74] Epoch 3, iter 3600/6416, lr 0.100000, loss 5.896288 +INFO 2020-11-24 00:06:04 train.py: 74] Epoch 3, iter 3800/6416, lr 0.100000, loss 5.886286 +INFO 2020-11-24 00:07:21 train.py: 74] Epoch 3, iter 4000/6416, lr 0.100000, loss 5.882384 +INFO 2020-11-24 00:08:38 train.py: 74] Epoch 3, iter 4200/6416, lr 0.100000, loss 5.863813 +INFO 2020-11-24 00:09:56 train.py: 74] Epoch 3, iter 4400/6416, lr 0.100000, loss 5.870124 +INFO 2020-11-24 00:11:13 train.py: 74] Epoch 3, iter 4600/6416, lr 0.100000, loss 5.837263 +INFO 2020-11-24 00:12:30 train.py: 74] Epoch 3, iter 4800/6416, lr 0.100000, loss 5.821667 +INFO 2020-11-24 00:13:47 train.py: 74] Epoch 3, iter 5000/6416, lr 0.100000, loss 5.850752 +INFO 2020-11-24 00:15:04 train.py: 74] Epoch 3, iter 5200/6416, lr 0.100000, loss 5.808350 +INFO 2020-11-24 00:16:21 train.py: 74] Epoch 3, iter 5400/6416, lr 0.100000, loss 5.786753 +INFO 2020-11-24 00:17:38 train.py: 74] Epoch 3, iter 5600/6416, lr 0.100000, loss 5.784242 +INFO 2020-11-24 00:18:55 train.py: 74] Epoch 3, iter 5800/6416, lr 0.100000, loss 5.775763 +INFO 2020-11-24 00:20:12 train.py: 87] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2020-11-24 00:20:13 train.py: 74] Epoch 3, iter 6000/6416, lr 0.100000, loss 5.770726 +INFO 2020-11-24 00:21:30 train.py: 74] Epoch 3, iter 6200/6416, lr 0.100000, loss 5.774870 +INFO 2020-11-24 00:22:47 train.py: 74] Epoch 3, iter 6400/6416, lr 0.100000, loss 5.771624 +INFO 2020-11-24 00:22:53 train.py: 92] Save checkpoint Epoch_3.pt to disk... +INFO 2020-11-24 00:22:54 train.py: 74] Epoch 4, iter 0/6416, lr 0.100000, loss 5.707942 +INFO 2020-11-24 00:24:12 train.py: 74] Epoch 4, iter 200/6416, lr 0.100000, loss 5.445262 +INFO 2020-11-24 00:25:30 train.py: 74] Epoch 4, iter 400/6416, lr 0.100000, loss 5.422858 +INFO 2020-11-24 00:26:48 train.py: 74] Epoch 4, iter 600/6416, lr 0.100000, loss 5.471771 +INFO 2020-11-24 00:28:05 train.py: 74] Epoch 4, iter 800/6416, lr 0.100000, loss 5.524503 +INFO 2020-11-24 00:29:22 train.py: 74] Epoch 4, iter 1000/6416, lr 0.100000, loss 5.566489 +INFO 2020-11-24 00:30:40 train.py: 74] Epoch 4, iter 1200/6416, lr 0.100000, loss 5.581012 +INFO 2020-11-24 00:31:57 train.py: 74] Epoch 4, iter 1400/6416, lr 0.100000, loss 5.592611 +INFO 2020-11-24 00:33:14 train.py: 74] Epoch 4, iter 1600/6416, lr 0.100000, loss 5.607801 +INFO 2020-11-24 00:34:32 train.py: 74] Epoch 4, iter 1800/6416, lr 0.100000, loss 5.640018 +INFO 2020-11-24 00:35:49 train.py: 74] Epoch 4, iter 2000/6416, lr 0.100000, loss 5.634800 +INFO 2020-11-24 00:37:06 train.py: 74] Epoch 4, iter 2200/6416, lr 0.100000, loss 5.626814 +INFO 2020-11-24 00:38:23 train.py: 74] Epoch 4, iter 2400/6416, lr 0.100000, loss 5.608207 +INFO 2020-11-24 00:39:41 train.py: 74] Epoch 4, iter 2600/6416, lr 0.100000, loss 5.614910 +INFO 2020-11-24 00:40:58 train.py: 74] Epoch 4, iter 2800/6416, lr 0.100000, loss 5.634805 +INFO 2020-11-24 00:42:15 train.py: 87] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2020-11-24 00:42:15 train.py: 74] Epoch 4, iter 3000/6416, lr 0.100000, loss 5.612011 +INFO 2020-11-24 00:43:32 train.py: 74] Epoch 4, iter 3200/6416, lr 0.100000, loss 5.619430 +INFO 2020-11-24 00:44:48 train.py: 74] Epoch 4, iter 3400/6416, lr 0.100000, loss 5.586245 +INFO 2020-11-24 00:46:05 train.py: 74] Epoch 4, iter 3600/6416, lr 0.100000, loss 5.595993 +INFO 2020-11-24 00:47:21 train.py: 74] Epoch 4, iter 3800/6416, lr 0.100000, loss 5.596636 +INFO 2020-11-24 00:48:38 train.py: 74] Epoch 4, iter 4000/6416, lr 0.100000, loss 5.580320 +INFO 2020-11-24 00:49:54 train.py: 74] Epoch 4, iter 4200/6416, lr 0.100000, loss 5.595710 +INFO 2020-11-24 00:51:11 train.py: 74] Epoch 4, iter 4400/6416, lr 0.100000, loss 5.580321 +INFO 2020-11-24 00:52:27 train.py: 74] Epoch 4, iter 4600/6416, lr 0.100000, loss 5.569320 +INFO 2020-11-24 00:53:44 train.py: 74] Epoch 4, iter 4800/6416, lr 0.100000, loss 5.550546 +INFO 2020-11-24 00:55:00 train.py: 74] Epoch 4, iter 5000/6416, lr 0.100000, loss 5.545074 +INFO 2020-11-24 00:56:17 train.py: 74] Epoch 4, iter 5200/6416, lr 0.100000, loss 5.546995 +INFO 2020-11-24 00:57:34 train.py: 74] Epoch 4, iter 5400/6416, lr 0.100000, loss 5.514362 +INFO 2020-11-24 00:58:50 train.py: 74] Epoch 4, iter 5600/6416, lr 0.100000, loss 5.537737 +INFO 2020-11-24 01:00:07 train.py: 74] Epoch 4, iter 5800/6416, lr 0.100000, loss 5.535563 +INFO 2020-11-24 01:01:23 train.py: 87] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2020-11-24 01:01:23 train.py: 74] Epoch 4, iter 6000/6416, lr 0.100000, loss 5.517742 +INFO 2020-11-24 01:02:40 train.py: 74] Epoch 4, iter 6200/6416, lr 0.100000, loss 5.500482 +INFO 2020-11-24 01:03:58 train.py: 74] Epoch 4, iter 6400/6416, lr 0.100000, loss 5.494615 +INFO 2020-11-24 01:04:04 train.py: 92] Save checkpoint Epoch_4.pt to disk... +INFO 2020-11-24 01:04:05 train.py: 74] Epoch 5, iter 0/6416, lr 0.100000, loss 5.450038 +INFO 2020-11-24 01:05:23 train.py: 74] Epoch 5, iter 200/6416, lr 0.100000, loss 5.192066 +INFO 2020-11-24 01:06:41 train.py: 74] Epoch 5, iter 400/6416, lr 0.100000, loss 5.182883 +INFO 2020-11-24 01:07:58 train.py: 74] Epoch 5, iter 600/6416, lr 0.100000, loss 5.232825 +INFO 2020-11-24 01:09:15 train.py: 74] Epoch 5, iter 800/6416, lr 0.100000, loss 5.288545 +INFO 2020-11-24 01:10:33 train.py: 74] Epoch 5, iter 1000/6416, lr 0.100000, loss 5.323940 +INFO 2020-11-24 01:11:50 train.py: 74] Epoch 5, iter 1200/6416, lr 0.100000, loss 5.347373 +INFO 2020-11-24 01:13:07 train.py: 74] Epoch 5, iter 1400/6416, lr 0.100000, loss 5.349529 +INFO 2020-11-24 01:14:24 train.py: 74] Epoch 5, iter 1600/6416, lr 0.100000, loss 5.378345 +INFO 2020-11-24 01:15:41 train.py: 74] Epoch 5, iter 1800/6416, lr 0.100000, loss 5.395845 +INFO 2020-11-24 01:16:58 train.py: 74] Epoch 5, iter 2000/6416, lr 0.100000, loss 5.383296 +INFO 2020-11-24 01:18:15 train.py: 74] Epoch 5, iter 2200/6416, lr 0.100000, loss 5.423225 +INFO 2020-11-24 01:19:33 train.py: 74] Epoch 5, iter 2400/6416, lr 0.100000, loss 5.408470 +INFO 2020-11-24 01:20:50 train.py: 74] Epoch 5, iter 2600/6416, lr 0.100000, loss 5.410404 +INFO 2020-11-24 01:22:07 train.py: 74] Epoch 5, iter 2800/6416, lr 0.100000, loss 5.399075 +INFO 2020-11-24 01:23:24 train.py: 87] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2020-11-24 01:23:24 train.py: 74] Epoch 5, iter 3000/6416, lr 0.100000, loss 5.398088 +INFO 2020-11-24 01:24:41 train.py: 74] Epoch 5, iter 3200/6416, lr 0.100000, loss 5.400978 +INFO 2020-11-24 01:25:58 train.py: 74] Epoch 5, iter 3400/6416, lr 0.100000, loss 5.396452 +INFO 2020-11-24 01:27:15 train.py: 74] Epoch 5, iter 3600/6416, lr 0.100000, loss 5.398574 +INFO 2020-11-24 01:28:32 train.py: 74] Epoch 5, iter 3800/6416, lr 0.100000, loss 5.378964 +INFO 2020-11-24 01:29:50 train.py: 74] Epoch 5, iter 4000/6416, lr 0.100000, loss 5.376358 +INFO 2020-11-24 01:31:07 train.py: 74] Epoch 5, iter 4200/6416, lr 0.100000, loss 5.411989 +INFO 2020-11-24 01:32:24 train.py: 74] Epoch 5, iter 4400/6416, lr 0.100000, loss 5.367356 +INFO 2020-11-24 01:33:41 train.py: 74] Epoch 5, iter 4600/6416, lr 0.100000, loss 5.371219 +INFO 2020-11-24 01:34:58 train.py: 74] Epoch 5, iter 4800/6416, lr 0.100000, loss 5.366692 +INFO 2020-11-24 01:36:15 train.py: 74] Epoch 5, iter 5000/6416, lr 0.100000, loss 5.370219 +INFO 2020-11-24 01:37:32 train.py: 74] Epoch 5, iter 5200/6416, lr 0.100000, loss 5.333378 +INFO 2020-11-24 01:38:49 train.py: 74] Epoch 5, iter 5400/6416, lr 0.100000, loss 5.357778 +INFO 2020-11-24 01:40:06 train.py: 74] Epoch 5, iter 5600/6416, lr 0.100000, loss 5.310333 +INFO 2020-11-24 01:41:23 train.py: 74] Epoch 5, iter 5800/6416, lr 0.100000, loss 5.336423 +INFO 2020-11-24 01:42:40 train.py: 87] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2020-11-24 01:42:40 train.py: 74] Epoch 5, iter 6000/6416, lr 0.100000, loss 5.328626 +INFO 2020-11-24 01:43:56 train.py: 74] Epoch 5, iter 6200/6416, lr 0.100000, loss 5.353875 +INFO 2020-11-24 01:45:13 train.py: 74] Epoch 5, iter 6400/6416, lr 0.100000, loss 5.332091 +INFO 2020-11-24 01:45:19 train.py: 92] Save checkpoint Epoch_5.pt to disk... +INFO 2020-11-24 01:45:20 train.py: 74] Epoch 6, iter 0/6416, lr 0.100000, loss 5.336439 +INFO 2020-11-24 01:46:38 train.py: 74] Epoch 6, iter 200/6416, lr 0.100000, loss 5.004231 +INFO 2020-11-24 01:47:56 train.py: 74] Epoch 6, iter 400/6416, lr 0.100000, loss 4.990888 +INFO 2020-11-24 01:49:13 train.py: 74] Epoch 6, iter 600/6416, lr 0.100000, loss 5.080324 +INFO 2020-11-24 01:50:31 train.py: 74] Epoch 6, iter 800/6416, lr 0.100000, loss 5.114117 +INFO 2020-11-24 01:51:48 train.py: 74] Epoch 6, iter 1000/6416, lr 0.100000, loss 5.172408 +INFO 2020-11-24 01:53:05 train.py: 74] Epoch 6, iter 1200/6416, lr 0.100000, loss 5.192198 +INFO 2020-11-24 01:54:23 train.py: 74] Epoch 6, iter 1400/6416, lr 0.100000, loss 5.185811 +INFO 2020-11-24 01:55:40 train.py: 74] Epoch 6, iter 1600/6416, lr 0.100000, loss 5.214260 +INFO 2020-11-24 01:56:57 train.py: 74] Epoch 6, iter 1800/6416, lr 0.100000, loss 5.237810 +INFO 2020-11-24 01:58:14 train.py: 74] Epoch 6, iter 2000/6416, lr 0.100000, loss 5.241336 +INFO 2020-11-24 01:59:31 train.py: 74] Epoch 6, iter 2200/6416, lr 0.100000, loss 5.259704 +INFO 2020-11-24 02:00:49 train.py: 74] Epoch 6, iter 2400/6416, lr 0.100000, loss 5.228155 +INFO 2020-11-24 02:02:06 train.py: 74] Epoch 6, iter 2600/6416, lr 0.100000, loss 5.254398 +INFO 2020-11-24 02:03:23 train.py: 74] Epoch 6, iter 2800/6416, lr 0.100000, loss 5.267083 +INFO 2020-11-24 02:04:40 train.py: 87] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2020-11-24 02:04:40 train.py: 74] Epoch 6, iter 3000/6416, lr 0.100000, loss 5.250467 +INFO 2020-11-24 02:05:58 train.py: 74] Epoch 6, iter 3200/6416, lr 0.100000, loss 5.233817 +INFO 2020-11-24 02:07:15 train.py: 74] Epoch 6, iter 3400/6416, lr 0.100000, loss 5.231766 +INFO 2020-11-24 02:08:32 train.py: 74] Epoch 6, iter 3600/6416, lr 0.100000, loss 5.246143 +INFO 2020-11-24 02:09:49 train.py: 74] Epoch 6, iter 3800/6416, lr 0.100000, loss 5.249186 +INFO 2020-11-24 02:11:06 train.py: 74] Epoch 6, iter 4000/6416, lr 0.100000, loss 5.240134 +INFO 2020-11-24 02:12:24 train.py: 74] Epoch 6, iter 4200/6416, lr 0.100000, loss 5.225728 +INFO 2020-11-24 02:13:41 train.py: 74] Epoch 6, iter 4400/6416, lr 0.100000, loss 5.232335 +INFO 2020-11-24 02:14:58 train.py: 74] Epoch 6, iter 4600/6416, lr 0.100000, loss 5.224760 +INFO 2020-11-24 02:16:15 train.py: 74] Epoch 6, iter 4800/6416, lr 0.100000, loss 5.223358 +INFO 2020-11-24 02:17:32 train.py: 74] Epoch 6, iter 5000/6416, lr 0.100000, loss 5.202141 +INFO 2020-11-24 02:18:49 train.py: 74] Epoch 6, iter 5200/6416, lr 0.100000, loss 5.217607 +INFO 2020-11-24 02:20:06 train.py: 74] Epoch 6, iter 5400/6416, lr 0.100000, loss 5.207081 +INFO 2020-11-24 02:21:23 train.py: 74] Epoch 6, iter 5600/6416, lr 0.100000, loss 5.208580 +INFO 2020-11-24 02:22:41 train.py: 74] Epoch 6, iter 5800/6416, lr 0.100000, loss 5.216951 +INFO 2020-11-24 02:23:58 train.py: 87] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2020-11-24 02:23:58 train.py: 74] Epoch 6, iter 6000/6416, lr 0.100000, loss 5.199084 +INFO 2020-11-24 02:25:15 train.py: 74] Epoch 6, iter 6200/6416, lr 0.100000, loss 5.178439 +INFO 2020-11-24 02:26:32 train.py: 74] Epoch 6, iter 6400/6416, lr 0.100000, loss 5.191668 +INFO 2020-11-24 02:26:38 train.py: 92] Save checkpoint Epoch_6.pt to disk... +INFO 2020-11-24 02:26:40 train.py: 74] Epoch 7, iter 0/6416, lr 0.100000, loss 5.188671 +INFO 2020-11-24 02:27:58 train.py: 74] Epoch 7, iter 200/6416, lr 0.100000, loss 4.865688 +INFO 2020-11-24 02:29:15 train.py: 74] Epoch 7, iter 400/6416, lr 0.100000, loss 4.870638 +INFO 2020-11-24 02:30:32 train.py: 74] Epoch 7, iter 600/6416, lr 0.100000, loss 4.937783 +INFO 2020-11-24 02:31:50 train.py: 74] Epoch 7, iter 800/6416, lr 0.100000, loss 4.994499 +INFO 2020-11-24 02:33:07 train.py: 74] Epoch 7, iter 1000/6416, lr 0.100000, loss 5.028212 +INFO 2020-11-24 02:34:24 train.py: 74] Epoch 7, iter 1200/6416, lr 0.100000, loss 5.075426 +INFO 2020-11-24 02:35:41 train.py: 74] Epoch 7, iter 1400/6416, lr 0.100000, loss 5.085894 +INFO 2020-11-24 02:36:58 train.py: 74] Epoch 7, iter 1600/6416, lr 0.100000, loss 5.078220 +INFO 2020-11-24 02:38:16 train.py: 74] Epoch 7, iter 1800/6416, lr 0.100000, loss 5.115540 +INFO 2020-11-24 02:39:33 train.py: 74] Epoch 7, iter 2000/6416, lr 0.100000, loss 5.103897 +INFO 2020-11-24 02:40:50 train.py: 74] Epoch 7, iter 2200/6416, lr 0.100000, loss 5.109988 +INFO 2020-11-24 02:42:07 train.py: 74] Epoch 7, iter 2400/6416, lr 0.100000, loss 5.145308 +INFO 2020-11-24 02:43:24 train.py: 74] Epoch 7, iter 2600/6416, lr 0.100000, loss 5.106844 +INFO 2020-11-24 02:44:41 train.py: 74] Epoch 7, iter 2800/6416, lr 0.100000, loss 5.147266 +INFO 2020-11-24 02:45:58 train.py: 87] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2020-11-24 02:45:59 train.py: 74] Epoch 7, iter 3000/6416, lr 0.100000, loss 5.104082 +INFO 2020-11-24 02:47:16 train.py: 74] Epoch 7, iter 3200/6416, lr 0.100000, loss 5.115193 +INFO 2020-11-24 02:48:33 train.py: 74] Epoch 7, iter 3400/6416, lr 0.100000, loss 5.124016 +INFO 2020-11-24 02:49:50 train.py: 74] Epoch 7, iter 3600/6416, lr 0.100000, loss 5.137811 +INFO 2020-11-24 02:51:07 train.py: 74] Epoch 7, iter 3800/6416, lr 0.100000, loss 5.124602 +INFO 2020-11-24 02:52:24 train.py: 74] Epoch 7, iter 4000/6416, lr 0.100000, loss 5.140168 +INFO 2020-11-24 02:53:42 train.py: 74] Epoch 7, iter 4200/6416, lr 0.100000, loss 5.124393 +INFO 2020-11-24 02:54:59 train.py: 74] Epoch 7, iter 4400/6416, lr 0.100000, loss 5.129347 +INFO 2020-11-24 02:56:16 train.py: 74] Epoch 7, iter 4600/6416, lr 0.100000, loss 5.124850 +INFO 2020-11-24 02:57:34 train.py: 74] Epoch 7, iter 4800/6416, lr 0.100000, loss 5.110467 +INFO 2020-11-24 02:58:51 train.py: 74] Epoch 7, iter 5000/6416, lr 0.100000, loss 5.117695 +INFO 2020-11-24 03:00:08 train.py: 74] Epoch 7, iter 5200/6416, lr 0.100000, loss 5.131347 +INFO 2020-11-24 03:01:25 train.py: 74] Epoch 7, iter 5400/6416, lr 0.100000, loss 5.121504 +INFO 2020-11-24 03:02:43 train.py: 74] Epoch 7, iter 5600/6416, lr 0.100000, loss 5.095711 +INFO 2020-11-24 03:04:00 train.py: 74] Epoch 7, iter 5800/6416, lr 0.100000, loss 5.101500 +INFO 2020-11-24 03:05:17 train.py: 87] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2020-11-24 03:05:17 train.py: 74] Epoch 7, iter 6000/6416, lr 0.100000, loss 5.107354 +INFO 2020-11-24 03:06:34 train.py: 74] Epoch 7, iter 6200/6416, lr 0.100000, loss 5.112161 +INFO 2020-11-24 03:07:51 train.py: 74] Epoch 7, iter 6400/6416, lr 0.100000, loss 5.085738 +INFO 2020-11-24 03:07:57 train.py: 92] Save checkpoint Epoch_7.pt to disk... +INFO 2020-11-24 03:07:59 train.py: 74] Epoch 8, iter 0/6416, lr 0.100000, loss 5.051775 +INFO 2020-11-24 03:09:17 train.py: 74] Epoch 8, iter 200/6416, lr 0.100000, loss 4.783735 +INFO 2020-11-24 03:10:35 train.py: 74] Epoch 8, iter 400/6416, lr 0.100000, loss 4.787182 +INFO 2020-11-24 03:11:52 train.py: 74] Epoch 8, iter 600/6416, lr 0.100000, loss 4.849713 +INFO 2020-11-24 03:13:09 train.py: 74] Epoch 8, iter 800/6416, lr 0.100000, loss 4.898719 +INFO 2020-11-24 03:14:27 train.py: 74] Epoch 8, iter 1000/6416, lr 0.100000, loss 4.916939 +INFO 2020-11-24 03:15:44 train.py: 74] Epoch 8, iter 1200/6416, lr 0.100000, loss 4.973932 +INFO 2020-11-24 03:17:01 train.py: 74] Epoch 8, iter 1400/6416, lr 0.100000, loss 4.998854 +INFO 2020-11-24 03:18:18 train.py: 74] Epoch 8, iter 1600/6416, lr 0.100000, loss 4.986458 +INFO 2020-11-24 03:19:35 train.py: 74] Epoch 8, iter 1800/6416, lr 0.100000, loss 4.991726 +INFO 2020-11-24 03:20:53 train.py: 74] Epoch 8, iter 2000/6416, lr 0.100000, loss 5.028501 +INFO 2020-11-24 03:22:10 train.py: 74] Epoch 8, iter 2200/6416, lr 0.100000, loss 5.033619 +INFO 2020-11-24 03:23:27 train.py: 74] Epoch 8, iter 2400/6416, lr 0.100000, loss 5.029430 +INFO 2020-11-24 03:24:44 train.py: 74] Epoch 8, iter 2600/6416, lr 0.100000, loss 5.021079 +INFO 2020-11-24 03:26:01 train.py: 74] Epoch 8, iter 2800/6416, lr 0.100000, loss 5.052556 +INFO 2020-11-24 03:27:18 train.py: 87] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2020-11-24 03:27:18 train.py: 74] Epoch 8, iter 3000/6416, lr 0.100000, loss 5.053469 +INFO 2020-11-24 03:28:36 train.py: 74] Epoch 8, iter 3200/6416, lr 0.100000, loss 5.064945 +INFO 2020-11-24 03:29:53 train.py: 74] Epoch 8, iter 3400/6416, lr 0.100000, loss 5.038971 +INFO 2020-11-24 03:31:10 train.py: 74] Epoch 8, iter 3600/6416, lr 0.100000, loss 5.010157 +INFO 2020-11-24 03:32:27 train.py: 74] Epoch 8, iter 3800/6416, lr 0.100000, loss 5.036120 +INFO 2020-11-24 03:33:44 train.py: 74] Epoch 8, iter 4000/6416, lr 0.100000, loss 5.029503 +INFO 2020-11-24 03:35:01 train.py: 74] Epoch 8, iter 4200/6416, lr 0.100000, loss 5.017757 +INFO 2020-11-24 03:36:18 train.py: 74] Epoch 8, iter 4400/6416, lr 0.100000, loss 5.034978 +INFO 2020-11-24 03:37:35 train.py: 74] Epoch 8, iter 4600/6416, lr 0.100000, loss 5.010205 +INFO 2020-11-24 03:38:52 train.py: 74] Epoch 8, iter 4800/6416, lr 0.100000, loss 5.028256 +INFO 2020-11-24 03:40:09 train.py: 74] Epoch 8, iter 5000/6416, lr 0.100000, loss 5.022256 +INFO 2020-11-24 03:41:27 train.py: 74] Epoch 8, iter 5200/6416, lr 0.100000, loss 5.036029 +INFO 2020-11-24 03:42:45 train.py: 74] Epoch 8, iter 5400/6416, lr 0.100000, loss 5.015791 +INFO 2020-11-24 03:44:02 train.py: 74] Epoch 8, iter 5600/6416, lr 0.100000, loss 5.034028 +INFO 2020-11-24 03:45:20 train.py: 74] Epoch 8, iter 5800/6416, lr 0.100000, loss 5.003483 +INFO 2020-11-24 03:46:38 train.py: 87] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2020-11-24 03:46:39 train.py: 74] Epoch 8, iter 6000/6416, lr 0.100000, loss 5.003800 +INFO 2020-11-24 03:47:56 train.py: 74] Epoch 8, iter 6200/6416, lr 0.100000, loss 5.012013 +INFO 2020-11-24 03:49:13 train.py: 74] Epoch 8, iter 6400/6416, lr 0.100000, loss 5.004939 +INFO 2020-11-24 03:49:19 train.py: 92] Save checkpoint Epoch_8.pt to disk... +INFO 2020-11-24 03:49:21 train.py: 74] Epoch 9, iter 0/6416, lr 0.100000, loss 4.984909 +INFO 2020-11-24 03:50:38 train.py: 74] Epoch 9, iter 200/6416, lr 0.100000, loss 4.706132 +INFO 2020-11-24 03:51:55 train.py: 74] Epoch 9, iter 400/6416, lr 0.100000, loss 4.707455 +INFO 2020-11-24 03:53:12 train.py: 74] Epoch 9, iter 600/6416, lr 0.100000, loss 4.764274 +INFO 2020-11-24 03:54:29 train.py: 74] Epoch 9, iter 800/6416, lr 0.100000, loss 4.796268 +INFO 2020-11-24 03:55:45 train.py: 74] Epoch 9, iter 1000/6416, lr 0.100000, loss 4.833065 +INFO 2020-11-24 03:57:02 train.py: 74] Epoch 9, iter 1200/6416, lr 0.100000, loss 4.880998 +INFO 2020-11-24 03:58:19 train.py: 74] Epoch 9, iter 1400/6416, lr 0.100000, loss 4.904290 +INFO 2020-11-24 03:59:36 train.py: 74] Epoch 9, iter 1600/6416, lr 0.100000, loss 4.932658 +INFO 2020-11-24 04:00:52 train.py: 74] Epoch 9, iter 1800/6416, lr 0.100000, loss 4.924621 +INFO 2020-11-24 04:02:09 train.py: 74] Epoch 9, iter 2000/6416, lr 0.100000, loss 4.937399 +INFO 2020-11-24 04:03:26 train.py: 74] Epoch 9, iter 2200/6416, lr 0.100000, loss 4.930382 +INFO 2020-11-24 04:04:43 train.py: 74] Epoch 9, iter 2400/6416, lr 0.100000, loss 4.950013 +INFO 2020-11-24 04:06:00 train.py: 74] Epoch 9, iter 2600/6416, lr 0.100000, loss 4.974567 +INFO 2020-11-24 04:07:16 train.py: 74] Epoch 9, iter 2800/6416, lr 0.100000, loss 4.949161 +INFO 2020-11-24 04:08:33 train.py: 87] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2020-11-24 04:08:33 train.py: 74] Epoch 9, iter 3000/6416, lr 0.100000, loss 4.946550 +INFO 2020-11-24 04:09:51 train.py: 74] Epoch 9, iter 3200/6416, lr 0.100000, loss 4.970594 +INFO 2020-11-24 04:11:08 train.py: 74] Epoch 9, iter 3400/6416, lr 0.100000, loss 4.954181 +INFO 2020-11-24 04:12:26 train.py: 74] Epoch 9, iter 3600/6416, lr 0.100000, loss 4.954727 +INFO 2020-11-24 04:13:43 train.py: 74] Epoch 9, iter 3800/6416, lr 0.100000, loss 4.970495 +INFO 2020-11-24 04:15:01 train.py: 74] Epoch 9, iter 4000/6416, lr 0.100000, loss 4.983707 +INFO 2020-11-24 04:16:18 train.py: 74] Epoch 9, iter 4200/6416, lr 0.100000, loss 4.947740 +INFO 2020-11-24 04:17:36 train.py: 74] Epoch 9, iter 4400/6416, lr 0.100000, loss 4.954028 +INFO 2020-11-24 04:18:53 train.py: 74] Epoch 9, iter 4600/6416, lr 0.100000, loss 4.971984 +INFO 2020-11-24 04:20:10 train.py: 74] Epoch 9, iter 4800/6416, lr 0.100000, loss 4.952608 +INFO 2020-11-24 04:21:28 train.py: 74] Epoch 9, iter 5000/6416, lr 0.100000, loss 4.951163 +INFO 2020-11-24 04:22:45 train.py: 74] Epoch 9, iter 5200/6416, lr 0.100000, loss 4.954459 +INFO 2020-11-24 04:24:03 train.py: 74] Epoch 9, iter 5400/6416, lr 0.100000, loss 4.940857 +INFO 2020-11-24 04:25:20 train.py: 74] Epoch 9, iter 5600/6416, lr 0.100000, loss 4.955636 +INFO 2020-11-24 04:26:38 train.py: 74] Epoch 9, iter 5800/6416, lr 0.100000, loss 4.956987 +INFO 2020-11-24 04:27:55 train.py: 87] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2020-11-24 04:27:55 train.py: 74] Epoch 9, iter 6000/6416, lr 0.100000, loss 4.933979 +INFO 2020-11-24 04:29:13 train.py: 74] Epoch 9, iter 6200/6416, lr 0.100000, loss 4.913991 +INFO 2020-11-24 04:30:30 train.py: 74] Epoch 9, iter 6400/6416, lr 0.100000, loss 4.945502 +INFO 2020-11-24 04:30:36 train.py: 92] Save checkpoint Epoch_9.pt to disk... +INFO 2020-11-24 04:30:38 train.py: 74] Epoch 10, iter 0/6416, lr 0.010000, loss 5.000010 +INFO 2020-11-24 04:31:56 train.py: 74] Epoch 10, iter 200/6416, lr 0.010000, loss 4.154199 +INFO 2020-11-24 04:33:13 train.py: 74] Epoch 10, iter 400/6416, lr 0.010000, loss 3.994031 +INFO 2020-11-24 04:34:31 train.py: 74] Epoch 10, iter 600/6416, lr 0.010000, loss 3.942594 +INFO 2020-11-24 04:35:48 train.py: 74] Epoch 10, iter 800/6416, lr 0.010000, loss 3.885192 +INFO 2020-11-24 04:37:05 train.py: 74] Epoch 10, iter 1000/6416, lr 0.010000, loss 3.881911 +INFO 2020-11-24 04:38:23 train.py: 74] Epoch 10, iter 1200/6416, lr 0.010000, loss 3.834896 +INFO 2020-11-24 04:39:40 train.py: 74] Epoch 10, iter 1400/6416, lr 0.010000, loss 3.811167 +INFO 2020-11-24 04:40:57 train.py: 74] Epoch 10, iter 1600/6416, lr 0.010000, loss 3.790355 +INFO 2020-11-24 04:42:15 train.py: 74] Epoch 10, iter 1800/6416, lr 0.010000, loss 3.763783 +INFO 2020-11-24 04:43:32 train.py: 74] Epoch 10, iter 2000/6416, lr 0.010000, loss 3.754471 +INFO 2020-11-24 04:44:49 train.py: 74] Epoch 10, iter 2200/6416, lr 0.010000, loss 3.728959 +INFO 2020-11-24 04:46:06 train.py: 74] Epoch 10, iter 2400/6416, lr 0.010000, loss 3.721313 +INFO 2020-11-24 04:47:24 train.py: 74] Epoch 10, iter 2600/6416, lr 0.010000, loss 3.709909 +INFO 2020-11-24 04:48:41 train.py: 74] Epoch 10, iter 2800/6416, lr 0.010000, loss 3.693327 +INFO 2020-11-24 04:49:58 train.py: 87] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2020-11-24 04:49:59 train.py: 74] Epoch 10, iter 3000/6416, lr 0.010000, loss 3.675561 +INFO 2020-11-24 04:51:15 train.py: 74] Epoch 10, iter 3200/6416, lr 0.010000, loss 3.657077 +INFO 2020-11-24 04:52:32 train.py: 74] Epoch 10, iter 3400/6416, lr 0.010000, loss 3.656189 +INFO 2020-11-24 04:53:48 train.py: 74] Epoch 10, iter 3600/6416, lr 0.010000, loss 3.654700 +INFO 2020-11-24 04:55:05 train.py: 74] Epoch 10, iter 3800/6416, lr 0.010000, loss 3.630731 +INFO 2020-11-24 04:56:22 train.py: 74] Epoch 10, iter 4000/6416, lr 0.010000, loss 3.592582 +INFO 2020-11-24 04:57:38 train.py: 74] Epoch 10, iter 4200/6416, lr 0.010000, loss 3.602946 +INFO 2020-11-24 04:58:55 train.py: 74] Epoch 10, iter 4400/6416, lr 0.010000, loss 3.600951 +INFO 2020-11-24 05:00:12 train.py: 74] Epoch 10, iter 4600/6416, lr 0.010000, loss 3.584942 +INFO 2020-11-24 05:01:28 train.py: 74] Epoch 10, iter 4800/6416, lr 0.010000, loss 3.583431 +INFO 2020-11-24 05:02:45 train.py: 74] Epoch 10, iter 5000/6416, lr 0.010000, loss 3.579450 +INFO 2020-11-24 05:04:01 train.py: 74] Epoch 10, iter 5200/6416, lr 0.010000, loss 3.566372 +INFO 2020-11-24 05:05:18 train.py: 74] Epoch 10, iter 5400/6416, lr 0.010000, loss 3.572648 +INFO 2020-11-24 05:06:35 train.py: 74] Epoch 10, iter 5600/6416, lr 0.010000, loss 3.566118 +INFO 2020-11-24 05:07:51 train.py: 74] Epoch 10, iter 5800/6416, lr 0.010000, loss 3.542246 +INFO 2020-11-24 05:09:08 train.py: 87] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2020-11-24 05:09:08 train.py: 74] Epoch 10, iter 6000/6416, lr 0.010000, loss 3.563236 +INFO 2020-11-24 05:10:25 train.py: 74] Epoch 10, iter 6200/6416, lr 0.010000, loss 3.517665 +INFO 2020-11-24 05:11:43 train.py: 74] Epoch 10, iter 6400/6416, lr 0.010000, loss 3.551301 +INFO 2020-11-24 05:11:49 train.py: 92] Save checkpoint Epoch_10.pt to disk... +INFO 2020-11-24 05:11:51 train.py: 74] Epoch 11, iter 0/6416, lr 0.010000, loss 3.510715 +INFO 2020-11-24 05:13:08 train.py: 74] Epoch 11, iter 200/6416, lr 0.010000, loss 3.330990 +INFO 2020-11-24 05:14:26 train.py: 74] Epoch 11, iter 400/6416, lr 0.010000, loss 3.326119 +INFO 2020-11-24 05:15:43 train.py: 74] Epoch 11, iter 600/6416, lr 0.010000, loss 3.319666 +INFO 2020-11-24 05:17:01 train.py: 74] Epoch 11, iter 800/6416, lr 0.010000, loss 3.327858 +INFO 2020-11-24 05:18:18 train.py: 74] Epoch 11, iter 1000/6416, lr 0.010000, loss 3.348921 +INFO 2020-11-24 05:19:35 train.py: 74] Epoch 11, iter 1200/6416, lr 0.010000, loss 3.330388 +INFO 2020-11-24 05:20:53 train.py: 74] Epoch 11, iter 1400/6416, lr 0.010000, loss 3.327977 +INFO 2020-11-24 05:22:10 train.py: 74] Epoch 11, iter 1600/6416, lr 0.010000, loss 3.333608 +INFO 2020-11-24 05:23:28 train.py: 74] Epoch 11, iter 1800/6416, lr 0.010000, loss 3.334153 +INFO 2020-11-24 05:24:45 train.py: 74] Epoch 11, iter 2000/6416, lr 0.010000, loss 3.335261 +INFO 2020-11-24 05:26:02 train.py: 74] Epoch 11, iter 2200/6416, lr 0.010000, loss 3.324370 +INFO 2020-11-24 05:27:20 train.py: 74] Epoch 11, iter 2400/6416, lr 0.010000, loss 3.340342 +INFO 2020-11-24 05:28:37 train.py: 74] Epoch 11, iter 2600/6416, lr 0.010000, loss 3.356664 +INFO 2020-11-24 05:29:55 train.py: 74] Epoch 11, iter 2800/6416, lr 0.010000, loss 3.353062 +INFO 2020-11-24 05:31:12 train.py: 87] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2020-11-24 05:31:12 train.py: 74] Epoch 11, iter 3000/6416, lr 0.010000, loss 3.361141 +INFO 2020-11-24 05:32:30 train.py: 74] Epoch 11, iter 3200/6416, lr 0.010000, loss 3.366452 +INFO 2020-11-24 05:33:47 train.py: 74] Epoch 11, iter 3400/6416, lr 0.010000, loss 3.348350 +INFO 2020-11-24 05:35:05 train.py: 74] Epoch 11, iter 3600/6416, lr 0.010000, loss 3.331543 +INFO 2020-11-24 05:36:22 train.py: 74] Epoch 11, iter 3800/6416, lr 0.010000, loss 3.354757 +INFO 2020-11-24 05:37:39 train.py: 74] Epoch 11, iter 4000/6416, lr 0.010000, loss 3.362968 +INFO 2020-11-24 05:38:57 train.py: 74] Epoch 11, iter 4200/6416, lr 0.010000, loss 3.367949 +INFO 2020-11-24 05:40:14 train.py: 74] Epoch 11, iter 4400/6416, lr 0.010000, loss 3.366881 +INFO 2020-11-24 05:41:32 train.py: 74] Epoch 11, iter 4600/6416, lr 0.010000, loss 3.369319 +INFO 2020-11-24 05:42:49 train.py: 74] Epoch 11, iter 4800/6416, lr 0.010000, loss 3.361776 +INFO 2020-11-24 05:44:07 train.py: 74] Epoch 11, iter 5000/6416, lr 0.010000, loss 3.360669 +INFO 2020-11-24 05:45:24 train.py: 74] Epoch 11, iter 5200/6416, lr 0.010000, loss 3.372847 +INFO 2020-11-24 05:46:42 train.py: 74] Epoch 11, iter 5400/6416, lr 0.010000, loss 3.363194 +INFO 2020-11-24 05:47:59 train.py: 74] Epoch 11, iter 5600/6416, lr 0.010000, loss 3.371010 +INFO 2020-11-24 05:49:17 train.py: 74] Epoch 11, iter 5800/6416, lr 0.010000, loss 3.373622 +INFO 2020-11-24 05:50:34 train.py: 87] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2020-11-24 05:50:34 train.py: 74] Epoch 11, iter 6000/6416, lr 0.010000, loss 3.369140 +INFO 2020-11-24 05:51:52 train.py: 74] Epoch 11, iter 6200/6416, lr 0.010000, loss 3.387282 +INFO 2020-11-24 05:53:09 train.py: 74] Epoch 11, iter 6400/6416, lr 0.010000, loss 3.385287 +INFO 2020-11-24 05:53:15 train.py: 92] Save checkpoint Epoch_11.pt to disk... +INFO 2020-11-24 05:53:17 train.py: 74] Epoch 12, iter 0/6416, lr 0.010000, loss 3.363272 +INFO 2020-11-24 05:54:35 train.py: 74] Epoch 12, iter 200/6416, lr 0.010000, loss 3.170186 +INFO 2020-11-24 05:55:52 train.py: 74] Epoch 12, iter 400/6416, lr 0.010000, loss 3.149645 +INFO 2020-11-24 05:57:09 train.py: 74] Epoch 12, iter 600/6416, lr 0.010000, loss 3.169130 +INFO 2020-11-24 05:58:27 train.py: 74] Epoch 12, iter 800/6416, lr 0.010000, loss 3.189962 +INFO 2020-11-24 05:59:44 train.py: 74] Epoch 12, iter 1000/6416, lr 0.010000, loss 3.182983 +INFO 2020-11-24 06:01:01 train.py: 74] Epoch 12, iter 1200/6416, lr 0.010000, loss 3.203905 +INFO 2020-11-24 06:02:18 train.py: 74] Epoch 12, iter 1400/6416, lr 0.010000, loss 3.212434 +INFO 2020-11-24 06:03:36 train.py: 74] Epoch 12, iter 1600/6416, lr 0.010000, loss 3.239437 +INFO 2020-11-24 06:04:53 train.py: 74] Epoch 12, iter 1800/6416, lr 0.010000, loss 3.241117 +INFO 2020-11-24 06:06:11 train.py: 74] Epoch 12, iter 2000/6416, lr 0.010000, loss 3.239092 +INFO 2020-11-24 06:07:28 train.py: 74] Epoch 12, iter 2200/6416, lr 0.010000, loss 3.237745 +INFO 2020-11-24 06:08:45 train.py: 74] Epoch 12, iter 2400/6416, lr 0.010000, loss 3.234794 +INFO 2020-11-24 06:10:03 train.py: 74] Epoch 12, iter 2600/6416, lr 0.010000, loss 3.253999 +INFO 2020-11-24 06:11:20 train.py: 74] Epoch 12, iter 2800/6416, lr 0.010000, loss 3.280901 +INFO 2020-11-24 06:12:37 train.py: 87] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2020-11-24 06:12:37 train.py: 74] Epoch 12, iter 3000/6416, lr 0.010000, loss 3.277021 +INFO 2020-11-24 06:13:54 train.py: 74] Epoch 12, iter 3200/6416, lr 0.010000, loss 3.273918 +INFO 2020-11-24 06:15:11 train.py: 74] Epoch 12, iter 3400/6416, lr 0.010000, loss 3.291123 +INFO 2020-11-24 06:16:27 train.py: 74] Epoch 12, iter 3600/6416, lr 0.010000, loss 3.281846 +INFO 2020-11-24 06:17:44 train.py: 74] Epoch 12, iter 3800/6416, lr 0.010000, loss 3.287990 +INFO 2020-11-24 06:19:01 train.py: 74] Epoch 12, iter 4000/6416, lr 0.010000, loss 3.294570 +INFO 2020-11-24 06:20:17 train.py: 74] Epoch 12, iter 4200/6416, lr 0.010000, loss 3.292180 +INFO 2020-11-24 06:21:34 train.py: 74] Epoch 12, iter 4400/6416, lr 0.010000, loss 3.297857 +INFO 2020-11-24 06:22:50 train.py: 74] Epoch 12, iter 4600/6416, lr 0.010000, loss 3.312679 +INFO 2020-11-24 06:24:07 train.py: 74] Epoch 12, iter 4800/6416, lr 0.010000, loss 3.305384 +INFO 2020-11-24 06:25:24 train.py: 74] Epoch 12, iter 5000/6416, lr 0.010000, loss 3.311811 +INFO 2020-11-24 06:26:41 train.py: 74] Epoch 12, iter 5200/6416, lr 0.010000, loss 3.312364 +INFO 2020-11-24 06:27:57 train.py: 74] Epoch 12, iter 5400/6416, lr 0.010000, loss 3.294487 +INFO 2020-11-24 06:29:14 train.py: 74] Epoch 12, iter 5600/6416, lr 0.010000, loss 3.306579 +INFO 2020-11-24 06:30:31 train.py: 74] Epoch 12, iter 5800/6416, lr 0.010000, loss 3.326816 +INFO 2020-11-24 06:31:47 train.py: 87] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2020-11-24 06:31:48 train.py: 74] Epoch 12, iter 6000/6416, lr 0.010000, loss 3.315303 +INFO 2020-11-24 06:33:05 train.py: 74] Epoch 12, iter 6200/6416, lr 0.010000, loss 3.322655 +INFO 2020-11-24 06:34:22 train.py: 74] Epoch 12, iter 6400/6416, lr 0.010000, loss 3.328963 +INFO 2020-11-24 06:34:28 train.py: 92] Save checkpoint Epoch_12.pt to disk... +INFO 2020-11-24 06:34:30 train.py: 74] Epoch 13, iter 0/6416, lr 0.001000, loss 3.367159 +INFO 2020-11-24 06:35:48 train.py: 74] Epoch 13, iter 200/6416, lr 0.001000, loss 3.064553 +INFO 2020-11-24 06:37:06 train.py: 74] Epoch 13, iter 400/6416, lr 0.001000, loss 3.060716 +INFO 2020-11-24 06:38:23 train.py: 74] Epoch 13, iter 600/6416, lr 0.001000, loss 3.021528 +INFO 2020-11-24 06:39:41 train.py: 74] Epoch 13, iter 800/6416, lr 0.001000, loss 3.034977 +INFO 2020-11-24 06:40:58 train.py: 74] Epoch 13, iter 1000/6416, lr 0.001000, loss 3.023835 +INFO 2020-11-24 06:42:15 train.py: 74] Epoch 13, iter 1200/6416, lr 0.001000, loss 3.025058 +INFO 2020-11-24 06:43:33 train.py: 74] Epoch 13, iter 1400/6416, lr 0.001000, loss 3.031233 +INFO 2020-11-24 06:44:50 train.py: 74] Epoch 13, iter 1600/6416, lr 0.001000, loss 3.028460 +INFO 2020-11-24 06:46:08 train.py: 74] Epoch 13, iter 1800/6416, lr 0.001000, loss 3.014946 +INFO 2020-11-24 06:47:25 train.py: 74] Epoch 13, iter 2000/6416, lr 0.001000, loss 3.026953 +INFO 2020-11-24 06:48:43 train.py: 74] Epoch 13, iter 2200/6416, lr 0.001000, loss 3.026604 +INFO 2020-11-24 06:50:00 train.py: 74] Epoch 13, iter 2400/6416, lr 0.001000, loss 3.022412 +INFO 2020-11-24 06:51:17 train.py: 74] Epoch 13, iter 2600/6416, lr 0.001000, loss 3.025863 +INFO 2020-11-24 06:52:35 train.py: 74] Epoch 13, iter 2800/6416, lr 0.001000, loss 3.029603 +INFO 2020-11-24 06:53:52 train.py: 87] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2020-11-24 06:53:52 train.py: 74] Epoch 13, iter 3000/6416, lr 0.001000, loss 3.039668 +INFO 2020-11-24 06:55:10 train.py: 74] Epoch 13, iter 3200/6416, lr 0.001000, loss 3.023970 +INFO 2020-11-24 06:56:27 train.py: 74] Epoch 13, iter 3400/6416, lr 0.001000, loss 3.030394 +INFO 2020-11-24 06:57:45 train.py: 74] Epoch 13, iter 3600/6416, lr 0.001000, loss 3.027165 +INFO 2020-11-24 06:59:02 train.py: 74] Epoch 13, iter 3800/6416, lr 0.001000, loss 3.026386 +INFO 2020-11-24 07:00:20 train.py: 74] Epoch 13, iter 4000/6416, lr 0.001000, loss 3.035696 +INFO 2020-11-24 07:01:37 train.py: 74] Epoch 13, iter 4200/6416, lr 0.001000, loss 3.025335 +INFO 2020-11-24 07:02:54 train.py: 74] Epoch 13, iter 4400/6416, lr 0.001000, loss 3.024760 +INFO 2020-11-24 07:04:12 train.py: 74] Epoch 13, iter 4600/6416, lr 0.001000, loss 3.038933 +INFO 2020-11-24 07:05:29 train.py: 74] Epoch 13, iter 4800/6416, lr 0.001000, loss 3.036351 +INFO 2020-11-24 07:06:47 train.py: 74] Epoch 13, iter 5000/6416, lr 0.001000, loss 3.038564 +INFO 2020-11-24 07:08:04 train.py: 74] Epoch 13, iter 5200/6416, lr 0.001000, loss 3.029024 +INFO 2020-11-24 07:09:21 train.py: 74] Epoch 13, iter 5400/6416, lr 0.001000, loss 3.036543 +INFO 2020-11-24 07:10:39 train.py: 74] Epoch 13, iter 5600/6416, lr 0.001000, loss 3.045363 +INFO 2020-11-24 07:11:56 train.py: 74] Epoch 13, iter 5800/6416, lr 0.001000, loss 3.026146 +INFO 2020-11-24 07:13:13 train.py: 87] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2020-11-24 07:13:14 train.py: 74] Epoch 13, iter 6000/6416, lr 0.001000, loss 3.029341 +INFO 2020-11-24 07:14:31 train.py: 74] Epoch 13, iter 6200/6416, lr 0.001000, loss 3.038404 +INFO 2020-11-24 07:15:47 train.py: 74] Epoch 13, iter 6400/6416, lr 0.001000, loss 3.029541 +INFO 2020-11-24 07:15:54 train.py: 92] Save checkpoint Epoch_13.pt to disk... +INFO 2020-11-24 07:15:55 train.py: 74] Epoch 14, iter 0/6416, lr 0.001000, loss 2.986026 +INFO 2020-11-24 07:17:13 train.py: 74] Epoch 14, iter 200/6416, lr 0.001000, loss 3.009964 +INFO 2020-11-24 07:18:31 train.py: 74] Epoch 14, iter 400/6416, lr 0.001000, loss 2.985986 +INFO 2020-11-24 07:19:48 train.py: 74] Epoch 14, iter 600/6416, lr 0.001000, loss 2.993668 +INFO 2020-11-24 07:21:06 train.py: 74] Epoch 14, iter 800/6416, lr 0.001000, loss 2.995230 +INFO 2020-11-24 07:22:23 train.py: 74] Epoch 14, iter 1000/6416, lr 0.001000, loss 2.999048 +INFO 2020-11-24 07:23:41 train.py: 74] Epoch 14, iter 1200/6416, lr 0.001000, loss 3.011039 +INFO 2020-11-24 07:24:58 train.py: 74] Epoch 14, iter 1400/6416, lr 0.001000, loss 3.017092 +INFO 2020-11-24 07:26:16 train.py: 74] Epoch 14, iter 1600/6416, lr 0.001000, loss 3.007616 +INFO 2020-11-24 07:27:33 train.py: 74] Epoch 14, iter 1800/6416, lr 0.001000, loss 3.014714 +INFO 2020-11-24 07:28:51 train.py: 74] Epoch 14, iter 2000/6416, lr 0.001000, loss 3.003980 +INFO 2020-11-24 07:30:08 train.py: 74] Epoch 14, iter 2200/6416, lr 0.001000, loss 3.005253 +INFO 2020-11-24 07:31:26 train.py: 74] Epoch 14, iter 2400/6416, lr 0.001000, loss 3.003419 +INFO 2020-11-24 07:32:43 train.py: 74] Epoch 14, iter 2600/6416, lr 0.001000, loss 3.008633 +INFO 2020-11-24 07:34:00 train.py: 74] Epoch 14, iter 2800/6416, lr 0.001000, loss 3.009005 +INFO 2020-11-24 07:35:18 train.py: 87] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2020-11-24 07:35:18 train.py: 74] Epoch 14, iter 3000/6416, lr 0.001000, loss 3.006640 +INFO 2020-11-24 07:36:35 train.py: 74] Epoch 14, iter 3200/6416, lr 0.001000, loss 3.017307 +INFO 2020-11-24 07:37:53 train.py: 74] Epoch 14, iter 3400/6416, lr 0.001000, loss 3.020918 +INFO 2020-11-24 07:39:10 train.py: 74] Epoch 14, iter 3600/6416, lr 0.001000, loss 3.016668 +INFO 2020-11-24 07:40:28 train.py: 74] Epoch 14, iter 3800/6416, lr 0.001000, loss 3.007162 +INFO 2020-11-24 07:41:45 train.py: 74] Epoch 14, iter 4000/6416, lr 0.001000, loss 3.013031 +INFO 2020-11-24 07:43:03 train.py: 74] Epoch 14, iter 4200/6416, lr 0.001000, loss 3.009712 +INFO 2020-11-24 07:44:20 train.py: 74] Epoch 14, iter 4400/6416, lr 0.001000, loss 3.026020 +INFO 2020-11-24 07:45:37 train.py: 74] Epoch 14, iter 4600/6416, lr 0.001000, loss 3.015756 +INFO 2020-11-24 07:46:55 train.py: 74] Epoch 14, iter 4800/6416, lr 0.001000, loss 3.014330 +INFO 2020-11-24 07:48:12 train.py: 74] Epoch 14, iter 5000/6416, lr 0.001000, loss 3.013047 +INFO 2020-11-24 07:49:30 train.py: 74] Epoch 14, iter 5200/6416, lr 0.001000, loss 3.021250 +INFO 2020-11-24 07:50:47 train.py: 74] Epoch 14, iter 5400/6416, lr 0.001000, loss 3.026684 +INFO 2020-11-24 07:52:05 train.py: 74] Epoch 14, iter 5600/6416, lr 0.001000, loss 3.020338 +INFO 2020-11-24 07:53:22 train.py: 74] Epoch 14, iter 5800/6416, lr 0.001000, loss 3.014258 +INFO 2020-11-24 07:54:39 train.py: 87] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2020-11-24 07:54:40 train.py: 74] Epoch 14, iter 6000/6416, lr 0.001000, loss 3.006616 +INFO 2020-11-24 07:55:57 train.py: 74] Epoch 14, iter 6200/6416, lr 0.001000, loss 3.015490 +INFO 2020-11-24 07:57:15 train.py: 74] Epoch 14, iter 6400/6416, lr 0.001000, loss 3.024536 +INFO 2020-11-24 07:57:21 train.py: 92] Save checkpoint Epoch_14.pt to disk... +INFO 2020-11-24 07:57:23 train.py: 74] Epoch 15, iter 0/6416, lr 0.001000, loss 3.038901 +INFO 2020-11-24 07:58:40 train.py: 74] Epoch 15, iter 200/6416, lr 0.001000, loss 2.979035 +INFO 2020-11-24 07:59:58 train.py: 74] Epoch 15, iter 400/6416, lr 0.001000, loss 2.989299 +INFO 2020-11-24 08:01:15 train.py: 74] Epoch 15, iter 600/6416, lr 0.001000, loss 2.998241 +INFO 2020-11-24 08:02:33 train.py: 74] Epoch 15, iter 800/6416, lr 0.001000, loss 3.000091 +INFO 2020-11-24 08:03:50 train.py: 74] Epoch 15, iter 1000/6416, lr 0.001000, loss 2.992542 +INFO 2020-11-24 08:05:08 train.py: 74] Epoch 15, iter 1200/6416, lr 0.001000, loss 2.996305 +INFO 2020-11-24 08:06:25 train.py: 74] Epoch 15, iter 1400/6416, lr 0.001000, loss 3.011243 +INFO 2020-11-24 08:07:43 train.py: 74] Epoch 15, iter 1600/6416, lr 0.001000, loss 3.005577 +INFO 2020-11-24 08:09:00 train.py: 74] Epoch 15, iter 1800/6416, lr 0.001000, loss 2.989572 +INFO 2020-11-24 08:10:18 train.py: 74] Epoch 15, iter 2000/6416, lr 0.001000, loss 2.990408 +INFO 2020-11-24 08:11:35 train.py: 74] Epoch 15, iter 2200/6416, lr 0.001000, loss 3.002582 +INFO 2020-11-24 08:12:52 train.py: 74] Epoch 15, iter 2400/6416, lr 0.001000, loss 2.996218 +INFO 2020-11-24 08:14:10 train.py: 74] Epoch 15, iter 2600/6416, lr 0.001000, loss 2.996259 +INFO 2020-11-24 08:15:27 train.py: 74] Epoch 15, iter 2800/6416, lr 0.001000, loss 3.000973 +INFO 2020-11-24 08:16:45 train.py: 87] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2020-11-24 08:16:45 train.py: 74] Epoch 15, iter 3000/6416, lr 0.001000, loss 3.002935 +INFO 2020-11-24 08:18:02 train.py: 74] Epoch 15, iter 3200/6416, lr 0.001000, loss 3.001099 +INFO 2020-11-24 08:19:20 train.py: 74] Epoch 15, iter 3400/6416, lr 0.001000, loss 2.985440 +INFO 2020-11-24 08:20:37 train.py: 74] Epoch 15, iter 3600/6416, lr 0.001000, loss 2.999892 +INFO 2020-11-24 08:21:55 train.py: 74] Epoch 15, iter 3800/6416, lr 0.001000, loss 2.994391 +INFO 2020-11-24 08:23:12 train.py: 74] Epoch 15, iter 4000/6416, lr 0.001000, loss 2.984912 +INFO 2020-11-24 08:24:30 train.py: 74] Epoch 15, iter 4200/6416, lr 0.001000, loss 2.994332 +INFO 2020-11-24 08:25:47 train.py: 74] Epoch 15, iter 4400/6416, lr 0.001000, loss 3.008122 +INFO 2020-11-24 08:27:05 train.py: 74] Epoch 15, iter 4600/6416, lr 0.001000, loss 3.003629 +INFO 2020-11-24 08:28:22 train.py: 74] Epoch 15, iter 4800/6416, lr 0.001000, loss 3.022021 +INFO 2020-11-24 08:29:39 train.py: 74] Epoch 15, iter 5000/6416, lr 0.001000, loss 3.009543 +INFO 2020-11-24 08:30:57 train.py: 74] Epoch 15, iter 5200/6416, lr 0.001000, loss 3.012039 +INFO 2020-11-24 08:32:14 train.py: 74] Epoch 15, iter 5400/6416, lr 0.001000, loss 3.017081 +INFO 2020-11-24 08:33:32 train.py: 74] Epoch 15, iter 5600/6416, lr 0.001000, loss 3.017457 +INFO 2020-11-24 08:34:49 train.py: 74] Epoch 15, iter 5800/6416, lr 0.001000, loss 3.001239 +INFO 2020-11-24 08:36:06 train.py: 87] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2020-11-24 08:36:07 train.py: 74] Epoch 15, iter 6000/6416, lr 0.001000, loss 3.014142 +INFO 2020-11-24 08:37:24 train.py: 74] Epoch 15, iter 6200/6416, lr 0.001000, loss 3.007254 +INFO 2020-11-24 08:38:42 train.py: 74] Epoch 15, iter 6400/6416, lr 0.001000, loss 3.005258 +INFO 2020-11-24 08:38:48 train.py: 92] Save checkpoint Epoch_15.pt to disk... +INFO 2020-11-24 08:38:49 train.py: 74] Epoch 16, iter 0/6416, lr 0.000100, loss 3.071835 +INFO 2020-11-24 08:40:06 train.py: 74] Epoch 16, iter 200/6416, lr 0.000100, loss 2.978621 +INFO 2020-11-24 08:41:23 train.py: 74] Epoch 16, iter 400/6416, lr 0.000100, loss 2.997738 +INFO 2020-11-24 08:42:40 train.py: 74] Epoch 16, iter 600/6416, lr 0.000100, loss 2.955296 +INFO 2020-11-24 08:43:57 train.py: 74] Epoch 16, iter 800/6416, lr 0.000100, loss 2.974770 +INFO 2020-11-24 08:45:13 train.py: 74] Epoch 16, iter 1000/6416, lr 0.000100, loss 2.944999 +INFO 2020-11-24 08:46:30 train.py: 74] Epoch 16, iter 1200/6416, lr 0.000100, loss 2.971827 +INFO 2020-11-24 08:47:47 train.py: 74] Epoch 16, iter 1400/6416, lr 0.000100, loss 2.978880 +INFO 2020-11-24 08:49:03 train.py: 74] Epoch 16, iter 1600/6416, lr 0.000100, loss 2.963302 +INFO 2020-11-24 08:50:20 train.py: 74] Epoch 16, iter 1800/6416, lr 0.000100, loss 2.972103 +INFO 2020-11-24 08:51:36 train.py: 74] Epoch 16, iter 2000/6416, lr 0.000100, loss 2.990141 +INFO 2020-11-24 08:52:53 train.py: 74] Epoch 16, iter 2200/6416, lr 0.000100, loss 2.982921 +INFO 2020-11-24 08:54:10 train.py: 74] Epoch 16, iter 2400/6416, lr 0.000100, loss 2.977255 +INFO 2020-11-24 08:55:26 train.py: 74] Epoch 16, iter 2600/6416, lr 0.000100, loss 2.974266 +INFO 2020-11-24 08:56:43 train.py: 74] Epoch 16, iter 2800/6416, lr 0.000100, loss 2.966345 +INFO 2020-11-24 08:57:59 train.py: 87] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2020-11-24 08:57:59 train.py: 74] Epoch 16, iter 3000/6416, lr 0.000100, loss 2.965771 +INFO 2020-11-24 08:59:17 train.py: 74] Epoch 16, iter 3200/6416, lr 0.000100, loss 2.973811 +INFO 2020-11-24 09:00:34 train.py: 74] Epoch 16, iter 3400/6416, lr 0.000100, loss 2.973932 +INFO 2020-11-24 09:01:51 train.py: 74] Epoch 16, iter 3600/6416, lr 0.000100, loss 2.981743 +INFO 2020-11-24 09:03:09 train.py: 74] Epoch 16, iter 3800/6416, lr 0.000100, loss 2.983263 +INFO 2020-11-24 09:04:26 train.py: 74] Epoch 16, iter 4000/6416, lr 0.000100, loss 2.982714 +INFO 2020-11-24 09:05:43 train.py: 74] Epoch 16, iter 4200/6416, lr 0.000100, loss 2.976597 +INFO 2020-11-24 09:07:01 train.py: 74] Epoch 16, iter 4400/6416, lr 0.000100, loss 2.969271 +INFO 2020-11-24 09:08:18 train.py: 74] Epoch 16, iter 4600/6416, lr 0.000100, loss 2.957103 +INFO 2020-11-24 09:09:35 train.py: 74] Epoch 16, iter 4800/6416, lr 0.000100, loss 2.956259 +INFO 2020-11-24 09:10:53 train.py: 74] Epoch 16, iter 5000/6416, lr 0.000100, loss 2.972634 +INFO 2020-11-24 09:12:10 train.py: 74] Epoch 16, iter 5200/6416, lr 0.000100, loss 2.956563 +INFO 2020-11-24 09:13:27 train.py: 74] Epoch 16, iter 5400/6416, lr 0.000100, loss 2.967340 +INFO 2020-11-24 09:14:45 train.py: 74] Epoch 16, iter 5600/6416, lr 0.000100, loss 2.961423 +INFO 2020-11-24 09:16:02 train.py: 74] Epoch 16, iter 5800/6416, lr 0.000100, loss 2.975215 +INFO 2020-11-24 09:17:19 train.py: 87] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2020-11-24 09:17:20 train.py: 74] Epoch 16, iter 6000/6416, lr 0.000100, loss 2.964700 +INFO 2020-11-24 09:18:37 train.py: 74] Epoch 16, iter 6200/6416, lr 0.000100, loss 2.969290 +INFO 2020-11-24 09:19:54 train.py: 74] Epoch 16, iter 6400/6416, lr 0.000100, loss 2.965047 +INFO 2020-11-24 09:20:00 train.py: 92] Save checkpoint Epoch_16.pt to disk... +INFO 2020-11-24 09:20:02 train.py: 74] Epoch 17, iter 0/6416, lr 0.000100, loss 2.942841 +INFO 2020-11-24 09:21:20 train.py: 74] Epoch 17, iter 200/6416, lr 0.000100, loss 2.968284 +INFO 2020-11-24 09:22:37 train.py: 74] Epoch 17, iter 400/6416, lr 0.000100, loss 2.964004 +INFO 2020-11-24 09:23:55 train.py: 74] Epoch 17, iter 600/6416, lr 0.000100, loss 2.981196 +INFO 2020-11-24 09:25:12 train.py: 74] Epoch 17, iter 800/6416, lr 0.000100, loss 2.958751 +INFO 2020-11-24 09:26:29 train.py: 74] Epoch 17, iter 1000/6416, lr 0.000100, loss 2.977153 +INFO 2020-11-24 09:27:47 train.py: 74] Epoch 17, iter 1200/6416, lr 0.000100, loss 2.969209 +INFO 2020-11-24 09:29:04 train.py: 74] Epoch 17, iter 1400/6416, lr 0.000100, loss 2.963334 +INFO 2020-11-24 09:30:21 train.py: 74] Epoch 17, iter 1600/6416, lr 0.000100, loss 2.967177 +INFO 2020-11-24 09:31:38 train.py: 74] Epoch 17, iter 1800/6416, lr 0.000100, loss 2.970513 +INFO 2020-11-24 09:32:56 train.py: 74] Epoch 17, iter 2000/6416, lr 0.000100, loss 2.973789 +INFO 2020-11-24 09:34:13 train.py: 74] Epoch 17, iter 2200/6416, lr 0.000100, loss 2.978365 +INFO 2020-11-24 09:35:30 train.py: 74] Epoch 17, iter 2400/6416, lr 0.000100, loss 2.954196 +INFO 2020-11-24 09:36:48 train.py: 74] Epoch 17, iter 2600/6416, lr 0.000100, loss 2.978353 +INFO 2020-11-24 09:38:05 train.py: 74] Epoch 17, iter 2800/6416, lr 0.000100, loss 2.957173 +INFO 2020-11-24 09:39:22 train.py: 87] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2020-11-24 09:39:22 train.py: 74] Epoch 17, iter 3000/6416, lr 0.000100, loss 2.982543 +INFO 2020-11-24 09:40:39 train.py: 74] Epoch 17, iter 3200/6416, lr 0.000100, loss 2.975319 +INFO 2020-11-24 09:41:55 train.py: 74] Epoch 17, iter 3400/6416, lr 0.000100, loss 2.963826 +INFO 2020-11-24 09:43:12 train.py: 74] Epoch 17, iter 3600/6416, lr 0.000100, loss 2.960883 +INFO 2020-11-24 09:44:28 train.py: 74] Epoch 17, iter 3800/6416, lr 0.000100, loss 2.975252 +INFO 2020-11-24 09:45:45 train.py: 74] Epoch 17, iter 4000/6416, lr 0.000100, loss 2.957829 +INFO 2020-11-24 09:47:01 train.py: 74] Epoch 17, iter 4200/6416, lr 0.000100, loss 2.965675 +INFO 2020-11-24 09:48:18 train.py: 74] Epoch 17, iter 4400/6416, lr 0.000100, loss 2.966600 +INFO 2020-11-24 09:49:35 train.py: 74] Epoch 17, iter 4600/6416, lr 0.000100, loss 2.956358 +INFO 2020-11-24 09:50:51 train.py: 74] Epoch 17, iter 4800/6416, lr 0.000100, loss 2.961049 +INFO 2020-11-24 09:52:08 train.py: 74] Epoch 17, iter 5000/6416, lr 0.000100, loss 2.970357 +INFO 2020-11-24 09:53:24 train.py: 74] Epoch 17, iter 5200/6416, lr 0.000100, loss 2.961374 +INFO 2020-11-24 09:54:41 train.py: 74] Epoch 17, iter 5400/6416, lr 0.000100, loss 2.957517 +INFO 2020-11-24 09:55:57 train.py: 74] Epoch 17, iter 5600/6416, lr 0.000100, loss 2.977499 +INFO 2020-11-24 09:57:14 train.py: 74] Epoch 17, iter 5800/6416, lr 0.000100, loss 2.985792 +INFO 2020-11-24 09:58:30 train.py: 87] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2020-11-24 09:58:30 train.py: 74] Epoch 17, iter 6000/6416, lr 0.000100, loss 2.972527 +INFO 2020-11-24 09:59:48 train.py: 74] Epoch 17, iter 6200/6416, lr 0.000100, loss 2.975728 +INFO 2020-11-24 10:01:05 train.py: 74] Epoch 17, iter 6400/6416, lr 0.000100, loss 2.985188 +INFO 2020-11-24 10:01:11 train.py: 92] Save checkpoint Epoch_17.pt to disk... +INFO 2020-11-24 10:01:11 train.py: 175] Optimization done! diff --git a/bob/bio/facexzoo/models/heads/AdaCos/.gitkeep b/bob/bio/facexzoo/models/heads/AdaCos/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..b5440c3ceedce3b2bb0687309cb1cfe03e9501bb --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_agedb.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13.pt | 0.9538333333333334 | 0.004150338376804397 | +| Epoch_14_batch_5999.pt | 0.9533333333333334 | 0.0039984564923214675 | +| Epoch_15_batch_5999.pt | 0.953 | 0.004148478822798775 | +| Epoch_14_batch_2999.pt | 0.9526666666666668 | 0.004232443767720207 | +| Epoch_14.pt | 0.9526666666666668 | 0.0039299420408505275 | +| Epoch_13_batch_5999.pt | 0.9526666666666666 | 0.0044804100341457685 | +| Epoch_17.pt | 0.9525 | 0.0043336894440569795 | +| Epoch_15_batch_2999.pt | 0.9523333333333334 | 0.004000000000000002 | +| Epoch_15.pt | 0.9518333333333333 | 0.004495882890263381 | +| Epoch_17_batch_2999.pt | 0.9515 | 0.004009633461281368 | +| Epoch_11_batch_2999.pt | 0.9508333333333333 | 0.004369153942451503 | +| Epoch_11_batch_5999.pt | 0.9508333333333333 | 0.004397319610067753 | +| Epoch_16_batch_2999.pt | 0.9506666666666668 | 0.004562325592810622 | +| Epoch_16_batch_5999.pt | 0.9505000000000001 | 0.004267664813801915 | +| Epoch_13_batch_2999.pt | 0.9503333333333334 | 0.00430904876214785 | +| Epoch_12_batch_2999.pt | 0.95 | 0.0048112522432468855 | +| Epoch_11.pt | 0.9495000000000001 | 0.003944444444444442 | +| Epoch_17_batch_5999.pt | 0.9491666666666667 | 0.004181455237263049 | +| Epoch_12_batch_5999.pt | 0.9490000000000001 | 0.004247003300803639 | +| Epoch_16.pt | 0.9490000000000001 | 0.004541985207993271 | +| Epoch_10.pt | 0.9486666666666667 | 0.004911563578955634 | +| Epoch_12.pt | 0.9486666666666667 | 0.004449996532111289 | +| Epoch_10_batch_2999.pt | 0.9463333333333332 | 0.004365973934308557 | +| Epoch_10_batch_5999.pt | 0.9445 | 0.0048499077247172034 | +| Epoch_7_batch_5999.pt | 0.9395 | 0.004346489998681915 | +| Epoch_8_batch_5999.pt | 0.9381666666666668 | 0.0053544143551297685 | +| Epoch_5_batch_5999.pt | 0.9348333333333334 | 0.0056625802259053955 | +| Epoch_7_batch_2999.pt | 0.9343333333333333 | 0.00590668171555645 | +| Epoch_9_batch_2999.pt | 0.9339999999999999 | 0.004825344611246322 | +| Epoch_6_batch_2999.pt | 0.9333333333333333 | 0.005810803051107949 | +| Epoch_6_batch_5999.pt | 0.933 | 0.005504207145111479 | +| Epoch_9_batch_5999.pt | 0.9328333333333333 | 0.005477507318092153 | +| Epoch_5_batch_2999.pt | 0.9309999999999998 | 0.007154382236446775 | +| Epoch_8.pt | 0.9291666666666668 | 0.005639641438562871 | +| Epoch_8_batch_2999.pt | 0.9288333333333334 | 0.006885527853923806 | +| Epoch_9.pt | 0.9284999999999999 | 0.00554137078018218 | +| Epoch_4_batch_5999.pt | 0.9278333333333334 | 0.006080986355989331 | +| Epoch_5.pt | 0.9253333333333333 | 0.005216308708580228 | +| Epoch_3_batch_2999.pt | 0.9245000000000001 | 0.005665849614298976 | +| Epoch_6.pt | 0.9243333333333332 | 0.006498812807062113 | +| Epoch_3_batch_5999.pt | 0.9236666666666666 | 0.006977919319158924 | +| Epoch_4.pt | 0.9231666666666667 | 0.006976371054238705 | +| Epoch_7.pt | 0.9219999999999999 | 0.006028737762778017 | +| Epoch_4_batch_2999.pt | 0.9208333333333334 | 0.0057103436579034345 | +| Epoch_2_batch_5999.pt | 0.9115000000000002 | 0.005823801736552052 | +| Epoch_3.pt | 0.9114999999999999 | 0.005057996968497834 | +| Epoch_2_batch_2999.pt | 0.9083333333333332 | 0.0056108360768678135 | +| Epoch_2.pt | 0.9039999999999999 | 0.004882571676159962 | +| Epoch_1_batch_5999.pt | 0.9026666666666667 | 0.006868248649122486 | +| Epoch_1.pt | 0.8986666666666666 | 0.0077650689820694 | +| Epoch_1_batch_2999.pt | 0.8880000000000001 | 0.007792842553377317 | +| Epoch_0_batch_5999.pt | 0.8755000000000001 | 0.005784451274166802 | +| Epoch_0.pt | 0.8706666666666667 | 0.007597920443235 | +| Epoch_0_batch_2999.pt | 0.8283333333333334 | 0.008734775114237137 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..f584ab4635f8c27476278bc588e0214124701df5 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_calfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14_batch_5999.pt | 0.9263333333333332 | 0.003996912388578883 | +| Epoch_15_batch_2999.pt | 0.9260000000000002 | 0.0037035185138886567 | +| Epoch_17_batch_2999.pt | 0.9260000000000002 | 0.00365317382728302 | +| Epoch_17.pt | 0.9258333333333333 | 0.0041144881025079 | +| Epoch_14_batch_2999.pt | 0.9256666666666666 | 0.003576328208762459 | +| Epoch_13_batch_2999.pt | 0.925 | 0.003759760959041922 | +| Epoch_15_batch_5999.pt | 0.9246666666666666 | 0.003632840605393737 | +| Epoch_12_batch_5999.pt | 0.9245000000000001 | 0.0032871804872193376 | +| Epoch_13.pt | 0.9244999999999999 | 0.0036094013046179554 | +| Epoch_16_batch_2999.pt | 0.9244999999999999 | 0.0038171963080670876 | +| Epoch_16.pt | 0.9243333333333335 | 0.003627739492736561 | +| Epoch_12.pt | 0.9243333333333332 | 0.004290385461401743 | +| Epoch_12_batch_2999.pt | 0.924 | 0.0035329140212410327 | +| Epoch_13_batch_5999.pt | 0.924 | 0.0033444259873983166 | +| Epoch_11_batch_5999.pt | 0.9236666666666666 | 0.003237511618740778 | +| Epoch_16_batch_5999.pt | 0.9236666666666666 | 0.00382325567424117 | +| Epoch_17_batch_5999.pt | 0.9236666666666666 | 0.003839367231815782 | +| Epoch_15.pt | 0.9233333333333332 | 0.004013864859597432 | +| Epoch_14.pt | 0.9228333333333332 | 0.0037189039935954606 | +| Epoch_11_batch_2999.pt | 0.9221666666666666 | 0.003397984151860673 | +| Epoch_10_batch_5999.pt | 0.9208333333333334 | 0.004225510415512539 | +| Epoch_10.pt | 0.9200000000000002 | 0.003951870943061942 | +| Epoch_10_batch_2999.pt | 0.9198333333333334 | 0.004108482643218736 | +| Epoch_11.pt | 0.9189999999999999 | 0.0038425814368423556 | +| Epoch_9_batch_5999.pt | 0.9111666666666668 | 0.004120484809064149 | +| Epoch_8_batch_2999.pt | 0.9073333333333334 | 0.005230489909306583 | +| Epoch_8_batch_5999.pt | 0.9071666666666666 | 0.0047534912445849386 | +| Epoch_7_batch_2999.pt | 0.9063333333333332 | 0.004546060565661948 | +| Epoch_5_batch_5999.pt | 0.9059999999999999 | 0.00446661138716484 | +| Epoch_7_batch_5999.pt | 0.9055 | 0.004458657828274071 | +| Epoch_6_batch_5999.pt | 0.905 | 0.0037101795237919977 | +| Epoch_6_batch_2999.pt | 0.9046666666666667 | 0.004042978977480056 | +| Epoch_9.pt | 0.9046666666666667 | 0.0034498165991688956 | +| Epoch_9_batch_2999.pt | 0.9045 | 0.004956913117487633 | +| Epoch_5_batch_2999.pt | 0.9023333333333333 | 0.005433094745954514 | +| Epoch_4_batch_5999.pt | 0.9008333333333335 | 0.004649771001927981 | +| Epoch_3_batch_5999.pt | 0.8995000000000001 | 0.004925682255181747 | +| Epoch_5.pt | 0.8969999999999999 | 0.0037416573867739404 | +| Epoch_8.pt | 0.8969999999999999 | 0.006406015691288698 | +| Epoch_4_batch_2999.pt | 0.8968333333333334 | 0.005406043714397369 | +| Epoch_6.pt | 0.8953333333333333 | 0.003950308629918039 | +| Epoch_3_batch_2999.pt | 0.8936666666666666 | 0.005565546571719197 | +| Epoch_2_batch_5999.pt | 0.8933333333333333 | 0.0037597609590419175 | +| Epoch_4.pt | 0.8933333333333333 | 0.005649210586171628 | +| Epoch_7.pt | 0.893 | 0.004758358467858628 | +| Epoch_3.pt | 0.8925000000000001 | 0.005938210646231095 | +| Epoch_2_batch_2999.pt | 0.8898333333333334 | 0.005440191082337609 | +| Epoch_2.pt | 0.8876666666666667 | 0.004555555555555557 | +| Epoch_1_batch_5999.pt | 0.8831666666666667 | 0.006253147355680327 | +| Epoch_1.pt | 0.8746666666666668 | 0.005734883511361747 | +| Epoch_1_batch_2999.pt | 0.8720000000000001 | 0.0060030856263289314 | +| Epoch_0.pt | 0.8508333333333333 | 0.005335936864527369 | +| Epoch_0_batch_5999.pt | 0.8506666666666666 | 0.0035935470286213786 | +| Epoch_0_batch_2999.pt | 0.8084999999999999 | 0.004270556675772802 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..e0695ae5ce77f43508c003b5c5b28ebb0f56951d --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_cplfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_5999.pt | 0.8326666666666667 | 0.0064415702402825506 | +| Epoch_16_batch_2999.pt | 0.8320000000000001 | 0.005899361756648129 | +| Epoch_13.pt | 0.8318333333333333 | 0.005706018048982029 | +| Epoch_15.pt | 0.8318333333333333 | 0.005996140734147564 | +| Epoch_17_batch_2999.pt | 0.8318333333333333 | 0.005574689273298304 | +| Epoch_16_batch_5999.pt | 0.8315000000000001 | 0.006138574652590948 | +| Epoch_13_batch_2999.pt | 0.8313333333333335 | 0.006343072433863145 | +| Epoch_17.pt | 0.8313333333333333 | 0.006089862047130984 | +| Epoch_14.pt | 0.8308333333333333 | 0.006598026266792507 | +| Epoch_15_batch_2999.pt | 0.8305 | 0.006285639128939811 | +| Epoch_16.pt | 0.8301666666666666 | 0.006552023530610906 | +| Epoch_17_batch_5999.pt | 0.8299999999999998 | 0.006531027559860261 | +| Epoch_15_batch_5999.pt | 0.8298333333333332 | 0.006389854999417455 | +| Epoch_14_batch_5999.pt | 0.8296666666666667 | 0.0065158875161758925 | +| Epoch_12.pt | 0.8283333333333334 | 0.005577733510227171 | +| Epoch_14_batch_2999.pt | 0.828 | 0.006463573143221773 | +| Epoch_12_batch_5999.pt | 0.8278333333333332 | 0.005488765180792168 | +| Epoch_11.pt | 0.8273333333333334 | 0.007132779486979566 | +| Epoch_11_batch_5999.pt | 0.8263333333333331 | 0.007004407783322001 | +| Epoch_11_batch_2999.pt | 0.8261666666666665 | 0.0056549443022658 | +| Epoch_12_batch_2999.pt | 0.8248333333333333 | 0.006887320610018472 | +| Epoch_10.pt | 0.818 | 0.007481664830903302 | +| Epoch_10_batch_2999.pt | 0.8166666666666667 | 0.007286042804779995 | +| Epoch_10_batch_5999.pt | 0.8160000000000001 | 0.006517781944916645 | +| Epoch_9_batch_2999.pt | 0.7981666666666667 | 0.007956090919292553 | +| Epoch_9_batch_5999.pt | 0.7953333333333333 | 0.006623937138128389 | +| Epoch_8_batch_5999.pt | 0.7941666666666667 | 0.009725396307263436 | +| Epoch_5_batch_5999.pt | 0.7929999999999999 | 0.00676227735764575 | +| Epoch_7_batch_2999.pt | 0.791 | 0.008517230176327465 | +| Epoch_6_batch_2999.pt | 0.7908333333333333 | 0.008725052619318491 | +| Epoch_5_batch_2999.pt | 0.7906666666666667 | 0.008621678104251705 | +| Epoch_7_batch_5999.pt | 0.79 | 0.008307366952230553 | +| Epoch_8_batch_2999.pt | 0.7898333333333333 | 0.008067806775874067 | +| Epoch_6_batch_5999.pt | 0.7863333333333333 | 0.007139699478407707 | +| Epoch_8.pt | 0.7853333333333333 | 0.0069557685448397915 | +| Epoch_4.pt | 0.7846666666666666 | 0.0093847788505683 | +| Epoch_9.pt | 0.7843333333333333 | 0.008047697316547473 | +| Epoch_7.pt | 0.7825 | 0.007581857813308987 | +| Epoch_4_batch_2999.pt | 0.7818333333333333 | 0.008806738441404319 | +| Epoch_3_batch_5999.pt | 0.7816666666666667 | 0.00757269298283944 | +| Epoch_4_batch_5999.pt | 0.7786666666666668 | 0.008141495600765505 | +| Epoch_3_batch_2999.pt | 0.7741666666666667 | 0.008289700585815457 | +| Epoch_5.pt | 0.774 | 0.007958999875131658 | +| Epoch_6.pt | 0.773 | 0.008254441378381447 | +| Epoch_2_batch_2999.pt | 0.7718333333333333 | 0.007783529619223744 | +| Epoch_2_batch_5999.pt | 0.7701666666666667 | 0.0066223061143082795 | +| Epoch_3.pt | 0.7689999999999999 | 0.008455402247113612 | +| Epoch_2.pt | 0.7568333333333334 | 0.0082643440584265 | +| Epoch_1_batch_5999.pt | 0.7521666666666667 | 0.009118729876901785 | +| Epoch_1.pt | 0.7428333333333332 | 0.011125130045016038 | +| Epoch_1_batch_2999.pt | 0.7394999999999999 | 0.008850786391789512 | +| Epoch_0_batch_5999.pt | 0.7223333333333334 | 0.010089720964219106 | +| Epoch_0.pt | 0.717 | 0.00905333987890453 | +| Epoch_0_batch_2999.pt | 0.6669999999999999 | 0.01059291633796897 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..4e05b59ec26d8f44e65c2a6908423cee0a75cb10 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_5999.pt | 0.9964999999999999 | 0.0009111788592698183 | +| Epoch_17_batch_2999.pt | 0.9964999999999999 | 0.0007637626158259767 | +| Epoch_15.pt | 0.9963333333333333 | 0.0008888888888888872 | +| Epoch_11_batch_5999.pt | 0.9959999999999999 | 0.0009686442096757034 | +| Epoch_11.pt | 0.9959999999999999 | 0.0010304020550550796 | +| Epoch_13_batch_2999.pt | 0.9959999999999999 | 0.0009362388636862651 | +| Epoch_13.pt | 0.9959999999999999 | 0.0008678055195451862 | +| Epoch_14_batch_2999.pt | 0.9959999999999999 | 0.0009362388636862651 | +| Epoch_16_batch_5999.pt | 0.9959999999999999 | 0.0008314794192830989 | +| Epoch_17.pt | 0.9959999999999999 | 0.0008314794192830989 | +| Epoch_10.pt | 0.9958333333333333 | 0.0011180339887498947 | +| Epoch_15_batch_2999.pt | 0.9958333333333332 | 0.0009043789220055372 | +| Epoch_16_batch_2999.pt | 0.9958333333333332 | 0.0009378857231185658 | +| Epoch_17_batch_5999.pt | 0.9958333333333332 | 0.0009378857231185658 | +| Epoch_11_batch_2999.pt | 0.9956666666666667 | 0.0011166528467912152 | +| Epoch_10_batch_5999.pt | 0.9956666666666665 | 0.0009999999999999992 | +| Epoch_12_batch_2999.pt | 0.9955 | 0.0009953596037316115 | +| Epoch_14_batch_5999.pt | 0.9955 | 0.0010258991840344119 | +| Epoch_16.pt | 0.9955 | 0.0009638528651609716 | +| Epoch_12_batch_5999.pt | 0.9953333333333333 | 0.0012619796324000608 | +| Epoch_14.pt | 0.9953333333333333 | 0.0010772621905369615 | +| Epoch_15_batch_5999.pt | 0.9953333333333333 | 0.0009558139185602923 | +| Epoch_12.pt | 0.9953333333333332 | 0.0007777777777777757 | +| Epoch_10_batch_2999.pt | 0.9951666666666666 | 0.0011506841765115542 | +| Epoch_7_batch_5999.pt | 0.9941666666666666 | 0.0008695819912499136 | +| Epoch_8_batch_2999.pt | 0.994 | 0.0011967032904743344 | +| Epoch_8.pt | 0.994 | 0.001088662107903642 | +| Epoch_9_batch_2999.pt | 0.9936666666666667 | 0.0011055415967851315 | +| Epoch_7.pt | 0.9935 | 0.0010957268290731164 | +| Epoch_9_batch_5999.pt | 0.9933333333333334 | 0.0010243938285881 | +| Epoch_8_batch_5999.pt | 0.9933333333333332 | 0.0012909944487358035 | +| Epoch_7_batch_2999.pt | 0.9928333333333332 | 0.0014917468424552939 | +| Epoch_4_batch_5999.pt | 0.9924999999999999 | 0.0017078251276599395 | +| Epoch_9.pt | 0.9924999999999999 | 0.0014540280364780456 | +| Epoch_6_batch_2999.pt | 0.9921666666666665 | 0.0018265869136415067 | +| Epoch_6_batch_5999.pt | 0.992 | 0.001735611039090367 | +| Epoch_5_batch_5999.pt | 0.9918333333333333 | 0.001177201116689842 | +| Epoch_3_batch_5999.pt | 0.9916666666666666 | 0.0013146843962443628 | +| Epoch_4_batch_2999.pt | 0.9916666666666666 | 0.00121716123890037 | +| Epoch_4.pt | 0.9906666666666666 | 0.0015555555555555613 | +| Epoch_5.pt | 0.9906666666666666 | 0.001688742683730079 | +| Epoch_5_batch_2999.pt | 0.9903333333333333 | 0.0014010578014353957 | +| Epoch_6.pt | 0.9901666666666668 | 0.001415304355872999 | +| Epoch_3_batch_2999.pt | 0.99 | 0.0010243938285881 | +| Epoch_2_batch_5999.pt | 0.9890000000000001 | 0.0015355861067872553 | +| Epoch_3.pt | 0.9889999999999999 | 0.0020964402515681285 | +| Epoch_2_batch_2999.pt | 0.9884999999999999 | 0.0012285191326386665 | +| Epoch_1_batch_5999.pt | 0.9873333333333333 | 0.0015355861067872531 | +| Epoch_2.pt | 0.9868333333333335 | 0.0016377114414426288 | +| Epoch_1_batch_2999.pt | 0.9848333333333332 | 0.0018500917561496317 | +| Epoch_1.pt | 0.9819999999999999 | 0.002148786622868184 | +| Epoch_0_batch_5999.pt | 0.9783333333333333 | 0.003132860484415925 | +| Epoch_0.pt | 0.9781666666666666 | 0.0019945914523351333 | +| Epoch_0_batch_2999.pt | 0.9664999999999999 | 0.002539198862672541 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_rfw_African.txt b/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_rfw_African.txt new file mode 100644 index 0000000000000000000000000000000000000000..d0628b57094a636ae1ec9daa39c7b21ab5784221 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_rfw_African.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16.pt | 0.8588333333333333 | 0.003920899997465307 | +| Epoch_14_batch_5999.pt | 0.8575000000000002 | 0.004054033199812894 | +| Epoch_17.pt | 0.8574999999999999 | 0.004487637339278754 | +| Epoch_16_batch_2999.pt | 0.8573333333333334 | 0.004838120234906052 | +| Epoch_15_batch_2999.pt | 0.8571666666666665 | 0.004187356041380279 | +| Epoch_17_batch_5999.pt | 0.857 | 0.0042513614377131075 | +| Epoch_14.pt | 0.8565000000000002 | 0.004475240527365853 | +| Epoch_14_batch_2999.pt | 0.8561666666666667 | 0.004688112099953282 | +| Epoch_13_batch_5999.pt | 0.8556666666666667 | 0.004521553322083507 | +| Epoch_13_batch_2999.pt | 0.8554999999999999 | 0.0038972133127323535 | +| Epoch_13.pt | 0.8553333333333333 | 0.0033591592128513264 | +| Epoch_16_batch_5999.pt | 0.8550000000000001 | 0.004479032082388085 | +| Epoch_15.pt | 0.8548333333333333 | 0.004570774038239256 | +| Epoch_17_batch_2999.pt | 0.8548333333333333 | 0.004248819734444199 | +| Epoch_12_batch_2999.pt | 0.8538333333333332 | 0.00487529676209751 | +| Epoch_11_batch_2999.pt | 0.8536666666666669 | 0.004073400617738527 | +| Epoch_12.pt | 0.853 | 0.005096597751635432 | +| Epoch_15_batch_5999.pt | 0.853 | 0.004626813958590447 | +| Epoch_11_batch_5999.pt | 0.8515 | 0.004756087716849886 | +| Epoch_12_batch_5999.pt | 0.8515 | 0.004182931218684677 | +| Epoch_10.pt | 0.8476666666666667 | 0.004480410034145771 | +| Epoch_11.pt | 0.8465 | 0.004145874045956808 | +| Epoch_10_batch_5999.pt | 0.843 | 0.004436103283928253 | +| Epoch_10_batch_2999.pt | 0.842 | 0.004980207740225545 | +| Epoch_8_batch_5999.pt | 0.8271666666666668 | 0.00434648999868192 | +| Epoch_7_batch_5999.pt | 0.8244999999999999 | 0.005085988984515925 | +| Epoch_5_batch_2999.pt | 0.8201666666666668 | 0.004852452606290584 | +| Epoch_6_batch_5999.pt | 0.8178333333333333 | 0.0031529919163694907 | +| Epoch_4_batch_5999.pt | 0.8170000000000002 | 0.004758358467858636 | +| Epoch_8_batch_2999.pt | 0.8161666666666667 | 0.003735465660892049 | +| Epoch_7_batch_2999.pt | 0.8153333333333335 | 0.004498284995554923 | +| Epoch_5_batch_5999.pt | 0.8150000000000001 | 0.00406733449282736 | +| Epoch_3_batch_5999.pt | 0.8086666666666668 | 0.004841946348777984 | +| Epoch_6_batch_2999.pt | 0.808 | 0.0045119867787215395 | +| Epoch_9_batch_5999.pt | 0.808 | 0.004351812450570249 | +| Epoch_5.pt | 0.8078333333333333 | 0.004105476619298294 | +| Epoch_4_batch_2999.pt | 0.8065000000000001 | 0.0059600004142845164 | +| Epoch_9_batch_2999.pt | 0.8045 | 0.005795112883571235 | +| Epoch_7.pt | 0.8013333333333333 | 0.005108695081143399 | +| Epoch_4.pt | 0.8008333333333333 | 0.004995368225036444 | +| Epoch_9.pt | 0.7955 | 0.008578072821638513 | +| Epoch_6.pt | 0.7928333333333334 | 0.004628481339075796 | +| Epoch_2_batch_5999.pt | 0.7916666666666667 | 0.006712803318663653 | +| Epoch_3_batch_2999.pt | 0.7901666666666667 | 0.003482318654269964 | +| Epoch_2.pt | 0.7890000000000001 | 0.005007401928552775 | +| Epoch_8.pt | 0.7831666666666666 | 0.0046973199608728805 | +| Epoch_3.pt | 0.7825 | 0.003298428357510534 | +| Epoch_2_batch_2999.pt | 0.782 | 0.005992794026738575 | +| Epoch_1_batch_5999.pt | 0.7638333333333334 | 0.0035228530805528177 | +| Epoch_1_batch_2999.pt | 0.7575 | 0.005183366083021463 | +| Epoch_1.pt | 0.7501666666666666 | 0.005602303318201882 | +| Epoch_0_batch_5999.pt | 0.7393333333333333 | 0.003961231882216861 | +| Epoch_0.pt | 0.7354999999999999 | 0.005931970297037756 | +| Epoch_0_batch_2999.pt | 0.6875000000000001 | 0.006374379659965567 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_rfw_Asian.txt b/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_rfw_Asian.txt new file mode 100644 index 0000000000000000000000000000000000000000..6f78f613d70a035d2cad320bb39b62be17d7184b --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_rfw_Asian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17_batch_2999.pt | 0.8550000000000001 | 0.003951870943061946 | +| Epoch_13_batch_2999.pt | 0.8548333333333333 | 0.003916174121906022 | +| Epoch_17.pt | 0.8545 | 0.004006553273800622 | +| Epoch_13_batch_5999.pt | 0.8539999999999999 | 0.0035153982265680836 | +| Epoch_16_batch_5999.pt | 0.8538333333333334 | 0.0041725883845834194 | +| Epoch_15_batch_2999.pt | 0.8536666666666667 | 0.0037663225014840625 | +| Epoch_17_batch_5999.pt | 0.8536666666666667 | 0.003981438414926418 | +| Epoch_16_batch_2999.pt | 0.8533333333333333 | 0.004179609527512006 | +| Epoch_15_batch_5999.pt | 0.8530000000000001 | 0.0038634085890474896 | +| Epoch_13.pt | 0.853 | 0.003404789654676563 | +| Epoch_14_batch_2999.pt | 0.8523333333333334 | 0.004 | +| Epoch_12.pt | 0.852 | 0.004886362983843559 | +| Epoch_15.pt | 0.8514999999999999 | 0.0038685978574563755 | +| Epoch_16.pt | 0.8499999999999999 | 0.003857012212824395 | +| Epoch_14_batch_5999.pt | 0.8496666666666666 | 0.004058218303944368 | +| Epoch_14.pt | 0.8493333333333333 | 0.0038745768387028236 | +| Epoch_10_batch_5999.pt | 0.849 | 0.0035676876351116286 | +| Epoch_11_batch_2999.pt | 0.8481666666666665 | 0.0033742854753467115 | +| Epoch_12_batch_2999.pt | 0.8479999999999999 | 0.0044430553384738275 | +| Epoch_11_batch_5999.pt | 0.8473333333333333 | 0.004616128461742436 | +| Epoch_12_batch_5999.pt | 0.8471666666666667 | 0.003352261075899021 | +| Epoch_10.pt | 0.8458333333333334 | 0.004061639272540942 | +| Epoch_10_batch_2999.pt | 0.8451666666666666 | 0.004190303327362905 | +| Epoch_11.pt | 0.8418333333333333 | 0.004762572704477288 | +| Epoch_8_batch_2999.pt | 0.8296666666666667 | 0.003973678831610594 | +| Epoch_8_batch_5999.pt | 0.8185 | 0.005166666666666665 | +| Epoch_7_batch_2999.pt | 0.8183333333333331 | 0.0059731911358736015 | +| Epoch_6_batch_2999.pt | 0.8171666666666667 | 0.005140315117400181 | +| Epoch_4_batch_5999.pt | 0.8166666666666667 | 0.004574486411164193 | +| Epoch_9_batch_2999.pt | 0.8163333333333334 | 0.004653420353638204 | +| Epoch_6_batch_5999.pt | 0.8146666666666667 | 0.004337604732431799 | +| Epoch_7_batch_5999.pt | 0.8146666666666664 | 0.004745368112013914 | +| Epoch_9_batch_5999.pt | 0.8143333333333335 | 0.005358735800794439 | +| Epoch_5_batch_2999.pt | 0.8140000000000001 | 0.005329859980093982 | +| Epoch_5_batch_5999.pt | 0.8135 | 0.003763453234319985 | +| Epoch_4_batch_2999.pt | 0.8108333333333334 | 0.004225510415512543 | +| Epoch_4.pt | 0.808 | 0.0048610317453838614 | +| Epoch_8.pt | 0.8071666666666667 | 0.005049446858839772 | +| Epoch_3_batch_2999.pt | 0.805 | 0.0042889464590264 | +| Epoch_6.pt | 0.8026666666666668 | 0.004151453709393199 | +| Epoch_9.pt | 0.8011666666666667 | 0.004694690986293993 | +| Epoch_3_batch_5999.pt | 0.7996666666666666 | 0.003431876713662334 | +| Epoch_3.pt | 0.7986666666666666 | 0.004854678283322997 | +| Epoch_5.pt | 0.7961666666666667 | 0.0037601713908928316 | +| Epoch_2_batch_5999.pt | 0.7956666666666665 | 0.002983493684910574 | +| Epoch_2_batch_2999.pt | 0.7933333333333333 | 0.004707493369847746 | +| Epoch_7.pt | 0.7905 | 0.0063003527238119335 | +| Epoch_1_batch_5999.pt | 0.7826666666666666 | 0.004375859703892266 | +| Epoch_1_batch_2999.pt | 0.7795 | 0.007320063751999254 | +| Epoch_2.pt | 0.7761666666666667 | 0.0045068534916349046 | +| Epoch_1.pt | 0.7683333333333334 | 0.007196535517649451 | +| Epoch_0_batch_5999.pt | 0.7515 | 0.004055555555555557 | +| Epoch_0.pt | 0.7414999999999999 | 0.00485245260629058 | +| Epoch_0_batch_2999.pt | 0.7084999999999999 | 0.005813192743797784 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_rfw_Caucasian.txt b/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_rfw_Caucasian.txt new file mode 100644 index 0000000000000000000000000000000000000000..d9e0708a5c04af64708f039260164e86b94c4d79 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_rfw_Caucasian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_5999.pt | 0.9435 | 0.0036972629182166314 | +| Epoch_17.pt | 0.9435 | 0.004182931218684679 | +| Epoch_14_batch_2999.pt | 0.9421666666666667 | 0.004052510272185975 | +| Epoch_16.pt | 0.9415000000000001 | 0.0037222222222222227 | +| Epoch_16_batch_2999.pt | 0.9413333333333332 | 0.003766322501484064 | +| Epoch_15.pt | 0.9410000000000001 | 0.003992276494049257 | +| Epoch_17_batch_2999.pt | 0.9410000000000001 | 0.0041141130181274665 | +| Epoch_13_batch_5999.pt | 0.9406666666666667 | 0.0038825344910347003 | +| Epoch_11_batch_5999.pt | 0.9405000000000001 | 0.004506853491634906 | +| Epoch_14_batch_5999.pt | 0.9403333333333335 | 0.0037989602216174953 | +| Epoch_16_batch_5999.pt | 0.9403333333333335 | 0.0040353377327410804 | +| Epoch_17_batch_5999.pt | 0.9400000000000001 | 0.00431763538393899 | +| Epoch_12_batch_5999.pt | 0.9396666666666667 | 0.0036243347622889133 | +| Epoch_15_batch_2999.pt | 0.9396666666666667 | 0.00422952584681651 | +| Epoch_13_batch_2999.pt | 0.9395000000000001 | 0.0036349639562123495 | +| Epoch_12_batch_2999.pt | 0.9386666666666666 | 0.003973678831610587 | +| Epoch_14.pt | 0.9385000000000001 | 0.003908284963769233 | +| Epoch_13.pt | 0.9376666666666666 | 0.004181086160494836 | +| Epoch_10_batch_5999.pt | 0.9375 | 0.004076808846434961 | +| Epoch_11_batch_2999.pt | 0.9371666666666666 | 0.003936611941790413 | +| Epoch_12.pt | 0.9368333333333334 | 0.003931904950937892 | +| Epoch_11.pt | 0.9365 | 0.0036805293500115363 | +| Epoch_10_batch_2999.pt | 0.9346666666666665 | 0.0037168285963728237 | +| Epoch_10.pt | 0.9338333333333333 | 0.003549039167485427 | +| Epoch_7_batch_2999.pt | 0.9151666666666666 | 0.004070747800382754 | +| Epoch_9_batch_2999.pt | 0.914 | 0.003506607519568777 | +| Epoch_8_batch_5999.pt | 0.9131666666666666 | 0.0038526085439079595 | +| Epoch_7_batch_5999.pt | 0.9129999999999999 | 0.0038393672318157777 | +| Epoch_6_batch_5999.pt | 0.9126666666666667 | 0.0041440124886603395 | +| Epoch_5_batch_5999.pt | 0.9116666666666667 | 0.004416579314300405 | +| Epoch_9_batch_5999.pt | 0.9116666666666667 | 0.004021546904634193 | +| Epoch_6_batch_2999.pt | 0.9106666666666667 | 0.004459696053419889 | +| Epoch_8_batch_2999.pt | 0.9103333333333333 | 0.005257563628587098 | +| Epoch_3_batch_5999.pt | 0.9085000000000001 | 0.005657127046456804 | +| Epoch_5_batch_2999.pt | 0.9065 | 0.005076270138449934 | +| Epoch_4_batch_2999.pt | 0.9049999999999999 | 0.004120110270608696 | +| Epoch_3_batch_2999.pt | 0.9035 | 0.003713921091857391 | +| Epoch_9.pt | 0.9021666666666667 | 0.006151633327222338 | +| Epoch_4_batch_5999.pt | 0.9010000000000001 | 0.0043969686527576355 | +| Epoch_4.pt | 0.901 | 0.005472715713788776 | +| Epoch_6.pt | 0.8989999999999998 | 0.003929942040850528 | +| Epoch_7.pt | 0.8988333333333334 | 0.005437921262239922 | +| Epoch_2_batch_5999.pt | 0.8953333333333333 | 0.005035675197166519 | +| Epoch_8.pt | 0.8935000000000001 | 0.00317639830198284 | +| Epoch_5.pt | 0.8931666666666669 | 0.0053774219349672185 | +| Epoch_2_batch_2999.pt | 0.8928333333333333 | 0.0040295972901752426 | +| Epoch_3.pt | 0.8916666666666666 | 0.005229309611444482 | +| Epoch_2.pt | 0.8873333333333333 | 0.005404616225340136 | +| Epoch_1_batch_5999.pt | 0.8848333333333332 | 0.00404793805154375 | +| Epoch_1_batch_2999.pt | 0.8768333333333335 | 0.005394613225417729 | +| Epoch_1.pt | 0.866 | 0.004907791738968394 | +| Epoch_0_batch_5999.pt | 0.8515 | 0.005970348543292511 | +| Epoch_0.pt | 0.8465 | 0.006118429960797559 | +| Epoch_0_batch_2999.pt | 0.8123333333333334 | 0.005218674918141055 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_rfw_Indian.txt b/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_rfw_Indian.txt new file mode 100644 index 0000000000000000000000000000000000000000..4b2a9f6fde3ae8c2179917f9dc9d15f05f33efa1 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AdaCos/accu_files/accu_rfw_Indian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14_batch_5999.pt | 0.8826666666666668 | 0.003627739492736556 | +| Epoch_12_batch_5999.pt | 0.8823333333333334 | 0.0038425814368423543 | +| Epoch_15_batch_5999.pt | 0.8821666666666668 | 0.0040601191979096635 | +| Epoch_13.pt | 0.882 | 0.003934651379916833 | +| Epoch_13_batch_2999.pt | 0.8818333333333334 | 0.003978724282176414 | +| Epoch_16.pt | 0.8818333333333334 | 0.0036213529972738343 | +| Epoch_17.pt | 0.8818333333333334 | 0.004234266447175832 | +| Epoch_14_batch_2999.pt | 0.8816666666666666 | 0.0040292143032152755 | +| Epoch_16_batch_5999.pt | 0.8816666666666666 | 0.003951870943061944 | +| Epoch_17_batch_2999.pt | 0.8815 | 0.004205008771148053 | +| Epoch_13_batch_5999.pt | 0.8813333333333333 | 0.003926799343793844 | +| Epoch_15_batch_2999.pt | 0.881 | 0.004445833116387241 | +| Epoch_17_batch_5999.pt | 0.8803333333333333 | 0.003349958540373635 | +| Epoch_16_batch_2999.pt | 0.8801666666666665 | 0.0037387691907536076 | +| Epoch_15.pt | 0.8793333333333333 | 0.00441098516472871 | +| Epoch_10.pt | 0.8790000000000001 | 0.002973130702279918 | +| Epoch_11_batch_5999.pt | 0.8788333333333334 | 0.004172588384583427 | +| Epoch_12.pt | 0.8781666666666667 | 0.004495882890263376 | +| Epoch_11_batch_2999.pt | 0.8776666666666667 | 0.0032508308529617365 | +| Epoch_10_batch_5999.pt | 0.8775000000000001 | 0.00413693093136255 | +| Epoch_12_batch_2999.pt | 0.8766666666666666 | 0.00364302140239 | +| Epoch_14.pt | 0.876 | 0.004268749491621898 | +| Epoch_10_batch_2999.pt | 0.8736666666666666 | 0.004330483393312241 | +| Epoch_11.pt | 0.8701666666666668 | 0.003994208770670819 | +| Epoch_9_batch_5999.pt | 0.8576666666666666 | 0.0048189440982669895 | +| Epoch_8_batch_5999.pt | 0.8574999999999999 | 0.004964379289336685 | +| Epoch_8_batch_2999.pt | 0.8539999999999999 | 0.004297573245736382 | +| Epoch_7_batch_5999.pt | 0.8516666666666668 | 0.004331908597692867 | +| Epoch_5_batch_5999.pt | 0.8506666666666666 | 0.0033536418383970173 | +| Epoch_9.pt | 0.8501666666666667 | 0.004934446821285924 | +| Epoch_9_batch_2999.pt | 0.8496666666666666 | 0.004484541349024565 | +| Epoch_4_batch_5999.pt | 0.8474999999999999 | 0.004008093663428394 | +| Epoch_8.pt | 0.8471666666666666 | 0.00444479165310436 | +| Epoch_5_batch_2999.pt | 0.8460000000000001 | 0.004326204963095949 | +| Epoch_4.pt | 0.8458333333333334 | 0.005742681870148161 | +| Epoch_6_batch_2999.pt | 0.8456666666666667 | 0.003866602809178963 | +| Epoch_6_batch_5999.pt | 0.8455 | 0.005012638348203125 | +| Epoch_7.pt | 0.8438333333333332 | 0.003936611941790421 | +| Epoch_4_batch_2999.pt | 0.8400000000000001 | 0.005018484351393868 | +| Epoch_6.pt | 0.8381666666666667 | 0.004584259165750272 | +| Epoch_3.pt | 0.8375 | 0.005495508828484462 | +| Epoch_3_batch_5999.pt | 0.8366666666666667 | 0.004444444444444446 | +| Epoch_7_batch_2999.pt | 0.8363333333333334 | 0.0043233503240763865 | +| Epoch_2_batch_2999.pt | 0.8353333333333334 | 0.002287917809108222 | +| Epoch_2_batch_5999.pt | 0.8351666666666666 | 0.004637807591875637 | +| Epoch_3_batch_2999.pt | 0.835 | 0.003583225665910477 | +| Epoch_5.pt | 0.8321666666666667 | 0.0050799168847093885 | +| Epoch_1_batch_5999.pt | 0.8245000000000001 | 0.005682168339378649 | +| Epoch_1_batch_2999.pt | 0.8171666666666667 | 0.0038252733300226725 | +| Epoch_2.pt | 0.8168333333333335 | 0.0030976893021001438 | +| Epoch_1.pt | 0.8133333333333335 | 0.006221230079630854 | +| Epoch_0.pt | 0.7948333333333334 | 0.004405734198423745 | +| Epoch_0_batch_5999.pt | 0.7893333333333333 | 0.004521553322083512 | +| Epoch_0_batch_2999.pt | 0.7708333333333333 | 0.002293980313562507 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/AdaCos/log.log b/bob/bio/facexzoo/models/heads/AdaCos/log.log new file mode 100644 index 0000000000000000000000000000000000000000..03297b4d3d8b83829773afb6ad3984ec8edde1a1 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AdaCos/log.log @@ -0,0 +1,655 @@ +INFO 2020-11-24 17:57:23 train.py: 172] Start optimization. +INFO 2020-11-24 17:57:23 train.py: 173] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='Mobilefacenets', batch_size=512, data_root='/export2/wangjun492/face_database/facex-zoo/private_file/train_data/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='adacos', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='arc-mobile', train_file='/export2/wangjun492/face_database/facex-zoo/private_file/train_data/deepglint/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7f76df1891d0>) +backbone param: +{'feat_dim': 512, 'out_h': 7, 'out_w': 7} +head param: +{'feat_dim': 512, 'num_class': 72778} +INFO 2020-11-24 17:57:45 train.py: 74] Epoch 0, iter 0/6416, lr 0.100000, loss 11.416717 +INFO 2020-11-24 17:58:59 train.py: 74] Epoch 0, iter 200/6416, lr 0.100000, loss 11.132950 +INFO 2020-11-24 18:00:13 train.py: 74] Epoch 0, iter 400/6416, lr 0.100000, loss 9.655811 +INFO 2020-11-24 18:01:28 train.py: 74] Epoch 0, iter 600/6416, lr 0.100000, loss 8.344480 +INFO 2020-11-24 18:02:43 train.py: 74] Epoch 0, iter 800/6416, lr 0.100000, loss 7.282526 +INFO 2020-11-24 18:03:58 train.py: 74] Epoch 0, iter 1000/6416, lr 0.100000, loss 6.447086 +INFO 2020-11-24 18:05:12 train.py: 74] Epoch 0, iter 1200/6416, lr 0.100000, loss 5.743308 +INFO 2020-11-24 18:06:27 train.py: 74] Epoch 0, iter 1400/6416, lr 0.100000, loss 5.176081 +INFO 2020-11-24 18:07:42 train.py: 74] Epoch 0, iter 1600/6416, lr 0.100000, loss 4.686135 +INFO 2020-11-24 18:08:57 train.py: 74] Epoch 0, iter 1800/6416, lr 0.100000, loss 4.288819 +INFO 2020-11-24 18:10:12 train.py: 74] Epoch 0, iter 2000/6416, lr 0.100000, loss 3.973191 +INFO 2020-11-24 18:11:27 train.py: 74] Epoch 0, iter 2200/6416, lr 0.100000, loss 3.677886 +INFO 2020-11-24 18:12:41 train.py: 74] Epoch 0, iter 2400/6416, lr 0.100000, loss 3.454331 +INFO 2020-11-24 18:13:56 train.py: 74] Epoch 0, iter 2600/6416, lr 0.100000, loss 3.245951 +INFO 2020-11-24 18:15:11 train.py: 74] Epoch 0, iter 2800/6416, lr 0.100000, loss 3.073070 +INFO 2020-11-24 18:16:26 train.py: 87] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2020-11-24 18:16:26 train.py: 74] Epoch 0, iter 3000/6416, lr 0.100000, loss 2.932677 +INFO 2020-11-24 18:17:41 train.py: 74] Epoch 0, iter 3200/6416, lr 0.100000, loss 2.805671 +INFO 2020-11-24 18:18:56 train.py: 74] Epoch 0, iter 3400/6416, lr 0.100000, loss 2.701228 +INFO 2020-11-24 18:20:11 train.py: 74] Epoch 0, iter 3600/6416, lr 0.100000, loss 2.569699 +INFO 2020-11-24 18:21:26 train.py: 74] Epoch 0, iter 3800/6416, lr 0.100000, loss 2.495928 +INFO 2020-11-24 18:22:41 train.py: 74] Epoch 0, iter 4000/6416, lr 0.100000, loss 2.437558 +INFO 2020-11-24 18:23:56 train.py: 74] Epoch 0, iter 4200/6416, lr 0.100000, loss 2.367344 +INFO 2020-11-24 18:25:10 train.py: 74] Epoch 0, iter 4400/6416, lr 0.100000, loss 2.288848 +INFO 2020-11-24 18:26:25 train.py: 74] Epoch 0, iter 4600/6416, lr 0.100000, loss 2.243524 +INFO 2020-11-24 18:27:40 train.py: 74] Epoch 0, iter 4800/6416, lr 0.100000, loss 2.185335 +INFO 2020-11-24 18:28:55 train.py: 74] Epoch 0, iter 5000/6416, lr 0.100000, loss 2.145634 +INFO 2020-11-24 18:30:10 train.py: 74] Epoch 0, iter 5200/6416, lr 0.100000, loss 2.112795 +INFO 2020-11-24 18:31:25 train.py: 74] Epoch 0, iter 5400/6416, lr 0.100000, loss 2.064050 +INFO 2020-11-24 18:32:40 train.py: 74] Epoch 0, iter 5600/6416, lr 0.100000, loss 2.030069 +INFO 2020-11-24 18:33:55 train.py: 74] Epoch 0, iter 5800/6416, lr 0.100000, loss 2.004714 +INFO 2020-11-24 18:35:09 train.py: 87] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2020-11-24 18:35:10 train.py: 74] Epoch 0, iter 6000/6416, lr 0.100000, loss 1.977449 +INFO 2020-11-24 18:36:24 train.py: 74] Epoch 0, iter 6200/6416, lr 0.100000, loss 1.957185 +INFO 2020-11-24 18:37:38 train.py: 74] Epoch 0, iter 6400/6416, lr 0.100000, loss 1.930404 +INFO 2020-11-24 18:37:44 train.py: 92] Save checkpoint Epoch_0.pt to disk... +INFO 2020-11-24 18:37:45 train.py: 74] Epoch 1, iter 0/6416, lr 0.100000, loss 1.919308 +INFO 2020-11-24 18:39:01 train.py: 74] Epoch 1, iter 200/6416, lr 0.100000, loss 1.786314 +INFO 2020-11-24 18:40:16 train.py: 74] Epoch 1, iter 400/6416, lr 0.100000, loss 1.771297 +INFO 2020-11-24 18:41:31 train.py: 74] Epoch 1, iter 600/6416, lr 0.100000, loss 1.776204 +INFO 2020-11-24 18:42:45 train.py: 74] Epoch 1, iter 800/6416, lr 0.100000, loss 1.787330 +INFO 2020-11-24 18:44:01 train.py: 74] Epoch 1, iter 1000/6416, lr 0.100000, loss 1.786908 +INFO 2020-11-24 18:45:16 train.py: 74] Epoch 1, iter 1200/6416, lr 0.100000, loss 1.775076 +INFO 2020-11-24 18:46:31 train.py: 74] Epoch 1, iter 1400/6416, lr 0.100000, loss 1.776161 +INFO 2020-11-24 18:47:46 train.py: 74] Epoch 1, iter 1600/6416, lr 0.100000, loss 1.770470 +INFO 2020-11-24 18:49:01 train.py: 74] Epoch 1, iter 1800/6416, lr 0.100000, loss 1.762913 +INFO 2020-11-24 18:50:16 train.py: 74] Epoch 1, iter 2000/6416, lr 0.100000, loss 1.750178 +INFO 2020-11-24 18:51:31 train.py: 74] Epoch 1, iter 2200/6416, lr 0.100000, loss 1.743453 +INFO 2020-11-24 18:52:46 train.py: 74] Epoch 1, iter 2400/6416, lr 0.100000, loss 1.742926 +INFO 2020-11-24 18:54:01 train.py: 74] Epoch 1, iter 2600/6416, lr 0.100000, loss 1.724750 +INFO 2020-11-24 18:55:15 train.py: 74] Epoch 1, iter 2800/6416, lr 0.100000, loss 1.724824 +INFO 2020-11-24 18:56:30 train.py: 87] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2020-11-24 18:56:30 train.py: 74] Epoch 1, iter 3000/6416, lr 0.100000, loss 1.717244 +INFO 2020-11-24 18:57:45 train.py: 74] Epoch 1, iter 3200/6416, lr 0.100000, loss 1.706369 +INFO 2020-11-24 18:59:01 train.py: 74] Epoch 1, iter 3400/6416, lr 0.100000, loss 1.695740 +INFO 2020-11-24 19:00:15 train.py: 74] Epoch 1, iter 3600/6416, lr 0.100000, loss 1.690210 +INFO 2020-11-24 19:01:30 train.py: 74] Epoch 1, iter 3800/6416, lr 0.100000, loss 1.679283 +INFO 2020-11-24 19:02:46 train.py: 74] Epoch 1, iter 4000/6416, lr 0.100000, loss 1.677418 +INFO 2020-11-24 19:04:00 train.py: 74] Epoch 1, iter 4200/6416, lr 0.100000, loss 1.675886 +INFO 2020-11-24 19:05:15 train.py: 74] Epoch 1, iter 4400/6416, lr 0.100000, loss 1.663851 +INFO 2020-11-24 19:06:30 train.py: 74] Epoch 1, iter 4600/6416, lr 0.100000, loss 1.661716 +INFO 2020-11-24 19:07:45 train.py: 74] Epoch 1, iter 4800/6416, lr 0.100000, loss 1.646499 +INFO 2020-11-24 19:09:00 train.py: 74] Epoch 1, iter 5000/6416, lr 0.100000, loss 1.647377 +INFO 2020-11-24 19:10:16 train.py: 74] Epoch 1, iter 5200/6416, lr 0.100000, loss 1.636752 +INFO 2020-11-24 19:11:30 train.py: 74] Epoch 1, iter 5400/6416, lr 0.100000, loss 1.636456 +INFO 2020-11-24 19:12:45 train.py: 74] Epoch 1, iter 5600/6416, lr 0.100000, loss 1.628192 +INFO 2020-11-24 19:14:00 train.py: 74] Epoch 1, iter 5800/6416, lr 0.100000, loss 1.616665 +INFO 2020-11-24 19:15:15 train.py: 87] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2020-11-24 19:15:16 train.py: 74] Epoch 1, iter 6000/6416, lr 0.100000, loss 1.617624 +INFO 2020-11-24 19:16:31 train.py: 74] Epoch 1, iter 6200/6416, lr 0.100000, loss 1.615611 +INFO 2020-11-24 19:17:46 train.py: 74] Epoch 1, iter 6400/6416, lr 0.100000, loss 1.601256 +INFO 2020-11-24 19:17:52 train.py: 92] Save checkpoint Epoch_1.pt to disk... +INFO 2020-11-24 19:17:53 train.py: 74] Epoch 2, iter 0/6416, lr 0.100000, loss 1.625756 +INFO 2020-11-24 19:19:08 train.py: 74] Epoch 2, iter 200/6416, lr 0.100000, loss 1.527721 +INFO 2020-11-24 19:20:22 train.py: 74] Epoch 2, iter 400/6416, lr 0.100000, loss 1.509647 +INFO 2020-11-24 19:21:36 train.py: 74] Epoch 2, iter 600/6416, lr 0.100000, loss 1.522225 +INFO 2020-11-24 19:22:50 train.py: 74] Epoch 2, iter 800/6416, lr 0.100000, loss 1.522196 +INFO 2020-11-24 19:24:04 train.py: 74] Epoch 2, iter 1000/6416, lr 0.100000, loss 1.532201 +INFO 2020-11-24 19:25:18 train.py: 74] Epoch 2, iter 1200/6416, lr 0.100000, loss 1.537051 +INFO 2020-11-24 19:26:32 train.py: 74] Epoch 2, iter 1400/6416, lr 0.100000, loss 1.539282 +INFO 2020-11-24 19:27:46 train.py: 74] Epoch 2, iter 1600/6416, lr 0.100000, loss 1.534609 +INFO 2020-11-24 19:29:00 train.py: 74] Epoch 2, iter 1800/6416, lr 0.100000, loss 1.546923 +INFO 2020-11-24 19:30:14 train.py: 74] Epoch 2, iter 2000/6416, lr 0.100000, loss 1.545881 +INFO 2020-11-24 19:31:28 train.py: 74] Epoch 2, iter 2200/6416, lr 0.100000, loss 1.546089 +INFO 2020-11-24 19:32:42 train.py: 74] Epoch 2, iter 2400/6416, lr 0.100000, loss 1.543443 +INFO 2020-11-24 19:33:56 train.py: 74] Epoch 2, iter 2600/6416, lr 0.100000, loss 1.546798 +INFO 2020-11-24 19:35:10 train.py: 74] Epoch 2, iter 2800/6416, lr 0.100000, loss 1.548067 +INFO 2020-11-24 19:36:24 train.py: 87] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2020-11-24 19:36:25 train.py: 74] Epoch 2, iter 3000/6416, lr 0.100000, loss 1.540771 +INFO 2020-11-24 19:37:39 train.py: 74] Epoch 2, iter 3200/6416, lr 0.100000, loss 1.538022 +INFO 2020-11-24 19:38:54 train.py: 74] Epoch 2, iter 3400/6416, lr 0.100000, loss 1.533676 +INFO 2020-11-24 19:40:09 train.py: 74] Epoch 2, iter 3600/6416, lr 0.100000, loss 1.532327 +INFO 2020-11-24 19:41:24 train.py: 74] Epoch 2, iter 3800/6416, lr 0.100000, loss 1.528228 +INFO 2020-11-24 19:42:39 train.py: 74] Epoch 2, iter 4000/6416, lr 0.100000, loss 1.526137 +INFO 2020-11-24 19:43:54 train.py: 74] Epoch 2, iter 4200/6416, lr 0.100000, loss 1.518209 +INFO 2020-11-24 19:45:09 train.py: 74] Epoch 2, iter 4400/6416, lr 0.100000, loss 1.521188 +INFO 2020-11-24 19:46:24 train.py: 74] Epoch 2, iter 4600/6416, lr 0.100000, loss 1.515481 +INFO 2020-11-24 19:47:38 train.py: 74] Epoch 2, iter 4800/6416, lr 0.100000, loss 1.516067 +INFO 2020-11-24 19:48:53 train.py: 74] Epoch 2, iter 5000/6416, lr 0.100000, loss 1.507745 +INFO 2020-11-24 19:50:08 train.py: 74] Epoch 2, iter 5200/6416, lr 0.100000, loss 1.507893 +INFO 2020-11-24 19:51:23 train.py: 74] Epoch 2, iter 5400/6416, lr 0.100000, loss 1.503140 +INFO 2020-11-24 19:52:38 train.py: 74] Epoch 2, iter 5600/6416, lr 0.100000, loss 1.501456 +INFO 2020-11-24 19:53:53 train.py: 74] Epoch 2, iter 5800/6416, lr 0.100000, loss 1.497328 +INFO 2020-11-24 19:55:08 train.py: 87] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2020-11-24 19:55:08 train.py: 74] Epoch 2, iter 6000/6416, lr 0.100000, loss 1.499005 +INFO 2020-11-24 19:56:23 train.py: 74] Epoch 2, iter 6200/6416, lr 0.100000, loss 1.492542 +INFO 2020-11-24 19:57:38 train.py: 74] Epoch 2, iter 6400/6416, lr 0.100000, loss 1.493762 +INFO 2020-11-24 19:57:44 train.py: 92] Save checkpoint Epoch_2.pt to disk... +INFO 2020-11-24 19:57:46 train.py: 74] Epoch 3, iter 0/6416, lr 0.100000, loss 1.501257 +INFO 2020-11-24 19:59:01 train.py: 74] Epoch 3, iter 200/6416, lr 0.100000, loss 1.415784 +INFO 2020-11-24 20:00:16 train.py: 74] Epoch 3, iter 400/6416, lr 0.100000, loss 1.408254 +INFO 2020-11-24 20:01:31 train.py: 74] Epoch 3, iter 600/6416, lr 0.100000, loss 1.421287 +INFO 2020-11-24 20:02:46 train.py: 74] Epoch 3, iter 800/6416, lr 0.100000, loss 1.424631 +INFO 2020-11-24 20:04:01 train.py: 74] Epoch 3, iter 1000/6416, lr 0.100000, loss 1.432429 +INFO 2020-11-24 20:05:16 train.py: 74] Epoch 3, iter 1200/6416, lr 0.100000, loss 1.443933 +INFO 2020-11-24 20:06:31 train.py: 74] Epoch 3, iter 1400/6416, lr 0.100000, loss 1.451488 +INFO 2020-11-24 20:07:46 train.py: 74] Epoch 3, iter 1600/6416, lr 0.100000, loss 1.451521 +INFO 2020-11-24 20:09:01 train.py: 74] Epoch 3, iter 1800/6416, lr 0.100000, loss 1.454602 +INFO 2020-11-24 20:10:16 train.py: 74] Epoch 3, iter 2000/6416, lr 0.100000, loss 1.455259 +INFO 2020-11-24 20:11:31 train.py: 74] Epoch 3, iter 2200/6416, lr 0.100000, loss 1.452010 +INFO 2020-11-24 20:12:46 train.py: 74] Epoch 3, iter 2400/6416, lr 0.100000, loss 1.453682 +INFO 2020-11-24 20:14:01 train.py: 74] Epoch 3, iter 2600/6416, lr 0.100000, loss 1.447194 +INFO 2020-11-24 20:15:16 train.py: 74] Epoch 3, iter 2800/6416, lr 0.100000, loss 1.460136 +INFO 2020-11-24 20:16:31 train.py: 87] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2020-11-24 20:16:31 train.py: 74] Epoch 3, iter 3000/6416, lr 0.100000, loss 1.449635 +INFO 2020-11-24 20:17:46 train.py: 74] Epoch 3, iter 3200/6416, lr 0.100000, loss 1.449914 +INFO 2020-11-24 20:19:00 train.py: 74] Epoch 3, iter 3400/6416, lr 0.100000, loss 1.448616 +INFO 2020-11-24 20:20:14 train.py: 74] Epoch 3, iter 3600/6416, lr 0.100000, loss 1.450514 +INFO 2020-11-24 20:21:28 train.py: 74] Epoch 3, iter 3800/6416, lr 0.100000, loss 1.453894 +INFO 2020-11-24 20:22:43 train.py: 74] Epoch 3, iter 4000/6416, lr 0.100000, loss 1.447115 +INFO 2020-11-24 20:23:57 train.py: 74] Epoch 3, iter 4200/6416, lr 0.100000, loss 1.443263 +INFO 2020-11-24 20:25:11 train.py: 74] Epoch 3, iter 4400/6416, lr 0.100000, loss 1.454202 +INFO 2020-11-24 20:26:25 train.py: 74] Epoch 3, iter 4600/6416, lr 0.100000, loss 1.443775 +INFO 2020-11-24 20:27:40 train.py: 74] Epoch 3, iter 4800/6416, lr 0.100000, loss 1.444346 +INFO 2020-11-24 20:28:54 train.py: 74] Epoch 3, iter 5000/6416, lr 0.100000, loss 1.435848 +INFO 2020-11-24 20:30:08 train.py: 74] Epoch 3, iter 5200/6416, lr 0.100000, loss 1.441113 +INFO 2020-11-24 20:31:22 train.py: 74] Epoch 3, iter 5400/6416, lr 0.100000, loss 1.441847 +INFO 2020-11-24 20:32:37 train.py: 74] Epoch 3, iter 5600/6416, lr 0.100000, loss 1.433100 +INFO 2020-11-24 20:33:51 train.py: 74] Epoch 3, iter 5800/6416, lr 0.100000, loss 1.434238 +INFO 2020-11-24 20:35:05 train.py: 87] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2020-11-24 20:35:05 train.py: 74] Epoch 3, iter 6000/6416, lr 0.100000, loss 1.431912 +INFO 2020-11-24 20:36:20 train.py: 74] Epoch 3, iter 6200/6416, lr 0.100000, loss 1.437632 +INFO 2020-11-24 20:37:35 train.py: 74] Epoch 3, iter 6400/6416, lr 0.100000, loss 1.428208 +INFO 2020-11-24 20:37:41 train.py: 92] Save checkpoint Epoch_3.pt to disk... +INFO 2020-11-24 20:37:43 train.py: 74] Epoch 4, iter 0/6416, lr 0.100000, loss 1.425253 +INFO 2020-11-24 20:38:58 train.py: 74] Epoch 4, iter 200/6416, lr 0.100000, loss 1.368639 +INFO 2020-11-24 20:40:13 train.py: 74] Epoch 4, iter 400/6416, lr 0.100000, loss 1.356518 +INFO 2020-11-24 20:41:28 train.py: 74] Epoch 4, iter 600/6416, lr 0.100000, loss 1.364383 +INFO 2020-11-24 20:42:43 train.py: 74] Epoch 4, iter 800/6416, lr 0.100000, loss 1.375807 +INFO 2020-11-24 20:43:58 train.py: 74] Epoch 4, iter 1000/6416, lr 0.100000, loss 1.378041 +INFO 2020-11-24 20:45:13 train.py: 74] Epoch 4, iter 1200/6416, lr 0.100000, loss 1.386899 +INFO 2020-11-24 20:46:28 train.py: 74] Epoch 4, iter 1400/6416, lr 0.100000, loss 1.383502 +INFO 2020-11-24 20:47:43 train.py: 74] Epoch 4, iter 1600/6416, lr 0.100000, loss 1.396895 +INFO 2020-11-24 20:48:58 train.py: 74] Epoch 4, iter 1800/6416, lr 0.100000, loss 1.398383 +INFO 2020-11-24 20:50:13 train.py: 74] Epoch 4, iter 2000/6416, lr 0.100000, loss 1.396244 +INFO 2020-11-24 20:51:28 train.py: 74] Epoch 4, iter 2200/6416, lr 0.100000, loss 1.406174 +INFO 2020-11-24 20:52:43 train.py: 74] Epoch 4, iter 2400/6416, lr 0.100000, loss 1.399846 +INFO 2020-11-24 20:53:58 train.py: 74] Epoch 4, iter 2600/6416, lr 0.100000, loss 1.403289 +INFO 2020-11-24 20:55:13 train.py: 74] Epoch 4, iter 2800/6416, lr 0.100000, loss 1.403233 +INFO 2020-11-24 20:56:27 train.py: 87] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2020-11-24 20:56:28 train.py: 74] Epoch 4, iter 3000/6416, lr 0.100000, loss 1.405860 +INFO 2020-11-24 20:57:43 train.py: 74] Epoch 4, iter 3200/6416, lr 0.100000, loss 1.402708 +INFO 2020-11-24 20:58:58 train.py: 74] Epoch 4, iter 3400/6416, lr 0.100000, loss 1.400847 +INFO 2020-11-24 21:00:13 train.py: 74] Epoch 4, iter 3600/6416, lr 0.100000, loss 1.408870 +INFO 2020-11-24 21:01:28 train.py: 74] Epoch 4, iter 3800/6416, lr 0.100000, loss 1.404592 +INFO 2020-11-24 21:02:43 train.py: 74] Epoch 4, iter 4000/6416, lr 0.100000, loss 1.402544 +INFO 2020-11-24 21:03:58 train.py: 74] Epoch 4, iter 4200/6416, lr 0.100000, loss 1.398803 +INFO 2020-11-24 21:05:13 train.py: 74] Epoch 4, iter 4400/6416, lr 0.100000, loss 1.398866 +INFO 2020-11-24 21:06:27 train.py: 74] Epoch 4, iter 4600/6416, lr 0.100000, loss 1.402501 +INFO 2020-11-24 21:07:42 train.py: 74] Epoch 4, iter 4800/6416, lr 0.100000, loss 1.399502 +INFO 2020-11-24 21:08:57 train.py: 74] Epoch 4, iter 5000/6416, lr 0.100000, loss 1.401013 +INFO 2020-11-24 21:10:12 train.py: 74] Epoch 4, iter 5200/6416, lr 0.100000, loss 1.396362 +INFO 2020-11-24 21:11:27 train.py: 74] Epoch 4, iter 5400/6416, lr 0.100000, loss 1.395240 +INFO 2020-11-24 21:12:42 train.py: 74] Epoch 4, iter 5600/6416, lr 0.100000, loss 1.400683 +INFO 2020-11-24 21:13:57 train.py: 74] Epoch 4, iter 5800/6416, lr 0.100000, loss 1.399154 +INFO 2020-11-24 21:15:12 train.py: 87] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2020-11-24 21:15:12 train.py: 74] Epoch 4, iter 6000/6416, lr 0.100000, loss 1.389652 +INFO 2020-11-24 21:16:27 train.py: 74] Epoch 4, iter 6200/6416, lr 0.100000, loss 1.395338 +INFO 2020-11-24 21:17:41 train.py: 74] Epoch 4, iter 6400/6416, lr 0.100000, loss 1.387543 +INFO 2020-11-24 21:17:47 train.py: 92] Save checkpoint Epoch_4.pt to disk... +INFO 2020-11-24 21:17:49 train.py: 74] Epoch 5, iter 0/6416, lr 0.100000, loss 1.367147 +INFO 2020-11-24 21:19:04 train.py: 74] Epoch 5, iter 200/6416, lr 0.100000, loss 1.327743 +INFO 2020-11-24 21:20:19 train.py: 74] Epoch 5, iter 400/6416, lr 0.100000, loss 1.321898 +INFO 2020-11-24 21:21:34 train.py: 74] Epoch 5, iter 600/6416, lr 0.100000, loss 1.325918 +INFO 2020-11-24 21:22:49 train.py: 74] Epoch 5, iter 800/6416, lr 0.100000, loss 1.336412 +INFO 2020-11-24 21:24:04 train.py: 74] Epoch 5, iter 1000/6416, lr 0.100000, loss 1.344321 +INFO 2020-11-24 21:25:19 train.py: 74] Epoch 5, iter 1200/6416, lr 0.100000, loss 1.358709 +INFO 2020-11-24 21:26:34 train.py: 74] Epoch 5, iter 1400/6416, lr 0.100000, loss 1.358282 +INFO 2020-11-24 21:27:49 train.py: 74] Epoch 5, iter 1600/6416, lr 0.100000, loss 1.358601 +INFO 2020-11-24 21:29:04 train.py: 74] Epoch 5, iter 1800/6416, lr 0.100000, loss 1.366539 +INFO 2020-11-24 21:30:19 train.py: 74] Epoch 5, iter 2000/6416, lr 0.100000, loss 1.366163 +INFO 2020-11-24 21:31:34 train.py: 74] Epoch 5, iter 2200/6416, lr 0.100000, loss 1.366323 +INFO 2020-11-24 21:32:49 train.py: 74] Epoch 5, iter 2400/6416, lr 0.100000, loss 1.370541 +INFO 2020-11-24 21:34:04 train.py: 74] Epoch 5, iter 2600/6416, lr 0.100000, loss 1.368496 +INFO 2020-11-24 21:35:19 train.py: 74] Epoch 5, iter 2800/6416, lr 0.100000, loss 1.372332 +INFO 2020-11-24 21:36:34 train.py: 87] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2020-11-24 21:36:35 train.py: 74] Epoch 5, iter 3000/6416, lr 0.100000, loss 1.376615 +INFO 2020-11-24 21:37:50 train.py: 74] Epoch 5, iter 3200/6416, lr 0.100000, loss 1.372517 +INFO 2020-11-24 21:39:05 train.py: 74] Epoch 5, iter 3400/6416, lr 0.100000, loss 1.376011 +INFO 2020-11-24 21:40:20 train.py: 74] Epoch 5, iter 3600/6416, lr 0.100000, loss 1.371207 +INFO 2020-11-24 21:41:35 train.py: 74] Epoch 5, iter 3800/6416, lr 0.100000, loss 1.374255 +INFO 2020-11-24 21:42:50 train.py: 74] Epoch 5, iter 4000/6416, lr 0.100000, loss 1.375235 +INFO 2020-11-24 21:44:05 train.py: 74] Epoch 5, iter 4200/6416, lr 0.100000, loss 1.377788 +INFO 2020-11-24 21:45:20 train.py: 74] Epoch 5, iter 4400/6416, lr 0.100000, loss 1.373756 +INFO 2020-11-24 21:46:35 train.py: 74] Epoch 5, iter 4600/6416, lr 0.100000, loss 1.370363 +INFO 2020-11-24 21:47:50 train.py: 74] Epoch 5, iter 4800/6416, lr 0.100000, loss 1.369006 +INFO 2020-11-24 21:49:05 train.py: 74] Epoch 5, iter 5000/6416, lr 0.100000, loss 1.371390 +INFO 2020-11-24 21:50:20 train.py: 74] Epoch 5, iter 5200/6416, lr 0.100000, loss 1.365531 +INFO 2020-11-24 21:51:35 train.py: 74] Epoch 5, iter 5400/6416, lr 0.100000, loss 1.368726 +INFO 2020-11-24 21:52:50 train.py: 74] Epoch 5, iter 5600/6416, lr 0.100000, loss 1.363939 +INFO 2020-11-24 21:54:05 train.py: 74] Epoch 5, iter 5800/6416, lr 0.100000, loss 1.369182 +INFO 2020-11-24 21:55:20 train.py: 87] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2020-11-24 21:55:20 train.py: 74] Epoch 5, iter 6000/6416, lr 0.100000, loss 1.362293 +INFO 2020-11-24 21:56:35 train.py: 74] Epoch 5, iter 6200/6416, lr 0.100000, loss 1.363668 +INFO 2020-11-24 21:57:50 train.py: 74] Epoch 5, iter 6400/6416, lr 0.100000, loss 1.366412 +INFO 2020-11-24 21:57:56 train.py: 92] Save checkpoint Epoch_5.pt to disk... +INFO 2020-11-24 21:57:58 train.py: 74] Epoch 6, iter 0/6416, lr 0.100000, loss 1.373471 +INFO 2020-11-24 21:59:12 train.py: 74] Epoch 6, iter 200/6416, lr 0.100000, loss 1.304167 +INFO 2020-11-24 22:00:26 train.py: 74] Epoch 6, iter 400/6416, lr 0.100000, loss 1.294021 +INFO 2020-11-24 22:01:41 train.py: 74] Epoch 6, iter 600/6416, lr 0.100000, loss 1.300894 +INFO 2020-11-24 22:02:55 train.py: 74] Epoch 6, iter 800/6416, lr 0.100000, loss 1.315514 +INFO 2020-11-24 22:04:09 train.py: 74] Epoch 6, iter 1000/6416, lr 0.100000, loss 1.319493 +INFO 2020-11-24 22:05:23 train.py: 74] Epoch 6, iter 1200/6416, lr 0.100000, loss 1.324446 +INFO 2020-11-24 22:06:37 train.py: 74] Epoch 6, iter 1400/6416, lr 0.100000, loss 1.332261 +INFO 2020-11-24 22:07:52 train.py: 74] Epoch 6, iter 1600/6416, lr 0.100000, loss 1.337486 +INFO 2020-11-24 22:09:06 train.py: 74] Epoch 6, iter 1800/6416, lr 0.100000, loss 1.344820 +INFO 2020-11-24 22:10:20 train.py: 74] Epoch 6, iter 2000/6416, lr 0.100000, loss 1.347537 +INFO 2020-11-24 22:11:35 train.py: 74] Epoch 6, iter 2200/6416, lr 0.100000, loss 1.349921 +INFO 2020-11-24 22:12:49 train.py: 74] Epoch 6, iter 2400/6416, lr 0.100000, loss 1.348303 +INFO 2020-11-24 22:14:03 train.py: 74] Epoch 6, iter 2600/6416, lr 0.100000, loss 1.344542 +INFO 2020-11-24 22:15:18 train.py: 74] Epoch 6, iter 2800/6416, lr 0.100000, loss 1.347508 +INFO 2020-11-24 22:16:32 train.py: 87] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2020-11-24 22:16:32 train.py: 74] Epoch 6, iter 3000/6416, lr 0.100000, loss 1.353212 +INFO 2020-11-24 22:17:47 train.py: 74] Epoch 6, iter 3200/6416, lr 0.100000, loss 1.349635 +INFO 2020-11-24 22:19:02 train.py: 74] Epoch 6, iter 3400/6416, lr 0.100000, loss 1.345761 +INFO 2020-11-24 22:20:17 train.py: 74] Epoch 6, iter 3600/6416, lr 0.100000, loss 1.348586 +INFO 2020-11-24 22:21:32 train.py: 74] Epoch 6, iter 3800/6416, lr 0.100000, loss 1.349593 +INFO 2020-11-24 22:22:47 train.py: 74] Epoch 6, iter 4000/6416, lr 0.100000, loss 1.350912 +INFO 2020-11-24 22:24:02 train.py: 74] Epoch 6, iter 4200/6416, lr 0.100000, loss 1.349537 +INFO 2020-11-24 22:25:18 train.py: 74] Epoch 6, iter 4400/6416, lr 0.100000, loss 1.352887 +INFO 2020-11-24 22:26:53 train.py: 74] Epoch 6, iter 4600/6416, lr 0.100000, loss 1.352015 +INFO 2020-11-24 22:28:32 train.py: 74] Epoch 6, iter 4800/6416, lr 0.100000, loss 1.351760 +INFO 2020-11-24 22:30:09 train.py: 74] Epoch 6, iter 5000/6416, lr 0.100000, loss 1.348667 +INFO 2020-11-24 22:31:34 train.py: 74] Epoch 6, iter 5200/6416, lr 0.100000, loss 1.351530 +INFO 2020-11-24 22:32:49 train.py: 74] Epoch 6, iter 5400/6416, lr 0.100000, loss 1.347378 +INFO 2020-11-24 22:34:04 train.py: 74] Epoch 6, iter 5600/6416, lr 0.100000, loss 1.342948 +INFO 2020-11-24 22:35:19 train.py: 74] Epoch 6, iter 5800/6416, lr 0.100000, loss 1.343790 +INFO 2020-11-24 22:36:34 train.py: 87] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2020-11-24 22:36:34 train.py: 74] Epoch 6, iter 6000/6416, lr 0.100000, loss 1.344466 +INFO 2020-11-24 22:37:50 train.py: 74] Epoch 6, iter 6200/6416, lr 0.100000, loss 1.344174 +INFO 2020-11-24 22:39:05 train.py: 74] Epoch 6, iter 6400/6416, lr 0.100000, loss 1.337644 +INFO 2020-11-24 22:39:10 train.py: 92] Save checkpoint Epoch_6.pt to disk... +INFO 2020-11-24 22:39:12 train.py: 74] Epoch 7, iter 0/6416, lr 0.100000, loss 1.346722 +INFO 2020-11-24 22:40:27 train.py: 74] Epoch 7, iter 200/6416, lr 0.100000, loss 1.281349 +INFO 2020-11-24 22:41:42 train.py: 74] Epoch 7, iter 400/6416, lr 0.100000, loss 1.273995 +INFO 2020-11-24 22:42:57 train.py: 74] Epoch 7, iter 600/6416, lr 0.100000, loss 1.284686 +INFO 2020-11-24 22:44:12 train.py: 74] Epoch 7, iter 800/6416, lr 0.100000, loss 1.293039 +INFO 2020-11-24 22:45:27 train.py: 74] Epoch 7, iter 1000/6416, lr 0.100000, loss 1.295773 +INFO 2020-11-24 22:46:42 train.py: 74] Epoch 7, iter 1200/6416, lr 0.100000, loss 1.309860 +INFO 2020-11-24 22:47:57 train.py: 74] Epoch 7, iter 1400/6416, lr 0.100000, loss 1.316550 +INFO 2020-11-24 22:49:12 train.py: 74] Epoch 7, iter 1600/6416, lr 0.100000, loss 1.317121 +INFO 2020-11-24 22:50:27 train.py: 74] Epoch 7, iter 1800/6416, lr 0.100000, loss 1.322618 +INFO 2020-11-24 22:51:41 train.py: 74] Epoch 7, iter 2000/6416, lr 0.100000, loss 1.329629 +INFO 2020-11-24 22:52:56 train.py: 74] Epoch 7, iter 2200/6416, lr 0.100000, loss 1.331045 +INFO 2020-11-24 22:54:11 train.py: 74] Epoch 7, iter 2400/6416, lr 0.100000, loss 1.334171 +INFO 2020-11-24 22:55:26 train.py: 74] Epoch 7, iter 2600/6416, lr 0.100000, loss 1.327468 +INFO 2020-11-24 22:56:41 train.py: 74] Epoch 7, iter 2800/6416, lr 0.100000, loss 1.330366 +INFO 2020-11-24 22:57:56 train.py: 87] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2020-11-24 22:57:56 train.py: 74] Epoch 7, iter 3000/6416, lr 0.100000, loss 1.331032 +INFO 2020-11-24 22:59:11 train.py: 74] Epoch 7, iter 3200/6416, lr 0.100000, loss 1.336948 +INFO 2020-11-24 23:00:26 train.py: 74] Epoch 7, iter 3400/6416, lr 0.100000, loss 1.332977 +INFO 2020-11-24 23:01:41 train.py: 74] Epoch 7, iter 3600/6416, lr 0.100000, loss 1.332363 +INFO 2020-11-24 23:02:56 train.py: 74] Epoch 7, iter 3800/6416, lr 0.100000, loss 1.336803 +INFO 2020-11-24 23:04:11 train.py: 74] Epoch 7, iter 4000/6416, lr 0.100000, loss 1.327630 +INFO 2020-11-24 23:05:26 train.py: 74] Epoch 7, iter 4200/6416, lr 0.100000, loss 1.334582 +INFO 2020-11-24 23:06:41 train.py: 74] Epoch 7, iter 4400/6416, lr 0.100000, loss 1.327688 +INFO 2020-11-24 23:08:03 train.py: 74] Epoch 7, iter 4600/6416, lr 0.100000, loss 1.333249 +INFO 2020-11-24 23:09:39 train.py: 74] Epoch 7, iter 4800/6416, lr 0.100000, loss 1.329354 +INFO 2020-11-24 23:11:16 train.py: 74] Epoch 7, iter 5000/6416, lr 0.100000, loss 1.333234 +INFO 2020-11-24 23:12:46 train.py: 74] Epoch 7, iter 5200/6416, lr 0.100000, loss 1.326928 +INFO 2020-11-24 23:14:01 train.py: 74] Epoch 7, iter 5400/6416, lr 0.100000, loss 1.334914 +INFO 2020-11-24 23:15:16 train.py: 74] Epoch 7, iter 5600/6416, lr 0.100000, loss 1.329901 +INFO 2020-11-24 23:16:32 train.py: 74] Epoch 7, iter 5800/6416, lr 0.100000, loss 1.331653 +INFO 2020-11-24 23:17:46 train.py: 87] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2020-11-24 23:17:47 train.py: 74] Epoch 7, iter 6000/6416, lr 0.100000, loss 1.331404 +INFO 2020-11-24 23:19:01 train.py: 74] Epoch 7, iter 6200/6416, lr 0.100000, loss 1.330640 +INFO 2020-11-24 23:20:15 train.py: 74] Epoch 7, iter 6400/6416, lr 0.100000, loss 1.332471 +INFO 2020-11-24 23:20:21 train.py: 92] Save checkpoint Epoch_7.pt to disk... +INFO 2020-11-24 23:20:23 train.py: 74] Epoch 8, iter 0/6416, lr 0.100000, loss 1.321369 +INFO 2020-11-24 23:21:37 train.py: 74] Epoch 8, iter 200/6416, lr 0.100000, loss 1.275679 +INFO 2020-11-24 23:22:52 train.py: 74] Epoch 8, iter 400/6416, lr 0.100000, loss 1.264183 +INFO 2020-11-24 23:24:07 train.py: 74] Epoch 8, iter 600/6416, lr 0.100000, loss 1.270290 +INFO 2020-11-24 23:25:22 train.py: 74] Epoch 8, iter 800/6416, lr 0.100000, loss 1.279872 +INFO 2020-11-24 23:26:37 train.py: 74] Epoch 8, iter 1000/6416, lr 0.100000, loss 1.290014 +INFO 2020-11-24 23:27:52 train.py: 74] Epoch 8, iter 1200/6416, lr 0.100000, loss 1.294480 +INFO 2020-11-24 23:29:07 train.py: 74] Epoch 8, iter 1400/6416, lr 0.100000, loss 1.300083 +INFO 2020-11-24 23:30:22 train.py: 74] Epoch 8, iter 1600/6416, lr 0.100000, loss 1.304544 +INFO 2020-11-24 23:31:37 train.py: 74] Epoch 8, iter 1800/6416, lr 0.100000, loss 1.306816 +INFO 2020-11-24 23:32:52 train.py: 74] Epoch 8, iter 2000/6416, lr 0.100000, loss 1.314479 +INFO 2020-11-24 23:34:07 train.py: 74] Epoch 8, iter 2200/6416, lr 0.100000, loss 1.318064 +INFO 2020-11-24 23:35:22 train.py: 74] Epoch 8, iter 2400/6416, lr 0.100000, loss 1.316137 +INFO 2020-11-24 23:36:37 train.py: 74] Epoch 8, iter 2600/6416, lr 0.100000, loss 1.315622 +INFO 2020-11-24 23:37:52 train.py: 74] Epoch 8, iter 2800/6416, lr 0.100000, loss 1.318616 +INFO 2020-11-24 23:39:07 train.py: 87] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2020-11-24 23:39:07 train.py: 74] Epoch 8, iter 3000/6416, lr 0.100000, loss 1.315701 +INFO 2020-11-24 23:40:22 train.py: 74] Epoch 8, iter 3200/6416, lr 0.100000, loss 1.317215 +INFO 2020-11-24 23:41:37 train.py: 74] Epoch 8, iter 3400/6416, lr 0.100000, loss 1.324224 +INFO 2020-11-24 23:42:52 train.py: 74] Epoch 8, iter 3600/6416, lr 0.100000, loss 1.321538 +INFO 2020-11-24 23:44:07 train.py: 74] Epoch 8, iter 3800/6416, lr 0.100000, loss 1.318713 +INFO 2020-11-24 23:45:22 train.py: 74] Epoch 8, iter 4000/6416, lr 0.100000, loss 1.321623 +INFO 2020-11-24 23:46:37 train.py: 74] Epoch 8, iter 4200/6416, lr 0.100000, loss 1.318330 +INFO 2020-11-24 23:47:52 train.py: 74] Epoch 8, iter 4400/6416, lr 0.100000, loss 1.314947 +INFO 2020-11-24 23:49:07 train.py: 74] Epoch 8, iter 4600/6416, lr 0.100000, loss 1.319453 +INFO 2020-11-24 23:50:22 train.py: 74] Epoch 8, iter 4800/6416, lr 0.100000, loss 1.320324 +INFO 2020-11-24 23:51:37 train.py: 74] Epoch 8, iter 5000/6416, lr 0.100000, loss 1.314977 +INFO 2020-11-24 23:52:53 train.py: 74] Epoch 8, iter 5200/6416, lr 0.100000, loss 1.315860 +INFO 2020-11-24 23:54:08 train.py: 74] Epoch 8, iter 5400/6416, lr 0.100000, loss 1.316496 +INFO 2020-11-24 23:55:23 train.py: 74] Epoch 8, iter 5600/6416, lr 0.100000, loss 1.324102 +INFO 2020-11-24 23:56:38 train.py: 74] Epoch 8, iter 5800/6416, lr 0.100000, loss 1.318073 +INFO 2020-11-24 23:57:53 train.py: 87] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2020-11-24 23:57:53 train.py: 74] Epoch 8, iter 6000/6416, lr 0.100000, loss 1.320587 +INFO 2020-11-24 23:59:08 train.py: 74] Epoch 8, iter 6200/6416, lr 0.100000, loss 1.314739 +INFO 2020-11-25 00:00:23 train.py: 74] Epoch 8, iter 6400/6416, lr 0.100000, loss 1.317633 +INFO 2020-11-25 00:00:29 train.py: 92] Save checkpoint Epoch_8.pt to disk... +INFO 2020-11-25 00:00:31 train.py: 74] Epoch 9, iter 0/6416, lr 0.100000, loss 1.300685 +INFO 2020-11-25 00:01:46 train.py: 74] Epoch 9, iter 200/6416, lr 0.100000, loss 1.262286 +INFO 2020-11-25 00:03:01 train.py: 74] Epoch 9, iter 400/6416, lr 0.100000, loss 1.247746 +INFO 2020-11-25 00:04:16 train.py: 74] Epoch 9, iter 600/6416, lr 0.100000, loss 1.263753 +INFO 2020-11-25 00:05:31 train.py: 74] Epoch 9, iter 800/6416, lr 0.100000, loss 1.266173 +INFO 2020-11-25 00:06:46 train.py: 74] Epoch 9, iter 1000/6416, lr 0.100000, loss 1.277104 +INFO 2020-11-25 00:08:01 train.py: 74] Epoch 9, iter 1200/6416, lr 0.100000, loss 1.277577 +INFO 2020-11-25 00:09:16 train.py: 74] Epoch 9, iter 1400/6416, lr 0.100000, loss 1.285791 +INFO 2020-11-25 00:10:31 train.py: 74] Epoch 9, iter 1600/6416, lr 0.100000, loss 1.288765 +INFO 2020-11-25 00:11:46 train.py: 74] Epoch 9, iter 1800/6416, lr 0.100000, loss 1.290202 +INFO 2020-11-25 00:13:01 train.py: 74] Epoch 9, iter 2000/6416, lr 0.100000, loss 1.301500 +INFO 2020-11-25 00:14:16 train.py: 74] Epoch 9, iter 2200/6416, lr 0.100000, loss 1.301219 +INFO 2020-11-25 00:15:31 train.py: 74] Epoch 9, iter 2400/6416, lr 0.100000, loss 1.303576 +INFO 2020-11-25 00:16:46 train.py: 74] Epoch 9, iter 2600/6416, lr 0.100000, loss 1.309247 +INFO 2020-11-25 00:18:01 train.py: 74] Epoch 9, iter 2800/6416, lr 0.100000, loss 1.305372 +INFO 2020-11-25 00:19:16 train.py: 87] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2020-11-25 00:19:16 train.py: 74] Epoch 9, iter 3000/6416, lr 0.100000, loss 1.311056 +INFO 2020-11-25 00:20:31 train.py: 74] Epoch 9, iter 3200/6416, lr 0.100000, loss 1.306957 +INFO 2020-11-25 00:21:45 train.py: 74] Epoch 9, iter 3400/6416, lr 0.100000, loss 1.312938 +INFO 2020-11-25 00:23:00 train.py: 74] Epoch 9, iter 3600/6416, lr 0.100000, loss 1.308837 +INFO 2020-11-25 00:24:15 train.py: 74] Epoch 9, iter 3800/6416, lr 0.100000, loss 1.305323 +INFO 2020-11-25 00:25:30 train.py: 74] Epoch 9, iter 4000/6416, lr 0.100000, loss 1.307396 +INFO 2020-11-25 00:26:45 train.py: 74] Epoch 9, iter 4200/6416, lr 0.100000, loss 1.311401 +INFO 2020-11-25 00:28:01 train.py: 74] Epoch 9, iter 4400/6416, lr 0.100000, loss 1.309233 +INFO 2020-11-25 00:29:16 train.py: 74] Epoch 9, iter 4600/6416, lr 0.100000, loss 1.308433 +INFO 2020-11-25 00:30:31 train.py: 74] Epoch 9, iter 4800/6416, lr 0.100000, loss 1.307102 +INFO 2020-11-25 00:31:46 train.py: 74] Epoch 9, iter 5000/6416, lr 0.100000, loss 1.314953 +INFO 2020-11-25 00:33:01 train.py: 74] Epoch 9, iter 5200/6416, lr 0.100000, loss 1.310075 +INFO 2020-11-25 00:34:16 train.py: 74] Epoch 9, iter 5400/6416, lr 0.100000, loss 1.308042 +INFO 2020-11-25 00:35:31 train.py: 74] Epoch 9, iter 5600/6416, lr 0.100000, loss 1.309480 +INFO 2020-11-25 00:36:46 train.py: 74] Epoch 9, iter 5800/6416, lr 0.100000, loss 1.309286 +INFO 2020-11-25 00:38:01 train.py: 87] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2020-11-25 00:38:01 train.py: 74] Epoch 9, iter 6000/6416, lr 0.100000, loss 1.306205 +INFO 2020-11-25 00:39:16 train.py: 74] Epoch 9, iter 6200/6416, lr 0.100000, loss 1.306948 +INFO 2020-11-25 00:40:31 train.py: 74] Epoch 9, iter 6400/6416, lr 0.100000, loss 1.305604 +INFO 2020-11-25 00:40:37 train.py: 92] Save checkpoint Epoch_9.pt to disk... +INFO 2020-11-25 00:40:39 train.py: 74] Epoch 10, iter 0/6416, lr 0.010000, loss 1.304202 +INFO 2020-11-25 00:41:54 train.py: 74] Epoch 10, iter 200/6416, lr 0.010000, loss 1.176658 +INFO 2020-11-25 00:43:08 train.py: 74] Epoch 10, iter 400/6416, lr 0.010000, loss 1.148532 +INFO 2020-11-25 00:44:23 train.py: 74] Epoch 10, iter 600/6416, lr 0.010000, loss 1.134307 +INFO 2020-11-25 00:45:38 train.py: 74] Epoch 10, iter 800/6416, lr 0.010000, loss 1.126774 +INFO 2020-11-25 00:46:53 train.py: 74] Epoch 10, iter 1000/6416, lr 0.010000, loss 1.123866 +INFO 2020-11-25 00:48:08 train.py: 74] Epoch 10, iter 1200/6416, lr 0.010000, loss 1.116975 +INFO 2020-11-25 00:49:23 train.py: 74] Epoch 10, iter 1400/6416, lr 0.010000, loss 1.114827 +INFO 2020-11-25 00:50:38 train.py: 74] Epoch 10, iter 1600/6416, lr 0.010000, loss 1.110374 +INFO 2020-11-25 00:51:53 train.py: 74] Epoch 10, iter 1800/6416, lr 0.010000, loss 1.109232 +INFO 2020-11-25 00:53:08 train.py: 74] Epoch 10, iter 2000/6416, lr 0.010000, loss 1.105800 +INFO 2020-11-25 00:54:22 train.py: 74] Epoch 10, iter 2200/6416, lr 0.010000, loss 1.103239 +INFO 2020-11-25 00:55:37 train.py: 74] Epoch 10, iter 2400/6416, lr 0.010000, loss 1.100349 +INFO 2020-11-25 00:56:52 train.py: 74] Epoch 10, iter 2600/6416, lr 0.010000, loss 1.092838 +INFO 2020-11-25 00:58:07 train.py: 74] Epoch 10, iter 2800/6416, lr 0.010000, loss 1.096585 +INFO 2020-11-25 00:59:22 train.py: 87] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2020-11-25 00:59:22 train.py: 74] Epoch 10, iter 3000/6416, lr 0.010000, loss 1.093232 +INFO 2020-11-25 01:00:36 train.py: 74] Epoch 10, iter 3200/6416, lr 0.010000, loss 1.088581 +INFO 2020-11-25 01:01:50 train.py: 74] Epoch 10, iter 3400/6416, lr 0.010000, loss 1.085622 +INFO 2020-11-25 01:03:05 train.py: 74] Epoch 10, iter 3600/6416, lr 0.010000, loss 1.083115 +INFO 2020-11-25 01:04:19 train.py: 74] Epoch 10, iter 3800/6416, lr 0.010000, loss 1.083759 +INFO 2020-11-25 01:05:33 train.py: 74] Epoch 10, iter 4000/6416, lr 0.010000, loss 1.083667 +INFO 2020-11-25 01:06:47 train.py: 74] Epoch 10, iter 4200/6416, lr 0.010000, loss 1.079579 +INFO 2020-11-25 01:08:01 train.py: 74] Epoch 10, iter 4400/6416, lr 0.010000, loss 1.078006 +INFO 2020-11-25 01:09:15 train.py: 74] Epoch 10, iter 4600/6416, lr 0.010000, loss 1.079693 +INFO 2020-11-25 01:10:30 train.py: 74] Epoch 10, iter 4800/6416, lr 0.010000, loss 1.074036 +INFO 2020-11-25 01:11:44 train.py: 74] Epoch 10, iter 5000/6416, lr 0.010000, loss 1.077814 +INFO 2020-11-25 01:12:58 train.py: 74] Epoch 10, iter 5200/6416, lr 0.010000, loss 1.074785 +INFO 2020-11-25 01:14:12 train.py: 74] Epoch 10, iter 5400/6416, lr 0.010000, loss 1.074285 +INFO 2020-11-25 01:15:27 train.py: 74] Epoch 10, iter 5600/6416, lr 0.010000, loss 1.066102 +INFO 2020-11-25 01:16:41 train.py: 74] Epoch 10, iter 5800/6416, lr 0.010000, loss 1.068799 +INFO 2020-11-25 01:17:55 train.py: 87] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2020-11-25 01:17:55 train.py: 74] Epoch 10, iter 6000/6416, lr 0.010000, loss 1.068666 +INFO 2020-11-25 01:19:10 train.py: 74] Epoch 10, iter 6200/6416, lr 0.010000, loss 1.070428 +INFO 2020-11-25 01:20:25 train.py: 74] Epoch 10, iter 6400/6416, lr 0.010000, loss 1.068347 +INFO 2020-11-25 01:20:31 train.py: 92] Save checkpoint Epoch_10.pt to disk... +INFO 2020-11-25 01:20:33 train.py: 74] Epoch 11, iter 0/6416, lr 0.010000, loss 1.064234 +INFO 2020-11-25 01:21:48 train.py: 74] Epoch 11, iter 200/6416, lr 0.010000, loss 1.025108 +INFO 2020-11-25 01:23:03 train.py: 74] Epoch 11, iter 400/6416, lr 0.010000, loss 1.025457 +INFO 2020-11-25 01:24:18 train.py: 74] Epoch 11, iter 600/6416, lr 0.010000, loss 1.029919 +INFO 2020-11-25 01:25:33 train.py: 74] Epoch 11, iter 800/6416, lr 0.010000, loss 1.025832 +INFO 2020-11-25 01:26:48 train.py: 74] Epoch 11, iter 1000/6416, lr 0.010000, loss 1.028872 +INFO 2020-11-25 01:28:03 train.py: 74] Epoch 11, iter 1200/6416, lr 0.010000, loss 1.027197 +INFO 2020-11-25 01:29:18 train.py: 74] Epoch 11, iter 1400/6416, lr 0.010000, loss 1.028729 +INFO 2020-11-25 01:30:33 train.py: 74] Epoch 11, iter 1600/6416, lr 0.010000, loss 1.020073 +INFO 2020-11-25 01:31:48 train.py: 74] Epoch 11, iter 1800/6416, lr 0.010000, loss 1.027244 +INFO 2020-11-25 01:33:03 train.py: 74] Epoch 11, iter 2000/6416, lr 0.010000, loss 1.031872 +INFO 2020-11-25 01:34:18 train.py: 74] Epoch 11, iter 2200/6416, lr 0.010000, loss 1.031487 +INFO 2020-11-25 01:35:33 train.py: 74] Epoch 11, iter 2400/6416, lr 0.010000, loss 1.028213 +INFO 2020-11-25 01:36:48 train.py: 74] Epoch 11, iter 2600/6416, lr 0.010000, loss 1.026917 +INFO 2020-11-25 01:38:03 train.py: 74] Epoch 11, iter 2800/6416, lr 0.010000, loss 1.032668 +INFO 2020-11-25 01:39:18 train.py: 87] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2020-11-25 01:39:18 train.py: 74] Epoch 11, iter 3000/6416, lr 0.010000, loss 1.031355 +INFO 2020-11-25 01:40:33 train.py: 74] Epoch 11, iter 3200/6416, lr 0.010000, loss 1.026722 +INFO 2020-11-25 01:41:48 train.py: 74] Epoch 11, iter 3400/6416, lr 0.010000, loss 1.034043 +INFO 2020-11-25 01:43:03 train.py: 74] Epoch 11, iter 3600/6416, lr 0.010000, loss 1.033295 +INFO 2020-11-25 01:44:18 train.py: 74] Epoch 11, iter 3800/6416, lr 0.010000, loss 1.030751 +INFO 2020-11-25 01:45:33 train.py: 74] Epoch 11, iter 4000/6416, lr 0.010000, loss 1.037479 +INFO 2020-11-25 01:46:47 train.py: 74] Epoch 11, iter 4200/6416, lr 0.010000, loss 1.029564 +INFO 2020-11-25 01:48:02 train.py: 74] Epoch 11, iter 4400/6416, lr 0.010000, loss 1.030864 +INFO 2020-11-25 01:49:17 train.py: 74] Epoch 11, iter 4600/6416, lr 0.010000, loss 1.032961 +INFO 2020-11-25 01:50:32 train.py: 74] Epoch 11, iter 4800/6416, lr 0.010000, loss 1.035965 +INFO 2020-11-25 01:51:47 train.py: 74] Epoch 11, iter 5000/6416, lr 0.010000, loss 1.034689 +INFO 2020-11-25 01:53:02 train.py: 74] Epoch 11, iter 5200/6416, lr 0.010000, loss 1.033343 +INFO 2020-11-25 01:54:17 train.py: 74] Epoch 11, iter 5400/6416, lr 0.010000, loss 1.033642 +INFO 2020-11-25 01:55:32 train.py: 74] Epoch 11, iter 5600/6416, lr 0.010000, loss 1.037396 +INFO 2020-11-25 01:56:47 train.py: 74] Epoch 11, iter 5800/6416, lr 0.010000, loss 1.038487 +INFO 2020-11-25 01:58:02 train.py: 87] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2020-11-25 01:58:02 train.py: 74] Epoch 11, iter 6000/6416, lr 0.010000, loss 1.033763 +INFO 2020-11-25 01:59:17 train.py: 74] Epoch 11, iter 6200/6416, lr 0.010000, loss 1.038661 +INFO 2020-11-25 02:00:32 train.py: 74] Epoch 11, iter 6400/6416, lr 0.010000, loss 1.036838 +INFO 2020-11-25 02:00:38 train.py: 92] Save checkpoint Epoch_11.pt to disk... +INFO 2020-11-25 02:00:40 train.py: 74] Epoch 12, iter 0/6416, lr 0.010000, loss 1.038998 +INFO 2020-11-25 02:01:55 train.py: 74] Epoch 12, iter 200/6416, lr 0.010000, loss 0.995148 +INFO 2020-11-25 02:03:10 train.py: 74] Epoch 12, iter 400/6416, lr 0.010000, loss 0.998618 +INFO 2020-11-25 02:04:25 train.py: 74] Epoch 12, iter 600/6416, lr 0.010000, loss 0.999423 +INFO 2020-11-25 02:05:40 train.py: 74] Epoch 12, iter 800/6416, lr 0.010000, loss 0.999431 +INFO 2020-11-25 02:06:55 train.py: 74] Epoch 12, iter 1000/6416, lr 0.010000, loss 1.000098 +INFO 2020-11-25 02:08:10 train.py: 74] Epoch 12, iter 1200/6416, lr 0.010000, loss 1.004782 +INFO 2020-11-25 02:09:25 train.py: 74] Epoch 12, iter 1400/6416, lr 0.010000, loss 1.002303 +INFO 2020-11-25 02:10:40 train.py: 74] Epoch 12, iter 1600/6416, lr 0.010000, loss 1.004181 +INFO 2020-11-25 02:11:55 train.py: 74] Epoch 12, iter 1800/6416, lr 0.010000, loss 1.006173 +INFO 2020-11-25 02:13:10 train.py: 74] Epoch 12, iter 2000/6416, lr 0.010000, loss 1.006221 +INFO 2020-11-25 02:14:25 train.py: 74] Epoch 12, iter 2200/6416, lr 0.010000, loss 1.009304 +INFO 2020-11-25 02:15:40 train.py: 74] Epoch 12, iter 2400/6416, lr 0.010000, loss 1.012346 +INFO 2020-11-25 02:16:54 train.py: 74] Epoch 12, iter 2600/6416, lr 0.010000, loss 1.009386 +INFO 2020-11-25 02:18:09 train.py: 74] Epoch 12, iter 2800/6416, lr 0.010000, loss 1.011192 +INFO 2020-11-25 02:19:24 train.py: 87] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2020-11-25 02:19:24 train.py: 74] Epoch 12, iter 3000/6416, lr 0.010000, loss 1.017104 +INFO 2020-11-25 02:20:38 train.py: 74] Epoch 12, iter 3200/6416, lr 0.010000, loss 1.015620 +INFO 2020-11-25 02:21:52 train.py: 74] Epoch 12, iter 3400/6416, lr 0.010000, loss 1.017127 +INFO 2020-11-25 02:23:07 train.py: 74] Epoch 12, iter 3600/6416, lr 0.010000, loss 1.015543 +INFO 2020-11-25 02:24:21 train.py: 74] Epoch 12, iter 3800/6416, lr 0.010000, loss 1.014963 +INFO 2020-11-25 02:25:36 train.py: 74] Epoch 12, iter 4000/6416, lr 0.010000, loss 1.019896 +INFO 2020-11-25 02:26:51 train.py: 74] Epoch 12, iter 4200/6416, lr 0.010000, loss 1.017910 +INFO 2020-11-25 02:28:06 train.py: 74] Epoch 12, iter 4400/6416, lr 0.010000, loss 1.021747 +INFO 2020-11-25 02:29:21 train.py: 74] Epoch 12, iter 4600/6416, lr 0.010000, loss 1.020708 +INFO 2020-11-25 02:30:35 train.py: 74] Epoch 12, iter 4800/6416, lr 0.010000, loss 1.020469 +INFO 2020-11-25 02:31:50 train.py: 74] Epoch 12, iter 5000/6416, lr 0.010000, loss 1.021486 +INFO 2020-11-25 02:33:05 train.py: 74] Epoch 12, iter 5200/6416, lr 0.010000, loss 1.022875 +INFO 2020-11-25 02:34:20 train.py: 74] Epoch 12, iter 5400/6416, lr 0.010000, loss 1.025001 +INFO 2020-11-25 02:35:35 train.py: 74] Epoch 12, iter 5600/6416, lr 0.010000, loss 1.023730 +INFO 2020-11-25 02:36:49 train.py: 74] Epoch 12, iter 5800/6416, lr 0.010000, loss 1.026016 +INFO 2020-11-25 02:38:04 train.py: 87] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2020-11-25 02:38:04 train.py: 74] Epoch 12, iter 6000/6416, lr 0.010000, loss 1.026193 +INFO 2020-11-25 02:39:19 train.py: 74] Epoch 12, iter 6200/6416, lr 0.010000, loss 1.031579 +INFO 2020-11-25 02:40:34 train.py: 74] Epoch 12, iter 6400/6416, lr 0.010000, loss 1.024610 +INFO 2020-11-25 02:40:40 train.py: 92] Save checkpoint Epoch_12.pt to disk... +INFO 2020-11-25 02:40:41 train.py: 74] Epoch 13, iter 0/6416, lr 0.001000, loss 1.031203 +INFO 2020-11-25 02:41:56 train.py: 74] Epoch 13, iter 200/6416, lr 0.001000, loss 0.979068 +INFO 2020-11-25 02:43:11 train.py: 74] Epoch 13, iter 400/6416, lr 0.001000, loss 0.972301 +INFO 2020-11-25 02:44:26 train.py: 74] Epoch 13, iter 600/6416, lr 0.001000, loss 0.976219 +INFO 2020-11-25 02:45:41 train.py: 74] Epoch 13, iter 800/6416, lr 0.001000, loss 0.973277 +INFO 2020-11-25 02:46:56 train.py: 74] Epoch 13, iter 1000/6416, lr 0.001000, loss 0.974932 +INFO 2020-11-25 02:48:11 train.py: 74] Epoch 13, iter 1200/6416, lr 0.001000, loss 0.974172 +INFO 2020-11-25 02:49:25 train.py: 74] Epoch 13, iter 1400/6416, lr 0.001000, loss 0.975371 +INFO 2020-11-25 02:50:40 train.py: 74] Epoch 13, iter 1600/6416, lr 0.001000, loss 0.974761 +INFO 2020-11-25 02:51:55 train.py: 74] Epoch 13, iter 1800/6416, lr 0.001000, loss 0.973856 +INFO 2020-11-25 02:53:10 train.py: 74] Epoch 13, iter 2000/6416, lr 0.001000, loss 0.975677 +INFO 2020-11-25 02:54:24 train.py: 74] Epoch 13, iter 2200/6416, lr 0.001000, loss 0.971482 +INFO 2020-11-25 02:55:39 train.py: 74] Epoch 13, iter 2400/6416, lr 0.001000, loss 0.972668 +INFO 2020-11-25 02:56:54 train.py: 74] Epoch 13, iter 2600/6416, lr 0.001000, loss 0.974895 +INFO 2020-11-25 02:58:09 train.py: 74] Epoch 13, iter 2800/6416, lr 0.001000, loss 0.974955 +INFO 2020-11-25 02:59:23 train.py: 87] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2020-11-25 02:59:23 train.py: 74] Epoch 13, iter 3000/6416, lr 0.001000, loss 0.972740 +INFO 2020-11-25 03:00:37 train.py: 74] Epoch 13, iter 3200/6416, lr 0.001000, loss 0.973307 +INFO 2020-11-25 03:01:51 train.py: 74] Epoch 13, iter 3400/6416, lr 0.001000, loss 0.976351 +INFO 2020-11-25 03:03:05 train.py: 74] Epoch 13, iter 3600/6416, lr 0.001000, loss 0.978493 +INFO 2020-11-25 03:04:19 train.py: 74] Epoch 13, iter 3800/6416, lr 0.001000, loss 0.973779 +INFO 2020-11-25 03:05:33 train.py: 74] Epoch 13, iter 4000/6416, lr 0.001000, loss 0.976580 +INFO 2020-11-25 03:06:47 train.py: 74] Epoch 13, iter 4200/6416, lr 0.001000, loss 0.971437 +INFO 2020-11-25 03:08:01 train.py: 74] Epoch 13, iter 4400/6416, lr 0.001000, loss 0.974483 +INFO 2020-11-25 03:09:15 train.py: 74] Epoch 13, iter 4600/6416, lr 0.001000, loss 0.973376 +INFO 2020-11-25 03:10:29 train.py: 74] Epoch 13, iter 4800/6416, lr 0.001000, loss 0.971711 +INFO 2020-11-25 03:11:43 train.py: 74] Epoch 13, iter 5000/6416, lr 0.001000, loss 0.974456 +INFO 2020-11-25 03:12:57 train.py: 74] Epoch 13, iter 5200/6416, lr 0.001000, loss 0.971446 +INFO 2020-11-25 03:14:11 train.py: 74] Epoch 13, iter 5400/6416, lr 0.001000, loss 0.973631 +INFO 2020-11-25 03:15:25 train.py: 74] Epoch 13, iter 5600/6416, lr 0.001000, loss 0.974200 +INFO 2020-11-25 03:16:39 train.py: 74] Epoch 13, iter 5800/6416, lr 0.001000, loss 0.973257 +INFO 2020-11-25 03:17:53 train.py: 87] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2020-11-25 03:17:53 train.py: 74] Epoch 13, iter 6000/6416, lr 0.001000, loss 0.973297 +INFO 2020-11-25 03:19:08 train.py: 74] Epoch 13, iter 6200/6416, lr 0.001000, loss 0.977037 +INFO 2020-11-25 03:20:23 train.py: 74] Epoch 13, iter 6400/6416, lr 0.001000, loss 0.978571 +INFO 2020-11-25 03:20:28 train.py: 92] Save checkpoint Epoch_13.pt to disk... +INFO 2020-11-25 03:20:30 train.py: 74] Epoch 14, iter 0/6416, lr 0.001000, loss 0.975836 +INFO 2020-11-25 03:21:45 train.py: 74] Epoch 14, iter 200/6416, lr 0.001000, loss 0.965479 +INFO 2020-11-25 03:23:00 train.py: 74] Epoch 14, iter 400/6416, lr 0.001000, loss 0.970131 +INFO 2020-11-25 03:24:16 train.py: 74] Epoch 14, iter 600/6416, lr 0.001000, loss 0.966709 +INFO 2020-11-25 03:25:31 train.py: 74] Epoch 14, iter 800/6416, lr 0.001000, loss 0.969352 +INFO 2020-11-25 03:26:46 train.py: 74] Epoch 14, iter 1000/6416, lr 0.001000, loss 0.967796 +INFO 2020-11-25 03:28:01 train.py: 74] Epoch 14, iter 1200/6416, lr 0.001000, loss 0.972505 +INFO 2020-11-25 03:29:16 train.py: 74] Epoch 14, iter 1400/6416, lr 0.001000, loss 0.968585 +INFO 2020-11-25 03:30:30 train.py: 74] Epoch 14, iter 1600/6416, lr 0.001000, loss 0.970320 +INFO 2020-11-25 03:31:45 train.py: 74] Epoch 14, iter 1800/6416, lr 0.001000, loss 0.966743 +INFO 2020-11-25 03:33:00 train.py: 74] Epoch 14, iter 2000/6416, lr 0.001000, loss 0.970896 +INFO 2020-11-25 03:34:15 train.py: 74] Epoch 14, iter 2200/6416, lr 0.001000, loss 0.969638 +INFO 2020-11-25 03:35:30 train.py: 74] Epoch 14, iter 2400/6416, lr 0.001000, loss 0.970121 +INFO 2020-11-25 03:36:45 train.py: 74] Epoch 14, iter 2600/6416, lr 0.001000, loss 0.972427 +INFO 2020-11-25 03:38:00 train.py: 74] Epoch 14, iter 2800/6416, lr 0.001000, loss 0.971366 +INFO 2020-11-25 03:39:15 train.py: 87] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2020-11-25 03:39:15 train.py: 74] Epoch 14, iter 3000/6416, lr 0.001000, loss 0.973161 +INFO 2020-11-25 03:40:30 train.py: 74] Epoch 14, iter 3200/6416, lr 0.001000, loss 0.967840 +INFO 2020-11-25 03:41:45 train.py: 74] Epoch 14, iter 3400/6416, lr 0.001000, loss 0.972479 +INFO 2020-11-25 03:43:00 train.py: 74] Epoch 14, iter 3600/6416, lr 0.001000, loss 0.970489 +INFO 2020-11-25 03:44:15 train.py: 74] Epoch 14, iter 3800/6416, lr 0.001000, loss 0.975154 +INFO 2020-11-25 03:45:30 train.py: 74] Epoch 14, iter 4000/6416, lr 0.001000, loss 0.973304 +INFO 2020-11-25 03:46:44 train.py: 74] Epoch 14, iter 4200/6416, lr 0.001000, loss 0.970431 +INFO 2020-11-25 03:48:00 train.py: 74] Epoch 14, iter 4400/6416, lr 0.001000, loss 0.973954 +INFO 2020-11-25 03:49:14 train.py: 74] Epoch 14, iter 4600/6416, lr 0.001000, loss 0.972537 +INFO 2020-11-25 03:50:29 train.py: 74] Epoch 14, iter 4800/6416, lr 0.001000, loss 0.972590 +INFO 2020-11-25 03:51:44 train.py: 74] Epoch 14, iter 5000/6416, lr 0.001000, loss 0.970980 +INFO 2020-11-25 03:52:59 train.py: 74] Epoch 14, iter 5200/6416, lr 0.001000, loss 0.970028 +INFO 2020-11-25 03:54:14 train.py: 74] Epoch 14, iter 5400/6416, lr 0.001000, loss 0.972340 +INFO 2020-11-25 03:55:29 train.py: 74] Epoch 14, iter 5600/6416, lr 0.001000, loss 0.970009 +INFO 2020-11-25 03:56:43 train.py: 74] Epoch 14, iter 5800/6416, lr 0.001000, loss 0.973213 +INFO 2020-11-25 03:57:58 train.py: 87] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2020-11-25 03:57:59 train.py: 74] Epoch 14, iter 6000/6416, lr 0.001000, loss 0.973166 +INFO 2020-11-25 03:59:13 train.py: 74] Epoch 14, iter 6200/6416, lr 0.001000, loss 0.974608 +INFO 2020-11-25 04:00:27 train.py: 74] Epoch 14, iter 6400/6416, lr 0.001000, loss 0.975080 +INFO 2020-11-25 04:00:32 train.py: 92] Save checkpoint Epoch_14.pt to disk... +INFO 2020-11-25 04:00:34 train.py: 74] Epoch 15, iter 0/6416, lr 0.001000, loss 0.979018 +INFO 2020-11-25 04:01:49 train.py: 74] Epoch 15, iter 200/6416, lr 0.001000, loss 0.963979 +INFO 2020-11-25 04:03:04 train.py: 74] Epoch 15, iter 400/6416, lr 0.001000, loss 0.966317 +INFO 2020-11-25 04:04:19 train.py: 74] Epoch 15, iter 600/6416, lr 0.001000, loss 0.967784 +INFO 2020-11-25 04:05:34 train.py: 74] Epoch 15, iter 800/6416, lr 0.001000, loss 0.967673 +INFO 2020-11-25 04:06:49 train.py: 74] Epoch 15, iter 1000/6416, lr 0.001000, loss 0.969755 +INFO 2020-11-25 04:08:03 train.py: 74] Epoch 15, iter 1200/6416, lr 0.001000, loss 0.968376 +INFO 2020-11-25 04:09:18 train.py: 74] Epoch 15, iter 1400/6416, lr 0.001000, loss 0.964123 +INFO 2020-11-25 04:10:33 train.py: 74] Epoch 15, iter 1600/6416, lr 0.001000, loss 0.969228 +INFO 2020-11-25 04:11:47 train.py: 74] Epoch 15, iter 1800/6416, lr 0.001000, loss 0.967376 +INFO 2020-11-25 04:13:02 train.py: 74] Epoch 15, iter 2000/6416, lr 0.001000, loss 0.969040 +INFO 2020-11-25 04:14:17 train.py: 74] Epoch 15, iter 2200/6416, lr 0.001000, loss 0.968344 +INFO 2020-11-25 04:15:31 train.py: 74] Epoch 15, iter 2400/6416, lr 0.001000, loss 0.970091 +INFO 2020-11-25 04:16:46 train.py: 74] Epoch 15, iter 2600/6416, lr 0.001000, loss 0.970169 +INFO 2020-11-25 04:18:01 train.py: 74] Epoch 15, iter 2800/6416, lr 0.001000, loss 0.966720 +INFO 2020-11-25 04:19:15 train.py: 87] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2020-11-25 04:19:15 train.py: 74] Epoch 15, iter 3000/6416, lr 0.001000, loss 0.971959 +INFO 2020-11-25 04:20:30 train.py: 74] Epoch 15, iter 3200/6416, lr 0.001000, loss 0.966358 +INFO 2020-11-25 04:21:45 train.py: 74] Epoch 15, iter 3400/6416, lr 0.001000, loss 0.969741 +INFO 2020-11-25 04:22:59 train.py: 74] Epoch 15, iter 3600/6416, lr 0.001000, loss 0.971326 +INFO 2020-11-25 04:24:14 train.py: 74] Epoch 15, iter 3800/6416, lr 0.001000, loss 0.964816 +INFO 2020-11-25 04:25:29 train.py: 74] Epoch 15, iter 4000/6416, lr 0.001000, loss 0.969996 +INFO 2020-11-25 04:26:44 train.py: 74] Epoch 15, iter 4200/6416, lr 0.001000, loss 0.968423 +INFO 2020-11-25 04:27:58 train.py: 74] Epoch 15, iter 4400/6416, lr 0.001000, loss 0.971637 +INFO 2020-11-25 04:29:13 train.py: 74] Epoch 15, iter 4600/6416, lr 0.001000, loss 0.971576 +INFO 2020-11-25 04:30:28 train.py: 74] Epoch 15, iter 4800/6416, lr 0.001000, loss 0.976166 +INFO 2020-11-25 04:31:43 train.py: 74] Epoch 15, iter 5000/6416, lr 0.001000, loss 0.972658 +INFO 2020-11-25 04:32:57 train.py: 74] Epoch 15, iter 5200/6416, lr 0.001000, loss 0.968336 +INFO 2020-11-25 04:34:12 train.py: 74] Epoch 15, iter 5400/6416, lr 0.001000, loss 0.972272 +INFO 2020-11-25 04:35:27 train.py: 74] Epoch 15, iter 5600/6416, lr 0.001000, loss 0.970980 +INFO 2020-11-25 04:36:42 train.py: 74] Epoch 15, iter 5800/6416, lr 0.001000, loss 0.971073 +INFO 2020-11-25 04:37:57 train.py: 87] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2020-11-25 04:37:57 train.py: 74] Epoch 15, iter 6000/6416, lr 0.001000, loss 0.973298 +INFO 2020-11-25 04:39:12 train.py: 74] Epoch 15, iter 6200/6416, lr 0.001000, loss 0.968078 +INFO 2020-11-25 04:40:27 train.py: 74] Epoch 15, iter 6400/6416, lr 0.001000, loss 0.970595 +INFO 2020-11-25 04:40:33 train.py: 92] Save checkpoint Epoch_15.pt to disk... +INFO 2020-11-25 04:40:34 train.py: 74] Epoch 16, iter 0/6416, lr 0.000100, loss 0.984895 +INFO 2020-11-25 04:41:49 train.py: 74] Epoch 16, iter 200/6416, lr 0.000100, loss 0.961366 +INFO 2020-11-25 04:43:03 train.py: 74] Epoch 16, iter 400/6416, lr 0.000100, loss 0.966711 +INFO 2020-11-25 04:44:17 train.py: 74] Epoch 16, iter 600/6416, lr 0.000100, loss 0.964994 +INFO 2020-11-25 04:45:32 train.py: 74] Epoch 16, iter 800/6416, lr 0.000100, loss 0.961280 +INFO 2020-11-25 04:46:46 train.py: 74] Epoch 16, iter 1000/6416, lr 0.000100, loss 0.963230 +INFO 2020-11-25 04:48:00 train.py: 74] Epoch 16, iter 1200/6416, lr 0.000100, loss 0.964989 +INFO 2020-11-25 04:49:14 train.py: 74] Epoch 16, iter 1400/6416, lr 0.000100, loss 0.962194 +INFO 2020-11-25 04:50:28 train.py: 74] Epoch 16, iter 1600/6416, lr 0.000100, loss 0.962531 +INFO 2020-11-25 04:51:43 train.py: 74] Epoch 16, iter 1800/6416, lr 0.000100, loss 0.963279 +INFO 2020-11-25 04:52:57 train.py: 74] Epoch 16, iter 2000/6416, lr 0.000100, loss 0.962168 +INFO 2020-11-25 04:54:11 train.py: 74] Epoch 16, iter 2200/6416, lr 0.000100, loss 0.965057 +INFO 2020-11-25 04:55:25 train.py: 74] Epoch 16, iter 2400/6416, lr 0.000100, loss 0.964914 +INFO 2020-11-25 04:56:39 train.py: 74] Epoch 16, iter 2600/6416, lr 0.000100, loss 0.963014 +INFO 2020-11-25 04:57:54 train.py: 74] Epoch 16, iter 2800/6416, lr 0.000100, loss 0.966069 +INFO 2020-11-25 04:59:08 train.py: 87] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2020-11-25 04:59:08 train.py: 74] Epoch 16, iter 3000/6416, lr 0.000100, loss 0.964854 +INFO 2020-11-25 05:00:23 train.py: 74] Epoch 16, iter 3200/6416, lr 0.000100, loss 0.966403 +INFO 2020-11-25 05:01:38 train.py: 74] Epoch 16, iter 3400/6416, lr 0.000100, loss 0.965760 +INFO 2020-11-25 05:02:53 train.py: 74] Epoch 16, iter 3600/6416, lr 0.000100, loss 0.964139 +INFO 2020-11-25 05:04:08 train.py: 74] Epoch 16, iter 3800/6416, lr 0.000100, loss 0.963679 +INFO 2020-11-25 05:05:23 train.py: 74] Epoch 16, iter 4000/6416, lr 0.000100, loss 0.965509 +INFO 2020-11-25 05:06:38 train.py: 74] Epoch 16, iter 4200/6416, lr 0.000100, loss 0.965264 +INFO 2020-11-25 05:07:53 train.py: 74] Epoch 16, iter 4400/6416, lr 0.000100, loss 0.965149 +INFO 2020-11-25 05:09:08 train.py: 74] Epoch 16, iter 4600/6416, lr 0.000100, loss 0.965419 +INFO 2020-11-25 05:10:23 train.py: 74] Epoch 16, iter 4800/6416, lr 0.000100, loss 0.962386 +INFO 2020-11-25 05:11:38 train.py: 74] Epoch 16, iter 5000/6416, lr 0.000100, loss 0.963995 +INFO 2020-11-25 05:12:53 train.py: 74] Epoch 16, iter 5200/6416, lr 0.000100, loss 0.964670 +INFO 2020-11-25 05:14:08 train.py: 74] Epoch 16, iter 5400/6416, lr 0.000100, loss 0.964155 +INFO 2020-11-25 05:15:23 train.py: 74] Epoch 16, iter 5600/6416, lr 0.000100, loss 0.961789 +INFO 2020-11-25 05:16:38 train.py: 74] Epoch 16, iter 5800/6416, lr 0.000100, loss 0.962934 +INFO 2020-11-25 05:17:52 train.py: 87] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2020-11-25 05:17:53 train.py: 74] Epoch 16, iter 6000/6416, lr 0.000100, loss 0.965471 +INFO 2020-11-25 05:19:08 train.py: 74] Epoch 16, iter 6200/6416, lr 0.000100, loss 0.965259 +INFO 2020-11-25 05:20:23 train.py: 74] Epoch 16, iter 6400/6416, lr 0.000100, loss 0.965570 +INFO 2020-11-25 05:20:29 train.py: 92] Save checkpoint Epoch_16.pt to disk... +INFO 2020-11-25 05:20:30 train.py: 74] Epoch 17, iter 0/6416, lr 0.000100, loss 0.981509 +INFO 2020-11-25 05:21:45 train.py: 74] Epoch 17, iter 200/6416, lr 0.000100, loss 0.962950 +INFO 2020-11-25 05:23:00 train.py: 74] Epoch 17, iter 400/6416, lr 0.000100, loss 0.963583 +INFO 2020-11-25 05:24:15 train.py: 74] Epoch 17, iter 600/6416, lr 0.000100, loss 0.963867 +INFO 2020-11-25 05:25:30 train.py: 74] Epoch 17, iter 800/6416, lr 0.000100, loss 0.966846 +INFO 2020-11-25 05:26:45 train.py: 74] Epoch 17, iter 1000/6416, lr 0.000100, loss 0.962488 +INFO 2020-11-25 05:27:59 train.py: 74] Epoch 17, iter 1200/6416, lr 0.000100, loss 0.962950 +INFO 2020-11-25 05:29:14 train.py: 74] Epoch 17, iter 1400/6416, lr 0.000100, loss 0.963862 +INFO 2020-11-25 05:30:29 train.py: 74] Epoch 17, iter 1600/6416, lr 0.000100, loss 0.962231 +INFO 2020-11-25 05:31:43 train.py: 74] Epoch 17, iter 1800/6416, lr 0.000100, loss 0.962685 +INFO 2020-11-25 05:32:58 train.py: 74] Epoch 17, iter 2000/6416, lr 0.000100, loss 0.961242 +INFO 2020-11-25 05:34:12 train.py: 74] Epoch 17, iter 2200/6416, lr 0.000100, loss 0.961981 +INFO 2020-11-25 05:35:27 train.py: 74] Epoch 17, iter 2400/6416, lr 0.000100, loss 0.966319 +INFO 2020-11-25 05:36:42 train.py: 74] Epoch 17, iter 2600/6416, lr 0.000100, loss 0.967487 +INFO 2020-11-25 05:37:56 train.py: 74] Epoch 17, iter 2800/6416, lr 0.000100, loss 0.964566 +INFO 2020-11-25 05:39:10 train.py: 87] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2020-11-25 05:39:11 train.py: 74] Epoch 17, iter 3000/6416, lr 0.000100, loss 0.962629 +INFO 2020-11-25 05:40:25 train.py: 74] Epoch 17, iter 3200/6416, lr 0.000100, loss 0.961897 +INFO 2020-11-25 05:41:38 train.py: 74] Epoch 17, iter 3400/6416, lr 0.000100, loss 0.963734 +INFO 2020-11-25 05:42:52 train.py: 74] Epoch 17, iter 3600/6416, lr 0.000100, loss 0.964792 +INFO 2020-11-25 05:44:06 train.py: 74] Epoch 17, iter 3800/6416, lr 0.000100, loss 0.960531 +INFO 2020-11-25 05:45:20 train.py: 74] Epoch 17, iter 4000/6416, lr 0.000100, loss 0.962284 +INFO 2020-11-25 05:46:34 train.py: 74] Epoch 17, iter 4200/6416, lr 0.000100, loss 0.964726 +INFO 2020-11-25 05:47:48 train.py: 74] Epoch 17, iter 4400/6416, lr 0.000100, loss 0.963413 +INFO 2020-11-25 05:49:02 train.py: 74] Epoch 17, iter 4600/6416, lr 0.000100, loss 0.961988 +INFO 2020-11-25 05:50:16 train.py: 74] Epoch 17, iter 4800/6416, lr 0.000100, loss 0.965384 +INFO 2020-11-25 05:51:30 train.py: 74] Epoch 17, iter 5000/6416, lr 0.000100, loss 0.962076 +INFO 2020-11-25 05:52:44 train.py: 74] Epoch 17, iter 5200/6416, lr 0.000100, loss 0.964248 +INFO 2020-11-25 05:53:58 train.py: 74] Epoch 17, iter 5400/6416, lr 0.000100, loss 0.968838 +INFO 2020-11-25 05:55:12 train.py: 74] Epoch 17, iter 5600/6416, lr 0.000100, loss 0.964142 +INFO 2020-11-25 05:56:26 train.py: 74] Epoch 17, iter 5800/6416, lr 0.000100, loss 0.962927 +INFO 2020-11-25 05:57:40 train.py: 87] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2020-11-25 05:57:40 train.py: 74] Epoch 17, iter 6000/6416, lr 0.000100, loss 0.966201 +INFO 2020-11-25 05:58:55 train.py: 74] Epoch 17, iter 6200/6416, lr 0.000100, loss 0.963357 +INFO 2020-11-25 06:00:10 train.py: 74] Epoch 17, iter 6400/6416, lr 0.000100, loss 0.966563 +INFO 2020-11-25 06:00:16 train.py: 92] Save checkpoint Epoch_17.pt to disk... +INFO 2020-11-25 06:00:16 train.py: 175] Optimization done! diff --git a/bob/bio/facexzoo/models/heads/AdaM-Softmax/.gitkeep b/bob/bio/facexzoo/models/heads/AdaM-Softmax/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..3ea88953ce786a339658aaed31e2aaedec7c61ee --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_agedb.txt @@ -0,0 +1,45 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17_batch_5999.pt | 0.9601666666666666 | 0.003820429165989821 | +| Epoch_16.pt | 0.9599999999999997 | 0.0038490017945975036 | +| Epoch_17.pt | 0.9596666666666666 | 0.004316205466567778 | +| Epoch_14_batch_2999.pt | 0.9595 | 0.00348763247015989 | +| Epoch_13_batch_2999.pt | 0.9594999999999999 | 0.003592258480072719 | +| Epoch_11_batch_5999.pt | 0.9591666666666667 | 0.0041518254203407505 | +| Epoch_15_batch_5999.pt | 0.9591666666666667 | 0.003687231890232251 | +| Epoch_16_batch_2999.pt | 0.959 | 0.003906310184721548 | +| Epoch_12.pt | 0.9585000000000001 | 0.003705601365700504 | +| Epoch_13_batch_5999.pt | 0.9585000000000001 | 0.003884521356980737 | +| Epoch_15_batch_2999.pt | 0.9583333333333334 | 0.003849001794597506 | +| Epoch_14.pt | 0.9581666666666667 | 0.0036128201084198036 | +| Epoch_13.pt | 0.9580000000000002 | 0.0038554114606438846 | +| Epoch_16_batch_5999.pt | 0.958 | 0.003798960221617509 | +| Epoch_15.pt | 0.9578333333333333 | 0.0038413764251250043 | +| Epoch_14_batch_5999.pt | 0.9576666666666667 | 0.004007708621526989 | +| Epoch_10.pt | 0.9573333333333334 | 0.003922080576605068 | +| Epoch_17_batch_2999.pt | 0.9573333333333334 | 0.0038022085849486 | +| Epoch_10_batch_5999.pt | 0.9561666666666667 | 0.003952261424851649 | +| Epoch_11.pt | 0.9559999999999998 | 0.003653173827283022 | +| Epoch_12_batch_2999.pt | 0.9553333333333333 | 0.00354686437766942 | +| Epoch_11_batch_2999.pt | 0.9551666666666667 | 0.003713921091857395 | +| Epoch_12_batch_5999.pt | 0.9548333333333332 | 0.003939746811442539 | +| Epoch_10_batch_2999.pt | 0.9543333333333333 | 0.004000000000000002 | +| Epoch_8_batch_2999.pt | 0.9448333333333334 | 0.004604412805554102 | +| Epoch_9.pt | 0.9445 | 0.004766459461955925 | +| Epoch_6_batch_2999.pt | 0.9436666666666665 | 0.003208784239598587 | +| Epoch_8_batch_5999.pt | 0.9428333333333334 | 0.003693922268862062 | +| Epoch_9_batch_5999.pt | 0.9423333333333332 | 0.004793256580027331 | +| Epoch_7_batch_5999.pt | 0.9404999999999999 | 0.00380099077402163 | +| Epoch_6_batch_5999.pt | 0.9398333333333333 | 0.0039397468114425295 | +| Epoch_9_batch_2999.pt | 0.9398333333333333 | 0.0044336674894952825 | +| Epoch_7_batch_2999.pt | 0.9393333333333332 | 0.004319064827905956 | +| Epoch_5_batch_5999.pt | 0.9366666666666665 | 0.004674596437325029 | +| Epoch_5_batch_2999.pt | 0.9351666666666667 | 0.0037056013657005057 | +| Epoch_4_batch_5999.pt | 0.9349999999999999 | 0.0043319085976928655 | +| Epoch_5.pt | 0.9349999999999999 | 0.004388537257362552 | +| Epoch_8.pt | 0.9331666666666667 | 0.005045778090959795 | +| Epoch_6.pt | 0.933 | 0.004316205466567779 | +| Epoch_3_batch_5999.pt | 0.9329999999999998 | 0.005367943257413852 | +| Epoch_4_batch_2999.pt | 0.9301666666666668 | 0.005451526006768118 | +| Epoch_4.pt | 0.9279999999999999 | 0.006054281211477906 | diff --git a/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..4417fe0c488e0f278812eeac5ec15e9e670cd695 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_calfw.txt @@ -0,0 +1,44 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_2999.pt | 0.9350000000000002 | 0.0037515428924742495 | +| Epoch_12.pt | 0.9348333333333333 | 0.004130958098893618 | +| Epoch_16.pt | 0.9346666666666665 | 0.0039659040661277145 | +| Epoch_17_batch_2999.pt | 0.9346666666666665 | 0.004073400617738523 | +| Epoch_13.pt | 0.9343333333333333 | 0.003644715437079272 | +| Epoch_15_batch_5999.pt | 0.9343333333333333 | 0.003426476432246502 | +| Epoch_13_batch_5999.pt | 0.9341666666666667 | 0.004121982622566562 | +| Epoch_16_batch_2999.pt | 0.9339999999999998 | 0.003984538017120244 | +| Epoch_15.pt | 0.9336666666666668 | 0.003871389197818742 | +| Epoch_12_batch_2999.pt | 0.9336666666666666 | 0.00370851539295081 | +| Epoch_14_batch_5999.pt | 0.9336666666666666 | 0.003871389197818743 | +| Epoch_10_batch_2999.pt | 0.9333333333333333 | 0.0038086970002228064 | +| Epoch_17.pt | 0.9333333333333333 | 0.0036514837167011065 | +| Epoch_16_batch_5999.pt | 0.9333333333333332 | 0.003726779962499648 | +| Epoch_11_batch_2999.pt | 0.933 | 0.0038151743807532004 | +| Epoch_11_batch_5999.pt | 0.933 | 0.00417813237265848 | +| Epoch_14.pt | 0.9326666666666668 | 0.003471222078180736 | +| Epoch_12_batch_5999.pt | 0.9324999999999999 | 0.004069231128273329 | +| Epoch_13_batch_2999.pt | 0.9324999999999999 | 0.004106979906283598 | +| Epoch_10_batch_5999.pt | 0.9323333333333335 | 0.0038264834128272315 | +| Epoch_14_batch_2999.pt | 0.9318333333333333 | 0.004009633461281366 | +| Epoch_17_batch_5999.pt | 0.9313333333333335 | 0.004042978977480057 | +| Epoch_10.pt | 0.9305 | 0.0037437190197403204 | +| Epoch_11.pt | 0.9303333333333335 | 0.0032470309324894365 | +| Epoch_8_batch_2999.pt | 0.9258333333333333 | 0.004210876569252709 | +| Epoch_9_batch_2999.pt | 0.924 | 0.0039063101847215415 | +| Epoch_9_batch_5999.pt | 0.9235 | 0.0046044128055541065 | +| Epoch_7_batch_2999.pt | 0.9205 | 0.004224049312282305 | +| Epoch_6_batch_5999.pt | 0.9196666666666667 | 0.0038554114606438906 | +| Epoch_7_batch_5999.pt | 0.9191666666666667 | 0.003938179688543849 | +| Epoch_9.pt | 0.9185000000000001 | 0.0030066798061632923 | +| Epoch_6_batch_2999.pt | 0.9184999999999999 | 0.004313701970623148 | +| Epoch_8_batch_5999.pt | 0.9176666666666667 | 0.004708804466759359 | +| Epoch_5_batch_5999.pt | 0.9164999999999999 | 0.0036213529972738464 | +| Epoch_5_batch_2999.pt | 0.9161666666666667 | 0.0038892856940415887 | +| Epoch_6.pt | 0.915 | 0.00493788578739755 | +| Epoch_4_batch_2999.pt | 0.9143333333333332 | 0.004876246279442591 | +| Epoch_4_batch_5999.pt | 0.9141666666666666 | 0.004576172857824694 | +| Epoch_3_batch_2999.pt | 0.9131666666666668 | 0.004489012649559056 | +| Epoch_3_batch_5999.pt | 0.9123333333333333 | 0.004438885412319597 | +| Epoch_8.pt | 0.9116666666666667 | 0.0032203059435976585 | diff --git a/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..77c0c59c351833d94f6c957b264354a0f1eca699 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_cplfw.txt @@ -0,0 +1,43 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_2999.pt | 0.8385 | 0.005684340629753094 | +| Epoch_14.pt | 0.8375 | 0.0053934688441521095 | +| Epoch_14_batch_5999.pt | 0.8373333333333333 | 0.006000000000000003 | +| Epoch_16_batch_5999.pt | 0.8371666666666666 | 0.0060402456821916275 | +| Epoch_17_batch_2999.pt | 0.8363333333333335 | 0.005777777777777781 | +| Epoch_17.pt | 0.8361666666666666 | 0.006671526006788792 | +| Epoch_13.pt | 0.8351666666666666 | 0.0052260624178306365 | +| Epoch_15_batch_5999.pt | 0.8351666666666666 | 0.0055413707801821735 | +| Epoch_17_batch_5999.pt | 0.8348333333333333 | 0.0057544936815382974 | +| Epoch_13_batch_2999.pt | 0.834 | 0.005438772555786846 | +| Epoch_13_batch_5999.pt | 0.834 | 0.0049328828623162475 | +| Epoch_15_batch_2999.pt | 0.8338333333333334 | 0.0059111215538754855 | +| Epoch_16.pt | 0.8338333333333333 | 0.005900669558157607 | +| Epoch_12_batch_2999.pt | 0.8335000000000001 | 0.005829098992273877 | +| Epoch_14_batch_2999.pt | 0.8328333333333333 | 0.005660399584551444 | +| Epoch_15.pt | 0.8328333333333333 | 0.005409468151215271 | +| Epoch_12_batch_5999.pt | 0.8326666666666667 | 0.005710073403346489 | +| Epoch_11_batch_5999.pt | 0.8311666666666667 | 0.005784451274166793 | +| Epoch_11_batch_2999.pt | 0.829 | 0.00595870563457419 | +| Epoch_10.pt | 0.8288333333333332 | 0.0051162413865967985 | +| Epoch_10_batch_5999.pt | 0.8275 | 0.006296432460401289 | +| Epoch_11.pt | 0.8275 | 0.0063452616714373905 | +| Epoch_12.pt | 0.8273333333333334 | 0.00491407653055466 | +| Epoch_10_batch_2999.pt | 0.8258333333333333 | 0.0064274200419034136 | +| Epoch_9_batch_5999.pt | 0.8066666666666666 | 0.005868938953886336 | +| Epoch_8_batch_2999.pt | 0.8063333333333332 | 0.006200358412579425 | +| Epoch_7_batch_2999.pt | 0.8059999999999998 | 0.007462664271203106 | +| Epoch_9_batch_2999.pt | 0.8056666666666666 | 0.007931808132255443 | +| Epoch_7_batch_5999.pt | 0.8035 | 0.00650948974883005 | +| Epoch_6_batch_5999.pt | 0.8005000000000001 | 0.007205322107072427 | +| Epoch_8_batch_5999.pt | 0.8003333333333333 | 0.006642548967837832 | +| Epoch_9.pt | 0.8003333333333333 | 0.007113714801115158 | +| Epoch_5.pt | 0.799 | 0.006555555555555556 | +| Epoch_6_batch_2999.pt | 0.7979999999999999 | 0.007551469483353864 | +| Epoch_5_batch_2999.pt | 0.7963333333333333 | 0.006323579233392089 | +| Epoch_5_batch_5999.pt | 0.7959999999999999 | 0.005283330412430556 | +| Epoch_4_batch_2999.pt | 0.7945000000000001 | 0.006921294747925014 | +| Epoch_3_batch_5999.pt | 0.7914999999999999 | 0.007819136070493272 | +| Epoch_4_batch_5999.pt | 0.7898333333333334 | 0.005897530347317501 | +| Epoch_8.pt | 0.7885 | 0.00936387199642499 | diff --git a/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..279aeeac9e06f700967e10ac05520ab92cf4abee --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_11_batch_2999.pt | 0.9958333333333333 | 0.0011180339887498947 | +| Epoch_12_batch_5999.pt | 0.9958333333333333 | 0.0009702360664762748 | +| Epoch_13_batch_2999.pt | 0.9956666666666667 | 0.0010599324460188284 | +| Epoch_14.pt | 0.9956666666666665 | 0.0010304020550550757 | +| Epoch_13.pt | 0.9955 | 0.0009953596037316052 | +| Epoch_12.pt | 0.9953333333333332 | 0.0010772621905369623 | +| Epoch_16.pt | 0.9951666666666666 | 0.001177201116689836 | +| Epoch_17_batch_5999.pt | 0.9951666666666666 | 0.0011506841765115488 | +| Epoch_14_batch_2999.pt | 0.9949999999999999 | 0.0011915339216404008 | +| Epoch_15_batch_5999.pt | 0.9949999999999999 | 0.0011653431646334986 | +| Epoch_16_batch_2999.pt | 0.9949999999999999 | 0.0011653431646334986 | +| Epoch_8_batch_2999.pt | 0.9948333333333335 | 0.0010671873729054724 | +| Epoch_15_batch_2999.pt | 0.9948333333333335 | 0.0010957268290731133 | +| Epoch_11.pt | 0.9948333333333332 | 0.0012031337682059844 | +| Epoch_12_batch_2999.pt | 0.9948333333333332 | 0.001228519132638664 | +| Epoch_13_batch_5999.pt | 0.9948333333333332 | 0.00112354157867537 | +| Epoch_15.pt | 0.9948333333333332 | 0.0012777777777777798 | +| Epoch_17_batch_2999.pt | 0.9948333333333332 | 0.001228519132638664 | +| Epoch_9_batch_5999.pt | 0.9946666666666667 | 0.001160034056545619 | +| Epoch_14_batch_5999.pt | 0.9946666666666667 | 0.0013099806802835115 | +| Epoch_11_batch_5999.pt | 0.9945000000000002 | 0.0011928283640879947 | +| Epoch_10_batch_2999.pt | 0.9945 | 0.0011928283640879975 | +| Epoch_9_batch_2999.pt | 0.9944999999999998 | 0.0011928283640879926 | +| Epoch_17.pt | 0.9944999999999998 | 0.0013619611857923642 | +| Epoch_8_batch_5999.pt | 0.9943333333333333 | 0.0010000000000000005 | +| Epoch_10_batch_5999.pt | 0.9943333333333333 | 0.0012222222222222235 | +| Epoch_9.pt | 0.9941666666666666 | 0.0010900787150193644 | +| Epoch_16_batch_5999.pt | 0.9941666666666666 | 0.001320540480444972 | +| Epoch_5_batch_2999.pt | 0.994 | 0.0014315665251916822 | +| Epoch_10.pt | 0.994 | 0.0012957670877434006 | +| Epoch_4_batch_2999.pt | 0.9933333333333334 | 0.0014054567378526145 | +| Epoch_3_batch_2999.pt | 0.9931666666666666 | 0.0012777777777777755 | +| Epoch_7_batch_2999.pt | 0.9931666666666666 | 0.00127777777777778 | +| Epoch_4_batch_5999.pt | 0.993 | 0.001356283957303744 | +| Epoch_5.pt | 0.993 | 0.001286204100310026 | +| Epoch_6_batch_5999.pt | 0.993 | 0.0011331154474650564 | +| Epoch_7_batch_5999.pt | 0.9926666666666668 | 0.0014740554623801788 | +| Epoch_5_batch_5999.pt | 0.9925 | 0.0011180339887498921 | +| Epoch_6.pt | 0.9925 | 0.0014540280364780456 | +| Epoch_6_batch_2999.pt | 0.9921666666666666 | 0.001428328903575827 | +| Epoch_8.pt | 0.9921666666666666 | 0.0014065543223524709 | +| Epoch_4.pt | 0.992 | 0.0016063146994223286 | +| Epoch_7.pt | 0.992 | 0.0016063146994223327 | +| Epoch_3_batch_5999.pt | 0.9916666666666668 | 0.0014487116456005907 | +| Epoch_2_batch_5999.pt | 0.9914999999999999 | 0.0012777777777777809 | +| Epoch_2_batch_2999.pt | 0.9913333333333334 | 0.0011863420280034743 | +| Epoch_3.pt | 0.9908333333333333 | 0.0017258027296676729 | +| Epoch_2.pt | 0.9901666666666668 | 0.0012285191326386622 | +| Epoch_1_batch_5999.pt | 0.9896666666666667 | 0.0013099806802835065 | +| Epoch_1.pt | 0.9871666666666666 | 0.0020038543107634924 | +| Epoch_1_batch_2999.pt | 0.9831666666666667 | 0.0021147629234082527 | +| Epoch_0.pt | 0.9744999999999999 | 0.002485141027371667 | +| Epoch_0_batch_5999.pt | 0.9718333333333333 | 0.0016377114414426305 | +| Epoch_0_batch_2999.pt | 0.9435 | 0.003309638001912549 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_rfw_African.txt b/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_rfw_African.txt new file mode 100644 index 0000000000000000000000000000000000000000..ba183c6ed35f47223876b0044145132491fa6c87 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_rfw_African.txt @@ -0,0 +1,21 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17_batch_5999.pt | 0.8789999999999999 | 0.004939135726865079 | +| Epoch_14_batch_5999.pt | 0.8783333333333333 | 0.004950370979987881 | +| Epoch_15_batch_5999.pt | 0.8783333333333333 | 0.00481766297526195 | +| Epoch_16_batch_2999.pt | 0.8783333333333333 | 0.004950370979987879 | +| Epoch_17_batch_2999.pt | 0.8781666666666668 | 0.005580223014261067 | +| Epoch_12.pt | 0.8776666666666667 | 0.0052009021059859824 | +| Epoch_13_batch_2999.pt | 0.8773333333333333 | 0.004831736645590869 | +| Epoch_15.pt | 0.8771666666666667 | 0.004628481339075788 | +| Epoch_16_batch_5999.pt | 0.8770000000000001 | 0.004477653706579977 | +| Epoch_13.pt | 0.8761666666666666 | 0.005085988984515919 | +| Epoch_16.pt | 0.8761666666666666 | 0.00409041336315555 | +| Epoch_13_batch_5999.pt | 0.8756666666666668 | 0.004939135726865077 | +| Epoch_14_batch_2999.pt | 0.8755000000000001 | 0.004759979769642661 | +| Epoch_14.pt | 0.8748333333333334 | 0.004219662967057384 | +| Epoch_11_batch_5999.pt | 0.8743333333333334 | 0.00448729344584637 | +| Epoch_17.pt | 0.8743333333333332 | 0.0050564712235478875 | +| Epoch_11_batch_2999.pt | 0.874 | 0.005318265752788587 | +| Epoch_15_batch_2999.pt | 0.874 | 0.005747785402834477 | diff --git a/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_rfw_Asian.txt b/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_rfw_Asian.txt new file mode 100644 index 0000000000000000000000000000000000000000..7eaa98838e7405b5bc4c5fb544458c3970115f5e --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_rfw_Asian.txt @@ -0,0 +1,19 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17_batch_2999.pt | 0.8836666666666666 | 0.004080970593823769 | +| Epoch_15_batch_2999.pt | 0.883 | 0.00402768199119819 | +| Epoch_16_batch_2999.pt | 0.883 | 0.0038232556742411714 | +| Epoch_14_batch_5999.pt | 0.8818333333333334 | 0.004794866081627384 | +| Epoch_17_batch_5999.pt | 0.8816666666666666 | 0.004135065347984088 | +| Epoch_13_batch_5999.pt | 0.8815000000000002 | 0.004461425891758637 | +| Epoch_16.pt | 0.881 | 0.004466611387164843 | +| Epoch_13.pt | 0.8805 | 0.0030434102055116362 | +| Epoch_15_batch_5999.pt | 0.8798333333333334 | 0.003916174121906021 | +| Epoch_14.pt | 0.8785000000000001 | 0.004617799700514747 | +| Epoch_15.pt | 0.8781666666666667 | 0.0038123418809550592 | +| Epoch_17.pt | 0.8781666666666667 | 0.004123479892003004 | +| Epoch_14_batch_2999.pt | 0.8780000000000001 | 0.003564225540521213 | +| Epoch_16_batch_5999.pt | 0.8768333333333335 | 0.0038365525934710176 | +| Epoch_11_batch_2999.pt | 0.8756666666666668 | 0.0039534326388127065 | +| Epoch_13_batch_2999.pt | 0.875 | 0.004492792582034612 | diff --git a/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_rfw_Caucasian.txt b/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_rfw_Caucasian.txt new file mode 100644 index 0000000000000000000000000000000000000000..5f9a2b51c0624ab9ed9d387cb0928a3d06f5dc88 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_rfw_Caucasian.txt @@ -0,0 +1,21 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_5999.pt | 0.9531666666666666 | 0.0032054159415003686 | +| Epoch_15.pt | 0.9526666666666666 | 0.004129089816902677 | +| Epoch_12.pt | 0.9514999999999999 | 0.0022696331350906184 | +| Epoch_15_batch_2999.pt | 0.9511666666666667 | 0.003043410205511633 | +| Epoch_16_batch_2999.pt | 0.9511666666666667 | 0.003600840094021955 | +| Epoch_14_batch_2999.pt | 0.951 | 0.0036021255727660753 | +| Epoch_14_batch_5999.pt | 0.951 | 0.0032317865716108844 | +| Epoch_16_batch_5999.pt | 0.9508333333333333 | 0.003745367509040707 | +| Epoch_13_batch_5999.pt | 0.9506666666666665 | 0.0033993463423951913 | +| Epoch_16.pt | 0.9506666666666665 | 0.0029938207967349904 | +| Epoch_17_batch_5999.pt | 0.9506666666666665 | 0.003307305792474936 | +| Epoch_11_batch_5999.pt | 0.9504999999999999 | 0.0038733817807896378 | +| Epoch_11.pt | 0.9504999999999999 | 0.0034787716009896078 | +| Epoch_17_batch_2999.pt | 0.9503333333333334 | 0.0037745083892139998 | +| Epoch_13_batch_2999.pt | 0.9501666666666665 | 0.0029860788111948223 | +| Epoch_17.pt | 0.9498333333333333 | 0.0034645470728152973 | +| Epoch_10_batch_5999.pt | 0.9494999999999999 | 0.0032015621187164224 | +| Epoch_11_batch_2999.pt | 0.9493333333333334 | 0.0028458329944145992 | diff --git a/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_rfw_Indian.txt b/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_rfw_Indian.txt new file mode 100644 index 0000000000000000000000000000000000000000..7be65d66610d828241e96dec9ffb086f40685296 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AdaM-Softmax/accu_files/accu_rfw_Indian.txt @@ -0,0 +1,21 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_5999.pt | 0.9113333333333333 | 0.0036750745352313874 | +| Epoch_16.pt | 0.9108333333333334 | 0.0029000851413640387 | +| Epoch_17.pt | 0.9105000000000001 | 0.0031822229981377115 | +| Epoch_16_batch_2999.pt | 0.9099999999999999 | 0.0033701668640229083 | +| Epoch_16_batch_5999.pt | 0.9099999999999999 | 0.0034426518632954812 | +| Epoch_13.pt | 0.9098333333333333 | 0.003137290645221223 | +| Epoch_14.pt | 0.9096666666666667 | 0.0030510067150546676 | +| Epoch_15_batch_2999.pt | 0.9096666666666667 | 0.003111111111111112 | +| Epoch_17_batch_2999.pt | 0.9096666666666666 | 0.003440858348267116 | +| Epoch_14_batch_5999.pt | 0.9094999999999999 | 0.0036179422567033156 | +| Epoch_13_batch_2999.pt | 0.9093333333333333 | 0.003212629398844659 | +| Epoch_12_batch_5999.pt | 0.9091666666666667 | 0.0028894230275435186 | +| Epoch_14_batch_2999.pt | 0.9091666666666667 | 0.0029528182813151806 | +| Epoch_12.pt | 0.9088333333333333 | 0.004332264825529307 | +| Epoch_17_batch_5999.pt | 0.9083333333333334 | 0.003063121944908938 | +| Epoch_12_batch_2999.pt | 0.908 | 0.0031111111111111075 | +| Epoch_15_batch_5999.pt | 0.9076666666666666 | 0.0031836775070876442 | +| Epoch_11_batch_5999.pt | 0.9075000000000001 | 0.002620550314460163 | diff --git a/bob/bio/facexzoo/models/heads/AdaM-Softmax/log.log b/bob/bio/facexzoo/models/heads/AdaM-Softmax/log.log new file mode 100644 index 0000000000000000000000000000000000000000..84d56aef98f465a5a4a11bae22f3e8d8ed268ab3 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/AdaM-Softmax/log.log @@ -0,0 +1,655 @@ +INFO 2020-11-27 11:25:25 train.py: 177] Start optimization. +INFO 2020-11-27 11:25:25 train.py: 178] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='Mobilefacenets', batch_size=512, data_root='/export/home/wangjun492/wj_data/faceX-Zoo/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='Adam_Softmax', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='adam-mobile', train_file='/export/home/wangjun492/wj_data/faceX-Zoo/deepglint/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7fb4996eeef0>) +backbone param: +{'feat_dim': 512, 'out_h': 7, 'out_w': 7} +head param: +{'feat_dim': 512, 'num_class': 72778, 'scale': 32, 'lamda': 70.0} +INFO 2020-11-27 11:25:45 train.py: 79] Epoch 0, iter 0/6416, lr 0.100000, loss 68.895447 +INFO 2020-11-27 11:27:02 train.py: 79] Epoch 0, iter 200/6416, lr 0.100000, loss 66.453452 +INFO 2020-11-27 11:28:18 train.py: 79] Epoch 0, iter 400/6416, lr 0.100000, loss 61.217521 +INFO 2020-11-27 11:29:35 train.py: 79] Epoch 0, iter 600/6416, lr 0.100000, loss 56.275663 +INFO 2020-11-27 11:30:51 train.py: 79] Epoch 0, iter 800/6416, lr 0.100000, loss 51.401999 +INFO 2020-11-27 11:32:07 train.py: 79] Epoch 0, iter 1000/6416, lr 0.100000, loss 47.736430 +INFO 2020-11-27 11:33:24 train.py: 79] Epoch 0, iter 1200/6416, lr 0.100000, loss 45.576048 +INFO 2020-11-27 11:34:40 train.py: 79] Epoch 0, iter 1400/6416, lr 0.100000, loss 44.220327 +INFO 2020-11-27 11:35:57 train.py: 79] Epoch 0, iter 1600/6416, lr 0.100000, loss 43.221189 +INFO 2020-11-27 11:37:14 train.py: 79] Epoch 0, iter 1800/6416, lr 0.100000, loss 42.476572 +INFO 2020-11-27 11:38:30 train.py: 79] Epoch 0, iter 2000/6416, lr 0.100000, loss 41.735169 +INFO 2020-11-27 11:39:47 train.py: 79] Epoch 0, iter 2200/6416, lr 0.100000, loss 41.068170 +INFO 2020-11-27 11:41:03 train.py: 79] Epoch 0, iter 2400/6416, lr 0.100000, loss 40.607779 +INFO 2020-11-27 11:42:20 train.py: 79] Epoch 0, iter 2600/6416, lr 0.100000, loss 40.068805 +INFO 2020-11-27 11:43:36 train.py: 79] Epoch 0, iter 2800/6416, lr 0.100000, loss 39.633740 +INFO 2020-11-27 11:44:53 train.py: 92] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2020-11-27 11:44:53 train.py: 79] Epoch 0, iter 3000/6416, lr 0.100000, loss 39.079019 +INFO 2020-11-27 11:46:10 train.py: 79] Epoch 0, iter 3200/6416, lr 0.100000, loss 38.623620 +INFO 2020-11-27 11:47:28 train.py: 79] Epoch 0, iter 3400/6416, lr 0.100000, loss 38.154093 +INFO 2020-11-27 11:48:45 train.py: 79] Epoch 0, iter 3600/6416, lr 0.100000, loss 37.649786 +INFO 2020-11-27 11:50:02 train.py: 79] Epoch 0, iter 3800/6416, lr 0.100000, loss 37.255512 +INFO 2020-11-27 11:51:19 train.py: 79] Epoch 0, iter 4000/6416, lr 0.100000, loss 36.827047 +INFO 2020-11-27 11:52:37 train.py: 79] Epoch 0, iter 4200/6416, lr 0.100000, loss 36.372875 +INFO 2020-11-27 11:53:54 train.py: 79] Epoch 0, iter 4400/6416, lr 0.100000, loss 35.929390 +INFO 2020-11-27 11:55:11 train.py: 79] Epoch 0, iter 4600/6416, lr 0.100000, loss 35.571391 +INFO 2020-11-27 11:56:28 train.py: 79] Epoch 0, iter 4800/6416, lr 0.100000, loss 35.173256 +INFO 2020-11-27 11:57:45 train.py: 79] Epoch 0, iter 5000/6416, lr 0.100000, loss 34.815217 +INFO 2020-11-27 11:59:03 train.py: 79] Epoch 0, iter 5200/6416, lr 0.100000, loss 34.404765 +INFO 2020-11-27 12:00:20 train.py: 79] Epoch 0, iter 5400/6416, lr 0.100000, loss 34.022353 +INFO 2020-11-27 12:01:37 train.py: 79] Epoch 0, iter 5600/6416, lr 0.100000, loss 33.711045 +INFO 2020-11-27 12:02:55 train.py: 79] Epoch 0, iter 5800/6416, lr 0.100000, loss 33.412540 +INFO 2020-11-27 12:04:11 train.py: 92] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2020-11-27 12:04:12 train.py: 79] Epoch 0, iter 6000/6416, lr 0.100000, loss 33.060440 +INFO 2020-11-27 12:05:29 train.py: 79] Epoch 0, iter 6200/6416, lr 0.100000, loss 32.789185 +INFO 2020-11-27 12:06:46 train.py: 79] Epoch 0, iter 6400/6416, lr 0.100000, loss 32.510369 +INFO 2020-11-27 12:06:52 train.py: 97] Save checkpoint Epoch_0.pt to disk... +INFO 2020-11-27 12:06:54 train.py: 79] Epoch 1, iter 0/6416, lr 0.100000, loss 32.480811 +INFO 2020-11-27 12:08:11 train.py: 79] Epoch 1, iter 200/6416, lr 0.100000, loss 31.700433 +INFO 2020-11-27 12:09:29 train.py: 79] Epoch 1, iter 400/6416, lr 0.100000, loss 31.576547 +INFO 2020-11-27 12:10:46 train.py: 79] Epoch 1, iter 600/6416, lr 0.100000, loss 31.354598 +INFO 2020-11-27 12:12:03 train.py: 79] Epoch 1, iter 800/6416, lr 0.100000, loss 31.224222 +INFO 2020-11-27 12:13:21 train.py: 79] Epoch 1, iter 1000/6416, lr 0.100000, loss 31.056949 +INFO 2020-11-27 12:14:38 train.py: 79] Epoch 1, iter 1200/6416, lr 0.100000, loss 30.974754 +INFO 2020-11-27 12:15:55 train.py: 79] Epoch 1, iter 1400/6416, lr 0.100000, loss 30.816703 +INFO 2020-11-27 12:17:12 train.py: 79] Epoch 1, iter 1600/6416, lr 0.100000, loss 30.637983 +INFO 2020-11-27 12:18:29 train.py: 79] Epoch 1, iter 1800/6416, lr 0.100000, loss 30.525500 +INFO 2020-11-27 12:19:47 train.py: 79] Epoch 1, iter 2000/6416, lr 0.100000, loss 30.331987 +INFO 2020-11-27 12:21:04 train.py: 79] Epoch 1, iter 2200/6416, lr 0.100000, loss 30.243652 +INFO 2020-11-27 12:22:21 train.py: 79] Epoch 1, iter 2400/6416, lr 0.100000, loss 30.118532 +INFO 2020-11-27 12:23:39 train.py: 79] Epoch 1, iter 2600/6416, lr 0.100000, loss 30.025257 +INFO 2020-11-27 12:24:56 train.py: 79] Epoch 1, iter 2800/6416, lr 0.100000, loss 29.925623 +INFO 2020-11-27 12:26:13 train.py: 92] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2020-11-27 12:26:13 train.py: 79] Epoch 1, iter 3000/6416, lr 0.100000, loss 29.799252 +INFO 2020-11-27 12:27:30 train.py: 79] Epoch 1, iter 3200/6416, lr 0.100000, loss 29.739019 +INFO 2020-11-27 12:28:47 train.py: 79] Epoch 1, iter 3400/6416, lr 0.100000, loss 29.618822 +INFO 2020-11-27 12:30:03 train.py: 79] Epoch 1, iter 3600/6416, lr 0.100000, loss 29.564026 +INFO 2020-11-27 12:31:20 train.py: 79] Epoch 1, iter 3800/6416, lr 0.100000, loss 29.499074 +INFO 2020-11-27 12:32:36 train.py: 79] Epoch 1, iter 4000/6416, lr 0.100000, loss 29.360484 +INFO 2020-11-27 12:33:53 train.py: 79] Epoch 1, iter 4200/6416, lr 0.100000, loss 29.312003 +INFO 2020-11-27 12:35:10 train.py: 79] Epoch 1, iter 4400/6416, lr 0.100000, loss 29.241322 +INFO 2020-11-27 12:36:26 train.py: 79] Epoch 1, iter 4600/6416, lr 0.100000, loss 29.153561 +INFO 2020-11-27 12:37:43 train.py: 79] Epoch 1, iter 4800/6416, lr 0.100000, loss 29.087117 +INFO 2020-11-27 12:38:59 train.py: 79] Epoch 1, iter 5000/6416, lr 0.100000, loss 29.070027 +INFO 2020-11-27 12:40:16 train.py: 79] Epoch 1, iter 5200/6416, lr 0.100000, loss 29.030273 +INFO 2020-11-27 12:41:32 train.py: 79] Epoch 1, iter 5400/6416, lr 0.100000, loss 28.929905 +INFO 2020-11-27 12:42:49 train.py: 79] Epoch 1, iter 5600/6416, lr 0.100000, loss 28.869163 +INFO 2020-11-27 12:44:06 train.py: 79] Epoch 1, iter 5800/6416, lr 0.100000, loss 28.823680 +INFO 2020-11-27 12:45:22 train.py: 92] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2020-11-27 12:45:23 train.py: 79] Epoch 1, iter 6000/6416, lr 0.100000, loss 28.832928 +INFO 2020-11-27 12:46:40 train.py: 79] Epoch 1, iter 6200/6416, lr 0.100000, loss 28.736330 +INFO 2020-11-27 12:47:57 train.py: 79] Epoch 1, iter 6400/6416, lr 0.100000, loss 28.747449 +INFO 2020-11-27 12:48:03 train.py: 97] Save checkpoint Epoch_1.pt to disk... +INFO 2020-11-27 12:48:05 train.py: 79] Epoch 2, iter 0/6416, lr 0.100000, loss 28.593937 +INFO 2020-11-27 12:49:22 train.py: 79] Epoch 2, iter 200/6416, lr 0.100000, loss 28.173371 +INFO 2020-11-27 12:50:39 train.py: 79] Epoch 2, iter 400/6416, lr 0.100000, loss 28.174336 +INFO 2020-11-27 12:51:56 train.py: 79] Epoch 2, iter 600/6416, lr 0.100000, loss 28.204712 +INFO 2020-11-27 12:53:14 train.py: 79] Epoch 2, iter 800/6416, lr 0.100000, loss 28.273016 +INFO 2020-11-27 12:54:31 train.py: 79] Epoch 2, iter 1000/6416, lr 0.100000, loss 28.321223 +INFO 2020-11-27 12:55:48 train.py: 79] Epoch 2, iter 1200/6416, lr 0.100000, loss 28.311304 +INFO 2020-11-27 12:57:05 train.py: 79] Epoch 2, iter 1400/6416, lr 0.100000, loss 28.303212 +INFO 2020-11-27 12:58:22 train.py: 79] Epoch 2, iter 1600/6416, lr 0.100000, loss 28.308795 +INFO 2020-11-27 12:59:40 train.py: 79] Epoch 2, iter 1800/6416, lr 0.100000, loss 28.303300 +INFO 2020-11-27 13:00:57 train.py: 79] Epoch 2, iter 2000/6416, lr 0.100000, loss 28.267853 +INFO 2020-11-27 13:02:14 train.py: 79] Epoch 2, iter 2200/6416, lr 0.100000, loss 28.245044 +INFO 2020-11-27 13:03:31 train.py: 79] Epoch 2, iter 2400/6416, lr 0.100000, loss 28.236938 +INFO 2020-11-27 13:04:48 train.py: 79] Epoch 2, iter 2600/6416, lr 0.100000, loss 28.230038 +INFO 2020-11-27 13:06:05 train.py: 79] Epoch 2, iter 2800/6416, lr 0.100000, loss 28.171071 +INFO 2020-11-27 13:07:23 train.py: 92] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2020-11-27 13:07:23 train.py: 79] Epoch 2, iter 3000/6416, lr 0.100000, loss 28.178500 +INFO 2020-11-27 13:08:40 train.py: 79] Epoch 2, iter 3200/6416, lr 0.100000, loss 28.163017 +INFO 2020-11-27 13:09:57 train.py: 79] Epoch 2, iter 3400/6416, lr 0.100000, loss 28.155609 +INFO 2020-11-27 13:11:15 train.py: 79] Epoch 2, iter 3600/6416, lr 0.100000, loss 28.132254 +INFO 2020-11-27 13:12:32 train.py: 79] Epoch 2, iter 3800/6416, lr 0.100000, loss 28.093806 +INFO 2020-11-27 13:13:49 train.py: 79] Epoch 2, iter 4000/6416, lr 0.100000, loss 28.087449 +INFO 2020-11-27 13:15:06 train.py: 79] Epoch 2, iter 4200/6416, lr 0.100000, loss 28.073048 +INFO 2020-11-27 13:16:23 train.py: 79] Epoch 2, iter 4400/6416, lr 0.100000, loss 28.027729 +INFO 2020-11-27 13:17:41 train.py: 79] Epoch 2, iter 4600/6416, lr 0.100000, loss 28.014697 +INFO 2020-11-27 13:18:58 train.py: 79] Epoch 2, iter 4800/6416, lr 0.100000, loss 27.983244 +INFO 2020-11-27 13:20:15 train.py: 79] Epoch 2, iter 5000/6416, lr 0.100000, loss 27.917437 +INFO 2020-11-27 13:21:32 train.py: 79] Epoch 2, iter 5200/6416, lr 0.100000, loss 27.934515 +INFO 2020-11-27 13:22:49 train.py: 79] Epoch 2, iter 5400/6416, lr 0.100000, loss 27.890959 +INFO 2020-11-27 13:24:07 train.py: 79] Epoch 2, iter 5600/6416, lr 0.100000, loss 27.905500 +INFO 2020-11-27 13:25:24 train.py: 79] Epoch 2, iter 5800/6416, lr 0.100000, loss 27.885338 +INFO 2020-11-27 13:26:41 train.py: 92] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2020-11-27 13:26:42 train.py: 79] Epoch 2, iter 6000/6416, lr 0.100000, loss 27.911852 +INFO 2020-11-27 13:27:58 train.py: 79] Epoch 2, iter 6200/6416, lr 0.100000, loss 27.845165 +INFO 2020-11-27 13:29:15 train.py: 79] Epoch 2, iter 6400/6416, lr 0.100000, loss 27.785669 +INFO 2020-11-27 13:29:21 train.py: 97] Save checkpoint Epoch_2.pt to disk... +INFO 2020-11-27 13:29:22 train.py: 79] Epoch 3, iter 0/6416, lr 0.100000, loss 27.794654 +INFO 2020-11-27 13:30:40 train.py: 79] Epoch 3, iter 200/6416, lr 0.100000, loss 27.331309 +INFO 2020-11-27 13:31:57 train.py: 79] Epoch 3, iter 400/6416, lr 0.100000, loss 27.304826 +INFO 2020-11-27 13:33:14 train.py: 79] Epoch 3, iter 600/6416, lr 0.100000, loss 27.456631 +INFO 2020-11-27 13:34:32 train.py: 79] Epoch 3, iter 800/6416, lr 0.100000, loss 27.456618 +INFO 2020-11-27 13:35:49 train.py: 79] Epoch 3, iter 1000/6416, lr 0.100000, loss 27.560082 +INFO 2020-11-27 13:37:06 train.py: 79] Epoch 3, iter 1200/6416, lr 0.100000, loss 27.578836 +INFO 2020-11-27 13:38:23 train.py: 79] Epoch 3, iter 1400/6416, lr 0.100000, loss 27.584422 +INFO 2020-11-27 13:39:41 train.py: 79] Epoch 3, iter 1600/6416, lr 0.100000, loss 27.597026 +INFO 2020-11-27 13:40:58 train.py: 79] Epoch 3, iter 1800/6416, lr 0.100000, loss 27.625970 +INFO 2020-11-27 13:42:15 train.py: 79] Epoch 3, iter 2000/6416, lr 0.100000, loss 27.590219 +INFO 2020-11-27 13:43:32 train.py: 79] Epoch 3, iter 2200/6416, lr 0.100000, loss 27.541043 +INFO 2020-11-27 13:44:50 train.py: 79] Epoch 3, iter 2400/6416, lr 0.100000, loss 27.565358 +INFO 2020-11-27 13:46:07 train.py: 79] Epoch 3, iter 2600/6416, lr 0.100000, loss 27.567240 +INFO 2020-11-27 13:47:24 train.py: 79] Epoch 3, iter 2800/6416, lr 0.100000, loss 27.575654 +INFO 2020-11-27 13:48:41 train.py: 92] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2020-11-27 13:48:41 train.py: 79] Epoch 3, iter 3000/6416, lr 0.100000, loss 27.545376 +INFO 2020-11-27 13:49:59 train.py: 79] Epoch 3, iter 3200/6416, lr 0.100000, loss 27.524548 +INFO 2020-11-27 13:51:16 train.py: 79] Epoch 3, iter 3400/6416, lr 0.100000, loss 27.543726 +INFO 2020-11-27 13:52:33 train.py: 79] Epoch 3, iter 3600/6416, lr 0.100000, loss 27.506469 +INFO 2020-11-27 13:53:50 train.py: 79] Epoch 3, iter 3800/6416, lr 0.100000, loss 27.515937 +INFO 2020-11-27 13:55:07 train.py: 79] Epoch 3, iter 4000/6416, lr 0.100000, loss 27.512061 +INFO 2020-11-27 13:56:25 train.py: 79] Epoch 3, iter 4200/6416, lr 0.100000, loss 27.492437 +INFO 2020-11-27 13:57:42 train.py: 79] Epoch 3, iter 4400/6416, lr 0.100000, loss 27.499637 +INFO 2020-11-27 13:58:59 train.py: 79] Epoch 3, iter 4600/6416, lr 0.100000, loss 27.467361 +INFO 2020-11-27 14:00:16 train.py: 79] Epoch 3, iter 4800/6416, lr 0.100000, loss 27.465655 +INFO 2020-11-27 14:01:34 train.py: 79] Epoch 3, iter 5000/6416, lr 0.100000, loss 27.470464 +INFO 2020-11-27 14:02:51 train.py: 79] Epoch 3, iter 5200/6416, lr 0.100000, loss 27.462713 +INFO 2020-11-27 14:04:08 train.py: 79] Epoch 3, iter 5400/6416, lr 0.100000, loss 27.437865 +INFO 2020-11-27 14:05:25 train.py: 79] Epoch 3, iter 5600/6416, lr 0.100000, loss 27.378889 +INFO 2020-11-27 14:06:43 train.py: 79] Epoch 3, iter 5800/6416, lr 0.100000, loss 27.368946 +INFO 2020-11-27 14:08:00 train.py: 92] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2020-11-27 14:08:00 train.py: 79] Epoch 3, iter 6000/6416, lr 0.100000, loss 27.376025 +INFO 2020-11-27 14:09:17 train.py: 79] Epoch 3, iter 6200/6416, lr 0.100000, loss 27.379211 +INFO 2020-11-27 14:10:35 train.py: 79] Epoch 3, iter 6400/6416, lr 0.100000, loss 27.362750 +INFO 2020-11-27 14:10:41 train.py: 97] Save checkpoint Epoch_3.pt to disk... +INFO 2020-11-27 14:10:43 train.py: 79] Epoch 4, iter 0/6416, lr 0.100000, loss 27.380721 +INFO 2020-11-27 14:11:59 train.py: 79] Epoch 4, iter 200/6416, lr 0.100000, loss 26.836015 +INFO 2020-11-27 14:13:16 train.py: 79] Epoch 4, iter 400/6416, lr 0.100000, loss 26.903098 +INFO 2020-11-27 14:14:32 train.py: 79] Epoch 4, iter 600/6416, lr 0.100000, loss 27.023604 +INFO 2020-11-27 14:15:49 train.py: 79] Epoch 4, iter 800/6416, lr 0.100000, loss 27.070077 +INFO 2020-11-27 14:17:06 train.py: 79] Epoch 4, iter 1000/6416, lr 0.100000, loss 27.093762 +INFO 2020-11-27 14:18:22 train.py: 79] Epoch 4, iter 1200/6416, lr 0.100000, loss 27.167080 +INFO 2020-11-27 14:19:39 train.py: 79] Epoch 4, iter 1400/6416, lr 0.100000, loss 27.156359 +INFO 2020-11-27 14:20:56 train.py: 79] Epoch 4, iter 1600/6416, lr 0.100000, loss 27.208953 +INFO 2020-11-27 14:22:12 train.py: 79] Epoch 4, iter 1800/6416, lr 0.100000, loss 27.183998 +INFO 2020-11-27 14:23:29 train.py: 79] Epoch 4, iter 2000/6416, lr 0.100000, loss 27.181064 +INFO 2020-11-27 14:24:45 train.py: 79] Epoch 4, iter 2200/6416, lr 0.100000, loss 27.214739 +INFO 2020-11-27 14:26:02 train.py: 79] Epoch 4, iter 2400/6416, lr 0.100000, loss 27.206284 +INFO 2020-11-27 14:27:19 train.py: 79] Epoch 4, iter 2600/6416, lr 0.100000, loss 27.197754 +INFO 2020-11-27 14:28:35 train.py: 79] Epoch 4, iter 2800/6416, lr 0.100000, loss 27.188528 +INFO 2020-11-27 14:29:51 train.py: 92] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2020-11-27 14:29:52 train.py: 79] Epoch 4, iter 3000/6416, lr 0.100000, loss 27.211198 +INFO 2020-11-27 14:31:09 train.py: 79] Epoch 4, iter 3200/6416, lr 0.100000, loss 27.214330 +INFO 2020-11-27 14:32:26 train.py: 79] Epoch 4, iter 3400/6416, lr 0.100000, loss 27.167536 +INFO 2020-11-27 14:33:44 train.py: 79] Epoch 4, iter 3600/6416, lr 0.100000, loss 27.204409 +INFO 2020-11-27 14:35:01 train.py: 79] Epoch 4, iter 3800/6416, lr 0.100000, loss 27.183722 +INFO 2020-11-27 14:36:18 train.py: 79] Epoch 4, iter 4000/6416, lr 0.100000, loss 27.201032 +INFO 2020-11-27 14:37:35 train.py: 79] Epoch 4, iter 4200/6416, lr 0.100000, loss 27.125988 +INFO 2020-11-27 14:38:52 train.py: 79] Epoch 4, iter 4400/6416, lr 0.100000, loss 27.148296 +INFO 2020-11-27 14:40:10 train.py: 79] Epoch 4, iter 4600/6416, lr 0.100000, loss 27.100156 +INFO 2020-11-27 14:41:27 train.py: 79] Epoch 4, iter 4800/6416, lr 0.100000, loss 27.081549 +INFO 2020-11-27 14:42:44 train.py: 79] Epoch 4, iter 5000/6416, lr 0.100000, loss 27.113391 +INFO 2020-11-27 14:44:01 train.py: 79] Epoch 4, iter 5200/6416, lr 0.100000, loss 27.147206 +INFO 2020-11-27 14:45:18 train.py: 79] Epoch 4, iter 5400/6416, lr 0.100000, loss 27.114991 +INFO 2020-11-27 14:46:36 train.py: 79] Epoch 4, iter 5600/6416, lr 0.100000, loss 27.140727 +INFO 2020-11-27 14:47:53 train.py: 79] Epoch 4, iter 5800/6416, lr 0.100000, loss 27.129555 +INFO 2020-11-27 14:49:10 train.py: 92] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2020-11-27 14:49:10 train.py: 79] Epoch 4, iter 6000/6416, lr 0.100000, loss 27.096793 +INFO 2020-11-27 14:50:28 train.py: 79] Epoch 4, iter 6200/6416, lr 0.100000, loss 27.101055 +INFO 2020-11-27 14:51:45 train.py: 79] Epoch 4, iter 6400/6416, lr 0.100000, loss 27.090219 +INFO 2020-11-27 14:51:51 train.py: 97] Save checkpoint Epoch_4.pt to disk... +INFO 2020-11-27 14:51:53 train.py: 79] Epoch 5, iter 0/6416, lr 0.100000, loss 27.080042 +INFO 2020-11-27 14:53:10 train.py: 79] Epoch 5, iter 200/6416, lr 0.100000, loss 26.569350 +INFO 2020-11-27 14:54:27 train.py: 79] Epoch 5, iter 400/6416, lr 0.100000, loss 26.637917 +INFO 2020-11-27 14:55:44 train.py: 79] Epoch 5, iter 600/6416, lr 0.100000, loss 26.794215 +INFO 2020-11-27 14:57:02 train.py: 79] Epoch 5, iter 800/6416, lr 0.100000, loss 26.809539 +INFO 2020-11-27 14:58:19 train.py: 79] Epoch 5, iter 1000/6416, lr 0.100000, loss 26.856054 +INFO 2020-11-27 14:59:36 train.py: 79] Epoch 5, iter 1200/6416, lr 0.100000, loss 26.829732 +INFO 2020-11-27 15:00:53 train.py: 79] Epoch 5, iter 1400/6416, lr 0.100000, loss 26.879274 +INFO 2020-11-27 15:02:11 train.py: 79] Epoch 5, iter 1600/6416, lr 0.100000, loss 26.933818 +INFO 2020-11-27 15:03:28 train.py: 79] Epoch 5, iter 1800/6416, lr 0.100000, loss 26.909025 +INFO 2020-11-27 15:04:45 train.py: 79] Epoch 5, iter 2000/6416, lr 0.100000, loss 26.920821 +INFO 2020-11-27 15:06:02 train.py: 79] Epoch 5, iter 2200/6416, lr 0.100000, loss 27.009365 +INFO 2020-11-27 15:07:19 train.py: 79] Epoch 5, iter 2400/6416, lr 0.100000, loss 26.977531 +INFO 2020-11-27 15:08:37 train.py: 79] Epoch 5, iter 2600/6416, lr 0.100000, loss 26.971922 +INFO 2020-11-27 15:09:54 train.py: 79] Epoch 5, iter 2800/6416, lr 0.100000, loss 26.990467 +INFO 2020-11-27 15:11:11 train.py: 92] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2020-11-27 15:11:11 train.py: 79] Epoch 5, iter 3000/6416, lr 0.100000, loss 26.980199 +INFO 2020-11-27 15:12:28 train.py: 79] Epoch 5, iter 3200/6416, lr 0.100000, loss 26.933842 +INFO 2020-11-27 15:13:44 train.py: 79] Epoch 5, iter 3400/6416, lr 0.100000, loss 26.883500 +INFO 2020-11-27 15:15:01 train.py: 79] Epoch 5, iter 3600/6416, lr 0.100000, loss 26.962715 +INFO 2020-11-27 15:16:18 train.py: 79] Epoch 5, iter 3800/6416, lr 0.100000, loss 26.941409 +INFO 2020-11-27 15:17:34 train.py: 79] Epoch 5, iter 4000/6416, lr 0.100000, loss 26.970323 +INFO 2020-11-27 15:18:51 train.py: 79] Epoch 5, iter 4200/6416, lr 0.100000, loss 26.955577 +INFO 2020-11-27 15:20:08 train.py: 79] Epoch 5, iter 4400/6416, lr 0.100000, loss 26.907030 +INFO 2020-11-27 15:21:24 train.py: 79] Epoch 5, iter 4600/6416, lr 0.100000, loss 26.959151 +INFO 2020-11-27 15:22:41 train.py: 79] Epoch 5, iter 4800/6416, lr 0.100000, loss 26.890113 +INFO 2020-11-27 15:23:57 train.py: 79] Epoch 5, iter 5000/6416, lr 0.100000, loss 26.946051 +INFO 2020-11-27 15:25:14 train.py: 79] Epoch 5, iter 5200/6416, lr 0.100000, loss 26.908221 +INFO 2020-11-27 15:26:30 train.py: 79] Epoch 5, iter 5400/6416, lr 0.100000, loss 26.885252 +INFO 2020-11-27 15:27:47 train.py: 79] Epoch 5, iter 5600/6416, lr 0.100000, loss 26.921996 +INFO 2020-11-27 15:29:04 train.py: 79] Epoch 5, iter 5800/6416, lr 0.100000, loss 26.899996 +INFO 2020-11-27 15:30:20 train.py: 92] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2020-11-27 15:30:21 train.py: 79] Epoch 5, iter 6000/6416, lr 0.100000, loss 26.892551 +INFO 2020-11-27 15:31:38 train.py: 79] Epoch 5, iter 6200/6416, lr 0.100000, loss 26.925572 +INFO 2020-11-27 15:32:55 train.py: 79] Epoch 5, iter 6400/6416, lr 0.100000, loss 26.925721 +INFO 2020-11-27 15:33:01 train.py: 97] Save checkpoint Epoch_5.pt to disk... +INFO 2020-11-27 15:33:03 train.py: 79] Epoch 6, iter 0/6416, lr 0.100000, loss 26.843349 +INFO 2020-11-27 15:34:20 train.py: 79] Epoch 6, iter 200/6416, lr 0.100000, loss 26.333796 +INFO 2020-11-27 15:35:37 train.py: 79] Epoch 6, iter 400/6416, lr 0.100000, loss 26.494543 +INFO 2020-11-27 15:36:55 train.py: 79] Epoch 6, iter 600/6416, lr 0.100000, loss 26.552440 +INFO 2020-11-27 15:38:12 train.py: 79] Epoch 6, iter 800/6416, lr 0.100000, loss 26.582460 +INFO 2020-11-27 15:39:29 train.py: 79] Epoch 6, iter 1000/6416, lr 0.100000, loss 26.632009 +INFO 2020-11-27 15:40:46 train.py: 79] Epoch 6, iter 1200/6416, lr 0.100000, loss 26.644750 +INFO 2020-11-27 15:42:04 train.py: 79] Epoch 6, iter 1400/6416, lr 0.100000, loss 26.731838 +INFO 2020-11-27 15:43:21 train.py: 79] Epoch 6, iter 1600/6416, lr 0.100000, loss 26.737685 +INFO 2020-11-27 15:44:38 train.py: 79] Epoch 6, iter 1800/6416, lr 0.100000, loss 26.744759 +INFO 2020-11-27 15:45:55 train.py: 79] Epoch 6, iter 2000/6416, lr 0.100000, loss 26.746034 +INFO 2020-11-27 15:47:13 train.py: 79] Epoch 6, iter 2200/6416, lr 0.100000, loss 26.764201 +INFO 2020-11-27 15:48:30 train.py: 79] Epoch 6, iter 2400/6416, lr 0.100000, loss 26.812925 +INFO 2020-11-27 15:49:47 train.py: 79] Epoch 6, iter 2600/6416, lr 0.100000, loss 26.820769 +INFO 2020-11-27 15:51:04 train.py: 79] Epoch 6, iter 2800/6416, lr 0.100000, loss 26.836431 +INFO 2020-11-27 15:52:21 train.py: 92] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2020-11-27 15:52:22 train.py: 79] Epoch 6, iter 3000/6416, lr 0.100000, loss 26.786902 +INFO 2020-11-27 15:53:39 train.py: 79] Epoch 6, iter 3200/6416, lr 0.100000, loss 26.804522 +INFO 2020-11-27 15:54:56 train.py: 79] Epoch 6, iter 3400/6416, lr 0.100000, loss 26.826138 +INFO 2020-11-27 15:56:13 train.py: 79] Epoch 6, iter 3600/6416, lr 0.100000, loss 26.804703 +INFO 2020-11-27 15:57:30 train.py: 79] Epoch 6, iter 3800/6416, lr 0.100000, loss 26.801648 +INFO 2020-11-27 15:58:48 train.py: 79] Epoch 6, iter 4000/6416, lr 0.100000, loss 26.793580 +INFO 2020-11-27 16:00:05 train.py: 79] Epoch 6, iter 4200/6416, lr 0.100000, loss 26.763612 +INFO 2020-11-27 16:01:22 train.py: 79] Epoch 6, iter 4400/6416, lr 0.100000, loss 26.796216 +INFO 2020-11-27 16:02:40 train.py: 79] Epoch 6, iter 4600/6416, lr 0.100000, loss 26.796974 +INFO 2020-11-27 16:03:57 train.py: 79] Epoch 6, iter 4800/6416, lr 0.100000, loss 26.774140 +INFO 2020-11-27 16:05:14 train.py: 79] Epoch 6, iter 5000/6416, lr 0.100000, loss 26.746327 +INFO 2020-11-27 16:06:31 train.py: 79] Epoch 6, iter 5200/6416, lr 0.100000, loss 26.750737 +INFO 2020-11-27 16:07:48 train.py: 79] Epoch 6, iter 5400/6416, lr 0.100000, loss 26.747084 +INFO 2020-11-27 16:09:06 train.py: 79] Epoch 6, iter 5600/6416, lr 0.100000, loss 26.776214 +INFO 2020-11-27 16:10:23 train.py: 79] Epoch 6, iter 5800/6416, lr 0.100000, loss 26.715030 +INFO 2020-11-27 16:11:40 train.py: 92] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2020-11-27 16:11:40 train.py: 79] Epoch 6, iter 6000/6416, lr 0.100000, loss 26.787295 +INFO 2020-11-27 16:12:58 train.py: 79] Epoch 6, iter 6200/6416, lr 0.100000, loss 26.734481 +INFO 2020-11-27 16:14:15 train.py: 79] Epoch 6, iter 6400/6416, lr 0.100000, loss 26.775375 +INFO 2020-11-27 16:14:21 train.py: 97] Save checkpoint Epoch_6.pt to disk... +INFO 2020-11-27 16:14:23 train.py: 79] Epoch 7, iter 0/6416, lr 0.100000, loss 26.625604 +INFO 2020-11-27 16:15:40 train.py: 79] Epoch 7, iter 200/6416, lr 0.100000, loss 26.281002 +INFO 2020-11-27 16:16:57 train.py: 79] Epoch 7, iter 400/6416, lr 0.100000, loss 26.348980 +INFO 2020-11-27 16:18:14 train.py: 79] Epoch 7, iter 600/6416, lr 0.100000, loss 26.400044 +INFO 2020-11-27 16:19:31 train.py: 79] Epoch 7, iter 800/6416, lr 0.100000, loss 26.485080 +INFO 2020-11-27 16:20:48 train.py: 79] Epoch 7, iter 1000/6416, lr 0.100000, loss 26.513556 +INFO 2020-11-27 16:22:06 train.py: 79] Epoch 7, iter 1200/6416, lr 0.100000, loss 26.563984 +INFO 2020-11-27 16:23:23 train.py: 79] Epoch 7, iter 1400/6416, lr 0.100000, loss 26.551700 +INFO 2020-11-27 16:24:40 train.py: 79] Epoch 7, iter 1600/6416, lr 0.100000, loss 26.599454 +INFO 2020-11-27 16:25:57 train.py: 79] Epoch 7, iter 1800/6416, lr 0.100000, loss 26.622616 +INFO 2020-11-27 16:27:15 train.py: 79] Epoch 7, iter 2000/6416, lr 0.100000, loss 26.617826 +INFO 2020-11-27 16:28:32 train.py: 79] Epoch 7, iter 2200/6416, lr 0.100000, loss 26.667981 +INFO 2020-11-27 16:29:49 train.py: 79] Epoch 7, iter 2400/6416, lr 0.100000, loss 26.647871 +INFO 2020-11-27 16:31:06 train.py: 79] Epoch 7, iter 2600/6416, lr 0.100000, loss 26.653957 +INFO 2020-11-27 16:32:23 train.py: 79] Epoch 7, iter 2800/6416, lr 0.100000, loss 26.670814 +INFO 2020-11-27 16:33:40 train.py: 92] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2020-11-27 16:33:41 train.py: 79] Epoch 7, iter 3000/6416, lr 0.100000, loss 26.699703 +INFO 2020-11-27 16:34:58 train.py: 79] Epoch 7, iter 3200/6416, lr 0.100000, loss 26.685563 +INFO 2020-11-27 16:36:15 train.py: 79] Epoch 7, iter 3400/6416, lr 0.100000, loss 26.624901 +INFO 2020-11-27 16:37:32 train.py: 79] Epoch 7, iter 3600/6416, lr 0.100000, loss 26.667817 +INFO 2020-11-27 16:38:50 train.py: 79] Epoch 7, iter 3800/6416, lr 0.100000, loss 26.672129 +INFO 2020-11-27 16:40:07 train.py: 79] Epoch 7, iter 4000/6416, lr 0.100000, loss 26.666484 +INFO 2020-11-27 16:41:24 train.py: 79] Epoch 7, iter 4200/6416, lr 0.100000, loss 26.624046 +INFO 2020-11-27 16:42:41 train.py: 79] Epoch 7, iter 4400/6416, lr 0.100000, loss 26.669233 +INFO 2020-11-27 16:43:59 train.py: 79] Epoch 7, iter 4600/6416, lr 0.100000, loss 26.643160 +INFO 2020-11-27 16:45:16 train.py: 79] Epoch 7, iter 4800/6416, lr 0.100000, loss 26.628013 +INFO 2020-11-27 16:46:33 train.py: 79] Epoch 7, iter 5000/6416, lr 0.100000, loss 26.649422 +INFO 2020-11-27 16:47:50 train.py: 79] Epoch 7, iter 5200/6416, lr 0.100000, loss 26.663376 +INFO 2020-11-27 16:49:08 train.py: 79] Epoch 7, iter 5400/6416, lr 0.100000, loss 26.617261 +INFO 2020-11-27 16:50:25 train.py: 79] Epoch 7, iter 5600/6416, lr 0.100000, loss 26.638865 +INFO 2020-11-27 16:51:42 train.py: 79] Epoch 7, iter 5800/6416, lr 0.100000, loss 26.626876 +INFO 2020-11-27 16:52:59 train.py: 92] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2020-11-27 16:53:00 train.py: 79] Epoch 7, iter 6000/6416, lr 0.100000, loss 26.623282 +INFO 2020-11-27 16:54:16 train.py: 79] Epoch 7, iter 6200/6416, lr 0.100000, loss 26.608983 +INFO 2020-11-27 16:55:34 train.py: 79] Epoch 7, iter 6400/6416, lr 0.100000, loss 26.611998 +INFO 2020-11-27 16:55:40 train.py: 97] Save checkpoint Epoch_7.pt to disk... +INFO 2020-11-27 16:55:42 train.py: 79] Epoch 8, iter 0/6416, lr 0.100000, loss 26.785995 +INFO 2020-11-27 16:56:59 train.py: 79] Epoch 8, iter 200/6416, lr 0.100000, loss 26.144065 +INFO 2020-11-27 16:58:16 train.py: 79] Epoch 8, iter 400/6416, lr 0.100000, loss 26.240759 +INFO 2020-11-27 16:59:33 train.py: 79] Epoch 8, iter 600/6416, lr 0.100000, loss 26.304228 +INFO 2020-11-27 17:00:50 train.py: 79] Epoch 8, iter 800/6416, lr 0.100000, loss 26.356779 +INFO 2020-11-27 17:02:08 train.py: 79] Epoch 8, iter 1000/6416, lr 0.100000, loss 26.448754 +INFO 2020-11-27 17:03:25 train.py: 79] Epoch 8, iter 1200/6416, lr 0.100000, loss 26.423890 +INFO 2020-11-27 17:04:42 train.py: 79] Epoch 8, iter 1400/6416, lr 0.100000, loss 26.466591 +INFO 2020-11-27 17:06:00 train.py: 79] Epoch 8, iter 1600/6416, lr 0.100000, loss 26.511736 +INFO 2020-11-27 17:07:17 train.py: 79] Epoch 8, iter 1800/6416, lr 0.100000, loss 26.578622 +INFO 2020-11-27 17:08:34 train.py: 79] Epoch 8, iter 2000/6416, lr 0.100000, loss 26.522598 +INFO 2020-11-27 17:09:51 train.py: 79] Epoch 8, iter 2200/6416, lr 0.100000, loss 26.499182 +INFO 2020-11-27 17:11:09 train.py: 79] Epoch 8, iter 2400/6416, lr 0.100000, loss 26.545229 +INFO 2020-11-27 17:12:26 train.py: 79] Epoch 8, iter 2600/6416, lr 0.100000, loss 26.531583 +INFO 2020-11-27 17:13:43 train.py: 79] Epoch 8, iter 2800/6416, lr 0.100000, loss 26.538433 +INFO 2020-11-27 17:15:00 train.py: 92] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2020-11-27 17:15:01 train.py: 79] Epoch 8, iter 3000/6416, lr 0.100000, loss 26.486599 +INFO 2020-11-27 17:16:17 train.py: 79] Epoch 8, iter 3200/6416, lr 0.100000, loss 26.570876 +INFO 2020-11-27 17:17:34 train.py: 79] Epoch 8, iter 3400/6416, lr 0.100000, loss 26.513811 +INFO 2020-11-27 17:18:50 train.py: 79] Epoch 8, iter 3600/6416, lr 0.100000, loss 26.543802 +INFO 2020-11-27 17:20:07 train.py: 79] Epoch 8, iter 3800/6416, lr 0.100000, loss 26.545988 +INFO 2020-11-27 17:21:24 train.py: 79] Epoch 8, iter 4000/6416, lr 0.100000, loss 26.559745 +INFO 2020-11-27 17:22:40 train.py: 79] Epoch 8, iter 4200/6416, lr 0.100000, loss 26.556153 +INFO 2020-11-27 17:23:57 train.py: 79] Epoch 8, iter 4400/6416, lr 0.100000, loss 26.573778 +INFO 2020-11-27 17:25:14 train.py: 79] Epoch 8, iter 4600/6416, lr 0.100000, loss 26.542522 +INFO 2020-11-27 17:26:30 train.py: 79] Epoch 8, iter 4800/6416, lr 0.100000, loss 26.533074 +INFO 2020-11-27 17:27:47 train.py: 79] Epoch 8, iter 5000/6416, lr 0.100000, loss 26.559845 +INFO 2020-11-27 17:29:04 train.py: 79] Epoch 8, iter 5200/6416, lr 0.100000, loss 26.554198 +INFO 2020-11-27 17:30:20 train.py: 79] Epoch 8, iter 5400/6416, lr 0.100000, loss 26.485994 +INFO 2020-11-27 17:31:37 train.py: 79] Epoch 8, iter 5600/6416, lr 0.100000, loss 26.550967 +INFO 2020-11-27 17:32:53 train.py: 79] Epoch 8, iter 5800/6416, lr 0.100000, loss 26.500807 +INFO 2020-11-27 17:34:10 train.py: 92] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2020-11-27 17:34:10 train.py: 79] Epoch 8, iter 6000/6416, lr 0.100000, loss 26.552850 +INFO 2020-11-27 17:35:27 train.py: 79] Epoch 8, iter 6200/6416, lr 0.100000, loss 26.520036 +INFO 2020-11-27 17:36:44 train.py: 79] Epoch 8, iter 6400/6416, lr 0.100000, loss 26.478472 +INFO 2020-11-27 17:36:51 train.py: 97] Save checkpoint Epoch_8.pt to disk... +INFO 2020-11-27 17:36:52 train.py: 79] Epoch 9, iter 0/6416, lr 0.100000, loss 26.624666 +INFO 2020-11-27 17:38:10 train.py: 79] Epoch 9, iter 200/6416, lr 0.100000, loss 26.047869 +INFO 2020-11-27 17:39:27 train.py: 79] Epoch 9, iter 400/6416, lr 0.100000, loss 26.122794 +INFO 2020-11-27 17:40:44 train.py: 79] Epoch 9, iter 600/6416, lr 0.100000, loss 26.241400 +INFO 2020-11-27 17:42:01 train.py: 79] Epoch 9, iter 800/6416, lr 0.100000, loss 26.252919 +INFO 2020-11-27 17:43:18 train.py: 79] Epoch 9, iter 1000/6416, lr 0.100000, loss 26.282740 +INFO 2020-11-27 17:44:35 train.py: 79] Epoch 9, iter 1200/6416, lr 0.100000, loss 26.356872 +INFO 2020-11-27 17:45:53 train.py: 79] Epoch 9, iter 1400/6416, lr 0.100000, loss 26.374546 +INFO 2020-11-27 17:47:10 train.py: 79] Epoch 9, iter 1600/6416, lr 0.100000, loss 26.390618 +INFO 2020-11-27 17:48:27 train.py: 79] Epoch 9, iter 1800/6416, lr 0.100000, loss 26.420870 +INFO 2020-11-27 17:49:45 train.py: 79] Epoch 9, iter 2000/6416, lr 0.100000, loss 26.451176 +INFO 2020-11-27 17:51:02 train.py: 79] Epoch 9, iter 2200/6416, lr 0.100000, loss 26.424836 +INFO 2020-11-27 17:52:19 train.py: 79] Epoch 9, iter 2400/6416, lr 0.100000, loss 26.472089 +INFO 2020-11-27 17:53:36 train.py: 79] Epoch 9, iter 2600/6416, lr 0.100000, loss 26.453868 +INFO 2020-11-27 17:54:53 train.py: 79] Epoch 9, iter 2800/6416, lr 0.100000, loss 26.456881 +INFO 2020-11-27 17:56:10 train.py: 92] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2020-11-27 17:56:11 train.py: 79] Epoch 9, iter 3000/6416, lr 0.100000, loss 26.489091 +INFO 2020-11-27 17:57:27 train.py: 79] Epoch 9, iter 3200/6416, lr 0.100000, loss 26.469661 +INFO 2020-11-27 17:58:44 train.py: 79] Epoch 9, iter 3400/6416, lr 0.100000, loss 26.471517 +INFO 2020-11-27 18:00:01 train.py: 79] Epoch 9, iter 3600/6416, lr 0.100000, loss 26.453394 +INFO 2020-11-27 18:01:18 train.py: 79] Epoch 9, iter 3800/6416, lr 0.100000, loss 26.463491 +INFO 2020-11-27 18:02:36 train.py: 79] Epoch 9, iter 4000/6416, lr 0.100000, loss 26.441960 +INFO 2020-11-27 18:03:53 train.py: 79] Epoch 9, iter 4200/6416, lr 0.100000, loss 26.483037 +INFO 2020-11-27 18:05:10 train.py: 79] Epoch 9, iter 4400/6416, lr 0.100000, loss 26.403237 +INFO 2020-11-27 18:06:27 train.py: 79] Epoch 9, iter 4600/6416, lr 0.100000, loss 26.486957 +INFO 2020-11-27 18:07:45 train.py: 79] Epoch 9, iter 4800/6416, lr 0.100000, loss 26.482731 +INFO 2020-11-27 18:09:02 train.py: 79] Epoch 9, iter 5000/6416, lr 0.100000, loss 26.440016 +INFO 2020-11-27 18:10:19 train.py: 79] Epoch 9, iter 5200/6416, lr 0.100000, loss 26.405595 +INFO 2020-11-27 18:11:36 train.py: 79] Epoch 9, iter 5400/6416, lr 0.100000, loss 26.428556 +INFO 2020-11-27 18:12:54 train.py: 79] Epoch 9, iter 5600/6416, lr 0.100000, loss 26.379415 +INFO 2020-11-27 18:14:11 train.py: 79] Epoch 9, iter 5800/6416, lr 0.100000, loss 26.450669 +INFO 2020-11-27 18:15:28 train.py: 92] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2020-11-27 18:15:28 train.py: 79] Epoch 9, iter 6000/6416, lr 0.100000, loss 26.445732 +INFO 2020-11-27 18:16:45 train.py: 79] Epoch 9, iter 6200/6416, lr 0.100000, loss 26.428099 +INFO 2020-11-27 18:18:02 train.py: 79] Epoch 9, iter 6400/6416, lr 0.100000, loss 26.435389 +INFO 2020-11-27 18:18:09 train.py: 97] Save checkpoint Epoch_9.pt to disk... +INFO 2020-11-27 18:18:10 train.py: 79] Epoch 10, iter 0/6416, lr 0.010000, loss 26.353246 +INFO 2020-11-27 18:19:27 train.py: 79] Epoch 10, iter 200/6416, lr 0.010000, loss 25.366233 +INFO 2020-11-27 18:20:43 train.py: 79] Epoch 10, iter 400/6416, lr 0.010000, loss 25.134344 +INFO 2020-11-27 18:22:00 train.py: 79] Epoch 10, iter 600/6416, lr 0.010000, loss 24.939041 +INFO 2020-11-27 18:23:16 train.py: 79] Epoch 10, iter 800/6416, lr 0.010000, loss 24.881675 +INFO 2020-11-27 18:24:33 train.py: 79] Epoch 10, iter 1000/6416, lr 0.010000, loss 24.780506 +INFO 2020-11-27 18:25:50 train.py: 79] Epoch 10, iter 1200/6416, lr 0.010000, loss 24.735566 +INFO 2020-11-27 18:27:06 train.py: 79] Epoch 10, iter 1400/6416, lr 0.010000, loss 24.651775 +INFO 2020-11-27 18:28:23 train.py: 79] Epoch 10, iter 1600/6416, lr 0.010000, loss 24.613847 +INFO 2020-11-27 18:29:39 train.py: 79] Epoch 10, iter 1800/6416, lr 0.010000, loss 24.611395 +INFO 2020-11-27 18:30:56 train.py: 79] Epoch 10, iter 2000/6416, lr 0.010000, loss 24.542444 +INFO 2020-11-27 18:32:13 train.py: 79] Epoch 10, iter 2200/6416, lr 0.010000, loss 24.483578 +INFO 2020-11-27 18:33:29 train.py: 79] Epoch 10, iter 2400/6416, lr 0.010000, loss 24.467519 +INFO 2020-11-27 18:34:46 train.py: 79] Epoch 10, iter 2600/6416, lr 0.010000, loss 24.449910 +INFO 2020-11-27 18:36:03 train.py: 79] Epoch 10, iter 2800/6416, lr 0.010000, loss 24.407115 +INFO 2020-11-27 18:37:19 train.py: 92] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2020-11-27 18:37:19 train.py: 79] Epoch 10, iter 3000/6416, lr 0.010000, loss 24.378046 +INFO 2020-11-27 18:38:37 train.py: 79] Epoch 10, iter 3200/6416, lr 0.010000, loss 24.332232 +INFO 2020-11-27 18:39:54 train.py: 79] Epoch 10, iter 3400/6416, lr 0.010000, loss 24.346177 +INFO 2020-11-27 18:41:11 train.py: 79] Epoch 10, iter 3600/6416, lr 0.010000, loss 24.290777 +INFO 2020-11-27 18:42:28 train.py: 79] Epoch 10, iter 3800/6416, lr 0.010000, loss 24.300226 +INFO 2020-11-27 18:43:46 train.py: 79] Epoch 10, iter 4000/6416, lr 0.010000, loss 24.253135 +INFO 2020-11-27 18:45:03 train.py: 79] Epoch 10, iter 4200/6416, lr 0.010000, loss 24.290047 +INFO 2020-11-27 18:46:20 train.py: 79] Epoch 10, iter 4400/6416, lr 0.010000, loss 24.246174 +INFO 2020-11-27 18:47:37 train.py: 79] Epoch 10, iter 4600/6416, lr 0.010000, loss 24.223171 +INFO 2020-11-27 18:48:55 train.py: 79] Epoch 10, iter 4800/6416, lr 0.010000, loss 24.206740 +INFO 2020-11-27 18:50:12 train.py: 79] Epoch 10, iter 5000/6416, lr 0.010000, loss 24.153028 +INFO 2020-11-27 18:51:29 train.py: 79] Epoch 10, iter 5200/6416, lr 0.010000, loss 24.147221 +INFO 2020-11-27 18:52:46 train.py: 79] Epoch 10, iter 5400/6416, lr 0.010000, loss 24.178179 +INFO 2020-11-27 18:54:04 train.py: 79] Epoch 10, iter 5600/6416, lr 0.010000, loss 24.161250 +INFO 2020-11-27 18:55:21 train.py: 79] Epoch 10, iter 5800/6416, lr 0.010000, loss 24.119541 +INFO 2020-11-27 18:56:38 train.py: 92] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2020-11-27 18:56:38 train.py: 79] Epoch 10, iter 6000/6416, lr 0.010000, loss 24.130006 +INFO 2020-11-27 18:57:55 train.py: 79] Epoch 10, iter 6200/6416, lr 0.010000, loss 24.113544 +INFO 2020-11-27 18:59:13 train.py: 79] Epoch 10, iter 6400/6416, lr 0.010000, loss 24.050037 +INFO 2020-11-27 18:59:19 train.py: 97] Save checkpoint Epoch_10.pt to disk... +INFO 2020-11-27 18:59:20 train.py: 79] Epoch 11, iter 0/6416, lr 0.010000, loss 24.293459 +INFO 2020-11-27 19:00:37 train.py: 79] Epoch 11, iter 200/6416, lr 0.010000, loss 23.817109 +INFO 2020-11-27 19:01:54 train.py: 79] Epoch 11, iter 400/6416, lr 0.010000, loss 23.813827 +INFO 2020-11-27 19:03:10 train.py: 79] Epoch 11, iter 600/6416, lr 0.010000, loss 23.813719 +INFO 2020-11-27 19:04:27 train.py: 79] Epoch 11, iter 800/6416, lr 0.010000, loss 23.829766 +INFO 2020-11-27 19:05:45 train.py: 79] Epoch 11, iter 1000/6416, lr 0.010000, loss 23.802465 +INFO 2020-11-27 19:07:02 train.py: 79] Epoch 11, iter 1200/6416, lr 0.010000, loss 23.808603 +INFO 2020-11-27 19:08:19 train.py: 79] Epoch 11, iter 1400/6416, lr 0.010000, loss 23.804885 +INFO 2020-11-27 19:09:36 train.py: 79] Epoch 11, iter 1600/6416, lr 0.010000, loss 23.804163 +INFO 2020-11-27 19:10:53 train.py: 79] Epoch 11, iter 1800/6416, lr 0.010000, loss 23.795932 +INFO 2020-11-27 19:12:11 train.py: 79] Epoch 11, iter 2000/6416, lr 0.010000, loss 23.839948 +INFO 2020-11-27 19:13:28 train.py: 79] Epoch 11, iter 2200/6416, lr 0.010000, loss 23.831888 +INFO 2020-11-27 19:14:45 train.py: 79] Epoch 11, iter 2400/6416, lr 0.010000, loss 23.841614 +INFO 2020-11-27 19:16:02 train.py: 79] Epoch 11, iter 2600/6416, lr 0.010000, loss 23.799354 +INFO 2020-11-27 19:17:20 train.py: 79] Epoch 11, iter 2800/6416, lr 0.010000, loss 23.865570 +INFO 2020-11-27 19:18:37 train.py: 92] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2020-11-27 19:18:37 train.py: 79] Epoch 11, iter 3000/6416, lr 0.010000, loss 23.832731 +INFO 2020-11-27 19:19:54 train.py: 79] Epoch 11, iter 3200/6416, lr 0.010000, loss 23.788771 +INFO 2020-11-27 19:21:12 train.py: 79] Epoch 11, iter 3400/6416, lr 0.010000, loss 23.833594 +INFO 2020-11-27 19:22:29 train.py: 79] Epoch 11, iter 3600/6416, lr 0.010000, loss 23.824566 +INFO 2020-11-27 19:23:46 train.py: 79] Epoch 11, iter 3800/6416, lr 0.010000, loss 23.839771 +INFO 2020-11-27 19:25:03 train.py: 79] Epoch 11, iter 4000/6416, lr 0.010000, loss 23.850836 +INFO 2020-11-27 19:26:20 train.py: 79] Epoch 11, iter 4200/6416, lr 0.010000, loss 23.835896 +INFO 2020-11-27 19:27:38 train.py: 79] Epoch 11, iter 4400/6416, lr 0.010000, loss 23.866312 +INFO 2020-11-27 19:28:55 train.py: 79] Epoch 11, iter 4600/6416, lr 0.010000, loss 23.831772 +INFO 2020-11-27 19:30:12 train.py: 79] Epoch 11, iter 4800/6416, lr 0.010000, loss 23.795159 +INFO 2020-11-27 19:31:29 train.py: 79] Epoch 11, iter 5000/6416, lr 0.010000, loss 23.882771 +INFO 2020-11-27 19:32:46 train.py: 79] Epoch 11, iter 5200/6416, lr 0.010000, loss 23.834567 +INFO 2020-11-27 19:34:04 train.py: 79] Epoch 11, iter 5400/6416, lr 0.010000, loss 23.880144 +INFO 2020-11-27 19:35:21 train.py: 79] Epoch 11, iter 5600/6416, lr 0.010000, loss 23.829198 +INFO 2020-11-27 19:36:38 train.py: 79] Epoch 11, iter 5800/6416, lr 0.010000, loss 23.838647 +INFO 2020-11-27 19:37:55 train.py: 92] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2020-11-27 19:37:56 train.py: 79] Epoch 11, iter 6000/6416, lr 0.010000, loss 23.820171 +INFO 2020-11-27 19:39:12 train.py: 79] Epoch 11, iter 6200/6416, lr 0.010000, loss 23.816880 +INFO 2020-11-27 19:40:29 train.py: 79] Epoch 11, iter 6400/6416, lr 0.010000, loss 23.843305 +INFO 2020-11-27 19:40:35 train.py: 97] Save checkpoint Epoch_11.pt to disk... +INFO 2020-11-27 19:40:36 train.py: 79] Epoch 12, iter 0/6416, lr 0.010000, loss 23.819377 +INFO 2020-11-27 19:41:54 train.py: 79] Epoch 12, iter 200/6416, lr 0.010000, loss 23.548012 +INFO 2020-11-27 19:43:11 train.py: 79] Epoch 12, iter 400/6416, lr 0.010000, loss 23.577025 +INFO 2020-11-27 19:44:28 train.py: 79] Epoch 12, iter 600/6416, lr 0.010000, loss 23.591395 +INFO 2020-11-27 19:45:45 train.py: 79] Epoch 12, iter 800/6416, lr 0.010000, loss 23.605145 +INFO 2020-11-27 19:47:02 train.py: 79] Epoch 12, iter 1000/6416, lr 0.010000, loss 23.642389 +INFO 2020-11-27 19:48:20 train.py: 79] Epoch 12, iter 1200/6416, lr 0.010000, loss 23.618043 +INFO 2020-11-27 19:49:37 train.py: 79] Epoch 12, iter 1400/6416, lr 0.010000, loss 23.607647 +INFO 2020-11-27 19:50:54 train.py: 79] Epoch 12, iter 1600/6416, lr 0.010000, loss 23.656293 +INFO 2020-11-27 19:52:11 train.py: 79] Epoch 12, iter 1800/6416, lr 0.010000, loss 23.643595 +INFO 2020-11-27 19:53:28 train.py: 79] Epoch 12, iter 2000/6416, lr 0.010000, loss 23.667570 +INFO 2020-11-27 19:54:46 train.py: 79] Epoch 12, iter 2200/6416, lr 0.010000, loss 23.686193 +INFO 2020-11-27 19:56:03 train.py: 79] Epoch 12, iter 2400/6416, lr 0.010000, loss 23.706958 +INFO 2020-11-27 19:57:20 train.py: 79] Epoch 12, iter 2600/6416, lr 0.010000, loss 23.672709 +INFO 2020-11-27 19:58:37 train.py: 79] Epoch 12, iter 2800/6416, lr 0.010000, loss 23.704939 +INFO 2020-11-27 19:59:54 train.py: 92] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2020-11-27 19:59:55 train.py: 79] Epoch 12, iter 3000/6416, lr 0.010000, loss 23.678014 +INFO 2020-11-27 20:01:12 train.py: 79] Epoch 12, iter 3200/6416, lr 0.010000, loss 23.665280 +INFO 2020-11-27 20:02:29 train.py: 79] Epoch 12, iter 3400/6416, lr 0.010000, loss 23.720366 +INFO 2020-11-27 20:03:47 train.py: 79] Epoch 12, iter 3600/6416, lr 0.010000, loss 23.705966 +INFO 2020-11-27 20:05:04 train.py: 79] Epoch 12, iter 3800/6416, lr 0.010000, loss 23.704745 +INFO 2020-11-27 20:06:21 train.py: 79] Epoch 12, iter 4000/6416, lr 0.010000, loss 23.734378 +INFO 2020-11-27 20:07:38 train.py: 79] Epoch 12, iter 4200/6416, lr 0.010000, loss 23.764667 +INFO 2020-11-27 20:08:55 train.py: 79] Epoch 12, iter 4400/6416, lr 0.010000, loss 23.712801 +INFO 2020-11-27 20:10:13 train.py: 79] Epoch 12, iter 4600/6416, lr 0.010000, loss 23.674852 +INFO 2020-11-27 20:11:30 train.py: 79] Epoch 12, iter 4800/6416, lr 0.010000, loss 23.730592 +INFO 2020-11-27 20:12:47 train.py: 79] Epoch 12, iter 5000/6416, lr 0.010000, loss 23.726943 +INFO 2020-11-27 20:14:04 train.py: 79] Epoch 12, iter 5200/6416, lr 0.010000, loss 23.703507 +INFO 2020-11-27 20:15:21 train.py: 79] Epoch 12, iter 5400/6416, lr 0.010000, loss 23.691990 +INFO 2020-11-27 20:16:39 train.py: 79] Epoch 12, iter 5600/6416, lr 0.010000, loss 23.770929 +INFO 2020-11-27 20:17:56 train.py: 79] Epoch 12, iter 5800/6416, lr 0.010000, loss 23.774558 +INFO 2020-11-27 20:19:13 train.py: 92] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2020-11-27 20:19:13 train.py: 79] Epoch 12, iter 6000/6416, lr 0.010000, loss 23.726325 +INFO 2020-11-27 20:20:30 train.py: 79] Epoch 12, iter 6200/6416, lr 0.010000, loss 23.754166 +INFO 2020-11-27 20:21:47 train.py: 79] Epoch 12, iter 6400/6416, lr 0.010000, loss 23.747228 +INFO 2020-11-27 20:21:53 train.py: 97] Save checkpoint Epoch_12.pt to disk... +INFO 2020-11-27 20:21:55 train.py: 79] Epoch 13, iter 0/6416, lr 0.001000, loss 23.727625 +INFO 2020-11-27 20:23:12 train.py: 79] Epoch 13, iter 200/6416, lr 0.001000, loss 23.384237 +INFO 2020-11-27 20:24:28 train.py: 79] Epoch 13, iter 400/6416, lr 0.001000, loss 23.371738 +INFO 2020-11-27 20:25:45 train.py: 79] Epoch 13, iter 600/6416, lr 0.001000, loss 23.337761 +INFO 2020-11-27 20:27:02 train.py: 79] Epoch 13, iter 800/6416, lr 0.001000, loss 23.329488 +INFO 2020-11-27 20:28:18 train.py: 79] Epoch 13, iter 1000/6416, lr 0.001000, loss 23.322887 +INFO 2020-11-27 20:29:35 train.py: 79] Epoch 13, iter 1200/6416, lr 0.001000, loss 23.322364 +INFO 2020-11-27 20:30:52 train.py: 79] Epoch 13, iter 1400/6416, lr 0.001000, loss 23.319793 +INFO 2020-11-27 20:32:08 train.py: 79] Epoch 13, iter 1600/6416, lr 0.001000, loss 23.341679 +INFO 2020-11-27 20:33:25 train.py: 79] Epoch 13, iter 1800/6416, lr 0.001000, loss 23.336878 +INFO 2020-11-27 20:34:41 train.py: 79] Epoch 13, iter 2000/6416, lr 0.001000, loss 23.331237 +INFO 2020-11-27 20:35:58 train.py: 79] Epoch 13, iter 2200/6416, lr 0.001000, loss 23.311621 +INFO 2020-11-27 20:37:14 train.py: 79] Epoch 13, iter 2400/6416, lr 0.001000, loss 23.313848 +INFO 2020-11-27 20:38:31 train.py: 79] Epoch 13, iter 2600/6416, lr 0.001000, loss 23.326241 +INFO 2020-11-27 20:39:48 train.py: 79] Epoch 13, iter 2800/6416, lr 0.001000, loss 23.317299 +INFO 2020-11-27 20:41:04 train.py: 92] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2020-11-27 20:41:04 train.py: 79] Epoch 13, iter 3000/6416, lr 0.001000, loss 23.276657 +INFO 2020-11-27 20:42:21 train.py: 79] Epoch 13, iter 3200/6416, lr 0.001000, loss 23.272422 +INFO 2020-11-27 20:43:39 train.py: 79] Epoch 13, iter 3400/6416, lr 0.001000, loss 23.287074 +INFO 2020-11-27 20:44:56 train.py: 79] Epoch 13, iter 3600/6416, lr 0.001000, loss 23.300940 +INFO 2020-11-27 20:46:13 train.py: 79] Epoch 13, iter 3800/6416, lr 0.001000, loss 23.286703 +INFO 2020-11-27 20:47:30 train.py: 79] Epoch 13, iter 4000/6416, lr 0.001000, loss 23.303239 +INFO 2020-11-27 20:48:48 train.py: 79] Epoch 13, iter 4200/6416, lr 0.001000, loss 23.302035 +INFO 2020-11-27 20:50:05 train.py: 79] Epoch 13, iter 4400/6416, lr 0.001000, loss 23.348301 +INFO 2020-11-27 20:51:22 train.py: 79] Epoch 13, iter 4600/6416, lr 0.001000, loss 23.308829 +INFO 2020-11-27 20:52:39 train.py: 79] Epoch 13, iter 4800/6416, lr 0.001000, loss 23.321386 +INFO 2020-11-27 20:53:56 train.py: 79] Epoch 13, iter 5000/6416, lr 0.001000, loss 23.319429 +INFO 2020-11-27 20:55:13 train.py: 79] Epoch 13, iter 5200/6416, lr 0.001000, loss 23.266885 +INFO 2020-11-27 20:56:31 train.py: 79] Epoch 13, iter 5400/6416, lr 0.001000, loss 23.317021 +INFO 2020-11-27 20:57:48 train.py: 79] Epoch 13, iter 5600/6416, lr 0.001000, loss 23.307620 +INFO 2020-11-27 20:59:05 train.py: 79] Epoch 13, iter 5800/6416, lr 0.001000, loss 23.287010 +INFO 2020-11-27 21:00:22 train.py: 92] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2020-11-27 21:00:22 train.py: 79] Epoch 13, iter 6000/6416, lr 0.001000, loss 23.291159 +INFO 2020-11-27 21:01:40 train.py: 79] Epoch 13, iter 6200/6416, lr 0.001000, loss 23.313620 +INFO 2020-11-27 21:02:57 train.py: 79] Epoch 13, iter 6400/6416, lr 0.001000, loss 23.312954 +INFO 2020-11-27 21:03:03 train.py: 97] Save checkpoint Epoch_13.pt to disk... +INFO 2020-11-27 21:03:04 train.py: 79] Epoch 14, iter 0/6416, lr 0.001000, loss 23.313574 +INFO 2020-11-27 21:04:22 train.py: 79] Epoch 14, iter 200/6416, lr 0.001000, loss 23.204394 +INFO 2020-11-27 21:05:39 train.py: 79] Epoch 14, iter 400/6416, lr 0.001000, loss 23.219519 +INFO 2020-11-27 21:06:56 train.py: 79] Epoch 14, iter 600/6416, lr 0.001000, loss 23.221956 +INFO 2020-11-27 21:08:13 train.py: 79] Epoch 14, iter 800/6416, lr 0.001000, loss 23.224297 +INFO 2020-11-27 21:09:31 train.py: 79] Epoch 14, iter 1000/6416, lr 0.001000, loss 23.252360 +INFO 2020-11-27 21:10:48 train.py: 79] Epoch 14, iter 1200/6416, lr 0.001000, loss 23.261930 +INFO 2020-11-27 21:12:05 train.py: 79] Epoch 14, iter 1400/6416, lr 0.001000, loss 23.255049 +INFO 2020-11-27 21:13:22 train.py: 79] Epoch 14, iter 1600/6416, lr 0.001000, loss 23.246408 +INFO 2020-11-27 21:14:39 train.py: 79] Epoch 14, iter 1800/6416, lr 0.001000, loss 23.304769 +INFO 2020-11-27 21:15:56 train.py: 79] Epoch 14, iter 2000/6416, lr 0.001000, loss 23.313794 +INFO 2020-11-27 21:17:13 train.py: 79] Epoch 14, iter 2200/6416, lr 0.001000, loss 23.291044 +INFO 2020-11-27 21:18:31 train.py: 79] Epoch 14, iter 2400/6416, lr 0.001000, loss 23.266085 +INFO 2020-11-27 21:19:48 train.py: 79] Epoch 14, iter 2600/6416, lr 0.001000, loss 23.236668 +INFO 2020-11-27 21:21:05 train.py: 79] Epoch 14, iter 2800/6416, lr 0.001000, loss 23.249743 +INFO 2020-11-27 21:22:22 train.py: 92] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2020-11-27 21:22:22 train.py: 79] Epoch 14, iter 3000/6416, lr 0.001000, loss 23.241882 +INFO 2020-11-27 21:23:38 train.py: 79] Epoch 14, iter 3200/6416, lr 0.001000, loss 23.271876 +INFO 2020-11-27 21:24:55 train.py: 79] Epoch 14, iter 3400/6416, lr 0.001000, loss 23.281327 +INFO 2020-11-27 21:26:11 train.py: 79] Epoch 14, iter 3600/6416, lr 0.001000, loss 23.270969 +INFO 2020-11-27 21:27:27 train.py: 79] Epoch 14, iter 3800/6416, lr 0.001000, loss 23.256917 +INFO 2020-11-27 21:28:44 train.py: 79] Epoch 14, iter 4000/6416, lr 0.001000, loss 23.272061 +INFO 2020-11-27 21:30:00 train.py: 79] Epoch 14, iter 4200/6416, lr 0.001000, loss 23.313885 +INFO 2020-11-27 21:31:17 train.py: 79] Epoch 14, iter 4400/6416, lr 0.001000, loss 23.296111 +INFO 2020-11-27 21:32:33 train.py: 79] Epoch 14, iter 4600/6416, lr 0.001000, loss 23.256415 +INFO 2020-11-27 21:33:49 train.py: 79] Epoch 14, iter 4800/6416, lr 0.001000, loss 23.295370 +INFO 2020-11-27 21:35:06 train.py: 79] Epoch 14, iter 5000/6416, lr 0.001000, loss 23.290063 +INFO 2020-11-27 21:36:22 train.py: 79] Epoch 14, iter 5200/6416, lr 0.001000, loss 23.301908 +INFO 2020-11-27 21:37:39 train.py: 79] Epoch 14, iter 5400/6416, lr 0.001000, loss 23.275354 +INFO 2020-11-27 21:38:55 train.py: 79] Epoch 14, iter 5600/6416, lr 0.001000, loss 23.261909 +INFO 2020-11-27 21:40:11 train.py: 79] Epoch 14, iter 5800/6416, lr 0.001000, loss 23.292931 +INFO 2020-11-27 21:41:28 train.py: 92] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2020-11-27 21:41:28 train.py: 79] Epoch 14, iter 6000/6416, lr 0.001000, loss 23.275218 +INFO 2020-11-27 21:42:45 train.py: 79] Epoch 14, iter 6200/6416, lr 0.001000, loss 23.277818 +INFO 2020-11-27 21:44:02 train.py: 79] Epoch 14, iter 6400/6416, lr 0.001000, loss 23.256935 +INFO 2020-11-27 21:44:08 train.py: 97] Save checkpoint Epoch_14.pt to disk... +INFO 2020-11-27 21:44:10 train.py: 79] Epoch 15, iter 0/6416, lr 0.001000, loss 23.359136 +INFO 2020-11-27 21:45:27 train.py: 79] Epoch 15, iter 200/6416, lr 0.001000, loss 23.198156 +INFO 2020-11-27 21:46:44 train.py: 79] Epoch 15, iter 400/6416, lr 0.001000, loss 23.221968 +INFO 2020-11-27 21:48:02 train.py: 79] Epoch 15, iter 600/6416, lr 0.001000, loss 23.239415 +INFO 2020-11-27 21:49:19 train.py: 79] Epoch 15, iter 800/6416, lr 0.001000, loss 23.234750 +INFO 2020-11-27 21:50:36 train.py: 79] Epoch 15, iter 1000/6416, lr 0.001000, loss 23.216742 +INFO 2020-11-27 21:51:54 train.py: 79] Epoch 15, iter 1200/6416, lr 0.001000, loss 23.201826 +INFO 2020-11-27 21:53:11 train.py: 79] Epoch 15, iter 1400/6416, lr 0.001000, loss 23.254077 +INFO 2020-11-27 21:54:28 train.py: 79] Epoch 15, iter 1600/6416, lr 0.001000, loss 23.243932 +INFO 2020-11-27 21:55:45 train.py: 79] Epoch 15, iter 1800/6416, lr 0.001000, loss 23.239057 +INFO 2020-11-27 21:57:02 train.py: 79] Epoch 15, iter 2000/6416, lr 0.001000, loss 23.274510 +INFO 2020-11-27 21:58:20 train.py: 79] Epoch 15, iter 2200/6416, lr 0.001000, loss 23.218772 +INFO 2020-11-27 21:59:37 train.py: 79] Epoch 15, iter 2400/6416, lr 0.001000, loss 23.261813 +INFO 2020-11-27 22:00:54 train.py: 79] Epoch 15, iter 2600/6416, lr 0.001000, loss 23.246546 +INFO 2020-11-27 22:02:11 train.py: 79] Epoch 15, iter 2800/6416, lr 0.001000, loss 23.248505 +INFO 2020-11-27 22:03:28 train.py: 92] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2020-11-27 22:03:28 train.py: 79] Epoch 15, iter 3000/6416, lr 0.001000, loss 23.235488 +INFO 2020-11-27 22:04:45 train.py: 79] Epoch 15, iter 3200/6416, lr 0.001000, loss 23.244191 +INFO 2020-11-27 22:06:02 train.py: 79] Epoch 15, iter 3400/6416, lr 0.001000, loss 23.217826 +INFO 2020-11-27 22:07:19 train.py: 79] Epoch 15, iter 3600/6416, lr 0.001000, loss 23.239476 +INFO 2020-11-27 22:08:36 train.py: 79] Epoch 15, iter 3800/6416, lr 0.001000, loss 23.245796 +INFO 2020-11-27 22:09:53 train.py: 79] Epoch 15, iter 4000/6416, lr 0.001000, loss 23.277841 +INFO 2020-11-27 22:11:10 train.py: 79] Epoch 15, iter 4200/6416, lr 0.001000, loss 23.231695 +INFO 2020-11-27 22:12:28 train.py: 79] Epoch 15, iter 4400/6416, lr 0.001000, loss 23.254363 +INFO 2020-11-27 22:13:45 train.py: 79] Epoch 15, iter 4600/6416, lr 0.001000, loss 23.255496 +INFO 2020-11-27 22:15:02 train.py: 79] Epoch 15, iter 4800/6416, lr 0.001000, loss 23.264644 +INFO 2020-11-27 22:16:19 train.py: 79] Epoch 15, iter 5000/6416, lr 0.001000, loss 23.254548 +INFO 2020-11-27 22:17:36 train.py: 79] Epoch 15, iter 5200/6416, lr 0.001000, loss 23.235509 +INFO 2020-11-27 22:18:53 train.py: 79] Epoch 15, iter 5400/6416, lr 0.001000, loss 23.286478 +INFO 2020-11-27 22:20:10 train.py: 79] Epoch 15, iter 5600/6416, lr 0.001000, loss 23.261007 +INFO 2020-11-27 22:21:27 train.py: 79] Epoch 15, iter 5800/6416, lr 0.001000, loss 23.251082 +INFO 2020-11-27 22:22:43 train.py: 92] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2020-11-27 22:22:44 train.py: 79] Epoch 15, iter 6000/6416, lr 0.001000, loss 23.293034 +INFO 2020-11-27 22:24:00 train.py: 79] Epoch 15, iter 6200/6416, lr 0.001000, loss 23.270165 +INFO 2020-11-27 22:25:16 train.py: 79] Epoch 15, iter 6400/6416, lr 0.001000, loss 23.272867 +INFO 2020-11-27 22:25:22 train.py: 97] Save checkpoint Epoch_15.pt to disk... +INFO 2020-11-27 22:25:24 train.py: 79] Epoch 16, iter 0/6416, lr 0.000100, loss 23.244636 +INFO 2020-11-27 22:26:41 train.py: 79] Epoch 16, iter 200/6416, lr 0.000100, loss 23.209590 +INFO 2020-11-27 22:27:58 train.py: 79] Epoch 16, iter 400/6416, lr 0.000100, loss 23.215623 +INFO 2020-11-27 22:29:16 train.py: 79] Epoch 16, iter 600/6416, lr 0.000100, loss 23.225994 +INFO 2020-11-27 22:30:33 train.py: 79] Epoch 16, iter 800/6416, lr 0.000100, loss 23.180587 +INFO 2020-11-27 22:31:50 train.py: 79] Epoch 16, iter 1000/6416, lr 0.000100, loss 23.185012 +INFO 2020-11-27 22:33:07 train.py: 79] Epoch 16, iter 1200/6416, lr 0.000100, loss 23.203271 +INFO 2020-11-27 22:34:24 train.py: 79] Epoch 16, iter 1400/6416, lr 0.000100, loss 23.207087 +INFO 2020-11-27 22:35:41 train.py: 79] Epoch 16, iter 1600/6416, lr 0.000100, loss 23.201103 +INFO 2020-11-27 22:36:58 train.py: 79] Epoch 16, iter 1800/6416, lr 0.000100, loss 23.243564 +INFO 2020-11-27 22:38:15 train.py: 79] Epoch 16, iter 2000/6416, lr 0.000100, loss 23.178899 +INFO 2020-11-27 22:39:32 train.py: 79] Epoch 16, iter 2200/6416, lr 0.000100, loss 23.228556 +INFO 2020-11-27 22:40:49 train.py: 79] Epoch 16, iter 2400/6416, lr 0.000100, loss 23.187529 +INFO 2020-11-27 22:42:06 train.py: 79] Epoch 16, iter 2600/6416, lr 0.000100, loss 23.218757 +INFO 2020-11-27 22:43:23 train.py: 79] Epoch 16, iter 2800/6416, lr 0.000100, loss 23.171763 +INFO 2020-11-27 22:44:40 train.py: 92] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2020-11-27 22:44:40 train.py: 79] Epoch 16, iter 3000/6416, lr 0.000100, loss 23.194116 +INFO 2020-11-27 22:45:58 train.py: 79] Epoch 16, iter 3200/6416, lr 0.000100, loss 23.225780 +INFO 2020-11-27 22:47:15 train.py: 79] Epoch 16, iter 3400/6416, lr 0.000100, loss 23.225334 +INFO 2020-11-27 22:48:32 train.py: 79] Epoch 16, iter 3600/6416, lr 0.000100, loss 23.207852 +INFO 2020-11-27 22:49:48 train.py: 79] Epoch 16, iter 3800/6416, lr 0.000100, loss 23.210509 +INFO 2020-11-27 22:51:05 train.py: 79] Epoch 16, iter 4000/6416, lr 0.000100, loss 23.189287 +INFO 2020-11-27 22:52:22 train.py: 79] Epoch 16, iter 4200/6416, lr 0.000100, loss 23.241467 +INFO 2020-11-27 22:53:40 train.py: 79] Epoch 16, iter 4400/6416, lr 0.000100, loss 23.230613 +INFO 2020-11-27 22:54:56 train.py: 79] Epoch 16, iter 4600/6416, lr 0.000100, loss 23.178476 +INFO 2020-11-27 22:56:13 train.py: 79] Epoch 16, iter 4800/6416, lr 0.000100, loss 23.184672 +INFO 2020-11-27 22:57:30 train.py: 79] Epoch 16, iter 5000/6416, lr 0.000100, loss 23.179677 +INFO 2020-11-27 22:58:47 train.py: 79] Epoch 16, iter 5200/6416, lr 0.000100, loss 23.210603 +INFO 2020-11-27 23:00:04 train.py: 79] Epoch 16, iter 5400/6416, lr 0.000100, loss 23.186464 +INFO 2020-11-27 23:01:21 train.py: 79] Epoch 16, iter 5600/6416, lr 0.000100, loss 23.143685 +INFO 2020-11-27 23:02:38 train.py: 79] Epoch 16, iter 5800/6416, lr 0.000100, loss 23.192623 +INFO 2020-11-27 23:03:55 train.py: 92] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2020-11-27 23:03:55 train.py: 79] Epoch 16, iter 6000/6416, lr 0.000100, loss 23.177588 +INFO 2020-11-27 23:05:12 train.py: 79] Epoch 16, iter 6200/6416, lr 0.000100, loss 23.164168 +INFO 2020-11-27 23:06:29 train.py: 79] Epoch 16, iter 6400/6416, lr 0.000100, loss 23.186432 +INFO 2020-11-27 23:06:35 train.py: 97] Save checkpoint Epoch_16.pt to disk... +INFO 2020-11-27 23:06:37 train.py: 79] Epoch 17, iter 0/6416, lr 0.000100, loss 23.225369 +INFO 2020-11-27 23:07:54 train.py: 79] Epoch 17, iter 200/6416, lr 0.000100, loss 23.172257 +INFO 2020-11-27 23:09:11 train.py: 79] Epoch 17, iter 400/6416, lr 0.000100, loss 23.177428 +INFO 2020-11-27 23:10:28 train.py: 79] Epoch 17, iter 600/6416, lr 0.000100, loss 23.180162 +INFO 2020-11-27 23:11:46 train.py: 79] Epoch 17, iter 800/6416, lr 0.000100, loss 23.203078 +INFO 2020-11-27 23:13:03 train.py: 79] Epoch 17, iter 1000/6416, lr 0.000100, loss 23.218781 +INFO 2020-11-27 23:14:20 train.py: 79] Epoch 17, iter 1200/6416, lr 0.000100, loss 23.172844 +INFO 2020-11-27 23:15:37 train.py: 79] Epoch 17, iter 1400/6416, lr 0.000100, loss 23.177171 +INFO 2020-11-27 23:16:54 train.py: 79] Epoch 17, iter 1600/6416, lr 0.000100, loss 23.216808 +INFO 2020-11-27 23:18:11 train.py: 79] Epoch 17, iter 1800/6416, lr 0.000100, loss 23.178026 +INFO 2020-11-27 23:19:28 train.py: 79] Epoch 17, iter 2000/6416, lr 0.000100, loss 23.185704 +INFO 2020-11-27 23:20:45 train.py: 79] Epoch 17, iter 2200/6416, lr 0.000100, loss 23.226472 +INFO 2020-11-27 23:22:02 train.py: 79] Epoch 17, iter 2400/6416, lr 0.000100, loss 23.226721 +INFO 2020-11-27 23:23:19 train.py: 79] Epoch 17, iter 2600/6416, lr 0.000100, loss 23.176181 +INFO 2020-11-27 23:24:36 train.py: 79] Epoch 17, iter 2800/6416, lr 0.000100, loss 23.179059 +INFO 2020-11-27 23:25:53 train.py: 92] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2020-11-27 23:25:53 train.py: 79] Epoch 17, iter 3000/6416, lr 0.000100, loss 23.172584 +INFO 2020-11-27 23:27:10 train.py: 79] Epoch 17, iter 3200/6416, lr 0.000100, loss 23.235901 +INFO 2020-11-27 23:28:27 train.py: 79] Epoch 17, iter 3400/6416, lr 0.000100, loss 23.165605 +INFO 2020-11-27 23:29:44 train.py: 79] Epoch 17, iter 3600/6416, lr 0.000100, loss 23.205151 +INFO 2020-11-27 23:31:01 train.py: 79] Epoch 17, iter 3800/6416, lr 0.000100, loss 23.167248 +INFO 2020-11-27 23:32:18 train.py: 79] Epoch 17, iter 4000/6416, lr 0.000100, loss 23.207441 +INFO 2020-11-27 23:33:35 train.py: 79] Epoch 17, iter 4200/6416, lr 0.000100, loss 23.243991 +INFO 2020-11-27 23:34:52 train.py: 79] Epoch 17, iter 4400/6416, lr 0.000100, loss 23.175317 +INFO 2020-11-27 23:36:09 train.py: 79] Epoch 17, iter 4600/6416, lr 0.000100, loss 23.201301 +INFO 2020-11-27 23:37:26 train.py: 79] Epoch 17, iter 4800/6416, lr 0.000100, loss 23.210275 +INFO 2020-11-27 23:38:43 train.py: 79] Epoch 17, iter 5000/6416, lr 0.000100, loss 23.202372 +INFO 2020-11-27 23:40:00 train.py: 79] Epoch 17, iter 5200/6416, lr 0.000100, loss 23.197515 +INFO 2020-11-27 23:41:17 train.py: 79] Epoch 17, iter 5400/6416, lr 0.000100, loss 23.156143 +INFO 2020-11-27 23:42:34 train.py: 79] Epoch 17, iter 5600/6416, lr 0.000100, loss 23.183499 +INFO 2020-11-27 23:43:51 train.py: 79] Epoch 17, iter 5800/6416, lr 0.000100, loss 23.181795 +INFO 2020-11-27 23:45:08 train.py: 92] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2020-11-27 23:45:08 train.py: 79] Epoch 17, iter 6000/6416, lr 0.000100, loss 23.236270 +INFO 2020-11-27 23:46:25 train.py: 79] Epoch 17, iter 6200/6416, lr 0.000100, loss 23.180215 +INFO 2020-11-27 23:47:41 train.py: 79] Epoch 17, iter 6400/6416, lr 0.000100, loss 23.176069 +INFO 2020-11-27 23:47:47 train.py: 97] Save checkpoint Epoch_17.pt to disk... +INFO 2020-11-27 23:47:48 train.py: 180] Optimization done! diff --git a/bob/bio/facexzoo/models/heads/ArcFace/.gitkeep b/bob/bio/facexzoo/models/heads/ArcFace/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..1a8744b81fef9893cd0d6ea20cffffcb617c6afb --- /dev/null +++ b/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_agedb.txt @@ -0,0 +1,50 @@ ++------------------------+--------------------+-----------------------+ [9/1472] +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_5999.pt | 0.9623333333333333 | 0.0026199613605670277 | +| Epoch_13.pt | 0.9620000000000001 | 0.0028846122190549313 | +| Epoch_14_batch_2999.pt | 0.9618333333333332 | 0.002551325000712231 | +| Epoch_14_batch_5999.pt | 0.9618333333333332 | 0.0025873624493766745 | +| Epoch_15_batch_5999.pt | 0.961 | 0.003044931023565495 | +| Epoch_16.pt | 0.9608333333333332 | 0.002747052292239141 | +| Epoch_17_batch_2999.pt | 0.9608333333333332 | 0.0027694319068032277 | +| Epoch_13_batch_5999.pt | 0.9606666666666666 | 0.0024870032539554866 | +| Epoch_16_batch_2999.pt | 0.9604999999999999 | 0.002594509873074581 | +| Epoch_12_batch_5999.pt | 0.9603333333333334 | 0.00255555555555556 | +| Epoch_12.pt | 0.9601666666666666 | 0.002158102733283899 | +| Epoch_17_batch_5999.pt | 0.9598333333333333 | 0.0026579719364234855 | +| Epoch_17.pt | 0.9596666666666668 | 0.0025190631219454756 | +| Epoch_15.pt | 0.9594999999999999 | 0.0030025709148603684 | +| Epoch_13_batch_2999.pt | 0.9593333333333334 | 0.0025361582690029633 | +| Epoch_15_batch_2999.pt | 0.9591666666666667 | 0.0028463752127665543 | +| Epoch_14.pt | 0.959 | 0.00286744175568088 | +| Epoch_11.pt | 0.9586666666666666 | 0.0023934065809486744 | +| Epoch_11_batch_2999.pt | 0.9576666666666668 | 0.0029627314724385324 | +| Epoch_12_batch_2999.pt | 0.9571666666666667 | 0.002447598974656749 | +| Epoch_10.pt | 0.9570000000000001 | 0.002393406580948667 | +| Epoch_10_batch_2999.pt | 0.9561666666666667 | 0.0024349563334234606 | +| Epoch_10_batch_5999.pt | 0.9561666666666666 | 0.0025464814747479646 | +| Epoch_11_batch_5999.pt | 0.9555 | 0.0027222222222222266 | +| Epoch_9_batch_5999.pt | 0.9463333333333332 | 0.0028631330503833662 | +| Epoch_8_batch_5999.pt | 0.945 | 0.003397529966982365 | +| Epoch_9_batch_2999.pt | 0.944 | 0.0032508308529617296 | +| Epoch_6_batch_5999.pt | 0.9410000000000001 | 0.004158881616047304 | +| Epoch_8.pt | 0.9406666666666667 | 0.003381138678822877 | +| Epoch_5_batch_2999.pt | 0.9398333333333333 | 0.003437717445423328 | +| Epoch_7_batch_2999.pt | 0.9391666666666666 | 0.005242572641483812 | +| Epoch_9.pt | 0.9365 | 0.004040306185683713 | +| Epoch_7_batch_5999.pt | 0.9361666666666666 | 0.005317395166622909 | +| Epoch_6_batch_2999.pt | 0.9356666666666665 | 0.005254040185571948 | +| Epoch_7.pt | 0.9354999999999999 | 0.004112987559751023 | +| Epoch_5_batch_5999.pt | 0.9351666666666667 | 0.0040631587784947885 | +| Epoch_8_batch_2999.pt | 0.9339999999999999 | 0.005838357624630958 | +| Epoch_4_batch_5999.pt | 0.932 | 0.004477653706579977 | +| Epoch_6.pt | 0.9315000000000001 | 0.005226062417830629 | +| Epoch_3_batch_5999.pt | 0.9308333333333334 | 0.00506287626249967 | +| Epoch_4_batch_2999.pt | 0.9301666666666666 | 0.004047938051543747 | +| Epoch_3_batch_2999.pt | 0.9266666666666665 | 0.005049141230000782 | +| Epoch_4.pt | 0.9256666666666666 | 0.004850862211765129 | +| Epoch_3.pt | 0.924 | 0.005318265752788589 | +| Epoch_5.pt | 0.9236666666666666 | 0.004316205466567784 | +| Epoch_2_batch_2999.pt | 0.917 | 0.006304025756668571 | +| Epoch_2_batch_5999.pt | 0.9143333333333334 | 0.00568841143829787 | diff --git a/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..392315346db5c0fcf7a86adee4363ac6772bb0f6 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_calfw.txt @@ -0,0 +1,50 @@ ++------------------------+--------------------+-----------------------+ [10/1410] +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14_batch_5999.pt | 0.9398333333333333 | 0.0027605018330677327 | +| Epoch_15_batch_5999.pt | 0.9396666666666667 | 0.0027755546659548433 | +| Epoch_16_batch_2999.pt | 0.9396666666666667 | 0.0028087165910587767 | +| Epoch_17.pt | 0.9395000000000001 | 0.002940248582755381 | +| Epoch_12.pt | 0.9395 | 0.002710860644167964 | +| Epoch_14.pt | 0.9393333333333332 | 0.0025361582690029633 | +| Epoch_13_batch_5999.pt | 0.9388333333333334 | 0.0027894200468073682 | +| Epoch_16.pt | 0.9388333333333334 | 0.0022641870969238686 | +| Epoch_16_batch_5999.pt | 0.9386666666666666 | 0.0027307123838765488 | +| Epoch_17_batch_2999.pt | 0.9386666666666666 | 0.0026736020923368766 | +| Epoch_12_batch_2999.pt | 0.9381666666666668 | 0.002669558617051987 | +| Epoch_13_batch_2999.pt | 0.9381666666666668 | 0.0029860788111948098 | +| Epoch_17_batch_5999.pt | 0.938 | 0.00268512132746546 | +| Epoch_14_batch_2999.pt | 0.937 | 0.002905932629027115 | +| Epoch_10_batch_2999.pt | 0.9369999999999999 | 0.002567604446286963 | +| Epoch_13.pt | 0.9369999999999999 | 0.0030102704853653467 | +| Epoch_15.pt | 0.9369999999999999 | 0.0034587516480607504 | +| Epoch_11_batch_2999.pt | 0.9368333333333332 | 0.0028267898296018947 | +| Epoch_15_batch_2999.pt | 0.9366666666666665 | 0.0032203059435976502 | +| Epoch_11_batch_5999.pt | 0.9353333333333333 | 0.0030912061651652265 | +| Epoch_11.pt | 0.9353333333333333 | 0.0032848323331321023 | +| Epoch_10_batch_5999.pt | 0.9351666666666668 | 0.0020253029037286814 | +| Epoch_10.pt | 0.9348333333333333 | 0.0028158501994387073 | +| Epoch_12_batch_5999.pt | 0.9348333333333333 | 0.0032150302880511674 | +| Epoch_9_batch_2999.pt | 0.9235000000000001 | 0.0036383587400073197 | +| Epoch_9_batch_5999.pt | 0.9216666666666666 | 0.004216370213557845 | +| Epoch_8_batch_5999.pt | 0.9211666666666666 | 0.004374801582802229 | +| Epoch_7_batch_5999.pt | 0.9209999999999999 | 0.0040230815533848115 | +| Epoch_8_batch_2999.pt | 0.9200000000000002 | 0.003912625969257564 | +| Epoch_7_batch_2999.pt | 0.9199999999999999 | 0.003557291243018254 | +| Epoch_6_batch_5999.pt | 0.9198333333333333 | 0.0030776975521032285 | +| Epoch_4_batch_5999.pt | 0.9186666666666665 | 0.004148478822798773 | +| Epoch_9.pt | 0.9181666666666667 | 0.0045027426484338 | +| Epoch_6_batch_2999.pt | 0.9171666666666667 | 0.003531603350069511 | +| Epoch_5_batch_2999.pt | 0.9171666666666665 | 0.004127968441835539 | +| Epoch_8.pt | 0.916 | 0.004535184807101904 | +| Epoch_6.pt | 0.9151666666666666 | 0.0028267898296019055 | +| Epoch_5_batch_5999.pt | 0.9146666666666668 | 0.003782676562344272 | +| Epoch_7.pt | 0.9123333333333333 | 0.003744955454745049 | +| Epoch_4_batch_2999.pt | 0.9116666666666667 | 0.004172218523448578 | +| Epoch_3.pt | 0.9108333333333333 | 0.004958158260214507 | +| Epoch_4.pt | 0.9099999999999999 | 0.004881307252553064 | +| Epoch_3_batch_2999.pt | 0.9095000000000001 | 0.005158296685084918 | +| Epoch_3_batch_5999.pt | 0.9063333333333334 | 0.004573136806057045 | +| Epoch_5.pt | 0.9038333333333334 | 0.004075294430020738 | +| Epoch_2.pt | 0.9028333333333334 | 0.004097951912424451 | +| Epoch_2_batch_5999.pt | 0.9016666666666667 | 0.004956601782932328 | diff --git a/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..3164282c4a311096127fe72f9ac1e8e8ad86af99 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_cplfw.txt @@ -0,0 +1,50 @@ ++------------------------+--------------------+-----------------------+ [13/1347] +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.8368333333333334 | 0.006801642866176702 | +| Epoch_14.pt | 0.8361666666666666 | 0.006354011078848025 | +| Epoch_13_batch_5999.pt | 0.8356666666666668 | 0.005989703098641585 | +| Epoch_14_batch_5999.pt | 0.8348333333333333 | 0.0065989617589660475 | +| Epoch_15.pt | 0.8348333333333333 | 0.00721987141228128 | +| Epoch_15_batch_5999.pt | 0.8346666666666668 | 0.006230153675056078 | +| Epoch_11.pt | 0.8345 | 0.007031893831977101 | +| Epoch_16_batch_2999.pt | 0.8335000000000001 | 0.0071855908629271876 | +| Epoch_17_batch_5999.pt | 0.833 | 0.006572482853853442 | +| Epoch_13_batch_2999.pt | 0.8328333333333333 | 0.00680436497522358 | +| Epoch_13.pt | 0.8321666666666665 | 0.006378252014888721 | +| Epoch_16.pt | 0.8321666666666665 | 0.006383089154985522 | +| Epoch_17_batch_2999.pt | 0.8321666666666665 | 0.006772538958958984 | +| Epoch_14_batch_2999.pt | 0.8319999999999999 | 0.00630402575666857 | +| Epoch_16_batch_5999.pt | 0.8316666666666667 | 0.006961091158967592 | +| Epoch_12_batch_5999.pt | 0.8313333333333333 | 0.006338204754200736 | +| Epoch_15_batch_2999.pt | 0.8311666666666667 | 0.006241290227485316 | +| Epoch_10_batch_5999.pt | 0.8305 | 0.006781647347123022 | +| Epoch_11_batch_5999.pt | 0.8300000000000001 | 0.006039990188856397 | +| Epoch_11_batch_2999.pt | 0.829 | 0.006890680770539397 | +| Epoch_10_batch_2999.pt | 0.8288333333333334 | 0.006992279693250402 | +| Epoch_12_batch_2999.pt | 0.8285 | 0.008060151945386394 | +| Epoch_10.pt | 0.8271666666666666 | 0.0065783502003180575 | +| Epoch_12.pt | 0.8265 | 0.007283712592888499 | +| Epoch_9_batch_2999.pt | 0.8091666666666667 | 0.008237410896125367 | +| Epoch_8_batch_5999.pt | 0.8056666666666666 | 0.0065508457657705195 | +| Epoch_7_batch_5999.pt | 0.8045 | 0.006116411842507053 | +| Epoch_8_batch_2999.pt | 0.8031666666666666 | 0.007885954070684046 | +| Epoch_6_batch_2999.pt | 0.8029999999999999 | 0.007039570693980959 | +| Epoch_9_batch_5999.pt | 0.8028333333333333 | 0.006943555498659381 | +| Epoch_8.pt | 0.8025 | 0.007487644143174462 | +| Epoch_6_batch_5999.pt | 0.8015000000000001 | 0.00635595375597937 | +| Epoch_5_batch_5999.pt | 0.7958333333333334 | 0.008510160956537362 | +| Epoch_6.pt | 0.7955000000000001 | 0.008054789235580883 | +| Epoch_7_batch_2999.pt | 0.7938333333333334 | 0.008311267081127116 | +| Epoch_5_batch_2999.pt | 0.7921666666666666 | 0.007495060101555291 | +| Epoch_9.pt | 0.7916666666666666 | 0.0071015560805665736 | +| Epoch_4_batch_5999.pt | 0.791 | 0.0076827528502500155 | +| Epoch_3.pt | 0.7893333333333332 | 0.0068231631634862394 | +| Epoch_5.pt | 0.7891666666666667 | 0.007561476438231221 | +| Epoch_4_batch_2999.pt | 0.7821666666666667 | 0.008692447409982337 | +| Epoch_4.pt | 0.7819999999999998 | 0.00758002573369358 | +| Epoch_3_batch_2999.pt | 0.7816666666666666 | 0.008104258901693542 | +| Epoch_7.pt | 0.781 | 0.009382805392687044 | +| Epoch_3_batch_5999.pt | 0.7798333333333334 | 0.007545949776183998 | +| Epoch_2_batch_5999.pt | 0.7796666666666666 | 0.007984552988098532 | +| Epoch_2_batch_2999.pt | 0.7673333333333334 | 0.00808214004174148 | diff --git a/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..3f53df0b96b9f2386c951a3934a12cd59fb2f783 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13.pt | 0.9956666666666665 | 0.0010599324460188284 | +| Epoch_16.pt | 0.9953333333333335 | 0.001160034056545619 | +| Epoch_17_batch_2999.pt | 0.9953333333333335 | 0.001160034056545619 | +| Epoch_15_batch_2999.pt | 0.9953333333333333 | 0.0010772621905369623 | +| Epoch_12_batch_2999.pt | 0.9951666666666668 | 0.0011772011166898413 | +| Epoch_13_batch_2999.pt | 0.9951666666666668 | 0.001277777777777775 | +| Epoch_15_batch_5999.pt | 0.9951666666666668 | 0.0012031337682059844 | +| Epoch_15.pt | 0.9951666666666666 | 0.0011772011166898376 | +| Epoch_13_batch_5999.pt | 0.9950000000000001 | 0.0013146843962443548 | +| Epoch_14_batch_2999.pt | 0.9950000000000001 | 0.0011385500851066213 | +| Epoch_14_batch_5999.pt | 0.9950000000000001 | 0.0011915339216404008 | +| Epoch_11_batch_2999.pt | 0.9949999999999999 | 0.0012668615834434884 | +| Epoch_17_batch_5999.pt | 0.9949999999999999 | 0.0012668615834434884 | +| Epoch_10_batch_2999.pt | 0.9948333333333335 | 0.0010957268290731129 | +| Epoch_10_batch_5999.pt | 0.9948333333333335 | 0.0011772011166898408 | +| Epoch_16_batch_2999.pt | 0.9948333333333335 | 0.0012031337682059844 | +| Epoch_16_batch_5999.pt | 0.9948333333333335 | 0.0013709958532503379 | +| Epoch_10.pt | 0.9946666666666667 | 0.0009229582069908961 | +| Epoch_14.pt | 0.9946666666666667 | 0.0011331154474650623 | +| Epoch_17.pt | 0.9946666666666667 | 0.0011863420280034786 | +| Epoch_12_batch_5999.pt | 0.9943333333333333 | 0.0012222222222222259 | +| Epoch_11.pt | 0.9941666666666666 | 0.00114530711822713 | +| Epoch_11_batch_5999.pt | 0.9940000000000001 | 0.0012472191289246398 | +| Epoch_12.pt | 0.994 | 0.0014740554623801777 | +| Epoch_6_batch_2999.pt | 0.9936666666666667 | 0.0013333333333333326 | +| Epoch_9_batch_5999.pt | 0.9936666666666666 | 0.0013788526273323211 | +| Epoch_5_batch_5999.pt | 0.9935 | 0.001393326244887162 | +| Epoch_9.pt | 0.9935 | 0.0011772011166898408 | +| Epoch_4_batch_2999.pt | 0.9933333333333334 | 0.0010243938285881 | +| Epoch_8_batch_5999.pt | 0.9933333333333334 | 0.0012909944487358082 | +| Epoch_9_batch_2999.pt | 0.9931666666666666 | 0.0014792807728549245 | +| Epoch_8.pt | 0.9926666666666668 | 0.0014948471163415214 | +| Epoch_4_batch_5999.pt | 0.9925 | 0.0012484558363469022 | +| Epoch_6_batch_5999.pt | 0.9924999999999999 | 0.0014109361221333657 | +| Epoch_8_batch_2999.pt | 0.9923333333333332 | 0.0015355861067872492 | +| Epoch_2_batch_5999.pt | 0.9921666666666666 | 0.0012921892610681092 | +| Epoch_4.pt | 0.992 | 0.0012862041003100224 | +| Epoch_3_batch_5999.pt | 0.9916666666666668 | 0.0013146843962443676 | +| Epoch_3_batch_2999.pt | 0.9913333333333332 | 0.0013562839573037495 | +| Epoch_7_batch_5999.pt | 0.9911666666666668 | 0.0016301556390134685 | +| Epoch_5_batch_2999.pt | 0.991 | 0.001515353521887317 | +| Epoch_3.pt | 0.9908333333333333 | 0.0015565473029024329 | +| Epoch_7_batch_2999.pt | 0.9908333333333333 | 0.0016149379837498495 | +| Epoch_2.pt | 0.9906666666666668 | 0.0015947444549341545 | +| Epoch_6.pt | 0.9903333333333333 | 0.002045772515502441 | +| Epoch_7.pt | 0.9901666666666665 | 0.0022284634577924 | +| Epoch_2_batch_2999.pt | 0.9896666666666667 | 0.0014865653511399585 | +| Epoch_5.pt | 0.9894999999999999 | 0.0016489802310728709 | +| Epoch_1_batch_5999.pt | 0.9879999999999999 | 0.0013562839573037482 | +| Epoch_1.pt | 0.9863333333333333 | 0.0017177360926378049 | +| Epoch_1_batch_2999.pt | 0.9821666666666667 | 0.00149174684245528 | +| Epoch_0_batch_5999.pt | 0.9768333333333334 | 0.0034556270089075476 | +| Epoch_0.pt | 0.9713333333333333 | 0.002 | +| Epoch_0_batch_2999.pt | 0.9408333333333333 | 0.004397319610067753 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_rfw_African.txt b/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_rfw_African.txt new file mode 100644 index 0000000000000000000000000000000000000000..0424e0027d89a5c60778bd24d6465b1713e11f0e --- /dev/null +++ b/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_rfw_African.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_2999.pt | 0.8821666666666668 | 0.004534163867275719 | +| Epoch_13.pt | 0.8821666666666668 | 0.005006477285958144 | +| Epoch_14_batch_2999.pt | 0.8818333333333334 | 0.005231964907195338 | +| Epoch_14_batch_5999.pt | 0.8818333333333334 | 0.004984234403857082 | +| Epoch_15_batch_2999.pt | 0.8818333333333334 | 0.005552499159259757 | +| Epoch_16_batch_2999.pt | 0.8815 | 0.005569150033781232 | +| Epoch_16_batch_5999.pt | 0.881 | 0.0051111111111111045 | +| Epoch_17.pt | 0.8805 | 0.005146315954275886 | +| Epoch_17_batch_2999.pt | 0.8803333333333334 | 0.005521003666135487 | +| Epoch_17_batch_5999.pt | 0.8803333333333333 | 0.005251689910265101 | +| Epoch_15_batch_5999.pt | 0.8791666666666667 | 0.004649771001927978 | +| Epoch_16.pt | 0.8785000000000001 | 0.0053313074856148395 | +| Epoch_12_batch_5999.pt | 0.8778333333333335 | 0.00504944685883978 | +| Epoch_15.pt | 0.8768333333333335 | 0.0050151006538155605 | +| Epoch_11_batch_5999.pt | 0.8765000000000001 | 0.004611111111111107 | +| Epoch_13_batch_5999.pt | 0.8765000000000001 | 0.00506409535143198 | +| Epoch_14.pt | 0.8765000000000001 | 0.005319716413122925 | +| Epoch_12_batch_2999.pt | 0.8753333333333334 | 0.004546060565661954 | +| Epoch_10_batch_5999.pt | 0.8741666666666668 | 0.005242572641483808 | +| Epoch_11_batch_2999.pt | 0.873 | 0.0051147330162150725 | +| Epoch_11.pt | 0.8718333333333333 | 0.004730058856940733 | +| Epoch_12.pt | 0.8714999999999999 | 0.004536885862938736 | +| Epoch_10_batch_2999.pt | 0.8698333333333335 | 0.004637807591875637 | +| Epoch_10.pt | 0.8696666666666667 | 0.00471273556898855 | +| Epoch_5_batch_2999.pt | 0.8458333333333334 | 0.004439233055771769 | +| Epoch_9_batch_2999.pt | 0.841 | 0.006374137559672649 | +| Epoch_6_batch_5999.pt | 0.8401666666666667 | 0.004934446821285926 | +| Epoch_7_batch_2999.pt | 0.8400000000000001 | 0.00447213595499958 | +| Epoch_7_batch_5999.pt | 0.8394999999999999 | 0.0056111111111111145 | +| Epoch_6.pt | 0.8371666666666666 | 0.004416928713400213 | +| Epoch_8_batch_5999.pt | 0.8365 | 0.0036972629182166275 | +| Epoch_9_batch_5999.pt | 0.8358333333333332 | 0.0045423249607863545 | +| Epoch_6_batch_2999.pt | 0.8351666666666666 | 0.0049966037848438675 | +| Epoch_8_batch_2999.pt | 0.8351666666666666 | 0.005394613225417728 | +| Epoch_5_batch_5999.pt | 0.8326666666666667 | 0.004850862211765134 | +| Epoch_7.pt | 0.8324999999999999 | 0.004397319610067748 | +| Epoch_8.pt | 0.8316666666666667 | 0.0050184843513938785 | +| Epoch_3_batch_5999.pt | 0.8306666666666667 | 0.005639367795755346 | +| Epoch_4_batch_5999.pt | 0.8276666666666668 | 0.005265775827143459 | +| Epoch_9.pt | 0.826 | 0.005212757380328837 | +| Epoch_4_batch_2999.pt | 0.8233333333333333 | 0.006790516262487791 | +| Epoch_3_batch_2999.pt | 0.8151666666666666 | 0.005045778090959793 | +| Epoch_4.pt | 0.8116666666666668 | 0.00592650460137537 | +| Epoch_5.pt | 0.8115 | 0.005684340629753092 | +| Epoch_2_batch_5999.pt | 0.8108333333333333 | 0.006046374283428758 | +| Epoch_3.pt | 0.8094999999999999 | 0.004913134324327886 | +| Epoch_2.pt | 0.8015000000000001 | 0.006052496679006334 | +| Epoch_2_batch_2999.pt | 0.7971666666666666 | 0.004688112099953285 | +| Epoch_1_batch_5999.pt | 0.7835 | 0.005008942620238278 | +| Epoch_1.pt | 0.7745 | 0.00441692871340021 | +| Epoch_1_batch_2999.pt | 0.7651666666666667 | 0.005308100029758853 | +| Epoch_0.pt | 0.733 | 0.0036243347622889064 | +| Epoch_0_batch_5999.pt | 0.7166666666666666 | 0.0051520102752753896 | +| Epoch_0_batch_2999.pt | 0.6196666666666666 | 0.007234178138070234 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_rfw_Asian.txt b/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_rfw_Asian.txt new file mode 100644 index 0000000000000000000000000000000000000000..c001ee5bdf1ceca8c242d0de7620d1426a07eff4 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_rfw_Asian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_11_batch_5999.pt | 0.8800000000000001 | 0.00372677996249965 | +| Epoch_17.pt | 0.8799999999999999 | 0.004059739090321136 | +| Epoch_16_batch_5999.pt | 0.8783333333333335 | 0.004238273582835694 | +| Epoch_14_batch_5999.pt | 0.8776666666666666 | 0.004452769979891972 | +| Epoch_13_batch_2999.pt | 0.8771666666666667 | 0.004037249399783156 | +| Epoch_16_batch_2999.pt | 0.8766666666666667 | 0.0041869874847592845 | +| Epoch_17_batch_5999.pt | 0.8766666666666667 | 0.004339027597725921 | +| Epoch_15_batch_5999.pt | 0.8765000000000001 | 0.003844588950399093 | +| Epoch_12_batch_5999.pt | 0.8763333333333334 | 0.003911047979288458 | +| Epoch_16.pt | 0.8760000000000001 | 0.0037614024177357324 | +| Epoch_11_batch_2999.pt | 0.876 | 0.0032030078456443583 | +| Epoch_12_batch_2999.pt | 0.876 | 0.003753187945345449 | +| Epoch_13_batch_5999.pt | 0.876 | 0.004232443767720206 | +| Epoch_15_batch_2999.pt | 0.876 | 0.004188461516660172 | +| Epoch_14.pt | 0.875 | 0.004245549594342845 | +| Epoch_11.pt | 0.8743333333333334 | 0.003961231882216867 | +| Epoch_14_batch_2999.pt | 0.874 | 0.00458257569495584 | +| Epoch_13.pt | 0.8736666666666666 | 0.0034587516480607526 | +| Epoch_17_batch_2999.pt | 0.8736666666666666 | 0.0040960685758148355 | +| Epoch_12.pt | 0.8728333333333331 | 0.003685557397915998 | +| Epoch_15.pt | 0.8711666666666666 | 0.00483077837962853 | +| Epoch_10_batch_5999.pt | 0.8708333333333333 | 0.0029423472615256402 | +| Epoch_10.pt | 0.8693333333333333 | 0.003602125572766073 | +| Epoch_10_batch_2999.pt | 0.869 | 0.004061259307221572 | +| Epoch_9_batch_5999.pt | 0.8438333333333332 | 0.005334779896416515 | +| Epoch_6_batch_2999.pt | 0.8423333333333334 | 0.0048253446112463275 | +| Epoch_6_batch_5999.pt | 0.8413333333333334 | 0.005047918529600243 | +| Epoch_9_batch_2999.pt | 0.8388333333333333 | 0.00537512560863855 | +| Epoch_7_batch_5999.pt | 0.8386666666666667 | 0.004633479880442895 | +| Epoch_7_batch_2999.pt | 0.8378333333333334 | 0.004296495844663398 | +| Epoch_8_batch_5999.pt | 0.8375 | 0.003867001901176638 | +| Epoch_5_batch_5999.pt | 0.8353333333333334 | 0.006274581290442445 | +| Epoch_4_batch_5999.pt | 0.8346666666666668 | 0.005011098792790973 | +| Epoch_6.pt | 0.8344999999999999 | 0.006795287037787724 | +| Epoch_8_batch_2999.pt | 0.8331666666666665 | 0.003939746811442541 | +| Epoch_8.pt | 0.8323333333333333 | 0.0038103173776627246 | +| Epoch_7.pt | 0.8291666666666666 | 0.007650748369753379 | +| Epoch_5_batch_2999.pt | 0.8273333333333334 | 0.007201680188043912 | +| Epoch_9.pt | 0.8268333333333333 | 0.004405734198423743 | +| Epoch_4_batch_2999.pt | 0.8216666666666667 | 0.0042600643361512935 | +| Epoch_4.pt | 0.8183333333333334 | 0.004296136650929157 | +| Epoch_3.pt | 0.8165000000000001 | 0.005220153254455277 | +| Epoch_3_batch_5999.pt | 0.8160000000000001 | 0.004656072631057105 | +| Epoch_2_batch_5999.pt | 0.812 | 0.0055876848714134005 | +| Epoch_5.pt | 0.8118333333333332 | 0.0049842344038570855 | +| Epoch_3_batch_2999.pt | 0.8073333333333332 | 0.003969015799887058 | +| Epoch_2.pt | 0.8061666666666666 | 0.005253158955556715 | +| Epoch_2_batch_2999.pt | 0.7991666666666667 | 0.006112373606964084 | +| Epoch_1.pt | 0.7878333333333334 | 0.004887941827460916 | +| Epoch_1_batch_5999.pt | 0.7828333333333333 | 0.00559458512456906 | +| Epoch_1_batch_2999.pt | 0.7671666666666667 | 0.004655078204114274 | +| Epoch_0.pt | 0.7381666666666666 | 0.004197662488858576 | +| Epoch_0_batch_5999.pt | 0.7333333333333335 | 0.004310481053615736 | +| Epoch_0_batch_2999.pt | 0.6751666666666667 | 0.006958652132861134 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_rfw_Caucasian.txt b/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_rfw_Caucasian.txt new file mode 100644 index 0000000000000000000000000000000000000000..684254e661d3f17ecb26d8dd792d4ff9e92dc9f2 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_rfw_Caucasian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14.pt | 0.9513333333333334 | 0.003331480966792213 | +| Epoch_13_batch_2999.pt | 0.951 | 0.0027011657291429376 | +| Epoch_17_batch_5999.pt | 0.9506666666666668 | 0.002802115602870778 | +| Epoch_17.pt | 0.9506666666666668 | 0.0025603819159562015 | +| Epoch_14_batch_5999.pt | 0.9505000000000001 | 0.0027448042948968092 | +| Epoch_15.pt | 0.9503333333333333 | 0.003091206165165229 | +| Epoch_12.pt | 0.95 | 0.0028109134757052273 | +| Epoch_13_batch_5999.pt | 0.95 | 0.0026874192494328528 | +| Epoch_16.pt | 0.9499999999999998 | 0.002545875386086581 | +| Epoch_14_batch_2999.pt | 0.9496666666666668 | 0.002819683897877674 | +| Epoch_15_batch_2999.pt | 0.9490000000000001 | 0.0027688746209726914 | +| Epoch_15_batch_5999.pt | 0.9485000000000001 | 0.0025633937766798556 | +| Epoch_17_batch_2999.pt | 0.9484999999999999 | 0.003437717445423324 | +| Epoch_16_batch_2999.pt | 0.9481666666666667 | 0.0032341732395173104 | +| Epoch_12_batch_5999.pt | 0.9478333333333333 | 0.002509857110683667 | +| Epoch_13.pt | 0.9475 | 0.002824605293085815 | +| Epoch_16_batch_5999.pt | 0.9473333333333332 | 0.002834966849371794 | +| Epoch_12_batch_2999.pt | 0.9469999999999998 | 0.0024062675364119645 | +| Epoch_11_batch_5999.pt | 0.9468333333333334 | 0.003057575090181551 | +| Epoch_11.pt | 0.9465 | 0.0025633937766798495 | +| Epoch_11_batch_2999.pt | 0.9458333333333332 | 0.0029423472615256307 | +| Epoch_10_batch_5999.pt | 0.9456666666666667 | 0.0021401511426953597 | +| Epoch_10_batch_2999.pt | 0.9446666666666668 | 0.0027532248207475275 | +| Epoch_10.pt | 0.9445 | 0.002409472049133492 | +| Epoch_9_batch_5999.pt | 0.9258333333333335 | 0.0029212926278077565 | +| Epoch_9_batch_2999.pt | 0.9246666666666666 | 0.004020011670027897 | +| Epoch_7_batch_5999.pt | 0.9243333333333332 | 0.003034777840832814 | +| Epoch_8_batch_5999.pt | 0.9236666666666669 | 0.003294214906749693 | +| Epoch_8_batch_2999.pt | 0.9206666666666667 | 0.0036868133384526836 | +| Epoch_6_batch_2999.pt | 0.9193333333333333 | 0.002462057756240044 | +| Epoch_7_batch_2999.pt | 0.9190000000000002 | 0.004247003300803639 | +| Epoch_5_batch_5999.pt | 0.9185000000000001 | 0.003224615969095879 | +| Epoch_6_batch_5999.pt | 0.9179999999999999 | 0.0031308895119123033 | +| Epoch_5_batch_2999.pt | 0.9163333333333334 | 0.0040734006177385205 | +| Epoch_4_batch_5999.pt | 0.9161666666666666 | 0.003643444984904356 | +| Epoch_8.pt | 0.9148333333333334 | 0.004820545023230016 | +| Epoch_6.pt | 0.9123333333333334 | 0.004083994655442028 | +| Epoch_9.pt | 0.9099999999999999 | 0.003122993182790048 | +| Epoch_4.pt | 0.9088333333333335 | 0.00331522861063015 | +| Epoch_3_batch_5999.pt | 0.9086666666666667 | 0.0031603250340728668 | +| Epoch_4_batch_2999.pt | 0.908 | 0.004673275743291798 | +| Epoch_3_batch_2999.pt | 0.9063333333333334 | 0.004323350324076378 | +| Epoch_3.pt | 0.9045 | 0.004668319813010154 | +| Epoch_7.pt | 0.9028333333333333 | 0.003685557397916 | +| Epoch_5.pt | 0.9023333333333333 | 0.0029418227321941536 | +| Epoch_2_batch_5999.pt | 0.8991666666666667 | 0.0034805455794837954 | +| Epoch_2.pt | 0.8958333333333334 | 0.004166666666666659 | +| Epoch_2_batch_2999.pt | 0.8939999999999999 | 0.003984538017120241 | +| Epoch_1.pt | 0.8891666666666665 | 0.0037039351779518397 | +| Epoch_1_batch_5999.pt | 0.8881666666666668 | 0.004009633461281367 | +| Epoch_1_batch_2999.pt | 0.8751666666666666 | 0.003552516061944044 | +| Epoch_0.pt | 0.8418333333333334 | 0.004327988156347185 | +| Epoch_0_batch_5999.pt | 0.8383333333333333 | 0.006564024661218636 | +| Epoch_0_batch_2999.pt | 0.7586666666666667 | 0.008387969044492119 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_rfw_Indian.txt b/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_rfw_Indian.txt new file mode 100644 index 0000000000000000000000000000000000000000..a66268adcacef92e54ff314cbfcbc48572f5db46 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/ArcFace/accu_files/accu_rfw_Indian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14.pt | 0.9069999999999998 | 0.003422871511277636 | +| Epoch_15_batch_2999.pt | 0.9056666666666666 | 0.0037118429085533523 | +| Epoch_13_batch_5999.pt | 0.9055 | 0.0041279684418355405 | +| Epoch_16.pt | 0.9035 | 0.004032659876435444 | +| Epoch_15_batch_5999.pt | 0.9033333333333335 | 0.00333333333333333 | +| Epoch_13_batch_2999.pt | 0.9033333333333333 | 0.004628147911035227 | +| Epoch_14_batch_2999.pt | 0.9033333333333331 | 0.004388537257362553 | +| Epoch_14_batch_5999.pt | 0.9028333333333333 | 0.004628481339075796 | +| Epoch_16_batch_2999.pt | 0.9026666666666667 | 0.004136557881996948 | +| Epoch_13.pt | 0.9023333333333333 | 0.003661612678507565 | +| Epoch_16_batch_5999.pt | 0.9021666666666667 | 0.0037765520887460737 | +| Epoch_12_batch_2999.pt | 0.9016666666666666 | 0.004785523437190674 | +| Epoch_12.pt | 0.9005000000000001 | 0.004296495844663402 | +| Epoch_17_batch_2999.pt | 0.9004999999999999 | 0.0036434449849043517 | +| Epoch_11_batch_5999.pt | 0.9001666666666666 | 0.003994208770670818 | +| Epoch_11_batch_2999.pt | 0.9 | 0.0038086970002228038 | +| Epoch_17.pt | 0.8996666666666668 | 0.0035986966090448074 | +| Epoch_12_batch_5999.pt | 0.8995 | 0.003296556377588173 | +| Epoch_17_batch_5999.pt | 0.8993333333333332 | 0.004326204963095945 | +| Epoch_15.pt | 0.8991666666666667 | 0.003794489181450923 | +| Epoch_10_batch_5999.pt | 0.8978333333333334 | 0.0036603480911175765 | +| Epoch_10_batch_2999.pt | 0.8968333333333334 | 0.00395538389140612 | +| Epoch_11.pt | 0.8959999999999999 | 0.0042105100714436424 | +| Epoch_10.pt | 0.8943333333333333 | 0.0032030078456443496 | +| Epoch_9_batch_2999.pt | 0.8761666666666666 | 0.004388888888888896 | +| Epoch_6_batch_2999.pt | 0.8758333333333332 | 0.00430510750356875 | +| Epoch_7_batch_5999.pt | 0.8753333333333334 | 0.0062202377787904 | +| Epoch_6_batch_5999.pt | 0.875 | 0.0033425797681091883 | +| Epoch_5_batch_2999.pt | 0.8728333333333333 | 0.004931944248881379 | +| Epoch_9.pt | 0.8711666666666668 | 0.004944444444444441 | +| Epoch_8_batch_2999.pt | 0.868 | 0.004484541349024564 | +| Epoch_9_batch_5999.pt | 0.8673333333333334 | 0.004053652521545493 | +| Epoch_8_batch_5999.pt | 0.8671666666666666 | 0.0046484432546131 | +| Epoch_8.pt | 0.8671666666666665 | 0.005916340627427828 | +| Epoch_5_batch_5999.pt | 0.8663333333333334 | 0.004155912046503345 | +| Epoch_4_batch_5999.pt | 0.8633333333333333 | 0.006186404847588914 | +| Epoch_7_batch_2999.pt | 0.8633333333333333 | 0.004740162001711448 | +| Epoch_4_batch_2999.pt | 0.8616666666666667 | 0.005299662230094137 | +| Epoch_3_batch_5999.pt | 0.8585 | 0.004212342241614968 | +| Epoch_6.pt | 0.8583333333333332 | 0.005351819812796581 | +| Epoch_7.pt | 0.8571666666666667 | 0.005098111487672739 | +| Epoch_3.pt | 0.8546666666666667 | 0.004706181907677196 | +| Epoch_3_batch_2999.pt | 0.8530000000000001 | 0.004738859580474691 | +| Epoch_2_batch_5999.pt | 0.85 | 0.005621826951410453 | +| Epoch_4.pt | 0.8488333333333333 | 0.004044887033170529 | +| Epoch_5.pt | 0.8479999999999999 | 0.003895232920657351 | +| Epoch_2.pt | 0.8423333333333334 | 0.003014368881389011 | +| Epoch_2_batch_2999.pt | 0.8358333333333332 | 0.0025968879761156124 | +| Epoch_1_batch_5999.pt | 0.8291666666666666 | 0.004976798018658033 | +| Epoch_1.pt | 0.8223333333333332 | 0.005123174170399335 | +| Epoch_1_batch_2999.pt | 0.8073333333333335 | 0.00524227827203798 | +| Epoch_0_batch_5999.pt | 0.7898333333333334 | 0.003970959395224095 | +| Epoch_0.pt | 0.7803333333333333 | 0.0053736899063750055 | +| Epoch_0_batch_2999.pt | 0.7038333333333334 | 0.004714372560794844 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/ArcFace/log.log b/bob/bio/facexzoo/models/heads/ArcFace/log.log new file mode 100644 index 0000000000000000000000000000000000000000..cbd893a93d786db9f0f6edc2e0bbbba7d9285733 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/ArcFace/log.log @@ -0,0 +1,651 @@ +INFO 2020-11-24 00:29:12 train.py: 172] Start optimization. +INFO 2020-11-24 00:29:12 train.py: 173] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='Mobilefacenets', batch_size=512, data_root='/export/home/wangjun492/wj_data/faceX-Zoo/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='arcface', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='arc-mobile', train_file='/export/home/wangjun492/wj_data/faceX-Zoo/deepglint/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7f8ee40187b8>) +INFO 2020-11-24 00:29:53 train.py: 74] Epoch 0, iter 0/6416, lr 0.100000, loss 23.359434 +INFO 2020-11-24 00:38:17 train.py: 74] Epoch 0, iter 200/6416, lr 0.100000, loss 22.847342 +INFO 2020-11-24 00:45:57 train.py: 74] Epoch 0, iter 400/6416, lr 0.100000, loss 22.217041 +INFO 2020-11-24 00:52:58 train.py: 74] Epoch 0, iter 600/6416, lr 0.100000, loss 21.791875 +INFO 2020-11-24 00:59:50 train.py: 74] Epoch 0, iter 800/6416, lr 0.100000, loss 21.443408 +INFO 2020-11-24 01:06:58 train.py: 74] Epoch 0, iter 1000/6416, lr 0.100000, loss 21.076518 +INFO 2020-11-24 01:13:09 train.py: 74] Epoch 0, iter 1200/6416, lr 0.100000, loss 20.673717 +INFO 2020-11-24 01:19:36 train.py: 74] Epoch 0, iter 1400/6416, lr 0.100000, loss 20.258046 +INFO 2020-11-24 01:26:01 train.py: 74] Epoch 0, iter 1600/6416, lr 0.100000, loss 19.830074 +INFO 2020-11-24 01:32:16 train.py: 74] Epoch 0, iter 1800/6416, lr 0.100000, loss 19.418279 +INFO 2020-11-24 01:38:42 train.py: 74] Epoch 0, iter 2000/6416, lr 0.100000, loss 18.993834 +INFO 2020-11-24 01:45:11 train.py: 74] Epoch 0, iter 2200/6416, lr 0.100000, loss 18.566143 +INFO 2020-11-24 01:51:23 train.py: 74] Epoch 0, iter 2400/6416, lr 0.100000, loss 18.108684 +INFO 2020-11-24 01:57:49 train.py: 74] Epoch 0, iter 2600/6416, lr 0.100000, loss 17.637085 +INFO 2020-11-24 02:04:15 train.py: 74] Epoch 0, iter 2800/6416, lr 0.100000, loss 17.140226 +INFO 2020-11-24 02:10:27 train.py: 87] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2020-11-24 02:10:27 train.py: 74] Epoch 0, iter 3000/6416, lr 0.100000, loss 16.658029 +INFO 2020-11-24 02:16:59 train.py: 74] Epoch 0, iter 3200/6416, lr 0.100000, loss 16.150862 +INFO 2020-11-24 02:23:10 train.py: 74] Epoch 0, iter 3400/6416, lr 0.100000, loss 15.592323 +INFO 2020-11-24 02:29:54 train.py: 74] Epoch 0, iter 3600/6416, lr 0.100000, loss 15.077606 +INFO 2020-11-24 02:36:10 train.py: 74] Epoch 0, iter 3800/6416, lr 0.100000, loss 14.570124 +INFO 2020-11-24 02:42:41 train.py: 74] Epoch 0, iter 4000/6416, lr 0.100000, loss 14.016759 +INFO 2020-11-24 02:56:07 train.py: 74] Epoch 0, iter 4200/6416, lr 0.100000, loss 13.490575 +INFO 2020-11-24 03:02:48 train.py: 74] Epoch 0, iter 4400/6416, lr 0.100000, loss 12.965636 +INFO 2020-11-24 03:09:18 train.py: 74] Epoch 0, iter 4600/6416, lr 0.100000, loss 12.419055 +INFO 2020-11-24 03:15:29 train.py: 74] Epoch 0, iter 4800/6416, lr 0.100000, loss 11.930718 +INFO 2020-11-24 03:22:05 train.py: 74] Epoch 0, iter 5000/6416, lr 0.100000, loss 11.403103 +INFO 2020-11-24 03:28:08 train.py: 74] Epoch 0, iter 5200/6416, lr 0.100000, loss 10.970842 +INFO 2020-11-24 03:34:42 train.py: 74] Epoch 0, iter 5400/6416, lr 0.100000, loss 10.545405 +INFO 2020-11-24 03:40:57 train.py: 74] Epoch 0, iter 5600/6416, lr 0.100000, loss 10.064106 +INFO 2020-11-24 03:47:24 train.py: 74] Epoch 0, iter 5800/6416, lr 0.100000, loss 9.671036 +INFO 2020-11-24 03:53:34 train.py: 87] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2020-11-24 03:53:34 train.py: 74] Epoch 0, iter 6000/6416, lr 0.100000, loss 9.325449 +INFO 2020-11-24 04:00:04 train.py: 74] Epoch 0, iter 6200/6416, lr 0.100000, loss 9.009621 +INFO 2020-11-24 04:06:16 train.py: 74] Epoch 0, iter 6400/6416, lr 0.100000, loss 8.697339 +INFO 2020-11-24 04:06:44 train.py: 92] Save checkpoint Epoch_0.pt to disk... +INFO 2020-11-24 04:06:46 train.py: 74] Epoch 1, iter 0/6416, lr 0.100000, loss 8.564224 +INFO 2020-11-24 04:08:04 train.py: 74] Epoch 1, iter 200/6416, lr 0.100000, loss 8.043653 +INFO 2020-11-24 04:09:23 train.py: 74] Epoch 1, iter 400/6416, lr 0.100000, loss 7.813574 +INFO 2020-11-24 04:10:41 train.py: 74] Epoch 1, iter 600/6416, lr 0.100000, loss 7.658158 +INFO 2020-11-24 04:11:59 train.py: 74] Epoch 1, iter 800/6416, lr 0.100000, loss 7.518124 +INFO 2020-11-24 04:13:17 train.py: 74] Epoch 1, iter 1000/6416, lr 0.100000, loss 7.372449 +INFO 2020-11-24 04:14:35 train.py: 74] Epoch 1, iter 1200/6416, lr 0.100000, loss 7.258654 +INFO 2020-11-24 04:15:53 train.py: 74] Epoch 1, iter 1400/6416, lr 0.100000, loss 7.121700 +INFO 2020-11-24 04:17:11 train.py: 74] Epoch 1, iter 1600/6416, lr 0.100000, loss 6.975845 +INFO 2020-11-24 04:18:29 train.py: 74] Epoch 1, iter 1800/6416, lr 0.100000, loss 6.874810 +INFO 2020-11-24 04:19:47 train.py: 74] Epoch 1, iter 2000/6416, lr 0.100000, loss 6.779687 +INFO 2020-11-24 04:21:05 train.py: 74] Epoch 1, iter 2200/6416, lr 0.100000, loss 6.673733 +INFO 2020-11-24 04:22:23 train.py: 74] Epoch 1, iter 2400/6416, lr 0.100000, loss 6.561958 +INFO 2020-11-24 04:23:41 train.py: 74] Epoch 1, iter 2600/6416, lr 0.100000, loss 6.476950 +INFO 2020-11-24 04:24:59 train.py: 74] Epoch 1, iter 2800/6416, lr 0.100000, loss 6.400562 +INFO 2020-11-24 04:26:17 train.py: 87] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2020-11-24 04:26:17 train.py: 74] Epoch 1, iter 3000/6416, lr 0.100000, loss 6.286831 +INFO 2020-11-24 04:27:35 train.py: 74] Epoch 1, iter 3200/6416, lr 0.100000, loss 6.194930 +INFO 2020-11-24 04:28:52 train.py: 74] Epoch 1, iter 3400/6416, lr 0.100000, loss 6.154781 +INFO 2020-11-24 04:30:10 train.py: 74] Epoch 1, iter 3600/6416, lr 0.100000, loss 6.086702 +INFO 2020-11-24 04:31:27 train.py: 74] Epoch 1, iter 3800/6416, lr 0.100000, loss 6.029971 +INFO 2020-11-24 04:32:45 train.py: 74] Epoch 1, iter 4000/6416, lr 0.100000, loss 5.942696 +INFO 2020-11-24 04:34:02 train.py: 74] Epoch 1, iter 4200/6416, lr 0.100000, loss 5.885881 +INFO 2020-11-24 04:35:20 train.py: 74] Epoch 1, iter 4400/6416, lr 0.100000, loss 5.837472 +INFO 2020-11-24 04:36:37 train.py: 74] Epoch 1, iter 4600/6416, lr 0.100000, loss 5.788877 +INFO 2020-11-24 04:37:55 train.py: 74] Epoch 1, iter 4800/6416, lr 0.100000, loss 5.757636 +INFO 2020-11-24 04:39:12 train.py: 74] Epoch 1, iter 5000/6416, lr 0.100000, loss 5.714747 +INFO 2020-11-24 04:40:30 train.py: 74] Epoch 1, iter 5200/6416, lr 0.100000, loss 5.616349 +INFO 2020-11-24 04:41:47 train.py: 74] Epoch 1, iter 5400/6416, lr 0.100000, loss 5.610363 +INFO 2020-11-24 04:43:04 train.py: 74] Epoch 1, iter 5600/6416, lr 0.100000, loss 5.578490 +INFO 2020-11-24 04:44:22 train.py: 74] Epoch 1, iter 5800/6416, lr 0.100000, loss 5.508913 +INFO 2020-11-24 04:45:39 train.py: 87] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2020-11-24 04:45:40 train.py: 74] Epoch 1, iter 6000/6416, lr 0.100000, loss 5.498577 +INFO 2020-11-24 04:46:58 train.py: 74] Epoch 1, iter 6200/6416, lr 0.100000, loss 5.483171 +INFO 2020-11-24 04:48:16 train.py: 74] Epoch 1, iter 6400/6416, lr 0.100000, loss 5.415438 +INFO 2020-11-24 04:48:22 train.py: 92] Save checkpoint Epoch_1.pt to disk... +INFO 2020-11-24 04:48:24 train.py: 74] Epoch 2, iter 0/6416, lr 0.100000, loss 5.440089 +INFO 2020-11-24 04:49:42 train.py: 74] Epoch 2, iter 200/6416, lr 0.100000, loss 5.026180 +INFO 2020-11-24 04:51:01 train.py: 74] Epoch 2, iter 400/6416, lr 0.100000, loss 5.053122 +INFO 2020-11-24 04:52:19 train.py: 74] Epoch 2, iter 600/6416, lr 0.100000, loss 5.106497 +INFO 2020-11-24 04:53:37 train.py: 74] Epoch 2, iter 800/6416, lr 0.100000, loss 5.136229 +INFO 2020-11-24 04:54:56 train.py: 74] Epoch 2, iter 1000/6416, lr 0.100000, loss 5.132768 +INFO 2020-11-24 04:56:14 train.py: 74] Epoch 2, iter 1200/6416, lr 0.100000, loss 5.164696 +INFO 2020-11-24 04:57:32 train.py: 74] Epoch 2, iter 1400/6416, lr 0.100000, loss 5.157776 +INFO 2020-11-24 04:58:50 train.py: 74] Epoch 2, iter 1600/6416, lr 0.100000, loss 5.135490 +INFO 2020-11-24 05:00:08 train.py: 74] Epoch 2, iter 1800/6416, lr 0.100000, loss 5.116055 +INFO 2020-11-24 05:01:26 train.py: 74] Epoch 2, iter 2000/6416, lr 0.100000, loss 5.122944 +INFO 2020-11-24 05:02:44 train.py: 74] Epoch 2, iter 2200/6416, lr 0.100000, loss 5.096611 +INFO 2020-11-24 05:04:02 train.py: 74] Epoch 2, iter 2400/6416, lr 0.100000, loss 5.097762 +INFO 2020-11-24 05:05:20 train.py: 74] Epoch 2, iter 2600/6416, lr 0.100000, loss 5.086466 +INFO 2020-11-24 05:06:38 train.py: 74] Epoch 2, iter 2800/6416, lr 0.100000, loss 5.045042 +INFO 2020-11-24 05:07:56 train.py: 87] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2020-11-24 05:07:57 train.py: 74] Epoch 2, iter 3000/6416, lr 0.100000, loss 5.059261 +INFO 2020-11-24 05:09:15 train.py: 74] Epoch 2, iter 3200/6416, lr 0.100000, loss 5.032098 +INFO 2020-11-24 05:10:33 train.py: 74] Epoch 2, iter 3400/6416, lr 0.100000, loss 5.027476 +INFO 2020-11-24 05:11:50 train.py: 74] Epoch 2, iter 3600/6416, lr 0.100000, loss 4.993284 +INFO 2020-11-24 05:13:08 train.py: 74] Epoch 2, iter 3800/6416, lr 0.100000, loss 4.983350 +INFO 2020-11-24 05:14:26 train.py: 74] Epoch 2, iter 4000/6416, lr 0.100000, loss 4.958266 +INFO 2020-11-24 05:15:44 train.py: 74] Epoch 2, iter 4200/6416, lr 0.100000, loss 4.936499 +INFO 2020-11-24 05:17:02 train.py: 74] Epoch 2, iter 4400/6416, lr 0.100000, loss 4.933462 +INFO 2020-11-24 05:18:20 train.py: 74] Epoch 2, iter 4600/6416, lr 0.100000, loss 4.937922 +INFO 2020-11-24 05:19:38 train.py: 74] Epoch 2, iter 4800/6416, lr 0.100000, loss 4.897083 +INFO 2020-11-24 05:20:56 train.py: 74] Epoch 2, iter 5000/6416, lr 0.100000, loss 4.866741 +INFO 2020-11-24 05:22:14 train.py: 74] Epoch 2, iter 5200/6416, lr 0.100000, loss 4.846557 +INFO 2020-11-24 05:23:32 train.py: 74] Epoch 2, iter 5400/6416, lr 0.100000, loss 4.844702 +INFO 2020-11-24 05:24:50 train.py: 74] Epoch 2, iter 5600/6416, lr 0.100000, loss 4.827470 +INFO 2020-11-24 05:26:08 train.py: 74] Epoch 2, iter 5800/6416, lr 0.100000, loss 4.834561 +INFO 2020-11-24 05:27:26 train.py: 87] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2020-11-24 05:27:26 train.py: 74] Epoch 2, iter 6000/6416, lr 0.100000, loss 4.803743 +INFO 2020-11-24 05:28:44 train.py: 74] Epoch 2, iter 6200/6416, lr 0.100000, loss 4.787435 +INFO 2020-11-24 05:30:02 train.py: 74] Epoch 2, iter 6400/6416, lr 0.100000, loss 4.771263 +INFO 2020-11-24 05:30:08 train.py: 92] Save checkpoint Epoch_2.pt to disk... +INFO 2020-11-24 05:30:09 train.py: 74] Epoch 3, iter 0/6416, lr 0.100000, loss 4.665100 +INFO 2020-11-24 05:31:28 train.py: 74] Epoch 3, iter 200/6416, lr 0.100000, loss 4.450923 +INFO 2020-11-24 05:32:46 train.py: 74] Epoch 3, iter 400/6416, lr 0.100000, loss 4.442122 +INFO 2020-11-24 05:34:05 train.py: 74] Epoch 3, iter 600/6416, lr 0.100000, loss 4.482682 +INFO 2020-11-24 05:35:23 train.py: 74] Epoch 3, iter 800/6416, lr 0.100000, loss 4.523028 +INFO 2020-11-24 05:36:41 train.py: 74] Epoch 3, iter 1000/6416, lr 0.100000, loss 4.545702 +INFO 2020-11-24 05:38:00 train.py: 74] Epoch 3, iter 1200/6416, lr 0.100000, loss 4.545225 +INFO 2020-11-24 05:39:18 train.py: 74] Epoch 3, iter 1400/6416, lr 0.100000, loss 4.600934 +INFO 2020-11-24 05:40:36 train.py: 74] Epoch 3, iter 1600/6416, lr 0.100000, loss 4.616325 +INFO 2020-11-24 05:41:54 train.py: 74] Epoch 3, iter 1800/6416, lr 0.100000, loss 4.617960 +INFO 2020-11-24 05:43:12 train.py: 74] Epoch 3, iter 2000/6416, lr 0.100000, loss 4.597656 +INFO 2020-11-24 05:44:29 train.py: 74] Epoch 3, iter 2200/6416, lr 0.100000, loss 4.606315 +INFO 2020-11-24 05:45:47 train.py: 74] Epoch 3, iter 2400/6416, lr 0.100000, loss 4.568970 +INFO 2020-11-24 05:47:05 train.py: 74] Epoch 3, iter 2600/6416, lr 0.100000, loss 4.596194 +INFO 2020-11-24 05:48:23 train.py: 74] Epoch 3, iter 2800/6416, lr 0.100000, loss 4.570230 +INFO 2020-11-24 05:49:41 train.py: 87] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2020-11-24 05:49:41 train.py: 74] Epoch 3, iter 3000/6416, lr 0.100000, loss 4.574229 +INFO 2020-11-24 05:50:58 train.py: 74] Epoch 3, iter 3200/6416, lr 0.100000, loss 4.572266 +INFO 2020-11-24 05:52:15 train.py: 74] Epoch 3, iter 3400/6416, lr 0.100000, loss 4.580258 +INFO 2020-11-24 05:53:33 train.py: 74] Epoch 3, iter 3600/6416, lr 0.100000, loss 4.533460 +INFO 2020-11-24 05:54:50 train.py: 74] Epoch 3, iter 3800/6416, lr 0.100000, loss 4.536240 +INFO 2020-11-24 05:56:07 train.py: 74] Epoch 3, iter 4000/6416, lr 0.100000, loss 4.557130 +INFO 2020-11-24 05:57:24 train.py: 74] Epoch 3, iter 4200/6416, lr 0.100000, loss 4.523213 +INFO 2020-11-24 05:58:41 train.py: 74] Epoch 3, iter 4400/6416, lr 0.100000, loss 4.503493 +INFO 2020-11-24 05:59:59 train.py: 74] Epoch 3, iter 4600/6416, lr 0.100000, loss 4.518086 +INFO 2020-11-24 06:01:16 train.py: 74] Epoch 3, iter 4800/6416, lr 0.100000, loss 4.502888 +INFO 2020-11-24 06:02:33 train.py: 74] Epoch 3, iter 5000/6416, lr 0.100000, loss 4.505856 +INFO 2020-11-24 06:03:50 train.py: 74] Epoch 3, iter 5200/6416, lr 0.100000, loss 4.486231 +INFO 2020-11-24 06:05:07 train.py: 74] Epoch 3, iter 5400/6416, lr 0.100000, loss 4.482046 +INFO 2020-11-24 06:06:25 train.py: 74] Epoch 3, iter 5600/6416, lr 0.100000, loss 4.460350 +INFO 2020-11-24 06:07:42 train.py: 74] Epoch 3, iter 5800/6416, lr 0.100000, loss 4.460023 +INFO 2020-11-24 06:08:59 train.py: 87] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2020-11-24 06:08:59 train.py: 74] Epoch 3, iter 6000/6416, lr 0.100000, loss 4.455923 +INFO 2020-11-24 06:10:17 train.py: 74] Epoch 3, iter 6200/6416, lr 0.100000, loss 4.439720 +INFO 2020-11-24 06:11:35 train.py: 74] Epoch 3, iter 6400/6416, lr 0.100000, loss 4.420194 +INFO 2020-11-24 06:11:41 train.py: 92] Save checkpoint Epoch_3.pt to disk... +INFO 2020-11-24 06:11:43 train.py: 74] Epoch 4, iter 0/6416, lr 0.100000, loss 4.540029 +INFO 2020-11-24 06:13:01 train.py: 74] Epoch 4, iter 200/6416, lr 0.100000, loss 4.096731 +INFO 2020-11-24 06:14:20 train.py: 74] Epoch 4, iter 400/6416, lr 0.100000, loss 4.102299 +INFO 2020-11-24 06:15:38 train.py: 74] Epoch 4, iter 600/6416, lr 0.100000, loss 4.138867 +INFO 2020-11-24 06:16:56 train.py: 74] Epoch 4, iter 800/6416, lr 0.100000, loss 4.192034 +INFO 2020-11-24 06:18:15 train.py: 74] Epoch 4, iter 1000/6416, lr 0.100000, loss 4.244839 +INFO 2020-11-24 06:19:33 train.py: 74] Epoch 4, iter 1200/6416, lr 0.100000, loss 4.268064 +INFO 2020-11-24 06:20:51 train.py: 74] Epoch 4, iter 1400/6416, lr 0.100000, loss 4.274738 +INFO 2020-11-24 06:22:09 train.py: 74] Epoch 4, iter 1600/6416, lr 0.100000, loss 4.272569 +INFO 2020-11-24 06:23:27 train.py: 74] Epoch 4, iter 1800/6416, lr 0.100000, loss 4.322196 +INFO 2020-11-24 06:24:45 train.py: 74] Epoch 4, iter 2000/6416, lr 0.100000, loss 4.292552 +INFO 2020-11-24 06:26:03 train.py: 74] Epoch 4, iter 2200/6416, lr 0.100000, loss 4.308279 +INFO 2020-11-24 06:27:21 train.py: 74] Epoch 4, iter 2400/6416, lr 0.100000, loss 4.308598 +INFO 2020-11-24 06:28:39 train.py: 74] Epoch 4, iter 2600/6416, lr 0.100000, loss 4.303280 +INFO 2020-11-24 06:29:57 train.py: 74] Epoch 4, iter 2800/6416, lr 0.100000, loss 4.319410 +INFO 2020-11-24 06:31:15 train.py: 87] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2020-11-24 06:31:15 train.py: 74] Epoch 4, iter 3000/6416, lr 0.100000, loss 4.301726 +INFO 2020-11-24 06:32:33 train.py: 74] Epoch 4, iter 3200/6416, lr 0.100000, loss 4.317716 +INFO 2020-11-24 06:33:50 train.py: 74] Epoch 4, iter 3400/6416, lr 0.100000, loss 4.312454 +INFO 2020-11-24 06:35:08 train.py: 74] Epoch 4, iter 3600/6416, lr 0.100000, loss 4.313283 +INFO 2020-11-24 06:36:26 train.py: 74] Epoch 4, iter 3800/6416, lr 0.100000, loss 4.314122 +INFO 2020-11-24 06:37:44 train.py: 74] Epoch 4, iter 4000/6416, lr 0.100000, loss 4.286486 +INFO 2020-11-24 06:39:02 train.py: 74] Epoch 4, iter 4200/6416, lr 0.100000, loss 4.249253 +INFO 2020-11-24 06:40:20 train.py: 74] Epoch 4, iter 4400/6416, lr 0.100000, loss 4.289481 +INFO 2020-11-24 06:41:38 train.py: 74] Epoch 4, iter 4600/6416, lr 0.100000, loss 4.246100 +INFO 2020-11-24 06:42:56 train.py: 74] Epoch 4, iter 4800/6416, lr 0.100000, loss 4.264654 +INFO 2020-11-24 06:44:14 train.py: 74] Epoch 4, iter 5000/6416, lr 0.100000, loss 4.257778 +INFO 2020-11-24 06:45:32 train.py: 74] Epoch 4, iter 5200/6416, lr 0.100000, loss 4.293045 +INFO 2020-11-24 06:46:50 train.py: 74] Epoch 4, iter 5400/6416, lr 0.100000, loss 4.253713 +INFO 2020-11-24 06:48:08 train.py: 74] Epoch 4, iter 5600/6416, lr 0.100000, loss 4.249499 +INFO 2020-11-24 06:49:26 train.py: 74] Epoch 4, iter 5800/6416, lr 0.100000, loss 4.244498 +INFO 2020-11-24 06:50:44 train.py: 87] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2020-11-24 06:50:44 train.py: 74] Epoch 4, iter 6000/6416, lr 0.100000, loss 4.244528 +INFO 2020-11-24 06:52:02 train.py: 74] Epoch 4, iter 6200/6416, lr 0.100000, loss 4.216490 +INFO 2020-11-24 06:53:20 train.py: 74] Epoch 4, iter 6400/6416, lr 0.100000, loss 4.204208 +INFO 2020-11-24 06:53:26 train.py: 92] Save checkpoint Epoch_4.pt to disk... +INFO 2020-11-24 06:53:28 train.py: 74] Epoch 5, iter 0/6416, lr 0.100000, loss 4.202881 +INFO 2020-11-24 06:54:46 train.py: 74] Epoch 5, iter 200/6416, lr 0.100000, loss 3.885112 +INFO 2020-11-24 06:56:05 train.py: 74] Epoch 5, iter 400/6416, lr 0.100000, loss 3.881414 +INFO 2020-11-24 06:57:23 train.py: 74] Epoch 5, iter 600/6416, lr 0.100000, loss 3.922434 +INFO 2020-11-24 06:58:41 train.py: 74] Epoch 5, iter 800/6416, lr 0.100000, loss 3.989189 +INFO 2020-11-24 07:00:00 train.py: 74] Epoch 5, iter 1000/6416, lr 0.100000, loss 4.039934 +INFO 2020-11-24 07:01:18 train.py: 74] Epoch 5, iter 1200/6416, lr 0.100000, loss 4.076166 +INFO 2020-11-24 07:02:36 train.py: 74] Epoch 5, iter 1400/6416, lr 0.100000, loss 4.098873 +INFO 2020-11-24 07:03:54 train.py: 74] Epoch 5, iter 1600/6416, lr 0.100000, loss 4.107318 +INFO 2020-11-24 07:05:12 train.py: 74] Epoch 5, iter 1800/6416, lr 0.100000, loss 4.110902 +INFO 2020-11-24 07:06:30 train.py: 74] Epoch 5, iter 2000/6416, lr 0.100000, loss 4.117602 +INFO 2020-11-24 07:07:48 train.py: 74] Epoch 5, iter 2200/6416, lr 0.100000, loss 4.134322 +INFO 2020-11-24 07:09:06 train.py: 74] Epoch 5, iter 2400/6416, lr 0.100000, loss 4.126344 +INFO 2020-11-24 07:10:24 train.py: 74] Epoch 5, iter 2600/6416, lr 0.100000, loss 4.119838 +INFO 2020-11-24 07:11:42 train.py: 74] Epoch 5, iter 2800/6416, lr 0.100000, loss 4.137152 +INFO 2020-11-24 07:12:59 train.py: 87] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2020-11-24 07:13:00 train.py: 74] Epoch 5, iter 3000/6416, lr 0.100000, loss 4.125776 +INFO 2020-11-24 07:14:17 train.py: 74] Epoch 5, iter 3200/6416, lr 0.100000, loss 4.137276 +INFO 2020-11-24 07:15:35 train.py: 74] Epoch 5, iter 3400/6416, lr 0.100000, loss 4.081156 +INFO 2020-11-24 07:16:52 train.py: 74] Epoch 5, iter 3600/6416, lr 0.100000, loss 4.110230 +INFO 2020-11-24 07:18:09 train.py: 74] Epoch 5, iter 3800/6416, lr 0.100000, loss 4.123747 +INFO 2020-11-24 07:19:27 train.py: 74] Epoch 5, iter 4000/6416, lr 0.100000, loss 4.112608 +INFO 2020-11-24 07:20:44 train.py: 74] Epoch 5, iter 4200/6416, lr 0.100000, loss 4.106259 +INFO 2020-11-24 07:22:01 train.py: 74] Epoch 5, iter 4400/6416, lr 0.100000, loss 4.144594 +INFO 2020-11-24 07:23:19 train.py: 74] Epoch 5, iter 4600/6416, lr 0.100000, loss 4.135456 +INFO 2020-11-24 07:24:36 train.py: 74] Epoch 5, iter 4800/6416, lr 0.100000, loss 4.105270 +INFO 2020-11-24 07:25:54 train.py: 74] Epoch 5, iter 5000/6416, lr 0.100000, loss 4.108409 +INFO 2020-11-24 07:27:11 train.py: 74] Epoch 5, iter 5200/6416, lr 0.100000, loss 4.117318 +INFO 2020-11-24 07:28:29 train.py: 74] Epoch 5, iter 5400/6416, lr 0.100000, loss 4.089157 +INFO 2020-11-24 07:29:46 train.py: 74] Epoch 5, iter 5600/6416, lr 0.100000, loss 4.105667 +INFO 2020-11-24 07:31:03 train.py: 74] Epoch 5, iter 5800/6416, lr 0.100000, loss 4.105449 +INFO 2020-11-24 07:32:21 train.py: 87] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2020-11-24 07:32:21 train.py: 74] Epoch 5, iter 6000/6416, lr 0.100000, loss 4.091707 +INFO 2020-11-24 07:33:39 train.py: 74] Epoch 5, iter 6200/6416, lr 0.100000, loss 4.051780 +INFO 2020-11-24 07:34:57 train.py: 74] Epoch 5, iter 6400/6416, lr 0.100000, loss 4.068963 +INFO 2020-11-24 07:35:03 train.py: 92] Save checkpoint Epoch_5.pt to disk... +INFO 2020-11-24 07:35:05 train.py: 74] Epoch 6, iter 0/6416, lr 0.100000, loss 3.997203 +INFO 2020-11-24 07:36:23 train.py: 74] Epoch 6, iter 200/6416, lr 0.100000, loss 3.771892 +INFO 2020-11-24 07:37:40 train.py: 74] Epoch 6, iter 400/6416, lr 0.100000, loss 3.740402 +INFO 2020-11-24 07:38:58 train.py: 74] Epoch 6, iter 600/6416, lr 0.100000, loss 3.820428 +INFO 2020-11-24 07:40:17 train.py: 74] Epoch 6, iter 800/6416, lr 0.100000, loss 3.868483 +INFO 2020-11-24 07:41:35 train.py: 74] Epoch 6, iter 1000/6416, lr 0.100000, loss 3.896072 +INFO 2020-11-24 07:42:53 train.py: 74] Epoch 6, iter 1200/6416, lr 0.100000, loss 3.925021 +INFO 2020-11-24 07:44:11 train.py: 74] Epoch 6, iter 1400/6416, lr 0.100000, loss 3.932392 +INFO 2020-11-24 07:45:30 train.py: 74] Epoch 6, iter 1600/6416, lr 0.100000, loss 3.972897 +INFO 2020-11-24 07:46:48 train.py: 74] Epoch 6, iter 1800/6416, lr 0.100000, loss 3.956087 +INFO 2020-11-24 07:48:06 train.py: 74] Epoch 6, iter 2000/6416, lr 0.100000, loss 3.988663 +INFO 2020-11-24 07:49:24 train.py: 74] Epoch 6, iter 2200/6416, lr 0.100000, loss 3.995037 +INFO 2020-11-24 07:50:42 train.py: 74] Epoch 6, iter 2400/6416, lr 0.100000, loss 3.995521 +INFO 2020-11-24 07:52:00 train.py: 74] Epoch 6, iter 2600/6416, lr 0.100000, loss 3.979017 +INFO 2020-11-24 07:53:18 train.py: 74] Epoch 6, iter 2800/6416, lr 0.100000, loss 3.993128 +INFO 2020-11-24 07:54:35 train.py: 87] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2020-11-24 07:54:36 train.py: 74] Epoch 6, iter 3000/6416, lr 0.100000, loss 3.991411 +INFO 2020-11-24 07:55:54 train.py: 74] Epoch 6, iter 3200/6416, lr 0.100000, loss 4.018914 +INFO 2020-11-24 07:57:12 train.py: 74] Epoch 6, iter 3400/6416, lr 0.100000, loss 3.984513 +INFO 2020-11-24 07:58:30 train.py: 74] Epoch 6, iter 3600/6416, lr 0.100000, loss 3.998572 +INFO 2020-11-24 07:59:48 train.py: 74] Epoch 6, iter 3800/6416, lr 0.100000, loss 3.991734 +INFO 2020-11-24 08:01:06 train.py: 74] Epoch 6, iter 4000/6416, lr 0.100000, loss 3.996338 +INFO 2020-11-24 08:02:24 train.py: 74] Epoch 6, iter 4200/6416, lr 0.100000, loss 3.974797 +INFO 2020-11-24 08:03:43 train.py: 74] Epoch 6, iter 4400/6416, lr 0.100000, loss 3.952605 +INFO 2020-11-24 08:05:01 train.py: 74] Epoch 6, iter 4600/6416, lr 0.100000, loss 4.014193 +INFO 2020-11-24 08:06:19 train.py: 74] Epoch 6, iter 4800/6416, lr 0.100000, loss 3.977969 +INFO 2020-11-24 08:07:37 train.py: 74] Epoch 6, iter 5000/6416, lr 0.100000, loss 3.981304 +INFO 2020-11-24 08:08:55 train.py: 74] Epoch 6, iter 5200/6416, lr 0.100000, loss 3.964265 +INFO 2020-11-24 08:10:13 train.py: 74] Epoch 6, iter 5400/6416, lr 0.100000, loss 3.983255 +INFO 2020-11-24 08:11:31 train.py: 74] Epoch 6, iter 5600/6416, lr 0.100000, loss 3.969215 +INFO 2020-11-24 08:12:49 train.py: 74] Epoch 6, iter 5800/6416, lr 0.100000, loss 3.956603 +INFO 2020-11-24 08:14:07 train.py: 87] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2020-11-24 08:14:07 train.py: 74] Epoch 6, iter 6000/6416, lr 0.100000, loss 3.966941 +INFO 2020-11-24 08:15:25 train.py: 74] Epoch 6, iter 6200/6416, lr 0.100000, loss 3.957199 +INFO 2020-11-24 08:16:43 train.py: 74] Epoch 6, iter 6400/6416, lr 0.100000, loss 3.967428 +INFO 2020-11-24 08:16:50 train.py: 92] Save checkpoint Epoch_6.pt to disk... +INFO 2020-11-24 08:16:51 train.py: 74] Epoch 7, iter 0/6416, lr 0.100000, loss 3.927234 +INFO 2020-11-24 08:18:09 train.py: 74] Epoch 7, iter 200/6416, lr 0.100000, loss 3.668670 +INFO 2020-11-24 08:19:27 train.py: 74] Epoch 7, iter 400/6416, lr 0.100000, loss 3.638747 +INFO 2020-11-24 08:20:44 train.py: 74] Epoch 7, iter 600/6416, lr 0.100000, loss 3.713964 +INFO 2020-11-24 08:22:02 train.py: 74] Epoch 7, iter 800/6416, lr 0.100000, loss 3.750934 +INFO 2020-11-24 08:23:19 train.py: 74] Epoch 7, iter 1000/6416, lr 0.100000, loss 3.792767 +INFO 2020-11-24 08:24:37 train.py: 74] Epoch 7, iter 1200/6416, lr 0.100000, loss 3.818018 +INFO 2020-11-24 08:25:54 train.py: 74] Epoch 7, iter 1400/6416, lr 0.100000, loss 3.831887 +INFO 2020-11-24 08:27:12 train.py: 74] Epoch 7, iter 1600/6416, lr 0.100000, loss 3.858248 +INFO 2020-11-24 08:28:29 train.py: 74] Epoch 7, iter 1800/6416, lr 0.100000, loss 3.857486 +INFO 2020-11-24 08:29:47 train.py: 74] Epoch 7, iter 2000/6416, lr 0.100000, loss 3.878654 +INFO 2020-11-24 08:31:04 train.py: 74] Epoch 7, iter 2200/6416, lr 0.100000, loss 3.900151 +INFO 2020-11-24 08:32:21 train.py: 74] Epoch 7, iter 2400/6416, lr 0.100000, loss 3.900703 +INFO 2020-11-24 08:33:39 train.py: 74] Epoch 7, iter 2600/6416, lr 0.100000, loss 3.899652 +INFO 2020-11-24 08:34:56 train.py: 74] Epoch 7, iter 2800/6416, lr 0.100000, loss 3.917318 +INFO 2020-11-24 08:36:13 train.py: 87] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2020-11-24 08:36:13 train.py: 74] Epoch 7, iter 3000/6416, lr 0.100000, loss 3.864257 +INFO 2020-11-24 08:37:31 train.py: 74] Epoch 7, iter 3200/6416, lr 0.100000, loss 3.894497 +INFO 2020-11-24 08:38:50 train.py: 74] Epoch 7, iter 3400/6416, lr 0.100000, loss 3.915060 +INFO 2020-11-24 08:40:08 train.py: 74] Epoch 7, iter 3600/6416, lr 0.100000, loss 3.895507 +INFO 2020-11-24 08:41:26 train.py: 74] Epoch 7, iter 3800/6416, lr 0.100000, loss 3.909785 +INFO 2020-11-24 08:42:44 train.py: 74] Epoch 7, iter 4000/6416, lr 0.100000, loss 3.895703 +INFO 2020-11-24 08:44:02 train.py: 74] Epoch 7, iter 4200/6416, lr 0.100000, loss 3.882205 +INFO 2020-11-24 08:45:20 train.py: 74] Epoch 7, iter 4400/6416, lr 0.100000, loss 3.885509 +INFO 2020-11-24 08:46:38 train.py: 74] Epoch 7, iter 4600/6416, lr 0.100000, loss 3.858412 +INFO 2020-11-24 08:47:56 train.py: 74] Epoch 7, iter 4800/6416, lr 0.100000, loss 3.900832 +INFO 2020-11-24 08:49:14 train.py: 74] Epoch 7, iter 5000/6416, lr 0.100000, loss 3.874724 +INFO 2020-11-24 08:50:32 train.py: 74] Epoch 7, iter 5200/6416, lr 0.100000, loss 3.892915 +INFO 2020-11-24 08:51:50 train.py: 74] Epoch 7, iter 5400/6416, lr 0.100000, loss 3.873445 +INFO 2020-11-24 08:53:08 train.py: 74] Epoch 7, iter 5600/6416, lr 0.100000, loss 3.856133 +INFO 2020-11-24 08:54:26 train.py: 74] Epoch 7, iter 5800/6416, lr 0.100000, loss 3.888871 +INFO 2020-11-24 08:55:44 train.py: 87] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2020-11-24 08:55:45 train.py: 74] Epoch 7, iter 6000/6416, lr 0.100000, loss 3.870069 +INFO 2020-11-24 08:57:03 train.py: 74] Epoch 7, iter 6200/6416, lr 0.100000, loss 3.890066 +INFO 2020-11-24 08:58:21 train.py: 74] Epoch 7, iter 6400/6416, lr 0.100000, loss 3.874906 +INFO 2020-11-24 08:58:27 train.py: 92] Save checkpoint Epoch_7.pt to disk... +INFO 2020-11-24 08:58:28 train.py: 74] Epoch 8, iter 0/6416, lr 0.100000, loss 3.769626 +INFO 2020-11-24 08:59:47 train.py: 74] Epoch 8, iter 200/6416, lr 0.100000, loss 3.531501 +INFO 2020-11-24 09:01:05 train.py: 74] Epoch 8, iter 400/6416, lr 0.100000, loss 3.536682 +INFO 2020-11-24 09:02:23 train.py: 74] Epoch 8, iter 600/6416, lr 0.100000, loss 3.620693 +INFO 2020-11-24 09:03:42 train.py: 74] Epoch 8, iter 800/6416, lr 0.100000, loss 3.669908 +INFO 2020-11-24 09:05:00 train.py: 74] Epoch 8, iter 1000/6416, lr 0.100000, loss 3.698737 +INFO 2020-11-24 09:06:18 train.py: 74] Epoch 8, iter 1200/6416, lr 0.100000, loss 3.743023 +INFO 2020-11-24 09:07:36 train.py: 74] Epoch 8, iter 1400/6416, lr 0.100000, loss 3.753198 +INFO 2020-11-24 09:08:54 train.py: 74] Epoch 8, iter 1600/6416, lr 0.100000, loss 3.772860 +INFO 2020-11-24 09:10:12 train.py: 74] Epoch 8, iter 1800/6416, lr 0.100000, loss 3.785721 +INFO 2020-11-24 09:11:31 train.py: 74] Epoch 8, iter 2000/6416, lr 0.100000, loss 3.795793 +INFO 2020-11-24 09:12:49 train.py: 74] Epoch 8, iter 2200/6416, lr 0.100000, loss 3.795237 +INFO 2020-11-24 09:14:07 train.py: 74] Epoch 8, iter 2400/6416, lr 0.100000, loss 3.820151 +INFO 2020-11-24 09:15:25 train.py: 74] Epoch 8, iter 2600/6416, lr 0.100000, loss 3.814036 +INFO 2020-11-24 09:16:43 train.py: 74] Epoch 8, iter 2800/6416, lr 0.100000, loss 3.832890 +INFO 2020-11-24 09:18:00 train.py: 87] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2020-11-24 09:18:01 train.py: 74] Epoch 8, iter 3000/6416, lr 0.100000, loss 3.814459 +INFO 2020-11-24 09:19:18 train.py: 74] Epoch 8, iter 3200/6416, lr 0.100000, loss 3.805081 +INFO 2020-11-24 09:20:36 train.py: 74] Epoch 8, iter 3400/6416, lr 0.100000, loss 3.814949 +INFO 2020-11-24 09:21:53 train.py: 74] Epoch 8, iter 3600/6416, lr 0.100000, loss 3.798262 +INFO 2020-11-24 09:23:11 train.py: 74] Epoch 8, iter 3800/6416, lr 0.100000, loss 3.838674 +INFO 2020-11-24 09:24:28 train.py: 74] Epoch 8, iter 4000/6416, lr 0.100000, loss 3.815417 +INFO 2020-11-24 09:25:46 train.py: 74] Epoch 8, iter 4200/6416, lr 0.100000, loss 3.835098 +INFO 2020-11-24 09:27:03 train.py: 74] Epoch 8, iter 4400/6416, lr 0.100000, loss 3.826335 +INFO 2020-11-24 09:28:21 train.py: 74] Epoch 8, iter 4600/6416, lr 0.100000, loss 3.822815 +INFO 2020-11-24 09:29:38 train.py: 74] Epoch 8, iter 4800/6416, lr 0.100000, loss 3.854760 +INFO 2020-11-24 09:30:56 train.py: 74] Epoch 8, iter 5000/6416, lr 0.100000, loss 3.818180 +INFO 2020-11-24 09:32:13 train.py: 74] Epoch 8, iter 5200/6416, lr 0.100000, loss 3.793270 +INFO 2020-11-24 09:33:31 train.py: 74] Epoch 8, iter 5400/6416, lr 0.100000, loss 3.807816 +INFO 2020-11-24 09:34:48 train.py: 74] Epoch 8, iter 5600/6416, lr 0.100000, loss 3.812581 +INFO 2020-11-24 09:36:06 train.py: 74] Epoch 8, iter 5800/6416, lr 0.100000, loss 3.826077 +INFO 2020-11-24 09:37:23 train.py: 87] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2020-11-24 09:37:23 train.py: 74] Epoch 8, iter 6000/6416, lr 0.100000, loss 3.800772 +INFO 2020-11-24 09:38:41 train.py: 74] Epoch 8, iter 6200/6416, lr 0.100000, loss 3.802567 +INFO 2020-11-24 09:39:59 train.py: 74] Epoch 8, iter 6400/6416, lr 0.100000, loss 3.809041 +INFO 2020-11-24 09:40:05 train.py: 92] Save checkpoint Epoch_8.pt to disk... +INFO 2020-11-24 09:40:07 train.py: 74] Epoch 9, iter 0/6416, lr 0.100000, loss 3.827116 +INFO 2020-11-24 09:41:25 train.py: 74] Epoch 9, iter 200/6416, lr 0.100000, loss 3.510100 +INFO 2020-11-24 09:42:44 train.py: 74] Epoch 9, iter 400/6416, lr 0.100000, loss 3.499867 +INFO 2020-11-24 09:44:02 train.py: 74] Epoch 9, iter 600/6416, lr 0.100000, loss 3.532867 +INFO 2020-11-24 09:45:21 train.py: 74] Epoch 9, iter 800/6416, lr 0.100000, loss 3.577693 +INFO 2020-11-24 09:46:39 train.py: 74] Epoch 9, iter 1000/6416, lr 0.100000, loss 3.632344 +INFO 2020-11-24 09:47:57 train.py: 74] Epoch 9, iter 1200/6416, lr 0.100000, loss 3.670031 +INFO 2020-11-24 09:49:15 train.py: 74] Epoch 9, iter 1400/6416, lr 0.100000, loss 3.696803 +INFO 2020-11-24 09:50:33 train.py: 74] Epoch 9, iter 1600/6416, lr 0.100000, loss 3.731199 +INFO 2020-11-24 09:51:52 train.py: 74] Epoch 9, iter 1800/6416, lr 0.100000, loss 3.725462 +INFO 2020-11-24 09:53:10 train.py: 74] Epoch 9, iter 2000/6416, lr 0.100000, loss 3.726511 +INFO 2020-11-24 09:54:28 train.py: 74] Epoch 9, iter 2200/6416, lr 0.100000, loss 3.738408 +INFO 2020-11-24 09:55:46 train.py: 74] Epoch 9, iter 2400/6416, lr 0.100000, loss 3.751172 +INFO 2020-11-24 09:57:04 train.py: 74] Epoch 9, iter 2600/6416, lr 0.100000, loss 3.729649 +INFO 2020-11-24 09:58:22 train.py: 74] Epoch 9, iter 2800/6416, lr 0.100000, loss 3.750047 +INFO 2020-11-24 09:59:40 train.py: 87] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2020-11-24 09:59:40 train.py: 74] Epoch 9, iter 3000/6416, lr 0.100000, loss 3.786703 +INFO 2020-11-24 10:00:58 train.py: 74] Epoch 9, iter 3200/6416, lr 0.100000, loss 3.760409 +INFO 2020-11-24 10:02:16 train.py: 74] Epoch 9, iter 3400/6416, lr 0.100000, loss 3.747574 +INFO 2020-11-24 10:03:35 train.py: 74] Epoch 9, iter 3600/6416, lr 0.100000, loss 3.793872 +INFO 2020-11-24 10:04:53 train.py: 74] Epoch 9, iter 3800/6416, lr 0.100000, loss 3.744194 +INFO 2020-11-24 10:06:11 train.py: 74] Epoch 9, iter 4000/6416, lr 0.100000, loss 3.769263 +INFO 2020-11-24 10:07:29 train.py: 74] Epoch 9, iter 4200/6416, lr 0.100000, loss 3.735591 +INFO 2020-11-24 10:08:47 train.py: 74] Epoch 9, iter 4400/6416, lr 0.100000, loss 3.736867 +INFO 2020-11-24 10:10:05 train.py: 74] Epoch 9, iter 4600/6416, lr 0.100000, loss 3.743708 +INFO 2020-11-24 10:11:23 train.py: 74] Epoch 9, iter 4800/6416, lr 0.100000, loss 3.740603 +INFO 2020-11-24 10:12:41 train.py: 74] Epoch 9, iter 5000/6416, lr 0.100000, loss 3.759759 +INFO 2020-11-24 10:13:59 train.py: 74] Epoch 9, iter 5200/6416, lr 0.100000, loss 3.751569 +INFO 2020-11-24 10:15:17 train.py: 74] Epoch 9, iter 5400/6416, lr 0.100000, loss 3.753405 +INFO 2020-11-24 10:16:35 train.py: 74] Epoch 9, iter 5600/6416, lr 0.100000, loss 3.752440 +INFO 2020-11-24 10:17:53 train.py: 74] Epoch 9, iter 5800/6416, lr 0.100000, loss 3.742277 +INFO 2020-11-24 10:19:11 train.py: 87] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2020-11-24 10:19:12 train.py: 74] Epoch 9, iter 6000/6416, lr 0.100000, loss 3.749094 +INFO 2020-11-24 10:20:29 train.py: 74] Epoch 9, iter 6200/6416, lr 0.100000, loss 3.727976 +INFO 2020-11-24 10:21:46 train.py: 74] Epoch 9, iter 6400/6416, lr 0.100000, loss 3.718605 +INFO 2020-11-24 10:21:52 train.py: 92] Save checkpoint Epoch_9.pt to disk... +INFO 2020-11-24 10:21:54 train.py: 74] Epoch 10, iter 0/6416, lr 0.010000, loss 3.746880 +INFO 2020-11-24 10:23:12 train.py: 74] Epoch 10, iter 200/6416, lr 0.010000, loss 2.974117 +INFO 2020-11-24 10:24:30 train.py: 74] Epoch 10, iter 400/6416, lr 0.010000, loss 2.808296 +INFO 2020-11-24 10:25:49 train.py: 74] Epoch 10, iter 600/6416, lr 0.010000, loss 2.751615 +INFO 2020-11-24 10:27:07 train.py: 74] Epoch 10, iter 800/6416, lr 0.010000, loss 2.711641 +INFO 2020-11-24 10:28:25 train.py: 74] Epoch 10, iter 1000/6416, lr 0.010000, loss 2.671832 +INFO 2020-11-24 10:29:44 train.py: 74] Epoch 10, iter 1200/6416, lr 0.010000, loss 2.651242 +INFO 2020-11-24 10:31:02 train.py: 74] Epoch 10, iter 1400/6416, lr 0.010000, loss 2.609904 +INFO 2020-11-24 10:32:20 train.py: 74] Epoch 10, iter 1600/6416, lr 0.010000, loss 2.597323 +INFO 2020-11-24 10:33:38 train.py: 74] Epoch 10, iter 1800/6416, lr 0.010000, loss 2.587481 +INFO 2020-11-24 10:34:56 train.py: 74] Epoch 10, iter 2000/6416, lr 0.010000, loss 2.557563 +INFO 2020-11-24 10:36:14 train.py: 74] Epoch 10, iter 2200/6416, lr 0.010000, loss 2.537237 +INFO 2020-11-24 10:37:32 train.py: 74] Epoch 10, iter 2400/6416, lr 0.010000, loss 2.522175 +INFO 2020-11-24 10:38:50 train.py: 74] Epoch 10, iter 2600/6416, lr 0.010000, loss 2.501540 +INFO 2020-11-24 10:40:08 train.py: 74] Epoch 10, iter 2800/6416, lr 0.010000, loss 2.501676 +INFO 2020-11-24 10:41:26 train.py: 87] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2020-11-24 10:41:27 train.py: 74] Epoch 10, iter 3000/6416, lr 0.010000, loss 2.492330 +INFO 2020-11-24 10:42:45 train.py: 74] Epoch 10, iter 3200/6416, lr 0.010000, loss 2.461658 +INFO 2020-11-24 10:44:03 train.py: 74] Epoch 10, iter 3400/6416, lr 0.010000, loss 2.460148 +INFO 2020-11-24 10:45:21 train.py: 74] Epoch 10, iter 3600/6416, lr 0.010000, loss 2.448058 +INFO 2020-11-24 10:46:39 train.py: 74] Epoch 10, iter 3800/6416, lr 0.010000, loss 2.440698 +INFO 2020-11-24 10:47:57 train.py: 74] Epoch 10, iter 4000/6416, lr 0.010000, loss 2.428191 +INFO 2020-11-24 10:49:16 train.py: 74] Epoch 10, iter 4200/6416, lr 0.010000, loss 2.418324 +INFO 2020-11-24 10:50:34 train.py: 74] Epoch 10, iter 4400/6416, lr 0.010000, loss 2.409370 +INFO 2020-11-24 10:51:52 train.py: 74] Epoch 10, iter 4600/6416, lr 0.010000, loss 2.391027 +INFO 2020-11-24 10:53:10 train.py: 74] Epoch 10, iter 4800/6416, lr 0.010000, loss 2.402113 +INFO 2020-11-24 10:54:28 train.py: 74] Epoch 10, iter 5000/6416, lr 0.010000, loss 2.373241 +INFO 2020-11-24 10:55:46 train.py: 74] Epoch 10, iter 5200/6416, lr 0.010000, loss 2.381784 +INFO 2020-11-24 10:57:04 train.py: 74] Epoch 10, iter 5400/6416, lr 0.010000, loss 2.365681 +INFO 2020-11-24 10:58:23 train.py: 74] Epoch 10, iter 5600/6416, lr 0.010000, loss 2.354604 +INFO 2020-11-24 10:59:41 train.py: 74] Epoch 10, iter 5800/6416, lr 0.010000, loss 2.356477 +INFO 2020-11-24 11:00:59 train.py: 87] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2020-11-24 11:00:59 train.py: 74] Epoch 10, iter 6000/6416, lr 0.010000, loss 2.352549 +INFO 2020-11-24 11:02:17 train.py: 74] Epoch 10, iter 6200/6416, lr 0.010000, loss 2.321264 +INFO 2020-11-24 11:03:35 train.py: 74] Epoch 10, iter 6400/6416, lr 0.010000, loss 2.335863 +INFO 2020-11-24 11:03:41 train.py: 92] Save checkpoint Epoch_10.pt to disk... +INFO 2020-11-24 11:03:43 train.py: 74] Epoch 11, iter 0/6416, lr 0.010000, loss 2.340185 +INFO 2020-11-24 11:05:01 train.py: 74] Epoch 11, iter 200/6416, lr 0.010000, loss 2.118885 +INFO 2020-11-24 11:06:18 train.py: 74] Epoch 11, iter 400/6416, lr 0.010000, loss 2.106990 +INFO 2020-11-24 11:07:36 train.py: 74] Epoch 11, iter 600/6416, lr 0.010000, loss 2.124713 +INFO 2020-11-24 11:08:53 train.py: 74] Epoch 11, iter 800/6416, lr 0.010000, loss 2.138400 +INFO 2020-11-24 11:10:11 train.py: 74] Epoch 11, iter 1000/6416, lr 0.010000, loss 2.121224 +INFO 2020-11-24 11:11:29 train.py: 74] Epoch 11, iter 1200/6416, lr 0.010000, loss 2.125041 +INFO 2020-11-24 11:12:46 train.py: 74] Epoch 11, iter 1400/6416, lr 0.010000, loss 2.116722 +INFO 2020-11-24 11:14:04 train.py: 74] Epoch 11, iter 1600/6416, lr 0.010000, loss 2.140145 +INFO 2020-11-24 11:15:21 train.py: 74] Epoch 11, iter 1800/6416, lr 0.010000, loss 2.143412 +INFO 2020-11-24 11:16:38 train.py: 74] Epoch 11, iter 2000/6416, lr 0.010000, loss 2.139413 +INFO 2020-11-24 11:17:56 train.py: 74] Epoch 11, iter 2200/6416, lr 0.010000, loss 2.152643 +INFO 2020-11-24 11:19:13 train.py: 74] Epoch 11, iter 2400/6416, lr 0.010000, loss 2.139739 +INFO 2020-11-24 11:20:31 train.py: 74] Epoch 11, iter 2600/6416, lr 0.010000, loss 2.143647 +INFO 2020-11-24 11:21:48 train.py: 74] Epoch 11, iter 2800/6416, lr 0.010000, loss 2.147597 +INFO 2020-11-24 11:23:05 train.py: 87] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2020-11-24 11:23:06 train.py: 74] Epoch 11, iter 3000/6416, lr 0.010000, loss 2.153717 +INFO 2020-11-24 11:24:24 train.py: 74] Epoch 11, iter 3200/6416, lr 0.010000, loss 2.158236 +INFO 2020-11-24 11:25:42 train.py: 74] Epoch 11, iter 3400/6416, lr 0.010000, loss 2.149249 +INFO 2020-11-24 11:27:00 train.py: 74] Epoch 11, iter 3600/6416, lr 0.010000, loss 2.139474 +INFO 2020-11-24 11:28:18 train.py: 74] Epoch 11, iter 3800/6416, lr 0.010000, loss 2.146334 +INFO 2020-11-24 11:29:37 train.py: 74] Epoch 11, iter 4000/6416, lr 0.010000, loss 2.157116 +INFO 2020-11-24 11:30:55 train.py: 74] Epoch 11, iter 4200/6416, lr 0.010000, loss 2.152893 +INFO 2020-11-24 11:32:13 train.py: 74] Epoch 11, iter 4400/6416, lr 0.010000, loss 2.145313 +INFO 2020-11-24 11:33:31 train.py: 74] Epoch 11, iter 4600/6416, lr 0.010000, loss 2.165957 +INFO 2020-11-24 11:34:50 train.py: 74] Epoch 11, iter 4800/6416, lr 0.010000, loss 2.167014 +INFO 2020-11-24 11:36:08 train.py: 74] Epoch 11, iter 5000/6416, lr 0.010000, loss 2.172860 +INFO 2020-11-24 11:37:26 train.py: 74] Epoch 11, iter 5200/6416, lr 0.010000, loss 2.154261 +INFO 2020-11-24 11:38:44 train.py: 74] Epoch 11, iter 5400/6416, lr 0.010000, loss 2.163148 +INFO 2020-11-24 11:40:02 train.py: 74] Epoch 11, iter 5600/6416, lr 0.010000, loss 2.170224 +INFO 2020-11-24 11:41:21 train.py: 74] Epoch 11, iter 5800/6416, lr 0.010000, loss 2.178672 +INFO 2020-11-24 11:42:39 train.py: 87] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2020-11-24 11:42:39 train.py: 74] Epoch 11, iter 6000/6416, lr 0.010000, loss 2.157969 +INFO 2020-11-24 11:43:57 train.py: 74] Epoch 11, iter 6200/6416, lr 0.010000, loss 2.171329 +INFO 2020-11-24 11:45:15 train.py: 74] Epoch 11, iter 6400/6416, lr 0.010000, loss 2.172228 +INFO 2020-11-24 11:45:21 train.py: 92] Save checkpoint Epoch_11.pt to disk... +INFO 2020-11-24 11:45:23 train.py: 74] Epoch 12, iter 0/6416, lr 0.010000, loss 2.098908 +INFO 2020-11-24 11:46:41 train.py: 74] Epoch 12, iter 200/6416, lr 0.010000, loss 1.976808 +INFO 2020-11-24 11:48:00 train.py: 74] Epoch 12, iter 400/6416, lr 0.010000, loss 1.957961 +INFO 2020-11-24 11:49:18 train.py: 74] Epoch 12, iter 600/6416, lr 0.010000, loss 1.971902 +INFO 2020-11-24 11:50:36 train.py: 74] Epoch 12, iter 800/6416, lr 0.010000, loss 1.985339 +INFO 2020-11-24 11:51:55 train.py: 74] Epoch 12, iter 1000/6416, lr 0.010000, loss 1.991969 +INFO 2020-11-24 11:53:13 train.py: 74] Epoch 12, iter 1200/6416, lr 0.010000, loss 1.992443 +INFO 2020-11-24 11:54:31 train.py: 74] Epoch 12, iter 1400/6416, lr 0.010000, loss 2.005499 +INFO 2020-11-24 11:55:49 train.py: 74] Epoch 12, iter 1600/6416, lr 0.010000, loss 2.019665 +INFO 2020-11-24 11:57:08 train.py: 74] Epoch 12, iter 1800/6416, lr 0.010000, loss 2.033139 +INFO 2020-11-24 11:58:26 train.py: 74] Epoch 12, iter 2000/6416, lr 0.010000, loss 2.028996 +INFO 2020-11-24 11:59:44 train.py: 74] Epoch 12, iter 2200/6416, lr 0.010000, loss 2.019801 +INFO 2020-11-24 12:01:02 train.py: 74] Epoch 12, iter 2400/6416, lr 0.010000, loss 2.045612 +INFO 2020-11-24 12:02:20 train.py: 74] Epoch 12, iter 2600/6416, lr 0.010000, loss 2.037465 +INFO 2020-11-24 12:03:38 train.py: 74] Epoch 12, iter 2800/6416, lr 0.010000, loss 2.035865 +INFO 2020-11-24 12:04:56 train.py: 87] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2020-11-24 12:04:56 train.py: 74] Epoch 12, iter 3000/6416, lr 0.010000, loss 2.058705 +INFO 2020-11-24 12:06:14 train.py: 74] Epoch 12, iter 3200/6416, lr 0.010000, loss 2.057656 +INFO 2020-11-24 12:07:31 train.py: 74] Epoch 12, iter 3400/6416, lr 0.010000, loss 2.056521 +INFO 2020-11-24 12:08:49 train.py: 74] Epoch 12, iter 3600/6416, lr 0.010000, loss 2.059211 +INFO 2020-11-24 12:10:06 train.py: 74] Epoch 12, iter 3800/6416, lr 0.010000, loss 2.073577 +INFO 2020-11-24 12:11:23 train.py: 74] Epoch 12, iter 4000/6416, lr 0.010000, loss 2.068285 +INFO 2020-11-24 12:12:41 train.py: 74] Epoch 12, iter 4200/6416, lr 0.010000, loss 2.076814 +INFO 2020-11-24 12:13:58 train.py: 74] Epoch 12, iter 4400/6416, lr 0.010000, loss 2.081390 +INFO 2020-11-24 12:15:15 train.py: 74] Epoch 12, iter 4600/6416, lr 0.010000, loss 2.090879 +INFO 2020-11-24 12:16:33 train.py: 74] Epoch 12, iter 4800/6416, lr 0.010000, loss 2.093876 +INFO 2020-11-24 12:17:50 train.py: 74] Epoch 12, iter 5000/6416, lr 0.010000, loss 2.100984 +INFO 2020-11-24 12:19:08 train.py: 74] Epoch 12, iter 5200/6416, lr 0.010000, loss 2.109811 +INFO 2020-11-24 12:20:25 train.py: 74] Epoch 12, iter 5400/6416, lr 0.010000, loss 2.099833 +INFO 2020-11-24 12:21:42 train.py: 74] Epoch 12, iter 5600/6416, lr 0.010000, loss 2.101767 +INFO 2020-11-24 12:23:00 train.py: 74] Epoch 12, iter 5800/6416, lr 0.010000, loss 2.112344 +INFO 2020-11-24 12:24:17 train.py: 87] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2020-11-24 12:24:17 train.py: 74] Epoch 12, iter 6000/6416, lr 0.010000, loss 2.126899 +INFO 2020-11-24 12:25:35 train.py: 74] Epoch 12, iter 6200/6416, lr 0.010000, loss 2.109422 +INFO 2020-11-24 12:26:54 train.py: 74] Epoch 12, iter 6400/6416, lr 0.010000, loss 2.116510 +INFO 2020-11-24 12:27:00 train.py: 92] Save checkpoint Epoch_12.pt to disk... +INFO 2020-11-24 12:27:01 train.py: 74] Epoch 13, iter 0/6416, lr 0.001000, loss 2.109774 +INFO 2020-11-24 12:28:19 train.py: 74] Epoch 13, iter 200/6416, lr 0.001000, loss 1.850623 +INFO 2020-11-24 12:29:38 train.py: 74] Epoch 13, iter 400/6416, lr 0.001000, loss 1.845698 +INFO 2020-11-24 12:30:56 train.py: 74] Epoch 13, iter 600/6416, lr 0.001000, loss 1.832399 +INFO 2020-11-24 12:32:14 train.py: 74] Epoch 13, iter 800/6416, lr 0.001000, loss 1.851899 +INFO 2020-11-24 12:33:33 train.py: 74] Epoch 13, iter 1000/6416, lr 0.001000, loss 1.831740 +INFO 2020-11-24 12:34:51 train.py: 74] Epoch 13, iter 1200/6416, lr 0.001000, loss 1.832839 +INFO 2020-11-24 12:36:09 train.py: 74] Epoch 13, iter 1400/6416, lr 0.001000, loss 1.825755 +INFO 2020-11-24 12:37:27 train.py: 74] Epoch 13, iter 1600/6416, lr 0.001000, loss 1.838505 +INFO 2020-11-24 12:38:46 train.py: 74] Epoch 13, iter 1800/6416, lr 0.001000, loss 1.826254 +INFO 2020-11-24 12:40:04 train.py: 74] Epoch 13, iter 2000/6416, lr 0.001000, loss 1.832688 +INFO 2020-11-24 12:41:22 train.py: 74] Epoch 13, iter 2200/6416, lr 0.001000, loss 1.824897 +INFO 2020-11-24 12:42:40 train.py: 74] Epoch 13, iter 2400/6416, lr 0.001000, loss 1.825613 +INFO 2020-11-24 12:43:58 train.py: 74] Epoch 13, iter 2600/6416, lr 0.001000, loss 1.833551 +INFO 2020-11-24 12:45:16 train.py: 74] Epoch 13, iter 2800/6416, lr 0.001000, loss 1.837937 +INFO 2020-11-24 12:46:34 train.py: 87] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2020-11-24 12:46:34 train.py: 74] Epoch 13, iter 3000/6416, lr 0.001000, loss 1.833608 +INFO 2020-11-24 12:47:52 train.py: 74] Epoch 13, iter 3200/6416, lr 0.001000, loss 1.825760 +INFO 2020-11-24 12:49:11 train.py: 74] Epoch 13, iter 3400/6416, lr 0.001000, loss 1.822354 +INFO 2020-11-24 12:50:29 train.py: 74] Epoch 13, iter 3600/6416, lr 0.001000, loss 1.822294 +INFO 2020-11-24 12:51:47 train.py: 74] Epoch 13, iter 3800/6416, lr 0.001000, loss 1.831900 +INFO 2020-11-24 12:53:05 train.py: 74] Epoch 13, iter 4000/6416, lr 0.001000, loss 1.837293 +INFO 2020-11-24 12:54:23 train.py: 74] Epoch 13, iter 4200/6416, lr 0.001000, loss 1.833485 +INFO 2020-11-24 12:55:41 train.py: 74] Epoch 13, iter 4400/6416, lr 0.001000, loss 1.830787 +INFO 2020-11-24 12:56:59 train.py: 74] Epoch 13, iter 4600/6416, lr 0.001000, loss 1.836366 +INFO 2020-11-24 12:58:17 train.py: 74] Epoch 13, iter 4800/6416, lr 0.001000, loss 1.833278 +INFO 2020-11-24 12:59:35 train.py: 74] Epoch 13, iter 5000/6416, lr 0.001000, loss 1.831308 +INFO 2020-11-24 13:00:53 train.py: 74] Epoch 13, iter 5200/6416, lr 0.001000, loss 1.845200 +INFO 2020-11-24 13:02:11 train.py: 74] Epoch 13, iter 5400/6416, lr 0.001000, loss 1.833023 +INFO 2020-11-24 13:03:30 train.py: 74] Epoch 13, iter 5600/6416, lr 0.001000, loss 1.829591 +INFO 2020-11-24 13:04:48 train.py: 74] Epoch 13, iter 5800/6416, lr 0.001000, loss 1.846178 +INFO 2020-11-24 13:06:06 train.py: 87] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2020-11-24 13:06:06 train.py: 74] Epoch 13, iter 6000/6416, lr 0.001000, loss 1.835252 +INFO 2020-11-24 13:07:24 train.py: 74] Epoch 13, iter 6200/6416, lr 0.001000, loss 1.840193 +INFO 2020-11-24 13:08:42 train.py: 74] Epoch 13, iter 6400/6416, lr 0.001000, loss 1.833468 +INFO 2020-11-24 13:08:48 train.py: 92] Save checkpoint Epoch_13.pt to disk... +INFO 2020-11-24 13:08:50 train.py: 74] Epoch 14, iter 0/6416, lr 0.001000, loss 1.819492 +INFO 2020-11-24 13:10:08 train.py: 74] Epoch 14, iter 200/6416, lr 0.001000, loss 1.810554 +INFO 2020-11-24 13:11:26 train.py: 74] Epoch 14, iter 400/6416, lr 0.001000, loss 1.820436 +INFO 2020-11-24 13:12:45 train.py: 74] Epoch 14, iter 600/6416, lr 0.001000, loss 1.805539 +INFO 2020-11-24 13:14:03 train.py: 74] Epoch 14, iter 800/6416, lr 0.001000, loss 1.788846 +INFO 2020-11-24 13:15:21 train.py: 74] Epoch 14, iter 1000/6416, lr 0.001000, loss 1.813469 +INFO 2020-11-24 13:16:39 train.py: 74] Epoch 14, iter 1200/6416, lr 0.001000, loss 1.806865 +INFO 2020-11-24 13:17:58 train.py: 74] Epoch 14, iter 1400/6416, lr 0.001000, loss 1.814105 +INFO 2020-11-24 13:19:16 train.py: 74] Epoch 14, iter 1600/6416, lr 0.001000, loss 1.817921 +INFO 2020-11-24 13:20:34 train.py: 74] Epoch 14, iter 1800/6416, lr 0.001000, loss 1.805090 +INFO 2020-11-24 13:21:52 train.py: 74] Epoch 14, iter 2000/6416, lr 0.001000, loss 1.810515 +INFO 2020-11-24 13:23:10 train.py: 74] Epoch 14, iter 2200/6416, lr 0.001000, loss 1.805530 +INFO 2020-11-24 13:24:28 train.py: 74] Epoch 14, iter 2400/6416, lr 0.001000, loss 1.823238 +INFO 2020-11-24 13:25:46 train.py: 74] Epoch 14, iter 2600/6416, lr 0.001000, loss 1.802504 +INFO 2020-11-24 13:27:04 train.py: 74] Epoch 14, iter 2800/6416, lr 0.001000, loss 1.813050 +INFO 2020-11-24 13:28:22 train.py: 87] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2020-11-24 13:28:22 train.py: 74] Epoch 14, iter 3000/6416, lr 0.001000, loss 1.812065 +INFO 2020-11-24 13:29:40 train.py: 74] Epoch 14, iter 3200/6416, lr 0.001000, loss 1.798023 +INFO 2020-11-24 13:30:57 train.py: 74] Epoch 14, iter 3400/6416, lr 0.001000, loss 1.808276 +INFO 2020-11-24 13:32:15 train.py: 74] Epoch 14, iter 3600/6416, lr 0.001000, loss 1.830430 +INFO 2020-11-24 13:33:32 train.py: 74] Epoch 14, iter 3800/6416, lr 0.001000, loss 1.829250 +INFO 2020-11-24 13:34:49 train.py: 74] Epoch 14, iter 4000/6416, lr 0.001000, loss 1.808092 +INFO 2020-11-24 13:36:07 train.py: 74] Epoch 14, iter 4200/6416, lr 0.001000, loss 1.807351 +INFO 2020-11-24 13:37:24 train.py: 74] Epoch 14, iter 4400/6416, lr 0.001000, loss 1.811478 +INFO 2020-11-24 13:38:42 train.py: 74] Epoch 14, iter 4600/6416, lr 0.001000, loss 1.824016 +INFO 2020-11-24 13:39:59 train.py: 74] Epoch 14, iter 4800/6416, lr 0.001000, loss 1.828517 +INFO 2020-11-24 13:41:16 train.py: 74] Epoch 14, iter 5000/6416, lr 0.001000, loss 1.835607 +INFO 2020-11-24 13:42:34 train.py: 74] Epoch 14, iter 5200/6416, lr 0.001000, loss 1.824501 +INFO 2020-11-24 13:43:51 train.py: 74] Epoch 14, iter 5400/6416, lr 0.001000, loss 1.810710 +INFO 2020-11-24 13:45:09 train.py: 74] Epoch 14, iter 5600/6416, lr 0.001000, loss 1.826132 +INFO 2020-11-24 13:46:26 train.py: 74] Epoch 14, iter 5800/6416, lr 0.001000, loss 1.813428 +INFO 2020-11-24 13:47:43 train.py: 87] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2020-11-24 13:47:43 train.py: 74] Epoch 14, iter 6000/6416, lr 0.001000, loss 1.814075 +INFO 2020-11-24 13:49:01 train.py: 74] Epoch 14, iter 6200/6416, lr 0.001000, loss 1.818595 +INFO 2020-11-24 13:50:19 train.py: 74] Epoch 14, iter 6400/6416, lr 0.001000, loss 1.833896 +INFO 2020-11-24 13:50:26 train.py: 92] Save checkpoint Epoch_14.pt to disk... +INFO 2020-11-24 13:50:27 train.py: 74] Epoch 15, iter 0/6416, lr 0.001000, loss 1.816874 +INFO 2020-11-24 13:51:45 train.py: 74] Epoch 15, iter 200/6416, lr 0.001000, loss 1.786866 +INFO 2020-11-24 13:53:04 train.py: 74] Epoch 15, iter 400/6416, lr 0.001000, loss 1.774457 +INFO 2020-11-24 13:54:22 train.py: 74] Epoch 15, iter 600/6416, lr 0.001000, loss 1.799863 +INFO 2020-11-24 13:55:40 train.py: 74] Epoch 15, iter 800/6416, lr 0.001000, loss 1.782401 +INFO 2020-11-24 13:56:58 train.py: 74] Epoch 15, iter 1000/6416, lr 0.001000, loss 1.797739 +INFO 2020-11-24 13:58:17 train.py: 74] Epoch 15, iter 1200/6416, lr 0.001000, loss 1.803113 +INFO 2020-11-24 13:59:35 train.py: 74] Epoch 15, iter 1400/6416, lr 0.001000, loss 1.802417 +INFO 2020-11-24 14:00:53 train.py: 74] Epoch 15, iter 1600/6416, lr 0.001000, loss 1.790440 +INFO 2020-11-24 14:02:11 train.py: 74] Epoch 15, iter 1800/6416, lr 0.001000, loss 1.794112 +INFO 2020-11-24 14:03:29 train.py: 74] Epoch 15, iter 2000/6416, lr 0.001000, loss 1.792146 +INFO 2020-11-24 14:04:47 train.py: 74] Epoch 15, iter 2200/6416, lr 0.001000, loss 1.791506 +INFO 2020-11-24 14:06:05 train.py: 74] Epoch 15, iter 2400/6416, lr 0.001000, loss 1.797008 +INFO 2020-11-24 14:07:23 train.py: 74] Epoch 15, iter 2600/6416, lr 0.001000, loss 1.797804 +INFO 2020-11-24 14:08:41 train.py: 74] Epoch 15, iter 2800/6416, lr 0.001000, loss 1.792445 +INFO 2020-11-24 14:09:59 train.py: 87] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2020-11-24 14:10:00 train.py: 74] Epoch 15, iter 3000/6416, lr 0.001000, loss 1.808717 +INFO 2020-11-24 14:11:18 train.py: 74] Epoch 15, iter 3200/6416, lr 0.001000, loss 1.800370 +INFO 2020-11-24 14:12:36 train.py: 74] Epoch 15, iter 3400/6416, lr 0.001000, loss 1.810517 +INFO 2020-11-24 14:13:54 train.py: 74] Epoch 15, iter 3600/6416, lr 0.001000, loss 1.811586 +INFO 2020-11-24 14:15:12 train.py: 74] Epoch 15, iter 3800/6416, lr 0.001000, loss 1.796170 +INFO 2020-11-24 14:16:30 train.py: 74] Epoch 15, iter 4000/6416, lr 0.001000, loss 1.792518 +INFO 2020-11-24 14:17:48 train.py: 74] Epoch 15, iter 4200/6416, lr 0.001000, loss 1.802332 +INFO 2020-11-24 14:19:06 train.py: 74] Epoch 15, iter 4400/6416, lr 0.001000, loss 1.815958 +INFO 2020-11-24 14:20:25 train.py: 74] Epoch 15, iter 4600/6416, lr 0.001000, loss 1.807881 +INFO 2020-11-24 14:21:43 train.py: 74] Epoch 15, iter 4800/6416, lr 0.001000, loss 1.821013 +INFO 2020-11-24 14:23:01 train.py: 74] Epoch 15, iter 5000/6416, lr 0.001000, loss 1.809572 +INFO 2020-11-24 14:24:19 train.py: 74] Epoch 15, iter 5200/6416, lr 0.001000, loss 1.821744 +INFO 2020-11-24 14:25:37 train.py: 74] Epoch 15, iter 5400/6416, lr 0.001000, loss 1.808917 +INFO 2020-11-24 14:26:55 train.py: 74] Epoch 15, iter 5600/6416, lr 0.001000, loss 1.822763 +INFO 2020-11-24 14:28:13 train.py: 74] Epoch 15, iter 5800/6416, lr 0.001000, loss 1.823356 +INFO 2020-11-24 14:29:31 train.py: 87] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2020-11-24 14:29:31 train.py: 74] Epoch 15, iter 6000/6416, lr 0.001000, loss 1.821922 +INFO 2020-11-24 14:30:50 train.py: 74] Epoch 15, iter 6200/6416, lr 0.001000, loss 1.834525 +INFO 2020-11-24 14:32:08 train.py: 74] Epoch 15, iter 6400/6416, lr 0.001000, loss 1.833749 +INFO 2020-11-24 14:32:14 train.py: 92] Save checkpoint Epoch_15.pt to disk... +INFO 2020-11-24 14:32:15 train.py: 74] Epoch 16, iter 0/6416, lr 0.000100, loss 1.798043 +INFO 2020-11-24 14:33:34 train.py: 74] Epoch 16, iter 200/6416, lr 0.000100, loss 1.788470 +INFO 2020-11-24 14:34:52 train.py: 74] Epoch 16, iter 400/6416, lr 0.000100, loss 1.770692 +INFO 2020-11-24 14:36:10 train.py: 74] Epoch 16, iter 600/6416, lr 0.000100, loss 1.782898 +INFO 2020-11-24 14:37:29 train.py: 74] Epoch 16, iter 800/6416, lr 0.000100, loss 1.781051 +INFO 2020-11-24 14:38:47 train.py: 74] Epoch 16, iter 1000/6416, lr 0.000100, loss 1.782889 +INFO 2020-11-24 14:40:05 train.py: 74] Epoch 16, iter 1200/6416, lr 0.000100, loss 1.765409 +INFO 2020-11-24 14:41:23 train.py: 74] Epoch 16, iter 1400/6416, lr 0.000100, loss 1.780779 +INFO 2020-11-24 14:42:41 train.py: 74] Epoch 16, iter 1600/6416, lr 0.000100, loss 1.783804 +INFO 2020-11-24 14:43:59 train.py: 74] Epoch 16, iter 1800/6416, lr 0.000100, loss 1.779461 +INFO 2020-11-24 14:45:17 train.py: 74] Epoch 16, iter 2000/6416, lr 0.000100, loss 1.766039 +INFO 2020-11-24 14:46:35 train.py: 74] Epoch 16, iter 2200/6416, lr 0.000100, loss 1.769282 +INFO 2020-11-24 14:47:54 train.py: 74] Epoch 16, iter 2400/6416, lr 0.000100, loss 1.762334 +INFO 2020-11-24 14:49:12 train.py: 74] Epoch 16, iter 2600/6416, lr 0.000100, loss 1.789894 +INFO 2020-11-24 14:50:30 train.py: 74] Epoch 16, iter 2800/6416, lr 0.000100, loss 1.781496 +INFO 2020-11-24 14:51:47 train.py: 87] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2020-11-24 14:51:48 train.py: 74] Epoch 16, iter 3000/6416, lr 0.000100, loss 1.775365 +INFO 2020-11-24 14:53:06 train.py: 74] Epoch 16, iter 3200/6416, lr 0.000100, loss 1.782624 +INFO 2020-11-24 14:54:24 train.py: 74] Epoch 16, iter 3400/6416, lr 0.000100, loss 1.776455 +INFO 2020-11-24 14:55:42 train.py: 74] Epoch 16, iter 3600/6416, lr 0.000100, loss 1.788013 +INFO 2020-11-24 14:57:00 train.py: 74] Epoch 16, iter 3800/6416, lr 0.000100, loss 1.791255 +INFO 2020-11-24 14:58:18 train.py: 74] Epoch 16, iter 4000/6416, lr 0.000100, loss 1.774332 +INFO 2020-11-24 14:59:36 train.py: 74] Epoch 16, iter 4200/6416, lr 0.000100, loss 1.788021 +INFO 2020-11-24 15:00:54 train.py: 74] Epoch 16, iter 4400/6416, lr 0.000100, loss 1.778018 +INFO 2020-11-24 15:02:13 train.py: 74] Epoch 16, iter 4600/6416, lr 0.000100, loss 1.783425 +INFO 2020-11-24 15:03:31 train.py: 74] Epoch 16, iter 4800/6416, lr 0.000100, loss 1.774238 +INFO 2020-11-24 15:04:49 train.py: 74] Epoch 16, iter 5000/6416, lr 0.000100, loss 1.774257 +INFO 2020-11-24 15:06:07 train.py: 74] Epoch 16, iter 5200/6416, lr 0.000100, loss 1.780392 +INFO 2020-11-24 15:07:25 train.py: 74] Epoch 16, iter 5400/6416, lr 0.000100, loss 1.778083 +INFO 2020-11-24 15:08:43 train.py: 74] Epoch 16, iter 5600/6416, lr 0.000100, loss 1.778772 +INFO 2020-11-24 15:10:01 train.py: 74] Epoch 16, iter 5800/6416, lr 0.000100, loss 1.787950 +INFO 2020-11-24 15:11:19 train.py: 87] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2020-11-24 15:11:19 train.py: 74] Epoch 16, iter 6000/6416, lr 0.000100, loss 1.763879 +INFO 2020-11-24 15:12:38 train.py: 74] Epoch 16, iter 6200/6416, lr 0.000100, loss 1.766053 +INFO 2020-11-24 15:13:56 train.py: 74] Epoch 16, iter 6400/6416, lr 0.000100, loss 1.774999 +INFO 2020-11-24 15:14:02 train.py: 92] Save checkpoint Epoch_16.pt to disk... +INFO 2020-11-24 15:14:03 train.py: 74] Epoch 17, iter 0/6416, lr 0.000100, loss 1.769013 +INFO 2020-11-24 15:15:22 train.py: 74] Epoch 17, iter 200/6416, lr 0.000100, loss 1.777793 +INFO 2020-11-24 15:16:40 train.py: 74] Epoch 17, iter 400/6416, lr 0.000100, loss 1.773711 +INFO 2020-11-24 15:17:58 train.py: 74] Epoch 17, iter 600/6416, lr 0.000100, loss 1.765407 +INFO 2020-11-24 15:19:17 train.py: 74] Epoch 17, iter 800/6416, lr 0.000100, loss 1.785018 +INFO 2020-11-24 15:20:35 train.py: 74] Epoch 17, iter 1000/6416, lr 0.000100, loss 1.774917 +INFO 2020-11-24 15:21:53 train.py: 74] Epoch 17, iter 1200/6416, lr 0.000100, loss 1.761761 +INFO 2020-11-24 15:23:11 train.py: 74] Epoch 17, iter 1400/6416, lr 0.000100, loss 1.768229 +INFO 2020-11-24 15:24:30 train.py: 74] Epoch 17, iter 1600/6416, lr 0.000100, loss 1.780249 +INFO 2020-11-24 15:25:48 train.py: 74] Epoch 17, iter 1800/6416, lr 0.000100, loss 1.783446 +INFO 2020-11-24 15:27:06 train.py: 74] Epoch 17, iter 2000/6416, lr 0.000100, loss 1.779726 +INFO 2020-11-24 15:28:24 train.py: 74] Epoch 17, iter 2200/6416, lr 0.000100, loss 1.778573 +INFO 2020-11-24 15:29:42 train.py: 74] Epoch 17, iter 2400/6416, lr 0.000100, loss 1.773806 +INFO 2020-11-24 15:31:00 train.py: 74] Epoch 17, iter 2600/6416, lr 0.000100, loss 1.780847 +INFO 2020-11-24 15:32:18 train.py: 74] Epoch 17, iter 2800/6416, lr 0.000100, loss 1.780268 +INFO 2020-11-24 15:33:36 train.py: 87] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2020-11-24 15:33:36 train.py: 74] Epoch 17, iter 3000/6416, lr 0.000100, loss 1.779825 +INFO 2020-11-24 15:34:55 train.py: 74] Epoch 17, iter 3200/6416, lr 0.000100, loss 1.770760 +INFO 2020-11-24 15:36:13 train.py: 74] Epoch 17, iter 3400/6416, lr 0.000100, loss 1.769815 +INFO 2020-11-24 15:37:31 train.py: 74] Epoch 17, iter 3600/6416, lr 0.000100, loss 1.767904 +INFO 2020-11-24 15:38:49 train.py: 74] Epoch 17, iter 3800/6416, lr 0.000100, loss 1.779343 +INFO 2020-11-24 15:40:07 train.py: 74] Epoch 17, iter 4000/6416, lr 0.000100, loss 1.770879 +INFO 2020-11-24 15:41:25 train.py: 74] Epoch 17, iter 4200/6416, lr 0.000100, loss 1.774319 +INFO 2020-11-24 15:42:44 train.py: 74] Epoch 17, iter 4400/6416, lr 0.000100, loss 1.780236 +INFO 2020-11-24 15:44:02 train.py: 74] Epoch 17, iter 4600/6416, lr 0.000100, loss 1.775440 +INFO 2020-11-24 15:45:20 train.py: 74] Epoch 17, iter 4800/6416, lr 0.000100, loss 1.772610 +INFO 2020-11-24 15:46:38 train.py: 74] Epoch 17, iter 5000/6416, lr 0.000100, loss 1.778330 +INFO 2020-11-24 15:47:56 train.py: 74] Epoch 17, iter 5200/6416, lr 0.000100, loss 1.783649 +INFO 2020-11-24 15:49:15 train.py: 74] Epoch 17, iter 5400/6416, lr 0.000100, loss 1.777045 +INFO 2020-11-24 15:50:33 train.py: 74] Epoch 17, iter 5600/6416, lr 0.000100, loss 1.777206 +INFO 2020-11-24 15:51:51 train.py: 74] Epoch 17, iter 5800/6416, lr 0.000100, loss 1.780458 +INFO 2020-11-24 15:53:09 train.py: 87] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2020-11-24 15:53:09 train.py: 74] Epoch 17, iter 6000/6416, lr 0.000100, loss 1.777346 +INFO 2020-11-24 15:54:27 train.py: 74] Epoch 17, iter 6200/6416, lr 0.000100, loss 1.776126 +INFO 2020-11-24 15:55:44 train.py: 74] Epoch 17, iter 6400/6416, lr 0.000100, loss 1.774096 +INFO 2020-11-24 15:55:50 train.py: 92] Save checkpoint Epoch_17.pt to disk... +INFO 2020-11-24 15:55:51 train.py: 175] Optimization done! diff --git a/bob/bio/facexzoo/models/heads/CircleLoss/.gitkeep b/bob/bio/facexzoo/models/heads/CircleLoss/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..ef08cf330a231f4b2b9ab49099768448f7f29315 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_agedb.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_12_batch_5999.pt | 0.9573333333333334 | 0.002168802366215905 | +| Epoch_13.pt | 0.9551666666666666 | 0.002114762923408253 | +| Epoch_13_batch_2999.pt | 0.9540000000000001 | 0.0017427096823731277 | +| Epoch_14.pt | 0.9535000000000002 | 0.002100117574603977 | +| Epoch_12_batch_2999.pt | 0.9533333333333334 | 0.0020336672464136792 | +| Epoch_11_batch_2999.pt | 0.9528333333333334 | 0.0019571016615342854 | +| Epoch_13_batch_5999.pt | 0.9528333333333334 | 0.001909204475271064 | +| Epoch_11_batch_5999.pt | 0.9528333333333332 | 0.0017924739783224065 | +| Epoch_16_batch_5999.pt | 0.9526666666666668 | 0.0018121673811444562 | +| Epoch_17.pt | 0.9525 | 0.0021118419787498 | +| Epoch_17_batch_2999.pt | 0.9523333333333334 | 0.0017069212773041418 | +| Epoch_17_batch_5999.pt | 0.9523333333333334 | 0.0017950549357114984 | +| Epoch_14_batch_2999.pt | 0.9516666666666668 | 0.002108185106778921 | +| Epoch_15.pt | 0.9516666666666668 | 0.0018425693279752202 | +| Epoch_15_batch_5999.pt | 0.9516666666666665 | 0.002557969874049184 | +| Epoch_11.pt | 0.9511666666666667 | 0.002472690342696435 | +| Epoch_14_batch_5999.pt | 0.9511666666666667 | 0.0018765939726727201 | +| Epoch_16.pt | 0.951 | 0.0017950549357115021 | +| Epoch_16_batch_2999.pt | 0.9506666666666668 | 0.0019116278371205861 | +| Epoch_15_batch_2999.pt | 0.9506666666666665 | 0.002372684056006955 | +| Epoch_12.pt | 0.9505000000000001 | 0.0025098571106836683 | +| Epoch_10_batch_2999.pt | 0.9496666666666667 | 0.002730712383876552 | +| Epoch_10.pt | 0.9495000000000001 | 0.0024475989746567456 | +| Epoch_10_batch_5999.pt | 0.9446666666666665 | 0.0021052550357218178 | +| Epoch_9_batch_2999.pt | 0.9386666666666666 | 0.0031700761372638027 | +| Epoch_8_batch_5999.pt | 0.9365 | 0.004405734198423739 | +| Epoch_9_batch_5999.pt | 0.9361666666666666 | 0.0036855573979159965 | +| Epoch_8_batch_2999.pt | 0.931 | 0.004225145187073672 | +| Epoch_8.pt | 0.9306666666666666 | 0.0044527699798919745 | +| Epoch_9.pt | 0.9303333333333335 | 0.003708515392950813 | +| Epoch_6_batch_5999.pt | 0.9281666666666666 | 0.0044614258917586285 | +| Epoch_5_batch_5999.pt | 0.9275 | 0.004702573500846545 | +| Epoch_7_batch_2999.pt | 0.9266666666666665 | 0.003975231959999628 | +| Epoch_5.pt | 0.9265000000000001 | 0.004543683717909407 | +| Epoch_7_batch_5999.pt | 0.9261666666666667 | 0.004615125427986695 | +| Epoch_6_batch_2999.pt | 0.9258333333333333 | 0.005478634145365555 | +| Epoch_5_batch_2999.pt | 0.9254999999999999 | 0.00489425210871934 | +| Epoch_7.pt | 0.9236666666666666 | 0.0033407325285273112 | +| Epoch_4_batch_5999.pt | 0.9228333333333334 | 0.00418735604138028 | +| Epoch_6.pt | 0.9206666666666667 | 0.004562325592810633 | +| Epoch_3_batch_5999.pt | 0.9158333333333333 | 0.0056778212653259596 | +| Epoch_3.pt | 0.9146666666666666 | 0.006986759965449996 | +| Epoch_4_batch_2999.pt | 0.9126666666666667 | 0.005506449641495055 | +| Epoch_4.pt | 0.9095000000000001 | 0.005931970297037765 | +| Epoch_3_batch_2999.pt | 0.9081666666666667 | 0.005876559420041957 | +| Epoch_2_batch_5999.pt | 0.8971666666666668 | 0.006611111111111107 | +| Epoch_2.pt | 0.8943333333333333 | 0.0073753007890115995 | +| Epoch_2_batch_2999.pt | 0.8844999999999998 | 0.006265967258054606 | +| Epoch_1.pt | 0.8486666666666667 | 0.007030796453136162 | +| Epoch_1_batch_5999.pt | 0.8463333333333333 | 0.007381993440832486 | +| Epoch_1_batch_2999.pt | 0.8018333333333333 | 0.008679655508894721 | +| Epoch_0_batch_5999.pt | 0.6713333333333333 | 0.007709221670534074 | +| Epoch_0.pt | 0.6535 | 0.008056321802637614 | +| Epoch_0_batch_2999.pt | 0.512 | 0.004518822090591723 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..ec9807419e16bdc08364f7f0afc26d5ee703853f --- /dev/null +++ b/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_calfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17_batch_5999.pt | 0.9400000000000001 | 0.0037843080813169698 | +| Epoch_13_batch_2999.pt | 0.9398333333333333 | 0.003722222222222219 | +| Epoch_14.pt | 0.9396666666666667 | 0.003903148460055621 | +| Epoch_15_batch_2999.pt | 0.9396666666666667 | 0.004096068575814829 | +| Epoch_13.pt | 0.9395 | 0.0038972133127323496 | +| Epoch_16_batch_2999.pt | 0.9395 | 0.0036519063176766197 | +| Epoch_15.pt | 0.9388333333333334 | 0.0035750334540435953 | +| Epoch_17_batch_2999.pt | 0.9388333333333334 | 0.0035836563161933594 | +| Epoch_16.pt | 0.9388333333333332 | 0.003634963956212353 | +| Epoch_11_batch_5999.pt | 0.9381666666666668 | 0.0033559418467864334 | +| Epoch_14_batch_5999.pt | 0.9381666666666666 | 0.003428727583157662 | +| Epoch_15_batch_5999.pt | 0.9381666666666666 | 0.0037222222222222196 | +| Epoch_11.pt | 0.9378333333333334 | 0.0039051248379533246 | +| Epoch_12.pt | 0.9378333333333332 | 0.003944444444444442 | +| Epoch_13_batch_5999.pt | 0.9376666666666665 | 0.0038425814368423534 | +| Epoch_11_batch_2999.pt | 0.9375 | 0.003524604872347091 | +| Epoch_14_batch_2999.pt | 0.9375 | 0.0037618126704955968 | +| Epoch_17.pt | 0.9375 | 0.0033448873829978565 | +| Epoch_16_batch_5999.pt | 0.9365 | 0.0035263557939018498 | +| Epoch_10.pt | 0.9363333333333334 | 0.003749897117930263 | +| Epoch_12_batch_5999.pt | 0.9355 | 0.003905124837953327 | +| Epoch_10_batch_5999.pt | 0.9354999999999999 | 0.003743719019740318 | +| Epoch_10_batch_2999.pt | 0.9344999999999999 | 0.003800990774021628 | +| Epoch_12_batch_2999.pt | 0.9331666666666667 | 0.003482318654269959 | +| Epoch_9_batch_5999.pt | 0.9279999999999999 | 0.004961580791503583 | +| Epoch_9_batch_2999.pt | 0.9248333333333335 | 0.003884521356980743 | +| Epoch_7_batch_2999.pt | 0.9238333333333333 | 0.0039833759489429745 | +| Epoch_7_batch_5999.pt | 0.922 | 0.003749897117930269 | +| Epoch_8_batch_5999.pt | 0.9211666666666666 | 0.004052510272185977 | +| Epoch_5_batch_2999.pt | 0.9201666666666668 | 0.003037319318408148 | +| Epoch_8_batch_2999.pt | 0.9201666666666666 | 0.004631147899192763 | +| Epoch_6_batch_2999.pt | 0.9199999999999999 | 0.003634539385288034 | +| Epoch_5_batch_5999.pt | 0.9179999999999999 | 0.004477653706579976 | +| Epoch_6_batch_5999.pt | 0.9178333333333333 | 0.004216736202032426 | +| Epoch_8.pt | 0.9168333333333333 | 0.004896773944315622 | +| Epoch_9.pt | 0.9166666666666667 | 0.004288946459026401 | +| Epoch_6.pt | 0.9165000000000001 | 0.003561193446786085 | +| Epoch_7.pt | 0.9158333333333335 | 0.004144384867012949 | +| Epoch_4_batch_5999.pt | 0.914 | 0.004046031434674025 | +| Epoch_4_batch_2999.pt | 0.9093333333333333 | 0.0035935470286213847 | +| Epoch_5.pt | 0.9091666666666667 | 0.0038349433012049563 | +| Epoch_3_batch_5999.pt | 0.9086666666666667 | 0.004666666666666672 | +| Epoch_4.pt | 0.9076666666666666 | 0.0031348302177035335 | +| Epoch_3.pt | 0.9038333333333333 | 0.00520001187083166 | +| Epoch_3_batch_2999.pt | 0.9014999999999999 | 0.0051606894936028404 | +| Epoch_2_batch_5999.pt | 0.893 | 0.00502954235455834 | +| Epoch_2.pt | 0.8891666666666668 | 0.004054033199812892 | +| Epoch_2_batch_2999.pt | 0.8891666666666665 | 0.004857538369621563 | +| Epoch_1_batch_5999.pt | 0.8545 | 0.0035316033500695106 | +| Epoch_1.pt | 0.8438333333333332 | 0.00345205252953466 | +| Epoch_1_batch_2999.pt | 0.7995 | 0.005858675112521096 | +| Epoch_0_batch_5999.pt | 0.6233333333333334 | 0.007328281087929401 | +| Epoch_0.pt | 0.6055 | 0.007088723439378912 | +| Epoch_0_batch_2999.pt | 0.5035 | 0.006218500871304895 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..61139145fccc114d9b4797c97a2d5e2088569b76 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_cplfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.8341666666666667 | 0.006359837330010694 | +| Epoch_16_batch_2999.pt | 0.834 | 0.006470254827351405 | +| Epoch_15_batch_5999.pt | 0.8328333333333333 | 0.007412243791504118 | +| Epoch_16_batch_5999.pt | 0.8326666666666667 | 0.006374137559672649 | +| Epoch_14_batch_2999.pt | 0.8323333333333334 | 0.006904105059069322 | +| Epoch_14.pt | 0.8323333333333333 | 0.0060868204110232586 | +| Epoch_12_batch_2999.pt | 0.8320000000000001 | 0.005862624870343517 | +| Epoch_13_batch_2999.pt | 0.8320000000000001 | 0.0060593769797493225 | +| Epoch_12.pt | 0.8311666666666666 | 0.006181663446270991 | +| Epoch_14_batch_5999.pt | 0.8308333333333333 | 0.006102266326618963 | +| Epoch_15.pt | 0.8308333333333333 | 0.006704752322323599 | +| Epoch_13_batch_5999.pt | 0.8306666666666667 | 0.006564964998543313 | +| Epoch_11.pt | 0.8305 | 0.008247895354439079 | +| Epoch_17_batch_5999.pt | 0.8305 | 0.006512333976936419 | +| Epoch_13.pt | 0.8303333333333333 | 0.007039570693980961 | +| Epoch_11_batch_5999.pt | 0.8296666666666667 | 0.0067713995489744805 | +| Epoch_17_batch_2999.pt | 0.8293333333333333 | 0.006904105059069328 | +| Epoch_12_batch_5999.pt | 0.8288333333333334 | 0.006568959930453315 | +| Epoch_10_batch_5999.pt | 0.8286666666666666 | 0.00593587128408582 | +| Epoch_10.pt | 0.8281666666666666 | 0.0059755158876415694 | +| Epoch_15_batch_2999.pt | 0.8280000000000001 | 0.006906786785742247 | +| Epoch_16.pt | 0.8263333333333334 | 0.006977919319158921 | +| Epoch_10_batch_2999.pt | 0.8251666666666667 | 0.00608301622714859 | +| Epoch_11_batch_2999.pt | 0.8245000000000001 | 0.0074703116103383245 | +| Epoch_9_batch_2999.pt | 0.8011666666666667 | 0.007097426067957553 | +| Epoch_7_batch_2999.pt | 0.8003333333333333 | 0.007148340047318588 | +| Epoch_9_batch_5999.pt | 0.8003333333333332 | 0.006135305641012673 | +| Epoch_6_batch_2999.pt | 0.7976666666666667 | 0.00562292485728 | +| Epoch_8_batch_2999.pt | 0.7976666666666666 | 0.006086820411023254 | +| Epoch_5_batch_2999.pt | 0.7935000000000001 | 0.006882837844241534 | +| Epoch_8_batch_5999.pt | 0.7935000000000001 | 0.006552023530610908 | +| Epoch_7_batch_5999.pt | 0.7935 | 0.005711424548251546 | +| Epoch_9.pt | 0.793 | 0.00789123595758431 | +| Epoch_5_batch_5999.pt | 0.7924999999999999 | 0.005032303058647612 | +| Epoch_6_batch_5999.pt | 0.791 | 0.007141428428542845 | +| Epoch_4_batch_5999.pt | 0.7849999999999999 | 0.008916623398995056 | +| Epoch_6.pt | 0.7848333333333334 | 0.008286721492026852 | +| Epoch_7.pt | 0.7838333333333333 | 0.006903434464627547 | +| Epoch_5.pt | 0.7836666666666666 | 0.007757115411425356 | +| Epoch_8.pt | 0.7828333333333333 | 0.007391394729642215 | +| Epoch_4.pt | 0.7788333333333333 | 0.006101254677685179 | +| Epoch_3_batch_5999.pt | 0.775 | 0.0065734219812217986 | +| Epoch_4_batch_2999.pt | 0.7703333333333333 | 0.006425258797689314 | +| Epoch_3.pt | 0.7696666666666666 | 0.005745637099487954 | +| Epoch_3_batch_2999.pt | 0.7628333333333334 | 0.007710222491225363 | +| Epoch_2_batch_5999.pt | 0.7498333333333334 | 0.008002507323132554 | +| Epoch_2.pt | 0.7491666666666668 | 0.006621373920312353 | +| Epoch_2_batch_2999.pt | 0.736 | 0.008520853142239035 | +| Epoch_1_batch_5999.pt | 0.7126666666666667 | 0.008600172263563265 | +| Epoch_1.pt | 0.7 | 0.008172522465970349 | +| Epoch_1_batch_2999.pt | 0.6558333333333334 | 0.007943667405666719 | +| Epoch_0.pt | 0.5785 | 0.008528999188679396 | +| Epoch_0_batch_5999.pt | 0.5745 | 0.009490248406380875 | +| Epoch_0_batch_2999.pt | 0.5053333333333333 | 0.002367475083629173 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..276eb6c3d90c56d1d4248d870244ab7c7ae529b3 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_11.pt | 0.9956666666666665 | 0.001059932446018833 | +| Epoch_10_batch_2999.pt | 0.9950000000000001 | 0.0012422599874998821 | +| Epoch_10_batch_5999.pt | 0.9948333333333335 | 0.0009444444444444486 | +| Epoch_11_batch_5999.pt | 0.9948333333333332 | 0.0013252067157640635 | +| Epoch_15_batch_2999.pt | 0.9946666666666666 | 0.0013333333333333344 | +| Epoch_14.pt | 0.9945 | 0.0011399046960379555 | +| Epoch_12_batch_2999.pt | 0.9944999999999998 | 0.0013158576980363357 | +| Epoch_14_batch_5999.pt | 0.9943333333333333 | 0.0011166528467912097 | +| Epoch_15.pt | 0.9943333333333333 | 0.0012957670877434004 | +| Epoch_12_batch_5999.pt | 0.9941666666666666 | 0.0014540280364780504 | +| Epoch_16_batch_5999.pt | 0.9941666666666666 | 0.001248455836346904 | +| Epoch_16_batch_2999.pt | 0.9941666666666664 | 0.001248455836346904 | +| Epoch_10.pt | 0.9940000000000001 | 0.001222222222222218 | +| Epoch_13_batch_5999.pt | 0.994 | 0.0012472191289246452 | +| Epoch_13.pt | 0.994 | 0.001196703290474334 | +| Epoch_14_batch_2999.pt | 0.9938333333333335 | 0.001243501626977747 | +| Epoch_17_batch_2999.pt | 0.9938333333333335 | 0.0013844373104863516 | +| Epoch_11_batch_2999.pt | 0.9936666666666667 | 0.0014010578014353886 | +| Epoch_13_batch_2999.pt | 0.9936666666666667 | 0.001309980680283513 | +| Epoch_15_batch_5999.pt | 0.9936666666666667 | 0.001333333333333335 | +| Epoch_16.pt | 0.9936666666666667 | 0.0012862041003100261 | +| Epoch_17_batch_5999.pt | 0.9935 | 0.0015406027359846706 | +| Epoch_17.pt | 0.9935 | 0.0013933262448871664 | +| Epoch_12.pt | 0.993 | 0.0012619796324000619 | +| Epoch_5_batch_5999.pt | 0.9928333333333332 | 0.0013844373104863487 | +| Epoch_8_batch_2999.pt | 0.9923333333333334 | 0.0015947444549341471 | +| Epoch_6_batch_5999.pt | 0.992 | 0.0015071844406945056 | +| Epoch_5_batch_2999.pt | 0.9918333333333333 | 0.0017293758240303754 | +| Epoch_7_batch_5999.pt | 0.9918333333333333 | 0.0014153043558729993 | +| Epoch_9_batch_2999.pt | 0.9918333333333333 | 0.0017293758240303756 | +| Epoch_6_batch_2999.pt | 0.9914999999999999 | 0.0016187558093703864 | +| Epoch_8_batch_5999.pt | 0.9914999999999999 | 0.0016187558093703849 | +| Epoch_9_batch_5999.pt | 0.9914999999999999 | 0.0015204369092671182 | +| Epoch_4_batch_2999.pt | 0.9911666666666668 | 0.0010844011831079544 | +| Epoch_9.pt | 0.9911666666666665 | 0.0019412672455173512 | +| Epoch_8.pt | 0.9908333333333333 | 0.0012729376930432875 | +| Epoch_4_batch_5999.pt | 0.9901666666666668 | 0.001899480110808745 | +| Epoch_5.pt | 0.9901666666666668 | 0.001816420302696868 | +| Epoch_7.pt | 0.9894999999999999 | 0.0017924739783224018 | +| Epoch_6.pt | 0.9893333333333334 | 0.002140151142695358 | +| Epoch_3_batch_5999.pt | 0.9893333333333333 | 0.001632993161855456 | +| Epoch_7_batch_2999.pt | 0.9889999999999999 | 0.0015752718754175412 | +| Epoch_4.pt | 0.9886666666666667 | 0.0017356110390903657 | +| Epoch_3_batch_2999.pt | 0.9879999999999999 | 0.0014865653511399624 | +| Epoch_3.pt | 0.9871666666666667 | 0.0022505143445032305 | +| Epoch_2_batch_5999.pt | 0.9851666666666665 | 0.0019790570145063195 | +| Epoch_2.pt | 0.9818333333333333 | 0.0016377114414426232 | +| Epoch_2_batch_2999.pt | 0.9813333333333334 | 0.002045772515502434 | +| Epoch_1_batch_5999.pt | 0.9736666666666665 | 0.0024570382652773243 | +| Epoch_1.pt | 0.9733333333333333 | 0.0027329719724997394 | +| Epoch_1_batch_2999.pt | 0.9536666666666667 | 0.003807075933113735 | +| Epoch_0.pt | 0.898 | 0.004456926915584793 | +| Epoch_0_batch_5999.pt | 0.89 | 0.004296136650929156 | +| Epoch_0_batch_2999.pt | 0.6573333333333332 | 0.007054461857488875 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_rfw_African.txt b/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_rfw_African.txt new file mode 100644 index 0000000000000000000000000000000000000000..923171cbea854fad6038afc61d6920c8c798c5f2 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_rfw_African.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.8924999999999998 | 0.007045925186119637 | +| Epoch_17_batch_5999.pt | 0.8908333333333335 | 0.00677345034894548 | +| Epoch_17_batch_2999.pt | 0.89 | 0.006615544731824081 | +| Epoch_16_batch_5999.pt | 0.8895000000000002 | 0.006450428256430573 | +| Epoch_16_batch_2999.pt | 0.8895 | 0.006383089154985531 | +| Epoch_15.pt | 0.8891666666666665 | 0.006579288490181673 | +| Epoch_14_batch_2999.pt | 0.889 | 0.006550845765770526 | +| Epoch_13.pt | 0.8886666666666667 | 0.006396372428721891 | +| Epoch_15_batch_2999.pt | 0.8885 | 0.006523698488994466 | +| Epoch_16.pt | 0.8868333333333334 | 0.007151145984308311 | +| Epoch_13_batch_2999.pt | 0.8861666666666667 | 0.006662267066782581 | +| Epoch_15_batch_5999.pt | 0.8859999999999999 | 0.005747785402834469 | +| Epoch_14_batch_5999.pt | 0.8858333333333335 | 0.007050304257509516 | +| Epoch_14.pt | 0.8855000000000001 | 0.006354011078848027 | +| Epoch_13_batch_5999.pt | 0.8845000000000001 | 0.00744548085654548 | +| Epoch_12_batch_2999.pt | 0.8838333333333332 | 0.0060809863559893275 | +| Epoch_12_batch_5999.pt | 0.8838333333333332 | 0.0061113636311463946 | +| Epoch_11_batch_5999.pt | 0.8836666666666666 | 0.006929094145630602 | +| Epoch_12.pt | 0.8835000000000001 | 0.005860781981280208 | +| Epoch_11_batch_2999.pt | 0.8831666666666667 | 0.006783467557139597 | +| Epoch_10_batch_5999.pt | 0.882 | 0.0071483400473185904 | +| Epoch_10.pt | 0.8808333333333334 | 0.006854979266251699 | +| Epoch_11.pt | 0.8808333333333334 | 0.006904328576076009 | +| Epoch_10_batch_2999.pt | 0.8781666666666667 | 0.006900751435196778 | +| Epoch_9_batch_2999.pt | 0.8506666666666668 | 0.00579058409813128 | +| Epoch_9_batch_5999.pt | 0.8483333333333334 | 0.006255861449004109 | +| Epoch_8_batch_5999.pt | 0.8461666666666666 | 0.007158048220079806 | +| Epoch_8_batch_2999.pt | 0.8431666666666666 | 0.005607809809916653 | +| Epoch_9.pt | 0.8378333333333334 | 0.007629741998453347 | +| Epoch_8.pt | 0.8346666666666666 | 0.005425135829214976 | +| Epoch_5_batch_5999.pt | 0.834 | 0.0073333333333333315 | +| Epoch_6_batch_5999.pt | 0.8328333333333333 | 0.006024896905014177 | +| Epoch_7_batch_5999.pt | 0.8321666666666667 | 0.0070930760883457155 | +| Epoch_5_batch_2999.pt | 0.8301666666666666 | 0.00660830939699555 | +| Epoch_6_batch_2999.pt | 0.8300000000000001 | 0.006285393610547087 | +| Epoch_4_batch_5999.pt | 0.8278333333333332 | 0.006717629284939481 | +| Epoch_7_batch_2999.pt | 0.8278333333333332 | 0.007793832636161352 | +| Epoch_6.pt | 0.8276666666666668 | 0.006246974576386935 | +| Epoch_5.pt | 0.8225000000000001 | 0.006773450348945479 | +| Epoch_7.pt | 0.8210000000000001 | 0.004166296279833929 | +| Epoch_4.pt | 0.8191666666666666 | 0.007727016896801561 | +| Epoch_4_batch_2999.pt | 0.8103333333333333 | 0.007293663747678362 | +| Epoch_3_batch_5999.pt | 0.8045 | 0.007114799390732697 | +| Epoch_3.pt | 0.7978333333333334 | 0.006817959218214394 | +| Epoch_3_batch_2999.pt | 0.7951666666666667 | 0.007463698153292158 | +| Epoch_2_batch_5999.pt | 0.7775000000000001 | 0.005165471785367927 | +| Epoch_2.pt | 0.7708333333333333 | 0.008488372584647927 | +| Epoch_2_batch_2999.pt | 0.7576666666666666 | 0.0066675925283011025 | +| Epoch_1.pt | 0.7275 | 0.005634166057234542 | +| Epoch_1_batch_5999.pt | 0.7231666666666667 | 0.0058765594200419664 | +| Epoch_1_batch_2999.pt | 0.6628333333333333 | 0.0038733817807896395 | +| Epoch_0.pt | 0.5853333333333333 | 0.0074195271221318 | +| Epoch_0_batch_5999.pt | 0.5730000000000001 | 0.004777777777777773 | +| Epoch_0_batch_2999.pt | 0.4916666666666667 | 0.004142522640512729 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_rfw_Asian.txt b/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_rfw_Asian.txt new file mode 100644 index 0000000000000000000000000000000000000000..e632047ba5aedf8926bf7fc1315efc74972be9e4 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_rfw_Asian.txt @@ -0,0 +1,58 @@ + +------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.8826666666666668 | 0.00352416700603415 | +| Epoch_11.pt | 0.8821666666666668 | 0.003952261424851648 | +| Epoch_15_batch_2999.pt | 0.8808333333333334 | 0.003969404595088056 | +| Epoch_16_batch_5999.pt | 0.8805 | 0.0038413764251250078 | +| Epoch_12.pt | 0.8800000000000001 | 0.003415650255319866 | +| Epoch_11_batch_2999.pt | 0.8796666666666667 | 0.004133572275052946 | +| Epoch_13_batch_2999.pt | 0.8796666666666667 | 0.003965904066127723 | +| Epoch_16_batch_2999.pt | 0.8796666666666667 | 0.004273085449562087 | +| Epoch_17_batch_5999.pt | 0.8786666666666667 | 0.00453246178986025 | +| Epoch_13.pt | 0.8785000000000001 | 0.0049156464729385885 | +| Epoch_17_batch_2999.pt | 0.8779999999999999 | 0.004035337732741081 | +| Epoch_11_batch_5999.pt | 0.8771666666666667 | 0.003469888104361606 | +| Epoch_15.pt | 0.8770000000000001 | 0.004265856404544991 | +| Epoch_12_batch_5999.pt | 0.8766666666666666 | 0.003967460238079363 | +| Epoch_14_batch_5999.pt | 0.8765000000000001 | 0.0036468318738391817 | +| Epoch_14_batch_2999.pt | 0.8763333333333334 | 0.004429140317332164 | +| Epoch_14.pt | 0.8763333333333334 | 0.004422166387140531 | +| Epoch_12_batch_2999.pt | 0.8758333333333332 | 0.004091922184071176 | +| Epoch_15_batch_5999.pt | 0.8758333333333332 | 0.004521894610027697 | +| Epoch_10_batch_2999.pt | 0.8755 | 0.004465574769801914 | +| Epoch_13_batch_5999.pt | 0.875 | 0.0039047296424012394 | +| Epoch_10.pt | 0.8746666666666668 | 0.004192880503136267 | +| Epoch_10_batch_5999.pt | 0.8746666666666666 | 0.004699619107234803 | +| Epoch_16.pt | 0.8724999999999999 | 0.004121982622566562 | +| Epoch_9_batch_2999.pt | 0.8579999999999999 | 0.004498284995554925 | +| Epoch_9_batch_5999.pt | 0.8548333333333332 | 0.004138422792547481 | +| Epoch_8_batch_2999.pt | 0.8508333333333333 | 0.0051114130345606525 | +| Epoch_7_batch_2999.pt | 0.8478333333333332 | 0.005079916884709396 | +| Epoch_7_batch_5999.pt | 0.8408333333333333 | 0.004643128468533763 | +| Epoch_6_batch_2999.pt | 0.8403333333333334 | 0.005408041566061317 | +| Epoch_9.pt | 0.8371666666666666 | 0.004289306254879473 | +| Epoch_4_batch_5999.pt | 0.836 | 0.003353641838397019 | +| Epoch_5_batch_5999.pt | 0.8341666666666667 | 0.004933195693775633 | +| Epoch_6_batch_5999.pt | 0.8341666666666667 | 0.005382011648325933 | +| Epoch_6.pt | 0.834 | 0.0042975732457363825 | +| Epoch_5_batch_2999.pt | 0.8331666666666667 | 0.005462837412242155 | +| Epoch_7.pt | 0.8283333333333334 | 0.005910860479231283 | +| Epoch_5.pt | 0.826 | 0.006451145940886575 | +| Epoch_8_batch_5999.pt | 0.8253333333333334 | 0.004073400617738527 | +| Epoch_8.pt | 0.8218333333333334 | 0.0027380492289670213 | +| Epoch_4.pt | 0.8198333333333334 | 0.00617866700234977 | +| Epoch_4_batch_2999.pt | 0.8150000000000001 | 0.005067446333773947 | +| Epoch_3_batch_5999.pt | 0.8131666666666666 | 0.005558054993308537 | +| Epoch_3_batch_2999.pt | 0.8066666666666666 | 0.005409182864283595 | +| Epoch_3.pt | 0.8065 | 0.0034823186542699567 | +| Epoch_2_batch_5999.pt | 0.7846666666666667 | 0.004229525846816509 | +| Epoch_2.pt | 0.7771666666666667 | 0.005134307266916454 | +| Epoch_2_batch_2999.pt | 0.776 | 0.004869912666846913 | +| Epoch_1_batch_5999.pt | 0.7430000000000001 | 0.005011098792790969 | +| Epoch_1.pt | 0.74 | 0.003617515688022156 | +| Epoch_1_batch_2999.pt | 0.704 | 0.0070369395704751175 | +| Epoch_0_batch_5999.pt | 0.6381666666666665 | 0.006355953755979359 | +| Epoch_0.pt | 0.6379999999999999 | 0.007096338823038123 | +| Epoch_0_batch_2999.pt | 0.5381666666666667 | 0.00688283784424153 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_rfw_Caucasian.txt b/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_rfw_Caucasian.txt new file mode 100644 index 0000000000000000000000000000000000000000..42b7efb431ec1928a1476ef2bcac352df9250674 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_rfw_Caucasian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.9531666666666666 | 0.0029128281619818486 | +| Epoch_13_batch_2999.pt | 0.9528333333333334 | 0.002855036701673242 | +| Epoch_16.pt | 0.952 | 0.002730712383876559 | +| Epoch_14_batch_5999.pt | 0.9518333333333334 | 0.0026925824035672462 | +| Epoch_15.pt | 0.9516666666666665 | 0.00276664435510861 | +| Epoch_15_batch_5999.pt | 0.9515 | 0.0024400212506664213 | +| Epoch_13_batch_5999.pt | 0.9513333333333334 | 0.0024062675364119727 | +| Epoch_14_batch_2999.pt | 0.9513333333333334 | 0.002662033011269101 | +| Epoch_17_batch_2999.pt | 0.9511666666666667 | 0.002304718723632395 | +| Epoch_14.pt | 0.9508333333333333 | 0.002169513798862954 | +| Epoch_16_batch_5999.pt | 0.9506666666666665 | 0.0025361582690029594 | +| Epoch_17_batch_5999.pt | 0.9506666666666665 | 0.0023465235646603242 | +| Epoch_13.pt | 0.9504999999999999 | 0.002485141027371677 | +| Epoch_15_batch_2999.pt | 0.9503333333333334 | 0.0026270200927859793 | +| Epoch_16_batch_2999.pt | 0.9501666666666667 | 0.0025391988626725435 | +| Epoch_11_batch_5999.pt | 0.9494999999999999 | 0.0021379868227659866 | +| Epoch_10_batch_5999.pt | 0.9486666666666667 | 0.0016442942874387479 | +| Epoch_10.pt | 0.9478333333333333 | 0.0021523745142011668 | +| Epoch_11_batch_2999.pt | 0.9478333333333333 | 0.003033251932159711 | +| Epoch_12.pt | 0.9476666666666667 | 0.0029418227321941644 | +| Epoch_12_batch_2999.pt | 0.9475 | 0.002253255532297028 | +| Epoch_11.pt | 0.9468333333333334 | 0.0022559933893607715 | +| Epoch_12_batch_5999.pt | 0.9441666666666666 | 0.003260784575739814 | +| Epoch_10_batch_2999.pt | 0.9418333333333333 | 0.003224615969095876 | +| Epoch_9_batch_5999.pt | 0.9283333333333333 | 0.0030832082056692404 | +| Epoch_7_batch_5999.pt | 0.9215 | 0.003672133971035725 | +| Epoch_9_batch_2999.pt | 0.9201666666666668 | 0.0019317042945237533 | +| Epoch_7_batch_2999.pt | 0.9171666666666667 | 0.004216736202032427 | +| Epoch_8_batch_5999.pt | 0.9168333333333333 | 0.0048460878965650815 | +| Epoch_8_batch_2999.pt | 0.916 | 0.002081665999466134 | +| Epoch_6_batch_5999.pt | 0.9146666666666666 | 0.0028738927014172414 | +| Epoch_5_batch_5999.pt | 0.9126666666666667 | 0.0027352296944647084 | +| Epoch_5_batch_2999.pt | 0.9111666666666665 | 0.004395915612710745 | +| Epoch_9.pt | 0.9079999999999998 | 0.0019531550923607664 | +| Epoch_6_batch_2999.pt | 0.9078333333333333 | 0.004513696577099912 | +| Epoch_6.pt | 0.9075000000000001 | 0.004793578523580103 | +| Epoch_7.pt | 0.9071666666666667 | 0.003239894069294079 | +| Epoch_8.pt | 0.9068333333333334 | 0.0019790570145063243 | +| Epoch_5.pt | 0.906 | 0.0035935470286213894 | +| Epoch_4_batch_5999.pt | 0.9046666666666667 | 0.0031797973380564837 | +| Epoch_4_batch_2999.pt | 0.9013333333333332 | 0.0033957126199858035 | +| Epoch_3_batch_5999.pt | 0.8950000000000001 | 0.0034871899614389297 | +| Epoch_3_batch_2999.pt | 0.8886666666666665 | 0.003996912388578875 | +| Epoch_4.pt | 0.8879999999999999 | 0.005239922721134046 | +| Epoch_3.pt | 0.8864999999999998 | 0.004370566536714871 | +| Epoch_2_batch_5999.pt | 0.8833333333333334 | 0.003912625969257561 | +| Epoch_2.pt | 0.8723333333333333 | 0.004876246279442601 | +| Epoch_2_batch_2999.pt | 0.8676666666666668 | 0.003953432638812712 | +| Epoch_1_batch_5999.pt | 0.845 | 0.004648111258522635 | +| Epoch_1.pt | 0.828 | 0.0065111490328816 | +| Epoch_1_batch_2999.pt | 0.7963333333333333 | 0.006439653391485378 | +| Epoch_0.pt | 0.7131666666666667 | 0.005015100653815556 | +| Epoch_0_batch_5999.pt | 0.6975 | 0.005347492778148068 | +| Epoch_0_batch_2999.pt | 0.5478333333333334 | 0.007706218428589717 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_rfw_Indian.txt b/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_rfw_Indian.txt new file mode 100644 index 0000000000000000000000000000000000000000..6f68ca80c079ae2141a6c052416343a74107fe22 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/CircleLoss/accu_files/accu_rfw_Indian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17_batch_2999.pt | 0.9148333333333334 | 0.002965334698907229 | +| Epoch_16_batch_5999.pt | 0.9136666666666666 | 0.0027977062915587104 | +| Epoch_14_batch_5999.pt | 0.9135 | 0.0038765677832043348 | +| Epoch_17_batch_5999.pt | 0.9131666666666666 | 0.0027938424357067003 | +| Epoch_14.pt | 0.9129999999999999 | 0.003359159212851326 | +| Epoch_13_batch_2999.pt | 0.9128333333333332 | 0.003211188003692988 | +| Epoch_15_batch_2999.pt | 0.9126666666666667 | 0.003937787810370969 | +| Epoch_15_batch_5999.pt | 0.9126666666666667 | 0.003095197394929805 | +| Epoch_14_batch_2999.pt | 0.9118333333333334 | 0.0038204291659898228 | +| Epoch_13_batch_5999.pt | 0.9114999999999999 | 0.003195772670726588 | +| Epoch_17.pt | 0.9113333333333336 | 0.003091206165165232 | +| Epoch_15.pt | 0.9109999999999999 | 0.0035763282087624697 | +| Epoch_16_batch_2999.pt | 0.9101666666666668 | 0.0029339435392246446 | +| Epoch_13.pt | 0.9098333333333333 | 0.0032815420945827433 | +| Epoch_11_batch_5999.pt | 0.909 | 0.0027910792637956617 | +| Epoch_11_batch_2999.pt | 0.9088333333333333 | 0.0026764865489879836 | +| Epoch_10_batch_5999.pt | 0.9083333333333334 | 0.003784308081316978 | +| Epoch_16.pt | 0.9083333333333334 | 0.0031229931827900428 | +| Epoch_12_batch_2999.pt | 0.9075 | 0.0025123153454655587 | +| Epoch_11.pt | 0.9068333333333334 | 0.002681095224891926 | +| Epoch_12.pt | 0.9065 | 0.0032909340488044233 | +| Epoch_10_batch_2999.pt | 0.9051666666666666 | 0.003419714088113867 | +| Epoch_12_batch_5999.pt | 0.9038333333333334 | 0.0032015621187164276 | +| Epoch_10.pt | 0.9026666666666667 | 0.002802115602870774 | +| Epoch_9_batch_5999.pt | 0.8816666666666666 | 0.0026057865332352347 | +| Epoch_7_batch_2999.pt | 0.8798333333333334 | 0.005130699179846161 | +| Epoch_8_batch_5999.pt | 0.8795 | 0.00428930625487947 | +| Epoch_7_batch_5999.pt | 0.8786666666666667 | 0.0034228715112776366 | +| Epoch_8_batch_2999.pt | 0.8786666666666665 | 0.004660048216780175 | +| Epoch_9_batch_2999.pt | 0.8785000000000001 | 0.003812341880955059 | +| Epoch_6_batch_5999.pt | 0.8744999999999999 | 0.003643444984904356 | +| Epoch_9.pt | 0.8729999999999999 | 0.003887301263230198 | +| Epoch_6_batch_2999.pt | 0.8705000000000002 | 0.004588296975545775 | +| Epoch_5_batch_2999.pt | 0.8698333333333335 | 0.0038765677832043365 | +| Epoch_8.pt | 0.8693333333333332 | 0.004582575694955842 | +| Epoch_6.pt | 0.8661666666666668 | 0.004430882084797874 | +| Epoch_5_batch_5999.pt | 0.8648333333333333 | 0.005190506528720619 | +| Epoch_5.pt | 0.8634999999999999 | 0.0035956935833965347 | +| Epoch_7.pt | 0.8628333333333333 | 0.004179978734661483 | +| Epoch_4_batch_5999.pt | 0.8615 | 0.0032246159690958814 | +| Epoch_4.pt | 0.8566666666666667 | 0.004634811914358712 | +| Epoch_3_batch_5999.pt | 0.8528333333333332 | 0.004260426571119519 | +| Epoch_4_batch_2999.pt | 0.8520000000000001 | 0.005425135829214979 | +| Epoch_3_batch_2999.pt | 0.844 | 0.006531972647421811 | +| Epoch_3.pt | 0.8378333333333332 | 0.005340562230540115 | +| Epoch_2_batch_5999.pt | 0.8358333333333332 | 0.004933195693775631 | +| Epoch_2.pt | 0.8240000000000001 | 0.004793256580027327 | +| Epoch_2_batch_2999.pt | 0.8196666666666668 | 0.0061854069598741256 | +| Epoch_1_batch_5999.pt | 0.7958333333333333 | 0.005948596680658032 | +| Epoch_1.pt | 0.7865 | 0.004577521567803227 | +| Epoch_1_batch_2999.pt | 0.7541666666666667 | 0.005330149512646014 | +| Epoch_0.pt | 0.6646666666666667 | 0.008351092188494912 | +| Epoch_0_batch_5999.pt | 0.6638333333333334 | 0.005505608812389579 | +| Epoch_0_batch_2999.pt | 0.5306666666666666 | 0.0015555555555555546 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/CircleLoss/log.log b/bob/bio/facexzoo/models/heads/CircleLoss/log.log new file mode 100644 index 0000000000000000000000000000000000000000..659d4ea68972a43ea48eff840b92c763088e9d7b --- /dev/null +++ b/bob/bio/facexzoo/models/heads/CircleLoss/log.log @@ -0,0 +1,655 @@ +INFO 2020-11-26 19:42:48 train.py: 172] Start optimization. +INFO 2020-11-26 19:42:48 train.py: 173] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='Mobilefacenets', batch_size=512, data_root='/export2/wangjun492/face_database/facex-zoo/private_file/train_data/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='CircleLoss', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='arc-mobile', train_file='/export2/wangjun492/face_database/facex-zoo/private_file/train_data/deepglint/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7f864f978978>) +backbone param: +{'feat_dim': 512, 'out_h': 7, 'out_w': 7} +head param: +{'feat_dim': 512, 'num_class': 72778, 'margin': 0.25, 'gamma': 256} +INFO 2020-11-26 19:43:10 train.py: 74] Epoch 0, iter 0/6416, lr 0.100000, loss 236.445282 +INFO 2020-11-26 19:44:36 train.py: 74] Epoch 0, iter 200/6416, lr 0.100000, loss 229.148098 +INFO 2020-11-26 19:46:02 train.py: 74] Epoch 0, iter 400/6416, lr 0.100000, loss 196.273600 +INFO 2020-11-26 19:47:29 train.py: 74] Epoch 0, iter 600/6416, lr 0.100000, loss 179.734247 +INFO 2020-11-26 19:48:56 train.py: 74] Epoch 0, iter 800/6416, lr 0.100000, loss 172.475471 +INFO 2020-11-26 19:50:23 train.py: 74] Epoch 0, iter 1000/6416, lr 0.100000, loss 167.090250 +INFO 2020-11-26 19:51:50 train.py: 74] Epoch 0, iter 1200/6416, lr 0.100000, loss 164.476667 +INFO 2020-11-26 19:53:17 train.py: 74] Epoch 0, iter 1400/6416, lr 0.100000, loss 163.304515 +INFO 2020-11-26 19:54:44 train.py: 74] Epoch 0, iter 1600/6416, lr 0.100000, loss 160.637086 +INFO 2020-11-26 19:56:11 train.py: 74] Epoch 0, iter 1800/6416, lr 0.100000, loss 158.921125 +INFO 2020-11-26 19:57:38 train.py: 74] Epoch 0, iter 2000/6416, lr 0.100000, loss 157.519713 +INFO 2020-11-26 19:59:05 train.py: 74] Epoch 0, iter 2200/6416, lr 0.100000, loss 156.050157 +INFO 2020-11-26 20:00:32 train.py: 74] Epoch 0, iter 2400/6416, lr 0.100000, loss 154.113322 +INFO 2020-11-26 20:01:59 train.py: 74] Epoch 0, iter 2600/6416, lr 0.100000, loss 152.476458 +INFO 2020-11-26 20:03:26 train.py: 74] Epoch 0, iter 2800/6416, lr 0.100000, loss 149.707236 +INFO 2020-11-26 20:04:53 train.py: 87] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2020-11-26 20:04:53 train.py: 74] Epoch 0, iter 3000/6416, lr 0.100000, loss 149.043144 +INFO 2020-11-26 20:06:20 train.py: 74] Epoch 0, iter 3200/6416, lr 0.100000, loss 147.666695 +INFO 2020-11-26 20:07:47 train.py: 74] Epoch 0, iter 3400/6416, lr 0.100000, loss 146.025759 +INFO 2020-11-26 20:09:14 train.py: 74] Epoch 0, iter 3600/6416, lr 0.100000, loss 145.190045 +INFO 2020-11-26 20:10:41 train.py: 74] Epoch 0, iter 3800/6416, lr 0.100000, loss 144.774764 +INFO 2020-11-26 20:12:09 train.py: 74] Epoch 0, iter 4000/6416, lr 0.100000, loss 142.716846 +INFO 2020-11-26 20:13:36 train.py: 74] Epoch 0, iter 4200/6416, lr 0.100000, loss 141.269556 +INFO 2020-11-26 20:15:03 train.py: 74] Epoch 0, iter 4400/6416, lr 0.100000, loss 139.462846 +INFO 2020-11-26 20:16:30 train.py: 74] Epoch 0, iter 4600/6416, lr 0.100000, loss 137.888162 +INFO 2020-11-26 20:17:57 train.py: 74] Epoch 0, iter 4800/6416, lr 0.100000, loss 136.114996 +INFO 2020-11-26 20:19:24 train.py: 74] Epoch 0, iter 5000/6416, lr 0.100000, loss 135.194248 +INFO 2020-11-26 20:20:51 train.py: 74] Epoch 0, iter 5200/6416, lr 0.100000, loss 133.275941 +INFO 2020-11-26 20:22:18 train.py: 74] Epoch 0, iter 5400/6416, lr 0.100000, loss 132.376372 +INFO 2020-11-26 20:23:45 train.py: 74] Epoch 0, iter 5600/6416, lr 0.100000, loss 130.856675 +INFO 2020-11-26 20:25:12 train.py: 74] Epoch 0, iter 5800/6416, lr 0.100000, loss 130.048374 +INFO 2020-11-26 20:26:39 train.py: 87] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2020-11-26 20:26:39 train.py: 74] Epoch 0, iter 6000/6416, lr 0.100000, loss 128.728865 +INFO 2020-11-26 20:28:05 train.py: 74] Epoch 0, iter 6200/6416, lr 0.100000, loss 127.498837 +INFO 2020-11-26 20:29:32 train.py: 74] Epoch 0, iter 6400/6416, lr 0.100000, loss 126.883197 +INFO 2020-11-26 20:29:39 train.py: 92] Save checkpoint Epoch_0.pt to disk... +INFO 2020-11-26 20:29:40 train.py: 74] Epoch 1, iter 0/6416, lr 0.100000, loss 128.330975 +INFO 2020-11-26 20:31:08 train.py: 74] Epoch 1, iter 200/6416, lr 0.100000, loss 125.994783 +INFO 2020-11-26 20:32:35 train.py: 74] Epoch 1, iter 400/6416, lr 0.100000, loss 124.406262 +INFO 2020-11-26 20:34:02 train.py: 74] Epoch 1, iter 600/6416, lr 0.100000, loss 123.442757 +INFO 2020-11-26 20:35:29 train.py: 74] Epoch 1, iter 800/6416, lr 0.100000, loss 121.986084 +INFO 2020-11-26 20:36:56 train.py: 74] Epoch 1, iter 1000/6416, lr 0.100000, loss 120.476022 +INFO 2020-11-26 20:38:23 train.py: 74] Epoch 1, iter 1200/6416, lr 0.100000, loss 119.497889 +INFO 2020-11-26 20:39:50 train.py: 74] Epoch 1, iter 1400/6416, lr 0.100000, loss 118.126316 +INFO 2020-11-26 20:41:17 train.py: 74] Epoch 1, iter 1600/6416, lr 0.100000, loss 116.712273 +INFO 2020-11-26 20:42:44 train.py: 74] Epoch 1, iter 1800/6416, lr 0.100000, loss 114.764139 +INFO 2020-11-26 20:44:11 train.py: 74] Epoch 1, iter 2000/6416, lr 0.100000, loss 113.326806 +INFO 2020-11-26 20:45:38 train.py: 74] Epoch 1, iter 2200/6416, lr 0.100000, loss 111.476230 +INFO 2020-11-26 20:47:05 train.py: 74] Epoch 1, iter 2400/6416, lr 0.100000, loss 109.822077 +INFO 2020-11-26 20:48:31 train.py: 74] Epoch 1, iter 2600/6416, lr 0.100000, loss 107.891609 +INFO 2020-11-26 20:49:58 train.py: 74] Epoch 1, iter 2800/6416, lr 0.100000, loss 105.960059 +INFO 2020-11-26 20:51:25 train.py: 87] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2020-11-26 20:51:25 train.py: 74] Epoch 1, iter 3000/6416, lr 0.100000, loss 104.192442 +INFO 2020-11-26 20:52:52 train.py: 74] Epoch 1, iter 3200/6416, lr 0.100000, loss 102.446022 +INFO 2020-11-26 20:54:19 train.py: 74] Epoch 1, iter 3400/6416, lr 0.100000, loss 100.549216 +INFO 2020-11-26 20:55:46 train.py: 74] Epoch 1, iter 3600/6416, lr 0.100000, loss 98.592420 +INFO 2020-11-26 20:57:13 train.py: 74] Epoch 1, iter 3800/6416, lr 0.100000, loss 97.053783 +INFO 2020-11-26 20:58:40 train.py: 74] Epoch 1, iter 4000/6416, lr 0.100000, loss 95.074935 +INFO 2020-11-26 21:00:07 train.py: 74] Epoch 1, iter 4200/6416, lr 0.100000, loss 93.329992 +INFO 2020-11-26 21:01:34 train.py: 74] Epoch 1, iter 4400/6416, lr 0.100000, loss 91.466220 +INFO 2020-11-26 21:03:01 train.py: 74] Epoch 1, iter 4600/6416, lr 0.100000, loss 89.703424 +INFO 2020-11-26 21:04:27 train.py: 74] Epoch 1, iter 4800/6416, lr 0.100000, loss 88.214759 +INFO 2020-11-26 21:05:54 train.py: 74] Epoch 1, iter 5000/6416, lr 0.100000, loss 86.352812 +INFO 2020-11-26 21:07:21 train.py: 74] Epoch 1, iter 5200/6416, lr 0.100000, loss 84.603364 +INFO 2020-11-26 21:08:48 train.py: 74] Epoch 1, iter 5400/6416, lr 0.100000, loss 83.059662 +INFO 2020-11-26 21:10:15 train.py: 74] Epoch 1, iter 5600/6416, lr 0.100000, loss 81.656491 +INFO 2020-11-26 21:11:42 train.py: 74] Epoch 1, iter 5800/6416, lr 0.100000, loss 80.418262 +INFO 2020-11-26 21:13:09 train.py: 87] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2020-11-26 21:13:09 train.py: 74] Epoch 1, iter 6000/6416, lr 0.100000, loss 78.667709 +INFO 2020-11-26 21:14:36 train.py: 74] Epoch 1, iter 6200/6416, lr 0.100000, loss 77.267353 +INFO 2020-11-26 21:16:03 train.py: 74] Epoch 1, iter 6400/6416, lr 0.100000, loss 76.273060 +INFO 2020-11-26 21:16:10 train.py: 92] Save checkpoint Epoch_1.pt to disk... +INFO 2020-11-26 21:16:11 train.py: 74] Epoch 2, iter 0/6416, lr 0.100000, loss 75.919550 +INFO 2020-11-26 21:17:38 train.py: 74] Epoch 2, iter 200/6416, lr 0.100000, loss 72.338689 +INFO 2020-11-26 21:19:05 train.py: 74] Epoch 2, iter 400/6416, lr 0.100000, loss 70.964829 +INFO 2020-11-26 21:20:31 train.py: 74] Epoch 2, iter 600/6416, lr 0.100000, loss 70.029201 +INFO 2020-11-26 21:21:58 train.py: 74] Epoch 2, iter 800/6416, lr 0.100000, loss 69.370619 +INFO 2020-11-26 21:23:24 train.py: 74] Epoch 2, iter 1000/6416, lr 0.100000, loss 68.796505 +INFO 2020-11-26 21:24:50 train.py: 74] Epoch 2, iter 1200/6416, lr 0.100000, loss 68.126790 +INFO 2020-11-26 21:26:16 train.py: 74] Epoch 2, iter 1400/6416, lr 0.100000, loss 67.509849 +INFO 2020-11-26 21:27:43 train.py: 74] Epoch 2, iter 1600/6416, lr 0.100000, loss 66.928115 +INFO 2020-11-26 21:29:09 train.py: 74] Epoch 2, iter 1800/6416, lr 0.100000, loss 65.845642 +INFO 2020-11-26 21:30:35 train.py: 74] Epoch 2, iter 2000/6416, lr 0.100000, loss 65.456259 +INFO 2020-11-26 21:32:01 train.py: 74] Epoch 2, iter 2200/6416, lr 0.100000, loss 64.792432 +INFO 2020-11-26 21:33:28 train.py: 74] Epoch 2, iter 2400/6416, lr 0.100000, loss 64.101271 +INFO 2020-11-26 21:34:54 train.py: 74] Epoch 2, iter 2600/6416, lr 0.100000, loss 63.566493 +INFO 2020-11-26 21:36:20 train.py: 74] Epoch 2, iter 2800/6416, lr 0.100000, loss 63.075800 +INFO 2020-11-26 21:37:46 train.py: 87] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2020-11-26 21:37:47 train.py: 74] Epoch 2, iter 3000/6416, lr 0.100000, loss 62.403521 +INFO 2020-11-26 21:39:13 train.py: 74] Epoch 2, iter 3200/6416, lr 0.100000, loss 61.664559 +INFO 2020-11-26 21:40:40 train.py: 74] Epoch 2, iter 3400/6416, lr 0.100000, loss 61.256797 +INFO 2020-11-26 21:42:07 train.py: 74] Epoch 2, iter 3600/6416, lr 0.100000, loss 60.707795 +INFO 2020-11-26 21:43:34 train.py: 74] Epoch 2, iter 3800/6416, lr 0.100000, loss 60.303444 +INFO 2020-11-26 21:45:01 train.py: 74] Epoch 2, iter 4000/6416, lr 0.100000, loss 59.796985 +INFO 2020-11-26 21:46:28 train.py: 74] Epoch 2, iter 4200/6416, lr 0.100000, loss 59.280504 +INFO 2020-11-26 21:47:55 train.py: 74] Epoch 2, iter 4400/6416, lr 0.100000, loss 58.815001 +INFO 2020-11-26 21:49:22 train.py: 74] Epoch 2, iter 4600/6416, lr 0.100000, loss 58.356305 +INFO 2020-11-26 21:50:48 train.py: 74] Epoch 2, iter 4800/6416, lr 0.100000, loss 58.109190 +INFO 2020-11-26 21:52:15 train.py: 74] Epoch 2, iter 5000/6416, lr 0.100000, loss 57.581880 +INFO 2020-11-26 21:53:42 train.py: 74] Epoch 2, iter 5200/6416, lr 0.100000, loss 57.295455 +INFO 2020-11-26 21:55:09 train.py: 74] Epoch 2, iter 5400/6416, lr 0.100000, loss 56.750773 +INFO 2020-11-26 21:56:36 train.py: 74] Epoch 2, iter 5600/6416, lr 0.100000, loss 56.557938 +INFO 2020-11-26 21:58:03 train.py: 74] Epoch 2, iter 5800/6416, lr 0.100000, loss 56.018997 +INFO 2020-11-26 21:59:30 train.py: 87] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2020-11-26 21:59:30 train.py: 74] Epoch 2, iter 6000/6416, lr 0.100000, loss 55.888020 +INFO 2020-11-26 22:00:57 train.py: 74] Epoch 2, iter 6200/6416, lr 0.100000, loss 55.547624 +INFO 2020-11-26 22:02:24 train.py: 74] Epoch 2, iter 6400/6416, lr 0.100000, loss 55.245033 +INFO 2020-11-26 22:02:31 train.py: 92] Save checkpoint Epoch_2.pt to disk... +INFO 2020-11-26 22:02:33 train.py: 74] Epoch 3, iter 0/6416, lr 0.100000, loss 54.789284 +INFO 2020-11-26 22:04:00 train.py: 74] Epoch 3, iter 200/6416, lr 0.100000, loss 51.757208 +INFO 2020-11-26 22:05:27 train.py: 74] Epoch 3, iter 400/6416, lr 0.100000, loss 51.327180 +INFO 2020-11-26 22:06:54 train.py: 74] Epoch 3, iter 600/6416, lr 0.100000, loss 51.590362 +INFO 2020-11-26 22:08:21 train.py: 74] Epoch 3, iter 800/6416, lr 0.100000, loss 51.538856 +INFO 2020-11-26 22:09:48 train.py: 74] Epoch 3, iter 1000/6416, lr 0.100000, loss 51.737381 +INFO 2020-11-26 22:11:15 train.py: 74] Epoch 3, iter 1200/6416, lr 0.100000, loss 51.802610 +INFO 2020-11-26 22:12:42 train.py: 74] Epoch 3, iter 1400/6416, lr 0.100000, loss 51.873690 +INFO 2020-11-26 22:14:09 train.py: 74] Epoch 3, iter 1600/6416, lr 0.100000, loss 51.511442 +INFO 2020-11-26 22:15:35 train.py: 74] Epoch 3, iter 1800/6416, lr 0.100000, loss 51.582274 +INFO 2020-11-26 22:17:02 train.py: 74] Epoch 3, iter 2000/6416, lr 0.100000, loss 51.628203 +INFO 2020-11-26 22:18:29 train.py: 74] Epoch 3, iter 2200/6416, lr 0.100000, loss 51.495475 +INFO 2020-11-26 22:19:56 train.py: 74] Epoch 3, iter 2400/6416, lr 0.100000, loss 51.277792 +INFO 2020-11-26 22:21:23 train.py: 74] Epoch 3, iter 2600/6416, lr 0.100000, loss 51.341286 +INFO 2020-11-26 22:22:50 train.py: 74] Epoch 3, iter 2800/6416, lr 0.100000, loss 51.088497 +INFO 2020-11-26 22:24:17 train.py: 87] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2020-11-26 22:24:17 train.py: 74] Epoch 3, iter 3000/6416, lr 0.100000, loss 51.035089 +INFO 2020-11-26 22:25:43 train.py: 74] Epoch 3, iter 3200/6416, lr 0.100000, loss 50.865600 +INFO 2020-11-26 22:27:09 train.py: 74] Epoch 3, iter 3400/6416, lr 0.100000, loss 50.456885 +INFO 2020-11-26 22:28:36 train.py: 74] Epoch 3, iter 3600/6416, lr 0.100000, loss 50.663453 +INFO 2020-11-26 22:30:02 train.py: 74] Epoch 3, iter 3800/6416, lr 0.100000, loss 50.435186 +INFO 2020-11-26 22:31:28 train.py: 74] Epoch 3, iter 4000/6416, lr 0.100000, loss 50.138252 +INFO 2020-11-26 22:32:54 train.py: 74] Epoch 3, iter 4200/6416, lr 0.100000, loss 50.250664 +INFO 2020-11-26 22:34:20 train.py: 74] Epoch 3, iter 4400/6416, lr 0.100000, loss 50.062684 +INFO 2020-11-26 22:35:46 train.py: 74] Epoch 3, iter 4600/6416, lr 0.100000, loss 49.864215 +INFO 2020-11-26 22:37:13 train.py: 74] Epoch 3, iter 4800/6416, lr 0.100000, loss 49.808040 +INFO 2020-11-26 22:38:39 train.py: 74] Epoch 3, iter 5000/6416, lr 0.100000, loss 49.554442 +INFO 2020-11-26 22:40:05 train.py: 74] Epoch 3, iter 5200/6416, lr 0.100000, loss 49.521071 +INFO 2020-11-26 22:41:31 train.py: 74] Epoch 3, iter 5400/6416, lr 0.100000, loss 49.389865 +INFO 2020-11-26 22:42:57 train.py: 74] Epoch 3, iter 5600/6416, lr 0.100000, loss 49.155654 +INFO 2020-11-26 22:44:23 train.py: 74] Epoch 3, iter 5800/6416, lr 0.100000, loss 48.845312 +INFO 2020-11-26 22:45:49 train.py: 87] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2020-11-26 22:45:50 train.py: 74] Epoch 3, iter 6000/6416, lr 0.100000, loss 48.927880 +INFO 2020-11-26 22:47:16 train.py: 74] Epoch 3, iter 6200/6416, lr 0.100000, loss 48.746228 +INFO 2020-11-26 22:48:43 train.py: 74] Epoch 3, iter 6400/6416, lr 0.100000, loss 48.643211 +INFO 2020-11-26 22:48:50 train.py: 92] Save checkpoint Epoch_3.pt to disk... +INFO 2020-11-26 22:48:52 train.py: 74] Epoch 4, iter 0/6416, lr 0.100000, loss 47.791201 +INFO 2020-11-26 22:50:19 train.py: 74] Epoch 4, iter 200/6416, lr 0.100000, loss 45.423980 +INFO 2020-11-26 22:51:46 train.py: 74] Epoch 4, iter 400/6416, lr 0.100000, loss 45.155928 +INFO 2020-11-26 22:53:14 train.py: 74] Epoch 4, iter 600/6416, lr 0.100000, loss 45.462338 +INFO 2020-11-26 22:54:41 train.py: 74] Epoch 4, iter 800/6416, lr 0.100000, loss 45.571803 +INFO 2020-11-26 22:56:08 train.py: 74] Epoch 4, iter 1000/6416, lr 0.100000, loss 45.996947 +INFO 2020-11-26 22:57:35 train.py: 74] Epoch 4, iter 1200/6416, lr 0.100000, loss 46.160358 +INFO 2020-11-26 22:59:02 train.py: 74] Epoch 4, iter 1400/6416, lr 0.100000, loss 46.215687 +INFO 2020-11-26 23:00:28 train.py: 74] Epoch 4, iter 1600/6416, lr 0.100000, loss 46.362514 +INFO 2020-11-26 23:01:55 train.py: 74] Epoch 4, iter 1800/6416, lr 0.100000, loss 46.569096 +INFO 2020-11-26 23:03:22 train.py: 74] Epoch 4, iter 2000/6416, lr 0.100000, loss 46.515524 +INFO 2020-11-26 23:04:49 train.py: 74] Epoch 4, iter 2200/6416, lr 0.100000, loss 46.557223 +INFO 2020-11-26 23:06:16 train.py: 74] Epoch 4, iter 2400/6416, lr 0.100000, loss 46.546508 +INFO 2020-11-26 23:07:43 train.py: 74] Epoch 4, iter 2600/6416, lr 0.100000, loss 46.586694 +INFO 2020-11-26 23:09:09 train.py: 74] Epoch 4, iter 2800/6416, lr 0.100000, loss 46.464597 +INFO 2020-11-26 23:10:36 train.py: 87] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2020-11-26 23:10:36 train.py: 74] Epoch 4, iter 3000/6416, lr 0.100000, loss 46.376029 +INFO 2020-11-26 23:12:03 train.py: 74] Epoch 4, iter 3200/6416, lr 0.100000, loss 46.498382 +INFO 2020-11-26 23:13:30 train.py: 74] Epoch 4, iter 3400/6416, lr 0.100000, loss 46.463790 +INFO 2020-11-26 23:14:57 train.py: 74] Epoch 4, iter 3600/6416, lr 0.100000, loss 46.335010 +INFO 2020-11-26 23:16:23 train.py: 74] Epoch 4, iter 3800/6416, lr 0.100000, loss 46.402931 +INFO 2020-11-26 23:17:50 train.py: 74] Epoch 4, iter 4000/6416, lr 0.100000, loss 46.507156 +INFO 2020-11-26 23:19:17 train.py: 74] Epoch 4, iter 4200/6416, lr 0.100000, loss 46.240632 +INFO 2020-11-26 23:20:44 train.py: 74] Epoch 4, iter 4400/6416, lr 0.100000, loss 46.134378 +INFO 2020-11-26 23:22:11 train.py: 74] Epoch 4, iter 4600/6416, lr 0.100000, loss 46.091490 +INFO 2020-11-26 23:23:37 train.py: 74] Epoch 4, iter 4800/6416, lr 0.100000, loss 46.219833 +INFO 2020-11-26 23:25:04 train.py: 74] Epoch 4, iter 5000/6416, lr 0.100000, loss 46.022882 +INFO 2020-11-26 23:26:31 train.py: 74] Epoch 4, iter 5200/6416, lr 0.100000, loss 46.021027 +INFO 2020-11-26 23:27:58 train.py: 74] Epoch 4, iter 5400/6416, lr 0.100000, loss 45.855599 +INFO 2020-11-26 23:29:24 train.py: 74] Epoch 4, iter 5600/6416, lr 0.100000, loss 45.816725 +INFO 2020-11-26 23:30:51 train.py: 74] Epoch 4, iter 5800/6416, lr 0.100000, loss 45.683156 +INFO 2020-11-26 23:32:18 train.py: 87] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2020-11-26 23:32:18 train.py: 74] Epoch 4, iter 6000/6416, lr 0.100000, loss 45.513741 +INFO 2020-11-26 23:33:44 train.py: 74] Epoch 4, iter 6200/6416, lr 0.100000, loss 45.623313 +INFO 2020-11-26 23:35:10 train.py: 74] Epoch 4, iter 6400/6416, lr 0.100000, loss 45.616495 +INFO 2020-11-26 23:35:17 train.py: 92] Save checkpoint Epoch_4.pt to disk... +INFO 2020-11-26 23:35:19 train.py: 74] Epoch 5, iter 0/6416, lr 0.100000, loss 44.961016 +INFO 2020-11-26 23:36:46 train.py: 74] Epoch 5, iter 200/6416, lr 0.100000, loss 42.600657 +INFO 2020-11-26 23:38:13 train.py: 74] Epoch 5, iter 400/6416, lr 0.100000, loss 42.189556 +INFO 2020-11-26 23:39:41 train.py: 74] Epoch 5, iter 600/6416, lr 0.100000, loss 42.435889 +INFO 2020-11-26 23:41:08 train.py: 74] Epoch 5, iter 800/6416, lr 0.100000, loss 42.928466 +INFO 2020-11-26 23:42:34 train.py: 74] Epoch 5, iter 1000/6416, lr 0.100000, loss 43.318748 +INFO 2020-11-26 23:44:01 train.py: 74] Epoch 5, iter 1200/6416, lr 0.100000, loss 43.399937 +INFO 2020-11-26 23:45:28 train.py: 74] Epoch 5, iter 1400/6416, lr 0.100000, loss 43.631693 +INFO 2020-11-26 23:46:55 train.py: 74] Epoch 5, iter 1600/6416, lr 0.100000, loss 43.738082 +INFO 2020-11-26 23:48:22 train.py: 74] Epoch 5, iter 1800/6416, lr 0.100000, loss 43.842576 +INFO 2020-11-26 23:49:48 train.py: 74] Epoch 5, iter 2000/6416, lr 0.100000, loss 43.930227 +INFO 2020-11-26 23:51:15 train.py: 74] Epoch 5, iter 2200/6416, lr 0.100000, loss 43.996763 +INFO 2020-11-26 23:52:42 train.py: 74] Epoch 5, iter 2400/6416, lr 0.100000, loss 44.191345 +INFO 2020-11-26 23:54:09 train.py: 74] Epoch 5, iter 2600/6416, lr 0.100000, loss 44.123106 +INFO 2020-11-26 23:55:36 train.py: 74] Epoch 5, iter 2800/6416, lr 0.100000, loss 44.040569 +INFO 2020-11-26 23:57:02 train.py: 87] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2020-11-26 23:57:03 train.py: 74] Epoch 5, iter 3000/6416, lr 0.100000, loss 44.135542 +INFO 2020-11-26 23:58:29 train.py: 74] Epoch 5, iter 3200/6416, lr 0.100000, loss 44.269194 +INFO 2020-11-26 23:59:56 train.py: 74] Epoch 5, iter 3400/6416, lr 0.100000, loss 44.211707 +INFO 2020-11-27 00:01:23 train.py: 74] Epoch 5, iter 3600/6416, lr 0.100000, loss 44.172886 +INFO 2020-11-27 00:02:50 train.py: 74] Epoch 5, iter 3800/6416, lr 0.100000, loss 44.072519 +INFO 2020-11-27 00:04:17 train.py: 74] Epoch 5, iter 4000/6416, lr 0.100000, loss 44.014954 +INFO 2020-11-27 00:05:43 train.py: 74] Epoch 5, iter 4200/6416, lr 0.100000, loss 44.002913 +INFO 2020-11-27 00:07:10 train.py: 74] Epoch 5, iter 4400/6416, lr 0.100000, loss 44.034438 +INFO 2020-11-27 00:08:37 train.py: 74] Epoch 5, iter 4600/6416, lr 0.100000, loss 44.148964 +INFO 2020-11-27 00:10:04 train.py: 74] Epoch 5, iter 4800/6416, lr 0.100000, loss 44.019415 +INFO 2020-11-27 00:11:30 train.py: 74] Epoch 5, iter 5000/6416, lr 0.100000, loss 44.121731 +INFO 2020-11-27 00:12:57 train.py: 74] Epoch 5, iter 5200/6416, lr 0.100000, loss 43.993766 +INFO 2020-11-27 00:14:24 train.py: 74] Epoch 5, iter 5400/6416, lr 0.100000, loss 43.997096 +INFO 2020-11-27 00:15:51 train.py: 74] Epoch 5, iter 5600/6416, lr 0.100000, loss 43.758772 +INFO 2020-11-27 00:17:17 train.py: 74] Epoch 5, iter 5800/6416, lr 0.100000, loss 43.860515 +INFO 2020-11-27 00:18:44 train.py: 87] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2020-11-27 00:18:44 train.py: 74] Epoch 5, iter 6000/6416, lr 0.100000, loss 43.794755 +INFO 2020-11-27 00:20:11 train.py: 74] Epoch 5, iter 6200/6416, lr 0.100000, loss 43.678361 +INFO 2020-11-27 00:21:38 train.py: 74] Epoch 5, iter 6400/6416, lr 0.100000, loss 43.598753 +INFO 2020-11-27 00:21:45 train.py: 92] Save checkpoint Epoch_5.pt to disk... +INFO 2020-11-27 00:21:46 train.py: 74] Epoch 6, iter 0/6416, lr 0.100000, loss 43.798932 +INFO 2020-11-27 00:23:13 train.py: 74] Epoch 6, iter 200/6416, lr 0.100000, loss 40.667647 +INFO 2020-11-27 00:24:40 train.py: 74] Epoch 6, iter 400/6416, lr 0.100000, loss 40.452621 +INFO 2020-11-27 00:26:06 train.py: 74] Epoch 6, iter 600/6416, lr 0.100000, loss 40.909449 +INFO 2020-11-27 00:27:33 train.py: 74] Epoch 6, iter 800/6416, lr 0.100000, loss 41.293824 +INFO 2020-11-27 00:28:59 train.py: 74] Epoch 6, iter 1000/6416, lr 0.100000, loss 41.443691 +INFO 2020-11-27 00:30:25 train.py: 74] Epoch 6, iter 1200/6416, lr 0.100000, loss 41.651462 +INFO 2020-11-27 00:31:51 train.py: 74] Epoch 6, iter 1400/6416, lr 0.100000, loss 41.854244 +INFO 2020-11-27 00:33:17 train.py: 74] Epoch 6, iter 1600/6416, lr 0.100000, loss 42.120480 +INFO 2020-11-27 00:34:44 train.py: 74] Epoch 6, iter 1800/6416, lr 0.100000, loss 42.384678 +INFO 2020-11-27 00:36:10 train.py: 74] Epoch 6, iter 2000/6416, lr 0.100000, loss 42.396282 +INFO 2020-11-27 00:37:36 train.py: 74] Epoch 6, iter 2200/6416, lr 0.100000, loss 42.510921 +INFO 2020-11-27 00:39:02 train.py: 74] Epoch 6, iter 2400/6416, lr 0.100000, loss 42.396719 +INFO 2020-11-27 00:40:28 train.py: 74] Epoch 6, iter 2600/6416, lr 0.100000, loss 42.582482 +INFO 2020-11-27 00:41:54 train.py: 74] Epoch 6, iter 2800/6416, lr 0.100000, loss 42.587796 +INFO 2020-11-27 00:43:20 train.py: 87] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2020-11-27 00:43:20 train.py: 74] Epoch 6, iter 3000/6416, lr 0.100000, loss 42.671364 +INFO 2020-11-27 00:44:47 train.py: 74] Epoch 6, iter 3200/6416, lr 0.100000, loss 42.734600 +INFO 2020-11-27 00:46:14 train.py: 74] Epoch 6, iter 3400/6416, lr 0.100000, loss 42.531862 +INFO 2020-11-27 00:47:41 train.py: 74] Epoch 6, iter 3600/6416, lr 0.100000, loss 42.732665 +INFO 2020-11-27 00:49:07 train.py: 74] Epoch 6, iter 3800/6416, lr 0.100000, loss 42.690600 +INFO 2020-11-27 00:50:34 train.py: 74] Epoch 6, iter 4000/6416, lr 0.100000, loss 42.626764 +INFO 2020-11-27 00:52:01 train.py: 74] Epoch 6, iter 4200/6416, lr 0.100000, loss 42.647161 +INFO 2020-11-27 00:53:28 train.py: 74] Epoch 6, iter 4400/6416, lr 0.100000, loss 42.585500 +INFO 2020-11-27 00:54:55 train.py: 74] Epoch 6, iter 4600/6416, lr 0.100000, loss 42.752556 +INFO 2020-11-27 00:56:22 train.py: 74] Epoch 6, iter 4800/6416, lr 0.100000, loss 42.561006 +INFO 2020-11-27 00:57:49 train.py: 74] Epoch 6, iter 5000/6416, lr 0.100000, loss 42.452589 +INFO 2020-11-27 00:59:16 train.py: 74] Epoch 6, iter 5200/6416, lr 0.100000, loss 42.486131 +INFO 2020-11-27 01:00:42 train.py: 74] Epoch 6, iter 5400/6416, lr 0.100000, loss 42.673480 +INFO 2020-11-27 01:02:09 train.py: 74] Epoch 6, iter 5600/6416, lr 0.100000, loss 42.561921 +INFO 2020-11-27 01:03:36 train.py: 74] Epoch 6, iter 5800/6416, lr 0.100000, loss 42.619505 +INFO 2020-11-27 01:05:03 train.py: 87] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2020-11-27 01:05:03 train.py: 74] Epoch 6, iter 6000/6416, lr 0.100000, loss 42.473971 +INFO 2020-11-27 01:06:30 train.py: 74] Epoch 6, iter 6200/6416, lr 0.100000, loss 42.544096 +INFO 2020-11-27 01:07:57 train.py: 74] Epoch 6, iter 6400/6416, lr 0.100000, loss 42.374096 +INFO 2020-11-27 01:08:04 train.py: 92] Save checkpoint Epoch_6.pt to disk... +INFO 2020-11-27 01:08:05 train.py: 74] Epoch 7, iter 0/6416, lr 0.100000, loss 42.654737 +INFO 2020-11-27 01:09:33 train.py: 74] Epoch 7, iter 200/6416, lr 0.100000, loss 39.308887 +INFO 2020-11-27 01:11:00 train.py: 74] Epoch 7, iter 400/6416, lr 0.100000, loss 39.105486 +INFO 2020-11-27 01:12:27 train.py: 74] Epoch 7, iter 600/6416, lr 0.100000, loss 39.516438 +INFO 2020-11-27 01:13:54 train.py: 74] Epoch 7, iter 800/6416, lr 0.100000, loss 39.954308 +INFO 2020-11-27 01:15:21 train.py: 74] Epoch 7, iter 1000/6416, lr 0.100000, loss 40.498375 +INFO 2020-11-27 01:16:48 train.py: 74] Epoch 7, iter 1200/6416, lr 0.100000, loss 40.779797 +INFO 2020-11-27 01:18:15 train.py: 74] Epoch 7, iter 1400/6416, lr 0.100000, loss 40.683996 +INFO 2020-11-27 01:19:42 train.py: 74] Epoch 7, iter 1600/6416, lr 0.100000, loss 40.913990 +INFO 2020-11-27 01:21:08 train.py: 74] Epoch 7, iter 1800/6416, lr 0.100000, loss 41.182009 +INFO 2020-11-27 01:22:35 train.py: 74] Epoch 7, iter 2000/6416, lr 0.100000, loss 41.414142 +INFO 2020-11-27 01:24:02 train.py: 74] Epoch 7, iter 2200/6416, lr 0.100000, loss 41.211606 +INFO 2020-11-27 01:25:28 train.py: 74] Epoch 7, iter 2400/6416, lr 0.100000, loss 41.477078 +INFO 2020-11-27 01:26:55 train.py: 74] Epoch 7, iter 2600/6416, lr 0.100000, loss 41.695661 +INFO 2020-11-27 01:28:22 train.py: 74] Epoch 7, iter 2800/6416, lr 0.100000, loss 41.531772 +INFO 2020-11-27 01:29:49 train.py: 87] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2020-11-27 01:29:49 train.py: 74] Epoch 7, iter 3000/6416, lr 0.100000, loss 41.631660 +INFO 2020-11-27 01:31:16 train.py: 74] Epoch 7, iter 3200/6416, lr 0.100000, loss 41.471745 +INFO 2020-11-27 01:32:43 train.py: 74] Epoch 7, iter 3400/6416, lr 0.100000, loss 41.650587 +INFO 2020-11-27 01:34:09 train.py: 74] Epoch 7, iter 3600/6416, lr 0.100000, loss 41.530799 +INFO 2020-11-27 01:35:36 train.py: 74] Epoch 7, iter 3800/6416, lr 0.100000, loss 41.629342 +INFO 2020-11-27 01:37:03 train.py: 74] Epoch 7, iter 4000/6416, lr 0.100000, loss 41.652661 +INFO 2020-11-27 01:38:30 train.py: 74] Epoch 7, iter 4200/6416, lr 0.100000, loss 41.391060 +INFO 2020-11-27 01:39:57 train.py: 74] Epoch 7, iter 4400/6416, lr 0.100000, loss 41.587450 +INFO 2020-11-27 01:41:24 train.py: 74] Epoch 7, iter 4600/6416, lr 0.100000, loss 41.627298 +INFO 2020-11-27 01:42:50 train.py: 74] Epoch 7, iter 4800/6416, lr 0.100000, loss 41.771738 +INFO 2020-11-27 01:44:17 train.py: 74] Epoch 7, iter 5000/6416, lr 0.100000, loss 41.672905 +INFO 2020-11-27 01:45:44 train.py: 74] Epoch 7, iter 5200/6416, lr 0.100000, loss 41.543227 +INFO 2020-11-27 01:47:11 train.py: 74] Epoch 7, iter 5400/6416, lr 0.100000, loss 41.596790 +INFO 2020-11-27 01:48:38 train.py: 74] Epoch 7, iter 5600/6416, lr 0.100000, loss 41.685064 +INFO 2020-11-27 01:50:04 train.py: 74] Epoch 7, iter 5800/6416, lr 0.100000, loss 41.690941 +INFO 2020-11-27 01:51:31 train.py: 87] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2020-11-27 01:51:31 train.py: 74] Epoch 7, iter 6000/6416, lr 0.100000, loss 41.400815 +INFO 2020-11-27 01:52:57 train.py: 74] Epoch 7, iter 6200/6416, lr 0.100000, loss 41.492015 +INFO 2020-11-27 01:54:24 train.py: 74] Epoch 7, iter 6400/6416, lr 0.100000, loss 41.510432 +INFO 2020-11-27 01:54:30 train.py: 92] Save checkpoint Epoch_7.pt to disk... +INFO 2020-11-27 01:54:32 train.py: 74] Epoch 8, iter 0/6416, lr 0.100000, loss 40.945515 +INFO 2020-11-27 01:55:59 train.py: 74] Epoch 8, iter 200/6416, lr 0.100000, loss 38.564307 +INFO 2020-11-27 01:57:25 train.py: 74] Epoch 8, iter 400/6416, lr 0.100000, loss 38.299250 +INFO 2020-11-27 01:58:52 train.py: 74] Epoch 8, iter 600/6416, lr 0.100000, loss 38.680297 +INFO 2020-11-27 02:00:18 train.py: 74] Epoch 8, iter 800/6416, lr 0.100000, loss 39.106062 +INFO 2020-11-27 02:01:45 train.py: 74] Epoch 8, iter 1000/6416, lr 0.100000, loss 39.401907 +INFO 2020-11-27 02:03:11 train.py: 74] Epoch 8, iter 1200/6416, lr 0.100000, loss 39.719832 +INFO 2020-11-27 02:04:37 train.py: 74] Epoch 8, iter 1400/6416, lr 0.100000, loss 39.913641 +INFO 2020-11-27 02:06:03 train.py: 74] Epoch 8, iter 1600/6416, lr 0.100000, loss 40.097178 +INFO 2020-11-27 02:07:29 train.py: 74] Epoch 8, iter 1800/6416, lr 0.100000, loss 40.297047 +INFO 2020-11-27 02:08:55 train.py: 74] Epoch 8, iter 2000/6416, lr 0.100000, loss 40.366074 +INFO 2020-11-27 02:10:21 train.py: 74] Epoch 8, iter 2200/6416, lr 0.100000, loss 40.576639 +INFO 2020-11-27 02:11:47 train.py: 74] Epoch 8, iter 2400/6416, lr 0.100000, loss 40.529459 +INFO 2020-11-27 02:13:14 train.py: 74] Epoch 8, iter 2600/6416, lr 0.100000, loss 40.643255 +INFO 2020-11-27 02:14:40 train.py: 74] Epoch 8, iter 2800/6416, lr 0.100000, loss 40.785482 +INFO 2020-11-27 02:16:06 train.py: 87] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2020-11-27 02:16:06 train.py: 74] Epoch 8, iter 3000/6416, lr 0.100000, loss 40.737226 +INFO 2020-11-27 02:17:33 train.py: 74] Epoch 8, iter 3200/6416, lr 0.100000, loss 40.668111 +INFO 2020-11-27 02:18:59 train.py: 74] Epoch 8, iter 3400/6416, lr 0.100000, loss 40.934959 +INFO 2020-11-27 02:20:26 train.py: 74] Epoch 8, iter 3600/6416, lr 0.100000, loss 40.891842 +INFO 2020-11-27 02:21:53 train.py: 74] Epoch 8, iter 3800/6416, lr 0.100000, loss 40.715453 +INFO 2020-11-27 02:23:20 train.py: 74] Epoch 8, iter 4000/6416, lr 0.100000, loss 40.850994 +INFO 2020-11-27 02:24:46 train.py: 74] Epoch 8, iter 4200/6416, lr 0.100000, loss 40.872211 +INFO 2020-11-27 02:26:13 train.py: 74] Epoch 8, iter 4400/6416, lr 0.100000, loss 40.943621 +INFO 2020-11-27 02:27:40 train.py: 74] Epoch 8, iter 4600/6416, lr 0.100000, loss 40.939018 +INFO 2020-11-27 02:29:07 train.py: 74] Epoch 8, iter 4800/6416, lr 0.100000, loss 40.946464 +INFO 2020-11-27 02:30:34 train.py: 74] Epoch 8, iter 5000/6416, lr 0.100000, loss 40.871346 +INFO 2020-11-27 02:32:00 train.py: 74] Epoch 8, iter 5200/6416, lr 0.100000, loss 40.856844 +INFO 2020-11-27 02:33:27 train.py: 74] Epoch 8, iter 5400/6416, lr 0.100000, loss 40.813487 +INFO 2020-11-27 02:34:54 train.py: 74] Epoch 8, iter 5600/6416, lr 0.100000, loss 40.890397 +INFO 2020-11-27 02:36:21 train.py: 74] Epoch 8, iter 5800/6416, lr 0.100000, loss 40.743738 +INFO 2020-11-27 02:37:47 train.py: 87] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2020-11-27 02:37:48 train.py: 74] Epoch 8, iter 6000/6416, lr 0.100000, loss 40.853788 +INFO 2020-11-27 02:39:14 train.py: 74] Epoch 8, iter 6200/6416, lr 0.100000, loss 40.517155 +INFO 2020-11-27 02:40:41 train.py: 74] Epoch 8, iter 6400/6416, lr 0.100000, loss 40.798125 +INFO 2020-11-27 02:40:48 train.py: 92] Save checkpoint Epoch_8.pt to disk... +INFO 2020-11-27 02:40:50 train.py: 74] Epoch 9, iter 0/6416, lr 0.100000, loss 40.668876 +INFO 2020-11-27 02:42:17 train.py: 74] Epoch 9, iter 200/6416, lr 0.100000, loss 38.005270 +INFO 2020-11-27 02:43:44 train.py: 74] Epoch 9, iter 400/6416, lr 0.100000, loss 37.604668 +INFO 2020-11-27 02:45:11 train.py: 74] Epoch 9, iter 600/6416, lr 0.100000, loss 38.040666 +INFO 2020-11-27 02:46:38 train.py: 74] Epoch 9, iter 800/6416, lr 0.100000, loss 38.510781 +INFO 2020-11-27 02:48:05 train.py: 74] Epoch 9, iter 1000/6416, lr 0.100000, loss 38.807474 +INFO 2020-11-27 02:49:32 train.py: 74] Epoch 9, iter 1200/6416, lr 0.100000, loss 38.966897 +INFO 2020-11-27 02:50:59 train.py: 74] Epoch 9, iter 1400/6416, lr 0.100000, loss 39.349659 +INFO 2020-11-27 02:52:26 train.py: 74] Epoch 9, iter 1600/6416, lr 0.100000, loss 39.414797 +INFO 2020-11-27 02:53:53 train.py: 74] Epoch 9, iter 1800/6416, lr 0.100000, loss 39.714779 +INFO 2020-11-27 02:55:20 train.py: 74] Epoch 9, iter 2000/6416, lr 0.100000, loss 39.778744 +INFO 2020-11-27 02:56:46 train.py: 74] Epoch 9, iter 2200/6416, lr 0.100000, loss 39.752089 +INFO 2020-11-27 02:58:13 train.py: 74] Epoch 9, iter 2400/6416, lr 0.100000, loss 39.914244 +INFO 2020-11-27 02:59:40 train.py: 74] Epoch 9, iter 2600/6416, lr 0.100000, loss 40.051592 +INFO 2020-11-27 03:01:07 train.py: 74] Epoch 9, iter 2800/6416, lr 0.100000, loss 39.892659 +INFO 2020-11-27 03:02:33 train.py: 87] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2020-11-27 03:02:34 train.py: 74] Epoch 9, iter 3000/6416, lr 0.100000, loss 40.020097 +INFO 2020-11-27 03:04:00 train.py: 74] Epoch 9, iter 3200/6416, lr 0.100000, loss 40.222463 +INFO 2020-11-27 03:05:27 train.py: 74] Epoch 9, iter 3400/6416, lr 0.100000, loss 40.170754 +INFO 2020-11-27 03:06:54 train.py: 74] Epoch 9, iter 3600/6416, lr 0.100000, loss 40.248831 +INFO 2020-11-27 03:08:21 train.py: 74] Epoch 9, iter 3800/6416, lr 0.100000, loss 40.194239 +INFO 2020-11-27 03:09:47 train.py: 74] Epoch 9, iter 4000/6416, lr 0.100000, loss 40.247643 +INFO 2020-11-27 03:11:14 train.py: 74] Epoch 9, iter 4200/6416, lr 0.100000, loss 40.209278 +INFO 2020-11-27 03:12:41 train.py: 74] Epoch 9, iter 4400/6416, lr 0.100000, loss 40.371125 +INFO 2020-11-27 03:14:08 train.py: 74] Epoch 9, iter 4600/6416, lr 0.100000, loss 40.152585 +INFO 2020-11-27 03:15:35 train.py: 74] Epoch 9, iter 4800/6416, lr 0.100000, loss 40.227974 +INFO 2020-11-27 03:17:01 train.py: 74] Epoch 9, iter 5000/6416, lr 0.100000, loss 40.343418 +INFO 2020-11-27 03:18:28 train.py: 74] Epoch 9, iter 5200/6416, lr 0.100000, loss 40.202231 +INFO 2020-11-27 03:19:55 train.py: 74] Epoch 9, iter 5400/6416, lr 0.100000, loss 40.311432 +INFO 2020-11-27 03:21:22 train.py: 74] Epoch 9, iter 5600/6416, lr 0.100000, loss 40.331195 +INFO 2020-11-27 03:22:48 train.py: 74] Epoch 9, iter 5800/6416, lr 0.100000, loss 40.300664 +INFO 2020-11-27 03:24:15 train.py: 87] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2020-11-27 03:24:15 train.py: 74] Epoch 9, iter 6000/6416, lr 0.100000, loss 40.281881 +INFO 2020-11-27 03:25:42 train.py: 74] Epoch 9, iter 6200/6416, lr 0.100000, loss 40.408143 +INFO 2020-11-27 03:27:09 train.py: 74] Epoch 9, iter 6400/6416, lr 0.100000, loss 40.120347 +INFO 2020-11-27 03:27:16 train.py: 92] Save checkpoint Epoch_9.pt to disk... +INFO 2020-11-27 03:27:17 train.py: 74] Epoch 10, iter 0/6416, lr 0.010000, loss 40.176020 +INFO 2020-11-27 03:28:45 train.py: 74] Epoch 10, iter 200/6416, lr 0.010000, loss 33.909359 +INFO 2020-11-27 03:30:12 train.py: 74] Epoch 10, iter 400/6416, lr 0.010000, loss 32.724347 +INFO 2020-11-27 03:31:39 train.py: 74] Epoch 10, iter 600/6416, lr 0.010000, loss 32.177922 +INFO 2020-11-27 03:33:07 train.py: 74] Epoch 10, iter 800/6416, lr 0.010000, loss 31.778316 +INFO 2020-11-27 03:34:34 train.py: 74] Epoch 10, iter 1000/6416, lr 0.010000, loss 31.529024 +INFO 2020-11-27 03:36:02 train.py: 74] Epoch 10, iter 1200/6416, lr 0.010000, loss 31.294768 +INFO 2020-11-27 03:37:30 train.py: 74] Epoch 10, iter 1400/6416, lr 0.010000, loss 31.149167 +INFO 2020-11-27 03:38:58 train.py: 74] Epoch 10, iter 1600/6416, lr 0.010000, loss 30.828602 +INFO 2020-11-27 03:40:26 train.py: 74] Epoch 10, iter 1800/6416, lr 0.010000, loss 30.668897 +INFO 2020-11-27 03:41:54 train.py: 74] Epoch 10, iter 2000/6416, lr 0.010000, loss 30.478664 +INFO 2020-11-27 03:43:21 train.py: 74] Epoch 10, iter 2200/6416, lr 0.010000, loss 30.465017 +INFO 2020-11-27 03:44:49 train.py: 74] Epoch 10, iter 2400/6416, lr 0.010000, loss 30.182491 +INFO 2020-11-27 03:46:17 train.py: 74] Epoch 10, iter 2600/6416, lr 0.010000, loss 30.111420 +INFO 2020-11-27 03:47:45 train.py: 74] Epoch 10, iter 2800/6416, lr 0.010000, loss 30.158345 +INFO 2020-11-27 03:49:13 train.py: 87] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2020-11-27 03:49:13 train.py: 74] Epoch 10, iter 3000/6416, lr 0.010000, loss 29.883393 +INFO 2020-11-27 03:50:41 train.py: 74] Epoch 10, iter 3200/6416, lr 0.010000, loss 29.714406 +INFO 2020-11-27 03:52:09 train.py: 74] Epoch 10, iter 3400/6416, lr 0.010000, loss 29.773476 +INFO 2020-11-27 03:53:36 train.py: 74] Epoch 10, iter 3600/6416, lr 0.010000, loss 29.572188 +INFO 2020-11-27 03:55:04 train.py: 74] Epoch 10, iter 3800/6416, lr 0.010000, loss 29.425742 +INFO 2020-11-27 03:56:32 train.py: 74] Epoch 10, iter 4000/6416, lr 0.010000, loss 29.459554 +INFO 2020-11-27 03:58:00 train.py: 74] Epoch 10, iter 4200/6416, lr 0.010000, loss 29.259184 +INFO 2020-11-27 03:59:28 train.py: 74] Epoch 10, iter 4400/6416, lr 0.010000, loss 29.272473 +INFO 2020-11-27 04:00:56 train.py: 74] Epoch 10, iter 4600/6416, lr 0.010000, loss 29.062133 +INFO 2020-11-27 04:02:23 train.py: 74] Epoch 10, iter 4800/6416, lr 0.010000, loss 29.022064 +INFO 2020-11-27 04:03:51 train.py: 74] Epoch 10, iter 5000/6416, lr 0.010000, loss 28.983713 +INFO 2020-11-27 04:05:19 train.py: 74] Epoch 10, iter 5200/6416, lr 0.010000, loss 28.993835 +INFO 2020-11-27 04:06:47 train.py: 74] Epoch 10, iter 5400/6416, lr 0.010000, loss 28.904906 +INFO 2020-11-27 04:08:15 train.py: 74] Epoch 10, iter 5600/6416, lr 0.010000, loss 28.900576 +INFO 2020-11-27 04:09:42 train.py: 74] Epoch 10, iter 5800/6416, lr 0.010000, loss 28.579563 +INFO 2020-11-27 04:11:10 train.py: 87] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2020-11-27 04:11:10 train.py: 74] Epoch 10, iter 6000/6416, lr 0.010000, loss 28.596133 +INFO 2020-11-27 04:12:37 train.py: 74] Epoch 10, iter 6200/6416, lr 0.010000, loss 28.573361 +INFO 2020-11-27 04:14:04 train.py: 74] Epoch 10, iter 6400/6416, lr 0.010000, loss 28.406788 +INFO 2020-11-27 04:14:11 train.py: 92] Save checkpoint Epoch_10.pt to disk... +INFO 2020-11-27 04:14:13 train.py: 74] Epoch 11, iter 0/6416, lr 0.010000, loss 28.448507 +INFO 2020-11-27 04:15:40 train.py: 74] Epoch 11, iter 200/6416, lr 0.010000, loss 26.728660 +INFO 2020-11-27 04:17:08 train.py: 74] Epoch 11, iter 400/6416, lr 0.010000, loss 26.788517 +INFO 2020-11-27 04:18:35 train.py: 74] Epoch 11, iter 600/6416, lr 0.010000, loss 26.876938 +INFO 2020-11-27 04:20:02 train.py: 74] Epoch 11, iter 800/6416, lr 0.010000, loss 26.723572 +INFO 2020-11-27 04:21:29 train.py: 74] Epoch 11, iter 1000/6416, lr 0.010000, loss 26.774317 +INFO 2020-11-27 04:22:56 train.py: 74] Epoch 11, iter 1200/6416, lr 0.010000, loss 26.746535 +INFO 2020-11-27 04:24:23 train.py: 74] Epoch 11, iter 1400/6416, lr 0.010000, loss 26.669073 +INFO 2020-11-27 04:25:50 train.py: 74] Epoch 11, iter 1600/6416, lr 0.010000, loss 26.790542 +INFO 2020-11-27 04:27:18 train.py: 74] Epoch 11, iter 1800/6416, lr 0.010000, loss 26.752551 +INFO 2020-11-27 04:28:45 train.py: 74] Epoch 11, iter 2000/6416, lr 0.010000, loss 26.758596 +INFO 2020-11-27 04:30:12 train.py: 74] Epoch 11, iter 2200/6416, lr 0.010000, loss 26.789020 +INFO 2020-11-27 04:31:39 train.py: 74] Epoch 11, iter 2400/6416, lr 0.010000, loss 26.755182 +INFO 2020-11-27 04:33:06 train.py: 74] Epoch 11, iter 2600/6416, lr 0.010000, loss 26.758084 +INFO 2020-11-27 04:34:33 train.py: 74] Epoch 11, iter 2800/6416, lr 0.010000, loss 26.700007 +INFO 2020-11-27 04:36:00 train.py: 87] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2020-11-27 04:36:01 train.py: 74] Epoch 11, iter 3000/6416, lr 0.010000, loss 26.830555 +INFO 2020-11-27 04:37:29 train.py: 74] Epoch 11, iter 3200/6416, lr 0.010000, loss 26.815686 +INFO 2020-11-27 04:38:56 train.py: 74] Epoch 11, iter 3400/6416, lr 0.010000, loss 26.692639 +INFO 2020-11-27 04:40:24 train.py: 74] Epoch 11, iter 3600/6416, lr 0.010000, loss 26.795115 +INFO 2020-11-27 04:41:52 train.py: 74] Epoch 11, iter 3800/6416, lr 0.010000, loss 26.814807 +INFO 2020-11-27 04:43:20 train.py: 74] Epoch 11, iter 4000/6416, lr 0.010000, loss 26.743156 +INFO 2020-11-27 04:44:48 train.py: 74] Epoch 11, iter 4200/6416, lr 0.010000, loss 26.771831 +INFO 2020-11-27 04:46:15 train.py: 74] Epoch 11, iter 4400/6416, lr 0.010000, loss 26.753537 +INFO 2020-11-27 04:47:43 train.py: 74] Epoch 11, iter 4600/6416, lr 0.010000, loss 26.735943 +INFO 2020-11-27 04:49:11 train.py: 74] Epoch 11, iter 4800/6416, lr 0.010000, loss 26.711094 +INFO 2020-11-27 04:50:39 train.py: 74] Epoch 11, iter 5000/6416, lr 0.010000, loss 26.820783 +INFO 2020-11-27 04:52:06 train.py: 74] Epoch 11, iter 5200/6416, lr 0.010000, loss 26.785523 +INFO 2020-11-27 04:53:34 train.py: 74] Epoch 11, iter 5400/6416, lr 0.010000, loss 26.931479 +INFO 2020-11-27 04:55:02 train.py: 74] Epoch 11, iter 5600/6416, lr 0.010000, loss 26.742855 +INFO 2020-11-27 04:56:30 train.py: 74] Epoch 11, iter 5800/6416, lr 0.010000, loss 26.768739 +INFO 2020-11-27 04:57:57 train.py: 87] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2020-11-27 04:57:58 train.py: 74] Epoch 11, iter 6000/6416, lr 0.010000, loss 26.890654 +INFO 2020-11-27 04:59:25 train.py: 74] Epoch 11, iter 6200/6416, lr 0.010000, loss 26.737629 +INFO 2020-11-27 05:00:53 train.py: 74] Epoch 11, iter 6400/6416, lr 0.010000, loss 26.890736 +INFO 2020-11-27 05:01:00 train.py: 92] Save checkpoint Epoch_11.pt to disk... +INFO 2020-11-27 05:01:02 train.py: 74] Epoch 12, iter 0/6416, lr 0.010000, loss 26.681655 +INFO 2020-11-27 05:02:30 train.py: 74] Epoch 12, iter 200/6416, lr 0.010000, loss 25.090474 +INFO 2020-11-27 05:03:57 train.py: 74] Epoch 12, iter 400/6416, lr 0.010000, loss 25.146984 +INFO 2020-11-27 05:05:25 train.py: 74] Epoch 12, iter 600/6416, lr 0.010000, loss 25.154200 +INFO 2020-11-27 05:06:53 train.py: 74] Epoch 12, iter 800/6416, lr 0.010000, loss 25.162126 +INFO 2020-11-27 05:08:21 train.py: 74] Epoch 12, iter 1000/6416, lr 0.010000, loss 25.237920 +INFO 2020-11-27 05:09:49 train.py: 74] Epoch 12, iter 1200/6416, lr 0.010000, loss 25.311664 +INFO 2020-11-27 05:11:16 train.py: 74] Epoch 12, iter 1400/6416, lr 0.010000, loss 25.354699 +INFO 2020-11-27 05:12:44 train.py: 74] Epoch 12, iter 1600/6416, lr 0.010000, loss 25.346918 +INFO 2020-11-27 05:14:12 train.py: 74] Epoch 12, iter 1800/6416, lr 0.010000, loss 25.440004 +INFO 2020-11-27 05:15:40 train.py: 74] Epoch 12, iter 2000/6416, lr 0.010000, loss 25.492017 +INFO 2020-11-27 05:17:08 train.py: 74] Epoch 12, iter 2200/6416, lr 0.010000, loss 25.549193 +INFO 2020-11-27 05:18:35 train.py: 74] Epoch 12, iter 2400/6416, lr 0.010000, loss 25.577543 +INFO 2020-11-27 05:20:03 train.py: 74] Epoch 12, iter 2600/6416, lr 0.010000, loss 25.643090 +INFO 2020-11-27 05:21:31 train.py: 74] Epoch 12, iter 2800/6416, lr 0.010000, loss 25.616621 +INFO 2020-11-27 05:22:58 train.py: 87] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2020-11-27 05:22:59 train.py: 74] Epoch 12, iter 3000/6416, lr 0.010000, loss 25.710649 +INFO 2020-11-27 05:24:26 train.py: 74] Epoch 12, iter 3200/6416, lr 0.010000, loss 25.708967 +INFO 2020-11-27 05:25:52 train.py: 74] Epoch 12, iter 3400/6416, lr 0.010000, loss 25.684282 +INFO 2020-11-27 05:27:19 train.py: 74] Epoch 12, iter 3600/6416, lr 0.010000, loss 25.818975 +INFO 2020-11-27 05:28:46 train.py: 74] Epoch 12, iter 3800/6416, lr 0.010000, loss 25.798067 +INFO 2020-11-27 05:30:13 train.py: 74] Epoch 12, iter 4000/6416, lr 0.010000, loss 25.892547 +INFO 2020-11-27 05:31:40 train.py: 74] Epoch 12, iter 4200/6416, lr 0.010000, loss 25.849297 +INFO 2020-11-27 05:33:07 train.py: 74] Epoch 12, iter 4400/6416, lr 0.010000, loss 25.858340 +INFO 2020-11-27 05:34:33 train.py: 74] Epoch 12, iter 4600/6416, lr 0.010000, loss 25.829359 +INFO 2020-11-27 05:36:00 train.py: 74] Epoch 12, iter 4800/6416, lr 0.010000, loss 26.035046 +INFO 2020-11-27 05:37:27 train.py: 74] Epoch 12, iter 5000/6416, lr 0.010000, loss 25.930099 +INFO 2020-11-27 05:38:54 train.py: 74] Epoch 12, iter 5200/6416, lr 0.010000, loss 26.019671 +INFO 2020-11-27 05:40:21 train.py: 74] Epoch 12, iter 5400/6416, lr 0.010000, loss 25.960905 +INFO 2020-11-27 05:41:48 train.py: 74] Epoch 12, iter 5600/6416, lr 0.010000, loss 26.055500 +INFO 2020-11-27 05:43:15 train.py: 74] Epoch 12, iter 5800/6416, lr 0.010000, loss 26.076273 +INFO 2020-11-27 05:44:41 train.py: 87] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2020-11-27 05:44:42 train.py: 74] Epoch 12, iter 6000/6416, lr 0.010000, loss 26.062323 +INFO 2020-11-27 05:46:09 train.py: 74] Epoch 12, iter 6200/6416, lr 0.010000, loss 26.219797 +INFO 2020-11-27 05:47:37 train.py: 74] Epoch 12, iter 6400/6416, lr 0.010000, loss 26.113504 +INFO 2020-11-27 05:47:43 train.py: 92] Save checkpoint Epoch_12.pt to disk... +INFO 2020-11-27 05:47:45 train.py: 74] Epoch 13, iter 0/6416, lr 0.001000, loss 25.922944 +INFO 2020-11-27 05:49:13 train.py: 74] Epoch 13, iter 200/6416, lr 0.001000, loss 24.090297 +INFO 2020-11-27 05:50:40 train.py: 74] Epoch 13, iter 400/6416, lr 0.001000, loss 23.873975 +INFO 2020-11-27 05:52:07 train.py: 74] Epoch 13, iter 600/6416, lr 0.001000, loss 23.854976 +INFO 2020-11-27 05:53:34 train.py: 74] Epoch 13, iter 800/6416, lr 0.001000, loss 23.919604 +INFO 2020-11-27 05:55:02 train.py: 74] Epoch 13, iter 1000/6416, lr 0.001000, loss 23.802342 +INFO 2020-11-27 05:56:30 train.py: 74] Epoch 13, iter 1200/6416, lr 0.001000, loss 23.931007 +INFO 2020-11-27 05:57:58 train.py: 74] Epoch 13, iter 1400/6416, lr 0.001000, loss 23.796777 +INFO 2020-11-27 05:59:26 train.py: 74] Epoch 13, iter 1600/6416, lr 0.001000, loss 23.837282 +INFO 2020-11-27 06:00:53 train.py: 74] Epoch 13, iter 1800/6416, lr 0.001000, loss 23.796395 +INFO 2020-11-27 06:02:21 train.py: 74] Epoch 13, iter 2000/6416, lr 0.001000, loss 23.758745 +INFO 2020-11-27 06:03:48 train.py: 74] Epoch 13, iter 2200/6416, lr 0.001000, loss 23.718186 +INFO 2020-11-27 06:05:16 train.py: 74] Epoch 13, iter 2400/6416, lr 0.001000, loss 23.672207 +INFO 2020-11-27 06:06:43 train.py: 74] Epoch 13, iter 2600/6416, lr 0.001000, loss 23.735637 +INFO 2020-11-27 06:08:10 train.py: 74] Epoch 13, iter 2800/6416, lr 0.001000, loss 23.733649 +INFO 2020-11-27 06:09:38 train.py: 87] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2020-11-27 06:09:38 train.py: 74] Epoch 13, iter 3000/6416, lr 0.001000, loss 23.843300 +INFO 2020-11-27 06:11:05 train.py: 74] Epoch 13, iter 3200/6416, lr 0.001000, loss 23.780096 +INFO 2020-11-27 06:12:33 train.py: 74] Epoch 13, iter 3400/6416, lr 0.001000, loss 23.857551 +INFO 2020-11-27 06:14:00 train.py: 74] Epoch 13, iter 3600/6416, lr 0.001000, loss 23.777709 +INFO 2020-11-27 06:15:28 train.py: 74] Epoch 13, iter 3800/6416, lr 0.001000, loss 23.802056 +INFO 2020-11-27 06:16:55 train.py: 74] Epoch 13, iter 4000/6416, lr 0.001000, loss 23.683597 +INFO 2020-11-27 06:18:22 train.py: 74] Epoch 13, iter 4200/6416, lr 0.001000, loss 23.797441 +INFO 2020-11-27 06:19:50 train.py: 74] Epoch 13, iter 4400/6416, lr 0.001000, loss 23.793596 +INFO 2020-11-27 06:21:17 train.py: 74] Epoch 13, iter 4600/6416, lr 0.001000, loss 23.798867 +INFO 2020-11-27 06:22:44 train.py: 74] Epoch 13, iter 4800/6416, lr 0.001000, loss 23.901595 +INFO 2020-11-27 06:24:12 train.py: 74] Epoch 13, iter 5000/6416, lr 0.001000, loss 23.831785 +INFO 2020-11-27 06:25:39 train.py: 74] Epoch 13, iter 5200/6416, lr 0.001000, loss 23.794680 +INFO 2020-11-27 06:27:07 train.py: 74] Epoch 13, iter 5400/6416, lr 0.001000, loss 23.804153 +INFO 2020-11-27 06:28:34 train.py: 74] Epoch 13, iter 5600/6416, lr 0.001000, loss 23.756588 +INFO 2020-11-27 06:30:01 train.py: 74] Epoch 13, iter 5800/6416, lr 0.001000, loss 23.774126 +INFO 2020-11-27 06:31:28 train.py: 87] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2020-11-27 06:31:29 train.py: 74] Epoch 13, iter 6000/6416, lr 0.001000, loss 23.585715 +INFO 2020-11-27 06:32:56 train.py: 74] Epoch 13, iter 6200/6416, lr 0.001000, loss 23.795388 +INFO 2020-11-27 06:34:23 train.py: 74] Epoch 13, iter 6400/6416, lr 0.001000, loss 23.846588 +INFO 2020-11-27 06:34:30 train.py: 92] Save checkpoint Epoch_13.pt to disk... +INFO 2020-11-27 06:34:32 train.py: 74] Epoch 14, iter 0/6416, lr 0.001000, loss 23.929906 +INFO 2020-11-27 06:36:00 train.py: 74] Epoch 14, iter 200/6416, lr 0.001000, loss 23.518417 +INFO 2020-11-27 06:37:27 train.py: 74] Epoch 14, iter 400/6416, lr 0.001000, loss 23.378059 +INFO 2020-11-27 06:38:54 train.py: 74] Epoch 14, iter 600/6416, lr 0.001000, loss 23.525655 +INFO 2020-11-27 06:40:21 train.py: 74] Epoch 14, iter 800/6416, lr 0.001000, loss 23.557490 +INFO 2020-11-27 06:41:48 train.py: 74] Epoch 14, iter 1000/6416, lr 0.001000, loss 23.516982 +INFO 2020-11-27 06:43:15 train.py: 74] Epoch 14, iter 1200/6416, lr 0.001000, loss 23.497585 +INFO 2020-11-27 06:44:42 train.py: 74] Epoch 14, iter 1400/6416, lr 0.001000, loss 23.417400 +INFO 2020-11-27 06:46:09 train.py: 74] Epoch 14, iter 1600/6416, lr 0.001000, loss 23.508198 +INFO 2020-11-27 06:47:35 train.py: 74] Epoch 14, iter 1800/6416, lr 0.001000, loss 23.550521 +INFO 2020-11-27 06:49:02 train.py: 74] Epoch 14, iter 2000/6416, lr 0.001000, loss 23.574154 +INFO 2020-11-27 06:50:29 train.py: 74] Epoch 14, iter 2200/6416, lr 0.001000, loss 23.588138 +INFO 2020-11-27 06:51:55 train.py: 74] Epoch 14, iter 2400/6416, lr 0.001000, loss 23.537958 +INFO 2020-11-27 06:53:22 train.py: 74] Epoch 14, iter 2600/6416, lr 0.001000, loss 23.513172 +INFO 2020-11-27 06:54:49 train.py: 74] Epoch 14, iter 2800/6416, lr 0.001000, loss 23.665900 +INFO 2020-11-27 06:56:15 train.py: 87] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2020-11-27 06:56:15 train.py: 74] Epoch 14, iter 3000/6416, lr 0.001000, loss 23.617019 +INFO 2020-11-27 06:57:43 train.py: 74] Epoch 14, iter 3200/6416, lr 0.001000, loss 23.521042 +INFO 2020-11-27 06:59:10 train.py: 74] Epoch 14, iter 3400/6416, lr 0.001000, loss 23.607922 +INFO 2020-11-27 07:00:38 train.py: 74] Epoch 14, iter 3600/6416, lr 0.001000, loss 23.691289 +INFO 2020-11-27 07:02:05 train.py: 74] Epoch 14, iter 3800/6416, lr 0.001000, loss 23.544915 +INFO 2020-11-27 07:03:32 train.py: 74] Epoch 14, iter 4000/6416, lr 0.001000, loss 23.671088 +INFO 2020-11-27 07:05:00 train.py: 74] Epoch 14, iter 4200/6416, lr 0.001000, loss 23.677069 +INFO 2020-11-27 07:06:27 train.py: 74] Epoch 14, iter 4400/6416, lr 0.001000, loss 23.574303 +INFO 2020-11-27 07:07:54 train.py: 74] Epoch 14, iter 4600/6416, lr 0.001000, loss 23.577784 +INFO 2020-11-27 07:09:22 train.py: 74] Epoch 14, iter 4800/6416, lr 0.001000, loss 23.679696 +INFO 2020-11-27 07:10:49 train.py: 74] Epoch 14, iter 5000/6416, lr 0.001000, loss 23.669140 +INFO 2020-11-27 07:12:16 train.py: 74] Epoch 14, iter 5200/6416, lr 0.001000, loss 23.732464 +INFO 2020-11-27 07:13:44 train.py: 74] Epoch 14, iter 5400/6416, lr 0.001000, loss 23.584007 +INFO 2020-11-27 07:15:11 train.py: 74] Epoch 14, iter 5600/6416, lr 0.001000, loss 23.668555 +INFO 2020-11-27 07:16:38 train.py: 74] Epoch 14, iter 5800/6416, lr 0.001000, loss 23.592719 +INFO 2020-11-27 07:18:05 train.py: 87] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2020-11-27 07:18:06 train.py: 74] Epoch 14, iter 6000/6416, lr 0.001000, loss 23.619880 +INFO 2020-11-27 07:19:33 train.py: 74] Epoch 14, iter 6200/6416, lr 0.001000, loss 23.767178 +INFO 2020-11-27 07:21:00 train.py: 74] Epoch 14, iter 6400/6416, lr 0.001000, loss 23.705099 +INFO 2020-11-27 07:21:07 train.py: 92] Save checkpoint Epoch_14.pt to disk... +INFO 2020-11-27 07:21:09 train.py: 74] Epoch 15, iter 0/6416, lr 0.001000, loss 23.711329 +INFO 2020-11-27 07:22:37 train.py: 74] Epoch 15, iter 200/6416, lr 0.001000, loss 23.391213 +INFO 2020-11-27 07:24:05 train.py: 74] Epoch 15, iter 400/6416, lr 0.001000, loss 23.319100 +INFO 2020-11-27 07:25:33 train.py: 74] Epoch 15, iter 600/6416, lr 0.001000, loss 23.378035 +INFO 2020-11-27 07:27:00 train.py: 74] Epoch 15, iter 800/6416, lr 0.001000, loss 23.392076 +INFO 2020-11-27 07:28:28 train.py: 74] Epoch 15, iter 1000/6416, lr 0.001000, loss 23.384959 +INFO 2020-11-27 07:29:56 train.py: 74] Epoch 15, iter 1200/6416, lr 0.001000, loss 23.477245 +INFO 2020-11-27 07:31:23 train.py: 74] Epoch 15, iter 1400/6416, lr 0.001000, loss 23.459945 +INFO 2020-11-27 07:32:50 train.py: 74] Epoch 15, iter 1600/6416, lr 0.001000, loss 23.452667 +INFO 2020-11-27 07:34:18 train.py: 74] Epoch 15, iter 1800/6416, lr 0.001000, loss 23.401626 +INFO 2020-11-27 07:35:45 train.py: 74] Epoch 15, iter 2000/6416, lr 0.001000, loss 23.446358 +INFO 2020-11-27 07:37:13 train.py: 74] Epoch 15, iter 2200/6416, lr 0.001000, loss 23.414836 +INFO 2020-11-27 07:38:40 train.py: 74] Epoch 15, iter 2400/6416, lr 0.001000, loss 23.444439 +INFO 2020-11-27 07:40:07 train.py: 74] Epoch 15, iter 2600/6416, lr 0.001000, loss 23.545497 +INFO 2020-11-27 07:41:34 train.py: 74] Epoch 15, iter 2800/6416, lr 0.001000, loss 23.381389 +INFO 2020-11-27 07:43:01 train.py: 87] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2020-11-27 07:43:02 train.py: 74] Epoch 15, iter 3000/6416, lr 0.001000, loss 23.463254 +INFO 2020-11-27 07:44:29 train.py: 74] Epoch 15, iter 3200/6416, lr 0.001000, loss 23.428928 +INFO 2020-11-27 07:45:55 train.py: 74] Epoch 15, iter 3400/6416, lr 0.001000, loss 23.441934 +INFO 2020-11-27 07:47:22 train.py: 74] Epoch 15, iter 3600/6416, lr 0.001000, loss 23.352090 +INFO 2020-11-27 07:48:48 train.py: 74] Epoch 15, iter 3800/6416, lr 0.001000, loss 23.486887 +INFO 2020-11-27 07:50:15 train.py: 74] Epoch 15, iter 4000/6416, lr 0.001000, loss 23.442909 +INFO 2020-11-27 07:51:41 train.py: 74] Epoch 15, iter 4200/6416, lr 0.001000, loss 23.413164 +INFO 2020-11-27 07:53:08 train.py: 74] Epoch 15, iter 4400/6416, lr 0.001000, loss 23.555102 +INFO 2020-11-27 07:54:35 train.py: 74] Epoch 15, iter 4600/6416, lr 0.001000, loss 23.582662 +INFO 2020-11-27 07:56:01 train.py: 74] Epoch 15, iter 4800/6416, lr 0.001000, loss 23.477735 +INFO 2020-11-27 07:57:28 train.py: 74] Epoch 15, iter 5000/6416, lr 0.001000, loss 23.563900 +INFO 2020-11-27 07:58:54 train.py: 74] Epoch 15, iter 5200/6416, lr 0.001000, loss 23.485230 +INFO 2020-11-27 08:00:21 train.py: 74] Epoch 15, iter 5400/6416, lr 0.001000, loss 23.556081 +INFO 2020-11-27 08:01:47 train.py: 74] Epoch 15, iter 5600/6416, lr 0.001000, loss 23.543590 +INFO 2020-11-27 08:03:13 train.py: 74] Epoch 15, iter 5800/6416, lr 0.001000, loss 23.591393 +INFO 2020-11-27 08:04:40 train.py: 87] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2020-11-27 08:04:40 train.py: 74] Epoch 15, iter 6000/6416, lr 0.001000, loss 23.549643 +INFO 2020-11-27 08:06:07 train.py: 74] Epoch 15, iter 6200/6416, lr 0.001000, loss 23.541022 +INFO 2020-11-27 08:07:35 train.py: 74] Epoch 15, iter 6400/6416, lr 0.001000, loss 23.537161 +INFO 2020-11-27 08:07:41 train.py: 92] Save checkpoint Epoch_15.pt to disk... +INFO 2020-11-27 08:07:43 train.py: 74] Epoch 16, iter 0/6416, lr 0.000100, loss 23.367138 +INFO 2020-11-27 08:09:11 train.py: 74] Epoch 16, iter 200/6416, lr 0.000100, loss 23.243022 +INFO 2020-11-27 08:10:39 train.py: 74] Epoch 16, iter 400/6416, lr 0.000100, loss 23.149845 +INFO 2020-11-27 08:12:07 train.py: 74] Epoch 16, iter 600/6416, lr 0.000100, loss 23.253945 +INFO 2020-11-27 08:13:35 train.py: 74] Epoch 16, iter 800/6416, lr 0.000100, loss 23.260012 +INFO 2020-11-27 08:15:02 train.py: 74] Epoch 16, iter 1000/6416, lr 0.000100, loss 23.219962 +INFO 2020-11-27 08:16:30 train.py: 74] Epoch 16, iter 1200/6416, lr 0.000100, loss 23.192115 +INFO 2020-11-27 08:17:57 train.py: 74] Epoch 16, iter 1400/6416, lr 0.000100, loss 23.202055 +INFO 2020-11-27 08:19:25 train.py: 74] Epoch 16, iter 1600/6416, lr 0.000100, loss 23.266561 +INFO 2020-11-27 08:20:52 train.py: 74] Epoch 16, iter 1800/6416, lr 0.000100, loss 23.282453 +INFO 2020-11-27 08:22:19 train.py: 74] Epoch 16, iter 2000/6416, lr 0.000100, loss 23.232793 +INFO 2020-11-27 08:23:47 train.py: 74] Epoch 16, iter 2200/6416, lr 0.000100, loss 23.129191 +INFO 2020-11-27 08:25:14 train.py: 74] Epoch 16, iter 2400/6416, lr 0.000100, loss 23.175048 +INFO 2020-11-27 08:26:41 train.py: 74] Epoch 16, iter 2600/6416, lr 0.000100, loss 23.217734 +INFO 2020-11-27 08:28:08 train.py: 74] Epoch 16, iter 2800/6416, lr 0.000100, loss 23.283132 +INFO 2020-11-27 08:29:35 train.py: 87] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2020-11-27 08:29:35 train.py: 74] Epoch 16, iter 3000/6416, lr 0.000100, loss 23.301932 +INFO 2020-11-27 08:31:02 train.py: 74] Epoch 16, iter 3200/6416, lr 0.000100, loss 23.153000 +INFO 2020-11-27 08:32:29 train.py: 74] Epoch 16, iter 3400/6416, lr 0.000100, loss 23.151115 +INFO 2020-11-27 08:33:56 train.py: 74] Epoch 16, iter 3600/6416, lr 0.000100, loss 23.337621 +INFO 2020-11-27 08:35:23 train.py: 74] Epoch 16, iter 3800/6416, lr 0.000100, loss 23.141885 +INFO 2020-11-27 08:36:50 train.py: 74] Epoch 16, iter 4000/6416, lr 0.000100, loss 23.208935 +INFO 2020-11-27 08:38:17 train.py: 74] Epoch 16, iter 4200/6416, lr 0.000100, loss 23.323564 +INFO 2020-11-27 08:39:44 train.py: 74] Epoch 16, iter 4400/6416, lr 0.000100, loss 23.273823 +INFO 2020-11-27 08:41:11 train.py: 74] Epoch 16, iter 4600/6416, lr 0.000100, loss 23.291243 +INFO 2020-11-27 08:42:39 train.py: 74] Epoch 16, iter 4800/6416, lr 0.000100, loss 23.321186 +INFO 2020-11-27 08:44:06 train.py: 74] Epoch 16, iter 5000/6416, lr 0.000100, loss 23.277944 +INFO 2020-11-27 08:45:33 train.py: 74] Epoch 16, iter 5200/6416, lr 0.000100, loss 23.162413 +INFO 2020-11-27 08:47:00 train.py: 74] Epoch 16, iter 5400/6416, lr 0.000100, loss 23.176937 +INFO 2020-11-27 08:48:27 train.py: 74] Epoch 16, iter 5600/6416, lr 0.000100, loss 23.271643 +INFO 2020-11-27 08:49:54 train.py: 74] Epoch 16, iter 5800/6416, lr 0.000100, loss 23.267516 +INFO 2020-11-27 08:51:21 train.py: 87] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2020-11-27 08:51:21 train.py: 74] Epoch 16, iter 6000/6416, lr 0.000100, loss 23.259937 +INFO 2020-11-27 08:52:47 train.py: 74] Epoch 16, iter 6200/6416, lr 0.000100, loss 23.181619 +INFO 2020-11-27 08:54:14 train.py: 74] Epoch 16, iter 6400/6416, lr 0.000100, loss 23.153317 +INFO 2020-11-27 08:54:21 train.py: 92] Save checkpoint Epoch_16.pt to disk... +INFO 2020-11-27 08:54:23 train.py: 74] Epoch 17, iter 0/6416, lr 0.000100, loss 23.140126 +INFO 2020-11-27 08:55:50 train.py: 74] Epoch 17, iter 200/6416, lr 0.000100, loss 23.185751 +INFO 2020-11-27 08:57:18 train.py: 74] Epoch 17, iter 400/6416, lr 0.000100, loss 23.235589 +INFO 2020-11-27 08:58:46 train.py: 74] Epoch 17, iter 600/6416, lr 0.000100, loss 23.228196 +INFO 2020-11-27 09:00:14 train.py: 74] Epoch 17, iter 800/6416, lr 0.000100, loss 23.190763 +INFO 2020-11-27 09:01:42 train.py: 74] Epoch 17, iter 1000/6416, lr 0.000100, loss 23.274936 +INFO 2020-11-27 09:03:09 train.py: 74] Epoch 17, iter 1200/6416, lr 0.000100, loss 23.264399 +INFO 2020-11-27 09:04:36 train.py: 74] Epoch 17, iter 1400/6416, lr 0.000100, loss 23.104942 +INFO 2020-11-27 09:06:04 train.py: 74] Epoch 17, iter 1600/6416, lr 0.000100, loss 23.289762 +INFO 2020-11-27 09:07:31 train.py: 74] Epoch 17, iter 1800/6416, lr 0.000100, loss 23.167957 +INFO 2020-11-27 09:08:58 train.py: 74] Epoch 17, iter 2000/6416, lr 0.000100, loss 23.241819 +INFO 2020-11-27 09:10:25 train.py: 74] Epoch 17, iter 2200/6416, lr 0.000100, loss 23.204760 +INFO 2020-11-27 09:11:52 train.py: 74] Epoch 17, iter 2400/6416, lr 0.000100, loss 23.216417 +INFO 2020-11-27 09:13:19 train.py: 74] Epoch 17, iter 2600/6416, lr 0.000100, loss 23.145435 +INFO 2020-11-27 09:14:46 train.py: 74] Epoch 17, iter 2800/6416, lr 0.000100, loss 23.227932 +INFO 2020-11-27 09:16:13 train.py: 87] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2020-11-27 09:16:13 train.py: 74] Epoch 17, iter 3000/6416, lr 0.000100, loss 23.171197 +INFO 2020-11-27 09:17:40 train.py: 74] Epoch 17, iter 3200/6416, lr 0.000100, loss 23.165177 +INFO 2020-11-27 09:19:07 train.py: 74] Epoch 17, iter 3400/6416, lr 0.000100, loss 23.201884 +INFO 2020-11-27 09:20:33 train.py: 74] Epoch 17, iter 3600/6416, lr 0.000100, loss 23.300417 +INFO 2020-11-27 09:22:00 train.py: 74] Epoch 17, iter 3800/6416, lr 0.000100, loss 23.246319 +INFO 2020-11-27 09:23:27 train.py: 74] Epoch 17, iter 4000/6416, lr 0.000100, loss 23.299357 +INFO 2020-11-27 09:24:54 train.py: 74] Epoch 17, iter 4200/6416, lr 0.000100, loss 23.202319 +INFO 2020-11-27 09:26:21 train.py: 74] Epoch 17, iter 4400/6416, lr 0.000100, loss 23.171816 +INFO 2020-11-27 09:27:48 train.py: 74] Epoch 17, iter 4600/6416, lr 0.000100, loss 23.154298 +INFO 2020-11-27 09:29:15 train.py: 74] Epoch 17, iter 4800/6416, lr 0.000100, loss 23.194577 +INFO 2020-11-27 09:30:41 train.py: 74] Epoch 17, iter 5000/6416, lr 0.000100, loss 23.163668 +INFO 2020-11-27 09:32:08 train.py: 74] Epoch 17, iter 5200/6416, lr 0.000100, loss 23.219131 +INFO 2020-11-27 09:33:35 train.py: 74] Epoch 17, iter 5400/6416, lr 0.000100, loss 23.296676 +INFO 2020-11-27 09:35:02 train.py: 74] Epoch 17, iter 5600/6416, lr 0.000100, loss 23.271430 +INFO 2020-11-27 09:36:29 train.py: 74] Epoch 17, iter 5800/6416, lr 0.000100, loss 23.116875 +INFO 2020-11-27 09:37:56 train.py: 87] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2020-11-27 09:37:56 train.py: 74] Epoch 17, iter 6000/6416, lr 0.000100, loss 23.200508 +INFO 2020-11-27 09:39:23 train.py: 74] Epoch 17, iter 6200/6416, lr 0.000100, loss 23.150287 +INFO 2020-11-27 09:40:50 train.py: 74] Epoch 17, iter 6400/6416, lr 0.000100, loss 23.116059 +INFO 2020-11-27 09:40:56 train.py: 92] Save checkpoint Epoch_17.pt to disk... +INFO 2020-11-27 09:40:57 train.py: 175] Optimization done! diff --git a/bob/bio/facexzoo/models/heads/CurricularFace/.gitkeep b/bob/bio/facexzoo/models/heads/CurricularFace/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..466e5913061c0771c6200120009fdd27ed53b3c5 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_agedb.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16.pt | 0.9581666666666667 | 0.00434932945023329 | +| Epoch_16_batch_2999.pt | 0.9578333333333333 | 0.004289306254879474 | +| Epoch_16_batch_5999.pt | 0.9573333333333334 | 0.004403982485023646 | +| Epoch_14.pt | 0.9571666666666667 | 0.004595018773722715 | +| Epoch_14_batch_2999.pt | 0.9570000000000001 | 0.004365973934308554 | +| Epoch_14_batch_5999.pt | 0.9569999999999999 | 0.004309048762147851 | +| Epoch_17.pt | 0.9568333333333332 | 0.003884521356980745 | +| Epoch_15_batch_2999.pt | 0.9566666666666667 | 0.00426730319326034 | +| Epoch_13.pt | 0.9566666666666664 | 0.004353230672035494 | +| Epoch_12_batch_5999.pt | 0.9564999999999999 | 0.004377622670687087 | +| Epoch_15_batch_5999.pt | 0.9563333333333335 | 0.004358898943540675 | +| Epoch_17_batch_5999.pt | 0.9563333333333333 | 0.003981438414926423 | +| Epoch_11.pt | 0.9561666666666667 | 0.004120484809064149 | +| Epoch_17_batch_2999.pt | 0.9560000000000001 | 0.004210510071443657 | +| Epoch_13_batch_2999.pt | 0.9558333333333333 | 0.004319422114983371 | +| Epoch_13_batch_5999.pt | 0.9551666666666667 | 0.0045909868758064595 | +| Epoch_12_batch_2999.pt | 0.9549999999999998 | 0.00468778291327311 | +| Epoch_15.pt | 0.9548333333333334 | 0.004130958098893621 | +| Epoch_11_batch_2999.pt | 0.9546666666666667 | 0.004443055338473825 | +| Epoch_10.pt | 0.9540000000000001 | 0.00386660280917896 | +| Epoch_12.pt | 0.9538333333333332 | 0.004187356041380283 | +| Epoch_11_batch_5999.pt | 0.9536666666666667 | 0.004505141096158507 | +| Epoch_10_batch_2999.pt | 0.9518333333333333 | 0.003844588950399104 | +| Epoch_10_batch_5999.pt | 0.9505000000000001 | 0.004906848325944789 | +| Epoch_7_batch_2999.pt | 0.9441666666666666 | 0.00475478965795103 | +| Epoch_7_batch_5999.pt | 0.942 | 0.004809969071536304 | +| Epoch_8_batch_5999.pt | 0.9410000000000001 | 0.0042615130912811395 | +| Epoch_8.pt | 0.9406666666666667 | 0.004715354483093987 | +| Epoch_8_batch_2999.pt | 0.9403333333333332 | 0.004660048216780171 | +| Epoch_9_batch_5999.pt | 0.9398333333333333 | 0.005325515102890151 | +| Epoch_9_batch_2999.pt | 0.9386666666666666 | 0.006318696536939077 | +| Epoch_6_batch_5999.pt | 0.9385 | 0.005130699179846159 | +| Epoch_6.pt | 0.9378333333333334 | 0.005589065603568066 | +| Epoch_5.pt | 0.9356666666666665 | 0.00530664619389314 | +| Epoch_6_batch_2999.pt | 0.9343333333333333 | 0.005375986845956861 | +| Epoch_5_batch_2999.pt | 0.9341666666666668 | 0.004466956872827818 | +| Epoch_4_batch_2999.pt | 0.9338333333333333 | 0.0052355032066803715 | +| Epoch_9.pt | 0.9329999999999998 | 0.004429140317332168 | +| Epoch_4.pt | 0.9316666666666666 | 0.0049128202154298094 | +| Epoch_7.pt | 0.9316666666666666 | 0.005363341504954298 | +| Epoch_4_batch_5999.pt | 0.9315 | 0.005706018048982033 | +| Epoch_3_batch_2999.pt | 0.9311666666666667 | 0.005205943896341165 | +| Epoch_5_batch_5999.pt | 0.9306666666666666 | 0.00432620496309595 | +| Epoch_3_batch_5999.pt | 0.9248333333333335 | 0.005807880980313002 | +| Epoch_2_batch_5999.pt | 0.9246666666666666 | 0.005292669050584242 | +| Epoch_3.pt | 0.9221666666666668 | 0.004733972309505041 | +| Epoch_2.pt | 0.9215 | 0.00614862224856558 | +| Epoch_2_batch_2999.pt | 0.9174999999999999 | 0.007433864787512108 | +| Epoch_1_batch_5999.pt | 0.9135 | 0.006677999626560765 | +| Epoch_1.pt | 0.9071666666666667 | 0.006934659773401975 | +| Epoch_1_batch_2999.pt | 0.9033333333333333 | 0.005152010275275391 | +| Epoch_0_batch_5999.pt | 0.8793333333333335 | 0.006574360974438664 | +| Epoch_0.pt | 0.8790000000000001 | 0.007106769507976614 | +| Epoch_0_batch_2999.pt | 0.8128333333333334 | 0.007962295406988378 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..fd394cc70dd69f7c5adb9fd9bf9c9399e45c96a4 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_calfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15.pt | 0.9374999999999998 | 0.0035158371849548353 | +| Epoch_17_batch_5999.pt | 0.9371666666666666 | 0.003531603350069513 | +| Epoch_15_batch_5999.pt | 0.937 | 0.003449816599168888 | +| Epoch_14_batch_2999.pt | 0.9365 | 0.003646831873839173 | +| Epoch_17.pt | 0.9360000000000002 | 0.0035416394334464927 | +| Epoch_13_batch_5999.pt | 0.9358333333333334 | 0.0036025539637496605 | +| Epoch_13.pt | 0.9358333333333334 | 0.003737117790853808 | +| Epoch_16_batch_5999.pt | 0.9358333333333333 | 0.003390709893259361 | +| Epoch_13_batch_2999.pt | 0.9356666666666668 | 0.0036106837353937532 | +| Epoch_16.pt | 0.9355000000000002 | 0.0038654052859553277 | +| Epoch_14_batch_5999.pt | 0.9355 | 0.0035490391674854295 | +| Epoch_14.pt | 0.9353333333333333 | 0.003555555555555558 | +| Epoch_15_batch_2999.pt | 0.9351666666666667 | 0.003755243248026936 | +| Epoch_16_batch_2999.pt | 0.9346666666666668 | 0.0034228715112776345 | +| Epoch_17_batch_2999.pt | 0.9345000000000001 | 0.003514081022415216 | +| Epoch_10.pt | 0.9339999999999999 | 0.0038904758666692446 | +| Epoch_11_batch_5999.pt | 0.9328333333333333 | 0.004332264825529316 | +| Epoch_10_batch_5999.pt | 0.9326666666666668 | 0.004173697771331767 | +| Epoch_11.pt | 0.9325000000000001 | 0.004000385783865485 | +| Epoch_12_batch_2999.pt | 0.9323333333333332 | 0.0035763282087624693 | +| Epoch_12_batch_5999.pt | 0.9313333333333332 | 0.003467663674294944 | +| Epoch_11_batch_2999.pt | 0.9303333333333332 | 0.004280302285390712 | +| Epoch_12.pt | 0.93 | 0.004437494566159076 | +| Epoch_10_batch_2999.pt | 0.9273333333333333 | 0.0038022085849486 | +| Epoch_9_batch_5999.pt | 0.9208333333333332 | 0.004989185836250435 | +| Epoch_7_batch_5999.pt | 0.9204999999999999 | 0.00443784231856478 | +| Epoch_9_batch_2999.pt | 0.9188333333333334 | 0.0048435396708615755 | +| Epoch_8_batch_2999.pt | 0.9186666666666665 | 0.0051866400075483605 | +| Epoch_8_batch_5999.pt | 0.9178333333333333 | 0.004416928713400209 | +| Epoch_7_batch_2999.pt | 0.9176666666666667 | 0.004541985207993269 | +| Epoch_8.pt | 0.9175000000000001 | 0.004754789657951019 | +| Epoch_6_batch_5999.pt | 0.9173333333333333 | 0.004007708621526983 | +| Epoch_6_batch_2999.pt | 0.9171666666666667 | 0.0035750334540436 | +| Epoch_5_batch_2999.pt | 0.9168333333333333 | 0.005130699179846169 | +| Epoch_9.pt | 0.9166666666666666 | 0.004906533814626577 | +| Epoch_5_batch_5999.pt | 0.9148333333333334 | 0.004248819734444197 | +| Epoch_6.pt | 0.914 | 0.0038506052113696522 | +| Epoch_4.pt | 0.9128333333333334 | 0.0052236995546295585 | +| Epoch_4_batch_2999.pt | 0.9116666666666667 | 0.004274529791482515 | +| Epoch_5.pt | 0.9094999999999999 | 0.0054265579204683285 | +| Epoch_4_batch_5999.pt | 0.9093333333333333 | 0.0043475550103364135 | +| Epoch_3_batch_5999.pt | 0.908 | 0.005072316538005924 | +| Epoch_7.pt | 0.906 | 0.00591190470863246 | +| Epoch_3_batch_2999.pt | 0.9046666666666667 | 0.004358898943540678 | +| Epoch_2_batch_5999.pt | 0.9046666666666665 | 0.0035468643776694134 | +| Epoch_3.pt | 0.9024999999999999 | 0.004715681745091331 | +| Epoch_2_batch_2999.pt | 0.8996666666666664 | 0.003823255674241167 | +| Epoch_2.pt | 0.8995 | 0.004830778379628522 | +| Epoch_1.pt | 0.8923333333333334 | 0.004901498888913943 | +| Epoch_1_batch_5999.pt | 0.8903333333333334 | 0.0038873012632301943 | +| Epoch_1_batch_2999.pt | 0.8828333333333334 | 0.005703854014373431 | +| Epoch_0_batch_5999.pt | 0.8644999999999999 | 0.0047793924920007 | +| Epoch_0.pt | 0.8620000000000001 | 0.005598721194375164 | +| Epoch_0_batch_2999.pt | 0.8156666666666668 | 0.005410323921751043 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..f0e93b0a5bcaa643b2512b9c85c0cf78ed6d2523 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_cplfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_2999.pt | 0.8303333333333333 | 0.006120195268409075 | +| Epoch_17.pt | 0.8303333333333333 | 0.005830951894845296 | +| Epoch_13.pt | 0.8296666666666667 | 0.006195378604200283 | +| Epoch_14_batch_2999.pt | 0.829 | 0.0067914252399716175 | +| Epoch_13_batch_5999.pt | 0.8288333333333334 | 0.006983446034624916 | +| Epoch_15.pt | 0.8283333333333334 | 0.006749485577105528 | +| Epoch_14.pt | 0.8278333333333332 | 0.006699226047061674 | +| Epoch_15_batch_2999.pt | 0.8276666666666668 | 0.007154382236446779 | +| Epoch_14_batch_5999.pt | 0.827 | 0.006743995957997119 | +| Epoch_16_batch_5999.pt | 0.8261666666666667 | 0.006290547484465956 | +| Epoch_17_batch_5999.pt | 0.826 | 0.006217259926016791 | +| Epoch_15_batch_5999.pt | 0.8256666666666665 | 0.006422376007385967 | +| Epoch_11_batch_5999.pt | 0.8254999999999999 | 0.006171669642231309 | +| Epoch_16_batch_2999.pt | 0.8254999999999999 | 0.005968280352862992 | +| Epoch_16.pt | 0.8244999999999999 | 0.006573656742100471 | +| Epoch_17_batch_2999.pt | 0.8240000000000001 | 0.006541416013126674 | +| Epoch_12_batch_5999.pt | 0.8238333333333333 | 0.007311626121678394 | +| Epoch_12.pt | 0.8235000000000001 | 0.006499999999999999 | +| Epoch_11_batch_2999.pt | 0.8223333333333332 | 0.006369293621318446 | +| Epoch_11.pt | 0.8215 | 0.006760679708687345 | +| Epoch_10.pt | 0.82 | 0.005510931896727668 | +| Epoch_12_batch_2999.pt | 0.8198333333333334 | 0.006476214791426493 | +| Epoch_10_batch_2999.pt | 0.8181666666666667 | 0.006128510583764106 | +| Epoch_10_batch_5999.pt | 0.8176666666666665 | 0.006222222222222226 | +| Epoch_8_batch_5999.pt | 0.8039999999999999 | 0.0068682486491224845 | +| Epoch_9_batch_2999.pt | 0.7946666666666666 | 0.008243216440440623 | +| Epoch_9_batch_5999.pt | 0.7939999999999999 | 0.008070675465482168 | +| Epoch_6_batch_5999.pt | 0.7916666666666667 | 0.007453559924999304 | +| Epoch_9.pt | 0.791 | 0.007350149070462764 | +| Epoch_5.pt | 0.7901666666666667 | 0.006954215348341691 | +| Epoch_5_batch_5999.pt | 0.7896666666666666 | 0.008380606654725816 | +| Epoch_8_batch_2999.pt | 0.7891666666666667 | 0.007214739713655822 | +| Epoch_6.pt | 0.7886666666666666 | 0.006008224815375902 | +| Epoch_8.pt | 0.7883333333333333 | 0.007544108976341317 | +| Epoch_6_batch_2999.pt | 0.7868333333333334 | 0.007897686799951205 | +| Epoch_7_batch_5999.pt | 0.7846666666666666 | 0.007078920193865092 | +| Epoch_5_batch_2999.pt | 0.7836666666666667 | 0.005740262823595327 | +| Epoch_4_batch_5999.pt | 0.7821666666666667 | 0.00808156719919235 | +| Epoch_4_batch_2999.pt | 0.7816666666666666 | 0.007062332703142532 | +| Epoch_3_batch_5999.pt | 0.7806666666666666 | 0.007746763561579271 | +| Epoch_7_batch_2999.pt | 0.7803333333333333 | 0.00705708644808907 | +| Epoch_2_batch_5999.pt | 0.7801666666666665 | 0.00687835215695313 | +| Epoch_7.pt | 0.7798333333333333 | 0.00934407450714418 | +| Epoch_4.pt | 0.7793333333333333 | 0.007111111111111111 | +| Epoch_3_batch_2999.pt | 0.7775000000000001 | 0.007806494605435357 | +| Epoch_3.pt | 0.7676666666666667 | 0.00841515387944955 | +| Epoch_2_batch_2999.pt | 0.7668333333333333 | 0.007586741196014837 | +| Epoch_2.pt | 0.7630000000000001 | 0.0068709443705512515 | +| Epoch_1_batch_5999.pt | 0.7583333333333334 | 0.007200822998230957 | +| Epoch_1.pt | 0.7546666666666667 | 0.007152656417524928 | +| Epoch_1_batch_2999.pt | 0.7390000000000001 | 0.007205964607595981 | +| Epoch_0.pt | 0.7201666666666667 | 0.007151145984308311 | +| Epoch_0_batch_5999.pt | 0.7156666666666667 | 0.006583743540900241 | +| Epoch_0_batch_2999.pt | 0.6681666666666667 | 0.006673376253238234 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..7504ddcd87d2b58484b163cb4875d4568149d929 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_2999.pt | 0.9959999999999999 | 0.0012717247935843988 | +| Epoch_13_batch_5999.pt | 0.9959999999999999 | 0.0011439589045541155 | +| Epoch_14.pt | 0.9959999999999999 | 0.0011439589045541155 | +| Epoch_15.pt | 0.9958333333333333 | 0.001320540480444965 | +| Epoch_15_batch_2999.pt | 0.9958333333333332 | 0.0012729376930432875 | +| Epoch_16_batch_5999.pt | 0.9956666666666665 | 0.0012472191289246467 | +| Epoch_17.pt | 0.9956666666666665 | 0.001247219128924647 | +| Epoch_12_batch_5999.pt | 0.9955 | 0.0013844373104863442 | +| Epoch_13.pt | 0.9955 | 0.0012921892610681107 | +| Epoch_14_batch_5999.pt | 0.9955 | 0.0012921892610681107 | +| Epoch_16_batch_2999.pt | 0.9954999999999998 | 0.00129218926106811 | +| Epoch_16.pt | 0.9954999999999998 | 0.00129218926106811 | +| Epoch_10_batch_2999.pt | 0.9953333333333333 | 0.0012862041003100233 | +| Epoch_11.pt | 0.9953333333333333 | 0.001333333333333335 | +| Epoch_10.pt | 0.9951666666666666 | 0.0013252067157640591 | +| Epoch_14_batch_2999.pt | 0.9951666666666666 | 0.0013709958532503363 | +| Epoch_12_batch_2999.pt | 0.9949999999999999 | 0.0012909944487358084 | +| Epoch_17_batch_2999.pt | 0.9949999999999999 | 0.0012909944487358035 | +| Epoch_17_batch_5999.pt | 0.9948333333333335 | 0.0013482956777235082 | +| Epoch_12.pt | 0.9946666666666667 | 0.0012372809695177798 | +| Epoch_6_batch_2999.pt | 0.9945 | 0.0011666666666666618 | +| Epoch_9_batch_5999.pt | 0.9944999999999998 | 0.0011928283640879936 | +| Epoch_11_batch_5999.pt | 0.9944999999999998 | 0.0012680791345014764 | +| Epoch_11_batch_2999.pt | 0.9943333333333333 | 0.001409841948938833 | +| Epoch_15_batch_5999.pt | 0.9943333333333333 | 0.001409841948938833 | +| Epoch_4_batch_2999.pt | 0.994 | 0.0013193713430042172 | +| Epoch_8.pt | 0.994 | 0.0013877773329774184 | +| Epoch_10_batch_5999.pt | 0.994 | 0.0012717247935843984 | +| Epoch_7_batch_2999.pt | 0.9936666666666667 | 0.0014010578014353886 | +| Epoch_8_batch_2999.pt | 0.9936666666666667 | 0.0010482201257840645 | +| Epoch_9_batch_2999.pt | 0.9936666666666666 | 0.001378852627332317 | +| Epoch_4_batch_5999.pt | 0.9933333333333334 | 0.0011653431646335057 | +| Epoch_7.pt | 0.9931666666666665 | 0.0014369463507086146 | +| Epoch_6.pt | 0.993 | 0.001378852627332321 | +| Epoch_5.pt | 0.9928333333333332 | 0.0011928283640879928 | +| Epoch_9.pt | 0.9925 | 0.0017258027296676735 | +| Epoch_5_batch_5999.pt | 0.9924999999999999 | 0.0012969575033254142 | +| Epoch_6_batch_5999.pt | 0.9921666666666666 | 0.0014497764834111042 | +| Epoch_8_batch_5999.pt | 0.992 | 0.0011863420280034797 | +| Epoch_3_batch_5999.pt | 0.9919999999999998 | 0.0010772621905369634 | +| Epoch_4.pt | 0.9916666666666668 | 0.001290994448735813 | +| Epoch_7_batch_5999.pt | 0.9915 | 0.0018164203026968613 | +| Epoch_2.pt | 0.9914999999999999 | 0.0008031573497111617 | +| Epoch_3_batch_2999.pt | 0.9913333333333334 | 0.0012862041003100302 | +| Epoch_5_batch_2999.pt | 0.9911666666666668 | 0.0013844373104863472 | +| Epoch_3.pt | 0.991 | 0.001000000000000003 | +| Epoch_2_batch_5999.pt | 0.9905000000000002 | 0.0014497764834110977 | +| Epoch_2_batch_2999.pt | 0.9891666666666667 | 0.0012729376930432908 | +| Epoch_1_batch_5999.pt | 0.9884999999999999 | 0.0014153043558730012 | +| Epoch_1.pt | 0.9878333333333333 | 0.0018434066692263383 | +| Epoch_1_batch_2999.pt | 0.9866666666666667 | 0.002330686329267001 | +| Epoch_0_batch_5999.pt | 0.9821666666666667 | 0.0019253026056848261 | +| Epoch_0.pt | 0.9811666666666665 | 0.0022367580154663736 | +| Epoch_0_batch_2999.pt | 0.9680000000000002 | 0.0031210159789306956 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_rfw_African.txt b/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_rfw_African.txt new file mode 100644 index 0000000000000000000000000000000000000000..2b1d98fe3762173e59eebc0edfe9bf5065c4a6c0 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_rfw_African.txt @@ -0,0 +1,57 @@ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14.pt | 0.882 | 0.0037826765623442636 | +| Epoch_17.pt | 0.8798333333333332 | 0.003491170520747769 | +| Epoch_14_batch_2999.pt | 0.8793333333333333 | 0.004389943614475201 | +| Epoch_15_batch_5999.pt | 0.8793333333333333 | 0.00459602619554365 | +| Epoch_16_batch_5999.pt | 0.8791666666666667 | 0.0043265616605416765 | +| Epoch_17_batch_5999.pt | 0.8789999999999999 | 0.004403982485023646 | +| Epoch_13.pt | 0.8786666666666667 | 0.004546060565661954 | +| Epoch_14_batch_5999.pt | 0.8785000000000001 | 0.003931904950937888 | +| Epoch_12_batch_2999.pt | 0.8775000000000001 | 0.0037863464914197212 | +| Epoch_13_batch_2999.pt | 0.8775000000000001 | 0.004023465124111088 | +| Epoch_17_batch_2999.pt | 0.8765000000000001 | 0.004775516260631467 | +| Epoch_15_batch_2999.pt | 0.8760000000000001 | 0.004347555010336411 | +| Epoch_15.pt | 0.876 | 0.004283185614976973 | +| Epoch_11_batch_5999.pt | 0.8756666666666666 | 0.004741464065189311 | +| Epoch_13_batch_5999.pt | 0.8755000000000001 | 0.0040448870331705345 | +| Epoch_16_batch_2999.pt | 0.8755000000000001 | 0.004165184921717006 | +| Epoch_16.pt | 0.8748333333333334 | 0.003763453234319985 | +| Epoch_11.pt | 0.8736666666666666 | 0.00421490594186459 | +| Epoch_12_batch_5999.pt | 0.8723333333333333 | 0.003969015799887053 | +| Epoch_10_batch_2999.pt | 0.8721666666666665 | 0.004513696577099911 | +| Epoch_12.pt | 0.8708333333333333 | 0.0034359213546813826 | +| Epoch_11_batch_2999.pt | 0.8698333333333332 | 0.004530077807088045 | +| Epoch_10.pt | 0.8666666666666666 | 0.0036260375271290465 | +| Epoch_10_batch_5999.pt | 0.8661666666666668 | 0.003944444444444448 | +| Epoch_9_batch_5999.pt | 0.8468333333333333 | 0.004489012649559059 | +| Epoch_8_batch_5999.pt | 0.8436666666666668 | 0.006038968107422752 | +| Epoch_7_batch_2999.pt | 0.8425 | 0.00474178952519348 | +| Epoch_6_batch_2999.pt | 0.8365 | 0.005902761437885877 | +| Epoch_5_batch_2999.pt | 0.8353333333333334 | 0.004155912046503343 | +| Epoch_5_batch_5999.pt | 0.8333333333333334 | 0.005746711351549222 | +| Epoch_9_batch_2999.pt | 0.8333333333333334 | 0.0047466687473986325 | +| Epoch_7_batch_5999.pt | 0.8293333333333333 | 0.005364492313143695 | +| Epoch_4_batch_5999.pt | 0.8291666666666668 | 0.0057157460655998145 | +| Epoch_6_batch_5999.pt | 0.8291666666666668 | 0.003636661744234031 | +| Epoch_9.pt | 0.825 | 0.0049190985824841505 | +| Epoch_7.pt | 0.8228333333333333 | 0.005578010176654772 | +| Epoch_8_batch_2999.pt | 0.8226666666666667 | 0.005259911279353162 | +| Epoch_8.pt | 0.8226666666666667 | 0.00452155332208351 | +| Epoch_4_batch_2999.pt | 0.8215 | 0.003195772670726584 | +| Epoch_4.pt | 0.8203333333333334 | 0.0045188220905917256 | +| Epoch_3.pt | 0.8193333333333334 | 0.005271633850789535 | +| Epoch_3_batch_2999.pt | 0.8186666666666668 | 0.003911047979288449 | +| Epoch_3_batch_5999.pt | 0.8184999999999999 | 0.004971834249295637 | +| Epoch_5.pt | 0.8181666666666667 | 0.004657729537494042 | +| Epoch_6.pt | 0.8133333333333332 | 0.005252865179365693 | +| Epoch_2_batch_5999.pt | 0.8123333333333334 | 0.004158881616047307 | +| Epoch_2.pt | 0.8048333333333334 | 0.005406043714397374 | +| Epoch_2_batch_2999.pt | 0.7948333333333334 | 0.00525550857390323 | +| Epoch_1_batch_5999.pt | 0.7875 | 0.002846375212766558 | +| Epoch_1.pt | 0.7735000000000001 | 0.005732999559621233 | +| Epoch_1_batch_2999.pt | 0.7653333333333334 | 0.003359159212851328 | +| Epoch_0_batch_5999.pt | 0.7391666666666666 | 0.0062817096831364215 | +| Epoch_0.pt | 0.7383333333333333 | 0.003042903097250919 | +| Epoch_0_batch_2999.pt | 0.6805 | 0.006921294747925009 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_rfw_Asian.txt b/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_rfw_Asian.txt new file mode 100644 index 0000000000000000000000000000000000000000..0623899e3d54a6c141c3984d79ed6c2bf8bbf018 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_rfw_Asian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.8733333333333334 | 0.0031229931827900484 | +| Epoch_13_batch_5999.pt | 0.8733333333333333 | 0.0035136418446315362 | +| Epoch_12_batch_5999.pt | 0.873 | 0.004103596736137647 | +| Epoch_16_batch_2999.pt | 0.8729999999999999 | 0.0031505437508350725 | +| Epoch_14_batch_2999.pt | 0.8726666666666668 | 0.0038022085849485922 | +| Epoch_16_batch_5999.pt | 0.8724999999999999 | 0.0039849252978731734 | +| Epoch_15.pt | 0.8716666666666667 | 0.0043673875571185634 | +| Epoch_15_batch_2999.pt | 0.8714999999999999 | 0.0034106767729268524 | +| Epoch_15_batch_5999.pt | 0.8711666666666668 | 0.0037519542233117797 | +| Epoch_17_batch_2999.pt | 0.8711666666666668 | 0.0042604265711195174 | +| Epoch_16.pt | 0.8710000000000001 | 0.003678432301610412 | +| Epoch_11_batch_5999.pt | 0.8703333333333333 | 0.003485419364746252 | +| Epoch_14_batch_5999.pt | 0.8699999999999999 | 0.003379312516832348 | +| Epoch_13.pt | 0.8691666666666666 | 0.004061639272540946 | +| Epoch_17_batch_5999.pt | 0.8691666666666666 | 0.004069231128273328 | +| Epoch_14.pt | 0.8686666666666667 | 0.003708515392950805 | +| Epoch_12.pt | 0.8673333333333334 | 0.003984538017120245 | +| Epoch_11.pt | 0.8666666666666666 | 0.004587960627125013 | +| Epoch_12_batch_2999.pt | 0.8664999999999999 | 0.003526355793901858 | +| Epoch_13_batch_2999.pt | 0.8661666666666668 | 0.003460981806038339 | +| Epoch_10.pt | 0.8656666666666666 | 0.0032317865716108853 | +| Epoch_11_batch_2999.pt | 0.8631666666666666 | 0.003994208770670818 | +| Epoch_10_batch_5999.pt | 0.8611666666666666 | 0.0036434449849043547 | +| Epoch_10_batch_2999.pt | 0.8558333333333333 | 0.003471666622215104 | +| Epoch_8_batch_2999.pt | 0.8373333333333333 | 0.004254264382017037 | +| Epoch_7_batch_5999.pt | 0.8344999999999999 | 0.005340562230540111 | +| Epoch_8.pt | 0.8311666666666667 | 0.004681523968396056 | +| Epoch_9.pt | 0.8311666666666667 | 0.0048879418274609164 | +| Epoch_7_batch_2999.pt | 0.8305 | 0.005146315954275888 | +| Epoch_8_batch_5999.pt | 0.8303333333333335 | 0.0062301536750560774 | +| Epoch_9_batch_5999.pt | 0.8288333333333332 | 0.005259031033128386 | +| Epoch_9_batch_2999.pt | 0.8286666666666667 | 0.004573136806057042 | +| Epoch_6_batch_2999.pt | 0.8255000000000001 | 0.005720064318036039 | +| Epoch_4_batch_5999.pt | 0.8240000000000001 | 0.004151453709393204 | +| Epoch_7.pt | 0.8236666666666667 | 0.007784917358045929 | +| Epoch_6_batch_5999.pt | 0.8233333333333333 | 0.004654746681256319 | +| Epoch_3_batch_2999.pt | 0.8216666666666667 | 0.005947299418254503 | +| Epoch_5_batch_5999.pt | 0.8211666666666666 | 0.005784451274166792 | +| Epoch_6.pt | 0.8206666666666667 | 0.004876246279442601 | +| Epoch_5.pt | 0.8201666666666666 | 0.006998456619979034 | +| Epoch_5_batch_2999.pt | 0.8191666666666666 | 0.0045626638309838145 | +| Epoch_2.pt | 0.8188333333333334 | 0.004014249311000021 | +| Epoch_3.pt | 0.8186666666666665 | 0.0047127355689885585 | +| Epoch_4.pt | 0.8166666666666667 | 0.005784184482142391 | +| Epoch_4_batch_2999.pt | 0.8126666666666666 | 0.0047284272957673805 | +| Epoch_3_batch_5999.pt | 0.8116666666666668 | 0.0054997194092287005 | +| Epoch_2_batch_2999.pt | 0.8076666666666666 | 0.00516517302185309 | +| Epoch_2_batch_5999.pt | 0.8058333333333334 | 0.005694105680980364 | +| Epoch_1.pt | 0.8004999999999999 | 0.00544359403789286 | +| Epoch_1_batch_5999.pt | 0.7969999999999999 | 0.006008224815375895 | +| Epoch_1_batch_2999.pt | 0.7856666666666667 | 0.0035066075195687827 | +| Epoch_0.pt | 0.7631666666666665 | 0.0056789083458002685 | +| Epoch_0_batch_5999.pt | 0.7575 | 0.004276334532872399 | +| Epoch_0_batch_2999.pt | 0.7103333333333333 | 0.006449231938191758 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_rfw_Caucasian.txt b/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_rfw_Caucasian.txt new file mode 100644 index 0000000000000000000000000000000000000000..b7ecf814a43229545ee8dcfffeaaccf08d1891d6 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_rfw_Caucasian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_2999.pt | 0.9526666666666666 | 0.003399346342395195 | +| Epoch_16_batch_5999.pt | 0.9521666666666666 | 0.0036855573979159917 | +| Epoch_13_batch_5999.pt | 0.9513333333333334 | 0.003503085060096543 | +| Epoch_17_batch_2999.pt | 0.9513333333333334 | 0.003725123247608935 | +| Epoch_17_batch_5999.pt | 0.951 | 0.0032317865716108896 | +| Epoch_14_batch_5999.pt | 0.9506666666666665 | 0.003802208584948601 | +| Epoch_17.pt | 0.9504999999999999 | 0.0038413764251250095 | +| Epoch_14.pt | 0.9503333333333334 | 0.003942487777602261 | +| Epoch_15_batch_5999.pt | 0.9498333333333333 | 0.0036552853665768833 | +| Epoch_16.pt | 0.9498333333333333 | 0.003908284963769235 | +| Epoch_14_batch_2999.pt | 0.9495000000000001 | 0.0036008400940219583 | +| Epoch_15.pt | 0.9494999999999999 | 0.0038171963080670876 | +| Epoch_15_batch_2999.pt | 0.9490000000000001 | 0.0034977947197104894 | +| Epoch_12_batch_5999.pt | 0.9471666666666667 | 0.003944444444444445 | +| Epoch_13_batch_2999.pt | 0.9468333333333335 | 0.003763453234319988 | +| Epoch_12.pt | 0.9466666666666667 | 0.003600411499115475 | +| Epoch_13.pt | 0.9465000000000001 | 0.0037552432480269246 | +| Epoch_11.pt | 0.9461666666666666 | 0.0038813418832685733 | +| Epoch_12_batch_2999.pt | 0.946 | 0.0034174569998288236 | +| Epoch_11_batch_2999.pt | 0.9453333333333335 | 0.003349958540373624 | +| Epoch_11_batch_5999.pt | 0.9448333333333332 | 0.0035088072610306937 | +| Epoch_10.pt | 0.9438333333333333 | 0.004423910900359651 | +| Epoch_10_batch_5999.pt | 0.9421666666666667 | 0.004245913067618999 | +| Epoch_10_batch_2999.pt | 0.9418333333333333 | 0.003908284963769236 | +| Epoch_9_batch_5999.pt | 0.9268333333333334 | 0.00461111111111111 | +| Epoch_9_batch_2999.pt | 0.9251666666666667 | 0.00410848264321874 | +| Epoch_8_batch_5999.pt | 0.9228333333333334 | 0.004568072235704825 | +| Epoch_7_batch_5999.pt | 0.9223333333333334 | 0.003906310184721549 | +| Epoch_8_batch_2999.pt | 0.9204999999999999 | 0.005346338310781807 | +| Epoch_7_batch_2999.pt | 0.9179999999999999 | 0.004974006507910976 | +| Epoch_9.pt | 0.9174999999999999 | 0.003938179688543838 | +| Epoch_5_batch_5999.pt | 0.9173333333333333 | 0.003826483412827242 | +| Epoch_8.pt | 0.9166666666666666 | 0.002821872244266731 | +| Epoch_3_batch_2999.pt | 0.9156666666666669 | 0.004702245326555297 | +| Epoch_6_batch_5999.pt | 0.9155 | 0.004120484809064152 | +| Epoch_6_batch_2999.pt | 0.9143333333333332 | 0.003785938897200179 | +| Epoch_5_batch_2999.pt | 0.9133333333333334 | 0.005103859590158154 | +| Epoch_7.pt | 0.9119999999999999 | 0.0033683347536053575 | +| Epoch_4_batch_2999.pt | 0.9113333333333333 | 0.004012326685615065 | +| Epoch_4_batch_5999.pt | 0.9106666666666667 | 0.005105068892293398 | +| Epoch_3_batch_5999.pt | 0.9096666666666667 | 0.003911047979288462 | +| Epoch_6.pt | 0.9095000000000001 | 0.0040904133631555475 | +| Epoch_5.pt | 0.9091666666666667 | 0.004562663830983817 | +| Epoch_2_batch_5999.pt | 0.9085000000000001 | 0.0038123418809550558 | +| Epoch_3.pt | 0.9076666666666666 | 0.004015402444353925 | +| Epoch_4.pt | 0.9058333333333332 | 0.0032322640461753017 | +| Epoch_2.pt | 0.9026666666666667 | 0.005044248650140517 | +| Epoch_2_batch_2999.pt | 0.8975000000000002 | 0.0035070475782414752 | +| Epoch_1.pt | 0.8931666666666667 | 0.005519046706018155 | +| Epoch_1_batch_5999.pt | 0.8911666666666669 | 0.00348763247015989 | +| Epoch_1_batch_2999.pt | 0.8801666666666665 | 0.0052672409438427785 | +| Epoch_0_batch_5999.pt | 0.8571666666666667 | 0.005736228812351746 | +| Epoch_0.pt | 0.857 | 0.004456926915584794 | +| Epoch_0_batch_2999.pt | 0.8089999999999999 | 0.00579591171366443 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_rfw_Indian.txt b/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_rfw_Indian.txt new file mode 100644 index 0000000000000000000000000000000000000000..2533154dfbc2ea058f9a9d098720a3d28f35d188 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/CurricularFace/accu_files/accu_rfw_Indian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_5999.pt | 0.9056666666666666 | 0.003222222222222226 | +| Epoch_13_batch_2999.pt | 0.9055 | 0.003370624736026116 | +| Epoch_17_batch_5999.pt | 0.9053333333333333 | 0.002808716591058786 | +| Epoch_15.pt | 0.9051666666666668 | 0.002388888888888885 | +| Epoch_13.pt | 0.9048333333333332 | 0.003604267018513017 | +| Epoch_15_batch_2999.pt | 0.9046666666666667 | 0.004058218303944376 | +| Epoch_16_batch_5999.pt | 0.9043333333333333 | 0.0025724082006200453 | +| Epoch_16.pt | 0.9043333333333333 | 0.0030852096393144054 | +| Epoch_14_batch_2999.pt | 0.9035 | 0.0031763983019828432 | +| Epoch_16_batch_2999.pt | 0.9030000000000001 | 0.0026504134315281213 | +| Epoch_17.pt | 0.9029999999999999 | 0.00274199170650068 | +| Epoch_14_batch_5999.pt | 0.9019999999999999 | 0.003485419364746249 | +| Epoch_14.pt | 0.9019999999999999 | 0.0033222036417169007 | +| Epoch_15_batch_5999.pt | 0.9018333333333335 | 0.003337497399083457 | +| Epoch_17_batch_2999.pt | 0.9018333333333333 | 0.003156905032261189 | +| Epoch_12.pt | 0.901 | 0.0030751894451329005 | +| Epoch_11_batch_5999.pt | 0.9 | 0.0029292058503253486 | +| Epoch_12_batch_5999.pt | 0.8993333333333334 | 0.004173697771331766 | +| Epoch_11.pt | 0.8981666666666666 | 0.002923404914871745 | +| Epoch_11_batch_2999.pt | 0.8966666666666667 | 0.0028760398012321726 | +| Epoch_12_batch_2999.pt | 0.8963333333333333 | 0.0033407325285273086 | +| Epoch_10_batch_5999.pt | 0.8951666666666667 | 0.0034911705207477735 | +| Epoch_10_batch_2999.pt | 0.8938333333333333 | 0.004981756842176049 | +| Epoch_10.pt | 0.8916666666666666 | 0.004186987484759283 | +| Epoch_9_batch_2999.pt | 0.8705 | 0.004465574769801907 | +| Epoch_7_batch_5999.pt | 0.8678333333333332 | 0.004388888888888892 | +| Epoch_8_batch_5999.pt | 0.8678333333333332 | 0.004894252108719336 | +| Epoch_7_batch_2999.pt | 0.8676666666666666 | 0.004121608220220309 | +| Epoch_9_batch_5999.pt | 0.8658333333333333 | 0.0038349433012049615 | +| Epoch_9.pt | 0.8643333333333334 | 0.004715354483093987 | +| Epoch_6_batch_5999.pt | 0.8641666666666667 | 0.0036111111111111157 | +| Epoch_5_batch_5999.pt | 0.8633333333333333 | 0.004281744192888371 | +| Epoch_6_batch_2999.pt | 0.8618333333333335 | 0.004093430448841924 | +| Epoch_8.pt | 0.8613333333333333 | 0.003871389197818748 | +| Epoch_8_batch_2999.pt | 0.8608333333333335 | 0.004174067501391522 | +| Epoch_6.pt | 0.8596666666666666 | 0.0037498971179302674 | +| Epoch_4.pt | 0.8571666666666667 | 0.002344549760667684 | +| Epoch_7.pt | 0.8571666666666665 | 0.004458657828274064 | +| Epoch_3_batch_2999.pt | 0.8558333333333333 | 0.004225510415512541 | +| Epoch_5.pt | 0.8556666666666667 | 0.004068851871911232 | +| Epoch_4_batch_5999.pt | 0.8551666666666667 | 0.004363498992413095 | +| Epoch_5_batch_2999.pt | 0.8551666666666666 | 0.005524636181530111 | +| Epoch_4_batch_2999.pt | 0.85 | 0.004759655553467528 | +| Epoch_3.pt | 0.8498333333333334 | 0.005208314814781898 | +| Epoch_3_batch_5999.pt | 0.8484999999999999 | 0.004677566635509284 | +| Epoch_2_batch_5999.pt | 0.8431666666666666 | 0.003963179294891506 | +| Epoch_2.pt | 0.8418333333333333 | 0.004205008771148062 | +| Epoch_2_batch_2999.pt | 0.8413333333333334 | 0.004686465935325141 | +| Epoch_1_batch_5999.pt | 0.8391666666666667 | 0.004312270748961122 | +| Epoch_1.pt | 0.8336666666666666 | 0.00349426337633698 | +| Epoch_1_batch_2999.pt | 0.8241666666666667 | 0.0038429830234491787 | +| Epoch_0_batch_5999.pt | 0.8068333333333333 | 0.00712953342888441 | +| Epoch_0.pt | 0.8003333333333333 | 0.004141032256352058 | +| Epoch_0_batch_2999.pt | 0.7623333333333333 | 0.0033993463423951913 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/CurricularFace/log.log b/bob/bio/facexzoo/models/heads/CurricularFace/log.log new file mode 100644 index 0000000000000000000000000000000000000000..47d8c914734134b76245a7b24f678d588058129d --- /dev/null +++ b/bob/bio/facexzoo/models/heads/CurricularFace/log.log @@ -0,0 +1,655 @@ +INFO 2020-11-24 23:06:11 train.py: 172] Start optimization. +INFO 2020-11-24 23:06:11 train.py: 173] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='Mobilefacenets', batch_size=512, data_root='/export/home/wangjun492/wj_data/faceX-Zoo/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='curricular_face', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='arc-mobile', train_file='/export/home/wangjun492/wj_data/faceX-Zoo/deepglint/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7f78f02d6c88>) +backbone param: +{'feat_dim': 512, 'out_h': 7, 'out_w': 7} +head param: +{'feat_dim': 512, 'num_class': 72778, 'margin': 0.5, 'scale': 64} +INFO 2020-11-24 23:06:31 train.py: 74] Epoch 0, iter 0/6416, lr 0.100000, loss 42.042370 +INFO 2020-11-24 23:07:54 train.py: 74] Epoch 0, iter 200/6416, lr 0.100000, loss 40.287617 +INFO 2020-11-24 23:09:17 train.py: 74] Epoch 0, iter 400/6416, lr 0.100000, loss 34.400746 +INFO 2020-11-24 23:10:40 train.py: 74] Epoch 0, iter 600/6416, lr 0.100000, loss 29.962811 +INFO 2020-11-24 23:12:03 train.py: 74] Epoch 0, iter 800/6416, lr 0.100000, loss 26.778901 +INFO 2020-11-24 23:13:25 train.py: 74] Epoch 0, iter 1000/6416, lr 0.100000, loss 24.399180 +INFO 2020-11-24 23:14:47 train.py: 74] Epoch 0, iter 1200/6416, lr 0.100000, loss 22.380460 +INFO 2020-11-24 23:16:09 train.py: 74] Epoch 0, iter 1400/6416, lr 0.100000, loss 20.666360 +INFO 2020-11-24 23:17:30 train.py: 74] Epoch 0, iter 1600/6416, lr 0.100000, loss 19.215193 +INFO 2020-11-24 23:18:50 train.py: 74] Epoch 0, iter 1800/6416, lr 0.100000, loss 17.884455 +INFO 2020-11-24 23:20:10 train.py: 74] Epoch 0, iter 2000/6416, lr 0.100000, loss 16.757137 +INFO 2020-11-24 23:21:30 train.py: 74] Epoch 0, iter 2200/6416, lr 0.100000, loss 15.721476 +INFO 2020-11-24 23:22:49 train.py: 74] Epoch 0, iter 2400/6416, lr 0.100000, loss 14.769793 +INFO 2020-11-24 23:24:08 train.py: 74] Epoch 0, iter 2600/6416, lr 0.100000, loss 13.934270 +INFO 2020-11-24 23:25:26 train.py: 74] Epoch 0, iter 2800/6416, lr 0.100000, loss 13.236284 +INFO 2020-11-24 23:26:44 train.py: 87] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2020-11-24 23:26:45 train.py: 74] Epoch 0, iter 3000/6416, lr 0.100000, loss 12.597119 +INFO 2020-11-24 23:28:03 train.py: 74] Epoch 0, iter 3200/6416, lr 0.100000, loss 12.038828 +INFO 2020-11-24 23:29:21 train.py: 74] Epoch 0, iter 3400/6416, lr 0.100000, loss 11.497521 +INFO 2020-11-24 23:30:39 train.py: 74] Epoch 0, iter 3600/6416, lr 0.100000, loss 11.076711 +INFO 2020-11-24 23:31:56 train.py: 74] Epoch 0, iter 3800/6416, lr 0.100000, loss 10.634422 +INFO 2020-11-24 23:33:14 train.py: 74] Epoch 0, iter 4000/6416, lr 0.100000, loss 10.340265 +INFO 2020-11-24 23:34:31 train.py: 74] Epoch 0, iter 4200/6416, lr 0.100000, loss 9.994956 +INFO 2020-11-24 23:35:49 train.py: 74] Epoch 0, iter 4400/6416, lr 0.100000, loss 9.760416 +INFO 2020-11-24 23:37:06 train.py: 74] Epoch 0, iter 4600/6416, lr 0.100000, loss 9.492944 +INFO 2020-11-24 23:38:23 train.py: 74] Epoch 0, iter 4800/6416, lr 0.100000, loss 9.274274 +INFO 2020-11-24 23:39:41 train.py: 74] Epoch 0, iter 5000/6416, lr 0.100000, loss 9.085262 +INFO 2020-11-24 23:40:58 train.py: 74] Epoch 0, iter 5200/6416, lr 0.100000, loss 8.806890 +INFO 2020-11-24 23:42:15 train.py: 74] Epoch 0, iter 5400/6416, lr 0.100000, loss 8.673344 +INFO 2020-11-24 23:43:33 train.py: 74] Epoch 0, iter 5600/6416, lr 0.100000, loss 8.488318 +INFO 2020-11-24 23:44:50 train.py: 74] Epoch 0, iter 5800/6416, lr 0.100000, loss 8.377889 +INFO 2020-11-24 23:46:07 train.py: 87] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2020-11-24 23:46:07 train.py: 74] Epoch 0, iter 6000/6416, lr 0.100000, loss 8.211444 +INFO 2020-11-24 23:47:24 train.py: 74] Epoch 0, iter 6200/6416, lr 0.100000, loss 8.094617 +INFO 2020-11-24 23:48:42 train.py: 74] Epoch 0, iter 6400/6416, lr 0.100000, loss 7.990195 +INFO 2020-11-24 23:48:48 train.py: 92] Save checkpoint Epoch_0.pt to disk... +INFO 2020-11-24 23:48:49 train.py: 74] Epoch 1, iter 0/6416, lr 0.100000, loss 7.960975 +INFO 2020-11-24 23:50:07 train.py: 74] Epoch 1, iter 200/6416, lr 0.100000, loss 7.365597 +INFO 2020-11-24 23:51:24 train.py: 74] Epoch 1, iter 400/6416, lr 0.100000, loss 7.369541 +INFO 2020-11-24 23:52:41 train.py: 74] Epoch 1, iter 600/6416, lr 0.100000, loss 7.333354 +INFO 2020-11-24 23:53:58 train.py: 74] Epoch 1, iter 800/6416, lr 0.100000, loss 7.335843 +INFO 2020-11-24 23:55:15 train.py: 74] Epoch 1, iter 1000/6416, lr 0.100000, loss 7.298988 +INFO 2020-11-24 23:56:33 train.py: 74] Epoch 1, iter 1200/6416, lr 0.100000, loss 7.230117 +INFO 2020-11-24 23:57:50 train.py: 74] Epoch 1, iter 1400/6416, lr 0.100000, loss 7.222714 +INFO 2020-11-24 23:59:07 train.py: 74] Epoch 1, iter 1600/6416, lr 0.100000, loss 7.173081 +INFO 2020-11-25 00:00:24 train.py: 74] Epoch 1, iter 1800/6416, lr 0.100000, loss 7.144652 +INFO 2020-11-25 00:01:41 train.py: 74] Epoch 1, iter 2000/6416, lr 0.100000, loss 7.090705 +INFO 2020-11-25 00:02:58 train.py: 74] Epoch 1, iter 2200/6416, lr 0.100000, loss 7.049920 +INFO 2020-11-25 00:04:16 train.py: 74] Epoch 1, iter 2400/6416, lr 0.100000, loss 7.025612 +INFO 2020-11-25 00:05:33 train.py: 74] Epoch 1, iter 2600/6416, lr 0.100000, loss 6.986696 +INFO 2020-11-25 00:06:50 train.py: 74] Epoch 1, iter 2800/6416, lr 0.100000, loss 6.927468 +INFO 2020-11-25 00:08:07 train.py: 87] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2020-11-25 00:08:07 train.py: 74] Epoch 1, iter 3000/6416, lr 0.100000, loss 6.901348 +INFO 2020-11-25 00:09:24 train.py: 74] Epoch 1, iter 3200/6416, lr 0.100000, loss 6.854008 +INFO 2020-11-25 00:10:41 train.py: 74] Epoch 1, iter 3400/6416, lr 0.100000, loss 6.800296 +INFO 2020-11-25 00:11:58 train.py: 74] Epoch 1, iter 3600/6416, lr 0.100000, loss 6.793969 +INFO 2020-11-25 00:13:14 train.py: 74] Epoch 1, iter 3800/6416, lr 0.100000, loss 6.726662 +INFO 2020-11-25 00:14:31 train.py: 74] Epoch 1, iter 4000/6416, lr 0.100000, loss 6.696375 +INFO 2020-11-25 00:15:48 train.py: 74] Epoch 1, iter 4200/6416, lr 0.100000, loss 6.683155 +INFO 2020-11-25 00:17:05 train.py: 74] Epoch 1, iter 4400/6416, lr 0.100000, loss 6.650281 +INFO 2020-11-25 00:18:22 train.py: 74] Epoch 1, iter 4600/6416, lr 0.100000, loss 6.586107 +INFO 2020-11-25 00:19:38 train.py: 74] Epoch 1, iter 4800/6416, lr 0.100000, loss 6.564484 +INFO 2020-11-25 00:20:55 train.py: 74] Epoch 1, iter 5000/6416, lr 0.100000, loss 6.527291 +INFO 2020-11-25 00:22:12 train.py: 74] Epoch 1, iter 5200/6416, lr 0.100000, loss 6.522084 +INFO 2020-11-25 00:23:29 train.py: 74] Epoch 1, iter 5400/6416, lr 0.100000, loss 6.495036 +INFO 2020-11-25 00:24:46 train.py: 74] Epoch 1, iter 5600/6416, lr 0.100000, loss 6.437946 +INFO 2020-11-25 00:26:03 train.py: 74] Epoch 1, iter 5800/6416, lr 0.100000, loss 6.407512 +INFO 2020-11-25 00:27:19 train.py: 87] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2020-11-25 00:27:20 train.py: 74] Epoch 1, iter 6000/6416, lr 0.100000, loss 6.379827 +INFO 2020-11-25 00:28:37 train.py: 74] Epoch 1, iter 6200/6416, lr 0.100000, loss 6.347942 +INFO 2020-11-25 00:29:54 train.py: 74] Epoch 1, iter 6400/6416, lr 0.100000, loss 6.310871 +INFO 2020-11-25 00:30:00 train.py: 92] Save checkpoint Epoch_1.pt to disk... +INFO 2020-11-25 00:30:02 train.py: 74] Epoch 2, iter 0/6416, lr 0.100000, loss 6.375245 +INFO 2020-11-25 00:31:19 train.py: 74] Epoch 2, iter 200/6416, lr 0.100000, loss 5.938911 +INFO 2020-11-25 00:32:37 train.py: 74] Epoch 2, iter 400/6416, lr 0.100000, loss 5.936828 +INFO 2020-11-25 00:33:54 train.py: 74] Epoch 2, iter 600/6416, lr 0.100000, loss 6.027498 +INFO 2020-11-25 00:35:11 train.py: 74] Epoch 2, iter 800/6416, lr 0.100000, loss 6.042055 +INFO 2020-11-25 00:36:28 train.py: 74] Epoch 2, iter 1000/6416, lr 0.100000, loss 6.077025 +INFO 2020-11-25 00:37:45 train.py: 74] Epoch 2, iter 1200/6416, lr 0.100000, loss 6.129691 +INFO 2020-11-25 00:39:02 train.py: 74] Epoch 2, iter 1400/6416, lr 0.100000, loss 6.099179 +INFO 2020-11-25 00:40:19 train.py: 74] Epoch 2, iter 1600/6416, lr 0.100000, loss 6.113452 +INFO 2020-11-25 00:41:36 train.py: 74] Epoch 2, iter 1800/6416, lr 0.100000, loss 6.085214 +INFO 2020-11-25 00:42:53 train.py: 74] Epoch 2, iter 2000/6416, lr 0.100000, loss 6.095888 +INFO 2020-11-25 00:44:10 train.py: 74] Epoch 2, iter 2200/6416, lr 0.100000, loss 6.118369 +INFO 2020-11-25 00:45:27 train.py: 74] Epoch 2, iter 2400/6416, lr 0.100000, loss 6.077740 +INFO 2020-11-25 00:46:44 train.py: 74] Epoch 2, iter 2600/6416, lr 0.100000, loss 6.086304 +INFO 2020-11-25 00:48:01 train.py: 74] Epoch 2, iter 2800/6416, lr 0.100000, loss 6.081509 +INFO 2020-11-25 00:49:18 train.py: 87] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2020-11-25 00:49:18 train.py: 74] Epoch 2, iter 3000/6416, lr 0.100000, loss 6.036793 +INFO 2020-11-25 00:50:36 train.py: 74] Epoch 2, iter 3200/6416, lr 0.100000, loss 6.016242 +INFO 2020-11-25 00:51:53 train.py: 74] Epoch 2, iter 3400/6416, lr 0.100000, loss 6.013468 +INFO 2020-11-25 00:53:11 train.py: 74] Epoch 2, iter 3600/6416, lr 0.100000, loss 6.016957 +INFO 2020-11-25 00:54:28 train.py: 74] Epoch 2, iter 3800/6416, lr 0.100000, loss 5.980253 +INFO 2020-11-25 00:55:45 train.py: 74] Epoch 2, iter 4000/6416, lr 0.100000, loss 5.977148 +INFO 2020-11-25 00:57:03 train.py: 74] Epoch 2, iter 4200/6416, lr 0.100000, loss 5.951558 +INFO 2020-11-25 00:58:20 train.py: 74] Epoch 2, iter 4400/6416, lr 0.100000, loss 5.930721 +INFO 2020-11-25 00:59:38 train.py: 74] Epoch 2, iter 4600/6416, lr 0.100000, loss 5.909010 +INFO 2020-11-25 01:00:55 train.py: 74] Epoch 2, iter 4800/6416, lr 0.100000, loss 5.953338 +INFO 2020-11-25 01:02:12 train.py: 74] Epoch 2, iter 5000/6416, lr 0.100000, loss 5.922677 +INFO 2020-11-25 01:03:30 train.py: 74] Epoch 2, iter 5200/6416, lr 0.100000, loss 5.892111 +INFO 2020-11-25 01:04:47 train.py: 74] Epoch 2, iter 5400/6416, lr 0.100000, loss 5.886261 +INFO 2020-11-25 01:06:05 train.py: 74] Epoch 2, iter 5600/6416, lr 0.100000, loss 5.875677 +INFO 2020-11-25 01:07:22 train.py: 74] Epoch 2, iter 5800/6416, lr 0.100000, loss 5.861309 +INFO 2020-11-25 01:08:39 train.py: 87] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2020-11-25 01:08:40 train.py: 74] Epoch 2, iter 6000/6416, lr 0.100000, loss 5.863802 +INFO 2020-11-25 01:09:57 train.py: 74] Epoch 2, iter 6200/6416, lr 0.100000, loss 5.846492 +INFO 2020-11-25 01:11:15 train.py: 74] Epoch 2, iter 6400/6416, lr 0.100000, loss 5.835188 +INFO 2020-11-25 01:11:21 train.py: 92] Save checkpoint Epoch_2.pt to disk... +INFO 2020-11-25 01:11:22 train.py: 74] Epoch 3, iter 0/6416, lr 0.100000, loss 5.881510 +INFO 2020-11-25 01:12:40 train.py: 74] Epoch 3, iter 200/6416, lr 0.100000, loss 5.455216 +INFO 2020-11-25 01:13:57 train.py: 74] Epoch 3, iter 400/6416, lr 0.100000, loss 5.478229 +INFO 2020-11-25 01:15:14 train.py: 74] Epoch 3, iter 600/6416, lr 0.100000, loss 5.552012 +INFO 2020-11-25 01:16:31 train.py: 74] Epoch 3, iter 800/6416, lr 0.100000, loss 5.592359 +INFO 2020-11-25 01:17:48 train.py: 74] Epoch 3, iter 1000/6416, lr 0.100000, loss 5.662363 +INFO 2020-11-25 01:19:05 train.py: 74] Epoch 3, iter 1200/6416, lr 0.100000, loss 5.636334 +INFO 2020-11-25 01:20:22 train.py: 74] Epoch 3, iter 1400/6416, lr 0.100000, loss 5.682642 +INFO 2020-11-25 01:21:39 train.py: 74] Epoch 3, iter 1600/6416, lr 0.100000, loss 5.672076 +INFO 2020-11-25 01:22:56 train.py: 74] Epoch 3, iter 1800/6416, lr 0.100000, loss 5.677696 +INFO 2020-11-25 01:24:13 train.py: 74] Epoch 3, iter 2000/6416, lr 0.100000, loss 5.700102 +INFO 2020-11-25 01:25:30 train.py: 74] Epoch 3, iter 2200/6416, lr 0.100000, loss 5.666122 +INFO 2020-11-25 01:26:47 train.py: 74] Epoch 3, iter 2400/6416, lr 0.100000, loss 5.684393 +INFO 2020-11-25 01:28:04 train.py: 74] Epoch 3, iter 2600/6416, lr 0.100000, loss 5.657063 +INFO 2020-11-25 01:29:21 train.py: 74] Epoch 3, iter 2800/6416, lr 0.100000, loss 5.675353 +INFO 2020-11-25 01:30:38 train.py: 87] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2020-11-25 01:30:38 train.py: 74] Epoch 3, iter 3000/6416, lr 0.100000, loss 5.666831 +INFO 2020-11-25 01:31:55 train.py: 74] Epoch 3, iter 3200/6416, lr 0.100000, loss 5.646569 +INFO 2020-11-25 01:33:11 train.py: 74] Epoch 3, iter 3400/6416, lr 0.100000, loss 5.661226 +INFO 2020-11-25 01:34:28 train.py: 74] Epoch 3, iter 3600/6416, lr 0.100000, loss 5.621876 +INFO 2020-11-25 01:35:45 train.py: 74] Epoch 3, iter 3800/6416, lr 0.100000, loss 5.649912 +INFO 2020-11-25 01:37:02 train.py: 74] Epoch 3, iter 4000/6416, lr 0.100000, loss 5.689381 +INFO 2020-11-25 01:38:19 train.py: 74] Epoch 3, iter 4200/6416, lr 0.100000, loss 5.635298 +INFO 2020-11-25 01:39:37 train.py: 74] Epoch 3, iter 4400/6416, lr 0.100000, loss 5.601900 +INFO 2020-11-25 01:40:54 train.py: 74] Epoch 3, iter 4600/6416, lr 0.100000, loss 5.631656 +INFO 2020-11-25 01:42:11 train.py: 74] Epoch 3, iter 4800/6416, lr 0.100000, loss 5.606029 +INFO 2020-11-25 01:43:28 train.py: 74] Epoch 3, iter 5000/6416, lr 0.100000, loss 5.596862 +INFO 2020-11-25 01:44:45 train.py: 74] Epoch 3, iter 5200/6416, lr 0.100000, loss 5.573140 +INFO 2020-11-25 01:46:02 train.py: 74] Epoch 3, iter 5400/6416, lr 0.100000, loss 5.603300 +INFO 2020-11-25 01:47:20 train.py: 74] Epoch 3, iter 5600/6416, lr 0.100000, loss 5.591047 +INFO 2020-11-25 01:48:37 train.py: 74] Epoch 3, iter 5800/6416, lr 0.100000, loss 5.550213 +INFO 2020-11-25 01:49:54 train.py: 87] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2020-11-25 01:49:55 train.py: 74] Epoch 3, iter 6000/6416, lr 0.100000, loss 5.509061 +INFO 2020-11-25 01:51:12 train.py: 74] Epoch 3, iter 6200/6416, lr 0.100000, loss 5.543779 +INFO 2020-11-25 01:52:29 train.py: 74] Epoch 3, iter 6400/6416, lr 0.100000, loss 5.539869 +INFO 2020-11-25 01:52:35 train.py: 92] Save checkpoint Epoch_3.pt to disk... +INFO 2020-11-25 01:52:37 train.py: 74] Epoch 4, iter 0/6416, lr 0.100000, loss 5.531301 +INFO 2020-11-25 01:53:54 train.py: 74] Epoch 4, iter 200/6416, lr 0.100000, loss 5.193623 +INFO 2020-11-25 01:55:12 train.py: 74] Epoch 4, iter 400/6416, lr 0.100000, loss 5.208746 +INFO 2020-11-25 01:56:29 train.py: 74] Epoch 4, iter 600/6416, lr 0.100000, loss 5.282292 +INFO 2020-11-25 01:57:46 train.py: 74] Epoch 4, iter 800/6416, lr 0.100000, loss 5.348818 +INFO 2020-11-25 01:59:03 train.py: 74] Epoch 4, iter 1000/6416, lr 0.100000, loss 5.417137 +INFO 2020-11-25 02:00:20 train.py: 74] Epoch 4, iter 1200/6416, lr 0.100000, loss 5.371798 +INFO 2020-11-25 02:01:37 train.py: 74] Epoch 4, iter 1400/6416, lr 0.100000, loss 5.393708 +INFO 2020-11-25 02:02:54 train.py: 74] Epoch 4, iter 1600/6416, lr 0.100000, loss 5.416946 +INFO 2020-11-25 02:04:11 train.py: 74] Epoch 4, iter 1800/6416, lr 0.100000, loss 5.412619 +INFO 2020-11-25 02:05:28 train.py: 74] Epoch 4, iter 2000/6416, lr 0.100000, loss 5.436570 +INFO 2020-11-25 02:06:45 train.py: 74] Epoch 4, iter 2200/6416, lr 0.100000, loss 5.431568 +INFO 2020-11-25 02:08:02 train.py: 74] Epoch 4, iter 2400/6416, lr 0.100000, loss 5.438205 +INFO 2020-11-25 02:09:19 train.py: 74] Epoch 4, iter 2600/6416, lr 0.100000, loss 5.407525 +INFO 2020-11-25 02:10:36 train.py: 74] Epoch 4, iter 2800/6416, lr 0.100000, loss 5.459442 +INFO 2020-11-25 02:11:53 train.py: 87] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2020-11-25 02:11:53 train.py: 74] Epoch 4, iter 3000/6416, lr 0.100000, loss 5.430193 +INFO 2020-11-25 02:13:10 train.py: 74] Epoch 4, iter 3200/6416, lr 0.100000, loss 5.418758 +INFO 2020-11-25 02:14:26 train.py: 74] Epoch 4, iter 3400/6416, lr 0.100000, loss 5.438002 +INFO 2020-11-25 02:15:42 train.py: 74] Epoch 4, iter 3600/6416, lr 0.100000, loss 5.416004 +INFO 2020-11-25 02:16:59 train.py: 74] Epoch 4, iter 3800/6416, lr 0.100000, loss 5.435309 +INFO 2020-11-25 02:18:15 train.py: 74] Epoch 4, iter 4000/6416, lr 0.100000, loss 5.413711 +INFO 2020-11-25 02:19:32 train.py: 74] Epoch 4, iter 4200/6416, lr 0.100000, loss 5.424407 +INFO 2020-11-25 02:20:48 train.py: 74] Epoch 4, iter 4400/6416, lr 0.100000, loss 5.398459 +INFO 2020-11-25 02:22:05 train.py: 74] Epoch 4, iter 4600/6416, lr 0.100000, loss 5.415027 +INFO 2020-11-25 02:23:21 train.py: 74] Epoch 4, iter 4800/6416, lr 0.100000, loss 5.403962 +INFO 2020-11-25 02:24:38 train.py: 74] Epoch 4, iter 5000/6416, lr 0.100000, loss 5.398726 +INFO 2020-11-25 02:25:54 train.py: 74] Epoch 4, iter 5200/6416, lr 0.100000, loss 5.383455 +INFO 2020-11-25 02:27:11 train.py: 74] Epoch 4, iter 5400/6416, lr 0.100000, loss 5.373630 +INFO 2020-11-25 02:28:27 train.py: 74] Epoch 4, iter 5600/6416, lr 0.100000, loss 5.390030 +INFO 2020-11-25 02:29:44 train.py: 74] Epoch 4, iter 5800/6416, lr 0.100000, loss 5.341767 +INFO 2020-11-25 02:31:00 train.py: 87] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2020-11-25 02:31:00 train.py: 74] Epoch 4, iter 6000/6416, lr 0.100000, loss 5.329285 +INFO 2020-11-25 02:32:18 train.py: 74] Epoch 4, iter 6200/6416, lr 0.100000, loss 5.353299 +INFO 2020-11-25 02:33:35 train.py: 74] Epoch 4, iter 6400/6416, lr 0.100000, loss 5.375048 +INFO 2020-11-25 02:33:41 train.py: 92] Save checkpoint Epoch_4.pt to disk... +INFO 2020-11-25 02:33:43 train.py: 74] Epoch 5, iter 0/6416, lr 0.100000, loss 5.360528 +INFO 2020-11-25 02:35:00 train.py: 74] Epoch 5, iter 200/6416, lr 0.100000, loss 5.070175 +INFO 2020-11-25 02:36:18 train.py: 74] Epoch 5, iter 400/6416, lr 0.100000, loss 5.057510 +INFO 2020-11-25 02:37:35 train.py: 74] Epoch 5, iter 600/6416, lr 0.100000, loss 5.098853 +INFO 2020-11-25 02:38:52 train.py: 74] Epoch 5, iter 800/6416, lr 0.100000, loss 5.130238 +INFO 2020-11-25 02:40:09 train.py: 74] Epoch 5, iter 1000/6416, lr 0.100000, loss 5.197936 +INFO 2020-11-25 02:41:26 train.py: 74] Epoch 5, iter 1200/6416, lr 0.100000, loss 5.206038 +INFO 2020-11-25 02:42:43 train.py: 74] Epoch 5, iter 1400/6416, lr 0.100000, loss 5.238030 +INFO 2020-11-25 02:44:00 train.py: 74] Epoch 5, iter 1600/6416, lr 0.100000, loss 5.282627 +INFO 2020-11-25 02:45:17 train.py: 74] Epoch 5, iter 1800/6416, lr 0.100000, loss 5.285867 +INFO 2020-11-25 02:46:34 train.py: 74] Epoch 5, iter 2000/6416, lr 0.100000, loss 5.290083 +INFO 2020-11-25 02:47:51 train.py: 74] Epoch 5, iter 2200/6416, lr 0.100000, loss 5.251016 +INFO 2020-11-25 02:49:08 train.py: 74] Epoch 5, iter 2400/6416, lr 0.100000, loss 5.272353 +INFO 2020-11-25 02:50:25 train.py: 74] Epoch 5, iter 2600/6416, lr 0.100000, loss 5.274801 +INFO 2020-11-25 02:51:42 train.py: 74] Epoch 5, iter 2800/6416, lr 0.100000, loss 5.279719 +INFO 2020-11-25 02:52:59 train.py: 87] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2020-11-25 02:52:59 train.py: 74] Epoch 5, iter 3000/6416, lr 0.100000, loss 5.278217 +INFO 2020-11-25 02:54:16 train.py: 74] Epoch 5, iter 3200/6416, lr 0.100000, loss 5.249032 +INFO 2020-11-25 02:55:33 train.py: 74] Epoch 5, iter 3400/6416, lr 0.100000, loss 5.262226 +INFO 2020-11-25 02:56:50 train.py: 74] Epoch 5, iter 3600/6416, lr 0.100000, loss 5.251608 +INFO 2020-11-25 02:58:07 train.py: 74] Epoch 5, iter 3800/6416, lr 0.100000, loss 5.257571 +INFO 2020-11-25 02:59:24 train.py: 74] Epoch 5, iter 4000/6416, lr 0.100000, loss 5.252832 +INFO 2020-11-25 03:00:41 train.py: 74] Epoch 5, iter 4200/6416, lr 0.100000, loss 5.249336 +INFO 2020-11-25 03:01:58 train.py: 74] Epoch 5, iter 4400/6416, lr 0.100000, loss 5.252232 +INFO 2020-11-25 03:03:15 train.py: 74] Epoch 5, iter 4600/6416, lr 0.100000, loss 5.250526 +INFO 2020-11-25 03:04:33 train.py: 74] Epoch 5, iter 4800/6416, lr 0.100000, loss 5.229238 +INFO 2020-11-25 03:05:50 train.py: 74] Epoch 5, iter 5000/6416, lr 0.100000, loss 5.242230 +INFO 2020-11-25 03:07:07 train.py: 74] Epoch 5, iter 5200/6416, lr 0.100000, loss 5.231566 +INFO 2020-11-25 03:08:24 train.py: 74] Epoch 5, iter 5400/6416, lr 0.100000, loss 5.203700 +INFO 2020-11-25 03:09:41 train.py: 74] Epoch 5, iter 5600/6416, lr 0.100000, loss 5.220206 +INFO 2020-11-25 03:10:58 train.py: 74] Epoch 5, iter 5800/6416, lr 0.100000, loss 5.257583 +INFO 2020-11-25 03:12:16 train.py: 87] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2020-11-25 03:12:16 train.py: 74] Epoch 5, iter 6000/6416, lr 0.100000, loss 5.212092 +INFO 2020-11-25 03:13:34 train.py: 74] Epoch 5, iter 6200/6416, lr 0.100000, loss 5.238987 +INFO 2020-11-25 03:14:52 train.py: 74] Epoch 5, iter 6400/6416, lr 0.100000, loss 5.231315 +INFO 2020-11-25 03:14:58 train.py: 92] Save checkpoint Epoch_5.pt to disk... +INFO 2020-11-25 03:15:00 train.py: 74] Epoch 6, iter 0/6416, lr 0.100000, loss 5.254541 +INFO 2020-11-25 03:16:17 train.py: 74] Epoch 6, iter 200/6416, lr 0.100000, loss 4.913384 +INFO 2020-11-25 03:17:35 train.py: 74] Epoch 6, iter 400/6416, lr 0.100000, loss 4.914545 +INFO 2020-11-25 03:18:53 train.py: 74] Epoch 6, iter 600/6416, lr 0.100000, loss 4.975958 +INFO 2020-11-25 03:20:10 train.py: 74] Epoch 6, iter 800/6416, lr 0.100000, loss 5.017715 +INFO 2020-11-25 03:21:27 train.py: 74] Epoch 6, iter 1000/6416, lr 0.100000, loss 5.044479 +INFO 2020-11-25 03:22:44 train.py: 74] Epoch 6, iter 1200/6416, lr 0.100000, loss 5.073014 +INFO 2020-11-25 03:24:02 train.py: 74] Epoch 6, iter 1400/6416, lr 0.100000, loss 5.095653 +INFO 2020-11-25 03:25:19 train.py: 74] Epoch 6, iter 1600/6416, lr 0.100000, loss 5.114384 +INFO 2020-11-25 03:26:36 train.py: 74] Epoch 6, iter 1800/6416, lr 0.100000, loss 5.129287 +INFO 2020-11-25 03:27:54 train.py: 74] Epoch 6, iter 2000/6416, lr 0.100000, loss 5.127077 +INFO 2020-11-25 03:29:11 train.py: 74] Epoch 6, iter 2200/6416, lr 0.100000, loss 5.127640 +INFO 2020-11-25 03:30:28 train.py: 74] Epoch 6, iter 2400/6416, lr 0.100000, loss 5.158664 +INFO 2020-11-25 03:31:45 train.py: 74] Epoch 6, iter 2600/6416, lr 0.100000, loss 5.164996 +INFO 2020-11-25 03:33:02 train.py: 74] Epoch 6, iter 2800/6416, lr 0.100000, loss 5.148390 +INFO 2020-11-25 03:34:19 train.py: 87] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2020-11-25 03:34:20 train.py: 74] Epoch 6, iter 3000/6416, lr 0.100000, loss 5.161559 +INFO 2020-11-25 03:35:36 train.py: 74] Epoch 6, iter 3200/6416, lr 0.100000, loss 5.169790 +INFO 2020-11-25 03:36:53 train.py: 74] Epoch 6, iter 3400/6416, lr 0.100000, loss 5.154975 +INFO 2020-11-25 03:38:09 train.py: 74] Epoch 6, iter 3600/6416, lr 0.100000, loss 5.158896 +INFO 2020-11-25 03:39:26 train.py: 74] Epoch 6, iter 3800/6416, lr 0.100000, loss 5.133687 +INFO 2020-11-25 03:40:43 train.py: 74] Epoch 6, iter 4000/6416, lr 0.100000, loss 5.161926 +INFO 2020-11-25 03:41:59 train.py: 74] Epoch 6, iter 4200/6416, lr 0.100000, loss 5.138321 +INFO 2020-11-25 03:43:16 train.py: 74] Epoch 6, iter 4400/6416, lr 0.100000, loss 5.156313 +INFO 2020-11-25 03:44:32 train.py: 74] Epoch 6, iter 4600/6416, lr 0.100000, loss 5.144607 +INFO 2020-11-25 03:45:49 train.py: 74] Epoch 6, iter 4800/6416, lr 0.100000, loss 5.124832 +INFO 2020-11-25 03:47:05 train.py: 74] Epoch 6, iter 5000/6416, lr 0.100000, loss 5.130217 +INFO 2020-11-25 03:48:22 train.py: 74] Epoch 6, iter 5200/6416, lr 0.100000, loss 5.111167 +INFO 2020-11-25 03:49:38 train.py: 74] Epoch 6, iter 5400/6416, lr 0.100000, loss 5.131899 +INFO 2020-11-25 03:50:55 train.py: 74] Epoch 6, iter 5600/6416, lr 0.100000, loss 5.119307 +INFO 2020-11-25 03:52:11 train.py: 74] Epoch 6, iter 5800/6416, lr 0.100000, loss 5.093508 +INFO 2020-11-25 03:53:28 train.py: 87] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2020-11-25 03:53:28 train.py: 74] Epoch 6, iter 6000/6416, lr 0.100000, loss 5.117291 +INFO 2020-11-25 03:54:45 train.py: 74] Epoch 6, iter 6200/6416, lr 0.100000, loss 5.107929 +INFO 2020-11-25 03:56:03 train.py: 74] Epoch 6, iter 6400/6416, lr 0.100000, loss 5.117152 +INFO 2020-11-25 03:56:09 train.py: 92] Save checkpoint Epoch_6.pt to disk... +INFO 2020-11-25 03:56:10 train.py: 74] Epoch 7, iter 0/6416, lr 0.100000, loss 5.170720 +INFO 2020-11-25 03:57:28 train.py: 74] Epoch 7, iter 200/6416, lr 0.100000, loss 4.815692 +INFO 2020-11-25 03:58:45 train.py: 74] Epoch 7, iter 400/6416, lr 0.100000, loss 4.819999 +INFO 2020-11-25 04:00:03 train.py: 74] Epoch 7, iter 600/6416, lr 0.100000, loss 4.875074 +INFO 2020-11-25 04:01:20 train.py: 74] Epoch 7, iter 800/6416, lr 0.100000, loss 4.936592 +INFO 2020-11-25 04:02:37 train.py: 74] Epoch 7, iter 1000/6416, lr 0.100000, loss 4.950650 +INFO 2020-11-25 04:03:54 train.py: 74] Epoch 7, iter 1200/6416, lr 0.100000, loss 4.957513 +INFO 2020-11-25 04:05:12 train.py: 74] Epoch 7, iter 1400/6416, lr 0.100000, loss 5.014659 +INFO 2020-11-25 04:06:29 train.py: 74] Epoch 7, iter 1600/6416, lr 0.100000, loss 5.015863 +INFO 2020-11-25 04:07:46 train.py: 74] Epoch 7, iter 1800/6416, lr 0.100000, loss 5.056468 +INFO 2020-11-25 04:09:03 train.py: 74] Epoch 7, iter 2000/6416, lr 0.100000, loss 5.050543 +INFO 2020-11-25 04:10:21 train.py: 74] Epoch 7, iter 2200/6416, lr 0.100000, loss 5.049507 +INFO 2020-11-25 04:11:38 train.py: 74] Epoch 7, iter 2400/6416, lr 0.100000, loss 5.046941 +INFO 2020-11-25 04:12:55 train.py: 74] Epoch 7, iter 2600/6416, lr 0.100000, loss 5.066842 +INFO 2020-11-25 04:14:12 train.py: 74] Epoch 7, iter 2800/6416, lr 0.100000, loss 5.070015 +INFO 2020-11-25 04:15:29 train.py: 87] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2020-11-25 04:15:29 train.py: 74] Epoch 7, iter 3000/6416, lr 0.100000, loss 5.068537 +INFO 2020-11-25 04:16:46 train.py: 74] Epoch 7, iter 3200/6416, lr 0.100000, loss 5.051572 +INFO 2020-11-25 04:18:03 train.py: 74] Epoch 7, iter 3400/6416, lr 0.100000, loss 5.040140 +INFO 2020-11-25 04:19:20 train.py: 74] Epoch 7, iter 3600/6416, lr 0.100000, loss 5.045315 +INFO 2020-11-25 04:20:37 train.py: 74] Epoch 7, iter 3800/6416, lr 0.100000, loss 5.068163 +INFO 2020-11-25 04:21:54 train.py: 74] Epoch 7, iter 4000/6416, lr 0.100000, loss 5.052730 +INFO 2020-11-25 04:23:11 train.py: 74] Epoch 7, iter 4200/6416, lr 0.100000, loss 5.024690 +INFO 2020-11-25 04:24:28 train.py: 74] Epoch 7, iter 4400/6416, lr 0.100000, loss 5.023289 +INFO 2020-11-25 04:25:45 train.py: 74] Epoch 7, iter 4600/6416, lr 0.100000, loss 5.045918 +INFO 2020-11-25 04:27:02 train.py: 74] Epoch 7, iter 4800/6416, lr 0.100000, loss 5.086260 +INFO 2020-11-25 04:28:20 train.py: 74] Epoch 7, iter 5000/6416, lr 0.100000, loss 5.054334 +INFO 2020-11-25 04:29:37 train.py: 74] Epoch 7, iter 5200/6416, lr 0.100000, loss 5.049156 +INFO 2020-11-25 04:30:54 train.py: 74] Epoch 7, iter 5400/6416, lr 0.100000, loss 5.047981 +INFO 2020-11-25 04:32:11 train.py: 74] Epoch 7, iter 5600/6416, lr 0.100000, loss 5.036965 +INFO 2020-11-25 04:33:28 train.py: 74] Epoch 7, iter 5800/6416, lr 0.100000, loss 5.046502 +INFO 2020-11-25 04:34:45 train.py: 87] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2020-11-25 04:34:45 train.py: 74] Epoch 7, iter 6000/6416, lr 0.100000, loss 5.034760 +INFO 2020-11-25 04:36:03 train.py: 74] Epoch 7, iter 6200/6416, lr 0.100000, loss 5.016964 +INFO 2020-11-25 04:37:20 train.py: 74] Epoch 7, iter 6400/6416, lr 0.100000, loss 5.038388 +INFO 2020-11-25 04:37:26 train.py: 92] Save checkpoint Epoch_7.pt to disk... +INFO 2020-11-25 04:37:27 train.py: 74] Epoch 8, iter 0/6416, lr 0.100000, loss 4.960764 +INFO 2020-11-25 04:38:45 train.py: 74] Epoch 8, iter 200/6416, lr 0.100000, loss 4.736723 +INFO 2020-11-25 04:40:03 train.py: 74] Epoch 8, iter 400/6416, lr 0.100000, loss 4.730425 +INFO 2020-11-25 04:41:20 train.py: 74] Epoch 8, iter 600/6416, lr 0.100000, loss 4.791884 +INFO 2020-11-25 04:42:38 train.py: 74] Epoch 8, iter 800/6416, lr 0.100000, loss 4.855293 +INFO 2020-11-25 04:43:55 train.py: 74] Epoch 8, iter 1000/6416, lr 0.100000, loss 4.870950 +INFO 2020-11-25 04:45:12 train.py: 74] Epoch 8, iter 1200/6416, lr 0.100000, loss 4.935642 +INFO 2020-11-25 04:46:29 train.py: 74] Epoch 8, iter 1400/6416, lr 0.100000, loss 4.921344 +INFO 2020-11-25 04:47:46 train.py: 74] Epoch 8, iter 1600/6416, lr 0.100000, loss 4.952218 +INFO 2020-11-25 04:49:04 train.py: 74] Epoch 8, iter 1800/6416, lr 0.100000, loss 4.960001 +INFO 2020-11-25 04:50:21 train.py: 74] Epoch 8, iter 2000/6416, lr 0.100000, loss 4.965463 +INFO 2020-11-25 04:51:38 train.py: 74] Epoch 8, iter 2200/6416, lr 0.100000, loss 4.980658 +INFO 2020-11-25 04:52:55 train.py: 74] Epoch 8, iter 2400/6416, lr 0.100000, loss 4.945666 +INFO 2020-11-25 04:54:12 train.py: 74] Epoch 8, iter 2600/6416, lr 0.100000, loss 4.968713 +INFO 2020-11-25 04:55:29 train.py: 74] Epoch 8, iter 2800/6416, lr 0.100000, loss 4.972122 +INFO 2020-11-25 04:56:46 train.py: 87] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2020-11-25 04:56:47 train.py: 74] Epoch 8, iter 3000/6416, lr 0.100000, loss 4.992543 +INFO 2020-11-25 04:58:03 train.py: 74] Epoch 8, iter 3200/6416, lr 0.100000, loss 4.976044 +INFO 2020-11-25 04:59:20 train.py: 74] Epoch 8, iter 3400/6416, lr 0.100000, loss 4.985466 +INFO 2020-11-25 05:00:37 train.py: 74] Epoch 8, iter 3600/6416, lr 0.100000, loss 4.967078 +INFO 2020-11-25 05:01:53 train.py: 74] Epoch 8, iter 3800/6416, lr 0.100000, loss 4.956671 +INFO 2020-11-25 05:03:10 train.py: 74] Epoch 8, iter 4000/6416, lr 0.100000, loss 4.983818 +INFO 2020-11-25 05:04:26 train.py: 74] Epoch 8, iter 4200/6416, lr 0.100000, loss 4.970311 +INFO 2020-11-25 05:05:43 train.py: 74] Epoch 8, iter 4400/6416, lr 0.100000, loss 4.986590 +INFO 2020-11-25 05:07:00 train.py: 74] Epoch 8, iter 4600/6416, lr 0.100000, loss 4.996357 +INFO 2020-11-25 05:08:16 train.py: 74] Epoch 8, iter 4800/6416, lr 0.100000, loss 4.984256 +INFO 2020-11-25 05:09:33 train.py: 74] Epoch 8, iter 5000/6416, lr 0.100000, loss 4.980496 +INFO 2020-11-25 05:10:50 train.py: 74] Epoch 8, iter 5200/6416, lr 0.100000, loss 4.938101 +INFO 2020-11-25 05:12:06 train.py: 74] Epoch 8, iter 5400/6416, lr 0.100000, loss 4.995547 +INFO 2020-11-25 05:13:23 train.py: 74] Epoch 8, iter 5600/6416, lr 0.100000, loss 4.980469 +INFO 2020-11-25 05:14:40 train.py: 74] Epoch 8, iter 5800/6416, lr 0.100000, loss 4.965259 +INFO 2020-11-25 05:15:56 train.py: 87] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2020-11-25 05:15:57 train.py: 74] Epoch 8, iter 6000/6416, lr 0.100000, loss 4.968681 +INFO 2020-11-25 05:17:14 train.py: 74] Epoch 8, iter 6200/6416, lr 0.100000, loss 4.978511 +INFO 2020-11-25 05:18:31 train.py: 74] Epoch 8, iter 6400/6416, lr 0.100000, loss 4.957441 +INFO 2020-11-25 05:18:37 train.py: 92] Save checkpoint Epoch_8.pt to disk... +INFO 2020-11-25 05:18:39 train.py: 74] Epoch 9, iter 0/6416, lr 0.100000, loss 5.009809 +INFO 2020-11-25 05:19:56 train.py: 74] Epoch 9, iter 200/6416, lr 0.100000, loss 4.657794 +INFO 2020-11-25 05:21:14 train.py: 74] Epoch 9, iter 400/6416, lr 0.100000, loss 4.648524 +INFO 2020-11-25 05:22:31 train.py: 74] Epoch 9, iter 600/6416, lr 0.100000, loss 4.750580 +INFO 2020-11-25 05:23:49 train.py: 74] Epoch 9, iter 800/6416, lr 0.100000, loss 4.795163 +INFO 2020-11-25 05:25:06 train.py: 74] Epoch 9, iter 1000/6416, lr 0.100000, loss 4.807642 +INFO 2020-11-25 05:26:23 train.py: 74] Epoch 9, iter 1200/6416, lr 0.100000, loss 4.832407 +INFO 2020-11-25 05:27:40 train.py: 74] Epoch 9, iter 1400/6416, lr 0.100000, loss 4.840196 +INFO 2020-11-25 05:28:58 train.py: 74] Epoch 9, iter 1600/6416, lr 0.100000, loss 4.867023 +INFO 2020-11-25 05:30:15 train.py: 74] Epoch 9, iter 1800/6416, lr 0.100000, loss 4.931373 +INFO 2020-11-25 05:31:32 train.py: 74] Epoch 9, iter 2000/6416, lr 0.100000, loss 4.915685 +INFO 2020-11-25 05:32:49 train.py: 74] Epoch 9, iter 2200/6416, lr 0.100000, loss 4.916253 +INFO 2020-11-25 05:34:06 train.py: 74] Epoch 9, iter 2400/6416, lr 0.100000, loss 4.919844 +INFO 2020-11-25 05:35:24 train.py: 74] Epoch 9, iter 2600/6416, lr 0.100000, loss 4.919813 +INFO 2020-11-25 05:36:41 train.py: 74] Epoch 9, iter 2800/6416, lr 0.100000, loss 4.940619 +INFO 2020-11-25 05:37:58 train.py: 87] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2020-11-25 05:37:58 train.py: 74] Epoch 9, iter 3000/6416, lr 0.100000, loss 4.911692 +INFO 2020-11-25 05:39:15 train.py: 74] Epoch 9, iter 3200/6416, lr 0.100000, loss 4.916604 +INFO 2020-11-25 05:40:33 train.py: 74] Epoch 9, iter 3400/6416, lr 0.100000, loss 4.902658 +INFO 2020-11-25 05:41:50 train.py: 74] Epoch 9, iter 3600/6416, lr 0.100000, loss 4.920947 +INFO 2020-11-25 05:43:07 train.py: 74] Epoch 9, iter 3800/6416, lr 0.100000, loss 4.907323 +INFO 2020-11-25 05:44:24 train.py: 74] Epoch 9, iter 4000/6416, lr 0.100000, loss 4.917991 +INFO 2020-11-25 05:45:42 train.py: 74] Epoch 9, iter 4200/6416, lr 0.100000, loss 4.905762 +INFO 2020-11-25 05:46:59 train.py: 74] Epoch 9, iter 4400/6416, lr 0.100000, loss 4.930231 +INFO 2020-11-25 05:48:16 train.py: 74] Epoch 9, iter 4600/6416, lr 0.100000, loss 4.925420 +INFO 2020-11-25 05:49:33 train.py: 74] Epoch 9, iter 4800/6416, lr 0.100000, loss 4.918059 +INFO 2020-11-25 05:50:50 train.py: 74] Epoch 9, iter 5000/6416, lr 0.100000, loss 4.907311 +INFO 2020-11-25 05:52:08 train.py: 74] Epoch 9, iter 5200/6416, lr 0.100000, loss 4.906141 +INFO 2020-11-25 05:53:25 train.py: 74] Epoch 9, iter 5400/6416, lr 0.100000, loss 4.922259 +INFO 2020-11-25 05:54:42 train.py: 74] Epoch 9, iter 5600/6416, lr 0.100000, loss 4.921680 +INFO 2020-11-25 05:55:59 train.py: 74] Epoch 9, iter 5800/6416, lr 0.100000, loss 4.920889 +INFO 2020-11-25 05:57:16 train.py: 87] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2020-11-25 05:57:17 train.py: 74] Epoch 9, iter 6000/6416, lr 0.100000, loss 4.901847 +INFO 2020-11-25 05:58:33 train.py: 74] Epoch 9, iter 6200/6416, lr 0.100000, loss 4.891255 +INFO 2020-11-25 05:59:50 train.py: 74] Epoch 9, iter 6400/6416, lr 0.100000, loss 4.897839 +INFO 2020-11-25 05:59:56 train.py: 92] Save checkpoint Epoch_9.pt to disk... +INFO 2020-11-25 05:59:57 train.py: 74] Epoch 10, iter 0/6416, lr 0.010000, loss 4.829921 +INFO 2020-11-25 06:01:15 train.py: 74] Epoch 10, iter 200/6416, lr 0.010000, loss 4.103516 +INFO 2020-11-25 06:02:32 train.py: 74] Epoch 10, iter 400/6416, lr 0.010000, loss 3.892278 +INFO 2020-11-25 06:03:50 train.py: 74] Epoch 10, iter 600/6416, lr 0.010000, loss 3.838229 +INFO 2020-11-25 06:05:07 train.py: 74] Epoch 10, iter 800/6416, lr 0.010000, loss 3.796969 +INFO 2020-11-25 06:06:24 train.py: 74] Epoch 10, iter 1000/6416, lr 0.010000, loss 3.745677 +INFO 2020-11-25 06:07:41 train.py: 74] Epoch 10, iter 1200/6416, lr 0.010000, loss 3.720655 +INFO 2020-11-25 06:08:58 train.py: 74] Epoch 10, iter 1400/6416, lr 0.010000, loss 3.659097 +INFO 2020-11-25 06:10:15 train.py: 74] Epoch 10, iter 1600/6416, lr 0.010000, loss 3.642434 +INFO 2020-11-25 06:11:33 train.py: 74] Epoch 10, iter 1800/6416, lr 0.010000, loss 3.635211 +INFO 2020-11-25 06:12:50 train.py: 74] Epoch 10, iter 2000/6416, lr 0.010000, loss 3.614383 +INFO 2020-11-25 06:14:07 train.py: 74] Epoch 10, iter 2200/6416, lr 0.010000, loss 3.576103 +INFO 2020-11-25 06:15:24 train.py: 74] Epoch 10, iter 2400/6416, lr 0.010000, loss 3.529414 +INFO 2020-11-25 06:16:41 train.py: 74] Epoch 10, iter 2600/6416, lr 0.010000, loss 3.531614 +INFO 2020-11-25 06:17:58 train.py: 74] Epoch 10, iter 2800/6416, lr 0.010000, loss 3.510305 +INFO 2020-11-25 06:19:15 train.py: 87] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2020-11-25 06:19:15 train.py: 74] Epoch 10, iter 3000/6416, lr 0.010000, loss 3.481845 +INFO 2020-11-25 06:20:32 train.py: 74] Epoch 10, iter 3200/6416, lr 0.010000, loss 3.500755 +INFO 2020-11-25 06:21:49 train.py: 74] Epoch 10, iter 3400/6416, lr 0.010000, loss 3.460110 +INFO 2020-11-25 06:23:06 train.py: 74] Epoch 10, iter 3600/6416, lr 0.010000, loss 3.434048 +INFO 2020-11-25 06:24:24 train.py: 74] Epoch 10, iter 3800/6416, lr 0.010000, loss 3.438628 +INFO 2020-11-25 06:25:41 train.py: 74] Epoch 10, iter 4000/6416, lr 0.010000, loss 3.402299 +INFO 2020-11-25 06:26:58 train.py: 74] Epoch 10, iter 4200/6416, lr 0.010000, loss 3.421369 +INFO 2020-11-25 06:28:15 train.py: 74] Epoch 10, iter 4400/6416, lr 0.010000, loss 3.381788 +INFO 2020-11-25 06:29:33 train.py: 74] Epoch 10, iter 4600/6416, lr 0.010000, loss 3.393569 +INFO 2020-11-25 06:30:50 train.py: 74] Epoch 10, iter 4800/6416, lr 0.010000, loss 3.376034 +INFO 2020-11-25 06:32:07 train.py: 74] Epoch 10, iter 5000/6416, lr 0.010000, loss 3.363850 +INFO 2020-11-25 06:33:24 train.py: 74] Epoch 10, iter 5200/6416, lr 0.010000, loss 3.351688 +INFO 2020-11-25 06:34:41 train.py: 74] Epoch 10, iter 5400/6416, lr 0.010000, loss 3.354001 +INFO 2020-11-25 06:35:59 train.py: 74] Epoch 10, iter 5600/6416, lr 0.010000, loss 3.343582 +INFO 2020-11-25 06:37:16 train.py: 74] Epoch 10, iter 5800/6416, lr 0.010000, loss 3.340157 +INFO 2020-11-25 06:38:33 train.py: 87] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2020-11-25 06:38:33 train.py: 74] Epoch 10, iter 6000/6416, lr 0.010000, loss 3.313840 +INFO 2020-11-25 06:39:50 train.py: 74] Epoch 10, iter 6200/6416, lr 0.010000, loss 3.323283 +INFO 2020-11-25 06:41:07 train.py: 74] Epoch 10, iter 6400/6416, lr 0.010000, loss 3.302351 +INFO 2020-11-25 06:41:14 train.py: 92] Save checkpoint Epoch_10.pt to disk... +INFO 2020-11-25 06:41:15 train.py: 74] Epoch 11, iter 0/6416, lr 0.010000, loss 3.303349 +INFO 2020-11-25 06:42:33 train.py: 74] Epoch 11, iter 200/6416, lr 0.010000, loss 3.094353 +INFO 2020-11-25 06:43:50 train.py: 74] Epoch 11, iter 400/6416, lr 0.010000, loss 3.083311 +INFO 2020-11-25 06:45:07 train.py: 74] Epoch 11, iter 600/6416, lr 0.010000, loss 3.093790 +INFO 2020-11-25 06:46:25 train.py: 74] Epoch 11, iter 800/6416, lr 0.010000, loss 3.077252 +INFO 2020-11-25 06:47:42 train.py: 74] Epoch 11, iter 1000/6416, lr 0.010000, loss 3.095194 +INFO 2020-11-25 06:48:59 train.py: 74] Epoch 11, iter 1200/6416, lr 0.010000, loss 3.125393 +INFO 2020-11-25 06:50:16 train.py: 74] Epoch 11, iter 1400/6416, lr 0.010000, loss 3.088273 +INFO 2020-11-25 06:51:33 train.py: 74] Epoch 11, iter 1600/6416, lr 0.010000, loss 3.099029 +INFO 2020-11-25 06:52:50 train.py: 74] Epoch 11, iter 1800/6416, lr 0.010000, loss 3.092995 +INFO 2020-11-25 06:54:07 train.py: 74] Epoch 11, iter 2000/6416, lr 0.010000, loss 3.113773 +INFO 2020-11-25 06:55:24 train.py: 74] Epoch 11, iter 2200/6416, lr 0.010000, loss 3.105556 +INFO 2020-11-25 06:56:41 train.py: 74] Epoch 11, iter 2400/6416, lr 0.010000, loss 3.106959 +INFO 2020-11-25 06:57:58 train.py: 74] Epoch 11, iter 2600/6416, lr 0.010000, loss 3.117923 +INFO 2020-11-25 06:59:15 train.py: 74] Epoch 11, iter 2800/6416, lr 0.010000, loss 3.118559 +INFO 2020-11-25 07:00:32 train.py: 87] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2020-11-25 07:00:32 train.py: 74] Epoch 11, iter 3000/6416, lr 0.010000, loss 3.119714 +INFO 2020-11-25 07:01:49 train.py: 74] Epoch 11, iter 3200/6416, lr 0.010000, loss 3.110444 +INFO 2020-11-25 07:03:06 train.py: 74] Epoch 11, iter 3400/6416, lr 0.010000, loss 3.120379 +INFO 2020-11-25 07:04:24 train.py: 74] Epoch 11, iter 3600/6416, lr 0.010000, loss 3.126779 +INFO 2020-11-25 07:05:41 train.py: 74] Epoch 11, iter 3800/6416, lr 0.010000, loss 3.107868 +INFO 2020-11-25 07:06:58 train.py: 74] Epoch 11, iter 4000/6416, lr 0.010000, loss 3.128272 +INFO 2020-11-25 07:08:15 train.py: 74] Epoch 11, iter 4200/6416, lr 0.010000, loss 3.133930 +INFO 2020-11-25 07:09:32 train.py: 74] Epoch 11, iter 4400/6416, lr 0.010000, loss 3.129913 +INFO 2020-11-25 07:10:49 train.py: 74] Epoch 11, iter 4600/6416, lr 0.010000, loss 3.134143 +INFO 2020-11-25 07:12:06 train.py: 74] Epoch 11, iter 4800/6416, lr 0.010000, loss 3.119687 +INFO 2020-11-25 07:13:24 train.py: 74] Epoch 11, iter 5000/6416, lr 0.010000, loss 3.122087 +INFO 2020-11-25 07:14:41 train.py: 74] Epoch 11, iter 5200/6416, lr 0.010000, loss 3.140185 +INFO 2020-11-25 07:15:58 train.py: 74] Epoch 11, iter 5400/6416, lr 0.010000, loss 3.136302 +INFO 2020-11-25 07:17:15 train.py: 74] Epoch 11, iter 5600/6416, lr 0.010000, loss 3.122025 +INFO 2020-11-25 07:18:32 train.py: 74] Epoch 11, iter 5800/6416, lr 0.010000, loss 3.156345 +INFO 2020-11-25 07:19:49 train.py: 87] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2020-11-25 07:19:49 train.py: 74] Epoch 11, iter 6000/6416, lr 0.010000, loss 3.135009 +INFO 2020-11-25 07:21:07 train.py: 74] Epoch 11, iter 6200/6416, lr 0.010000, loss 3.156921 +INFO 2020-11-25 07:22:24 train.py: 74] Epoch 11, iter 6400/6416, lr 0.010000, loss 3.143265 +INFO 2020-11-25 07:22:30 train.py: 92] Save checkpoint Epoch_11.pt to disk... +INFO 2020-11-25 07:22:31 train.py: 74] Epoch 12, iter 0/6416, lr 0.010000, loss 3.142571 +INFO 2020-11-25 07:23:49 train.py: 74] Epoch 12, iter 200/6416, lr 0.010000, loss 2.919096 +INFO 2020-11-25 07:25:06 train.py: 74] Epoch 12, iter 400/6416, lr 0.010000, loss 2.903563 +INFO 2020-11-25 07:26:23 train.py: 74] Epoch 12, iter 600/6416, lr 0.010000, loss 2.926760 +INFO 2020-11-25 07:27:41 train.py: 74] Epoch 12, iter 800/6416, lr 0.010000, loss 2.964709 +INFO 2020-11-25 07:28:58 train.py: 74] Epoch 12, iter 1000/6416, lr 0.010000, loss 2.953673 +INFO 2020-11-25 07:30:15 train.py: 74] Epoch 12, iter 1200/6416, lr 0.010000, loss 2.955584 +INFO 2020-11-25 07:31:32 train.py: 74] Epoch 12, iter 1400/6416, lr 0.010000, loss 2.974594 +INFO 2020-11-25 07:32:49 train.py: 74] Epoch 12, iter 1600/6416, lr 0.010000, loss 3.008352 +INFO 2020-11-25 07:34:06 train.py: 74] Epoch 12, iter 1800/6416, lr 0.010000, loss 2.998404 +INFO 2020-11-25 07:35:23 train.py: 74] Epoch 12, iter 2000/6416, lr 0.010000, loss 2.991091 +INFO 2020-11-25 07:36:40 train.py: 74] Epoch 12, iter 2200/6416, lr 0.010000, loss 3.007094 +INFO 2020-11-25 07:37:57 train.py: 74] Epoch 12, iter 2400/6416, lr 0.010000, loss 3.024265 +INFO 2020-11-25 07:39:14 train.py: 74] Epoch 12, iter 2600/6416, lr 0.010000, loss 3.015459 +INFO 2020-11-25 07:40:31 train.py: 74] Epoch 12, iter 2800/6416, lr 0.010000, loss 3.032809 +INFO 2020-11-25 07:41:48 train.py: 87] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2020-11-25 07:41:48 train.py: 74] Epoch 12, iter 3000/6416, lr 0.010000, loss 3.039170 +INFO 2020-11-25 07:43:05 train.py: 74] Epoch 12, iter 3200/6416, lr 0.010000, loss 3.037112 +INFO 2020-11-25 07:44:22 train.py: 74] Epoch 12, iter 3400/6416, lr 0.010000, loss 3.030745 +INFO 2020-11-25 07:45:39 train.py: 74] Epoch 12, iter 3600/6416, lr 0.010000, loss 3.048100 +INFO 2020-11-25 07:46:56 train.py: 74] Epoch 12, iter 3800/6416, lr 0.010000, loss 3.046298 +INFO 2020-11-25 07:48:13 train.py: 74] Epoch 12, iter 4000/6416, lr 0.010000, loss 3.069485 +INFO 2020-11-25 07:49:30 train.py: 74] Epoch 12, iter 4200/6416, lr 0.010000, loss 3.055643 +INFO 2020-11-25 07:50:47 train.py: 74] Epoch 12, iter 4400/6416, lr 0.010000, loss 3.078445 +INFO 2020-11-25 07:52:04 train.py: 74] Epoch 12, iter 4600/6416, lr 0.010000, loss 3.065766 +INFO 2020-11-25 07:53:21 train.py: 74] Epoch 12, iter 4800/6416, lr 0.010000, loss 3.058420 +INFO 2020-11-25 07:54:38 train.py: 74] Epoch 12, iter 5000/6416, lr 0.010000, loss 3.072879 +INFO 2020-11-25 07:55:56 train.py: 74] Epoch 12, iter 5200/6416, lr 0.010000, loss 3.087009 +INFO 2020-11-25 07:57:12 train.py: 74] Epoch 12, iter 5400/6416, lr 0.010000, loss 3.073453 +INFO 2020-11-25 07:58:30 train.py: 74] Epoch 12, iter 5600/6416, lr 0.010000, loss 3.081941 +INFO 2020-11-25 07:59:47 train.py: 74] Epoch 12, iter 5800/6416, lr 0.010000, loss 3.113620 +INFO 2020-11-25 08:01:04 train.py: 87] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2020-11-25 08:01:04 train.py: 74] Epoch 12, iter 6000/6416, lr 0.010000, loss 3.097797 +INFO 2020-11-25 08:02:20 train.py: 74] Epoch 12, iter 6200/6416, lr 0.010000, loss 3.095820 +INFO 2020-11-25 08:03:37 train.py: 74] Epoch 12, iter 6400/6416, lr 0.010000, loss 3.104302 +INFO 2020-11-25 08:03:43 train.py: 92] Save checkpoint Epoch_12.pt to disk... +INFO 2020-11-25 08:03:44 train.py: 74] Epoch 13, iter 0/6416, lr 0.001000, loss 3.024425 +INFO 2020-11-25 08:05:01 train.py: 74] Epoch 13, iter 200/6416, lr 0.001000, loss 2.817303 +INFO 2020-11-25 08:06:18 train.py: 74] Epoch 13, iter 400/6416, lr 0.001000, loss 2.789431 +INFO 2020-11-25 08:07:34 train.py: 74] Epoch 13, iter 600/6416, lr 0.001000, loss 2.790243 +INFO 2020-11-25 08:08:51 train.py: 74] Epoch 13, iter 800/6416, lr 0.001000, loss 2.781607 +INFO 2020-11-25 08:10:08 train.py: 74] Epoch 13, iter 1000/6416, lr 0.001000, loss 2.774322 +INFO 2020-11-25 08:11:24 train.py: 74] Epoch 13, iter 1200/6416, lr 0.001000, loss 2.774867 +INFO 2020-11-25 08:12:40 train.py: 74] Epoch 13, iter 1400/6416, lr 0.001000, loss 2.775057 +INFO 2020-11-25 08:13:57 train.py: 74] Epoch 13, iter 1600/6416, lr 0.001000, loss 2.762426 +INFO 2020-11-25 08:15:13 train.py: 74] Epoch 13, iter 1800/6416, lr 0.001000, loss 2.775696 +INFO 2020-11-25 08:16:30 train.py: 74] Epoch 13, iter 2000/6416, lr 0.001000, loss 2.780679 +INFO 2020-11-25 08:17:46 train.py: 74] Epoch 13, iter 2200/6416, lr 0.001000, loss 2.776697 +INFO 2020-11-25 08:19:02 train.py: 74] Epoch 13, iter 2400/6416, lr 0.001000, loss 2.779701 +INFO 2020-11-25 08:20:19 train.py: 74] Epoch 13, iter 2600/6416, lr 0.001000, loss 2.780407 +INFO 2020-11-25 08:21:35 train.py: 74] Epoch 13, iter 2800/6416, lr 0.001000, loss 2.783996 +INFO 2020-11-25 08:22:51 train.py: 87] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2020-11-25 08:22:51 train.py: 74] Epoch 13, iter 3000/6416, lr 0.001000, loss 2.776334 +INFO 2020-11-25 08:24:08 train.py: 74] Epoch 13, iter 3200/6416, lr 0.001000, loss 2.769242 +INFO 2020-11-25 08:25:25 train.py: 74] Epoch 13, iter 3400/6416, lr 0.001000, loss 2.766997 +INFO 2020-11-25 08:26:42 train.py: 74] Epoch 13, iter 3600/6416, lr 0.001000, loss 2.772093 +INFO 2020-11-25 08:27:59 train.py: 74] Epoch 13, iter 3800/6416, lr 0.001000, loss 2.779261 +INFO 2020-11-25 08:29:16 train.py: 74] Epoch 13, iter 4000/6416, lr 0.001000, loss 2.791191 +INFO 2020-11-25 08:30:34 train.py: 74] Epoch 13, iter 4200/6416, lr 0.001000, loss 2.774417 +INFO 2020-11-25 08:31:51 train.py: 74] Epoch 13, iter 4400/6416, lr 0.001000, loss 2.772727 +INFO 2020-11-25 08:33:08 train.py: 74] Epoch 13, iter 4600/6416, lr 0.001000, loss 2.764403 +INFO 2020-11-25 08:34:25 train.py: 74] Epoch 13, iter 4800/6416, lr 0.001000, loss 2.769649 +INFO 2020-11-25 08:35:42 train.py: 74] Epoch 13, iter 5000/6416, lr 0.001000, loss 2.779951 +INFO 2020-11-25 08:36:59 train.py: 74] Epoch 13, iter 5200/6416, lr 0.001000, loss 2.786055 +INFO 2020-11-25 08:38:16 train.py: 74] Epoch 13, iter 5400/6416, lr 0.001000, loss 2.797189 +INFO 2020-11-25 08:39:33 train.py: 74] Epoch 13, iter 5600/6416, lr 0.001000, loss 2.801276 +INFO 2020-11-25 08:40:50 train.py: 74] Epoch 13, iter 5800/6416, lr 0.001000, loss 2.765005 +INFO 2020-11-25 08:42:06 train.py: 87] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2020-11-25 08:42:07 train.py: 74] Epoch 13, iter 6000/6416, lr 0.001000, loss 2.791018 +INFO 2020-11-25 08:43:24 train.py: 74] Epoch 13, iter 6200/6416, lr 0.001000, loss 2.768172 +INFO 2020-11-25 08:44:41 train.py: 74] Epoch 13, iter 6400/6416, lr 0.001000, loss 2.791562 +INFO 2020-11-25 08:44:47 train.py: 92] Save checkpoint Epoch_13.pt to disk... +INFO 2020-11-25 08:44:48 train.py: 74] Epoch 14, iter 0/6416, lr 0.001000, loss 2.852801 +INFO 2020-11-25 08:46:06 train.py: 74] Epoch 14, iter 200/6416, lr 0.001000, loss 2.730884 +INFO 2020-11-25 08:47:23 train.py: 74] Epoch 14, iter 400/6416, lr 0.001000, loss 2.747798 +INFO 2020-11-25 08:48:40 train.py: 74] Epoch 14, iter 600/6416, lr 0.001000, loss 2.755886 +INFO 2020-11-25 08:49:57 train.py: 74] Epoch 14, iter 800/6416, lr 0.001000, loss 2.742973 +INFO 2020-11-25 08:51:15 train.py: 74] Epoch 14, iter 1000/6416, lr 0.001000, loss 2.748884 +INFO 2020-11-25 08:52:32 train.py: 74] Epoch 14, iter 1200/6416, lr 0.001000, loss 2.760553 +INFO 2020-11-25 08:53:49 train.py: 74] Epoch 14, iter 1400/6416, lr 0.001000, loss 2.726681 +INFO 2020-11-25 08:55:06 train.py: 74] Epoch 14, iter 1600/6416, lr 0.001000, loss 2.758610 +INFO 2020-11-25 08:56:23 train.py: 74] Epoch 14, iter 1800/6416, lr 0.001000, loss 2.741889 +INFO 2020-11-25 08:57:40 train.py: 74] Epoch 14, iter 2000/6416, lr 0.001000, loss 2.751718 +INFO 2020-11-25 08:58:57 train.py: 74] Epoch 14, iter 2200/6416, lr 0.001000, loss 2.763134 +INFO 2020-11-25 09:00:14 train.py: 74] Epoch 14, iter 2400/6416, lr 0.001000, loss 2.754917 +INFO 2020-11-25 09:01:32 train.py: 74] Epoch 14, iter 2600/6416, lr 0.001000, loss 2.741878 +INFO 2020-11-25 09:02:49 train.py: 74] Epoch 14, iter 2800/6416, lr 0.001000, loss 2.747592 +INFO 2020-11-25 09:04:05 train.py: 87] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2020-11-25 09:04:06 train.py: 74] Epoch 14, iter 3000/6416, lr 0.001000, loss 2.739146 +INFO 2020-11-25 09:05:23 train.py: 74] Epoch 14, iter 3200/6416, lr 0.001000, loss 2.765652 +INFO 2020-11-25 09:06:40 train.py: 74] Epoch 14, iter 3400/6416, lr 0.001000, loss 2.762120 +INFO 2020-11-25 09:07:57 train.py: 74] Epoch 14, iter 3600/6416, lr 0.001000, loss 2.763000 +INFO 2020-11-25 09:09:14 train.py: 74] Epoch 14, iter 3800/6416, lr 0.001000, loss 2.752892 +INFO 2020-11-25 09:10:31 train.py: 74] Epoch 14, iter 4000/6416, lr 0.001000, loss 2.750705 +INFO 2020-11-25 09:11:49 train.py: 74] Epoch 14, iter 4200/6416, lr 0.001000, loss 2.753437 +INFO 2020-11-25 09:13:06 train.py: 74] Epoch 14, iter 4400/6416, lr 0.001000, loss 2.771864 +INFO 2020-11-25 09:14:23 train.py: 74] Epoch 14, iter 4600/6416, lr 0.001000, loss 2.767045 +INFO 2020-11-25 09:15:40 train.py: 74] Epoch 14, iter 4800/6416, lr 0.001000, loss 2.758935 +INFO 2020-11-25 09:16:57 train.py: 74] Epoch 14, iter 5000/6416, lr 0.001000, loss 2.752333 +INFO 2020-11-25 09:18:14 train.py: 74] Epoch 14, iter 5200/6416, lr 0.001000, loss 2.773884 +INFO 2020-11-25 09:19:31 train.py: 74] Epoch 14, iter 5400/6416, lr 0.001000, loss 2.760020 +INFO 2020-11-25 09:20:48 train.py: 74] Epoch 14, iter 5600/6416, lr 0.001000, loss 2.773259 +INFO 2020-11-25 09:22:05 train.py: 74] Epoch 14, iter 5800/6416, lr 0.001000, loss 2.769311 +INFO 2020-11-25 09:23:22 train.py: 87] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2020-11-25 09:23:23 train.py: 74] Epoch 14, iter 6000/6416, lr 0.001000, loss 2.767211 +INFO 2020-11-25 09:24:39 train.py: 74] Epoch 14, iter 6200/6416, lr 0.001000, loss 2.763966 +INFO 2020-11-25 09:25:56 train.py: 74] Epoch 14, iter 6400/6416, lr 0.001000, loss 2.773697 +INFO 2020-11-25 09:26:02 train.py: 92] Save checkpoint Epoch_14.pt to disk... +INFO 2020-11-25 09:26:03 train.py: 74] Epoch 15, iter 0/6416, lr 0.001000, loss 2.742708 +INFO 2020-11-25 09:27:20 train.py: 74] Epoch 15, iter 200/6416, lr 0.001000, loss 2.723138 +INFO 2020-11-25 09:28:37 train.py: 74] Epoch 15, iter 400/6416, lr 0.001000, loss 2.729672 +INFO 2020-11-25 09:29:53 train.py: 74] Epoch 15, iter 600/6416, lr 0.001000, loss 2.725044 +INFO 2020-11-25 09:31:11 train.py: 74] Epoch 15, iter 800/6416, lr 0.001000, loss 2.731488 +INFO 2020-11-25 09:32:28 train.py: 74] Epoch 15, iter 1000/6416, lr 0.001000, loss 2.738319 +INFO 2020-11-25 09:33:45 train.py: 74] Epoch 15, iter 1200/6416, lr 0.001000, loss 2.731070 +INFO 2020-11-25 09:35:02 train.py: 74] Epoch 15, iter 1400/6416, lr 0.001000, loss 2.745769 +INFO 2020-11-25 09:36:19 train.py: 74] Epoch 15, iter 1600/6416, lr 0.001000, loss 2.755175 +INFO 2020-11-25 09:37:36 train.py: 74] Epoch 15, iter 1800/6416, lr 0.001000, loss 2.717457 +INFO 2020-11-25 09:38:53 train.py: 74] Epoch 15, iter 2000/6416, lr 0.001000, loss 2.733845 +INFO 2020-11-25 09:40:10 train.py: 74] Epoch 15, iter 2200/6416, lr 0.001000, loss 2.753019 +INFO 2020-11-25 09:41:28 train.py: 74] Epoch 15, iter 2400/6416, lr 0.001000, loss 2.735876 +INFO 2020-11-25 09:42:45 train.py: 74] Epoch 15, iter 2600/6416, lr 0.001000, loss 2.736461 +INFO 2020-11-25 09:44:02 train.py: 74] Epoch 15, iter 2800/6416, lr 0.001000, loss 2.736138 +INFO 2020-11-25 09:45:18 train.py: 87] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2020-11-25 09:45:19 train.py: 74] Epoch 15, iter 3000/6416, lr 0.001000, loss 2.736460 +INFO 2020-11-25 09:46:36 train.py: 74] Epoch 15, iter 3200/6416, lr 0.001000, loss 2.751560 +INFO 2020-11-25 09:47:53 train.py: 74] Epoch 15, iter 3400/6416, lr 0.001000, loss 2.731188 +INFO 2020-11-25 09:49:10 train.py: 74] Epoch 15, iter 3600/6416, lr 0.001000, loss 2.755524 +INFO 2020-11-25 09:50:27 train.py: 74] Epoch 15, iter 3800/6416, lr 0.001000, loss 2.737660 +INFO 2020-11-25 09:51:44 train.py: 74] Epoch 15, iter 4000/6416, lr 0.001000, loss 2.748002 +INFO 2020-11-25 09:53:01 train.py: 74] Epoch 15, iter 4200/6416, lr 0.001000, loss 2.753457 +INFO 2020-11-25 09:54:19 train.py: 74] Epoch 15, iter 4400/6416, lr 0.001000, loss 2.747317 +INFO 2020-11-25 09:55:36 train.py: 74] Epoch 15, iter 4600/6416, lr 0.001000, loss 2.755721 +INFO 2020-11-25 09:56:53 train.py: 74] Epoch 15, iter 4800/6416, lr 0.001000, loss 2.752439 +INFO 2020-11-25 09:58:10 train.py: 74] Epoch 15, iter 5000/6416, lr 0.001000, loss 2.739484 +INFO 2020-11-25 09:59:27 train.py: 74] Epoch 15, iter 5200/6416, lr 0.001000, loss 2.752466 +INFO 2020-11-25 10:00:44 train.py: 74] Epoch 15, iter 5400/6416, lr 0.001000, loss 2.777040 +INFO 2020-11-25 10:02:01 train.py: 74] Epoch 15, iter 5600/6416, lr 0.001000, loss 2.733310 +INFO 2020-11-25 10:03:18 train.py: 74] Epoch 15, iter 5800/6416, lr 0.001000, loss 2.780046 +INFO 2020-11-25 10:04:35 train.py: 87] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2020-11-25 10:04:36 train.py: 74] Epoch 15, iter 6000/6416, lr 0.001000, loss 2.759378 +INFO 2020-11-25 10:05:52 train.py: 74] Epoch 15, iter 6200/6416, lr 0.001000, loss 2.763482 +INFO 2020-11-25 10:07:09 train.py: 74] Epoch 15, iter 6400/6416, lr 0.001000, loss 2.755439 +INFO 2020-11-25 10:07:14 train.py: 92] Save checkpoint Epoch_15.pt to disk... +INFO 2020-11-25 10:07:16 train.py: 74] Epoch 16, iter 0/6416, lr 0.000100, loss 2.756847 +INFO 2020-11-25 10:08:33 train.py: 74] Epoch 16, iter 200/6416, lr 0.000100, loss 2.705241 +INFO 2020-11-25 10:09:49 train.py: 74] Epoch 16, iter 400/6416, lr 0.000100, loss 2.710645 +INFO 2020-11-25 10:11:06 train.py: 74] Epoch 16, iter 600/6416, lr 0.000100, loss 2.709752 +INFO 2020-11-25 10:12:23 train.py: 74] Epoch 16, iter 800/6416, lr 0.000100, loss 2.717110 +INFO 2020-11-25 10:13:39 train.py: 74] Epoch 16, iter 1000/6416, lr 0.000100, loss 2.699355 +INFO 2020-11-25 10:14:56 train.py: 74] Epoch 16, iter 1200/6416, lr 0.000100, loss 2.703827 +INFO 2020-11-25 10:16:12 train.py: 74] Epoch 16, iter 1400/6416, lr 0.000100, loss 2.714331 +INFO 2020-11-25 10:17:29 train.py: 74] Epoch 16, iter 1600/6416, lr 0.000100, loss 2.690827 +INFO 2020-11-25 10:18:45 train.py: 74] Epoch 16, iter 1800/6416, lr 0.000100, loss 2.696545 +INFO 2020-11-25 10:20:02 train.py: 74] Epoch 16, iter 2000/6416, lr 0.000100, loss 2.721342 +INFO 2020-11-25 10:21:18 train.py: 74] Epoch 16, iter 2200/6416, lr 0.000100, loss 2.730122 +INFO 2020-11-25 10:22:35 train.py: 74] Epoch 16, iter 2400/6416, lr 0.000100, loss 2.714163 +INFO 2020-11-25 10:23:51 train.py: 74] Epoch 16, iter 2600/6416, lr 0.000100, loss 2.721998 +INFO 2020-11-25 10:25:07 train.py: 74] Epoch 16, iter 2800/6416, lr 0.000100, loss 2.724338 +INFO 2020-11-25 10:26:24 train.py: 87] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2020-11-25 10:26:24 train.py: 74] Epoch 16, iter 3000/6416, lr 0.000100, loss 2.715077 +INFO 2020-11-25 10:27:41 train.py: 74] Epoch 16, iter 3200/6416, lr 0.000100, loss 2.716743 +INFO 2020-11-25 10:28:58 train.py: 74] Epoch 16, iter 3400/6416, lr 0.000100, loss 2.713927 +INFO 2020-11-25 10:30:15 train.py: 74] Epoch 16, iter 3600/6416, lr 0.000100, loss 2.714817 +INFO 2020-11-25 10:31:32 train.py: 74] Epoch 16, iter 3800/6416, lr 0.000100, loss 2.704207 +INFO 2020-11-25 10:32:49 train.py: 74] Epoch 16, iter 4000/6416, lr 0.000100, loss 2.721077 +INFO 2020-11-25 10:34:07 train.py: 74] Epoch 16, iter 4200/6416, lr 0.000100, loss 2.710396 +INFO 2020-11-25 10:35:24 train.py: 74] Epoch 16, iter 4400/6416, lr 0.000100, loss 2.710642 +INFO 2020-11-25 10:36:41 train.py: 74] Epoch 16, iter 4600/6416, lr 0.000100, loss 2.715925 +INFO 2020-11-25 10:37:58 train.py: 74] Epoch 16, iter 4800/6416, lr 0.000100, loss 2.716740 +INFO 2020-11-25 10:39:15 train.py: 74] Epoch 16, iter 5000/6416, lr 0.000100, loss 2.714157 +INFO 2020-11-25 10:40:32 train.py: 74] Epoch 16, iter 5200/6416, lr 0.000100, loss 2.697949 +INFO 2020-11-25 10:41:49 train.py: 74] Epoch 16, iter 5400/6416, lr 0.000100, loss 2.714547 +INFO 2020-11-25 10:43:06 train.py: 74] Epoch 16, iter 5600/6416, lr 0.000100, loss 2.723439 +INFO 2020-11-25 10:44:23 train.py: 74] Epoch 16, iter 5800/6416, lr 0.000100, loss 2.710402 +INFO 2020-11-25 10:45:40 train.py: 87] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2020-11-25 10:45:40 train.py: 74] Epoch 16, iter 6000/6416, lr 0.000100, loss 2.707711 +INFO 2020-11-25 10:46:57 train.py: 74] Epoch 16, iter 6200/6416, lr 0.000100, loss 2.722624 +INFO 2020-11-25 10:48:14 train.py: 74] Epoch 16, iter 6400/6416, lr 0.000100, loss 2.707112 +INFO 2020-11-25 10:48:21 train.py: 92] Save checkpoint Epoch_16.pt to disk... +INFO 2020-11-25 10:48:22 train.py: 74] Epoch 17, iter 0/6416, lr 0.000100, loss 2.652284 +INFO 2020-11-25 10:49:40 train.py: 74] Epoch 17, iter 200/6416, lr 0.000100, loss 2.684191 +INFO 2020-11-25 10:50:57 train.py: 74] Epoch 17, iter 400/6416, lr 0.000100, loss 2.724746 +INFO 2020-11-25 10:52:14 train.py: 74] Epoch 17, iter 600/6416, lr 0.000100, loss 2.706552 +INFO 2020-11-25 10:53:31 train.py: 74] Epoch 17, iter 800/6416, lr 0.000100, loss 2.712692 +INFO 2020-11-25 10:54:49 train.py: 74] Epoch 17, iter 1000/6416, lr 0.000100, loss 2.718098 +INFO 2020-11-25 10:56:06 train.py: 74] Epoch 17, iter 1200/6416, lr 0.000100, loss 2.712688 +INFO 2020-11-25 10:57:23 train.py: 74] Epoch 17, iter 1400/6416, lr 0.000100, loss 2.705111 +INFO 2020-11-25 10:58:40 train.py: 74] Epoch 17, iter 1600/6416, lr 0.000100, loss 2.724551 +INFO 2020-11-25 10:59:57 train.py: 74] Epoch 17, iter 1800/6416, lr 0.000100, loss 2.707902 +INFO 2020-11-25 11:01:15 train.py: 74] Epoch 17, iter 2000/6416, lr 0.000100, loss 2.719900 +INFO 2020-11-25 11:02:32 train.py: 74] Epoch 17, iter 2200/6416, lr 0.000100, loss 2.698277 +INFO 2020-11-25 11:03:49 train.py: 74] Epoch 17, iter 2400/6416, lr 0.000100, loss 2.723926 +INFO 2020-11-25 11:05:06 train.py: 74] Epoch 17, iter 2600/6416, lr 0.000100, loss 2.712355 +INFO 2020-11-25 11:06:23 train.py: 74] Epoch 17, iter 2800/6416, lr 0.000100, loss 2.712863 +INFO 2020-11-25 11:07:39 train.py: 87] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2020-11-25 11:07:40 train.py: 74] Epoch 17, iter 3000/6416, lr 0.000100, loss 2.705217 +INFO 2020-11-25 11:08:56 train.py: 74] Epoch 17, iter 3200/6416, lr 0.000100, loss 2.699086 +INFO 2020-11-25 11:10:13 train.py: 74] Epoch 17, iter 3400/6416, lr 0.000100, loss 2.712169 +INFO 2020-11-25 11:11:29 train.py: 74] Epoch 17, iter 3600/6416, lr 0.000100, loss 2.702075 +INFO 2020-11-25 11:12:45 train.py: 74] Epoch 17, iter 3800/6416, lr 0.000100, loss 2.723592 +INFO 2020-11-25 11:14:02 train.py: 74] Epoch 17, iter 4000/6416, lr 0.000100, loss 2.718578 +INFO 2020-11-25 11:15:18 train.py: 74] Epoch 17, iter 4200/6416, lr 0.000100, loss 2.712310 +INFO 2020-11-25 11:16:34 train.py: 74] Epoch 17, iter 4400/6416, lr 0.000100, loss 2.718530 +INFO 2020-11-25 11:17:51 train.py: 74] Epoch 17, iter 4600/6416, lr 0.000100, loss 2.714387 +INFO 2020-11-25 11:19:07 train.py: 74] Epoch 17, iter 4800/6416, lr 0.000100, loss 2.717614 +INFO 2020-11-25 11:20:23 train.py: 74] Epoch 17, iter 5000/6416, lr 0.000100, loss 2.699235 +INFO 2020-11-25 11:21:40 train.py: 74] Epoch 17, iter 5200/6416, lr 0.000100, loss 2.697020 +INFO 2020-11-25 11:22:56 train.py: 74] Epoch 17, iter 5400/6416, lr 0.000100, loss 2.734353 +INFO 2020-11-25 11:24:12 train.py: 74] Epoch 17, iter 5600/6416, lr 0.000100, loss 2.683748 +INFO 2020-11-25 11:25:29 train.py: 74] Epoch 17, iter 5800/6416, lr 0.000100, loss 2.703836 +INFO 2020-11-25 11:26:45 train.py: 87] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2020-11-25 11:26:45 train.py: 74] Epoch 17, iter 6000/6416, lr 0.000100, loss 2.706376 +INFO 2020-11-25 11:28:03 train.py: 74] Epoch 17, iter 6200/6416, lr 0.000100, loss 2.708875 +INFO 2020-11-25 11:29:20 train.py: 74] Epoch 17, iter 6400/6416, lr 0.000100, loss 2.700593 +INFO 2020-11-25 11:29:26 train.py: 92] Save checkpoint Epoch_17.pt to disk... +INFO 2020-11-25 11:29:26 train.py: 175] Optimization done! diff --git a/bob/bio/facexzoo/models/heads/MV-Softmax/.gitkeep b/bob/bio/facexzoo/models/heads/MV-Softmax/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..0db4976e32282361fe102cc7e26e28dd760be91c --- /dev/null +++ b/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_agedb.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_2999.pt | 0.9596666666666666 | 0.002808716591058783 | +| Epoch_16_batch_5999.pt | 0.9595 | 0.0024726903426964316 | +| Epoch_13.pt | 0.9588333333333333 | 0.002236758015466374 | +| Epoch_14.pt | 0.9586666666666666 | 0.002830608711745998 | +| Epoch_17.pt | 0.9584999999999999 | 0.0026810952248919255 | +| Epoch_15.pt | 0.9583333333333334 | 0.002277100170213248 | +| Epoch_14_batch_5999.pt | 0.9580000000000002 | 0.0025067809272618815 | +| Epoch_16.pt | 0.958 | 0.0029376231258671785 | +| Epoch_17_batch_2999.pt | 0.9578333333333333 | 0.0027448042948968053 | +| Epoch_14_batch_2999.pt | 0.9576666666666667 | 0.002678215731820883 | +| Epoch_17_batch_5999.pt | 0.9576666666666667 | 0.0027011657291429437 | +| Epoch_13_batch_5999.pt | 0.9570000000000001 | 0.0027307123838765626 | +| Epoch_13_batch_2999.pt | 0.9570000000000001 | 0.0026620330112690966 | +| Epoch_15_batch_5999.pt | 0.9565000000000001 | 0.0026229048075806453 | +| Epoch_15_batch_2999.pt | 0.9565000000000001 | 0.0027154109799666527 | +| Epoch_12_batch_5999.pt | 0.9563333333333333 | 0.002662033011269096 | +| Epoch_11_batch_5999.pt | 0.9560000000000001 | 0.003353641838397019 | +| Epoch_10_batch_2999.pt | 0.9558333333333333 | 0.0029000851413640456 | +| Epoch_12.pt | 0.9556666666666667 | 0.003288588574877501 | +| Epoch_12_batch_2999.pt | 0.9553333333333331 | 0.003237511618740774 | +| Epoch_11.pt | 0.9550000000000001 | 0.0028544961285922577 | +| Epoch_10_batch_5999.pt | 0.9536666666666666 | 0.0031407320055783453 | +| Epoch_11_batch_2999.pt | 0.9531666666666666 | 0.0029234049148717527 | +| Epoch_10.pt | 0.9531666666666666 | 0.0030169275516412093 | +| Epoch_8_batch_2999.pt | 0.9455 | 0.003505287012077192 | +| Epoch_8_batch_5999.pt | 0.9445 | 0.0031822229981377076 | +| Epoch_7_batch_2999.pt | 0.9418333333333331 | 0.00419766248885858 | +| Epoch_9.pt | 0.9413333333333332 | 0.003749897117930266 | +| Epoch_9_batch_5999.pt | 0.9411666666666665 | 0.004245913067618996 | +| Epoch_6_batch_5999.pt | 0.9405000000000001 | 0.00441692871340021 | +| Epoch_7_batch_5999.pt | 0.9403333333333332 | 0.003839367231815777 | +| Epoch_5_batch_5999.pt | 0.9401666666666667 | 0.004461425891758629 | +| Epoch_6_batch_2999.pt | 0.9396666666666667 | 0.003798960221617497 | +| Epoch_9_batch_2999.pt | 0.9383333333333332 | 0.003583225665910461 | +| Epoch_5_batch_2999.pt | 0.9356666666666668 | 0.0043899436144752 | +| Epoch_8.pt | 0.9335000000000001 | 0.0038845213569807416 | +| Epoch_6.pt | 0.9328333333333333 | 0.005500000000000003 | +| Epoch_4_batch_2999.pt | 0.9305 | 0.004486261607382757 | +| Epoch_4_batch_5999.pt | 0.9303333333333332 | 0.004373037478700983 | +| Epoch_4.pt | 0.9301666666666666 | 0.0031666666666666623 | +| Epoch_3_batch_2999.pt | 0.9298333333333334 | 0.004047938051543746 | +| Epoch_7.pt | 0.9286666666666668 | 0.0035030850600965497 | +| Epoch_3_batch_5999.pt | 0.9275 | 0.004603071974772747 | +| Epoch_2_batch_5999.pt | 0.9241666666666667 | 0.006087073938749425 | +| Epoch_3.pt | 0.9235 | 0.00513671125031725 | +| Epoch_5.pt | 0.9218333333333332 | 0.004419722911821962 | +| Epoch_2_batch_2999.pt | 0.921 | 0.0051830683509736 | +| Epoch_2.pt | 0.9126666666666667 | 0.00476095228569523 | +| Epoch_1_batch_5999.pt | 0.9028333333333333 | 0.007777976187945486 | +| Epoch_1.pt | 0.9019999999999999 | 0.005664487598458173 | +| Epoch_1_batch_2999.pt | 0.893 | 0.006185406959874126 | +| Epoch_0_batch_5999.pt | 0.8415000000000001 | 0.007224145043182491 | +| Epoch_0.pt | 0.8406666666666667 | 0.006602468674109144 | +| Epoch_0_batch_2999.pt | 0.7585 | 0.005871304984602846 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..77bce39df7a606a31ef76f7d74719a0a4d8ef50f --- /dev/null +++ b/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_calfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_5999.pt | 0.9381666666666666 | 0.003713921091857389 | +| Epoch_14_batch_2999.pt | 0.9378333333333334 | 0.0034609818060383395 | +| Epoch_14.pt | 0.9376666666666666 | 0.0033166247903553946 | +| Epoch_15.pt | 0.9375 | 0.0037944891814509227 | +| Epoch_13.pt | 0.9375 | 0.003593976442141298 | +| Epoch_16_batch_2999.pt | 0.9375 | 0.004031128874149273 | +| Epoch_12_batch_2999.pt | 0.9373333333333334 | 0.004015402444353916 | +| Epoch_10_batch_5999.pt | 0.9373333333333334 | 0.0036868133384526766 | +| Epoch_11_batch_2999.pt | 0.9371666666666668 | 0.0035140810224152056 | +| Epoch_17_batch_5999.pt | 0.9369999999999999 | 0.0040046269535422415 | +| Epoch_16.pt | 0.9368333333333334 | 0.0036552853665768807 | +| Epoch_15_batch_5999.pt | 0.9366666666666668 | 0.0039518709430619355 | +| Epoch_12.pt | 0.9366666666666665 | 0.003944053188733076 | +| Epoch_17_batch_2999.pt | 0.9365 | 0.0035870996571906477 | +| Epoch_12_batch_5999.pt | 0.9361666666666666 | 0.0035316033500695124 | +| Epoch_17.pt | 0.9359999999999999 | 0.0037035185138886554 | +| Epoch_15_batch_2999.pt | 0.9359999999999999 | 0.0036700321255363913 | +| Epoch_13_batch_2999.pt | 0.9359999999999999 | 0.0037284359412361094 | +| Epoch_14_batch_5999.pt | 0.9356666666666668 | 0.0034623192113072995 | +| Epoch_11_batch_5999.pt | 0.9356666666666668 | 0.004099081499043714 | +| Epoch_10_batch_2999.pt | 0.9354999999999999 | 0.0037271940261598894 | +| Epoch_13_batch_5999.pt | 0.9353333333333333 | 0.003503085060096543 | +| Epoch_11.pt | 0.9351666666666667 | 0.003156905032261193 | +| Epoch_10.pt | 0.9334999999999999 | 0.00389245867902296 | +| Epoch_9_batch_5999.pt | 0.9271666666666667 | 0.004082860894816248 | +| Epoch_7_batch_5999.pt | 0.9256666666666667 | 0.003644715437079277 | +| Epoch_8_batch_2999.pt | 0.9255000000000001 | 0.00458156531555982 | +| Epoch_9_batch_2999.pt | 0.9243333333333332 | 0.0038666028091789584 | +| Epoch_7_batch_2999.pt | 0.9238333333333333 | 0.003324525400083818 | +| Epoch_6_batch_5999.pt | 0.9236666666666666 | 0.0038393672318157825 | +| Epoch_5_batch_5999.pt | 0.9225 | 0.0030251007533471062 | +| Epoch_9.pt | 0.9221666666666666 | 0.0033152286106301523 | +| Epoch_8.pt | 0.9214999999999998 | 0.003482318654269966 | +| Epoch_6_batch_2999.pt | 0.9213333333333334 | 0.0034318767136623358 | +| Epoch_8_batch_5999.pt | 0.9211666666666666 | 0.0034161020310318276 | +| Epoch_4_batch_5999.pt | 0.9185000000000001 | 0.004040306185683719 | +| Epoch_6.pt | 0.9185000000000001 | 0.0036972629182166314 | +| Epoch_4.pt | 0.9178333333333333 | 0.004289306254879471 | +| Epoch_5_batch_2999.pt | 0.9173333333333332 | 0.0035241670060341605 | +| Epoch_3_batch_5999.pt | 0.915 | 0.004201704533597563 | +| Epoch_3_batch_2999.pt | 0.9148333333333334 | 0.003796115623523669 | +| Epoch_4_batch_2999.pt | 0.9145 | 0.003677173498527313 | +| Epoch_3.pt | 0.9115 | 0.004769048873779113 | +| Epoch_7.pt | 0.9108333333333334 | 0.0037122586382862485 | +| Epoch_2_batch_2999.pt | 0.9106666666666667 | 0.005364492313143695 | +| Epoch_2_batch_5999.pt | 0.908 | 0.005310134731266008 | +| Epoch_2.pt | 0.9076666666666666 | 0.004268749491621903 | +| Epoch_5.pt | 0.9049999999999999 | 0.002897423291201178 | +| Epoch_1.pt | 0.9023333333333333 | 0.004876246279442598 | +| Epoch_1_batch_5999.pt | 0.8965 | 0.004915646472938589 | +| Epoch_1_batch_2999.pt | 0.8821666666666668 | 0.005832275036275763 | +| Epoch_0_batch_5999.pt | 0.8460000000000001 | 0.005410323921751042 | +| Epoch_0.pt | 0.8458333333333332 | 0.006513281776967183 | +| Epoch_0_batch_2999.pt | 0.7321666666666666 | 0.008913334441397197 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..795f9f8bb3803af502a7f3832dca0e3791ee72c1 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_cplfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_5999.pt | 0.8333333333333333 | 0.007260581890090914 | +| Epoch_16_batch_5999.pt | 0.8308333333333333 | 0.006541651922606642 | +| Epoch_10_batch_5999.pt | 0.8305 | 0.006898962169221229 | +| Epoch_15.pt | 0.8303333333333333 | 0.006544246365612105 | +| Epoch_14.pt | 0.8301666666666667 | 0.006394683362656983 | +| Epoch_12_batch_2999.pt | 0.8298333333333334 | 0.0068693719949452685 | +| Epoch_12_batch_5999.pt | 0.8298333333333334 | 0.006806179109755634 | +| Epoch_17_batch_2999.pt | 0.8296666666666667 | 0.006343072433863149 | +| Epoch_17_batch_5999.pt | 0.8295 | 0.006912370374736211 | +| Epoch_15_batch_2999.pt | 0.8285 | 0.006385022984963992 | +| Epoch_16_batch_2999.pt | 0.8281666666666666 | 0.0066223061143082865 | +| Epoch_16.pt | 0.828 | 0.006220237778790407 | +| Epoch_13_batch_2999.pt | 0.8278333333333334 | 0.006781647347123024 | +| Epoch_13.pt | 0.8275 | 0.006723140433157013 | +| Epoch_14_batch_2999.pt | 0.8271666666666666 | 0.006804364975223588 | +| Epoch_12.pt | 0.8266666666666665 | 0.007657804862272348 | +| Epoch_15_batch_5999.pt | 0.8265 | 0.006622306114308287 | +| Epoch_17.pt | 0.8265 | 0.005765210691812374 | +| Epoch_11_batch_5999.pt | 0.8263333333333334 | 0.007473409653688988 | +| Epoch_14_batch_5999.pt | 0.8256666666666665 | 0.007058835633008262 | +| Epoch_11_batch_2999.pt | 0.825 | 0.007395360574352775 | +| Epoch_10_batch_2999.pt | 0.8243333333333333 | 0.007400367024598542 | +| Epoch_11.pt | 0.8234999999999999 | 0.006336500182900753 | +| Epoch_10.pt | 0.8203333333333334 | 0.006059376979749321 | +| Epoch_9_batch_5999.pt | 0.8091666666666667 | 0.005785518319236597 | +| Epoch_8.pt | 0.8038333333333332 | 0.008326107978766194 | +| Epoch_7_batch_5999.pt | 0.8023333333333333 | 0.006291283407507587 | +| Epoch_9_batch_2999.pt | 0.8021666666666667 | 0.007833333333333335 | +| Epoch_8_batch_2999.pt | 0.8015000000000001 | 0.006570839057983835 | +| Epoch_8_batch_5999.pt | 0.8013333333333333 | 0.00795744856435284 | +| Epoch_6_batch_5999.pt | 0.8001666666666667 | 0.007897686799951202 | +| Epoch_9.pt | 0.7971666666666667 | 0.008927174493894722 | +| Epoch_5_batch_5999.pt | 0.7953333333333333 | 0.008042326301865584 | +| Epoch_5_batch_2999.pt | 0.7938333333333334 | 0.007856938429279016 | +| Epoch_6_batch_2999.pt | 0.7936666666666666 | 0.0081187178942807 | +| Epoch_7_batch_2999.pt | 0.7928333333333334 | 0.008516686598512587 | +| Epoch_6.pt | 0.7921666666666667 | 0.0050738375181408595 | +| Epoch_4_batch_2999.pt | 0.7898333333333334 | 0.005496631965391444 | +| Epoch_4_batch_5999.pt | 0.7896666666666666 | 0.006269660435407063 | +| Epoch_3.pt | 0.7871666666666667 | 0.00937902177109724 | +| Epoch_3_batch_5999.pt | 0.7851666666666667 | 0.0068423607939488125 | +| Epoch_2.pt | 0.7841666666666666 | 0.009048054152723514 | +| Epoch_4.pt | 0.7835 | 0.006806179109755635 | +| Epoch_7.pt | 0.7829999999999999 | 0.006235105709599193 | +| Epoch_3_batch_2999.pt | 0.7828333333333333 | 0.00753612698118491 | +| Epoch_5.pt | 0.7808333333333334 | 0.007646713164636313 | +| Epoch_2_batch_5999.pt | 0.7789999999999999 | 0.008632410933135572 | +| Epoch_2_batch_2999.pt | 0.7759999999999999 | 0.008274607894182611 | +| Epoch_1_batch_5999.pt | 0.7626666666666667 | 0.007106769507976613 | +| Epoch_1_batch_2999.pt | 0.7535000000000001 | 0.008799726426724021 | +| Epoch_1.pt | 0.7526666666666667 | 0.006877230277975012 | +| Epoch_0.pt | 0.7073333333333334 | 0.009102299261826758 | +| Epoch_0_batch_5999.pt | 0.7026666666666668 | 0.007790465841314707 | +| Epoch_0_batch_2999.pt | 0.6346666666666667 | 0.00881146839684748 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..265655b2c338ca798d30df93c9eef55630fb5125 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15.pt | 0.9956666666666665 | 0.0011706281947614146 | +| Epoch_12_batch_2999.pt | 0.9956666666666665 | 0.0010886621079036374 | +| Epoch_12.pt | 0.9956666666666665 | 0.0010599324460188284 | +| Epoch_16_batch_2999.pt | 0.9956666666666665 | 0.0011706281947614146 | +| Epoch_15_batch_5999.pt | 0.9955 | 0.0011399046960379555 | +| Epoch_15_batch_2999.pt | 0.9955 | 0.0011399046960379555 | +| Epoch_11_batch_5999.pt | 0.9955 | 0.0011666666666666642 | +| Epoch_16.pt | 0.9953333333333333 | 0.001105541596785135 | +| Epoch_13.pt | 0.9953333333333332 | 0.001133115447465063 | +| Epoch_14_batch_2999.pt | 0.9951666666666666 | 0.0010957268290731133 | +| Epoch_10.pt | 0.9951666666666666 | 0.0011772011166898393 | +| Epoch_17_batch_2999.pt | 0.9951666666666666 | 0.0010378634273483006 | +| Epoch_13_batch_2999.pt | 0.9949999999999999 | 0.0011111111111111128 | +| Epoch_17_batch_5999.pt | 0.9949999999999999 | 0.0011111111111111128 | +| Epoch_13_batch_5999.pt | 0.9948333333333332 | 0.001228519132638667 | +| Epoch_17.pt | 0.9948333333333332 | 0.0011235415786753737 | +| Epoch_14_batch_5999.pt | 0.9948333333333332 | 0.0010671873729054782 | +| Epoch_12_batch_5999.pt | 0.9946666666666667 | 0.001018350154434636 | +| Epoch_14.pt | 0.9945 | 0.0011399046960379542 | +| Epoch_16_batch_5999.pt | 0.9944999999999998 | 0.0011666666666666696 | +| Epoch_11_batch_2999.pt | 0.9943333333333333 | 0.0012222222222222198 | +| Epoch_10_batch_5999.pt | 0.9941666666666666 | 0.0010613873985857113 | +| Epoch_11.pt | 0.9940000000000001 | 0.0013193713430042124 | +| Epoch_10_batch_2999.pt | 0.994 | 0.0012957670877434026 | +| Epoch_7_batch_5999.pt | 0.9935 | 0.0013017082793177735 | +| Epoch_8.pt | 0.9931666666666666 | 0.001301708279317778 | +| Epoch_9_batch_2999.pt | 0.9931666666666666 | 0.0012533904636309486 | +| Epoch_9_batch_5999.pt | 0.993 | 0.0011600340565456162 | +| Epoch_5_batch_5999.pt | 0.993 | 0.0017177360926378114 | +| Epoch_8_batch_5999.pt | 0.9926666666666666 | 0.0013653561919382778 | +| Epoch_6_batch_5999.pt | 0.9924999999999999 | 0.0017078251276599358 | +| Epoch_9.pt | 0.9923333333333332 | 0.0007934920476158749 | +| Epoch_4_batch_5999.pt | 0.9921666666666666 | 0.0016859989894992859 | +| Epoch_3.pt | 0.992 | 0.0017533037597843894 | +| Epoch_3_batch_2999.pt | 0.9918333333333335 | 0.0012031337682059848 | +| Epoch_8_batch_2999.pt | 0.9918333333333333 | 0.0016187558093703858 | +| Epoch_6_batch_2999.pt | 0.9916666666666668 | 0.0015908690070307063 | +| Epoch_5_batch_2999.pt | 0.9915 | 0.001479280772854929 | +| Epoch_2_batch_2999.pt | 0.9915 | 0.0018333333333333322 | +| Epoch_2_batch_5999.pt | 0.9913333333333334 | 0.0017177360926378127 | +| Epoch_6.pt | 0.9911666666666665 | 0.0012435016269777464 | +| Epoch_4_batch_2999.pt | 0.991 | 0.001742709682373126 | +| Epoch_3_batch_5999.pt | 0.9909999999999999 | 0.0020964402515681346 | +| Epoch_5.pt | 0.9908333333333333 | 0.001614937983749851 | +| Epoch_4.pt | 0.9908333333333333 | 0.0015762512176790149 | +| Epoch_7.pt | 0.9906666666666668 | 0.0017603310575283158 | +| Epoch_7_batch_2999.pt | 0.9905000000000002 | 0.0017751717009633857 | +| Epoch_2.pt | 0.9884999999999999 | 0.0016749792701868215 | +| Epoch_1_batch_5999.pt | 0.9864999999999998 | 0.0015204369092671074 | +| Epoch_1.pt | 0.9841666666666666 | 0.002620550314460163 | +| Epoch_1_batch_2999.pt | 0.9823333333333334 | 0.0018954135676924433 | +| Epoch_0.pt | 0.9703333333333333 | 0.0022879178091082257 | +| Epoch_0_batch_5999.pt | 0.9655000000000001 | 0.0030434102055116375 | +| Epoch_0_batch_2999.pt | 0.9373333333333334 | 0.003390254733864971 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_rfw_African.txt b/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_rfw_African.txt new file mode 100644 index 0000000000000000000000000000000000000000..fdd509ff22c09c8d778b6039b9ea42abb155b89c --- /dev/null +++ b/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_rfw_African.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17.pt | 0.8873333333333333 | 0.005117146195408648 | +| Epoch_17_batch_2999.pt | 0.8868333333333334 | 0.004292183535937484 | +| Epoch_16_batch_2999.pt | 0.8868333333333333 | 0.004657729537494039 | +| Epoch_16_batch_5999.pt | 0.8866666666666667 | 0.00450651106459406 | +| Epoch_14_batch_2999.pt | 0.8859999999999999 | 0.0049140765305546565 | +| Epoch_15_batch_5999.pt | 0.8859999999999999 | 0.004622809791714378 | +| Epoch_15_batch_2999.pt | 0.8844999999999998 | 0.0044655747698019105 | +| Epoch_14_batch_5999.pt | 0.8836666666666666 | 0.0055154105093292724 | +| Epoch_13.pt | 0.8835 | 0.004965622559901967 | +| Epoch_13_batch_2999.pt | 0.8835 | 0.004703885969055426 | +| Epoch_17_batch_5999.pt | 0.8831666666666667 | 0.004377622670687092 | +| Epoch_12_batch_2999.pt | 0.8825 | 0.005617707893376856 | +| Epoch_13_batch_5999.pt | 0.8818333333333334 | 0.005722222222222222 | +| Epoch_16.pt | 0.8818333333333334 | 0.004677566635509283 | +| Epoch_14.pt | 0.8815 | 0.0056023033182018836 | +| Epoch_15.pt | 0.8813333333333334 | 0.004955356249106172 | +| Epoch_12_batch_5999.pt | 0.8805 | 0.005443594037892865 | +| Epoch_11_batch_5999.pt | 0.8796666666666667 | 0.005315943872846971 | +| Epoch_12.pt | 0.8796666666666665 | 0.0045119867787215395 | +| Epoch_11.pt | 0.8786666666666667 | 0.004936635531449571 | +| Epoch_10.pt | 0.8785000000000001 | 0.00465109837021135 | +| Epoch_11_batch_2999.pt | 0.8781666666666668 | 0.004577521567803227 | +| Epoch_10_batch_2999.pt | 0.876 | 0.004375859703892269 | +| Epoch_10_batch_5999.pt | 0.8758333333333332 | 0.005573581865803604 | +| Epoch_9_batch_5999.pt | 0.8578333333333333 | 0.0053115876122834475 | +| Epoch_9_batch_2999.pt | 0.8526666666666667 | 0.006522515609528517 | +| Epoch_8_batch_2999.pt | 0.8496666666666666 | 0.004841946348777979 | +| Epoch_7_batch_5999.pt | 0.8451666666666666 | 0.004530077807088045 | +| Epoch_6_batch_5999.pt | 0.8445 | 0.007248030809625737 | +| Epoch_4_batch_5999.pt | 0.8413333333333334 | 0.007070194786636901 | +| Epoch_7_batch_2999.pt | 0.8393333333333333 | 0.0061824123303304696 | +| Epoch_8_batch_5999.pt | 0.8391666666666667 | 0.0062274283775512725 | +| Epoch_9.pt | 0.8381666666666666 | 0.003986474044646718 | +| Epoch_5_batch_2999.pt | 0.8370000000000001 | 0.006807766080906841 | +| Epoch_6_batch_2999.pt | 0.8348333333333333 | 0.0043493294502332976 | +| Epoch_4_batch_2999.pt | 0.8328333333333333 | 0.006206577554358889 | +| Epoch_5.pt | 0.8301666666666666 | 0.006302311941063307 | +| Epoch_4.pt | 0.8298333333333334 | 0.006336500182900745 | +| Epoch_6.pt | 0.8283333333333334 | 0.005746711351549225 | +| Epoch_5_batch_5999.pt | 0.8283333333333334 | 0.00569275042553311 | +| Epoch_3.pt | 0.8258333333333334 | 0.0055235187389253235 | +| Epoch_8.pt | 0.8256666666666665 | 0.0067868791351446455 | +| Epoch_7.pt | 0.8245000000000001 | 0.006554849302822761 | +| Epoch_3_batch_2999.pt | 0.8243333333333334 | 0.00799768485019027 | +| Epoch_3_batch_5999.pt | 0.8193333333333334 | 0.005726266100766724 | +| Epoch_2_batch_5999.pt | 0.8168333333333335 | 0.005738380637922078 | +| Epoch_2_batch_2999.pt | 0.8146666666666667 | 0.0063089198073681685 | +| Epoch_2.pt | 0.7996666666666666 | 0.005788451678947156 | +| Epoch_1_batch_5999.pt | 0.7956666666666667 | 0.0048317366455908695 | +| Epoch_1.pt | 0.7776666666666666 | 0.00639347661369591 | +| Epoch_1_batch_2999.pt | 0.7581666666666667 | 0.006471447259279004 | +| Epoch_0.pt | 0.7028333333333332 | 0.005905897868201724 | +| Epoch_0_batch_5999.pt | 0.7021666666666667 | 0.00636856671279407 | +| Epoch_0_batch_2999.pt | 0.6210000000000001 | 0.008047697316547477 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_rfw_Asian.txt b/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_rfw_Asian.txt new file mode 100644 index 0000000000000000000000000000000000000000..661f912477becb9158263e521e0795d01aca6912 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_rfw_Asian.txt @@ -0,0 +1,57 @@ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16.pt | 0.8801666666666665 | 0.004248819734444195 | +| Epoch_16_batch_2999.pt | 0.8779999999999999 | 0.004653420353638202 | +| Epoch_14_batch_5999.pt | 0.8775000000000001 | 0.0038908725099762597 | +| Epoch_17_batch_5999.pt | 0.8771666666666667 | 0.004635144863025806 | +| Epoch_15.pt | 0.8768333333333335 | 0.004953175811263309 | +| Epoch_17_batch_2999.pt | 0.8765000000000001 | 0.004160736520745062 | +| Epoch_15_batch_2999.pt | 0.8761666666666666 | 0.0035836563161933607 | +| Epoch_12_batch_2999.pt | 0.8756666666666666 | 0.005056471223547888 | +| Epoch_11_batch_5999.pt | 0.8755 | 0.0038574122970755527 | +| Epoch_13_batch_2999.pt | 0.8753333333333334 | 0.00437303747870098 | +| Epoch_16_batch_5999.pt | 0.8753333333333334 | 0.004552844721899529 | +| Epoch_15_batch_5999.pt | 0.8751666666666666 | 0.004447568346583431 | +| Epoch_13_batch_5999.pt | 0.8745 | 0.0035228530805528203 | +| Epoch_13.pt | 0.8741666666666668 | 0.004596361953749566 | +| Epoch_10_batch_5999.pt | 0.8741666666666668 | 0.0031549490810001577 | +| Epoch_12_batch_5999.pt | 0.8736666666666668 | 0.003440858348267117 | +| Epoch_17.pt | 0.8728333333333333 | 0.0047012606662311185 | +| Epoch_11.pt | 0.8718333333333333 | 0.003955383891406126 | +| Epoch_14.pt | 0.8718333333333333 | 0.004996603784843862 | +| Epoch_14_batch_2999.pt | 0.8709999999999999 | 0.004417976744904675 | +| Epoch_10.pt | 0.8706666666666667 | 0.004361730316975672 | +| Epoch_11_batch_2999.pt | 0.8698333333333335 | 0.0038204291659898184 | +| Epoch_10_batch_2999.pt | 0.8676666666666666 | 0.004121608220220315 | +| Epoch_12.pt | 0.8655000000000002 | 0.003991116679035955 | +| Epoch_9_batch_5999.pt | 0.849 | 0.004863570806275395 | +| Epoch_8_batch_2999.pt | 0.8474999999999999 | 0.004844813951249549 | +| Epoch_9_batch_2999.pt | 0.8471666666666667 | 0.0032303537244681383 | +| Epoch_6_batch_5999.pt | 0.8446666666666667 | 0.00385541146064388 | +| Epoch_4_batch_5999.pt | 0.8445 | 0.004759979769642659 | +| Epoch_8.pt | 0.8425 | 0.005742681870148159 | +| Epoch_5_batch_5999.pt | 0.8401666666666667 | 0.004509591971906815 | +| Epoch_8_batch_5999.pt | 0.8398333333333332 | 0.004801298692624985 | +| Epoch_4_batch_2999.pt | 0.8386666666666667 | 0.003218388523991166 | +| Epoch_7_batch_2999.pt | 0.8383333333333333 | 0.005773502691896265 | +| Epoch_6_batch_2999.pt | 0.8380000000000001 | 0.0038554114606438802 | +| Epoch_6.pt | 0.8380000000000001 | 0.006175419214040115 | +| Epoch_5_batch_2999.pt | 0.8346666666666668 | 0.0043871304494221405 | +| Epoch_7_batch_5999.pt | 0.8341666666666667 | 0.004181455237263045 | +| Epoch_3_batch_2999.pt | 0.8300000000000001 | 0.0031720227608044898 | +| Epoch_3.pt | 0.8288333333333332 | 0.0050126383482031215 | +| Epoch_4.pt | 0.8286666666666667 | 0.004930379496074179 | +| Epoch_3_batch_5999.pt | 0.825 | 0.005085685551709239 | +| Epoch_2_batch_2999.pt | 0.8246666666666667 | 0.0039031484600556194 | +| Epoch_2_batch_5999.pt | 0.8236666666666667 | 0.0039346513799168375 | +| Epoch_9.pt | 0.8233333333333335 | 0.004303314829119351 | +| Epoch_7.pt | 0.8216666666666667 | 0.004164814403109187 | +| Epoch_2.pt | 0.8099999999999999 | 0.005097808776424204 | +| Epoch_5.pt | 0.8035 | 0.00479486608162738 | +| Epoch_1.pt | 0.7941666666666667 | 0.006257094738606828 | +| Epoch_1_batch_5999.pt | 0.7921666666666666 | 0.0047729303574985185 | +| Epoch_1_batch_2999.pt | 0.7901666666666666 | 0.005342873411966292 | +| Epoch_0.pt | 0.7403333333333333 | 0.005362190449783839 | +| Epoch_0_batch_5999.pt | 0.7344999999999999 | 0.0041725883845834194 | +| Epoch_0_batch_2999.pt | 0.6815 | 0.0070072713556599085 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_rfw_Caucasian.txt b/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_rfw_Caucasian.txt new file mode 100644 index 0000000000000000000000000000000000000000..49ffb997aec3b5089eed91009926c5e6aa036ea4 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_rfw_Caucasian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_5999.pt | 0.9570000000000001 | 0.00356422554052122 | +| Epoch_16_batch_2999.pt | 0.9558333333333333 | 0.0036111111111111153 | +| Epoch_14_batch_5999.pt | 0.9558333333333332 | 0.003326381639982827 | +| Epoch_17_batch_2999.pt | 0.9551666666666667 | 0.0035000000000000005 | +| Epoch_17.pt | 0.9551666666666666 | 0.00387656778320434 | +| Epoch_14.pt | 0.9548333333333334 | 0.0031861002130977017 | +| Epoch_17_batch_5999.pt | 0.9546666666666667 | 0.003546864377669419 | +| Epoch_15_batch_5999.pt | 0.9545000000000001 | 0.0041577682760150425 | +| Epoch_13_batch_2999.pt | 0.9545 | 0.003833333333333336 | +| Epoch_15_batch_2999.pt | 0.9543333333333333 | 0.0035676876351116303 | +| Epoch_13.pt | 0.9538333333333332 | 0.003735465660892057 | +| Epoch_13_batch_5999.pt | 0.9533333333333334 | 0.0036767538017276236 | +| Epoch_14_batch_2999.pt | 0.9531666666666666 | 0.0034645470728153086 | +| Epoch_15.pt | 0.9523333333333334 | 0.0037531879453454498 | +| Epoch_12_batch_2999.pt | 0.9523333333333331 | 0.0033993463423951887 | +| Epoch_16.pt | 0.9521666666666666 | 0.003702268240343592 | +| Epoch_11_batch_5999.pt | 0.9521666666666666 | 0.004127968441835539 | +| Epoch_12_batch_5999.pt | 0.9516666666666665 | 0.003591828861165471 | +| Epoch_12.pt | 0.9515 | 0.0034911705207477744 | +| Epoch_11_batch_2999.pt | 0.9513333333333331 | 0.00288461221905493 | +| Epoch_11.pt | 0.95 | 0.0034066021592790915 | +| Epoch_10_batch_5999.pt | 0.9496666666666667 | 0.003879353388910243 | +| Epoch_10.pt | 0.9488333333333335 | 0.0034964708839021266 | +| Epoch_10_batch_2999.pt | 0.9481666666666667 | 0.003621352997273837 | +| Epoch_8_batch_5999.pt | 0.9299999999999999 | 0.004201704533597566 | +| Epoch_9_batch_5999.pt | 0.9295 | 0.004423910900359653 | +| Epoch_9.pt | 0.9289999999999999 | 0.003154459903684086 | +| Epoch_7_batch_5999.pt | 0.9263333333333333 | 0.0028087165910587845 | +| Epoch_8_batch_2999.pt | 0.9256666666666666 | 0.005672110674711205 | +| Epoch_9_batch_2999.pt | 0.9248333333333333 | 0.0038526085439079573 | +| Epoch_6_batch_5999.pt | 0.9244999999999999 | 0.004245913067618998 | +| Epoch_8.pt | 0.9225 | 0.002952818281315182 | +| Epoch_5_batch_5999.pt | 0.9206666666666667 | 0.0039999999999999975 | +| Epoch_6_batch_2999.pt | 0.9203333333333333 | 0.003208784239598597 | +| Epoch_7_batch_2999.pt | 0.9196666666666667 | 0.004096068575814838 | +| Epoch_5_batch_2999.pt | 0.9141666666666668 | 0.0031155721984022153 | +| Epoch_4.pt | 0.9126666666666667 | 0.0015947444549341489 | +| Epoch_6.pt | 0.9120000000000001 | 0.0028414915227876533 | +| Epoch_4_batch_2999.pt | 0.9114999999999999 | 0.003787976429717954 | +| Epoch_4_batch_5999.pt | 0.9106666666666667 | 0.004812535072823938 | +| Epoch_7.pt | 0.9095000000000001 | 0.0029085866917129815 | +| Epoch_3_batch_2999.pt | 0.9081666666666666 | 0.0029022128636908826 | +| Epoch_3_batch_5999.pt | 0.9065000000000001 | 0.003057575090181559 | +| Epoch_2_batch_2999.pt | 0.9025000000000001 | 0.0031353224576716543 | +| Epoch_2_batch_5999.pt | 0.9010000000000001 | 0.003014368881389011 | +| Epoch_3.pt | 0.8998333333333333 | 0.0016933056282364609 | +| Epoch_5.pt | 0.8995000000000001 | 0.003668770440244237 | +| Epoch_2.pt | 0.8978333333333332 | 0.003960062974932603 | +| Epoch_1_batch_5999.pt | 0.8835000000000001 | 0.003621352997273838 | +| Epoch_1.pt | 0.8811666666666668 | 0.0033059056770692987 | +| Epoch_1_batch_2999.pt | 0.8671666666666666 | 0.004339383241150778 | +| Epoch_0.pt | 0.8361666666666666 | 0.004289306254879478 | +| Epoch_0_batch_5999.pt | 0.8266666666666668 | 0.006211299937499414 | +| Epoch_0_batch_2999.pt | 0.7578333333333334 | 0.005931970297037765 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_rfw_Indian.txt b/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_rfw_Indian.txt new file mode 100644 index 0000000000000000000000000000000000000000..b2ac0c099ba21fef0489cd0b0d150457751a9e66 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/MV-Softmax/accu_files/accu_rfw_Indian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_5999.pt | 0.9085000000000001 | 0.003852608543907959 | +| Epoch_16.pt | 0.9075 | 0.003930334701294229 | +| Epoch_17.pt | 0.9066666666666666 | 0.003397529966982369 | +| Epoch_17_batch_2999.pt | 0.9066666666666666 | 0.003659926464889028 | +| Epoch_13_batch_5999.pt | 0.9065 | 0.003446683859832462 | +| Epoch_12_batch_5999.pt | 0.9061666666666668 | 0.00407529443002074 | +| Epoch_13.pt | 0.906 | 0.004046031434674032 | +| Epoch_16_batch_5999.pt | 0.9059999999999999 | 0.003761402417735721 | +| Epoch_12_batch_2999.pt | 0.9058333333333334 | 0.0037781862524265083 | +| Epoch_17_batch_5999.pt | 0.9056666666666666 | 0.0036784323016104117 | +| Epoch_15_batch_2999.pt | 0.9053333333333334 | 0.0034676636742949378 | +| Epoch_16_batch_2999.pt | 0.9053333333333333 | 0.003839367231815781 | +| Epoch_10.pt | 0.9045 | 0.003549039167485427 | +| Epoch_14_batch_5999.pt | 0.9043333333333334 | 0.00375318794534545 | +| Epoch_13_batch_2999.pt | 0.9041666666666666 | 0.0033724556023947074 | +| Epoch_15.pt | 0.9033333333333333 | 0.003583225665910463 | +| Epoch_14_batch_2999.pt | 0.9030000000000001 | 0.00391104797928845 | +| Epoch_10_batch_2999.pt | 0.9024999999999999 | 0.003193840522623292 | +| Epoch_14.pt | 0.9024999999999999 | 0.003859012219291616 | +| Epoch_12.pt | 0.9021666666666667 | 0.004668319813010156 | +| Epoch_10_batch_5999.pt | 0.9019999999999999 | 0.004192880503136267 | +| Epoch_11_batch_5999.pt | 0.8996666666666668 | 0.004004626953542241 | +| Epoch_11_batch_2999.pt | 0.899 | 0.0038984010650775177 | +| Epoch_11.pt | 0.8986666666666666 | 0.004344714399114921 | +| Epoch_9.pt | 0.8821666666666668 | 0.0052531589555567075 | +| Epoch_9_batch_5999.pt | 0.8811666666666668 | 0.004981756842176049 | +| Epoch_8_batch_2999.pt | 0.8796666666666665 | 0.004103596736137634 | +| Epoch_7_batch_5999.pt | 0.8793333333333333 | 0.0050442486501405155 | +| Epoch_7_batch_2999.pt | 0.8791666666666668 | 0.005710343657903436 | +| Epoch_9_batch_2999.pt | 0.8789999999999999 | 0.003610683735393763 | +| Epoch_6_batch_2999.pt | 0.8786666666666667 | 0.004148478822798768 | +| Epoch_5_batch_5999.pt | 0.8785000000000001 | 0.004890466917040397 | +| Epoch_6_batch_5999.pt | 0.8768333333333335 | 0.005196449405098938 | +| Epoch_8_batch_5999.pt | 0.8756666666666666 | 0.003636237371545237 | +| Epoch_8.pt | 0.8733333333333333 | 0.004694362260950578 | +| Epoch_6.pt | 0.8720000000000001 | 0.005162782291328417 | +| Epoch_4_batch_2999.pt | 0.8716666666666667 | 0.00477260702109212 | +| Epoch_5_batch_2999.pt | 0.8705 | 0.00606574067007016 | +| Epoch_4_batch_5999.pt | 0.8680000000000001 | 0.004816381511487389 | +| Epoch_4.pt | 0.867 | 0.0035294178165041355 | +| Epoch_5.pt | 0.8666666666666666 | 0.005594309277855158 | +| Epoch_3_batch_5999.pt | 0.8621666666666666 | 0.005079916884709384 | +| Epoch_2_batch_5999.pt | 0.8618333333333335 | 0.0044890126495590555 | +| Epoch_3_batch_2999.pt | 0.8616666666666667 | 0.004296136650929155 | +| Epoch_3.pt | 0.8536666666666666 | 0.004294699575575041 | +| Epoch_2_batch_2999.pt | 0.8508333333333333 | 0.0049705925324307915 | +| Epoch_2.pt | 0.8498333333333333 | 0.006238322424070969 | +| Epoch_7.pt | 0.8488333333333333 | 0.00534633831078181 | +| Epoch_1_batch_5999.pt | 0.8373333333333333 | 0.004528374193847736 | +| Epoch_1.pt | 0.8318333333333333 | 0.005377421934967231 | +| Epoch_1_batch_2999.pt | 0.8140000000000001 | 0.005495228008390329 | +| Epoch_0_batch_5999.pt | 0.7881666666666666 | 0.004370566536714872 | +| Epoch_0.pt | 0.7849999999999999 | 0.00481125224324688 | +| Epoch_0_batch_2999.pt | 0.7068333333333332 | 0.005278947238855226 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/MV-Softmax/log.log b/bob/bio/facexzoo/models/heads/MV-Softmax/log.log new file mode 100644 index 0000000000000000000000000000000000000000..d38e0a8f66c6c904fb3541adc812d096a3bddfdb --- /dev/null +++ b/bob/bio/facexzoo/models/heads/MV-Softmax/log.log @@ -0,0 +1,657 @@ +INFO 2020-11-24 17:02:43 driver.py: 124] Generating grammar tables from /usr/lib/python3.6/lib2to3/Grammar.txt +INFO 2020-11-24 17:02:43 driver.py: 124] Generating grammar tables from /usr/lib/python3.6/lib2to3/PatternGrammar.txt +INFO 2020-11-24 17:02:43 train.py: 172] Start optimization. +INFO 2020-11-24 17:02:43 train.py: 173] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='Mobilefacenets', batch_size=512, data_root='/home/wangjun492/wj_data/facex-zoo/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='mv-softmax', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='mv-mobile', train_file='/home/wangjun492/wj_data/facex-zoo/deepglint/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7fa027e56b00>) +backbone param: +{'feat_dim': 512, 'out_h': 7, 'out_w': 7} +head param: +{'feat_dim': 512, 'num_class': 72778, 'is_am': 1, 'margin': 0.35, 'mv_weight': 1.12, 'scale': 32} +INFO 2020-11-24 17:03:10 train.py: 74] Epoch 0, iter 0/6416, lr 0.100000, loss 16.358618 +INFO 2020-11-24 17:04:32 train.py: 74] Epoch 0, iter 200/6416, lr 0.100000, loss 15.827444 +INFO 2020-11-24 17:05:55 train.py: 74] Epoch 0, iter 400/6416, lr 0.100000, loss 15.327547 +INFO 2020-11-24 17:07:17 train.py: 74] Epoch 0, iter 600/6416, lr 0.100000, loss 15.027858 +INFO 2020-11-24 17:08:39 train.py: 74] Epoch 0, iter 800/6416, lr 0.100000, loss 14.677421 +INFO 2020-11-24 17:10:01 train.py: 74] Epoch 0, iter 1000/6416, lr 0.100000, loss 14.355350 +INFO 2020-11-24 17:11:23 train.py: 74] Epoch 0, iter 1200/6416, lr 0.100000, loss 14.027037 +INFO 2020-11-24 17:12:45 train.py: 74] Epoch 0, iter 1400/6416, lr 0.100000, loss 13.690001 +INFO 2020-11-24 17:14:07 train.py: 74] Epoch 0, iter 1600/6416, lr 0.100000, loss 13.346130 +INFO 2020-11-24 17:15:29 train.py: 74] Epoch 0, iter 1800/6416, lr 0.100000, loss 13.024926 +INFO 2020-11-24 17:16:51 train.py: 74] Epoch 0, iter 2000/6416, lr 0.100000, loss 12.701884 +INFO 2020-11-24 17:18:13 train.py: 74] Epoch 0, iter 2200/6416, lr 0.100000, loss 12.395277 +INFO 2020-11-24 17:19:35 train.py: 74] Epoch 0, iter 2400/6416, lr 0.100000, loss 12.130202 +INFO 2020-11-24 17:20:57 train.py: 74] Epoch 0, iter 2600/6416, lr 0.100000, loss 11.987308 +INFO 2020-11-24 17:22:18 train.py: 74] Epoch 0, iter 2800/6416, lr 0.100000, loss 11.955337 +INFO 2020-11-24 17:23:39 train.py: 87] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2020-11-24 17:23:39 train.py: 74] Epoch 0, iter 3000/6416, lr 0.100000, loss 12.067932 +INFO 2020-11-24 17:25:00 train.py: 74] Epoch 0, iter 3200/6416, lr 0.100000, loss 12.314615 +INFO 2020-11-24 17:26:21 train.py: 74] Epoch 0, iter 3400/6416, lr 0.100000, loss 12.647381 +INFO 2020-11-24 17:27:42 train.py: 74] Epoch 0, iter 3600/6416, lr 0.100000, loss 13.030897 +INFO 2020-11-24 17:29:02 train.py: 74] Epoch 0, iter 3800/6416, lr 0.100000, loss 13.441236 +INFO 2020-11-24 17:30:22 train.py: 74] Epoch 0, iter 4000/6416, lr 0.100000, loss 13.796649 +INFO 2020-11-24 17:31:41 train.py: 74] Epoch 0, iter 4200/6416, lr 0.100000, loss 14.154292 +INFO 2020-11-24 17:33:00 train.py: 74] Epoch 0, iter 4400/6416, lr 0.100000, loss 14.411892 +INFO 2020-11-24 17:34:19 train.py: 74] Epoch 0, iter 4600/6416, lr 0.100000, loss 14.619047 +INFO 2020-11-24 17:35:38 train.py: 74] Epoch 0, iter 4800/6416, lr 0.100000, loss 14.832919 +INFO 2020-11-24 17:36:56 train.py: 74] Epoch 0, iter 5000/6416, lr 0.100000, loss 14.915812 +INFO 2020-11-24 17:38:14 train.py: 74] Epoch 0, iter 5200/6416, lr 0.100000, loss 14.976967 +INFO 2020-11-24 17:39:32 train.py: 74] Epoch 0, iter 5400/6416, lr 0.100000, loss 14.973729 +INFO 2020-11-24 17:40:50 train.py: 74] Epoch 0, iter 5600/6416, lr 0.100000, loss 14.912079 +INFO 2020-11-24 17:42:08 train.py: 74] Epoch 0, iter 5800/6416, lr 0.100000, loss 14.853437 +INFO 2020-11-24 17:43:25 train.py: 87] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2020-11-24 17:43:26 train.py: 74] Epoch 0, iter 6000/6416, lr 0.100000, loss 14.786114 +INFO 2020-11-24 17:44:43 train.py: 74] Epoch 0, iter 6200/6416, lr 0.100000, loss 14.640276 +INFO 2020-11-24 17:46:00 train.py: 74] Epoch 0, iter 6400/6416, lr 0.100000, loss 14.499856 +INFO 2020-11-24 17:46:07 train.py: 92] Save checkpoint Epoch_0.pt to disk... +INFO 2020-11-24 17:46:08 train.py: 74] Epoch 1, iter 0/6416, lr 0.100000, loss 14.468562 +INFO 2020-11-24 17:47:26 train.py: 74] Epoch 1, iter 200/6416, lr 0.100000, loss 14.190097 +INFO 2020-11-24 17:48:43 train.py: 74] Epoch 1, iter 400/6416, lr 0.100000, loss 14.034737 +INFO 2020-11-24 17:50:00 train.py: 74] Epoch 1, iter 600/6416, lr 0.100000, loss 13.867991 +INFO 2020-11-24 17:51:17 train.py: 74] Epoch 1, iter 800/6416, lr 0.100000, loss 13.711440 +INFO 2020-11-24 17:52:35 train.py: 74] Epoch 1, iter 1000/6416, lr 0.100000, loss 13.581579 +INFO 2020-11-24 17:53:51 train.py: 74] Epoch 1, iter 1200/6416, lr 0.100000, loss 13.396562 +INFO 2020-11-24 17:55:08 train.py: 74] Epoch 1, iter 1400/6416, lr 0.100000, loss 13.189663 +INFO 2020-11-24 17:56:25 train.py: 74] Epoch 1, iter 1600/6416, lr 0.100000, loss 13.039445 +INFO 2020-11-24 17:57:42 train.py: 74] Epoch 1, iter 1800/6416, lr 0.100000, loss 12.903281 +INFO 2020-11-24 17:58:59 train.py: 74] Epoch 1, iter 2000/6416, lr 0.100000, loss 12.729310 +INFO 2020-11-24 18:00:15 train.py: 74] Epoch 1, iter 2200/6416, lr 0.100000, loss 12.598813 +INFO 2020-11-24 18:01:32 train.py: 74] Epoch 1, iter 2400/6416, lr 0.100000, loss 12.446454 +INFO 2020-11-24 18:02:49 train.py: 74] Epoch 1, iter 2600/6416, lr 0.100000, loss 12.294402 +INFO 2020-11-24 18:04:06 train.py: 74] Epoch 1, iter 2800/6416, lr 0.100000, loss 12.151741 +INFO 2020-11-24 18:05:22 train.py: 87] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2020-11-24 18:05:23 train.py: 74] Epoch 1, iter 3000/6416, lr 0.100000, loss 12.006855 +INFO 2020-11-24 18:06:39 train.py: 74] Epoch 1, iter 3200/6416, lr 0.100000, loss 11.907829 +INFO 2020-11-24 18:07:55 train.py: 74] Epoch 1, iter 3400/6416, lr 0.100000, loss 11.759257 +INFO 2020-11-24 18:09:11 train.py: 74] Epoch 1, iter 3600/6416, lr 0.100000, loss 11.656780 +INFO 2020-11-24 18:10:27 train.py: 74] Epoch 1, iter 3800/6416, lr 0.100000, loss 11.537830 +INFO 2020-11-24 18:11:43 train.py: 74] Epoch 1, iter 4000/6416, lr 0.100000, loss 11.460143 +INFO 2020-11-24 18:13:00 train.py: 74] Epoch 1, iter 4200/6416, lr 0.100000, loss 11.327951 +INFO 2020-11-24 18:14:16 train.py: 74] Epoch 1, iter 4400/6416, lr 0.100000, loss 11.268308 +INFO 2020-11-24 18:15:32 train.py: 74] Epoch 1, iter 4600/6416, lr 0.100000, loss 11.173050 +INFO 2020-11-24 18:16:48 train.py: 74] Epoch 1, iter 4800/6416, lr 0.100000, loss 11.074287 +INFO 2020-11-24 18:18:04 train.py: 74] Epoch 1, iter 5000/6416, lr 0.100000, loss 10.989137 +INFO 2020-11-24 18:19:21 train.py: 74] Epoch 1, iter 5200/6416, lr 0.100000, loss 10.935530 +INFO 2020-11-24 18:20:37 train.py: 74] Epoch 1, iter 5400/6416, lr 0.100000, loss 10.858660 +INFO 2020-11-24 18:21:53 train.py: 74] Epoch 1, iter 5600/6416, lr 0.100000, loss 10.765018 +INFO 2020-11-24 18:23:10 train.py: 74] Epoch 1, iter 5800/6416, lr 0.100000, loss 10.696050 +INFO 2020-11-24 18:24:26 train.py: 87] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2020-11-24 18:24:26 train.py: 74] Epoch 1, iter 6000/6416, lr 0.100000, loss 10.650471 +INFO 2020-11-24 18:25:43 train.py: 74] Epoch 1, iter 6200/6416, lr 0.100000, loss 10.606789 +INFO 2020-11-24 18:27:00 train.py: 74] Epoch 1, iter 6400/6416, lr 0.100000, loss 10.507497 +INFO 2020-11-24 18:27:06 train.py: 92] Save checkpoint Epoch_1.pt to disk... +INFO 2020-11-24 18:27:08 train.py: 74] Epoch 2, iter 0/6416, lr 0.100000, loss 10.401783 +INFO 2020-11-24 18:28:25 train.py: 74] Epoch 2, iter 200/6416, lr 0.100000, loss 9.958792 +INFO 2020-11-24 18:29:42 train.py: 74] Epoch 2, iter 400/6416, lr 0.100000, loss 9.970688 +INFO 2020-11-24 18:30:58 train.py: 74] Epoch 2, iter 600/6416, lr 0.100000, loss 10.018418 +INFO 2020-11-24 18:32:15 train.py: 74] Epoch 2, iter 800/6416, lr 0.100000, loss 10.043185 +INFO 2020-11-24 18:33:32 train.py: 74] Epoch 2, iter 1000/6416, lr 0.100000, loss 10.026329 +INFO 2020-11-24 18:34:48 train.py: 74] Epoch 2, iter 1200/6416, lr 0.100000, loss 10.008143 +INFO 2020-11-24 18:36:05 train.py: 74] Epoch 2, iter 1400/6416, lr 0.100000, loss 10.019662 +INFO 2020-11-24 18:37:22 train.py: 74] Epoch 2, iter 1600/6416, lr 0.100000, loss 9.995654 +INFO 2020-11-24 18:38:38 train.py: 74] Epoch 2, iter 1800/6416, lr 0.100000, loss 9.985731 +INFO 2020-11-24 18:39:55 train.py: 74] Epoch 2, iter 2000/6416, lr 0.100000, loss 9.926832 +INFO 2020-11-24 18:41:11 train.py: 74] Epoch 2, iter 2200/6416, lr 0.100000, loss 9.920456 +INFO 2020-11-24 18:42:28 train.py: 74] Epoch 2, iter 2400/6416, lr 0.100000, loss 9.864497 +INFO 2020-11-24 18:43:45 train.py: 74] Epoch 2, iter 2600/6416, lr 0.100000, loss 9.836358 +INFO 2020-11-24 18:45:01 train.py: 74] Epoch 2, iter 2800/6416, lr 0.100000, loss 9.801993 +INFO 2020-11-24 18:46:18 train.py: 87] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2020-11-24 18:46:18 train.py: 74] Epoch 2, iter 3000/6416, lr 0.100000, loss 9.784279 +INFO 2020-11-24 18:47:35 train.py: 74] Epoch 2, iter 3200/6416, lr 0.100000, loss 9.777114 +INFO 2020-11-24 18:48:51 train.py: 74] Epoch 2, iter 3400/6416, lr 0.100000, loss 9.716017 +INFO 2020-11-24 18:50:08 train.py: 74] Epoch 2, iter 3600/6416, lr 0.100000, loss 9.685481 +INFO 2020-11-24 18:51:25 train.py: 74] Epoch 2, iter 3800/6416, lr 0.100000, loss 9.638493 +INFO 2020-11-24 18:52:42 train.py: 74] Epoch 2, iter 4000/6416, lr 0.100000, loss 9.615591 +INFO 2020-11-24 18:53:58 train.py: 74] Epoch 2, iter 4200/6416, lr 0.100000, loss 9.573484 +INFO 2020-11-24 18:55:15 train.py: 74] Epoch 2, iter 4400/6416, lr 0.100000, loss 9.557758 +INFO 2020-11-24 18:56:32 train.py: 74] Epoch 2, iter 4600/6416, lr 0.100000, loss 9.530840 +INFO 2020-11-24 18:57:49 train.py: 74] Epoch 2, iter 4800/6416, lr 0.100000, loss 9.470006 +INFO 2020-11-24 18:59:06 train.py: 74] Epoch 2, iter 5000/6416, lr 0.100000, loss 9.479366 +INFO 2020-11-24 19:00:23 train.py: 74] Epoch 2, iter 5200/6416, lr 0.100000, loss 9.434593 +INFO 2020-11-24 19:01:40 train.py: 74] Epoch 2, iter 5400/6416, lr 0.100000, loss 9.401267 +INFO 2020-11-24 19:02:56 train.py: 74] Epoch 2, iter 5600/6416, lr 0.100000, loss 9.366447 +INFO 2020-11-24 19:04:13 train.py: 74] Epoch 2, iter 5800/6416, lr 0.100000, loss 9.358310 +INFO 2020-11-24 19:05:30 train.py: 87] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2020-11-24 19:05:31 train.py: 74] Epoch 2, iter 6000/6416, lr 0.100000, loss 9.291458 +INFO 2020-11-24 19:06:47 train.py: 74] Epoch 2, iter 6200/6416, lr 0.100000, loss 9.317040 +INFO 2020-11-24 19:08:03 train.py: 74] Epoch 2, iter 6400/6416, lr 0.100000, loss 9.263851 +INFO 2020-11-24 19:08:09 train.py: 92] Save checkpoint Epoch_2.pt to disk... +INFO 2020-11-24 19:08:11 train.py: 74] Epoch 3, iter 0/6416, lr 0.100000, loss 9.158338 +INFO 2020-11-24 19:09:27 train.py: 74] Epoch 3, iter 200/6416, lr 0.100000, loss 8.738770 +INFO 2020-11-24 19:10:43 train.py: 74] Epoch 3, iter 400/6416, lr 0.100000, loss 8.747253 +INFO 2020-11-24 19:12:00 train.py: 74] Epoch 3, iter 600/6416, lr 0.100000, loss 8.834588 +INFO 2020-11-24 19:13:16 train.py: 74] Epoch 3, iter 800/6416, lr 0.100000, loss 8.904287 +INFO 2020-11-24 19:14:33 train.py: 74] Epoch 3, iter 1000/6416, lr 0.100000, loss 8.929899 +INFO 2020-11-24 19:15:50 train.py: 74] Epoch 3, iter 1200/6416, lr 0.100000, loss 8.972742 +INFO 2020-11-24 19:17:06 train.py: 74] Epoch 3, iter 1400/6416, lr 0.100000, loss 8.967419 +INFO 2020-11-24 19:18:23 train.py: 74] Epoch 3, iter 1600/6416, lr 0.100000, loss 8.950048 +INFO 2020-11-24 19:19:39 train.py: 74] Epoch 3, iter 1800/6416, lr 0.100000, loss 9.018943 +INFO 2020-11-24 19:20:56 train.py: 74] Epoch 3, iter 2000/6416, lr 0.100000, loss 8.952868 +INFO 2020-11-24 19:22:12 train.py: 74] Epoch 3, iter 2200/6416, lr 0.100000, loss 8.942784 +INFO 2020-11-24 19:23:29 train.py: 74] Epoch 3, iter 2400/6416, lr 0.100000, loss 8.956252 +INFO 2020-11-24 19:24:45 train.py: 74] Epoch 3, iter 2600/6416, lr 0.100000, loss 8.937395 +INFO 2020-11-24 19:26:02 train.py: 74] Epoch 3, iter 2800/6416, lr 0.100000, loss 8.942570 +INFO 2020-11-24 19:27:18 train.py: 87] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2020-11-24 19:27:19 train.py: 74] Epoch 3, iter 3000/6416, lr 0.100000, loss 8.916036 +INFO 2020-11-24 19:28:35 train.py: 74] Epoch 3, iter 3200/6416, lr 0.100000, loss 8.912676 +INFO 2020-11-24 19:29:52 train.py: 74] Epoch 3, iter 3400/6416, lr 0.100000, loss 8.899460 +INFO 2020-11-24 19:31:09 train.py: 74] Epoch 3, iter 3600/6416, lr 0.100000, loss 8.846656 +INFO 2020-11-24 19:32:25 train.py: 74] Epoch 3, iter 3800/6416, lr 0.100000, loss 8.852470 +INFO 2020-11-24 19:33:42 train.py: 74] Epoch 3, iter 4000/6416, lr 0.100000, loss 8.813011 +INFO 2020-11-24 19:34:59 train.py: 74] Epoch 3, iter 4200/6416, lr 0.100000, loss 8.826520 +INFO 2020-11-24 19:36:15 train.py: 74] Epoch 3, iter 4400/6416, lr 0.100000, loss 8.782351 +INFO 2020-11-24 19:37:32 train.py: 74] Epoch 3, iter 4600/6416, lr 0.100000, loss 8.789090 +INFO 2020-11-24 19:38:49 train.py: 74] Epoch 3, iter 4800/6416, lr 0.100000, loss 8.784844 +INFO 2020-11-24 19:40:06 train.py: 74] Epoch 3, iter 5000/6416, lr 0.100000, loss 8.752145 +INFO 2020-11-24 19:41:22 train.py: 74] Epoch 3, iter 5200/6416, lr 0.100000, loss 8.755990 +INFO 2020-11-24 19:42:39 train.py: 74] Epoch 3, iter 5400/6416, lr 0.100000, loss 8.748737 +INFO 2020-11-24 19:43:56 train.py: 74] Epoch 3, iter 5600/6416, lr 0.100000, loss 8.742908 +INFO 2020-11-24 19:45:13 train.py: 74] Epoch 3, iter 5800/6416, lr 0.100000, loss 8.702594 +INFO 2020-11-24 19:46:30 train.py: 87] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2020-11-24 19:46:30 train.py: 74] Epoch 3, iter 6000/6416, lr 0.100000, loss 8.683531 +INFO 2020-11-24 19:47:47 train.py: 74] Epoch 3, iter 6200/6416, lr 0.100000, loss 8.677554 +INFO 2020-11-24 19:49:04 train.py: 74] Epoch 3, iter 6400/6416, lr 0.100000, loss 8.687340 +INFO 2020-11-24 19:49:10 train.py: 92] Save checkpoint Epoch_3.pt to disk... +INFO 2020-11-24 19:49:12 train.py: 74] Epoch 4, iter 0/6416, lr 0.100000, loss 8.645050 +INFO 2020-11-24 19:50:29 train.py: 74] Epoch 4, iter 200/6416, lr 0.100000, loss 8.138176 +INFO 2020-11-24 19:51:45 train.py: 74] Epoch 4, iter 400/6416, lr 0.100000, loss 8.133244 +INFO 2020-11-24 19:53:02 train.py: 74] Epoch 4, iter 600/6416, lr 0.100000, loss 8.266590 +INFO 2020-11-24 19:54:18 train.py: 74] Epoch 4, iter 800/6416, lr 0.100000, loss 8.264567 +INFO 2020-11-24 19:55:35 train.py: 74] Epoch 4, iter 1000/6416, lr 0.100000, loss 8.324405 +INFO 2020-11-24 19:56:52 train.py: 74] Epoch 4, iter 1200/6416, lr 0.100000, loss 8.387397 +INFO 2020-11-24 19:58:08 train.py: 74] Epoch 4, iter 1400/6416, lr 0.100000, loss 8.381465 +INFO 2020-11-24 19:59:25 train.py: 74] Epoch 4, iter 1600/6416, lr 0.100000, loss 8.419101 +INFO 2020-11-24 20:00:41 train.py: 74] Epoch 4, iter 1800/6416, lr 0.100000, loss 8.418929 +INFO 2020-11-24 20:01:58 train.py: 74] Epoch 4, iter 2000/6416, lr 0.100000, loss 8.439405 +INFO 2020-11-24 20:03:14 train.py: 74] Epoch 4, iter 2200/6416, lr 0.100000, loss 8.440718 +INFO 2020-11-24 20:04:31 train.py: 74] Epoch 4, iter 2400/6416, lr 0.100000, loss 8.468213 +INFO 2020-11-24 20:05:47 train.py: 74] Epoch 4, iter 2600/6416, lr 0.100000, loss 8.412492 +INFO 2020-11-24 20:07:04 train.py: 74] Epoch 4, iter 2800/6416, lr 0.100000, loss 8.401329 +INFO 2020-11-24 20:08:20 train.py: 87] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2020-11-24 20:08:20 train.py: 74] Epoch 4, iter 3000/6416, lr 0.100000, loss 8.462322 +INFO 2020-11-24 20:09:36 train.py: 74] Epoch 4, iter 3200/6416, lr 0.100000, loss 8.428143 +INFO 2020-11-24 20:10:52 train.py: 74] Epoch 4, iter 3400/6416, lr 0.100000, loss 8.421280 +INFO 2020-11-24 20:12:09 train.py: 74] Epoch 4, iter 3600/6416, lr 0.100000, loss 8.391416 +INFO 2020-11-24 20:13:25 train.py: 74] Epoch 4, iter 3800/6416, lr 0.100000, loss 8.353408 +INFO 2020-11-24 20:14:42 train.py: 74] Epoch 4, iter 4000/6416, lr 0.100000, loss 8.400384 +INFO 2020-11-24 20:15:59 train.py: 74] Epoch 4, iter 4200/6416, lr 0.100000, loss 8.367021 +INFO 2020-11-24 20:17:15 train.py: 74] Epoch 4, iter 4400/6416, lr 0.100000, loss 8.395899 +INFO 2020-11-24 20:18:32 train.py: 74] Epoch 4, iter 4600/6416, lr 0.100000, loss 8.344757 +INFO 2020-11-24 20:19:49 train.py: 74] Epoch 4, iter 4800/6416, lr 0.100000, loss 8.359471 +INFO 2020-11-24 20:21:06 train.py: 74] Epoch 4, iter 5000/6416, lr 0.100000, loss 8.358082 +INFO 2020-11-24 20:22:22 train.py: 74] Epoch 4, iter 5200/6416, lr 0.100000, loss 8.314536 +INFO 2020-11-24 20:23:39 train.py: 74] Epoch 4, iter 5400/6416, lr 0.100000, loss 8.286721 +INFO 2020-11-24 20:24:56 train.py: 74] Epoch 4, iter 5600/6416, lr 0.100000, loss 8.331915 +INFO 2020-11-24 20:26:13 train.py: 74] Epoch 4, iter 5800/6416, lr 0.100000, loss 8.285538 +INFO 2020-11-24 20:27:29 train.py: 87] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2020-11-24 20:27:30 train.py: 74] Epoch 4, iter 6000/6416, lr 0.100000, loss 8.278215 +INFO 2020-11-24 20:28:47 train.py: 74] Epoch 4, iter 6200/6416, lr 0.100000, loss 8.267316 +INFO 2020-11-24 20:30:04 train.py: 74] Epoch 4, iter 6400/6416, lr 0.100000, loss 8.247428 +INFO 2020-11-24 20:30:10 train.py: 92] Save checkpoint Epoch_4.pt to disk... +INFO 2020-11-24 20:30:12 train.py: 74] Epoch 5, iter 0/6416, lr 0.100000, loss 8.371536 +INFO 2020-11-24 20:31:28 train.py: 74] Epoch 5, iter 200/6416, lr 0.100000, loss 7.767822 +INFO 2020-11-24 20:32:45 train.py: 74] Epoch 5, iter 400/6416, lr 0.100000, loss 7.743762 +INFO 2020-11-24 20:34:02 train.py: 74] Epoch 5, iter 600/6416, lr 0.100000, loss 7.862978 +INFO 2020-11-24 20:35:18 train.py: 74] Epoch 5, iter 800/6416, lr 0.100000, loss 7.930466 +INFO 2020-11-24 20:36:35 train.py: 74] Epoch 5, iter 1000/6416, lr 0.100000, loss 7.993809 +INFO 2020-11-24 20:37:51 train.py: 74] Epoch 5, iter 1200/6416, lr 0.100000, loss 8.014129 +INFO 2020-11-24 20:39:08 train.py: 74] Epoch 5, iter 1400/6416, lr 0.100000, loss 8.067885 +INFO 2020-11-24 20:40:24 train.py: 74] Epoch 5, iter 1600/6416, lr 0.100000, loss 8.064815 +INFO 2020-11-24 20:41:41 train.py: 74] Epoch 5, iter 1800/6416, lr 0.100000, loss 8.070696 +INFO 2020-11-24 20:42:57 train.py: 74] Epoch 5, iter 2000/6416, lr 0.100000, loss 8.081757 +INFO 2020-11-24 20:44:14 train.py: 74] Epoch 5, iter 2200/6416, lr 0.100000, loss 8.069307 +INFO 2020-11-24 20:45:30 train.py: 74] Epoch 5, iter 2400/6416, lr 0.100000, loss 8.108222 +INFO 2020-11-24 20:46:47 train.py: 74] Epoch 5, iter 2600/6416, lr 0.100000, loss 8.123253 +INFO 2020-11-24 20:48:03 train.py: 74] Epoch 5, iter 2800/6416, lr 0.100000, loss 8.108594 +INFO 2020-11-24 20:49:20 train.py: 87] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2020-11-24 20:49:20 train.py: 74] Epoch 5, iter 3000/6416, lr 0.100000, loss 8.108960 +INFO 2020-11-24 20:50:36 train.py: 74] Epoch 5, iter 3200/6416, lr 0.100000, loss 8.088804 +INFO 2020-11-24 20:51:52 train.py: 74] Epoch 5, iter 3400/6416, lr 0.100000, loss 8.077876 +INFO 2020-11-24 20:53:08 train.py: 74] Epoch 5, iter 3600/6416, lr 0.100000, loss 8.086027 +INFO 2020-11-24 20:54:24 train.py: 74] Epoch 5, iter 3800/6416, lr 0.100000, loss 8.072146 +INFO 2020-11-24 20:55:40 train.py: 74] Epoch 5, iter 4000/6416, lr 0.100000, loss 8.084796 +INFO 2020-11-24 20:56:56 train.py: 74] Epoch 5, iter 4200/6416, lr 0.100000, loss 8.068487 +INFO 2020-11-24 20:58:12 train.py: 74] Epoch 5, iter 4400/6416, lr 0.100000, loss 8.052808 +INFO 2020-11-24 20:59:28 train.py: 74] Epoch 5, iter 4600/6416, lr 0.100000, loss 8.054618 +INFO 2020-11-24 21:00:44 train.py: 74] Epoch 5, iter 4800/6416, lr 0.100000, loss 8.083125 +INFO 2020-11-24 21:02:00 train.py: 74] Epoch 5, iter 5000/6416, lr 0.100000, loss 8.037382 +INFO 2020-11-24 21:03:16 train.py: 74] Epoch 5, iter 5200/6416, lr 0.100000, loss 8.025006 +INFO 2020-11-24 21:04:32 train.py: 74] Epoch 5, iter 5400/6416, lr 0.100000, loss 8.020393 +INFO 2020-11-24 21:05:48 train.py: 74] Epoch 5, iter 5600/6416, lr 0.100000, loss 7.998549 +INFO 2020-11-24 21:07:04 train.py: 74] Epoch 5, iter 5800/6416, lr 0.100000, loss 7.991002 +INFO 2020-11-24 21:08:20 train.py: 87] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2020-11-24 21:08:21 train.py: 74] Epoch 5, iter 6000/6416, lr 0.100000, loss 8.000411 +INFO 2020-11-24 21:09:38 train.py: 74] Epoch 5, iter 6200/6416, lr 0.100000, loss 7.964763 +INFO 2020-11-24 21:10:55 train.py: 74] Epoch 5, iter 6400/6416, lr 0.100000, loss 7.980003 +INFO 2020-11-24 21:11:01 train.py: 92] Save checkpoint Epoch_5.pt to disk... +INFO 2020-11-24 21:11:03 train.py: 74] Epoch 6, iter 0/6416, lr 0.100000, loss 7.949017 +INFO 2020-11-24 21:12:19 train.py: 74] Epoch 6, iter 200/6416, lr 0.100000, loss 7.518950 +INFO 2020-11-24 21:13:36 train.py: 74] Epoch 6, iter 400/6416, lr 0.100000, loss 7.480380 +INFO 2020-11-24 21:14:53 train.py: 74] Epoch 6, iter 600/6416, lr 0.100000, loss 7.594087 +INFO 2020-11-24 21:16:09 train.py: 74] Epoch 6, iter 800/6416, lr 0.100000, loss 7.652602 +INFO 2020-11-24 21:17:26 train.py: 74] Epoch 6, iter 1000/6416, lr 0.100000, loss 7.707925 +INFO 2020-11-24 21:18:42 train.py: 74] Epoch 6, iter 1200/6416, lr 0.100000, loss 7.781615 +INFO 2020-11-24 21:19:59 train.py: 74] Epoch 6, iter 1400/6416, lr 0.100000, loss 7.807427 +INFO 2020-11-24 21:21:15 train.py: 74] Epoch 6, iter 1600/6416, lr 0.100000, loss 7.810504 +INFO 2020-11-24 21:22:32 train.py: 74] Epoch 6, iter 1800/6416, lr 0.100000, loss 7.841157 +INFO 2020-11-24 21:23:48 train.py: 74] Epoch 6, iter 2000/6416, lr 0.100000, loss 7.837509 +INFO 2020-11-24 21:25:05 train.py: 74] Epoch 6, iter 2200/6416, lr 0.100000, loss 7.858138 +INFO 2020-11-24 21:26:21 train.py: 74] Epoch 6, iter 2400/6416, lr 0.100000, loss 7.860692 +INFO 2020-11-24 21:27:38 train.py: 74] Epoch 6, iter 2600/6416, lr 0.100000, loss 7.850410 +INFO 2020-11-24 21:28:54 train.py: 74] Epoch 6, iter 2800/6416, lr 0.100000, loss 7.864597 +INFO 2020-11-24 21:30:10 train.py: 87] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2020-11-24 21:30:11 train.py: 74] Epoch 6, iter 3000/6416, lr 0.100000, loss 7.829093 +INFO 2020-11-24 21:31:28 train.py: 74] Epoch 6, iter 3200/6416, lr 0.100000, loss 7.873271 +INFO 2020-11-24 21:32:44 train.py: 74] Epoch 6, iter 3400/6416, lr 0.100000, loss 7.859303 +INFO 2020-11-24 21:34:01 train.py: 74] Epoch 6, iter 3600/6416, lr 0.100000, loss 7.833756 +INFO 2020-11-24 21:35:17 train.py: 74] Epoch 6, iter 3800/6416, lr 0.100000, loss 7.868141 +INFO 2020-11-24 21:36:34 train.py: 74] Epoch 6, iter 4000/6416, lr 0.100000, loss 7.832145 +INFO 2020-11-24 21:37:51 train.py: 74] Epoch 6, iter 4200/6416, lr 0.100000, loss 7.827492 +INFO 2020-11-24 21:39:07 train.py: 74] Epoch 6, iter 4400/6416, lr 0.100000, loss 7.822211 +INFO 2020-11-24 21:40:24 train.py: 74] Epoch 6, iter 4600/6416, lr 0.100000, loss 7.803100 +INFO 2020-11-24 21:41:41 train.py: 74] Epoch 6, iter 4800/6416, lr 0.100000, loss 7.839389 +INFO 2020-11-24 21:42:57 train.py: 74] Epoch 6, iter 5000/6416, lr 0.100000, loss 7.828123 +INFO 2020-11-24 21:44:14 train.py: 74] Epoch 6, iter 5200/6416, lr 0.100000, loss 7.807350 +INFO 2020-11-24 21:45:31 train.py: 74] Epoch 6, iter 5400/6416, lr 0.100000, loss 7.840542 +INFO 2020-11-24 21:46:48 train.py: 74] Epoch 6, iter 5600/6416, lr 0.100000, loss 7.790327 +INFO 2020-11-24 21:48:05 train.py: 74] Epoch 6, iter 5800/6416, lr 0.100000, loss 7.800599 +INFO 2020-11-24 21:49:21 train.py: 87] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2020-11-24 21:49:22 train.py: 74] Epoch 6, iter 6000/6416, lr 0.100000, loss 7.794503 +INFO 2020-11-24 21:50:38 train.py: 74] Epoch 6, iter 6200/6416, lr 0.100000, loss 7.811972 +INFO 2020-11-24 21:51:55 train.py: 74] Epoch 6, iter 6400/6416, lr 0.100000, loss 7.816250 +INFO 2020-11-24 21:52:01 train.py: 92] Save checkpoint Epoch_6.pt to disk... +INFO 2020-11-24 21:52:03 train.py: 74] Epoch 7, iter 0/6416, lr 0.100000, loss 7.721017 +INFO 2020-11-24 21:53:20 train.py: 74] Epoch 7, iter 200/6416, lr 0.100000, loss 7.263689 +INFO 2020-11-24 21:54:37 train.py: 74] Epoch 7, iter 400/6416, lr 0.100000, loss 7.302127 +INFO 2020-11-24 21:55:53 train.py: 74] Epoch 7, iter 600/6416, lr 0.100000, loss 7.388004 +INFO 2020-11-24 21:57:10 train.py: 74] Epoch 7, iter 800/6416, lr 0.100000, loss 7.476136 +INFO 2020-11-24 21:58:26 train.py: 74] Epoch 7, iter 1000/6416, lr 0.100000, loss 7.525854 +INFO 2020-11-24 21:59:43 train.py: 74] Epoch 7, iter 1200/6416, lr 0.100000, loss 7.569437 +INFO 2020-11-24 22:00:59 train.py: 74] Epoch 7, iter 1400/6416, lr 0.100000, loss 7.606572 +INFO 2020-11-24 22:02:16 train.py: 74] Epoch 7, iter 1600/6416, lr 0.100000, loss 7.646732 +INFO 2020-11-24 22:03:32 train.py: 74] Epoch 7, iter 1800/6416, lr 0.100000, loss 7.663091 +INFO 2020-11-24 22:04:49 train.py: 74] Epoch 7, iter 2000/6416, lr 0.100000, loss 7.641256 +INFO 2020-11-24 22:06:05 train.py: 74] Epoch 7, iter 2200/6416, lr 0.100000, loss 7.667531 +INFO 2020-11-24 22:07:21 train.py: 74] Epoch 7, iter 2400/6416, lr 0.100000, loss 7.688095 +INFO 2020-11-24 22:08:38 train.py: 74] Epoch 7, iter 2600/6416, lr 0.100000, loss 7.702703 +INFO 2020-11-24 22:09:54 train.py: 74] Epoch 7, iter 2800/6416, lr 0.100000, loss 7.673153 +INFO 2020-11-24 22:11:11 train.py: 87] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2020-11-24 22:11:11 train.py: 74] Epoch 7, iter 3000/6416, lr 0.100000, loss 7.691864 +INFO 2020-11-24 22:12:28 train.py: 74] Epoch 7, iter 3200/6416, lr 0.100000, loss 7.671905 +INFO 2020-11-24 22:13:44 train.py: 74] Epoch 7, iter 3400/6416, lr 0.100000, loss 7.709454 +INFO 2020-11-24 22:15:01 train.py: 74] Epoch 7, iter 3600/6416, lr 0.100000, loss 7.666515 +INFO 2020-11-24 22:16:18 train.py: 74] Epoch 7, iter 3800/6416, lr 0.100000, loss 7.645696 +INFO 2020-11-24 22:17:34 train.py: 74] Epoch 7, iter 4000/6416, lr 0.100000, loss 7.697766 +INFO 2020-11-24 22:18:51 train.py: 74] Epoch 7, iter 4200/6416, lr 0.100000, loss 7.661309 +INFO 2020-11-24 22:20:08 train.py: 74] Epoch 7, iter 4400/6416, lr 0.100000, loss 7.704096 +INFO 2020-11-24 22:21:24 train.py: 74] Epoch 7, iter 4600/6416, lr 0.100000, loss 7.703111 +INFO 2020-11-24 22:22:41 train.py: 74] Epoch 7, iter 4800/6416, lr 0.100000, loss 7.686914 +INFO 2020-11-24 22:23:58 train.py: 74] Epoch 7, iter 5000/6416, lr 0.100000, loss 7.652473 +INFO 2020-11-24 22:25:15 train.py: 74] Epoch 7, iter 5200/6416, lr 0.100000, loss 7.657636 +INFO 2020-11-24 22:26:31 train.py: 74] Epoch 7, iter 5400/6416, lr 0.100000, loss 7.659919 +INFO 2020-11-24 22:27:48 train.py: 74] Epoch 7, iter 5600/6416, lr 0.100000, loss 7.633489 +INFO 2020-11-24 22:29:05 train.py: 74] Epoch 7, iter 5800/6416, lr 0.100000, loss 7.652294 +INFO 2020-11-24 22:30:22 train.py: 87] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2020-11-24 22:30:22 train.py: 74] Epoch 7, iter 6000/6416, lr 0.100000, loss 7.629084 +INFO 2020-11-24 22:31:39 train.py: 74] Epoch 7, iter 6200/6416, lr 0.100000, loss 7.587239 +INFO 2020-11-24 22:32:56 train.py: 74] Epoch 7, iter 6400/6416, lr 0.100000, loss 7.620722 +INFO 2020-11-24 22:33:02 train.py: 92] Save checkpoint Epoch_7.pt to disk... +INFO 2020-11-24 22:33:04 train.py: 74] Epoch 8, iter 0/6416, lr 0.100000, loss 7.599243 +INFO 2020-11-24 22:34:21 train.py: 74] Epoch 8, iter 200/6416, lr 0.100000, loss 7.169748 +INFO 2020-11-24 22:35:37 train.py: 74] Epoch 8, iter 400/6416, lr 0.100000, loss 7.161929 +INFO 2020-11-24 22:36:54 train.py: 74] Epoch 8, iter 600/6416, lr 0.100000, loss 7.237029 +INFO 2020-11-24 22:38:10 train.py: 74] Epoch 8, iter 800/6416, lr 0.100000, loss 7.324340 +INFO 2020-11-24 22:39:27 train.py: 74] Epoch 8, iter 1000/6416, lr 0.100000, loss 7.391021 +INFO 2020-11-24 22:40:43 train.py: 74] Epoch 8, iter 1200/6416, lr 0.100000, loss 7.419794 +INFO 2020-11-24 22:42:00 train.py: 74] Epoch 8, iter 1400/6416, lr 0.100000, loss 7.462434 +INFO 2020-11-24 22:43:16 train.py: 74] Epoch 8, iter 1600/6416, lr 0.100000, loss 7.477895 +INFO 2020-11-24 22:44:33 train.py: 74] Epoch 8, iter 1800/6416, lr 0.100000, loss 7.508406 +INFO 2020-11-24 22:45:49 train.py: 74] Epoch 8, iter 2000/6416, lr 0.100000, loss 7.522996 +INFO 2020-11-24 22:47:06 train.py: 74] Epoch 8, iter 2200/6416, lr 0.100000, loss 7.525577 +INFO 2020-11-24 22:48:22 train.py: 74] Epoch 8, iter 2400/6416, lr 0.100000, loss 7.525456 +INFO 2020-11-24 22:49:38 train.py: 74] Epoch 8, iter 2600/6416, lr 0.100000, loss 7.531138 +INFO 2020-11-24 22:50:55 train.py: 74] Epoch 8, iter 2800/6416, lr 0.100000, loss 7.542735 +INFO 2020-11-24 22:52:11 train.py: 87] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2020-11-24 22:52:12 train.py: 74] Epoch 8, iter 3000/6416, lr 0.100000, loss 7.531534 +INFO 2020-11-24 22:53:28 train.py: 74] Epoch 8, iter 3200/6416, lr 0.100000, loss 7.529461 +INFO 2020-11-24 22:54:45 train.py: 74] Epoch 8, iter 3400/6416, lr 0.100000, loss 7.560661 +INFO 2020-11-24 22:56:01 train.py: 74] Epoch 8, iter 3600/6416, lr 0.100000, loss 7.550087 +INFO 2020-11-24 22:57:18 train.py: 74] Epoch 8, iter 3800/6416, lr 0.100000, loss 7.508024 +INFO 2020-11-24 22:58:35 train.py: 74] Epoch 8, iter 4000/6416, lr 0.100000, loss 7.549892 +INFO 2020-11-24 22:59:51 train.py: 74] Epoch 8, iter 4200/6416, lr 0.100000, loss 7.559926 +INFO 2020-11-24 23:01:08 train.py: 74] Epoch 8, iter 4400/6416, lr 0.100000, loss 7.509007 +INFO 2020-11-24 23:02:25 train.py: 74] Epoch 8, iter 4600/6416, lr 0.100000, loss 7.568892 +INFO 2020-11-24 23:03:41 train.py: 74] Epoch 8, iter 4800/6416, lr 0.100000, loss 7.538015 +INFO 2020-11-24 23:04:58 train.py: 74] Epoch 8, iter 5000/6416, lr 0.100000, loss 7.519274 +INFO 2020-11-24 23:06:15 train.py: 74] Epoch 8, iter 5200/6416, lr 0.100000, loss 7.505941 +INFO 2020-11-24 23:07:32 train.py: 74] Epoch 8, iter 5400/6416, lr 0.100000, loss 7.555411 +INFO 2020-11-24 23:08:49 train.py: 74] Epoch 8, iter 5600/6416, lr 0.100000, loss 7.507525 +INFO 2020-11-24 23:10:05 train.py: 74] Epoch 8, iter 5800/6416, lr 0.100000, loss 7.528209 +INFO 2020-11-24 23:11:22 train.py: 87] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2020-11-24 23:11:22 train.py: 74] Epoch 8, iter 6000/6416, lr 0.100000, loss 7.515858 +INFO 2020-11-24 23:12:39 train.py: 74] Epoch 8, iter 6200/6416, lr 0.100000, loss 7.534646 +INFO 2020-11-24 23:13:56 train.py: 74] Epoch 8, iter 6400/6416, lr 0.100000, loss 7.508126 +INFO 2020-11-24 23:14:02 train.py: 92] Save checkpoint Epoch_8.pt to disk... +INFO 2020-11-24 23:14:04 train.py: 74] Epoch 9, iter 0/6416, lr 0.100000, loss 7.443227 +INFO 2020-11-24 23:15:20 train.py: 74] Epoch 9, iter 200/6416, lr 0.100000, loss 7.009048 +INFO 2020-11-24 23:16:36 train.py: 74] Epoch 9, iter 400/6416, lr 0.100000, loss 7.035446 +INFO 2020-11-24 23:17:52 train.py: 74] Epoch 9, iter 600/6416, lr 0.100000, loss 7.069120 +INFO 2020-11-24 23:19:08 train.py: 74] Epoch 9, iter 800/6416, lr 0.100000, loss 7.197210 +INFO 2020-11-24 23:20:24 train.py: 74] Epoch 9, iter 1000/6416, lr 0.100000, loss 7.304525 +INFO 2020-11-24 23:21:40 train.py: 74] Epoch 9, iter 1200/6416, lr 0.100000, loss 7.299744 +INFO 2020-11-24 23:22:56 train.py: 74] Epoch 9, iter 1400/6416, lr 0.100000, loss 7.324403 +INFO 2020-11-24 23:24:11 train.py: 74] Epoch 9, iter 1600/6416, lr 0.100000, loss 7.391143 +INFO 2020-11-24 23:25:27 train.py: 74] Epoch 9, iter 1800/6416, lr 0.100000, loss 7.417595 +INFO 2020-11-24 23:26:43 train.py: 74] Epoch 9, iter 2000/6416, lr 0.100000, loss 7.439957 +INFO 2020-11-24 23:27:59 train.py: 74] Epoch 9, iter 2200/6416, lr 0.100000, loss 7.406044 +INFO 2020-11-24 23:29:15 train.py: 74] Epoch 9, iter 2400/6416, lr 0.100000, loss 7.424606 +INFO 2020-11-24 23:30:31 train.py: 74] Epoch 9, iter 2600/6416, lr 0.100000, loss 7.398502 +INFO 2020-11-24 23:31:47 train.py: 74] Epoch 9, iter 2800/6416, lr 0.100000, loss 7.423678 +INFO 2020-11-24 23:33:02 train.py: 87] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2020-11-24 23:33:03 train.py: 74] Epoch 9, iter 3000/6416, lr 0.100000, loss 7.436243 +INFO 2020-11-24 23:34:19 train.py: 74] Epoch 9, iter 3200/6416, lr 0.100000, loss 7.473204 +INFO 2020-11-24 23:35:36 train.py: 74] Epoch 9, iter 3400/6416, lr 0.100000, loss 7.443741 +INFO 2020-11-24 23:36:53 train.py: 74] Epoch 9, iter 3600/6416, lr 0.100000, loss 7.441603 +INFO 2020-11-24 23:38:09 train.py: 74] Epoch 9, iter 3800/6416, lr 0.100000, loss 7.417943 +INFO 2020-11-24 23:39:26 train.py: 74] Epoch 9, iter 4000/6416, lr 0.100000, loss 7.423790 +INFO 2020-11-24 23:40:42 train.py: 74] Epoch 9, iter 4200/6416, lr 0.100000, loss 7.446940 +INFO 2020-11-24 23:41:59 train.py: 74] Epoch 9, iter 4400/6416, lr 0.100000, loss 7.406042 +INFO 2020-11-24 23:43:16 train.py: 74] Epoch 9, iter 4600/6416, lr 0.100000, loss 7.427912 +INFO 2020-11-24 23:44:33 train.py: 74] Epoch 9, iter 4800/6416, lr 0.100000, loss 7.437229 +INFO 2020-11-24 23:45:49 train.py: 74] Epoch 9, iter 5000/6416, lr 0.100000, loss 7.434042 +INFO 2020-11-24 23:47:06 train.py: 74] Epoch 9, iter 5200/6416, lr 0.100000, loss 7.401678 +INFO 2020-11-24 23:48:23 train.py: 74] Epoch 9, iter 5400/6416, lr 0.100000, loss 7.439736 +INFO 2020-11-24 23:49:40 train.py: 74] Epoch 9, iter 5600/6416, lr 0.100000, loss 7.417320 +INFO 2020-11-24 23:50:56 train.py: 74] Epoch 9, iter 5800/6416, lr 0.100000, loss 7.431844 +INFO 2020-11-24 23:52:13 train.py: 87] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2020-11-24 23:52:14 train.py: 74] Epoch 9, iter 6000/6416, lr 0.100000, loss 7.436903 +INFO 2020-11-24 23:53:30 train.py: 74] Epoch 9, iter 6200/6416, lr 0.100000, loss 7.398268 +INFO 2020-11-24 23:54:47 train.py: 74] Epoch 9, iter 6400/6416, lr 0.100000, loss 7.397418 +INFO 2020-11-24 23:54:53 train.py: 92] Save checkpoint Epoch_9.pt to disk... +INFO 2020-11-24 23:54:55 train.py: 74] Epoch 10, iter 0/6416, lr 0.010000, loss 7.353138 +INFO 2020-11-24 23:56:12 train.py: 74] Epoch 10, iter 200/6416, lr 0.010000, loss 6.257766 +INFO 2020-11-24 23:57:29 train.py: 74] Epoch 10, iter 400/6416, lr 0.010000, loss 6.017529 +INFO 2020-11-24 23:58:45 train.py: 74] Epoch 10, iter 600/6416, lr 0.010000, loss 5.915038 +INFO 2020-11-25 00:00:02 train.py: 74] Epoch 10, iter 800/6416, lr 0.010000, loss 5.836611 +INFO 2020-11-25 00:01:18 train.py: 74] Epoch 10, iter 1000/6416, lr 0.010000, loss 5.783414 +INFO 2020-11-25 00:02:34 train.py: 74] Epoch 10, iter 1200/6416, lr 0.010000, loss 5.734762 +INFO 2020-11-25 00:03:51 train.py: 74] Epoch 10, iter 1400/6416, lr 0.010000, loss 5.738091 +INFO 2020-11-25 00:05:07 train.py: 74] Epoch 10, iter 1600/6416, lr 0.010000, loss 5.682976 +INFO 2020-11-25 00:06:23 train.py: 74] Epoch 10, iter 1800/6416, lr 0.010000, loss 5.647589 +INFO 2020-11-25 00:07:40 train.py: 74] Epoch 10, iter 2000/6416, lr 0.010000, loss 5.622531 +INFO 2020-11-25 00:08:56 train.py: 74] Epoch 10, iter 2200/6416, lr 0.010000, loss 5.601900 +INFO 2020-11-25 00:10:12 train.py: 74] Epoch 10, iter 2400/6416, lr 0.010000, loss 5.571118 +INFO 2020-11-25 00:11:29 train.py: 74] Epoch 10, iter 2600/6416, lr 0.010000, loss 5.534947 +INFO 2020-11-25 00:12:45 train.py: 74] Epoch 10, iter 2800/6416, lr 0.010000, loss 5.509576 +INFO 2020-11-25 00:14:01 train.py: 87] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2020-11-25 00:14:02 train.py: 74] Epoch 10, iter 3000/6416, lr 0.010000, loss 5.511195 +INFO 2020-11-25 00:15:17 train.py: 74] Epoch 10, iter 3200/6416, lr 0.010000, loss 5.482364 +INFO 2020-11-25 00:16:33 train.py: 74] Epoch 10, iter 3400/6416, lr 0.010000, loss 5.489383 +INFO 2020-11-25 00:17:49 train.py: 74] Epoch 10, iter 3600/6416, lr 0.010000, loss 5.448496 +INFO 2020-11-25 00:19:05 train.py: 74] Epoch 10, iter 3800/6416, lr 0.010000, loss 5.419645 +INFO 2020-11-25 00:20:21 train.py: 74] Epoch 10, iter 4000/6416, lr 0.010000, loss 5.423076 +INFO 2020-11-25 00:21:37 train.py: 74] Epoch 10, iter 4200/6416, lr 0.010000, loss 5.412503 +INFO 2020-11-25 00:22:53 train.py: 74] Epoch 10, iter 4400/6416, lr 0.010000, loss 5.375420 +INFO 2020-11-25 00:24:08 train.py: 74] Epoch 10, iter 4600/6416, lr 0.010000, loss 5.357363 +INFO 2020-11-25 00:25:24 train.py: 74] Epoch 10, iter 4800/6416, lr 0.010000, loss 5.346682 +INFO 2020-11-25 00:26:40 train.py: 74] Epoch 10, iter 5000/6416, lr 0.010000, loss 5.338702 +INFO 2020-11-25 00:27:56 train.py: 74] Epoch 10, iter 5200/6416, lr 0.010000, loss 5.338754 +INFO 2020-11-25 00:29:12 train.py: 74] Epoch 10, iter 5400/6416, lr 0.010000, loss 5.340596 +INFO 2020-11-25 00:30:28 train.py: 74] Epoch 10, iter 5600/6416, lr 0.010000, loss 5.277478 +INFO 2020-11-25 00:31:44 train.py: 74] Epoch 10, iter 5800/6416, lr 0.010000, loss 5.315326 +INFO 2020-11-25 00:33:00 train.py: 87] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2020-11-25 00:33:01 train.py: 74] Epoch 10, iter 6000/6416, lr 0.010000, loss 5.293450 +INFO 2020-11-25 00:34:17 train.py: 74] Epoch 10, iter 6200/6416, lr 0.010000, loss 5.272774 +INFO 2020-11-25 00:35:34 train.py: 74] Epoch 10, iter 6400/6416, lr 0.010000, loss 5.283323 +INFO 2020-11-25 00:35:40 train.py: 92] Save checkpoint Epoch_10.pt to disk... +INFO 2020-11-25 00:35:42 train.py: 74] Epoch 11, iter 0/6416, lr 0.010000, loss 5.223241 +INFO 2020-11-25 00:36:58 train.py: 74] Epoch 11, iter 200/6416, lr 0.010000, loss 4.948623 +INFO 2020-11-25 00:38:15 train.py: 74] Epoch 11, iter 400/6416, lr 0.010000, loss 4.906858 +INFO 2020-11-25 00:39:31 train.py: 74] Epoch 11, iter 600/6416, lr 0.010000, loss 4.907461 +INFO 2020-11-25 00:40:48 train.py: 74] Epoch 11, iter 800/6416, lr 0.010000, loss 4.904690 +INFO 2020-11-25 00:42:04 train.py: 74] Epoch 11, iter 1000/6416, lr 0.010000, loss 4.928326 +INFO 2020-11-25 00:43:21 train.py: 74] Epoch 11, iter 1200/6416, lr 0.010000, loss 4.924131 +INFO 2020-11-25 00:44:37 train.py: 74] Epoch 11, iter 1400/6416, lr 0.010000, loss 4.936636 +INFO 2020-11-25 00:45:53 train.py: 74] Epoch 11, iter 1600/6416, lr 0.010000, loss 4.918629 +INFO 2020-11-25 00:47:09 train.py: 74] Epoch 11, iter 1800/6416, lr 0.010000, loss 4.919805 +INFO 2020-11-25 00:48:26 train.py: 74] Epoch 11, iter 2000/6416, lr 0.010000, loss 4.960497 +INFO 2020-11-25 00:49:42 train.py: 74] Epoch 11, iter 2200/6416, lr 0.010000, loss 4.957431 +INFO 2020-11-25 00:50:58 train.py: 74] Epoch 11, iter 2400/6416, lr 0.010000, loss 4.956089 +INFO 2020-11-25 00:52:15 train.py: 74] Epoch 11, iter 2600/6416, lr 0.010000, loss 4.945728 +INFO 2020-11-25 00:53:31 train.py: 74] Epoch 11, iter 2800/6416, lr 0.010000, loss 4.957325 +INFO 2020-11-25 00:54:47 train.py: 87] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2020-11-25 00:54:47 train.py: 74] Epoch 11, iter 3000/6416, lr 0.010000, loss 4.980482 +INFO 2020-11-25 00:56:04 train.py: 74] Epoch 11, iter 3200/6416, lr 0.010000, loss 4.983182 +INFO 2020-11-25 00:57:20 train.py: 74] Epoch 11, iter 3400/6416, lr 0.010000, loss 4.966438 +INFO 2020-11-25 00:58:37 train.py: 74] Epoch 11, iter 3600/6416, lr 0.010000, loss 4.987589 +INFO 2020-11-25 00:59:53 train.py: 74] Epoch 11, iter 3800/6416, lr 0.010000, loss 4.968704 +INFO 2020-11-25 01:01:10 train.py: 74] Epoch 11, iter 4000/6416, lr 0.010000, loss 4.980256 +INFO 2020-11-25 01:02:26 train.py: 74] Epoch 11, iter 4200/6416, lr 0.010000, loss 4.970413 +INFO 2020-11-25 01:03:43 train.py: 74] Epoch 11, iter 4400/6416, lr 0.010000, loss 5.002899 +INFO 2020-11-25 01:04:59 train.py: 74] Epoch 11, iter 4600/6416, lr 0.010000, loss 5.007192 +INFO 2020-11-25 01:06:16 train.py: 74] Epoch 11, iter 4800/6416, lr 0.010000, loss 4.998616 +INFO 2020-11-25 01:07:33 train.py: 74] Epoch 11, iter 5000/6416, lr 0.010000, loss 5.009392 +INFO 2020-11-25 01:08:49 train.py: 74] Epoch 11, iter 5200/6416, lr 0.010000, loss 4.986240 +INFO 2020-11-25 01:10:06 train.py: 74] Epoch 11, iter 5400/6416, lr 0.010000, loss 4.972138 +INFO 2020-11-25 01:11:23 train.py: 74] Epoch 11, iter 5600/6416, lr 0.010000, loss 4.976395 +INFO 2020-11-25 01:12:39 train.py: 74] Epoch 11, iter 5800/6416, lr 0.010000, loss 4.971344 +INFO 2020-11-25 01:13:56 train.py: 87] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2020-11-25 01:13:56 train.py: 74] Epoch 11, iter 6000/6416, lr 0.010000, loss 4.987184 +INFO 2020-11-25 01:15:12 train.py: 74] Epoch 11, iter 6200/6416, lr 0.010000, loss 4.976141 +INFO 2020-11-25 01:16:28 train.py: 74] Epoch 11, iter 6400/6416, lr 0.010000, loss 5.002322 +INFO 2020-11-25 01:16:35 train.py: 92] Save checkpoint Epoch_11.pt to disk... +INFO 2020-11-25 01:16:36 train.py: 74] Epoch 12, iter 0/6416, lr 0.010000, loss 4.983368 +INFO 2020-11-25 01:17:53 train.py: 74] Epoch 12, iter 200/6416, lr 0.010000, loss 4.611268 +INFO 2020-11-25 01:19:09 train.py: 74] Epoch 12, iter 400/6416, lr 0.010000, loss 4.640412 +INFO 2020-11-25 01:20:26 train.py: 74] Epoch 12, iter 600/6416, lr 0.010000, loss 4.673774 +INFO 2020-11-25 01:21:42 train.py: 74] Epoch 12, iter 800/6416, lr 0.010000, loss 4.692424 +INFO 2020-11-25 01:22:59 train.py: 74] Epoch 12, iter 1000/6416, lr 0.010000, loss 4.691139 +INFO 2020-11-25 01:24:15 train.py: 74] Epoch 12, iter 1200/6416, lr 0.010000, loss 4.690612 +INFO 2020-11-25 01:25:31 train.py: 74] Epoch 12, iter 1400/6416, lr 0.010000, loss 4.695927 +INFO 2020-11-25 01:26:47 train.py: 74] Epoch 12, iter 1600/6416, lr 0.010000, loss 4.736963 +INFO 2020-11-25 01:28:04 train.py: 74] Epoch 12, iter 1800/6416, lr 0.010000, loss 4.741829 +INFO 2020-11-25 01:29:20 train.py: 74] Epoch 12, iter 2000/6416, lr 0.010000, loss 4.736865 +INFO 2020-11-25 01:30:36 train.py: 74] Epoch 12, iter 2200/6416, lr 0.010000, loss 4.762031 +INFO 2020-11-25 01:31:53 train.py: 74] Epoch 12, iter 2400/6416, lr 0.010000, loss 4.767115 +INFO 2020-11-25 01:33:09 train.py: 74] Epoch 12, iter 2600/6416, lr 0.010000, loss 4.782443 +INFO 2020-11-25 01:34:25 train.py: 74] Epoch 12, iter 2800/6416, lr 0.010000, loss 4.760673 +INFO 2020-11-25 01:35:41 train.py: 87] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2020-11-25 01:35:42 train.py: 74] Epoch 12, iter 3000/6416, lr 0.010000, loss 4.802496 +INFO 2020-11-25 01:36:58 train.py: 74] Epoch 12, iter 3200/6416, lr 0.010000, loss 4.796419 +INFO 2020-11-25 01:38:15 train.py: 74] Epoch 12, iter 3400/6416, lr 0.010000, loss 4.792343 +INFO 2020-11-25 01:39:31 train.py: 74] Epoch 12, iter 3600/6416, lr 0.010000, loss 4.832982 +INFO 2020-11-25 01:40:48 train.py: 74] Epoch 12, iter 3800/6416, lr 0.010000, loss 4.821779 +INFO 2020-11-25 01:42:04 train.py: 74] Epoch 12, iter 4000/6416, lr 0.010000, loss 4.881370 +INFO 2020-11-25 01:43:20 train.py: 74] Epoch 12, iter 4200/6416, lr 0.010000, loss 4.884917 +INFO 2020-11-25 01:44:37 train.py: 74] Epoch 12, iter 4400/6416, lr 0.010000, loss 4.857210 +INFO 2020-11-25 01:45:53 train.py: 74] Epoch 12, iter 4600/6416, lr 0.010000, loss 4.858853 +INFO 2020-11-25 01:47:10 train.py: 74] Epoch 12, iter 4800/6416, lr 0.010000, loss 4.859920 +INFO 2020-11-25 01:48:27 train.py: 74] Epoch 12, iter 5000/6416, lr 0.010000, loss 4.852360 +INFO 2020-11-25 01:49:43 train.py: 74] Epoch 12, iter 5200/6416, lr 0.010000, loss 4.872837 +INFO 2020-11-25 01:51:00 train.py: 74] Epoch 12, iter 5400/6416, lr 0.010000, loss 4.871405 +INFO 2020-11-25 01:52:17 train.py: 74] Epoch 12, iter 5600/6416, lr 0.010000, loss 4.908140 +INFO 2020-11-25 01:53:33 train.py: 74] Epoch 12, iter 5800/6416, lr 0.010000, loss 4.893963 +INFO 2020-11-25 01:54:50 train.py: 87] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2020-11-25 01:54:50 train.py: 74] Epoch 12, iter 6000/6416, lr 0.010000, loss 4.906605 +INFO 2020-11-25 01:56:07 train.py: 74] Epoch 12, iter 6200/6416, lr 0.010000, loss 4.916764 +INFO 2020-11-25 01:57:23 train.py: 74] Epoch 12, iter 6400/6416, lr 0.010000, loss 4.909206 +INFO 2020-11-25 01:57:30 train.py: 92] Save checkpoint Epoch_12.pt to disk... +INFO 2020-11-25 01:57:31 train.py: 74] Epoch 13, iter 0/6416, lr 0.001000, loss 4.876686 +INFO 2020-11-25 01:58:47 train.py: 74] Epoch 13, iter 200/6416, lr 0.001000, loss 4.442451 +INFO 2020-11-25 02:00:03 train.py: 74] Epoch 13, iter 400/6416, lr 0.001000, loss 4.408205 +INFO 2020-11-25 02:01:19 train.py: 74] Epoch 13, iter 600/6416, lr 0.001000, loss 4.419447 +INFO 2020-11-25 02:02:35 train.py: 74] Epoch 13, iter 800/6416, lr 0.001000, loss 4.387983 +INFO 2020-11-25 02:03:51 train.py: 74] Epoch 13, iter 1000/6416, lr 0.001000, loss 4.412583 +INFO 2020-11-25 02:05:06 train.py: 74] Epoch 13, iter 1200/6416, lr 0.001000, loss 4.399296 +INFO 2020-11-25 02:06:22 train.py: 74] Epoch 13, iter 1400/6416, lr 0.001000, loss 4.394198 +INFO 2020-11-25 02:07:38 train.py: 74] Epoch 13, iter 1600/6416, lr 0.001000, loss 4.380451 +INFO 2020-11-25 02:08:53 train.py: 74] Epoch 13, iter 1800/6416, lr 0.001000, loss 4.419471 +INFO 2020-11-25 02:10:09 train.py: 74] Epoch 13, iter 2000/6416, lr 0.001000, loss 4.381618 +INFO 2020-11-25 02:11:24 train.py: 74] Epoch 13, iter 2200/6416, lr 0.001000, loss 4.409688 +INFO 2020-11-25 02:12:40 train.py: 74] Epoch 13, iter 2400/6416, lr 0.001000, loss 4.408339 +INFO 2020-11-25 02:13:56 train.py: 74] Epoch 13, iter 2600/6416, lr 0.001000, loss 4.411750 +INFO 2020-11-25 02:15:11 train.py: 74] Epoch 13, iter 2800/6416, lr 0.001000, loss 4.413968 +INFO 2020-11-25 02:16:27 train.py: 87] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2020-11-25 02:16:27 train.py: 74] Epoch 13, iter 3000/6416, lr 0.001000, loss 4.390786 +INFO 2020-11-25 02:17:44 train.py: 74] Epoch 13, iter 3200/6416, lr 0.001000, loss 4.429628 +INFO 2020-11-25 02:19:00 train.py: 74] Epoch 13, iter 3400/6416, lr 0.001000, loss 4.420643 +INFO 2020-11-25 02:20:16 train.py: 74] Epoch 13, iter 3600/6416, lr 0.001000, loss 4.388773 +INFO 2020-11-25 02:21:33 train.py: 74] Epoch 13, iter 3800/6416, lr 0.001000, loss 4.397255 +INFO 2020-11-25 02:22:49 train.py: 74] Epoch 13, iter 4000/6416, lr 0.001000, loss 4.405686 +INFO 2020-11-25 02:24:06 train.py: 74] Epoch 13, iter 4200/6416, lr 0.001000, loss 4.395911 +INFO 2020-11-25 02:25:22 train.py: 74] Epoch 13, iter 4400/6416, lr 0.001000, loss 4.432924 +INFO 2020-11-25 02:26:39 train.py: 74] Epoch 13, iter 4600/6416, lr 0.001000, loss 4.400759 +INFO 2020-11-25 02:27:55 train.py: 74] Epoch 13, iter 4800/6416, lr 0.001000, loss 4.384009 +INFO 2020-11-25 02:29:12 train.py: 74] Epoch 13, iter 5000/6416, lr 0.001000, loss 4.438662 +INFO 2020-11-25 02:30:29 train.py: 74] Epoch 13, iter 5200/6416, lr 0.001000, loss 4.423308 +INFO 2020-11-25 02:31:45 train.py: 74] Epoch 13, iter 5400/6416, lr 0.001000, loss 4.411874 +INFO 2020-11-25 02:33:02 train.py: 74] Epoch 13, iter 5600/6416, lr 0.001000, loss 4.426057 +INFO 2020-11-25 02:34:19 train.py: 74] Epoch 13, iter 5800/6416, lr 0.001000, loss 4.420076 +INFO 2020-11-25 02:35:35 train.py: 87] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2020-11-25 02:35:35 train.py: 74] Epoch 13, iter 6000/6416, lr 0.001000, loss 4.426545 +INFO 2020-11-25 02:36:52 train.py: 74] Epoch 13, iter 6200/6416, lr 0.001000, loss 4.424432 +INFO 2020-11-25 02:38:09 train.py: 74] Epoch 13, iter 6400/6416, lr 0.001000, loss 4.414508 +INFO 2020-11-25 02:38:15 train.py: 92] Save checkpoint Epoch_13.pt to disk... +INFO 2020-11-25 02:38:17 train.py: 74] Epoch 14, iter 0/6416, lr 0.001000, loss 4.443413 +INFO 2020-11-25 02:39:33 train.py: 74] Epoch 14, iter 200/6416, lr 0.001000, loss 4.337744 +INFO 2020-11-25 02:40:50 train.py: 74] Epoch 14, iter 400/6416, lr 0.001000, loss 4.345555 +INFO 2020-11-25 02:42:06 train.py: 74] Epoch 14, iter 600/6416, lr 0.001000, loss 4.335841 +INFO 2020-11-25 02:43:23 train.py: 74] Epoch 14, iter 800/6416, lr 0.001000, loss 4.349915 +INFO 2020-11-25 02:44:39 train.py: 74] Epoch 14, iter 1000/6416, lr 0.001000, loss 4.377623 +INFO 2020-11-25 02:45:55 train.py: 74] Epoch 14, iter 1200/6416, lr 0.001000, loss 4.354851 +INFO 2020-11-25 02:47:12 train.py: 74] Epoch 14, iter 1400/6416, lr 0.001000, loss 4.369637 +INFO 2020-11-25 02:48:28 train.py: 74] Epoch 14, iter 1600/6416, lr 0.001000, loss 4.347162 +INFO 2020-11-25 02:49:44 train.py: 74] Epoch 14, iter 1800/6416, lr 0.001000, loss 4.375702 +INFO 2020-11-25 02:51:00 train.py: 74] Epoch 14, iter 2000/6416, lr 0.001000, loss 4.355511 +INFO 2020-11-25 02:52:17 train.py: 74] Epoch 14, iter 2200/6416, lr 0.001000, loss 4.351502 +INFO 2020-11-25 02:53:33 train.py: 74] Epoch 14, iter 2400/6416, lr 0.001000, loss 4.346628 +INFO 2020-11-25 02:54:49 train.py: 74] Epoch 14, iter 2600/6416, lr 0.001000, loss 4.385360 +INFO 2020-11-25 02:56:06 train.py: 74] Epoch 14, iter 2800/6416, lr 0.001000, loss 4.382407 +INFO 2020-11-25 02:57:22 train.py: 87] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2020-11-25 02:57:22 train.py: 74] Epoch 14, iter 3000/6416, lr 0.001000, loss 4.368762 +INFO 2020-11-25 02:58:38 train.py: 74] Epoch 14, iter 3200/6416, lr 0.001000, loss 4.392034 +INFO 2020-11-25 02:59:54 train.py: 74] Epoch 14, iter 3400/6416, lr 0.001000, loss 4.361917 +INFO 2020-11-25 03:01:09 train.py: 74] Epoch 14, iter 3600/6416, lr 0.001000, loss 4.373660 +INFO 2020-11-25 03:02:25 train.py: 74] Epoch 14, iter 3800/6416, lr 0.001000, loss 4.387465 +INFO 2020-11-25 03:03:41 train.py: 74] Epoch 14, iter 4000/6416, lr 0.001000, loss 4.354591 +INFO 2020-11-25 03:04:57 train.py: 74] Epoch 14, iter 4200/6416, lr 0.001000, loss 4.383426 +INFO 2020-11-25 03:06:13 train.py: 74] Epoch 14, iter 4400/6416, lr 0.001000, loss 4.364166 +INFO 2020-11-25 03:07:29 train.py: 74] Epoch 14, iter 4600/6416, lr 0.001000, loss 4.376958 +INFO 2020-11-25 03:08:44 train.py: 74] Epoch 14, iter 4800/6416, lr 0.001000, loss 4.372547 +INFO 2020-11-25 03:10:00 train.py: 74] Epoch 14, iter 5000/6416, lr 0.001000, loss 4.359061 +INFO 2020-11-25 03:11:16 train.py: 74] Epoch 14, iter 5200/6416, lr 0.001000, loss 4.379103 +INFO 2020-11-25 03:12:32 train.py: 74] Epoch 14, iter 5400/6416, lr 0.001000, loss 4.410229 +INFO 2020-11-25 03:13:48 train.py: 74] Epoch 14, iter 5600/6416, lr 0.001000, loss 4.386184 +INFO 2020-11-25 03:15:04 train.py: 74] Epoch 14, iter 5800/6416, lr 0.001000, loss 4.415015 +INFO 2020-11-25 03:16:20 train.py: 87] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2020-11-25 03:16:20 train.py: 74] Epoch 14, iter 6000/6416, lr 0.001000, loss 4.391684 +INFO 2020-11-25 03:17:37 train.py: 74] Epoch 14, iter 6200/6416, lr 0.001000, loss 4.421325 +INFO 2020-11-25 03:18:53 train.py: 74] Epoch 14, iter 6400/6416, lr 0.001000, loss 4.391710 +INFO 2020-11-25 03:19:00 train.py: 92] Save checkpoint Epoch_14.pt to disk... +INFO 2020-11-25 03:19:01 train.py: 74] Epoch 15, iter 0/6416, lr 0.001000, loss 4.447200 +INFO 2020-11-25 03:20:18 train.py: 74] Epoch 15, iter 200/6416, lr 0.001000, loss 4.308515 +INFO 2020-11-25 03:21:34 train.py: 74] Epoch 15, iter 400/6416, lr 0.001000, loss 4.339306 +INFO 2020-11-25 03:22:51 train.py: 74] Epoch 15, iter 600/6416, lr 0.001000, loss 4.358757 +INFO 2020-11-25 03:24:07 train.py: 74] Epoch 15, iter 800/6416, lr 0.001000, loss 4.343400 +INFO 2020-11-25 03:25:23 train.py: 74] Epoch 15, iter 1000/6416, lr 0.001000, loss 4.327294 +INFO 2020-11-25 03:26:40 train.py: 74] Epoch 15, iter 1200/6416, lr 0.001000, loss 4.339487 +INFO 2020-11-25 03:27:56 train.py: 74] Epoch 15, iter 1400/6416, lr 0.001000, loss 4.330323 +INFO 2020-11-25 03:29:12 train.py: 74] Epoch 15, iter 1600/6416, lr 0.001000, loss 4.349277 +INFO 2020-11-25 03:30:28 train.py: 74] Epoch 15, iter 1800/6416, lr 0.001000, loss 4.335158 +INFO 2020-11-25 03:31:45 train.py: 74] Epoch 15, iter 2000/6416, lr 0.001000, loss 4.341329 +INFO 2020-11-25 03:33:01 train.py: 74] Epoch 15, iter 2200/6416, lr 0.001000, loss 4.328359 +INFO 2020-11-25 03:34:17 train.py: 74] Epoch 15, iter 2400/6416, lr 0.001000, loss 4.342991 +INFO 2020-11-25 03:35:34 train.py: 74] Epoch 15, iter 2600/6416, lr 0.001000, loss 4.365566 +INFO 2020-11-25 03:36:50 train.py: 74] Epoch 15, iter 2800/6416, lr 0.001000, loss 4.348621 +INFO 2020-11-25 03:38:06 train.py: 87] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2020-11-25 03:38:06 train.py: 74] Epoch 15, iter 3000/6416, lr 0.001000, loss 4.341549 +INFO 2020-11-25 03:39:23 train.py: 74] Epoch 15, iter 3200/6416, lr 0.001000, loss 4.353372 +INFO 2020-11-25 03:40:39 train.py: 74] Epoch 15, iter 3400/6416, lr 0.001000, loss 4.341762 +INFO 2020-11-25 03:41:56 train.py: 74] Epoch 15, iter 3600/6416, lr 0.001000, loss 4.357957 +INFO 2020-11-25 03:43:12 train.py: 74] Epoch 15, iter 3800/6416, lr 0.001000, loss 4.356401 +INFO 2020-11-25 03:44:28 train.py: 74] Epoch 15, iter 4000/6416, lr 0.001000, loss 4.337076 +INFO 2020-11-25 03:45:45 train.py: 74] Epoch 15, iter 4200/6416, lr 0.001000, loss 4.354352 +INFO 2020-11-25 03:47:01 train.py: 74] Epoch 15, iter 4400/6416, lr 0.001000, loss 4.380453 +INFO 2020-11-25 03:48:18 train.py: 74] Epoch 15, iter 4600/6416, lr 0.001000, loss 4.356988 +INFO 2020-11-25 03:49:34 train.py: 74] Epoch 15, iter 4800/6416, lr 0.001000, loss 4.371785 +INFO 2020-11-25 03:50:51 train.py: 74] Epoch 15, iter 5000/6416, lr 0.001000, loss 4.359285 +INFO 2020-11-25 03:52:07 train.py: 74] Epoch 15, iter 5200/6416, lr 0.001000, loss 4.362331 +INFO 2020-11-25 03:53:24 train.py: 74] Epoch 15, iter 5400/6416, lr 0.001000, loss 4.364020 +INFO 2020-11-25 03:54:41 train.py: 74] Epoch 15, iter 5600/6416, lr 0.001000, loss 4.396912 +INFO 2020-11-25 03:55:57 train.py: 74] Epoch 15, iter 5800/6416, lr 0.001000, loss 4.379699 +INFO 2020-11-25 03:57:14 train.py: 87] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2020-11-25 03:57:14 train.py: 74] Epoch 15, iter 6000/6416, lr 0.001000, loss 4.372220 +INFO 2020-11-25 03:58:31 train.py: 74] Epoch 15, iter 6200/6416, lr 0.001000, loss 4.375687 +INFO 2020-11-25 03:59:47 train.py: 74] Epoch 15, iter 6400/6416, lr 0.001000, loss 4.387501 +INFO 2020-11-25 03:59:54 train.py: 92] Save checkpoint Epoch_15.pt to disk... +INFO 2020-11-25 03:59:55 train.py: 74] Epoch 16, iter 0/6416, lr 0.000100, loss 4.437425 +INFO 2020-11-25 04:01:12 train.py: 74] Epoch 16, iter 200/6416, lr 0.000100, loss 4.312835 +INFO 2020-11-25 04:02:28 train.py: 74] Epoch 16, iter 400/6416, lr 0.000100, loss 4.326099 +INFO 2020-11-25 04:03:45 train.py: 74] Epoch 16, iter 600/6416, lr 0.000100, loss 4.280351 +INFO 2020-11-25 04:05:01 train.py: 74] Epoch 16, iter 800/6416, lr 0.000100, loss 4.285148 +INFO 2020-11-25 04:06:18 train.py: 74] Epoch 16, iter 1000/6416, lr 0.000100, loss 4.303608 +INFO 2020-11-25 04:07:34 train.py: 74] Epoch 16, iter 1200/6416, lr 0.000100, loss 4.304034 +INFO 2020-11-25 04:08:50 train.py: 74] Epoch 16, iter 1400/6416, lr 0.000100, loss 4.293425 +INFO 2020-11-25 04:10:07 train.py: 74] Epoch 16, iter 1600/6416, lr 0.000100, loss 4.328923 +INFO 2020-11-25 04:11:23 train.py: 74] Epoch 16, iter 1800/6416, lr 0.000100, loss 4.299053 +INFO 2020-11-25 04:12:39 train.py: 74] Epoch 16, iter 2000/6416, lr 0.000100, loss 4.304958 +INFO 2020-11-25 04:13:55 train.py: 74] Epoch 16, iter 2200/6416, lr 0.000100, loss 4.297158 +INFO 2020-11-25 04:15:12 train.py: 74] Epoch 16, iter 2400/6416, lr 0.000100, loss 4.286107 +INFO 2020-11-25 04:16:28 train.py: 74] Epoch 16, iter 2600/6416, lr 0.000100, loss 4.298167 +INFO 2020-11-25 04:17:45 train.py: 74] Epoch 16, iter 2800/6416, lr 0.000100, loss 4.299586 +INFO 2020-11-25 04:19:01 train.py: 87] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2020-11-25 04:19:01 train.py: 74] Epoch 16, iter 3000/6416, lr 0.000100, loss 4.286830 +INFO 2020-11-25 04:20:17 train.py: 74] Epoch 16, iter 3200/6416, lr 0.000100, loss 4.326733 +INFO 2020-11-25 04:21:33 train.py: 74] Epoch 16, iter 3400/6416, lr 0.000100, loss 4.311498 +INFO 2020-11-25 04:22:48 train.py: 74] Epoch 16, iter 3600/6416, lr 0.000100, loss 4.313252 +INFO 2020-11-25 04:24:04 train.py: 74] Epoch 16, iter 3800/6416, lr 0.000100, loss 4.304375 +INFO 2020-11-25 04:25:20 train.py: 74] Epoch 16, iter 4000/6416, lr 0.000100, loss 4.305652 +INFO 2020-11-25 04:26:36 train.py: 74] Epoch 16, iter 4200/6416, lr 0.000100, loss 4.332660 +INFO 2020-11-25 04:27:52 train.py: 74] Epoch 16, iter 4400/6416, lr 0.000100, loss 4.300166 +INFO 2020-11-25 04:29:08 train.py: 74] Epoch 16, iter 4600/6416, lr 0.000100, loss 4.277409 +INFO 2020-11-25 04:30:23 train.py: 74] Epoch 16, iter 4800/6416, lr 0.000100, loss 4.320323 +INFO 2020-11-25 04:31:39 train.py: 74] Epoch 16, iter 5000/6416, lr 0.000100, loss 4.266749 +INFO 2020-11-25 04:32:55 train.py: 74] Epoch 16, iter 5200/6416, lr 0.000100, loss 4.300358 +INFO 2020-11-25 04:34:11 train.py: 74] Epoch 16, iter 5400/6416, lr 0.000100, loss 4.313041 +INFO 2020-11-25 04:35:27 train.py: 74] Epoch 16, iter 5600/6416, lr 0.000100, loss 4.324255 +INFO 2020-11-25 04:36:43 train.py: 74] Epoch 16, iter 5800/6416, lr 0.000100, loss 4.296991 +INFO 2020-11-25 04:37:59 train.py: 87] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2020-11-25 04:37:59 train.py: 74] Epoch 16, iter 6000/6416, lr 0.000100, loss 4.308512 +INFO 2020-11-25 04:39:16 train.py: 74] Epoch 16, iter 6200/6416, lr 0.000100, loss 4.318126 +INFO 2020-11-25 04:40:33 train.py: 74] Epoch 16, iter 6400/6416, lr 0.000100, loss 4.305930 +INFO 2020-11-25 04:40:39 train.py: 92] Save checkpoint Epoch_16.pt to disk... +INFO 2020-11-25 04:40:41 train.py: 74] Epoch 17, iter 0/6416, lr 0.000100, loss 4.295313 +INFO 2020-11-25 04:41:57 train.py: 74] Epoch 17, iter 200/6416, lr 0.000100, loss 4.302628 +INFO 2020-11-25 04:43:14 train.py: 74] Epoch 17, iter 400/6416, lr 0.000100, loss 4.303336 +INFO 2020-11-25 04:44:30 train.py: 74] Epoch 17, iter 600/6416, lr 0.000100, loss 4.289142 +INFO 2020-11-25 04:45:46 train.py: 74] Epoch 17, iter 800/6416, lr 0.000100, loss 4.317333 +INFO 2020-11-25 04:47:03 train.py: 74] Epoch 17, iter 1000/6416, lr 0.000100, loss 4.305242 +INFO 2020-11-25 04:48:19 train.py: 74] Epoch 17, iter 1200/6416, lr 0.000100, loss 4.287574 +INFO 2020-11-25 04:49:36 train.py: 74] Epoch 17, iter 1400/6416, lr 0.000100, loss 4.306370 +INFO 2020-11-25 04:50:52 train.py: 74] Epoch 17, iter 1600/6416, lr 0.000100, loss 4.315201 +INFO 2020-11-25 04:52:08 train.py: 74] Epoch 17, iter 1800/6416, lr 0.000100, loss 4.301431 +INFO 2020-11-25 04:53:24 train.py: 74] Epoch 17, iter 2000/6416, lr 0.000100, loss 4.299300 +INFO 2020-11-25 04:54:41 train.py: 74] Epoch 17, iter 2200/6416, lr 0.000100, loss 4.293645 +INFO 2020-11-25 04:55:57 train.py: 74] Epoch 17, iter 2400/6416, lr 0.000100, loss 4.291119 +INFO 2020-11-25 04:57:13 train.py: 74] Epoch 17, iter 2600/6416, lr 0.000100, loss 4.308664 +INFO 2020-11-25 04:58:29 train.py: 74] Epoch 17, iter 2800/6416, lr 0.000100, loss 4.319460 +INFO 2020-11-25 04:59:46 train.py: 87] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2020-11-25 04:59:46 train.py: 74] Epoch 17, iter 3000/6416, lr 0.000100, loss 4.309168 +INFO 2020-11-25 05:01:02 train.py: 74] Epoch 17, iter 3200/6416, lr 0.000100, loss 4.292737 +INFO 2020-11-25 05:02:19 train.py: 74] Epoch 17, iter 3400/6416, lr 0.000100, loss 4.293627 +INFO 2020-11-25 05:03:35 train.py: 74] Epoch 17, iter 3600/6416, lr 0.000100, loss 4.306646 +INFO 2020-11-25 05:04:52 train.py: 74] Epoch 17, iter 3800/6416, lr 0.000100, loss 4.282552 +INFO 2020-11-25 05:06:08 train.py: 74] Epoch 17, iter 4000/6416, lr 0.000100, loss 4.314200 +INFO 2020-11-25 05:07:25 train.py: 74] Epoch 17, iter 4200/6416, lr 0.000100, loss 4.296638 +INFO 2020-11-25 05:08:41 train.py: 74] Epoch 17, iter 4400/6416, lr 0.000100, loss 4.324167 +INFO 2020-11-25 05:09:58 train.py: 74] Epoch 17, iter 4600/6416, lr 0.000100, loss 4.305802 +INFO 2020-11-25 05:11:14 train.py: 74] Epoch 17, iter 4800/6416, lr 0.000100, loss 4.278409 +INFO 2020-11-25 05:12:31 train.py: 74] Epoch 17, iter 5000/6416, lr 0.000100, loss 4.306388 +INFO 2020-11-25 05:13:47 train.py: 74] Epoch 17, iter 5200/6416, lr 0.000100, loss 4.309003 +INFO 2020-11-25 05:15:04 train.py: 74] Epoch 17, iter 5400/6416, lr 0.000100, loss 4.266980 +INFO 2020-11-25 05:16:21 train.py: 74] Epoch 17, iter 5600/6416, lr 0.000100, loss 4.294368 +INFO 2020-11-25 05:17:37 train.py: 74] Epoch 17, iter 5800/6416, lr 0.000100, loss 4.304988 +INFO 2020-11-25 05:18:54 train.py: 87] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2020-11-25 05:18:54 train.py: 74] Epoch 17, iter 6000/6416, lr 0.000100, loss 4.306873 +INFO 2020-11-25 05:20:11 train.py: 74] Epoch 17, iter 6200/6416, lr 0.000100, loss 4.316005 +INFO 2020-11-25 05:21:28 train.py: 74] Epoch 17, iter 6400/6416, lr 0.000100, loss 4.300295 +INFO 2020-11-25 05:21:34 train.py: 92] Save checkpoint Epoch_17.pt to disk... +INFO 2020-11-25 05:21:34 train.py: 175] Optimization done! diff --git a/bob/bio/facexzoo/models/heads/MagFace/.gitkeep b/bob/bio/facexzoo/models/heads/MagFace/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/heads/MagFace/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/heads/MagFace/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..3cde9bf024262280e418714b1394efe96105ab46 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/MagFace/accu_files/accu_agedb.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_2999.pt | 0.9581666666666667 | 0.003491170520747777 | +| Epoch_14_batch_5999.pt | 0.9581666666666665 | 0.0030877096070200598 | +| Epoch_14.pt | 0.958 | 0.0034498165991689016 | +| Epoch_17_batch_5999.pt | 0.958 | 0.0029585615457098603 | +| Epoch_16_batch_5999.pt | 0.9578333333333333 | 0.0032777777777777783 | +| Epoch_15.pt | 0.9574999999999999 | 0.0030454377941479425 | +| Epoch_12.pt | 0.9573333333333334 | 0.0037284359412361107 | +| Epoch_11.pt | 0.9573333333333333 | 0.0031739681904634953 | +| Epoch_13_batch_5999.pt | 0.9571666666666665 | 0.00336145544609019 | +| Epoch_14_batch_2999.pt | 0.9571666666666665 | 0.003287180487219336 | +| Epoch_17_batch_2999.pt | 0.9569999999999999 | 0.0030812054719693465 | +| Epoch_13.pt | 0.9568333333333332 | 0.003243702350443333 | +| Epoch_15_batch_2999.pt | 0.9566666666666668 | 0.0031426968052735457 | +| Epoch_17.pt | 0.9555000000000001 | 0.0032683480177961616 | +| Epoch_12_batch_2999.pt | 0.9555000000000001 | 0.002558573097704321 | +| Epoch_16.pt | 0.9553333333333333 | 0.0033129003368612417 | +| Epoch_15_batch_5999.pt | 0.9553333333333333 | 0.0032659863237109 | +| Epoch_10_batch_2999.pt | 0.9551666666666667 | 0.0032341732395173126 | +| Epoch_12_batch_5999.pt | 0.9551666666666666 | 0.0032721231828060572 | +| Epoch_11_batch_2999.pt | 0.9550000000000001 | 0.0034426518632954877 | +| Epoch_10.pt | 0.9550000000000001 | 0.003693504475243256 | +| Epoch_11_batch_5999.pt | 0.9550000000000001 | 0.003152502435358025 | +| Epoch_13_batch_2999.pt | 0.9546666666666667 | 0.0029793528172871006 | +| Epoch_10_batch_5999.pt | 0.95 | 0.0036599264648890227 | +| Epoch_9_batch_2999.pt | 0.9433333333333334 | 0.002496911672693802 | +| Epoch_9_batch_5999.pt | 0.942 | 0.004784233364802438 | +| Epoch_9.pt | 0.9385 | 0.005434514754537328 | +| Epoch_8_batch_2999.pt | 0.9373333333333334 | 0.003999999999999995 | +| Epoch_5_batch_5999.pt | 0.9366666666666665 | 0.00427452979148252 | +| Epoch_6_batch_2999.pt | 0.9363333333333334 | 0.005228129047119373 | +| Epoch_7_batch_2999.pt | 0.9361666666666668 | 0.005720064318036043 | +| Epoch_7_batch_5999.pt | 0.9360000000000002 | 0.004438885412319597 | +| Epoch_8_batch_5999.pt | 0.9349999999999998 | 0.0048939367878989455 | +| Epoch_6.pt | 0.9348333333333333 | 0.004263323342877706 | +| Epoch_4.pt | 0.9339999999999999 | 0.00586473032017629 | +| Epoch_5_batch_2999.pt | 0.9339999999999999 | 0.003984538017120243 | +| Epoch_6_batch_5999.pt | 0.9336666666666666 | 0.004050605807457376 | +| Epoch_7.pt | 0.9313333333333335 | 0.0037908271353848805 | +| Epoch_5.pt | 0.9308333333333334 | 0.0045963619537495665 | +| Epoch_4_batch_5999.pt | 0.9303333333333332 | 0.00530431922768 | +| Epoch_8.pt | 0.9291666666666666 | 0.0043832593994609734 | +| Epoch_4_batch_2999.pt | 0.9271666666666667 | 0.0048243850756365505 | +| Epoch_3_batch_5999.pt | 0.9266666666666667 | 0.006231144396804422 | +| Epoch_3.pt | 0.9260000000000002 | 0.00551764845241562 | +| Epoch_3_batch_2999.pt | 0.9251666666666667 | 0.0051306991798461595 | +| Epoch_2_batch_5999.pt | 0.9241666666666666 | 0.0048511803323813855 | +| Epoch_2.pt | 0.9229999999999998 | 0.005470459388929404 | +| Epoch_2_batch_2999.pt | 0.9205000000000002 | 0.005968280352862987 | +| Epoch_1_batch_5999.pt | 0.9096666666666667 | 0.005593205754956984 | +| Epoch_1.pt | 0.907 | 0.006501661705923461 | +| Epoch_1_batch_2999.pt | 0.8968333333333334 | 0.006668749674580854 | +| Epoch_0.pt | 0.8556666666666667 | 0.006635110500814945 | +| Epoch_0_batch_5999.pt | 0.8525 | 0.007662841235629844 | +| Epoch_0_batch_2999.pt | 0.7725 | 0.0097444191055036 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/MagFace/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/heads/MagFace/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..cce5244d71474c3c68d3730e42b7b71e854a5422 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/MagFace/accu_files/accu_calfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14.pt | 0.9403333333333332 | 0.0035986966090448126 | +| Epoch_15_batch_2999.pt | 0.9398333333333333 | 0.0036298658275376898 | +| Epoch_12.pt | 0.9395 | 0.0037765520887460737 | +| Epoch_16.pt | 0.9386666666666666 | 0.003981438414926421 | +| Epoch_13_batch_5999.pt | 0.9385000000000001 | 0.003852608543907954 | +| Epoch_15_batch_5999.pt | 0.9385 | 0.0042050087711480565 | +| Epoch_11_batch_2999.pt | 0.9381666666666666 | 0.0034734442294090256 | +| Epoch_10.pt | 0.9380000000000001 | 0.00365823947403429 | +| Epoch_11_batch_5999.pt | 0.9380000000000001 | 0.003950308629918039 | +| Epoch_11.pt | 0.9380000000000001 | 0.003624334762288903 | +| Epoch_12_batch_2999.pt | 0.9380000000000001 | 0.0037251232476089337 | +| Epoch_10_batch_5999.pt | 0.9375000000000002 | 0.0037700083505163434 | +| Epoch_16_batch_5999.pt | 0.9375 | 0.0039067052203887 | +| Epoch_13_batch_2999.pt | 0.9373333333333335 | 0.0040536525215454835 | +| Epoch_14_batch_5999.pt | 0.9373333333333334 | 0.003644715437079272 | +| Epoch_16_batch_2999.pt | 0.9369999999999999 | 0.003798960221617501 | +| Epoch_15.pt | 0.9369999999999999 | 0.0039891829046702805 | +| Epoch_17_batch_2999.pt | 0.9368333333333334 | 0.0036383587400073154 | +| Epoch_17_batch_5999.pt | 0.9368333333333334 | 0.003947573094109001 | +| Epoch_13.pt | 0.9366666666666668 | 0.0037761434373258717 | +| Epoch_17.pt | 0.9365 | 0.0035611934467860715 | +| Epoch_14_batch_2999.pt | 0.9363333333333334 | 0.003823255674241166 | +| Epoch_12_batch_5999.pt | 0.9355 | 0.003776552088746069 | +| Epoch_10_batch_2999.pt | 0.9343333333333332 | 0.0035849479566448152 | +| Epoch_9_batch_2999.pt | 0.9271666666666667 | 0.004289306254879467 | +| Epoch_8_batch_5999.pt | 0.925 | 0.004667989230577778 | +| Epoch_9_batch_5999.pt | 0.9248333333333335 | 0.004657729537494042 | +| Epoch_9.pt | 0.9248333333333333 | 0.004248819734444205 | +| Epoch_6_batch_2999.pt | 0.924 | 0.003929942040850537 | +| Epoch_7_batch_5999.pt | 0.9235 | 0.004248819734444197 | +| Epoch_6_batch_5999.pt | 0.9231666666666667 | 0.0037470152730927193 | +| Epoch_8_batch_2999.pt | 0.923 | 0.0041111111111111105 | +| Epoch_7_batch_2999.pt | 0.9218333333333334 | 0.004263323342877713 | +| Epoch_8.pt | 0.9216666666666666 | 0.004766135686561598 | +| Epoch_5_batch_5999.pt | 0.9213333333333334 | 0.0030912061651652335 | +| Epoch_4_batch_5999.pt | 0.9211666666666666 | 0.003983375948942965 | +| Epoch_5_batch_2999.pt | 0.9188333333333333 | 0.0037105954398881247 | +| Epoch_6.pt | 0.9181666666666667 | 0.004040306185683718 | +| Epoch_7.pt | 0.9168333333333333 | 0.0037798197095942365 | +| Epoch_3_batch_2999.pt | 0.9149999999999998 | 0.0042236839574995985 | +| Epoch_5.pt | 0.9143333333333332 | 0.004541985207993271 | +| Epoch_3.pt | 0.9125 | 0.0037288498210110753 | +| Epoch_2_batch_5999.pt | 0.9121666666666666 | 0.0038654052859553247 | +| Epoch_4_batch_2999.pt | 0.9118333333333334 | 0.0052319649071953375 | +| Epoch_3_batch_5999.pt | 0.9111666666666667 | 0.003897213312732349 | +| Epoch_4.pt | 0.9106666666666667 | 0.004203173404306168 | +| Epoch_2.pt | 0.9076666666666666 | 0.004926622061643414 | +| Epoch_2_batch_2999.pt | 0.9063333333333334 | 0.004880042501332836 | +| Epoch_1_batch_5999.pt | 0.8953333333333333 | 0.00586262487034352 | +| Epoch_1.pt | 0.8919999999999998 | 0.004633479880442902 | +| Epoch_1_batch_2999.pt | 0.8816666666666666 | 0.006014386045655275 | +| Epoch_0_batch_5999.pt | 0.8471666666666667 | 0.004913134324327892 | +| Epoch_0.pt | 0.844 | 0.004747969026493668 | +| Epoch_0_batch_2999.pt | 0.7553333333333333 | 0.005966987369821134 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/MagFace/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/heads/MagFace/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..8aa0e0541ab45b2dfb6d08dce8d6cdec93843ea3 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/MagFace/accu_files/accu_cplfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_17_batch_5999.pt | 0.8431666666666666 | 0.0072113165524578865 | +| Epoch_16_batch_5999.pt | 0.8416666666666666 | 0.007179359990733382 | +| Epoch_16_batch_2999.pt | 0.8415000000000001 | 0.007253989962108468 | +| Epoch_17_batch_2999.pt | 0.8413333333333334 | 0.007276717480014645 | +| Epoch_14_batch_2999.pt | 0.8403333333333333 | 0.008103497187428811 | +| Epoch_13_batch_5999.pt | 0.8398333333333333 | 0.007480220832549242 | +| Epoch_15.pt | 0.8396666666666667 | 0.007673105186942018 | +| Epoch_16.pt | 0.8395000000000001 | 0.007576971283247717 | +| Epoch_17.pt | 0.8390000000000001 | 0.007483314773547881 | +| Epoch_14_batch_5999.pt | 0.8388333333333333 | 0.00778590844862501 | +| Epoch_15_batch_2999.pt | 0.8385 | 0.007611111111111109 | +| Epoch_13.pt | 0.8383333333333333 | 0.007503085784948498 | +| Epoch_15_batch_5999.pt | 0.8378333333333334 | 0.00791174310833875 | +| Epoch_14.pt | 0.8360000000000001 | 0.007201680188043912 | +| Epoch_12_batch_2999.pt | 0.8358333333333332 | 0.006649282890881017 | +| Epoch_13_batch_2999.pt | 0.8356666666666666 | 0.007670691375152532 | +| Epoch_11_batch_2999.pt | 0.8348333333333333 | 0.0064043291685207315 | +| Epoch_12.pt | 0.8336666666666668 | 0.007518700964763194 | +| Epoch_11.pt | 0.8336666666666666 | 0.006830396839690526 | +| Epoch_12_batch_5999.pt | 0.8335000000000001 | 0.0073259643110255325 | +| Epoch_11_batch_5999.pt | 0.8308333333333333 | 0.0076386363594622576 | +| Epoch_10.pt | 0.8301666666666667 | 0.006778916115700483 | +| Epoch_10_batch_5999.pt | 0.827 | 0.007013215039137553 | +| Epoch_10_batch_2999.pt | 0.825 | 0.0071836577223309455 | +| Epoch_9_batch_2999.pt | 0.8086666666666668 | 0.00790296084537035 | +| Epoch_8_batch_2999.pt | 0.8073333333333335 | 0.005704665623552639 | +| Epoch_8_batch_5999.pt | 0.806 | 0.007549016778428008 | +| Epoch_9_batch_5999.pt | 0.8055 | 0.007345318488922295 | +| Epoch_8.pt | 0.8025 | 0.007845931555609477 | +| Epoch_7.pt | 0.8009999999999999 | 0.0060461190490723495 | +| Epoch_7_batch_5999.pt | 0.8008333333333333 | 0.006489545248387156 | +| Epoch_6_batch_2999.pt | 0.7975 | 0.005081131885177546 | +| Epoch_7_batch_2999.pt | 0.7973333333333334 | 0.006460707448936282 | +| Epoch_5_batch_5999.pt | 0.7965000000000002 | 0.005255508573903235 | +| Epoch_6_batch_5999.pt | 0.7961666666666667 | 0.005572474238235866 | +| Epoch_5_batch_2999.pt | 0.7958333333333333 | 0.006441809806277032 | +| Epoch_4_batch_5999.pt | 0.7943333333333332 | 0.008308109975080049 | +| Epoch_9.pt | 0.7925000000000001 | 0.006588664039633566 | +| Epoch_5.pt | 0.7901666666666667 | 0.006985213660049581 | +| Epoch_6.pt | 0.7851666666666668 | 0.007513157183514636 | +| Epoch_4.pt | 0.7845000000000001 | 0.007018713961903018 | +| Epoch_3_batch_5999.pt | 0.7833333333333333 | 0.0071922454811921156 | +| Epoch_3.pt | 0.7813333333333333 | 0.008737601445038885 | +| Epoch_2_batch_5999.pt | 0.7761666666666667 | 0.008923716493108844 | +| Epoch_4_batch_2999.pt | 0.7753333333333334 | 0.007212814385385545 | +| Epoch_3_batch_2999.pt | 0.7733333333333333 | 0.008577892918052788 | +| Epoch_2_batch_2999.pt | 0.7688333333333334 | 0.00884729853446941 | +| Epoch_2.pt | 0.7663333333333333 | 0.006623937138128397 | +| Epoch_1.pt | 0.756 | 0.006818638218918336 | +| Epoch_1_batch_5999.pt | 0.754 | 0.008248456645763317 | +| Epoch_1_batch_2999.pt | 0.7431666666666666 | 0.008778656777367186 | +| Epoch_0_batch_5999.pt | 0.7070000000000001 | 0.007965202096899021 | +| Epoch_0.pt | 0.7025 | 0.007278625904779586 | +| Epoch_0_batch_2999.pt | 0.6276666666666666 | 0.011386043004865298 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/MagFace/accu_files/accu_ijbc.txt b/bob/bio/facexzoo/models/heads/MagFace/accu_files/accu_ijbc.txt new file mode 100644 index 0000000000000000000000000000000000000000..c1ed42c8f153795421d7f8823565bf1b0eccbfd4 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/MagFace/accu_files/accu_ijbc.txt @@ -0,0 +1,5 @@ ++-------------+--------+--------+--------+--------+--------+--------+ +| model_name | 1e-6 | 1e-5 | 1e-4 | 1e-3 | 1e-2 | 1e-1 | ++-------------+--------+--------+--------+--------+--------+--------+ +| Epoch_17.pt | 0.7009 | 0.8046 | 0.8840 | 0.9363 | 0.9688 | 0.9881 | ++-------------+--------+--------+--------+--------+--------+--------+ diff --git a/bob/bio/facexzoo/models/heads/MagFace/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/heads/MagFace/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..d0049b1d0fb8353ae1fabdbd5b8917c661af4223 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/MagFace/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_12.pt | 0.9953333333333335 | 0.0011055415967851294 | +| Epoch_15.pt | 0.9953333333333333 | 0.0012619796324000608 | +| Epoch_10_batch_5999.pt | 0.9953333333333333 | 0.0013099806802835115 | +| Epoch_15_batch_5999.pt | 0.9951666666666666 | 0.0013017082793177787 | +| Epoch_16_batch_5999.pt | 0.9950000000000001 | 0.0012422599874998854 | +| Epoch_11_batch_2999.pt | 0.9950000000000001 | 0.0011915339216404044 | +| Epoch_16_batch_2999.pt | 0.9950000000000001 | 0.001290994448735802 | +| Epoch_16.pt | 0.9948333333333335 | 0.0012777777777777785 | +| Epoch_10.pt | 0.9948333333333335 | 0.0010378634273483002 | +| Epoch_14_batch_5999.pt | 0.9946666666666667 | 0.001333333333333335 | +| Epoch_12_batch_5999.pt | 0.9946666666666667 | 0.0012862041003100229 | +| Epoch_15_batch_2999.pt | 0.9946666666666667 | 0.001333333333333335 | +| Epoch_11.pt | 0.9946666666666667 | 0.0013333333333333307 | +| Epoch_10_batch_2999.pt | 0.9945 | 0.0013158576980363402 | +| Epoch_17_batch_2999.pt | 0.9945 | 0.0013391078659104373 | +| Epoch_17_batch_5999.pt | 0.9945 | 0.0013158576980363357 | +| Epoch_13.pt | 0.9945 | 0.0012184284555256302 | +| Epoch_14.pt | 0.9943333333333333 | 0.0014529663145135623 | +| Epoch_14_batch_2999.pt | 0.9943333333333333 | 0.001319371343004211 | +| Epoch_13_batch_5999.pt | 0.9941666666666666 | 0.0013888888888888892 | +| Epoch_12_batch_2999.pt | 0.9940000000000001 | 0.0013653561919382854 | +| Epoch_13_batch_2999.pt | 0.994 | 0.0014315665251916818 | +| Epoch_17.pt | 0.994 | 0.0014529663145135606 | +| Epoch_8_batch_2999.pt | 0.994 | 0.0010599324460188319 | +| Epoch_9_batch_2999.pt | 0.9936666666666667 | 0.001717736092637809 | +| Epoch_6_batch_2999.pt | 0.9933333333333334 | 0.0016480441082434864 | +| Epoch_6_batch_5999.pt | 0.9933333333333334 | 0.0016292086998461281 | +| Epoch_7.pt | 0.9933333333333334 | 0.001531560972454468 | +| Epoch_9_batch_5999.pt | 0.9931666666666666 | 0.001711435755638817 | +| Epoch_11_batch_5999.pt | 0.9931666666666666 | 0.00152043690926711 | +| Epoch_4_batch_5999.pt | 0.9928333333333332 | 0.0012184284555256332 | +| Epoch_3_batch_5999.pt | 0.9926666666666668 | 0.0014529663145135586 | +| Epoch_5_batch_2999.pt | 0.9924999999999999 | 0.0013205404804449705 | +| Epoch_5.pt | 0.9924999999999999 | 0.0013664859862498745 | +| Epoch_8_batch_5999.pt | 0.992 | 0.001444444444444449 | +| Epoch_6.pt | 0.992 | 0.0015275252316519416 | +| Epoch_7_batch_2999.pt | 0.9918333333333335 | 0.0014369463507086146 | +| Epoch_7_batch_5999.pt | 0.9918333333333333 | 0.0013017082793177733 | +| Epoch_9.pt | 0.9918333333333333 | 0.0015605079894653485 | +| Epoch_8.pt | 0.9916666666666666 | 0.001571348402636772 | +| Epoch_4_batch_2999.pt | 0.9911666666666668 | 0.0015525765124980153 | +| Epoch_3.pt | 0.991 | 0.0009686442096756996 | +| Epoch_4.pt | 0.9908333333333333 | 0.0014751020052613051 | +| Epoch_5_batch_5999.pt | 0.9904999999999999 | 0.0017042068500197727 | +| Epoch_2_batch_5999.pt | 0.9898333333333333 | 0.0017114357556388157 | +| Epoch_2.pt | 0.9898333333333333 | 0.0016749792701868144 | +| Epoch_3_batch_2999.pt | 0.9896666666666667 | 0.0019372884193514107 | +| Epoch_2_batch_2999.pt | 0.9886666666666667 | 0.0015071844406945043 | +| Epoch_1_batch_5999.pt | 0.9881666666666666 | 0.0018500917561496313 | +| Epoch_1.pt | 0.9875 | 0.0019444444444444429 | +| Epoch_1_batch_2999.pt | 0.9858333333333335 | 0.0019285061064121896 | +| Epoch_0.pt | 0.9734999999999999 | 0.002669558617051992 | +| Epoch_0_batch_5999.pt | 0.9724999999999999 | 0.0029632523006876852 | +| Epoch_0_batch_2999.pt | 0.9391666666666667 | 0.004061639272540938 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/MagFace/accu_files/accu_megaface.txt b/bob/bio/facexzoo/models/heads/MagFace/accu_files/accu_megaface.txt new file mode 100644 index 0000000000000000000000000000000000000000..82d51d444bccba2291693936ad08e97eb6e5705e --- /dev/null +++ b/bob/bio/facexzoo/models/heads/MagFace/accu_files/accu_megaface.txt @@ -0,0 +1,14 @@ ++------+--------------------+ +| rank | accuracy | ++------+--------------------+ +| 1 | 0.8984599763073278 | +| 2 | 0.916756707499642 | +| 3 | 0.9257456031867946 | +| 4 | 0.9312391788276033 | +| 5 | 0.9349688220055457 | +| 6 | 0.9380215316922036 | +| 7 | 0.9406055951156646 | +| 8 | 0.9426298866136402 | +| 9 | 0.944185531848419 | +| 10 | 0.9456305244932762 | ++------+--------------------+ diff --git a/bob/bio/facexzoo/models/heads/MagFace/log.log b/bob/bio/facexzoo/models/heads/MagFace/log.log new file mode 100644 index 0000000000000000000000000000000000000000..008634839bfd69921509259751b2633605ee755f --- /dev/null +++ b/bob/bio/facexzoo/models/heads/MagFace/log.log @@ -0,0 +1,657 @@ +INFO 2021-03-18 11:49:18 driver.py: 124] Generating grammar tables from /usr/lib/python3.6/lib2to3/Grammar.txt +INFO 2021-03-18 11:49:18 driver.py: 124] Generating grammar tables from /usr/lib/python3.6/lib2to3/PatternGrammar.txt +INFO 2021-03-18 11:49:19 train.py: 180] Start optimization. +INFO 2021-03-18 11:49:19 train.py: 181] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='MobileFaceNet', batch_size=512, data_root='/home/wangjun492/wj_data/facex-zoo/private_file/train_data/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='MagFace', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='mag-mobile', train_file='/home/wangjun492/wj_data/facex-zoo/private_file/train_data/deepglint/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7f044c5ca7b8>) +backbone param: +{'feat_dim': 512, 'out_h': 7, 'out_w': 7} +head param: +{'feat_dim': 512, 'num_class': 72778, 'margin_am': 0.0, 'scale': 64, 'l_a': 10, 'u_a': 110, 'l_margin': 0.45, 'u_margin': 0.8, 'lamda': 20} +INFO 2021-03-18 11:49:42 train.py: 82] Epoch 0, iter 0/6416, lr 0.100000, loss 44.941360 +INFO 2021-03-18 11:50:59 train.py: 82] Epoch 0, iter 200/6416, lr 0.100000, loss 43.128643 +INFO 2021-03-18 11:52:16 train.py: 82] Epoch 0, iter 400/6416, lr 0.100000, loss 42.320675 +INFO 2021-03-18 11:53:33 train.py: 82] Epoch 0, iter 600/6416, lr 0.100000, loss 42.100863 +INFO 2021-03-18 11:54:50 train.py: 82] Epoch 0, iter 800/6416, lr 0.100000, loss 41.848822 +INFO 2021-03-18 11:56:07 train.py: 82] Epoch 0, iter 1000/6416, lr 0.100000, loss 41.520204 +INFO 2021-03-18 11:57:24 train.py: 82] Epoch 0, iter 1200/6416, lr 0.100000, loss 41.108999 +INFO 2021-03-18 11:58:41 train.py: 82] Epoch 0, iter 1400/6416, lr 0.100000, loss 40.648215 +INFO 2021-03-18 11:59:58 train.py: 82] Epoch 0, iter 1600/6416, lr 0.100000, loss 40.151882 +INFO 2021-03-18 12:01:15 train.py: 82] Epoch 0, iter 1800/6416, lr 0.100000, loss 39.656723 +INFO 2021-03-18 12:02:32 train.py: 82] Epoch 0, iter 2000/6416, lr 0.100000, loss 39.152646 +INFO 2021-03-18 12:03:49 train.py: 82] Epoch 0, iter 2200/6416, lr 0.100000, loss 38.640248 +INFO 2021-03-18 12:05:06 train.py: 82] Epoch 0, iter 2400/6416, lr 0.100000, loss 38.065436 +INFO 2021-03-18 12:06:23 train.py: 82] Epoch 0, iter 2600/6416, lr 0.100000, loss 37.453125 +INFO 2021-03-18 12:07:40 train.py: 82] Epoch 0, iter 2800/6416, lr 0.100000, loss 36.798310 +INFO 2021-03-18 12:08:57 train.py: 95] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2021-03-18 12:08:57 train.py: 82] Epoch 0, iter 3000/6416, lr 0.100000, loss 36.098991 +INFO 2021-03-18 12:10:15 train.py: 82] Epoch 0, iter 3200/6416, lr 0.100000, loss 35.371497 +INFO 2021-03-18 12:11:33 train.py: 82] Epoch 0, iter 3400/6416, lr 0.100000, loss 34.595981 +INFO 2021-03-18 12:12:50 train.py: 82] Epoch 0, iter 3600/6416, lr 0.100000, loss 33.769410 +INFO 2021-03-18 12:14:08 train.py: 82] Epoch 0, iter 3800/6416, lr 0.100000, loss 32.885128 +INFO 2021-03-18 12:15:25 train.py: 82] Epoch 0, iter 4000/6416, lr 0.100000, loss 32.060547 +INFO 2021-03-18 12:16:43 train.py: 82] Epoch 0, iter 4200/6416, lr 0.100000, loss 31.117111 +INFO 2021-03-18 12:18:00 train.py: 82] Epoch 0, iter 4400/6416, lr 0.100000, loss 30.136257 +INFO 2021-03-18 12:19:18 train.py: 82] Epoch 0, iter 4600/6416, lr 0.100000, loss 29.154507 +INFO 2021-03-18 12:20:36 train.py: 82] Epoch 0, iter 4800/6416, lr 0.100000, loss 28.264849 +INFO 2021-03-18 12:21:53 train.py: 82] Epoch 0, iter 5000/6416, lr 0.100000, loss 27.239139 +INFO 2021-03-18 12:23:11 train.py: 82] Epoch 0, iter 5200/6416, lr 0.100000, loss 26.256088 +INFO 2021-03-18 12:24:28 train.py: 82] Epoch 0, iter 5400/6416, lr 0.100000, loss 25.363886 +INFO 2021-03-18 12:25:46 train.py: 82] Epoch 0, iter 5600/6416, lr 0.100000, loss 24.460719 +INFO 2021-03-18 12:27:03 train.py: 82] Epoch 0, iter 5800/6416, lr 0.100000, loss 23.676551 +INFO 2021-03-18 12:28:21 train.py: 95] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2021-03-18 12:28:22 train.py: 82] Epoch 0, iter 6000/6416, lr 0.100000, loss 22.855685 +INFO 2021-03-18 12:29:39 train.py: 82] Epoch 0, iter 6200/6416, lr 0.100000, loss 22.193575 +INFO 2021-03-18 12:30:57 train.py: 82] Epoch 0, iter 6400/6416, lr 0.100000, loss 21.538951 +INFO 2021-03-18 12:31:03 train.py: 100] Save checkpoint Epoch_0.pt to disk... +INFO 2021-03-18 12:31:05 train.py: 82] Epoch 1, iter 0/6416, lr 0.100000, loss 21.302389 +INFO 2021-03-18 12:32:23 train.py: 82] Epoch 1, iter 200/6416, lr 0.100000, loss 20.206784 +INFO 2021-03-18 12:33:41 train.py: 82] Epoch 1, iter 400/6416, lr 0.100000, loss 19.691075 +INFO 2021-03-18 12:34:59 train.py: 82] Epoch 1, iter 600/6416, lr 0.100000, loss 19.407650 +INFO 2021-03-18 12:36:16 train.py: 82] Epoch 1, iter 800/6416, lr 0.100000, loss 19.060496 +INFO 2021-03-18 12:37:34 train.py: 82] Epoch 1, iter 1000/6416, lr 0.100000, loss 18.812180 +INFO 2021-03-18 12:38:52 train.py: 82] Epoch 1, iter 1200/6416, lr 0.100000, loss 18.574332 +INFO 2021-03-18 12:40:09 train.py: 82] Epoch 1, iter 1400/6416, lr 0.100000, loss 18.334928 +INFO 2021-03-18 12:41:27 train.py: 82] Epoch 1, iter 1600/6416, lr 0.100000, loss 18.052895 +INFO 2021-03-18 12:42:45 train.py: 82] Epoch 1, iter 1800/6416, lr 0.100000, loss 17.859909 +INFO 2021-03-18 12:44:02 train.py: 82] Epoch 1, iter 2000/6416, lr 0.100000, loss 17.602214 +INFO 2021-03-18 12:45:20 train.py: 82] Epoch 1, iter 2200/6416, lr 0.100000, loss 17.440505 +INFO 2021-03-18 12:46:38 train.py: 82] Epoch 1, iter 2400/6416, lr 0.100000, loss 17.153511 +INFO 2021-03-18 12:47:55 train.py: 82] Epoch 1, iter 2600/6416, lr 0.100000, loss 17.022853 +INFO 2021-03-18 12:49:13 train.py: 82] Epoch 1, iter 2800/6416, lr 0.100000, loss 16.827922 +INFO 2021-03-18 12:50:31 train.py: 95] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2021-03-18 12:50:31 train.py: 82] Epoch 1, iter 3000/6416, lr 0.100000, loss 16.717812 +INFO 2021-03-18 12:51:48 train.py: 82] Epoch 1, iter 3200/6416, lr 0.100000, loss 16.578337 +INFO 2021-03-18 12:53:05 train.py: 82] Epoch 1, iter 3400/6416, lr 0.100000, loss 16.412496 +INFO 2021-03-18 12:54:22 train.py: 82] Epoch 1, iter 3600/6416, lr 0.100000, loss 16.303695 +INFO 2021-03-18 12:55:39 train.py: 82] Epoch 1, iter 3800/6416, lr 0.100000, loss 16.167215 +INFO 2021-03-18 12:56:56 train.py: 82] Epoch 1, iter 4000/6416, lr 0.100000, loss 16.043823 +INFO 2021-03-18 12:58:13 train.py: 82] Epoch 1, iter 4200/6416, lr 0.100000, loss 15.874951 +INFO 2021-03-18 12:59:30 train.py: 82] Epoch 1, iter 4400/6416, lr 0.100000, loss 15.825704 +INFO 2021-03-18 13:00:47 train.py: 82] Epoch 1, iter 4600/6416, lr 0.100000, loss 15.702083 +INFO 2021-03-18 13:02:04 train.py: 82] Epoch 1, iter 4800/6416, lr 0.100000, loss 15.577482 +INFO 2021-03-18 13:03:22 train.py: 82] Epoch 1, iter 5000/6416, lr 0.100000, loss 15.565388 +INFO 2021-03-18 13:04:39 train.py: 82] Epoch 1, iter 5200/6416, lr 0.100000, loss 15.411686 +INFO 2021-03-18 13:05:56 train.py: 82] Epoch 1, iter 5400/6416, lr 0.100000, loss 15.361888 +INFO 2021-03-18 13:07:13 train.py: 82] Epoch 1, iter 5600/6416, lr 0.100000, loss 15.302795 +INFO 2021-03-18 13:08:30 train.py: 82] Epoch 1, iter 5800/6416, lr 0.100000, loss 15.180263 +INFO 2021-03-18 13:09:47 train.py: 95] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2021-03-18 13:09:47 train.py: 82] Epoch 1, iter 6000/6416, lr 0.100000, loss 15.076002 +INFO 2021-03-18 13:11:05 train.py: 82] Epoch 1, iter 6200/6416, lr 0.100000, loss 15.072046 +INFO 2021-03-18 13:12:23 train.py: 82] Epoch 1, iter 6400/6416, lr 0.100000, loss 14.944845 +INFO 2021-03-18 13:12:29 train.py: 100] Save checkpoint Epoch_1.pt to disk... +INFO 2021-03-18 13:12:31 train.py: 82] Epoch 2, iter 0/6416, lr 0.100000, loss 14.917471 +INFO 2021-03-18 13:13:49 train.py: 82] Epoch 2, iter 200/6416, lr 0.100000, loss 14.065084 +INFO 2021-03-18 13:15:07 train.py: 82] Epoch 2, iter 400/6416, lr 0.100000, loss 14.046457 +INFO 2021-03-18 13:16:24 train.py: 82] Epoch 2, iter 600/6416, lr 0.100000, loss 14.158617 +INFO 2021-03-18 13:17:42 train.py: 82] Epoch 2, iter 800/6416, lr 0.100000, loss 14.179159 +INFO 2021-03-18 13:19:00 train.py: 82] Epoch 2, iter 1000/6416, lr 0.100000, loss 14.286912 +INFO 2021-03-18 13:20:18 train.py: 82] Epoch 2, iter 1200/6416, lr 0.100000, loss 14.269518 +INFO 2021-03-18 13:21:35 train.py: 82] Epoch 2, iter 1400/6416, lr 0.100000, loss 14.277494 +INFO 2021-03-18 13:22:53 train.py: 82] Epoch 2, iter 1600/6416, lr 0.100000, loss 14.283750 +INFO 2021-03-18 13:24:11 train.py: 82] Epoch 2, iter 1800/6416, lr 0.100000, loss 14.300519 +INFO 2021-03-18 13:25:28 train.py: 82] Epoch 2, iter 2000/6416, lr 0.100000, loss 14.253421 +INFO 2021-03-18 13:26:46 train.py: 82] Epoch 2, iter 2200/6416, lr 0.100000, loss 14.243677 +INFO 2021-03-18 13:28:04 train.py: 82] Epoch 2, iter 2400/6416, lr 0.100000, loss 14.244384 +INFO 2021-03-18 13:29:22 train.py: 82] Epoch 2, iter 2600/6416, lr 0.100000, loss 14.191393 +INFO 2021-03-18 13:30:39 train.py: 82] Epoch 2, iter 2800/6416, lr 0.100000, loss 14.152997 +INFO 2021-03-18 13:31:57 train.py: 95] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2021-03-18 13:31:57 train.py: 82] Epoch 2, iter 3000/6416, lr 0.100000, loss 14.092379 +INFO 2021-03-18 13:33:15 train.py: 82] Epoch 2, iter 3200/6416, lr 0.100000, loss 14.081347 +INFO 2021-03-18 13:34:33 train.py: 82] Epoch 2, iter 3400/6416, lr 0.100000, loss 14.086740 +INFO 2021-03-18 13:35:50 train.py: 82] Epoch 2, iter 3600/6416, lr 0.100000, loss 13.955012 +INFO 2021-03-18 13:37:08 train.py: 82] Epoch 2, iter 3800/6416, lr 0.100000, loss 13.989396 +INFO 2021-03-18 13:38:26 train.py: 82] Epoch 2, iter 4000/6416, lr 0.100000, loss 13.956590 +INFO 2021-03-18 13:39:44 train.py: 82] Epoch 2, iter 4200/6416, lr 0.100000, loss 13.888980 +INFO 2021-03-18 13:41:01 train.py: 82] Epoch 2, iter 4400/6416, lr 0.100000, loss 13.818482 +INFO 2021-03-18 13:42:19 train.py: 82] Epoch 2, iter 4600/6416, lr 0.100000, loss 13.818384 +INFO 2021-03-18 13:43:37 train.py: 82] Epoch 2, iter 4800/6416, lr 0.100000, loss 13.805937 +INFO 2021-03-18 13:44:54 train.py: 82] Epoch 2, iter 5000/6416, lr 0.100000, loss 13.783898 +INFO 2021-03-18 13:46:12 train.py: 82] Epoch 2, iter 5200/6416, lr 0.100000, loss 13.734794 +INFO 2021-03-18 13:47:30 train.py: 82] Epoch 2, iter 5400/6416, lr 0.100000, loss 13.678580 +INFO 2021-03-18 13:48:47 train.py: 82] Epoch 2, iter 5600/6416, lr 0.100000, loss 13.648223 +INFO 2021-03-18 13:50:05 train.py: 82] Epoch 2, iter 5800/6416, lr 0.100000, loss 13.609823 +INFO 2021-03-18 13:51:23 train.py: 95] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2021-03-18 13:51:23 train.py: 82] Epoch 2, iter 6000/6416, lr 0.100000, loss 13.628657 +INFO 2021-03-18 13:52:40 train.py: 82] Epoch 2, iter 6200/6416, lr 0.100000, loss 13.533296 +INFO 2021-03-18 13:53:57 train.py: 82] Epoch 2, iter 6400/6416, lr 0.100000, loss 13.455896 +INFO 2021-03-18 13:54:04 train.py: 100] Save checkpoint Epoch_2.pt to disk... +INFO 2021-03-18 13:54:06 train.py: 82] Epoch 3, iter 0/6416, lr 0.100000, loss 13.628212 +INFO 2021-03-18 13:55:24 train.py: 82] Epoch 3, iter 200/6416, lr 0.100000, loss 12.619045 +INFO 2021-03-18 13:56:42 train.py: 82] Epoch 3, iter 400/6416, lr 0.100000, loss 12.682672 +INFO 2021-03-18 13:57:59 train.py: 82] Epoch 3, iter 600/6416, lr 0.100000, loss 12.867427 +INFO 2021-03-18 13:59:17 train.py: 82] Epoch 3, iter 800/6416, lr 0.100000, loss 12.879549 +INFO 2021-03-18 14:00:35 train.py: 82] Epoch 3, iter 1000/6416, lr 0.100000, loss 13.029148 +INFO 2021-03-18 14:01:53 train.py: 82] Epoch 3, iter 1200/6416, lr 0.100000, loss 13.061333 +INFO 2021-03-18 14:03:11 train.py: 82] Epoch 3, iter 1400/6416, lr 0.100000, loss 13.039559 +INFO 2021-03-18 14:04:28 train.py: 82] Epoch 3, iter 1600/6416, lr 0.100000, loss 13.042433 +INFO 2021-03-18 14:05:46 train.py: 82] Epoch 3, iter 1800/6416, lr 0.100000, loss 13.127904 +INFO 2021-03-18 14:07:04 train.py: 82] Epoch 3, iter 2000/6416, lr 0.100000, loss 13.150322 +INFO 2021-03-18 14:08:22 train.py: 82] Epoch 3, iter 2200/6416, lr 0.100000, loss 13.133953 +INFO 2021-03-18 14:09:39 train.py: 82] Epoch 3, iter 2400/6416, lr 0.100000, loss 13.079338 +INFO 2021-03-18 14:10:57 train.py: 82] Epoch 3, iter 2600/6416, lr 0.100000, loss 13.189715 +INFO 2021-03-18 14:12:15 train.py: 82] Epoch 3, iter 2800/6416, lr 0.100000, loss 13.106944 +INFO 2021-03-18 14:13:33 train.py: 95] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2021-03-18 14:13:33 train.py: 82] Epoch 3, iter 3000/6416, lr 0.100000, loss 13.044181 +INFO 2021-03-18 14:14:51 train.py: 82] Epoch 3, iter 3200/6416, lr 0.100000, loss 13.038052 +INFO 2021-03-18 14:16:09 train.py: 82] Epoch 3, iter 3400/6416, lr 0.100000, loss 13.062270 +INFO 2021-03-18 14:17:26 train.py: 82] Epoch 3, iter 3600/6416, lr 0.100000, loss 13.053553 +INFO 2021-03-18 14:18:44 train.py: 82] Epoch 3, iter 3800/6416, lr 0.100000, loss 13.034928 +INFO 2021-03-18 14:20:02 train.py: 82] Epoch 3, iter 4000/6416, lr 0.100000, loss 12.995936 +INFO 2021-03-18 14:21:20 train.py: 82] Epoch 3, iter 4200/6416, lr 0.100000, loss 12.951277 +INFO 2021-03-18 14:22:38 train.py: 82] Epoch 3, iter 4400/6416, lr 0.100000, loss 12.940024 +INFO 2021-03-18 14:23:56 train.py: 82] Epoch 3, iter 4600/6416, lr 0.100000, loss 12.916850 +INFO 2021-03-18 14:25:13 train.py: 82] Epoch 3, iter 4800/6416, lr 0.100000, loss 12.877921 +INFO 2021-03-18 14:26:31 train.py: 82] Epoch 3, iter 5000/6416, lr 0.100000, loss 12.893714 +INFO 2021-03-18 14:27:49 train.py: 82] Epoch 3, iter 5200/6416, lr 0.100000, loss 12.833438 +INFO 2021-03-18 14:29:07 train.py: 82] Epoch 3, iter 5400/6416, lr 0.100000, loss 12.850828 +INFO 2021-03-18 14:30:24 train.py: 82] Epoch 3, iter 5600/6416, lr 0.100000, loss 12.808592 +INFO 2021-03-18 14:31:42 train.py: 82] Epoch 3, iter 5800/6416, lr 0.100000, loss 12.778366 +INFO 2021-03-18 14:33:00 train.py: 95] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2021-03-18 14:33:01 train.py: 82] Epoch 3, iter 6000/6416, lr 0.100000, loss 12.792225 +INFO 2021-03-18 14:34:18 train.py: 82] Epoch 3, iter 6200/6416, lr 0.100000, loss 12.786476 +INFO 2021-03-18 14:35:36 train.py: 82] Epoch 3, iter 6400/6416, lr 0.100000, loss 12.720869 +INFO 2021-03-18 14:35:43 train.py: 100] Save checkpoint Epoch_3.pt to disk... +INFO 2021-03-18 14:35:45 train.py: 82] Epoch 4, iter 0/6416, lr 0.100000, loss 12.764198 +INFO 2021-03-18 14:37:02 train.py: 82] Epoch 4, iter 200/6416, lr 0.100000, loss 11.924315 +INFO 2021-03-18 14:38:19 train.py: 82] Epoch 4, iter 400/6416, lr 0.100000, loss 11.916345 +INFO 2021-03-18 14:39:37 train.py: 82] Epoch 4, iter 600/6416, lr 0.100000, loss 12.073752 +INFO 2021-03-18 14:40:54 train.py: 82] Epoch 4, iter 800/6416, lr 0.100000, loss 12.217385 +INFO 2021-03-18 14:42:11 train.py: 82] Epoch 4, iter 1000/6416, lr 0.100000, loss 12.335926 +INFO 2021-03-18 14:43:28 train.py: 82] Epoch 4, iter 1200/6416, lr 0.100000, loss 12.324938 +INFO 2021-03-18 14:44:45 train.py: 82] Epoch 4, iter 1400/6416, lr 0.100000, loss 12.368517 +INFO 2021-03-18 14:46:02 train.py: 82] Epoch 4, iter 1600/6416, lr 0.100000, loss 12.404423 +INFO 2021-03-18 14:47:20 train.py: 82] Epoch 4, iter 1800/6416, lr 0.100000, loss 12.442831 +INFO 2021-03-18 14:48:37 train.py: 82] Epoch 4, iter 2000/6416, lr 0.100000, loss 12.476674 +INFO 2021-03-18 14:49:54 train.py: 82] Epoch 4, iter 2200/6416, lr 0.100000, loss 12.471686 +INFO 2021-03-18 14:51:11 train.py: 82] Epoch 4, iter 2400/6416, lr 0.100000, loss 12.447021 +INFO 2021-03-18 14:52:28 train.py: 82] Epoch 4, iter 2600/6416, lr 0.100000, loss 12.460190 +INFO 2021-03-18 14:53:45 train.py: 82] Epoch 4, iter 2800/6416, lr 0.100000, loss 12.472314 +INFO 2021-03-18 14:55:02 train.py: 95] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2021-03-18 14:55:03 train.py: 82] Epoch 4, iter 3000/6416, lr 0.100000, loss 12.465331 +INFO 2021-03-18 14:56:20 train.py: 82] Epoch 4, iter 3200/6416, lr 0.100000, loss 12.465115 +INFO 2021-03-18 14:57:38 train.py: 82] Epoch 4, iter 3400/6416, lr 0.100000, loss 12.427757 +INFO 2021-03-18 14:58:56 train.py: 82] Epoch 4, iter 3600/6416, lr 0.100000, loss 12.461125 +INFO 2021-03-18 15:00:14 train.py: 82] Epoch 4, iter 3800/6416, lr 0.100000, loss 12.436430 +INFO 2021-03-18 15:01:31 train.py: 82] Epoch 4, iter 4000/6416, lr 0.100000, loss 12.392376 +INFO 2021-03-18 15:02:49 train.py: 82] Epoch 4, iter 4200/6416, lr 0.100000, loss 12.405286 +INFO 2021-03-18 15:04:07 train.py: 82] Epoch 4, iter 4400/6416, lr 0.100000, loss 12.329487 +INFO 2021-03-18 15:05:25 train.py: 82] Epoch 4, iter 4600/6416, lr 0.100000, loss 12.372520 +INFO 2021-03-18 15:06:42 train.py: 82] Epoch 4, iter 4800/6416, lr 0.100000, loss 12.366381 +INFO 2021-03-18 15:08:00 train.py: 82] Epoch 4, iter 5000/6416, lr 0.100000, loss 12.278925 +INFO 2021-03-18 15:09:18 train.py: 82] Epoch 4, iter 5200/6416, lr 0.100000, loss 12.345700 +INFO 2021-03-18 15:10:35 train.py: 82] Epoch 4, iter 5400/6416, lr 0.100000, loss 12.305708 +INFO 2021-03-18 15:11:53 train.py: 82] Epoch 4, iter 5600/6416, lr 0.100000, loss 12.244926 +INFO 2021-03-18 15:13:11 train.py: 82] Epoch 4, iter 5800/6416, lr 0.100000, loss 12.340714 +INFO 2021-03-18 15:14:28 train.py: 95] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2021-03-18 15:14:29 train.py: 82] Epoch 4, iter 6000/6416, lr 0.100000, loss 12.286311 +INFO 2021-03-18 15:15:47 train.py: 82] Epoch 4, iter 6200/6416, lr 0.100000, loss 12.286924 +INFO 2021-03-18 15:17:04 train.py: 82] Epoch 4, iter 6400/6416, lr 0.100000, loss 12.303652 +INFO 2021-03-18 15:17:11 train.py: 100] Save checkpoint Epoch_4.pt to disk... +INFO 2021-03-18 15:17:13 train.py: 82] Epoch 5, iter 0/6416, lr 0.100000, loss 12.322933 +INFO 2021-03-18 15:18:30 train.py: 82] Epoch 5, iter 200/6416, lr 0.100000, loss 11.437115 +INFO 2021-03-18 15:19:47 train.py: 82] Epoch 5, iter 400/6416, lr 0.100000, loss 11.467058 +INFO 2021-03-18 15:21:05 train.py: 82] Epoch 5, iter 600/6416, lr 0.100000, loss 11.607058 +INFO 2021-03-18 15:22:22 train.py: 82] Epoch 5, iter 800/6416, lr 0.100000, loss 11.716540 +INFO 2021-03-18 15:23:39 train.py: 82] Epoch 5, iter 1000/6416, lr 0.100000, loss 11.828646 +INFO 2021-03-18 15:24:56 train.py: 82] Epoch 5, iter 1200/6416, lr 0.100000, loss 11.830711 +INFO 2021-03-18 15:26:13 train.py: 82] Epoch 5, iter 1400/6416, lr 0.100000, loss 11.876649 +INFO 2021-03-18 15:27:30 train.py: 82] Epoch 5, iter 1600/6416, lr 0.100000, loss 11.975076 +INFO 2021-03-18 15:28:47 train.py: 82] Epoch 5, iter 1800/6416, lr 0.100000, loss 11.972674 +INFO 2021-03-18 15:30:05 train.py: 82] Epoch 5, iter 2000/6416, lr 0.100000, loss 12.004308 +INFO 2021-03-18 15:31:22 train.py: 82] Epoch 5, iter 2200/6416, lr 0.100000, loss 12.046119 +INFO 2021-03-18 15:32:39 train.py: 82] Epoch 5, iter 2400/6416, lr 0.100000, loss 12.123801 +INFO 2021-03-18 15:33:56 train.py: 82] Epoch 5, iter 2600/6416, lr 0.100000, loss 12.028132 +INFO 2021-03-18 15:35:13 train.py: 82] Epoch 5, iter 2800/6416, lr 0.100000, loss 12.039813 +INFO 2021-03-18 15:36:30 train.py: 95] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2021-03-18 15:36:31 train.py: 82] Epoch 5, iter 3000/6416, lr 0.100000, loss 12.045182 +INFO 2021-03-18 15:37:49 train.py: 82] Epoch 5, iter 3200/6416, lr 0.100000, loss 12.073116 +INFO 2021-03-18 15:39:06 train.py: 82] Epoch 5, iter 3400/6416, lr 0.100000, loss 12.023968 +INFO 2021-03-18 15:40:24 train.py: 82] Epoch 5, iter 3600/6416, lr 0.100000, loss 12.038412 +INFO 2021-03-18 15:41:42 train.py: 82] Epoch 5, iter 3800/6416, lr 0.100000, loss 12.042168 +INFO 2021-03-18 15:42:59 train.py: 82] Epoch 5, iter 4000/6416, lr 0.100000, loss 11.977067 +INFO 2021-03-18 15:44:17 train.py: 82] Epoch 5, iter 4200/6416, lr 0.100000, loss 11.993285 +INFO 2021-03-18 15:45:35 train.py: 82] Epoch 5, iter 4400/6416, lr 0.100000, loss 12.035413 +INFO 2021-03-18 15:46:53 train.py: 82] Epoch 5, iter 4600/6416, lr 0.100000, loss 11.962388 +INFO 2021-03-18 15:48:10 train.py: 82] Epoch 5, iter 4800/6416, lr 0.100000, loss 11.961586 +INFO 2021-03-18 15:49:28 train.py: 82] Epoch 5, iter 5000/6416, lr 0.100000, loss 11.981703 +INFO 2021-03-18 15:50:46 train.py: 82] Epoch 5, iter 5200/6416, lr 0.100000, loss 11.963891 +INFO 2021-03-18 15:52:04 train.py: 82] Epoch 5, iter 5400/6416, lr 0.100000, loss 11.983260 +INFO 2021-03-18 15:53:21 train.py: 82] Epoch 5, iter 5600/6416, lr 0.100000, loss 11.948841 +INFO 2021-03-18 15:54:39 train.py: 82] Epoch 5, iter 5800/6416, lr 0.100000, loss 11.955416 +INFO 2021-03-18 15:55:57 train.py: 95] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2021-03-18 15:55:57 train.py: 82] Epoch 5, iter 6000/6416, lr 0.100000, loss 11.935622 +INFO 2021-03-18 15:57:15 train.py: 82] Epoch 5, iter 6200/6416, lr 0.100000, loss 11.926018 +INFO 2021-03-18 15:58:33 train.py: 82] Epoch 5, iter 6400/6416, lr 0.100000, loss 11.921697 +INFO 2021-03-18 15:58:39 train.py: 100] Save checkpoint Epoch_5.pt to disk... +INFO 2021-03-18 15:58:41 train.py: 82] Epoch 6, iter 0/6416, lr 0.100000, loss 11.713128 +INFO 2021-03-18 15:59:59 train.py: 82] Epoch 6, iter 200/6416, lr 0.100000, loss 11.104023 +INFO 2021-03-18 16:01:17 train.py: 82] Epoch 6, iter 400/6416, lr 0.100000, loss 11.096907 +INFO 2021-03-18 16:02:35 train.py: 82] Epoch 6, iter 600/6416, lr 0.100000, loss 11.241163 +INFO 2021-03-18 16:03:53 train.py: 82] Epoch 6, iter 800/6416, lr 0.100000, loss 11.387452 +INFO 2021-03-18 16:05:10 train.py: 82] Epoch 6, iter 1000/6416, lr 0.100000, loss 11.475449 +INFO 2021-03-18 16:06:28 train.py: 82] Epoch 6, iter 1200/6416, lr 0.100000, loss 11.496409 +INFO 2021-03-18 16:07:46 train.py: 82] Epoch 6, iter 1400/6416, lr 0.100000, loss 11.596607 +INFO 2021-03-18 16:09:04 train.py: 82] Epoch 6, iter 1600/6416, lr 0.100000, loss 11.612384 +INFO 2021-03-18 16:10:22 train.py: 82] Epoch 6, iter 1800/6416, lr 0.100000, loss 11.674685 +INFO 2021-03-18 16:11:39 train.py: 82] Epoch 6, iter 2000/6416, lr 0.100000, loss 11.691938 +INFO 2021-03-18 16:12:57 train.py: 82] Epoch 6, iter 2200/6416, lr 0.100000, loss 11.703235 +INFO 2021-03-18 16:14:15 train.py: 82] Epoch 6, iter 2400/6416, lr 0.100000, loss 11.702025 +INFO 2021-03-18 16:15:32 train.py: 82] Epoch 6, iter 2600/6416, lr 0.100000, loss 11.820112 +INFO 2021-03-18 16:16:50 train.py: 82] Epoch 6, iter 2800/6416, lr 0.100000, loss 11.715783 +INFO 2021-03-18 16:18:08 train.py: 95] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2021-03-18 16:18:08 train.py: 82] Epoch 6, iter 3000/6416, lr 0.100000, loss 11.739233 +INFO 2021-03-18 16:19:26 train.py: 82] Epoch 6, iter 3200/6416, lr 0.100000, loss 11.709885 +INFO 2021-03-18 16:20:43 train.py: 82] Epoch 6, iter 3400/6416, lr 0.100000, loss 11.742900 +INFO 2021-03-18 16:22:00 train.py: 82] Epoch 6, iter 3600/6416, lr 0.100000, loss 11.794743 +INFO 2021-03-18 16:23:17 train.py: 82] Epoch 6, iter 3800/6416, lr 0.100000, loss 11.666821 +INFO 2021-03-18 16:24:34 train.py: 82] Epoch 6, iter 4000/6416, lr 0.100000, loss 11.737986 +INFO 2021-03-18 16:25:51 train.py: 82] Epoch 6, iter 4200/6416, lr 0.100000, loss 11.743747 +INFO 2021-03-18 16:27:08 train.py: 82] Epoch 6, iter 4400/6416, lr 0.100000, loss 11.706075 +INFO 2021-03-18 16:28:25 train.py: 82] Epoch 6, iter 4600/6416, lr 0.100000, loss 11.646327 +INFO 2021-03-18 16:29:43 train.py: 82] Epoch 6, iter 4800/6416, lr 0.100000, loss 11.780442 +INFO 2021-03-18 16:31:00 train.py: 82] Epoch 6, iter 5000/6416, lr 0.100000, loss 11.729160 +INFO 2021-03-18 16:32:17 train.py: 82] Epoch 6, iter 5200/6416, lr 0.100000, loss 11.708937 +INFO 2021-03-18 16:33:34 train.py: 82] Epoch 6, iter 5400/6416, lr 0.100000, loss 11.713377 +INFO 2021-03-18 16:34:51 train.py: 82] Epoch 6, iter 5600/6416, lr 0.100000, loss 11.694175 +INFO 2021-03-18 16:36:08 train.py: 82] Epoch 6, iter 5800/6416, lr 0.100000, loss 11.644919 +INFO 2021-03-18 16:37:25 train.py: 95] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2021-03-18 16:37:26 train.py: 82] Epoch 6, iter 6000/6416, lr 0.100000, loss 11.671565 +INFO 2021-03-18 16:38:44 train.py: 82] Epoch 6, iter 6200/6416, lr 0.100000, loss 11.660993 +INFO 2021-03-18 16:40:01 train.py: 82] Epoch 6, iter 6400/6416, lr 0.100000, loss 11.664161 +INFO 2021-03-18 16:40:08 train.py: 100] Save checkpoint Epoch_6.pt to disk... +INFO 2021-03-18 16:40:10 train.py: 82] Epoch 7, iter 0/6416, lr 0.100000, loss 11.548596 +INFO 2021-03-18 16:41:28 train.py: 82] Epoch 7, iter 200/6416, lr 0.100000, loss 10.884601 +INFO 2021-03-18 16:42:46 train.py: 82] Epoch 7, iter 400/6416, lr 0.100000, loss 10.800916 +INFO 2021-03-18 16:44:04 train.py: 82] Epoch 7, iter 600/6416, lr 0.100000, loss 11.000092 +INFO 2021-03-18 16:45:21 train.py: 82] Epoch 7, iter 800/6416, lr 0.100000, loss 11.140886 +INFO 2021-03-18 16:46:39 train.py: 82] Epoch 7, iter 1000/6416, lr 0.100000, loss 11.198542 +INFO 2021-03-18 16:47:57 train.py: 82] Epoch 7, iter 1200/6416, lr 0.100000, loss 11.292385 +INFO 2021-03-18 16:49:15 train.py: 82] Epoch 7, iter 1400/6416, lr 0.100000, loss 11.354598 +INFO 2021-03-18 16:50:33 train.py: 82] Epoch 7, iter 1600/6416, lr 0.100000, loss 11.297116 +INFO 2021-03-18 16:51:51 train.py: 82] Epoch 7, iter 1800/6416, lr 0.100000, loss 11.410804 +INFO 2021-03-18 16:53:08 train.py: 82] Epoch 7, iter 2000/6416, lr 0.100000, loss 11.439772 +INFO 2021-03-18 16:54:26 train.py: 82] Epoch 7, iter 2200/6416, lr 0.100000, loss 11.412165 +INFO 2021-03-18 16:55:44 train.py: 82] Epoch 7, iter 2400/6416, lr 0.100000, loss 11.490373 +INFO 2021-03-18 16:57:02 train.py: 82] Epoch 7, iter 2600/6416, lr 0.100000, loss 11.492009 +INFO 2021-03-18 16:58:19 train.py: 82] Epoch 7, iter 2800/6416, lr 0.100000, loss 11.485011 +INFO 2021-03-18 16:59:37 train.py: 95] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2021-03-18 16:59:37 train.py: 82] Epoch 7, iter 3000/6416, lr 0.100000, loss 11.462375 +INFO 2021-03-18 17:00:55 train.py: 82] Epoch 7, iter 3200/6416, lr 0.100000, loss 11.499691 +INFO 2021-03-18 17:02:13 train.py: 82] Epoch 7, iter 3400/6416, lr 0.100000, loss 11.469779 +INFO 2021-03-18 17:03:31 train.py: 82] Epoch 7, iter 3600/6416, lr 0.100000, loss 11.465497 +INFO 2021-03-18 17:04:49 train.py: 82] Epoch 7, iter 3800/6416, lr 0.100000, loss 11.517237 +INFO 2021-03-18 17:06:06 train.py: 82] Epoch 7, iter 4000/6416, lr 0.100000, loss 11.446964 +INFO 2021-03-18 17:07:24 train.py: 82] Epoch 7, iter 4200/6416, lr 0.100000, loss 11.525941 +INFO 2021-03-18 17:08:42 train.py: 82] Epoch 7, iter 4400/6416, lr 0.100000, loss 11.519700 +INFO 2021-03-18 17:10:00 train.py: 82] Epoch 7, iter 4600/6416, lr 0.100000, loss 11.524622 +INFO 2021-03-18 17:11:18 train.py: 82] Epoch 7, iter 4800/6416, lr 0.100000, loss 11.491251 +INFO 2021-03-18 17:12:36 train.py: 82] Epoch 7, iter 5000/6416, lr 0.100000, loss 11.502971 +INFO 2021-03-18 17:13:53 train.py: 82] Epoch 7, iter 5200/6416, lr 0.100000, loss 11.419860 +INFO 2021-03-18 17:15:11 train.py: 82] Epoch 7, iter 5400/6416, lr 0.100000, loss 11.485724 +INFO 2021-03-18 17:16:29 train.py: 82] Epoch 7, iter 5600/6416, lr 0.100000, loss 11.468143 +INFO 2021-03-18 17:17:47 train.py: 82] Epoch 7, iter 5800/6416, lr 0.100000, loss 11.496728 +INFO 2021-03-18 17:19:05 train.py: 95] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2021-03-18 17:19:05 train.py: 82] Epoch 7, iter 6000/6416, lr 0.100000, loss 11.425808 +INFO 2021-03-18 17:20:23 train.py: 82] Epoch 7, iter 6200/6416, lr 0.100000, loss 11.472280 +INFO 2021-03-18 17:21:41 train.py: 82] Epoch 7, iter 6400/6416, lr 0.100000, loss 11.400418 +INFO 2021-03-18 17:21:47 train.py: 100] Save checkpoint Epoch_7.pt to disk... +INFO 2021-03-18 17:21:49 train.py: 82] Epoch 8, iter 0/6416, lr 0.100000, loss 11.356438 +INFO 2021-03-18 17:23:07 train.py: 82] Epoch 8, iter 200/6416, lr 0.100000, loss 10.668524 +INFO 2021-03-18 17:24:25 train.py: 82] Epoch 8, iter 400/6416, lr 0.100000, loss 10.624209 +INFO 2021-03-18 17:25:43 train.py: 82] Epoch 8, iter 600/6416, lr 0.100000, loss 10.755585 +INFO 2021-03-18 17:27:01 train.py: 82] Epoch 8, iter 800/6416, lr 0.100000, loss 10.885146 +INFO 2021-03-18 17:28:19 train.py: 82] Epoch 8, iter 1000/6416, lr 0.100000, loss 11.020628 +INFO 2021-03-18 17:29:37 train.py: 82] Epoch 8, iter 1200/6416, lr 0.100000, loss 11.086525 +INFO 2021-03-18 17:30:54 train.py: 82] Epoch 8, iter 1400/6416, lr 0.100000, loss 11.131171 +INFO 2021-03-18 17:32:12 train.py: 82] Epoch 8, iter 1600/6416, lr 0.100000, loss 11.169323 +INFO 2021-03-18 17:33:30 train.py: 82] Epoch 8, iter 1800/6416, lr 0.100000, loss 11.188725 +INFO 2021-03-18 17:34:48 train.py: 82] Epoch 8, iter 2000/6416, lr 0.100000, loss 11.194794 +INFO 2021-03-18 17:36:05 train.py: 82] Epoch 8, iter 2200/6416, lr 0.100000, loss 11.230506 +INFO 2021-03-18 17:37:23 train.py: 82] Epoch 8, iter 2400/6416, lr 0.100000, loss 11.251766 +INFO 2021-03-18 17:38:41 train.py: 82] Epoch 8, iter 2600/6416, lr 0.100000, loss 11.289051 +INFO 2021-03-18 17:39:59 train.py: 82] Epoch 8, iter 2800/6416, lr 0.100000, loss 11.295398 +INFO 2021-03-18 17:41:16 train.py: 95] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2021-03-18 17:41:17 train.py: 82] Epoch 8, iter 3000/6416, lr 0.100000, loss 11.315131 +INFO 2021-03-18 17:42:34 train.py: 82] Epoch 8, iter 3200/6416, lr 0.100000, loss 11.303687 +INFO 2021-03-18 17:43:51 train.py: 82] Epoch 8, iter 3400/6416, lr 0.100000, loss 11.281648 +INFO 2021-03-18 17:45:08 train.py: 82] Epoch 8, iter 3600/6416, lr 0.100000, loss 11.300683 +INFO 2021-03-18 17:46:25 train.py: 82] Epoch 8, iter 3800/6416, lr 0.100000, loss 11.297300 +INFO 2021-03-18 17:47:43 train.py: 82] Epoch 8, iter 4000/6416, lr 0.100000, loss 11.327196 +INFO 2021-03-18 17:49:00 train.py: 82] Epoch 8, iter 4200/6416, lr 0.100000, loss 11.283500 +INFO 2021-03-18 17:50:17 train.py: 82] Epoch 8, iter 4400/6416, lr 0.100000, loss 11.298061 +INFO 2021-03-18 17:51:34 train.py: 82] Epoch 8, iter 4600/6416, lr 0.100000, loss 11.302732 +INFO 2021-03-18 17:52:51 train.py: 82] Epoch 8, iter 4800/6416, lr 0.100000, loss 11.311950 +INFO 2021-03-18 17:54:08 train.py: 82] Epoch 8, iter 5000/6416, lr 0.100000, loss 11.306220 +INFO 2021-03-18 17:55:25 train.py: 82] Epoch 8, iter 5200/6416, lr 0.100000, loss 11.303066 +INFO 2021-03-18 17:56:43 train.py: 82] Epoch 8, iter 5400/6416, lr 0.100000, loss 11.314745 +INFO 2021-03-18 17:58:00 train.py: 82] Epoch 8, iter 5600/6416, lr 0.100000, loss 11.342180 +INFO 2021-03-18 17:59:17 train.py: 82] Epoch 8, iter 5800/6416, lr 0.100000, loss 11.256254 +INFO 2021-03-18 18:00:34 train.py: 95] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2021-03-18 18:00:34 train.py: 82] Epoch 8, iter 6000/6416, lr 0.100000, loss 11.251138 +INFO 2021-03-18 18:01:52 train.py: 82] Epoch 8, iter 6200/6416, lr 0.100000, loss 11.217863 +INFO 2021-03-18 18:03:10 train.py: 82] Epoch 8, iter 6400/6416, lr 0.100000, loss 11.227782 +INFO 2021-03-18 18:03:17 train.py: 100] Save checkpoint Epoch_8.pt to disk... +INFO 2021-03-18 18:03:18 train.py: 82] Epoch 9, iter 0/6416, lr 0.100000, loss 11.146408 +INFO 2021-03-18 18:04:36 train.py: 82] Epoch 9, iter 200/6416, lr 0.100000, loss 10.455902 +INFO 2021-03-18 18:05:55 train.py: 82] Epoch 9, iter 400/6416, lr 0.100000, loss 10.473977 +INFO 2021-03-18 18:07:12 train.py: 82] Epoch 9, iter 600/6416, lr 0.100000, loss 10.613014 +INFO 2021-03-18 18:08:30 train.py: 82] Epoch 9, iter 800/6416, lr 0.100000, loss 10.681427 +INFO 2021-03-18 18:09:48 train.py: 82] Epoch 9, iter 1000/6416, lr 0.100000, loss 10.811079 +INFO 2021-03-18 18:11:06 train.py: 82] Epoch 9, iter 1200/6416, lr 0.100000, loss 10.868071 +INFO 2021-03-18 18:12:24 train.py: 82] Epoch 9, iter 1400/6416, lr 0.100000, loss 10.977432 +INFO 2021-03-18 18:13:41 train.py: 82] Epoch 9, iter 1600/6416, lr 0.100000, loss 11.016141 +INFO 2021-03-18 18:14:59 train.py: 82] Epoch 9, iter 1800/6416, lr 0.100000, loss 11.076815 +INFO 2021-03-18 18:16:17 train.py: 82] Epoch 9, iter 2000/6416, lr 0.100000, loss 11.043664 +INFO 2021-03-18 18:17:35 train.py: 82] Epoch 9, iter 2200/6416, lr 0.100000, loss 11.096883 +INFO 2021-03-18 18:18:52 train.py: 82] Epoch 9, iter 2400/6416, lr 0.100000, loss 11.100446 +INFO 2021-03-18 18:20:10 train.py: 82] Epoch 9, iter 2600/6416, lr 0.100000, loss 11.087793 +INFO 2021-03-18 18:21:28 train.py: 82] Epoch 9, iter 2800/6416, lr 0.100000, loss 11.107951 +INFO 2021-03-18 18:22:46 train.py: 95] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2021-03-18 18:22:46 train.py: 82] Epoch 9, iter 3000/6416, lr 0.100000, loss 11.051496 +INFO 2021-03-18 18:24:03 train.py: 82] Epoch 9, iter 3200/6416, lr 0.100000, loss 11.108010 +INFO 2021-03-18 18:25:20 train.py: 82] Epoch 9, iter 3400/6416, lr 0.100000, loss 11.123284 +INFO 2021-03-18 18:26:38 train.py: 82] Epoch 9, iter 3600/6416, lr 0.100000, loss 11.198730 +INFO 2021-03-18 18:27:55 train.py: 82] Epoch 9, iter 3800/6416, lr 0.100000, loss 11.175144 +INFO 2021-03-18 18:29:12 train.py: 82] Epoch 9, iter 4000/6416, lr 0.100000, loss 11.097541 +INFO 2021-03-18 18:30:29 train.py: 82] Epoch 9, iter 4200/6416, lr 0.100000, loss 11.098678 +INFO 2021-03-18 18:31:46 train.py: 82] Epoch 9, iter 4400/6416, lr 0.100000, loss 11.141439 +INFO 2021-03-18 18:33:03 train.py: 82] Epoch 9, iter 4600/6416, lr 0.100000, loss 11.072770 +INFO 2021-03-18 18:34:21 train.py: 82] Epoch 9, iter 4800/6416, lr 0.100000, loss 11.126307 +INFO 2021-03-18 18:35:38 train.py: 82] Epoch 9, iter 5000/6416, lr 0.100000, loss 11.134760 +INFO 2021-03-18 18:36:55 train.py: 82] Epoch 9, iter 5200/6416, lr 0.100000, loss 11.117253 +INFO 2021-03-18 18:38:12 train.py: 82] Epoch 9, iter 5400/6416, lr 0.100000, loss 11.107631 +INFO 2021-03-18 18:39:29 train.py: 82] Epoch 9, iter 5600/6416, lr 0.100000, loss 11.139527 +INFO 2021-03-18 18:40:46 train.py: 82] Epoch 9, iter 5800/6416, lr 0.100000, loss 11.119905 +INFO 2021-03-18 18:42:03 train.py: 95] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2021-03-18 18:42:04 train.py: 82] Epoch 9, iter 6000/6416, lr 0.100000, loss 11.158419 +INFO 2021-03-18 18:43:22 train.py: 82] Epoch 9, iter 6200/6416, lr 0.100000, loss 11.108142 +INFO 2021-03-18 18:44:39 train.py: 82] Epoch 9, iter 6400/6416, lr 0.100000, loss 11.110868 +INFO 2021-03-18 18:44:46 train.py: 100] Save checkpoint Epoch_9.pt to disk... +INFO 2021-03-18 18:44:48 train.py: 82] Epoch 10, iter 0/6416, lr 0.010000, loss 11.247077 +INFO 2021-03-18 18:46:06 train.py: 82] Epoch 10, iter 200/6416, lr 0.010000, loss 9.202994 +INFO 2021-03-18 18:47:24 train.py: 82] Epoch 10, iter 400/6416, lr 0.010000, loss 8.855631 +INFO 2021-03-18 18:48:42 train.py: 82] Epoch 10, iter 600/6416, lr 0.010000, loss 8.674940 +INFO 2021-03-18 18:50:00 train.py: 82] Epoch 10, iter 800/6416, lr 0.010000, loss 8.603190 +INFO 2021-03-18 18:51:18 train.py: 82] Epoch 10, iter 1000/6416, lr 0.010000, loss 8.471477 +INFO 2021-03-18 18:52:35 train.py: 82] Epoch 10, iter 1200/6416, lr 0.010000, loss 8.397812 +INFO 2021-03-18 18:53:53 train.py: 82] Epoch 10, iter 1400/6416, lr 0.010000, loss 8.373116 +INFO 2021-03-18 18:55:11 train.py: 82] Epoch 10, iter 1600/6416, lr 0.010000, loss 8.282594 +INFO 2021-03-18 18:56:29 train.py: 82] Epoch 10, iter 1800/6416, lr 0.010000, loss 8.258688 +INFO 2021-03-18 18:57:46 train.py: 82] Epoch 10, iter 2000/6416, lr 0.010000, loss 8.221287 +INFO 2021-03-18 18:59:04 train.py: 82] Epoch 10, iter 2200/6416, lr 0.010000, loss 8.147146 +INFO 2021-03-18 19:00:22 train.py: 82] Epoch 10, iter 2400/6416, lr 0.010000, loss 8.135890 +INFO 2021-03-18 19:01:40 train.py: 82] Epoch 10, iter 2600/6416, lr 0.010000, loss 8.067604 +INFO 2021-03-18 19:02:57 train.py: 82] Epoch 10, iter 2800/6416, lr 0.010000, loss 8.071922 +INFO 2021-03-18 19:04:15 train.py: 95] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2021-03-18 19:04:15 train.py: 82] Epoch 10, iter 3000/6416, lr 0.010000, loss 8.021073 +INFO 2021-03-18 19:05:33 train.py: 82] Epoch 10, iter 3200/6416, lr 0.010000, loss 7.991662 +INFO 2021-03-18 19:06:50 train.py: 82] Epoch 10, iter 3400/6416, lr 0.010000, loss 7.960448 +INFO 2021-03-18 19:08:07 train.py: 82] Epoch 10, iter 3600/6416, lr 0.010000, loss 7.870281 +INFO 2021-03-18 19:09:24 train.py: 82] Epoch 10, iter 3800/6416, lr 0.010000, loss 7.997557 +INFO 2021-03-18 19:10:41 train.py: 82] Epoch 10, iter 4000/6416, lr 0.010000, loss 7.901649 +INFO 2021-03-18 19:11:58 train.py: 82] Epoch 10, iter 4200/6416, lr 0.010000, loss 7.827317 +INFO 2021-03-18 19:13:16 train.py: 82] Epoch 10, iter 4400/6416, lr 0.010000, loss 7.820432 +INFO 2021-03-18 19:14:33 train.py: 82] Epoch 10, iter 4600/6416, lr 0.010000, loss 7.782658 +INFO 2021-03-18 19:15:50 train.py: 82] Epoch 10, iter 4800/6416, lr 0.010000, loss 7.811718 +INFO 2021-03-18 19:17:07 train.py: 82] Epoch 10, iter 5000/6416, lr 0.010000, loss 7.745914 +INFO 2021-03-18 19:18:24 train.py: 82] Epoch 10, iter 5200/6416, lr 0.010000, loss 7.739341 +INFO 2021-03-18 19:19:41 train.py: 82] Epoch 10, iter 5400/6416, lr 0.010000, loss 7.730650 +INFO 2021-03-18 19:20:58 train.py: 82] Epoch 10, iter 5600/6416, lr 0.010000, loss 7.752667 +INFO 2021-03-18 19:22:16 train.py: 82] Epoch 10, iter 5800/6416, lr 0.010000, loss 7.690258 +INFO 2021-03-18 19:23:33 train.py: 95] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2021-03-18 19:23:33 train.py: 82] Epoch 10, iter 6000/6416, lr 0.010000, loss 7.641223 +INFO 2021-03-18 19:24:51 train.py: 82] Epoch 10, iter 6200/6416, lr 0.010000, loss 7.657668 +INFO 2021-03-18 19:26:09 train.py: 82] Epoch 10, iter 6400/6416, lr 0.010000, loss 7.678712 +INFO 2021-03-18 19:26:15 train.py: 100] Save checkpoint Epoch_10.pt to disk... +INFO 2021-03-18 19:26:17 train.py: 82] Epoch 11, iter 0/6416, lr 0.010000, loss 7.579871 +INFO 2021-03-18 19:27:35 train.py: 82] Epoch 11, iter 200/6416, lr 0.010000, loss 7.064480 +INFO 2021-03-18 19:28:53 train.py: 82] Epoch 11, iter 400/6416, lr 0.010000, loss 7.041594 +INFO 2021-03-18 19:30:11 train.py: 82] Epoch 11, iter 600/6416, lr 0.010000, loss 7.089375 +INFO 2021-03-18 19:31:29 train.py: 82] Epoch 11, iter 800/6416, lr 0.010000, loss 7.069124 +INFO 2021-03-18 19:32:47 train.py: 82] Epoch 11, iter 1000/6416, lr 0.010000, loss 7.128865 +INFO 2021-03-18 19:34:05 train.py: 82] Epoch 11, iter 1200/6416, lr 0.010000, loss 7.087839 +INFO 2021-03-18 19:35:23 train.py: 82] Epoch 11, iter 1400/6416, lr 0.010000, loss 7.089903 +INFO 2021-03-18 19:36:40 train.py: 82] Epoch 11, iter 1600/6416, lr 0.010000, loss 7.099175 +INFO 2021-03-18 19:37:58 train.py: 82] Epoch 11, iter 1800/6416, lr 0.010000, loss 7.120688 +INFO 2021-03-18 19:39:16 train.py: 82] Epoch 11, iter 2000/6416, lr 0.010000, loss 7.148376 +INFO 2021-03-18 19:40:34 train.py: 82] Epoch 11, iter 2200/6416, lr 0.010000, loss 7.141556 +INFO 2021-03-18 19:41:51 train.py: 82] Epoch 11, iter 2400/6416, lr 0.010000, loss 7.137837 +INFO 2021-03-18 19:43:09 train.py: 82] Epoch 11, iter 2600/6416, lr 0.010000, loss 7.167497 +INFO 2021-03-18 19:44:27 train.py: 82] Epoch 11, iter 2800/6416, lr 0.010000, loss 7.154820 +INFO 2021-03-18 19:45:45 train.py: 95] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2021-03-18 19:45:45 train.py: 82] Epoch 11, iter 3000/6416, lr 0.010000, loss 7.128011 +INFO 2021-03-18 19:47:02 train.py: 82] Epoch 11, iter 3200/6416, lr 0.010000, loss 7.153761 +INFO 2021-03-18 19:48:19 train.py: 82] Epoch 11, iter 3400/6416, lr 0.010000, loss 7.167526 +INFO 2021-03-18 19:49:37 train.py: 82] Epoch 11, iter 3600/6416, lr 0.010000, loss 7.177234 +INFO 2021-03-18 19:50:54 train.py: 82] Epoch 11, iter 3800/6416, lr 0.010000, loss 7.151658 +INFO 2021-03-18 19:52:11 train.py: 82] Epoch 11, iter 4000/6416, lr 0.010000, loss 7.101844 +INFO 2021-03-18 19:53:28 train.py: 82] Epoch 11, iter 4200/6416, lr 0.010000, loss 7.165015 +INFO 2021-03-18 19:54:45 train.py: 82] Epoch 11, iter 4400/6416, lr 0.010000, loss 7.141874 +INFO 2021-03-18 19:56:02 train.py: 82] Epoch 11, iter 4600/6416, lr 0.010000, loss 7.160193 +INFO 2021-03-18 19:57:19 train.py: 82] Epoch 11, iter 4800/6416, lr 0.010000, loss 7.184668 +INFO 2021-03-18 19:58:37 train.py: 82] Epoch 11, iter 5000/6416, lr 0.010000, loss 7.174349 +INFO 2021-03-18 19:59:54 train.py: 82] Epoch 11, iter 5200/6416, lr 0.010000, loss 7.169127 +INFO 2021-03-18 20:01:11 train.py: 82] Epoch 11, iter 5400/6416, lr 0.010000, loss 7.165051 +INFO 2021-03-18 20:02:28 train.py: 82] Epoch 11, iter 5600/6416, lr 0.010000, loss 7.170341 +INFO 2021-03-18 20:03:45 train.py: 82] Epoch 11, iter 5800/6416, lr 0.010000, loss 7.162791 +INFO 2021-03-18 20:05:02 train.py: 95] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2021-03-18 20:05:03 train.py: 82] Epoch 11, iter 6000/6416, lr 0.010000, loss 7.197751 +INFO 2021-03-18 20:06:21 train.py: 82] Epoch 11, iter 6200/6416, lr 0.010000, loss 7.196192 +INFO 2021-03-18 20:07:38 train.py: 82] Epoch 11, iter 6400/6416, lr 0.010000, loss 7.195508 +INFO 2021-03-18 20:07:45 train.py: 100] Save checkpoint Epoch_11.pt to disk... +INFO 2021-03-18 20:07:47 train.py: 82] Epoch 12, iter 0/6416, lr 0.010000, loss 7.139786 +INFO 2021-03-18 20:09:05 train.py: 82] Epoch 12, iter 200/6416, lr 0.010000, loss 6.700989 +INFO 2021-03-18 20:10:23 train.py: 82] Epoch 12, iter 400/6416, lr 0.010000, loss 6.654858 +INFO 2021-03-18 20:11:41 train.py: 82] Epoch 12, iter 600/6416, lr 0.010000, loss 6.640231 +INFO 2021-03-18 20:12:59 train.py: 82] Epoch 12, iter 800/6416, lr 0.010000, loss 6.709312 +INFO 2021-03-18 20:14:17 train.py: 82] Epoch 12, iter 1000/6416, lr 0.010000, loss 6.711276 +INFO 2021-03-18 20:15:35 train.py: 82] Epoch 12, iter 1200/6416, lr 0.010000, loss 6.755749 +INFO 2021-03-18 20:16:53 train.py: 82] Epoch 12, iter 1400/6416, lr 0.010000, loss 6.746229 +INFO 2021-03-18 20:18:10 train.py: 82] Epoch 12, iter 1600/6416, lr 0.010000, loss 6.763264 +INFO 2021-03-18 20:19:28 train.py: 82] Epoch 12, iter 1800/6416, lr 0.010000, loss 6.760377 +INFO 2021-03-18 20:20:46 train.py: 82] Epoch 12, iter 2000/6416, lr 0.010000, loss 6.779121 +INFO 2021-03-18 20:22:04 train.py: 82] Epoch 12, iter 2200/6416, lr 0.010000, loss 6.800692 +INFO 2021-03-18 20:23:22 train.py: 82] Epoch 12, iter 2400/6416, lr 0.010000, loss 6.848898 +INFO 2021-03-18 20:24:39 train.py: 82] Epoch 12, iter 2600/6416, lr 0.010000, loss 6.799859 +INFO 2021-03-18 20:25:57 train.py: 82] Epoch 12, iter 2800/6416, lr 0.010000, loss 6.855125 +INFO 2021-03-18 20:27:15 train.py: 95] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2021-03-18 20:27:15 train.py: 82] Epoch 12, iter 3000/6416, lr 0.010000, loss 6.870399 +INFO 2021-03-18 20:28:33 train.py: 82] Epoch 12, iter 3200/6416, lr 0.010000, loss 6.816895 +INFO 2021-03-18 20:29:50 train.py: 82] Epoch 12, iter 3400/6416, lr 0.010000, loss 6.903950 +INFO 2021-03-18 20:31:07 train.py: 82] Epoch 12, iter 3600/6416, lr 0.010000, loss 6.873216 +INFO 2021-03-18 20:32:25 train.py: 82] Epoch 12, iter 3800/6416, lr 0.010000, loss 6.942008 +INFO 2021-03-18 20:33:42 train.py: 82] Epoch 12, iter 4000/6416, lr 0.010000, loss 6.938401 +INFO 2021-03-18 20:34:59 train.py: 82] Epoch 12, iter 4200/6416, lr 0.010000, loss 6.961632 +INFO 2021-03-18 20:36:17 train.py: 82] Epoch 12, iter 4400/6416, lr 0.010000, loss 6.955409 +INFO 2021-03-18 20:37:34 train.py: 82] Epoch 12, iter 4600/6416, lr 0.010000, loss 6.977312 +INFO 2021-03-18 20:38:51 train.py: 82] Epoch 12, iter 4800/6416, lr 0.010000, loss 6.997378 +INFO 2021-03-18 20:40:08 train.py: 82] Epoch 12, iter 5000/6416, lr 0.010000, loss 6.972436 +INFO 2021-03-18 20:41:26 train.py: 82] Epoch 12, iter 5200/6416, lr 0.010000, loss 6.983730 +INFO 2021-03-18 20:42:43 train.py: 82] Epoch 12, iter 5400/6416, lr 0.010000, loss 7.026159 +INFO 2021-03-18 20:44:00 train.py: 82] Epoch 12, iter 5600/6416, lr 0.010000, loss 7.007557 +INFO 2021-03-18 20:45:18 train.py: 82] Epoch 12, iter 5800/6416, lr 0.010000, loss 7.052989 +INFO 2021-03-18 20:46:35 train.py: 95] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2021-03-18 20:46:35 train.py: 82] Epoch 12, iter 6000/6416, lr 0.010000, loss 7.006707 +INFO 2021-03-18 20:47:53 train.py: 82] Epoch 12, iter 6200/6416, lr 0.010000, loss 7.045581 +INFO 2021-03-18 20:49:11 train.py: 82] Epoch 12, iter 6400/6416, lr 0.010000, loss 7.016183 +INFO 2021-03-18 20:49:18 train.py: 100] Save checkpoint Epoch_12.pt to disk... +INFO 2021-03-18 20:49:20 train.py: 82] Epoch 13, iter 0/6416, lr 0.001000, loss 6.984809 +INFO 2021-03-18 20:50:38 train.py: 82] Epoch 13, iter 200/6416, lr 0.001000, loss 6.380268 +INFO 2021-03-18 20:51:56 train.py: 82] Epoch 13, iter 400/6416, lr 0.001000, loss 6.373197 +INFO 2021-03-18 20:53:14 train.py: 82] Epoch 13, iter 600/6416, lr 0.001000, loss 6.333324 +INFO 2021-03-18 20:54:32 train.py: 82] Epoch 13, iter 800/6416, lr 0.001000, loss 6.309630 +INFO 2021-03-18 20:55:50 train.py: 82] Epoch 13, iter 1000/6416, lr 0.001000, loss 6.282385 +INFO 2021-03-18 20:57:07 train.py: 82] Epoch 13, iter 1200/6416, lr 0.001000, loss 6.310199 +INFO 2021-03-18 20:58:25 train.py: 82] Epoch 13, iter 1400/6416, lr 0.001000, loss 6.291609 +INFO 2021-03-18 20:59:43 train.py: 82] Epoch 13, iter 1600/6416, lr 0.001000, loss 6.287858 +INFO 2021-03-18 21:01:01 train.py: 82] Epoch 13, iter 1800/6416, lr 0.001000, loss 6.277865 +INFO 2021-03-18 21:02:19 train.py: 82] Epoch 13, iter 2000/6416, lr 0.001000, loss 6.270192 +INFO 2021-03-18 21:03:37 train.py: 82] Epoch 13, iter 2200/6416, lr 0.001000, loss 6.317798 +INFO 2021-03-18 21:04:55 train.py: 82] Epoch 13, iter 2400/6416, lr 0.001000, loss 6.248097 +INFO 2021-03-18 21:06:12 train.py: 82] Epoch 13, iter 2600/6416, lr 0.001000, loss 6.273139 +INFO 2021-03-18 21:07:30 train.py: 82] Epoch 13, iter 2800/6416, lr 0.001000, loss 6.302427 +INFO 2021-03-18 21:08:48 train.py: 95] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2021-03-18 21:08:48 train.py: 82] Epoch 13, iter 3000/6416, lr 0.001000, loss 6.289605 +INFO 2021-03-18 21:10:06 train.py: 82] Epoch 13, iter 3200/6416, lr 0.001000, loss 6.260822 +INFO 2021-03-18 21:11:24 train.py: 82] Epoch 13, iter 3400/6416, lr 0.001000, loss 6.277920 +INFO 2021-03-18 21:12:42 train.py: 82] Epoch 13, iter 3600/6416, lr 0.001000, loss 6.307444 +INFO 2021-03-18 21:13:59 train.py: 82] Epoch 13, iter 3800/6416, lr 0.001000, loss 6.283028 +INFO 2021-03-18 21:15:17 train.py: 82] Epoch 13, iter 4000/6416, lr 0.001000, loss 6.303678 +INFO 2021-03-18 21:16:35 train.py: 82] Epoch 13, iter 4200/6416, lr 0.001000, loss 6.294402 +INFO 2021-03-18 21:17:53 train.py: 82] Epoch 13, iter 4400/6416, lr 0.001000, loss 6.315266 +INFO 2021-03-18 21:19:11 train.py: 82] Epoch 13, iter 4600/6416, lr 0.001000, loss 6.255787 +INFO 2021-03-18 21:20:29 train.py: 82] Epoch 13, iter 4800/6416, lr 0.001000, loss 6.297829 +INFO 2021-03-18 21:21:46 train.py: 82] Epoch 13, iter 5000/6416, lr 0.001000, loss 6.317875 +INFO 2021-03-18 21:23:04 train.py: 82] Epoch 13, iter 5200/6416, lr 0.001000, loss 6.318076 +INFO 2021-03-18 21:24:22 train.py: 82] Epoch 13, iter 5400/6416, lr 0.001000, loss 6.303325 +INFO 2021-03-18 21:25:40 train.py: 82] Epoch 13, iter 5600/6416, lr 0.001000, loss 6.261842 +INFO 2021-03-18 21:26:58 train.py: 82] Epoch 13, iter 5800/6416, lr 0.001000, loss 6.296454 +INFO 2021-03-18 21:28:16 train.py: 95] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2021-03-18 21:28:16 train.py: 82] Epoch 13, iter 6000/6416, lr 0.001000, loss 6.289716 +INFO 2021-03-18 21:29:33 train.py: 82] Epoch 13, iter 6200/6416, lr 0.001000, loss 6.272198 +INFO 2021-03-18 21:30:50 train.py: 82] Epoch 13, iter 6400/6416, lr 0.001000, loss 6.302922 +INFO 2021-03-18 21:30:57 train.py: 100] Save checkpoint Epoch_13.pt to disk... +INFO 2021-03-18 21:30:59 train.py: 82] Epoch 14, iter 0/6416, lr 0.001000, loss 6.306069 +INFO 2021-03-18 21:32:17 train.py: 82] Epoch 14, iter 200/6416, lr 0.001000, loss 6.192837 +INFO 2021-03-18 21:33:35 train.py: 82] Epoch 14, iter 400/6416, lr 0.001000, loss 6.170409 +INFO 2021-03-18 21:34:53 train.py: 82] Epoch 14, iter 600/6416, lr 0.001000, loss 6.239060 +INFO 2021-03-18 21:36:11 train.py: 82] Epoch 14, iter 800/6416, lr 0.001000, loss 6.225698 +INFO 2021-03-18 21:37:29 train.py: 82] Epoch 14, iter 1000/6416, lr 0.001000, loss 6.184798 +INFO 2021-03-18 21:38:47 train.py: 82] Epoch 14, iter 1200/6416, lr 0.001000, loss 6.231239 +INFO 2021-03-18 21:40:04 train.py: 82] Epoch 14, iter 1400/6416, lr 0.001000, loss 6.231826 +INFO 2021-03-18 21:41:22 train.py: 82] Epoch 14, iter 1600/6416, lr 0.001000, loss 6.256388 +INFO 2021-03-18 21:42:40 train.py: 82] Epoch 14, iter 1800/6416, lr 0.001000, loss 6.221277 +INFO 2021-03-18 21:43:58 train.py: 82] Epoch 14, iter 2000/6416, lr 0.001000, loss 6.236577 +INFO 2021-03-18 21:45:16 train.py: 82] Epoch 14, iter 2200/6416, lr 0.001000, loss 6.236276 +INFO 2021-03-18 21:46:33 train.py: 82] Epoch 14, iter 2400/6416, lr 0.001000, loss 6.238536 +INFO 2021-03-18 21:47:51 train.py: 82] Epoch 14, iter 2600/6416, lr 0.001000, loss 6.205701 +INFO 2021-03-18 21:49:09 train.py: 82] Epoch 14, iter 2800/6416, lr 0.001000, loss 6.254074 +INFO 2021-03-18 21:50:27 train.py: 95] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2021-03-18 21:50:27 train.py: 82] Epoch 14, iter 3000/6416, lr 0.001000, loss 6.272589 +INFO 2021-03-18 21:51:45 train.py: 82] Epoch 14, iter 3200/6416, lr 0.001000, loss 6.184874 +INFO 2021-03-18 21:53:03 train.py: 82] Epoch 14, iter 3400/6416, lr 0.001000, loss 6.264461 +INFO 2021-03-18 21:54:20 train.py: 82] Epoch 14, iter 3600/6416, lr 0.001000, loss 6.254376 +INFO 2021-03-18 21:55:38 train.py: 82] Epoch 14, iter 3800/6416, lr 0.001000, loss 6.252648 +INFO 2021-03-18 21:56:56 train.py: 82] Epoch 14, iter 4000/6416, lr 0.001000, loss 6.235493 +INFO 2021-03-18 21:58:14 train.py: 82] Epoch 14, iter 4200/6416, lr 0.001000, loss 6.260520 +INFO 2021-03-18 21:59:32 train.py: 82] Epoch 14, iter 4400/6416, lr 0.001000, loss 6.257240 +INFO 2021-03-18 22:00:50 train.py: 82] Epoch 14, iter 4600/6416, lr 0.001000, loss 6.242652 +INFO 2021-03-18 22:02:08 train.py: 82] Epoch 14, iter 4800/6416, lr 0.001000, loss 6.276694 +INFO 2021-03-18 22:03:25 train.py: 82] Epoch 14, iter 5000/6416, lr 0.001000, loss 6.261944 +INFO 2021-03-18 22:04:43 train.py: 82] Epoch 14, iter 5200/6416, lr 0.001000, loss 6.289712 +INFO 2021-03-18 22:06:01 train.py: 82] Epoch 14, iter 5400/6416, lr 0.001000, loss 6.226915 +INFO 2021-03-18 22:07:19 train.py: 82] Epoch 14, iter 5600/6416, lr 0.001000, loss 6.299423 +INFO 2021-03-18 22:08:37 train.py: 82] Epoch 14, iter 5800/6416, lr 0.001000, loss 6.261087 +INFO 2021-03-18 22:09:55 train.py: 95] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2021-03-18 22:09:55 train.py: 82] Epoch 14, iter 6000/6416, lr 0.001000, loss 6.271331 +INFO 2021-03-18 22:11:13 train.py: 82] Epoch 14, iter 6200/6416, lr 0.001000, loss 6.283215 +INFO 2021-03-18 22:12:31 train.py: 82] Epoch 14, iter 6400/6416, lr 0.001000, loss 6.227340 +INFO 2021-03-18 22:12:38 train.py: 100] Save checkpoint Epoch_14.pt to disk... +INFO 2021-03-18 22:12:39 train.py: 82] Epoch 15, iter 0/6416, lr 0.001000, loss 6.216057 +INFO 2021-03-18 22:13:57 train.py: 82] Epoch 15, iter 200/6416, lr 0.001000, loss 6.177841 +INFO 2021-03-18 22:15:14 train.py: 82] Epoch 15, iter 400/6416, lr 0.001000, loss 6.174004 +INFO 2021-03-18 22:16:32 train.py: 82] Epoch 15, iter 600/6416, lr 0.001000, loss 6.182670 +INFO 2021-03-18 22:17:49 train.py: 82] Epoch 15, iter 800/6416, lr 0.001000, loss 6.184497 +INFO 2021-03-18 22:19:06 train.py: 82] Epoch 15, iter 1000/6416, lr 0.001000, loss 6.167211 +INFO 2021-03-18 22:20:23 train.py: 82] Epoch 15, iter 1200/6416, lr 0.001000, loss 6.185973 +INFO 2021-03-18 22:21:40 train.py: 82] Epoch 15, iter 1400/6416, lr 0.001000, loss 6.221166 +INFO 2021-03-18 22:22:58 train.py: 82] Epoch 15, iter 1600/6416, lr 0.001000, loss 6.189931 +INFO 2021-03-18 22:24:15 train.py: 82] Epoch 15, iter 1800/6416, lr 0.001000, loss 6.232997 +INFO 2021-03-18 22:25:32 train.py: 82] Epoch 15, iter 2000/6416, lr 0.001000, loss 6.231943 +INFO 2021-03-18 22:26:49 train.py: 82] Epoch 15, iter 2200/6416, lr 0.001000, loss 6.246964 +INFO 2021-03-18 22:28:06 train.py: 82] Epoch 15, iter 2400/6416, lr 0.001000, loss 6.214535 +INFO 2021-03-18 22:29:24 train.py: 82] Epoch 15, iter 2600/6416, lr 0.001000, loss 6.214586 +INFO 2021-03-18 22:30:41 train.py: 82] Epoch 15, iter 2800/6416, lr 0.001000, loss 6.164661 +INFO 2021-03-18 22:31:58 train.py: 95] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2021-03-18 22:31:58 train.py: 82] Epoch 15, iter 3000/6416, lr 0.001000, loss 6.210753 +INFO 2021-03-18 22:33:16 train.py: 82] Epoch 15, iter 3200/6416, lr 0.001000, loss 6.234213 +INFO 2021-03-18 22:34:34 train.py: 82] Epoch 15, iter 3400/6416, lr 0.001000, loss 6.211773 +INFO 2021-03-18 22:35:52 train.py: 82] Epoch 15, iter 3600/6416, lr 0.001000, loss 6.205386 +INFO 2021-03-18 22:37:10 train.py: 82] Epoch 15, iter 3800/6416, lr 0.001000, loss 6.233970 +INFO 2021-03-18 22:38:27 train.py: 82] Epoch 15, iter 4000/6416, lr 0.001000, loss 6.207277 +INFO 2021-03-18 22:39:45 train.py: 82] Epoch 15, iter 4200/6416, lr 0.001000, loss 6.229234 +INFO 2021-03-18 22:41:03 train.py: 82] Epoch 15, iter 4400/6416, lr 0.001000, loss 6.201804 +INFO 2021-03-18 22:42:21 train.py: 82] Epoch 15, iter 4600/6416, lr 0.001000, loss 6.214722 +INFO 2021-03-18 22:43:39 train.py: 82] Epoch 15, iter 4800/6416, lr 0.001000, loss 6.241902 +INFO 2021-03-18 22:44:57 train.py: 82] Epoch 15, iter 5000/6416, lr 0.001000, loss 6.204927 +INFO 2021-03-18 22:46:14 train.py: 82] Epoch 15, iter 5200/6416, lr 0.001000, loss 6.223426 +INFO 2021-03-18 22:47:32 train.py: 82] Epoch 15, iter 5400/6416, lr 0.001000, loss 6.236838 +INFO 2021-03-18 22:48:50 train.py: 82] Epoch 15, iter 5600/6416, lr 0.001000, loss 6.220132 +INFO 2021-03-18 22:50:08 train.py: 82] Epoch 15, iter 5800/6416, lr 0.001000, loss 6.278170 +INFO 2021-03-18 22:51:26 train.py: 95] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2021-03-18 22:51:26 train.py: 82] Epoch 15, iter 6000/6416, lr 0.001000, loss 6.200431 +INFO 2021-03-18 22:52:44 train.py: 82] Epoch 15, iter 6200/6416, lr 0.001000, loss 6.244218 +INFO 2021-03-18 22:54:02 train.py: 82] Epoch 15, iter 6400/6416, lr 0.001000, loss 6.226380 +INFO 2021-03-18 22:54:08 train.py: 100] Save checkpoint Epoch_15.pt to disk... +INFO 2021-03-18 22:54:10 train.py: 82] Epoch 16, iter 0/6416, lr 0.000100, loss 6.172353 +INFO 2021-03-18 22:55:28 train.py: 82] Epoch 16, iter 200/6416, lr 0.000100, loss 6.137570 +INFO 2021-03-18 22:56:46 train.py: 82] Epoch 16, iter 400/6416, lr 0.000100, loss 6.113624 +INFO 2021-03-18 22:58:04 train.py: 82] Epoch 16, iter 600/6416, lr 0.000100, loss 6.157844 +INFO 2021-03-18 22:59:22 train.py: 82] Epoch 16, iter 800/6416, lr 0.000100, loss 6.151621 +INFO 2021-03-18 23:00:40 train.py: 82] Epoch 16, iter 1000/6416, lr 0.000100, loss 6.119920 +INFO 2021-03-18 23:01:58 train.py: 82] Epoch 16, iter 1200/6416, lr 0.000100, loss 6.114026 +INFO 2021-03-18 23:03:16 train.py: 82] Epoch 16, iter 1400/6416, lr 0.000100, loss 6.155079 +INFO 2021-03-18 23:04:33 train.py: 82] Epoch 16, iter 1600/6416, lr 0.000100, loss 6.175717 +INFO 2021-03-18 23:05:51 train.py: 82] Epoch 16, iter 1800/6416, lr 0.000100, loss 6.168410 +INFO 2021-03-18 23:07:09 train.py: 82] Epoch 16, iter 2000/6416, lr 0.000100, loss 6.145844 +INFO 2021-03-18 23:08:27 train.py: 82] Epoch 16, iter 2200/6416, lr 0.000100, loss 6.104518 +INFO 2021-03-18 23:09:44 train.py: 82] Epoch 16, iter 2400/6416, lr 0.000100, loss 6.146550 +INFO 2021-03-18 23:11:02 train.py: 82] Epoch 16, iter 2600/6416, lr 0.000100, loss 6.132901 +INFO 2021-03-18 23:12:20 train.py: 82] Epoch 16, iter 2800/6416, lr 0.000100, loss 6.138385 +INFO 2021-03-18 23:13:38 train.py: 95] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2021-03-18 23:13:38 train.py: 82] Epoch 16, iter 3000/6416, lr 0.000100, loss 6.150673 +INFO 2021-03-18 23:14:56 train.py: 82] Epoch 16, iter 3200/6416, lr 0.000100, loss 6.145843 +INFO 2021-03-18 23:16:13 train.py: 82] Epoch 16, iter 3400/6416, lr 0.000100, loss 6.094719 +INFO 2021-03-18 23:17:30 train.py: 82] Epoch 16, iter 3600/6416, lr 0.000100, loss 6.128690 +INFO 2021-03-18 23:18:47 train.py: 82] Epoch 16, iter 3800/6416, lr 0.000100, loss 6.137684 +INFO 2021-03-18 23:20:04 train.py: 82] Epoch 16, iter 4000/6416, lr 0.000100, loss 6.189636 +INFO 2021-03-18 23:21:22 train.py: 82] Epoch 16, iter 4200/6416, lr 0.000100, loss 6.152111 +INFO 2021-03-18 23:22:39 train.py: 82] Epoch 16, iter 4400/6416, lr 0.000100, loss 6.124304 +INFO 2021-03-18 23:23:56 train.py: 82] Epoch 16, iter 4600/6416, lr 0.000100, loss 6.146148 +INFO 2021-03-18 23:25:13 train.py: 82] Epoch 16, iter 4800/6416, lr 0.000100, loss 6.136418 +INFO 2021-03-18 23:26:30 train.py: 82] Epoch 16, iter 5000/6416, lr 0.000100, loss 6.132527 +INFO 2021-03-18 23:27:47 train.py: 82] Epoch 16, iter 5200/6416, lr 0.000100, loss 6.136409 +INFO 2021-03-18 23:29:05 train.py: 82] Epoch 16, iter 5400/6416, lr 0.000100, loss 6.153092 +INFO 2021-03-18 23:30:22 train.py: 82] Epoch 16, iter 5600/6416, lr 0.000100, loss 6.168946 +INFO 2021-03-18 23:31:39 train.py: 82] Epoch 16, iter 5800/6416, lr 0.000100, loss 6.143332 +INFO 2021-03-18 23:32:56 train.py: 95] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2021-03-18 23:32:56 train.py: 82] Epoch 16, iter 6000/6416, lr 0.000100, loss 6.150599 +INFO 2021-03-18 23:34:14 train.py: 82] Epoch 16, iter 6200/6416, lr 0.000100, loss 6.143510 +INFO 2021-03-18 23:35:32 train.py: 82] Epoch 16, iter 6400/6416, lr 0.000100, loss 6.143740 +INFO 2021-03-18 23:35:39 train.py: 100] Save checkpoint Epoch_16.pt to disk... +INFO 2021-03-18 23:35:41 train.py: 82] Epoch 17, iter 0/6416, lr 0.000100, loss 6.238836 +INFO 2021-03-18 23:36:59 train.py: 82] Epoch 17, iter 200/6416, lr 0.000100, loss 6.129740 +INFO 2021-03-18 23:38:17 train.py: 82] Epoch 17, iter 400/6416, lr 0.000100, loss 6.152919 +INFO 2021-03-18 23:39:35 train.py: 82] Epoch 17, iter 600/6416, lr 0.000100, loss 6.134320 +INFO 2021-03-18 23:40:53 train.py: 82] Epoch 17, iter 800/6416, lr 0.000100, loss 6.104474 +INFO 2021-03-18 23:42:11 train.py: 82] Epoch 17, iter 1000/6416, lr 0.000100, loss 6.118261 +INFO 2021-03-18 23:43:28 train.py: 82] Epoch 17, iter 1200/6416, lr 0.000100, loss 6.112352 +INFO 2021-03-18 23:44:46 train.py: 82] Epoch 17, iter 1400/6416, lr 0.000100, loss 6.168288 +INFO 2021-03-18 23:46:04 train.py: 82] Epoch 17, iter 1600/6416, lr 0.000100, loss 6.112389 +INFO 2021-03-18 23:47:22 train.py: 82] Epoch 17, iter 1800/6416, lr 0.000100, loss 6.138920 +INFO 2021-03-18 23:48:40 train.py: 82] Epoch 17, iter 2000/6416, lr 0.000100, loss 6.135342 +INFO 2021-03-18 23:49:58 train.py: 82] Epoch 17, iter 2200/6416, lr 0.000100, loss 6.115831 +INFO 2021-03-18 23:51:15 train.py: 82] Epoch 17, iter 2400/6416, lr 0.000100, loss 6.128751 +INFO 2021-03-18 23:52:33 train.py: 82] Epoch 17, iter 2600/6416, lr 0.000100, loss 6.131120 +INFO 2021-03-18 23:53:51 train.py: 82] Epoch 17, iter 2800/6416, lr 0.000100, loss 6.166421 +INFO 2021-03-18 23:55:09 train.py: 95] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2021-03-18 23:55:09 train.py: 82] Epoch 17, iter 3000/6416, lr 0.000100, loss 6.120512 +INFO 2021-03-18 23:56:26 train.py: 82] Epoch 17, iter 3200/6416, lr 0.000100, loss 6.148808 +INFO 2021-03-18 23:57:43 train.py: 82] Epoch 17, iter 3400/6416, lr 0.000100, loss 6.160245 +INFO 2021-03-18 23:59:01 train.py: 82] Epoch 17, iter 3600/6416, lr 0.000100, loss 6.135905 +INFO 2021-03-19 00:00:18 train.py: 82] Epoch 17, iter 3800/6416, lr 0.000100, loss 6.134643 +INFO 2021-03-19 00:01:35 train.py: 82] Epoch 17, iter 4000/6416, lr 0.000100, loss 6.095920 +INFO 2021-03-19 00:02:52 train.py: 82] Epoch 17, iter 4200/6416, lr 0.000100, loss 6.106539 +INFO 2021-03-19 00:04:09 train.py: 82] Epoch 17, iter 4400/6416, lr 0.000100, loss 6.174105 +INFO 2021-03-19 00:05:27 train.py: 82] Epoch 17, iter 4600/6416, lr 0.000100, loss 6.111957 +INFO 2021-03-19 00:06:44 train.py: 82] Epoch 17, iter 4800/6416, lr 0.000100, loss 6.142558 +INFO 2021-03-19 00:08:01 train.py: 82] Epoch 17, iter 5000/6416, lr 0.000100, loss 6.171786 +INFO 2021-03-19 00:09:18 train.py: 82] Epoch 17, iter 5200/6416, lr 0.000100, loss 6.160346 +INFO 2021-03-19 00:10:35 train.py: 82] Epoch 17, iter 5400/6416, lr 0.000100, loss 6.140907 +INFO 2021-03-19 00:11:52 train.py: 82] Epoch 17, iter 5600/6416, lr 0.000100, loss 6.120508 +INFO 2021-03-19 00:13:10 train.py: 82] Epoch 17, iter 5800/6416, lr 0.000100, loss 6.125139 +INFO 2021-03-19 00:14:27 train.py: 95] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2021-03-19 00:14:27 train.py: 82] Epoch 17, iter 6000/6416, lr 0.000100, loss 6.118235 +INFO 2021-03-19 00:15:45 train.py: 82] Epoch 17, iter 6200/6416, lr 0.000100, loss 6.180168 +INFO 2021-03-19 00:17:03 train.py: 82] Epoch 17, iter 6400/6416, lr 0.000100, loss 6.150227 +INFO 2021-03-19 00:17:09 train.py: 100] Save checkpoint Epoch_17.pt to disk... +INFO 2021-03-19 00:17:10 train.py: 183] Optimization done! diff --git a/bob/bio/facexzoo/models/heads/NPCFace/.gitkeep b/bob/bio/facexzoo/models/heads/NPCFace/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_agedb.txt b/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_agedb.txt new file mode 100644 index 0000000000000000000000000000000000000000..f9d0713b9fe1b24e293b3edbac6a84412e934876 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_agedb.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16.pt | 0.9586666666666668 | 0.003855411460643884 | +| Epoch_17_batch_5999.pt | 0.9585000000000001 | 0.0031274373211194564 | +| Epoch_15_batch_5999.pt | 0.9583333333333334 | 0.003073181485764294 | +| Epoch_13_batch_5999.pt | 0.9578333333333333 | 0.003549039167485437 | +| Epoch_12_batch_2999.pt | 0.9578333333333333 | 0.0033152286106301588 | +| Epoch_17_batch_2999.pt | 0.9578333333333333 | 0.003651906317676623 | +| Epoch_15.pt | 0.9576666666666667 | 0.0036362373715452486 | +| Epoch_15_batch_2999.pt | 0.9576666666666667 | 0.0030852096393144094 | +| Epoch_14.pt | 0.9571666666666665 | 0.0034161020310318267 | +| Epoch_14_batch_2999.pt | 0.9570000000000001 | 0.003431876713662336 | +| Epoch_14_batch_5999.pt | 0.9570000000000001 | 0.00325652241994508 | +| Epoch_13.pt | 0.9564999999999999 | 0.003771645349443043 | +| Epoch_13_batch_2999.pt | 0.9563333333333333 | 0.0033222036417169015 | +| Epoch_16_batch_5999.pt | 0.9560000000000001 | 0.003297960462145741 | +| Epoch_16_batch_2999.pt | 0.9560000000000001 | 0.0035590260840104365 | +| Epoch_17.pt | 0.9558333333333333 | 0.003712258638286252 | +| Epoch_12.pt | 0.9556666666666667 | 0.003444444444444452 | +| Epoch_12_batch_5999.pt | 0.9553333333333333 | 0.003494263376336977 | +| Epoch_10_batch_2999.pt | 0.9546666666666667 | 0.003683463212055729 | +| Epoch_10_batch_5999.pt | 0.9546666666666667 | 0.0030611060697679844 | +| Epoch_11_batch_5999.pt | 0.9541666666666668 | 0.0040768088464349615 | +| Epoch_11.pt | 0.9535 | 0.004100963451991243 | +| Epoch_10.pt | 0.9531666666666666 | 0.0034197140881138703 | +| Epoch_11_batch_2999.pt | 0.9525 | 0.0035070475782414713 | +| Epoch_8_batch_2999.pt | 0.9438333333333334 | 0.003416102031031817 | +| Epoch_9_batch_5999.pt | 0.9406666666666668 | 0.005105068892293398 | +| Epoch_8.pt | 0.9401666666666666 | 0.0032437023504433365 | +| Epoch_7_batch_5999.pt | 0.9398333333333333 | 0.0039553838914061215 | +| Epoch_6.pt | 0.9386666666666666 | 0.004803548071381615 | +| Epoch_9.pt | 0.938 | 0.004273085449562086 | +| Epoch_6_batch_2999.pt | 0.9376666666666666 | 0.004129089816902671 | +| Epoch_7_batch_2999.pt | 0.9369999999999999 | 0.0043800896320948905 | +| Epoch_8_batch_5999.pt | 0.9369999999999999 | 0.004273085449562093 | +| Epoch_5_batch_5999.pt | 0.9368333333333334 | 0.00432798815634718 | +| Epoch_9_batch_2999.pt | 0.9368333333333332 | 0.005513451563961381 | +| Epoch_4_batch_5999.pt | 0.9336666666666666 | 0.003879353388910243 | +| Epoch_5_batch_2999.pt | 0.9331666666666667 | 0.004205008771148052 | +| Epoch_4.pt | 0.932 | 0.00478423336480244 | +| Epoch_6_batch_5999.pt | 0.9318333333333333 | 0.005689767727255955 | +| Epoch_5.pt | 0.9306666666666666 | 0.004970282054743339 | +| Epoch_7.pt | 0.9293333333333333 | 0.005129195061148352 | +| Epoch_3.pt | 0.9288333333333334 | 0.0039051248379533255 | +| Epoch_3_batch_5999.pt | 0.9285 | 0.0051845568402352 | +| Epoch_3_batch_2999.pt | 0.9271666666666667 | 0.006310142726956971 | +| Epoch_4_batch_2999.pt | 0.9259999999999998 | 0.0042759736455319705 | +| Epoch_2_batch_5999.pt | 0.9248333333333333 | 0.005015100653815553 | +| Epoch_2.pt | 0.923 | 0.006924638422614617 | +| Epoch_2_batch_2999.pt | 0.9180000000000001 | 0.007531005867924685 | +| Epoch_1.pt | 0.9094999999999999 | 0.004969350505291861 | +| Epoch_1_batch_5999.pt | 0.8964999999999999 | 0.005923639605246036 | +| Epoch_1_batch_2999.pt | 0.8881666666666665 | 0.005743756674924583 | +| Epoch_0_batch_5999.pt | 0.851 | 0.006122212139535962 | +| Epoch_0.pt | 0.8476666666666667 | 0.007888888888888888 | +| Epoch_0_batch_2999.pt | 0.756 | 0.006010279260577128 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_calfw.txt b/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_calfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..003bcd4674704387621d2a45cc3661362cd9ecd4 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_calfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_16_batch_2999.pt | 0.9413333333333334 | 0.0035555555555555514 | +| Epoch_17.pt | 0.9408333333333333 | 0.003326381639982814 | +| Epoch_15_batch_2999.pt | 0.9404999999999999 | 0.0036687704402442265 | +| Epoch_15_batch_5999.pt | 0.9403333333333332 | 0.0033499585403736266 | +| Epoch_13_batch_2999.pt | 0.9403333333333332 | 0.003649792823479297 | +| Epoch_14.pt | 0.9401666666666666 | 0.0037387691907536046 | +| Epoch_17_batch_5999.pt | 0.9398333333333333 | 0.0036637193541772294 | +| Epoch_12_batch_2999.pt | 0.9396666666666667 | 0.0037908271353848904 | +| Epoch_14_batch_2999.pt | 0.9396666666666664 | 0.0036413265795942036 | +| Epoch_13_batch_5999.pt | 0.9395 | 0.0036687704402442313 | +| Epoch_16_batch_5999.pt | 0.9395 | 0.003967849185704244 | +| Epoch_14_batch_5999.pt | 0.9393333333333332 | 0.0033536418383970134 | +| Epoch_17_batch_2999.pt | 0.9391666666666667 | 0.0036111111111111057 | +| Epoch_11_batch_5999.pt | 0.9391666666666666 | 0.004031128874149276 | +| Epoch_13.pt | 0.9388333333333335 | 0.0037683706404692424 | +| Epoch_12.pt | 0.9388333333333332 | 0.0037928620419329555 | +| Epoch_10.pt | 0.9383333333333332 | 0.004216370213557835 | +| Epoch_15.pt | 0.9381666666666668 | 0.003595693583396533 | +| Epoch_16.pt | 0.9378333333333332 | 0.0033430414185178633 | +| Epoch_11.pt | 0.9371666666666666 | 0.00388134188326857 | +| Epoch_10_batch_5999.pt | 0.9365 | 0.003916174121906021 | +| Epoch_11_batch_2999.pt | 0.9363333333333334 | 0.004163331998932266 | +| Epoch_12_batch_5999.pt | 0.9355 | 0.0037601713908928204 | +| Epoch_10_batch_2999.pt | 0.9345000000000001 | 0.003881341883268571 | +| Epoch_8_batch_2999.pt | 0.9254999999999999 | 0.004187356041380288 | +| Epoch_5_batch_5999.pt | 0.9251666666666667 | 0.0051845568402352 | +| Epoch_9_batch_5999.pt | 0.925 | 0.003710179523792 | +| Epoch_9_batch_2999.pt | 0.9246666666666666 | 0.0039424877776022575 | +| Epoch_9.pt | 0.9236666666666669 | 0.0038313199221259313 | +| Epoch_8_batch_5999.pt | 0.9235 | 0.004327988156347179 | +| Epoch_7_batch_5999.pt | 0.9233333333333335 | 0.004029214303215277 | +| Epoch_6_batch_5999.pt | 0.9225 | 0.004844813951249548 | +| Epoch_6_batch_2999.pt | 0.9213333333333334 | 0.005344894875913643 | +| Epoch_6.pt | 0.9211666666666666 | 0.003751954223311792 | +| Epoch_7_batch_2999.pt | 0.9166666666666666 | 0.0040061680838488775 | +| Epoch_5_batch_2999.pt | 0.9164999999999999 | 0.0037798197095942365 | +| Epoch_4_batch_5999.pt | 0.9156666666666666 | 0.005295001136641719 | +| Epoch_5.pt | 0.915 | 0.0038888888888888866 | +| Epoch_8.pt | 0.9146666666666666 | 0.004042978977480054 | +| Epoch_3_batch_5999.pt | 0.9145 | 0.004944444444444446 | +| Epoch_4.pt | 0.9143333333333334 | 0.005068664323536468 | +| Epoch_4_batch_2999.pt | 0.9126666666666668 | 0.004283185614976973 | +| Epoch_3_batch_2999.pt | 0.9125 | 0.005517928131481733 | +| Epoch_7.pt | 0.9099999999999999 | 0.004513354669242204 | +| Epoch_2.pt | 0.908 | 0.004633479880442902 | +| Epoch_2_batch_5999.pt | 0.907 | 0.005344894875913641 | +| Epoch_3.pt | 0.9055 | 0.005483139138742954 | +| Epoch_2_batch_2999.pt | 0.9036666666666665 | 0.004415181441401225 | +| Epoch_1.pt | 0.8941666666666667 | 0.005248456563247551 | +| Epoch_1_batch_5999.pt | 0.8936666666666667 | 0.005333333333333333 | +| Epoch_1_batch_2999.pt | 0.8833333333333334 | 0.004753166585823874 | +| Epoch_0.pt | 0.8473333333333333 | 0.0033259176771323995 | +| Epoch_0_batch_5999.pt | 0.8423333333333334 | 0.0046693114198779325 | +| Epoch_0_batch_2999.pt | 0.7418333333333333 | 0.0066083093969955585 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_cplfw.txt b/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_cplfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..4a7ee3056eedf8e3d742fa5583767320c3f04701 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_cplfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15.pt | 0.8380000000000001 | 0.005162782291328419 | +| Epoch_17.pt | 0.8378333333333334 | 0.004044887033170536 | +| Epoch_17_batch_2999.pt | 0.8375 | 0.0052602046620278675 | +| Epoch_10.pt | 0.8356666666666668 | 0.00572626610076672 | +| Epoch_15_batch_2999.pt | 0.8346666666666666 | 0.005925462944877056 | +| Epoch_13_batch_2999.pt | 0.8341666666666668 | 0.004995368225036441 | +| Epoch_12_batch_5999.pt | 0.8338333333333334 | 0.005398044913567211 | +| Epoch_16_batch_5999.pt | 0.8338333333333333 | 0.005241395064505465 | +| Epoch_14_batch_2999.pt | 0.8334999999999999 | 0.005902761437885888 | +| Epoch_12.pt | 0.8334999999999999 | 0.005607809809916662 | +| Epoch_17_batch_5999.pt | 0.8334999999999999 | 0.005907987896708518 | +| Epoch_11_batch_5999.pt | 0.8328333333333333 | 0.0063296773073210294 | +| Epoch_16_batch_2999.pt | 0.8325000000000001 | 0.005796177965896646 | +| Epoch_14_batch_5999.pt | 0.8323333333333334 | 0.006256848100133819 | +| Epoch_13.pt | 0.8320000000000001 | 0.0058097406499561625 | +| Epoch_14.pt | 0.8320000000000001 | 0.006753142844010111 | +| Epoch_16.pt | 0.8318333333333333 | 0.0058818091615034235 | +| Epoch_15_batch_5999.pt | 0.8310000000000001 | 0.005979388465366094 | +| Epoch_12_batch_2999.pt | 0.8303333333333333 | 0.005239922721134044 | +| Epoch_10_batch_5999.pt | 0.8295 | 0.005253158955556718 | +| Epoch_13_batch_5999.pt | 0.8291666666666668 | 0.0062075720388316035 | +| Epoch_11_batch_2999.pt | 0.8291666666666666 | 0.006868473332984994 | +| Epoch_11.pt | 0.8281666666666666 | 0.004550471417716722 | +| Epoch_10_batch_2999.pt | 0.8254999999999999 | 0.006925752622113785 | +| Epoch_9_batch_5999.pt | 0.8099999999999999 | 0.006703601390665933 | +| Epoch_9.pt | 0.8068333333333333 | 0.006677999626560759 | +| Epoch_9_batch_2999.pt | 0.8058333333333334 | 0.0055680415246074704 | +| Epoch_7_batch_5999.pt | 0.8015000000000001 | 0.007675719293112974 | +| Epoch_6_batch_5999.pt | 0.8013333333333333 | 0.006492160514662914 | +| Epoch_5_batch_5999.pt | 0.8013333333333333 | 0.007057086448089071 | +| Epoch_8_batch_2999.pt | 0.8008333333333333 | 0.007869498862423129 | +| Epoch_8_batch_5999.pt | 0.8006666666666666 | 0.009409084131706488 | +| Epoch_6_batch_2999.pt | 0.8001666666666667 | 0.008554292836110181 | +| Epoch_7_batch_2999.pt | 0.7986666666666666 | 0.006969067458029654 | +| Epoch_5_batch_2999.pt | 0.7941666666666666 | 0.007278625904779583 | +| Epoch_6.pt | 0.7933333333333333 | 0.008534606386520673 | +| Epoch_4.pt | 0.7918333333333334 | 0.008611827927154233 | +| Epoch_4_batch_5999.pt | 0.7886666666666666 | 0.008909005015733823 | +| Epoch_7.pt | 0.7883333333333333 | 0.0097182531580755 | +| Epoch_3_batch_5999.pt | 0.7873333333333333 | 0.008473633762194496 | +| Epoch_4_batch_2999.pt | 0.7871666666666667 | 0.005905897868201721 | +| Epoch_8.pt | 0.7865 | 0.008208133575309518 | +| Epoch_5.pt | 0.7865 | 0.006307207321590978 | +| Epoch_3.pt | 0.7816666666666666 | 0.006464528092350608 | +| Epoch_3_batch_2999.pt | 0.7811666666666668 | 0.007286254605271452 | +| Epoch_2_batch_5999.pt | 0.7801666666666666 | 0.006457123542603502 | +| Epoch_2.pt | 0.779 | 0.00794347313409561 | +| Epoch_2_batch_2999.pt | 0.7735000000000001 | 0.006253147355680327 | +| Epoch_1_batch_5999.pt | 0.7708333333333333 | 0.00792421667274079 | +| Epoch_1.pt | 0.7583333333333333 | 0.0078134104407774 | +| Epoch_1_batch_2999.pt | 0.744 | 0.00818836874573009 | +| Epoch_0.pt | 0.7035000000000001 | 0.006026945667091587 | +| Epoch_0_batch_5999.pt | 0.6981666666666666 | 0.007998649577380449 | +| Epoch_0_batch_2999.pt | 0.6375 | 0.010497648178708914 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_lfw.txt b/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_lfw.txt new file mode 100644 index 0000000000000000000000000000000000000000..32a3f2f067ee122d52e4ff8686b483ff6b8533f7 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_lfw.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14_batch_5999.pt | 0.9955 | 0.0012184284555256317 | +| Epoch_10.pt | 0.9954999999999998 | 0.0011928283640879939 | +| Epoch_17_batch_5999.pt | 0.9954999999999998 | 0.0010555555555555552 | +| Epoch_13_batch_5999.pt | 0.9953333333333333 | 0.001160034056545619 | +| Epoch_17_batch_2999.pt | 0.9953333333333333 | 0.000987577157479508 | +| Epoch_16_batch_5999.pt | 0.9953333333333333 | 0.0010482201257840662 | +| Epoch_16_batch_2999.pt | 0.9953333333333333 | 0.001105541596785131 | +| Epoch_14.pt | 0.9953333333333332 | 0.0010772621905369623 | +| Epoch_13.pt | 0.9951666666666668 | 0.001007686508178724 | +| Epoch_14_batch_2999.pt | 0.9951666666666666 | 0.0012031337682059844 | +| Epoch_15_batch_5999.pt | 0.9951666666666666 | 0.001150684176511556 | +| Epoch_12_batch_2999.pt | 0.9951666666666666 | 0.0011772011166898376 | +| Epoch_15_batch_2999.pt | 0.9951666666666666 | 0.001150684176511556 | +| Epoch_11.pt | 0.9950000000000001 | 0.001111111111111109 | +| Epoch_10_batch_5999.pt | 0.9950000000000001 | 0.0011915339216404008 | +| Epoch_17.pt | 0.9949999999999999 | 0.00121716123890037 | +| Epoch_10_batch_2999.pt | 0.9948333333333335 | 0.001228519132638664 | +| Epoch_11_batch_2999.pt | 0.9948333333333332 | 0.0012285191326386685 | +| Epoch_12.pt | 0.9948333333333332 | 0.0010671873729054778 | +| Epoch_13_batch_2999.pt | 0.9948333333333332 | 0.0012031337682059844 | +| Epoch_16.pt | 0.9948333333333332 | 0.0008766518798921935 | +| Epoch_12_batch_5999.pt | 0.9946666666666666 | 0.0011863420280034786 | +| Epoch_9_batch_2999.pt | 0.9945 | 0.0017042068500197737 | +| Epoch_11_batch_5999.pt | 0.9945 | 0.0011928283640879936 | +| Epoch_8_batch_2999.pt | 0.9941666666666669 | 0.0014540280364780426 | +| Epoch_15.pt | 0.9941666666666666 | 0.0011180339887498947 | +| Epoch_9_batch_5999.pt | 0.9938333333333332 | 0.0015525765124980138 | +| Epoch_6_batch_2999.pt | 0.9933333333333334 | 0.001531560972454468 | +| Epoch_7_batch_5999.pt | 0.9931666666666666 | 0.001520436909267114 | +| Epoch_8.pt | 0.9931666666666666 | 0.0014999999999999983 | +| Epoch_8_batch_5999.pt | 0.993 | 0.0014229164972073044 | +| Epoch_7.pt | 0.993 | 0.0014444444444444446 | +| Epoch_4_batch_2999.pt | 0.9926666666666668 | 0.0014098419489388396 | +| Epoch_6_batch_5999.pt | 0.9926666666666666 | 0.0012222222222222228 | +| Epoch_7_batch_2999.pt | 0.9926666666666666 | 0.0014740554623801831 | +| Epoch_4.pt | 0.9926666666666666 | 0.0015752718754175393 | +| Epoch_5_batch_2999.pt | 0.9925 | 0.0014326441064697365 | +| Epoch_4_batch_5999.pt | 0.9923333333333334 | 0.0016887426837300758 | +| Epoch_3_batch_5999.pt | 0.9923333333333334 | 0.0014529663145135632 | +| Epoch_5_batch_5999.pt | 0.9923333333333332 | 0.001613982116259329 | +| Epoch_9.pt | 0.9921666666666666 | 0.001025899184034405 | +| Epoch_3_batch_2999.pt | 0.9916666666666668 | 0.0017033010796395466 | +| Epoch_5.pt | 0.9906666666666666 | 0.001724908299584452 | +| Epoch_3.pt | 0.9906666666666666 | 0.0011166528467912136 | +| Epoch_2.pt | 0.99 | 0.0010829771494232185 | +| Epoch_6.pt | 0.9893333333333333 | 0.0017249082995844474 | +| Epoch_2_batch_5999.pt | 0.9888333333333332 | 0.0012680791345014873 | +| Epoch_2_batch_2999.pt | 0.9883333333333333 | 0.0009622504486493771 | +| Epoch_1_batch_5999.pt | 0.9879999999999999 | 0.0012619796324000619 | +| Epoch_1.pt | 0.9871666666666666 | 0.001025899184034411 | +| Epoch_1_batch_2999.pt | 0.9843333333333334 | 0.0016517854163687258 | +| Epoch_0.pt | 0.9726666666666667 | 0.0014740554623801794 | +| Epoch_0_batch_5999.pt | 0.9685 | 0.002551325000712227 | +| Epoch_0_batch_2999.pt | 0.9446666666666668 | 0.003581502546952482 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_rfw_African.txt b/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_rfw_African.txt new file mode 100644 index 0000000000000000000000000000000000000000..86b610904565335dd2d4abc54f2a3027cee222d4 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_rfw_African.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_14.pt | 0.8808333333333334 | 0.004901813723284251 | +| Epoch_14_batch_2999.pt | 0.8801666666666665 | 0.005313911395665874 | +| Epoch_17_batch_2999.pt | 0.8795 | 0.004707821178306753 | +| Epoch_15_batch_5999.pt | 0.8793333333333333 | 0.004609437447264788 | +| Epoch_17_batch_5999.pt | 0.8793333333333333 | 0.005438772555786852 | +| Epoch_13_batch_2999.pt | 0.8781666666666667 | 0.00495940309032707 | +| Epoch_16_batch_2999.pt | 0.8780000000000001 | 0.004552844721899525 | +| Epoch_14_batch_5999.pt | 0.8779999999999999 | 0.005691665988829194 | +| Epoch_15_batch_2999.pt | 0.8778333333333335 | 0.005134307266916454 | +| Epoch_17.pt | 0.8773333333333333 | 0.004926622061643417 | +| Epoch_16_batch_5999.pt | 0.8768333333333332 | 0.005039657542745151 | +| Epoch_12_batch_5999.pt | 0.8765000000000001 | 0.004032659876435446 | +| Epoch_13_batch_5999.pt | 0.8763333333333334 | 0.0048035480713816215 | +| Epoch_16.pt | 0.8763333333333332 | 0.004573136806057042 | +| Epoch_15.pt | 0.876 | 0.005324066022538193 | +| Epoch_12_batch_2999.pt | 0.8753333333333332 | 0.004725815626252606 | +| Epoch_12.pt | 0.874 | 0.004275973645531965 | +| Epoch_11_batch_5999.pt | 0.8733333333333334 | 0.00528800179301813 | +| Epoch_11.pt | 0.8726666666666667 | 0.004007708621526985 | +| Epoch_10.pt | 0.8723333333333333 | 0.005277485372016861 | +| Epoch_10_batch_5999.pt | 0.8721666666666665 | 0.004714372560794843 | +| Epoch_13.pt | 0.8718333333333333 | 0.004736579481565278 | +| Epoch_11_batch_2999.pt | 0.8713333333333333 | 0.004316205466567784 | +| Epoch_10_batch_2999.pt | 0.8701666666666666 | 0.005313911395665875 | +| Epoch_8_batch_2999.pt | 0.8451666666666666 | 0.005166666666666669 | +| Epoch_7_batch_5999.pt | 0.8445 | 0.005566932794703092 | +| Epoch_8_batch_5999.pt | 0.8425 | 0.005218970618904431 | +| Epoch_9_batch_2999.pt | 0.8421666666666667 | 0.005583540626334325 | +| Epoch_6_batch_5999.pt | 0.8383333333333335 | 0.006348908723182954 | +| Epoch_9_batch_5999.pt | 0.8381666666666667 | 0.006248209620106401 | +| Epoch_6_batch_2999.pt | 0.8358333333333332 | 0.004297932319409212 | +| Epoch_7_batch_2999.pt | 0.8348333333333333 | 0.005100532530899631 | +| Epoch_5_batch_5999.pt | 0.8341666666666667 | 0.005007710104811097 | +| Epoch_5.pt | 0.8325000000000001 | 0.006579288490181677 | +| Epoch_7.pt | 0.8315000000000001 | 0.004978038187632841 | +| Epoch_9.pt | 0.8303333333333333 | 0.005453507196359123 | +| Epoch_6.pt | 0.8301666666666666 | 0.006719466836580209 | +| Epoch_5_batch_2999.pt | 0.8274999999999999 | 0.005623199300253403 | +| Epoch_8.pt | 0.8265 | 0.005273097339852128 | +| Epoch_4_batch_5999.pt | 0.826 | 0.005693834655697315 | +| Epoch_4.pt | 0.8254999999999999 | 0.004798726682962655 | +| Epoch_3_batch_5999.pt | 0.8243333333333334 | 0.005838357624630959 | +| Epoch_4_batch_2999.pt | 0.8233333333333333 | 0.005998971105196937 | +| Epoch_3_batch_2999.pt | 0.8206666666666667 | 0.004232443767720201 | +| Epoch_3.pt | 0.8181666666666667 | 0.00525550857390323 | +| Epoch_2_batch_5999.pt | 0.8049999999999999 | 0.005649210586171622 | +| Epoch_2_batch_2999.pt | 0.7998333333333332 | 0.006006426599387291 | +| Epoch_2.pt | 0.7966666666666666 | 0.007498971122843086 | +| Epoch_1_batch_5999.pt | 0.7838333333333334 | 0.004253176010094052 | +| Epoch_1.pt | 0.7788333333333333 | 0.005170249653689992 | +| Epoch_1_batch_2999.pt | 0.7693333333333333 | 0.004459696053419883 | +| Epoch_0.pt | 0.7171666666666666 | 0.003469888104361597 | +| Epoch_0_batch_5999.pt | 0.7051666666666666 | 0.002622904807580643 | +| Epoch_0_batch_2999.pt | 0.6256666666666667 | 0.006531972647421807 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_rfw_Asian.txt b/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_rfw_Asian.txt new file mode 100644 index 0000000000000000000000000000000000000000..36943cd6ef8197926fed53482787b011f7e086aa --- /dev/null +++ b/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_rfw_Asian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_13_batch_5999.pt | 0.882 | 0.0036328406053937425 | +| Epoch_14_batch_5999.pt | 0.882 | 0.004244095389952066 | +| Epoch_15_batch_2999.pt | 0.881 | 0.00434044999658324 | +| Epoch_17_batch_2999.pt | 0.8805 | 0.0046017307533064095 | +| Epoch_14_batch_2999.pt | 0.8795 | 0.0032683480177961616 | +| Epoch_16_batch_2999.pt | 0.8790000000000001 | 0.0040612593072215765 | +| Epoch_13.pt | 0.8786666666666667 | 0.003624334762288911 | +| Epoch_16_batch_5999.pt | 0.8781666666666667 | 0.0033467323292953395 | +| Epoch_13_batch_2999.pt | 0.8780000000000001 | 0.0036243347622889137 | +| Epoch_15_batch_5999.pt | 0.8779999999999999 | 0.0034587516480607547 | +| Epoch_17.pt | 0.8778333333333332 | 0.004112987559751023 | +| Epoch_14.pt | 0.8773333333333333 | 0.002768874620972698 | +| Epoch_17_batch_5999.pt | 0.877 | 0.0038151743807532056 | +| Epoch_15.pt | 0.8766666666666667 | 0.0036260375271290482 | +| Epoch_12.pt | 0.8763333333333334 | 0.003284832333132106 | +| Epoch_10.pt | 0.876 | 0.0018459164139817978 | +| Epoch_11.pt | 0.8755000000000001 | 0.003012832636212506 | +| Epoch_11_batch_5999.pt | 0.8748333333333334 | 0.0030676528205063414 | +| Epoch_10_batch_5999.pt | 0.8741666666666668 | 0.0032034896096307776 | +| Epoch_12_batch_2999.pt | 0.8736666666666666 | 0.0032659863237108973 | +| Epoch_12_batch_5999.pt | 0.8734999999999999 | 0.003374285475346721 | +| Epoch_16.pt | 0.8728333333333333 | 0.0036687704402442356 | +| Epoch_11_batch_2999.pt | 0.8708333333333333 | 0.003576759689515528 | +| Epoch_10_batch_2999.pt | 0.8683333333333334 | 0.002496911672693804 | +| Epoch_6_batch_5999.pt | 0.8470000000000001 | 0.0057510063531589035 | +| Epoch_7_batch_5999.pt | 0.8465 | 0.004946940693218602 | +| Epoch_8_batch_5999.pt | 0.8460000000000001 | 0.0019436506316150984 | +| Epoch_9_batch_5999.pt | 0.8455 | 0.0036687704402442343 | +| Epoch_8_batch_2999.pt | 0.8441666666666666 | 0.0041518254203407505 | +| Epoch_7_batch_2999.pt | 0.8401666666666665 | 0.005524636181530118 | +| Epoch_9_batch_2999.pt | 0.8396666666666667 | 0.003170076137263799 | +| Epoch_5_batch_5999.pt | 0.8368333333333332 | 0.006047395113131019 | +| Epoch_4.pt | 0.8353333333333334 | 0.00508447163939891 | +| Epoch_6_batch_2999.pt | 0.8343333333333334 | 0.003961231882216864 | +| Epoch_8.pt | 0.8329999999999999 | 0.0032659863237109077 | +| Epoch_6.pt | 0.8321666666666667 | 0.005311587612283448 | +| Epoch_5_batch_2999.pt | 0.8316666666666667 | 0.0047074933698477515 | +| Epoch_4_batch_5999.pt | 0.8291666666666666 | 0.0053705300103986595 | +| Epoch_3_batch_5999.pt | 0.8288333333333334 | 0.005616608967722097 | +| Epoch_9.pt | 0.8271666666666666 | 0.0032015621187164254 | +| Epoch_3_batch_2999.pt | 0.8248333333333333 | 0.005749127684771184 | +| Epoch_7.pt | 0.8240000000000001 | 0.0046361435655611315 | +| Epoch_5.pt | 0.8230000000000001 | 0.005571089394098522 | +| Epoch_3.pt | 0.8166666666666667 | 0.005085685551709242 | +| Epoch_2_batch_5999.pt | 0.8156666666666667 | 0.006182412330330469 | +| Epoch_4_batch_2999.pt | 0.8155000000000001 | 0.00471437256079484 | +| Epoch_2.pt | 0.8063333333333335 | 0.005526591162420398 | +| Epoch_2_batch_2999.pt | 0.8048333333333334 | 0.005711424548251543 | +| Epoch_1.pt | 0.7868333333333333 | 0.005507850738090717 | +| Epoch_1_batch_5999.pt | 0.7828333333333333 | 0.005511211916640798 | +| Epoch_1_batch_2999.pt | 0.769 | 0.006676844083366044 | +| Epoch_0.pt | 0.741 | 0.00404603143467403 | +| Epoch_0_batch_5999.pt | 0.7308333333333333 | 0.004121982622566566 | +| Epoch_0_batch_2999.pt | 0.6881666666666666 | 0.005296458168984487 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_rfw_Caucasian.txt b/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_rfw_Caucasian.txt new file mode 100644 index 0000000000000000000000000000000000000000..dfa15cd750816a08f90009f08da51238319f335e --- /dev/null +++ b/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_rfw_Caucasian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15_batch_2999.pt | 0.9546666666666667 | 0.00253128572219878 | +| Epoch_16_batch_5999.pt | 0.9546666666666667 | 0.0022194427061597967 | +| Epoch_16.pt | 0.9545 | 0.0023313483620397003 | +| Epoch_15.pt | 0.9540000000000001 | 0.002462057756240042 | +| Epoch_13_batch_2999.pt | 0.9540000000000001 | 0.0027464904654018385 | +| Epoch_16_batch_2999.pt | 0.9538333333333334 | 0.0019883922409081383 | +| Epoch_17_batch_2999.pt | 0.9538333333333332 | 0.002064544908451343 | +| Epoch_15_batch_5999.pt | 0.9536666666666666 | 0.0021052550357218264 | +| Epoch_14_batch_2999.pt | 0.9535 | 0.0022145701586660845 | +| Epoch_14_batch_5999.pt | 0.9535 | 0.0023366378716459008 | +| Epoch_17_batch_5999.pt | 0.9531666666666668 | 0.002242270674512282 | +| Epoch_12_batch_5999.pt | 0.9531666666666666 | 0.0029860788111948163 | +| Epoch_17.pt | 0.9531666666666665 | 0.0023366378716459008 | +| Epoch_12_batch_2999.pt | 0.953 | 0.0024317854031377013 | +| Epoch_11.pt | 0.9521666666666666 | 0.002485141027371678 | +| Epoch_14.pt | 0.9520000000000002 | 0.002627020092785978 | +| Epoch_13_batch_5999.pt | 0.9516666666666665 | 0.00230404903925864 | +| Epoch_11_batch_5999.pt | 0.9511666666666667 | 0.002485141027371675 | +| Epoch_13.pt | 0.9506666666666665 | 0.0028781852993308103 | +| Epoch_12.pt | 0.9498333333333333 | 0.0023759338644825695 | +| Epoch_11_batch_2999.pt | 0.9493333333333333 | 0.002920764317354431 | +| Epoch_10_batch_2999.pt | 0.9488333333333335 | 0.002653323096946567 | +| Epoch_10_batch_5999.pt | 0.9484999999999999 | 0.002669558617051996 | +| Epoch_10.pt | 0.9456666666666669 | 0.0026081543542901126 | +| Epoch_9_batch_5999.pt | 0.9256666666666666 | 0.003307305792474934 | +| Epoch_9_batch_2999.pt | 0.9241666666666667 | 0.004069231128273327 | +| Epoch_7_batch_5999.pt | 0.922 | 0.003081205471969341 | +| Epoch_7_batch_2999.pt | 0.9215 | 0.0026229048075806422 | +| Epoch_8_batch_5999.pt | 0.9208333333333332 | 0.003636661744234035 | +| Epoch_8_batch_2999.pt | 0.9205 | 0.003857412297075547 | +| Epoch_6_batch_2999.pt | 0.9196666666666667 | 0.0035986966090448148 | +| Epoch_9.pt | 0.9186666666666665 | 0.003071172213574502 | +| Epoch_6_batch_5999.pt | 0.9178333333333335 | 0.0026063786901644238 | +| Epoch_5_batch_5999.pt | 0.9148333333333334 | 0.0034016154477425928 | +| Epoch_5_batch_2999.pt | 0.9135 | 0.0032437023504433365 | +| Epoch_4_batch_5999.pt | 0.9126666666666667 | 0.0013877773329774245 | +| Epoch_4.pt | 0.9119999999999999 | 0.004401178293408523 | +| Epoch_3_batch_2999.pt | 0.9111666666666667 | 0.0031234872881934685 | +| Epoch_3_batch_5999.pt | 0.9106666666666665 | 0.0024241582476968214 | +| Epoch_8.pt | 0.9101666666666667 | 0.005249632556218446 | +| Epoch_3.pt | 0.9093333333333332 | 0.0030550504633038984 | +| Epoch_7.pt | 0.9066666666666666 | 0.0038005847503304554 | +| Epoch_5.pt | 0.9065000000000001 | 0.004468338548355086 | +| Epoch_4_batch_2999.pt | 0.9065 | 0.003328236844611147 | +| Epoch_6.pt | 0.9043333333333334 | 0.004662696724079402 | +| Epoch_2_batch_5999.pt | 0.9021666666666667 | 0.004430882084797872 | +| Epoch_2.pt | 0.8983333333333334 | 0.0028760398012321704 | +| Epoch_2_batch_2999.pt | 0.8944999999999999 | 0.002653323096946561 | +| Epoch_1.pt | 0.8865000000000001 | 0.004115988098220321 | +| Epoch_1_batch_5999.pt | 0.8805 | 0.003496470883902125 | +| Epoch_1_batch_2999.pt | 0.8636666666666667 | 0.0034228715112776323 | +| Epoch_0_batch_5999.pt | 0.8295 | 0.004830778379628527 | +| Epoch_0.pt | 0.8251666666666667 | 0.005136711250317248 | +| Epoch_0_batch_2999.pt | 0.7656666666666666 | 0.005147215476400207 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_rfw_Indian.txt b/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_rfw_Indian.txt new file mode 100644 index 0000000000000000000000000000000000000000..778fa2ec414ab9733024962afbc1481ac880a037 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/NPCFace/accu_files/accu_rfw_Indian.txt @@ -0,0 +1,58 @@ ++------------------------+--------------------+-----------------------+ +| model_name | mean accuracy | standard error | ++------------------------+--------------------+-----------------------+ +| Epoch_15.pt | 0.9103333333333333 | 0.00279770629155871 | +| Epoch_14_batch_5999.pt | 0.9103333333333333 | 0.0027644122899166063 | +| Epoch_16_batch_5999.pt | 0.9101666666666667 | 0.0030066798061632962 | +| Epoch_16_batch_2999.pt | 0.9099999999999999 | 0.003162277660168382 | +| Epoch_15_batch_2999.pt | 0.9093333333333333 | 0.002572408200620055 | +| Epoch_17.pt | 0.909 | 0.003222222222222227 | +| Epoch_17_batch_5999.pt | 0.909 | 0.003173968190463487 | +| Epoch_14_batch_2999.pt | 0.9088333333333333 | 0.003333796264150557 | +| Epoch_15_batch_5999.pt | 0.9083333333333332 | 0.003220305943597656 | +| Epoch_13.pt | 0.9081666666666667 | 0.003517592470728158 | +| Epoch_13_batch_5999.pt | 0.9078333333333335 | 0.003230353724468143 | +| Epoch_14.pt | 0.9078333333333333 | 0.003296556377588175 | +| Epoch_11.pt | 0.9076666666666666 | 0.0024241582476968214 | +| Epoch_13_batch_2999.pt | 0.9076666666666666 | 0.002867441755680875 | +| Epoch_17_batch_2999.pt | 0.9075 | 0.003125462928674486 | +| Epoch_16.pt | 0.9071666666666666 | 0.003239894069294071 | +| Epoch_12_batch_5999.pt | 0.9048333333333334 | 0.0035525160619440327 | +| Epoch_12_batch_2999.pt | 0.9046666666666668 | 0.003130889511912304 | +| Epoch_11_batch_5999.pt | 0.9046666666666667 | 0.003091206165165239 | +| Epoch_10.pt | 0.9041666666666666 | 0.0032322640461752996 | +| Epoch_12.pt | 0.9040000000000001 | 0.004121608220220313 | +| Epoch_10_batch_2999.pt | 0.9031666666666668 | 0.0027605018330677457 | +| Epoch_10_batch_5999.pt | 0.9031666666666668 | 0.0022005891467042626 | +| Epoch_11_batch_2999.pt | 0.9021666666666667 | 0.002582586510926545 | +| Epoch_6_batch_5999.pt | 0.8789999999999999 | 0.004487293445846368 | +| Epoch_9_batch_5999.pt | 0.8786666666666667 | 0.004751867728965139 | +| Epoch_7_batch_5999.pt | 0.8775000000000001 | 0.004521894610027696 | +| Epoch_5_batch_5999.pt | 0.8761666666666666 | 0.004824385075636545 | +| Epoch_7_batch_2999.pt | 0.8756666666666666 | 0.0032603112780269362 | +| Epoch_9_batch_2999.pt | 0.8748333333333334 | 0.0032721231828060516 | +| Epoch_8_batch_2999.pt | 0.8741666666666668 | 0.005590169943749468 | +| Epoch_9.pt | 0.8725000000000002 | 0.0033077723659120485 | +| Epoch_6_batch_2999.pt | 0.8720000000000001 | 0.0035642255405212114 | +| Epoch_6.pt | 0.8698333333333335 | 0.0034645470728153077 | +| Epoch_5_batch_2999.pt | 0.8696666666666667 | 0.003431876713662335 | +| Epoch_8_batch_5999.pt | 0.8694999999999998 | 0.00398337594894296 | +| Epoch_3_batch_5999.pt | 0.8643333333333333 | 0.004283185614976967 | +| Epoch_8.pt | 0.8606666666666667 | 0.004144012488660335 | +| Epoch_5.pt | 0.86 | 0.004621474298463427 | +| Epoch_4.pt | 0.8598333333333332 | 0.003836552593471007 | +| Epoch_4_batch_5999.pt | 0.859 | 0.004015402444353921 | +| Epoch_4_batch_2999.pt | 0.8560000000000001 | 0.006056320033294067 | +| Epoch_3_batch_2999.pt | 0.8553333333333333 | 0.005935871284085815 | +| Epoch_7.pt | 0.8550000000000001 | 0.005561108336107644 | +| Epoch_3.pt | 0.8513333333333332 | 0.005084471639398918 | +| Epoch_2_batch_5999.pt | 0.8441666666666666 | 0.00510537117307006 | +| Epoch_2.pt | 0.8426666666666666 | 0.004642796092394706 | +| Epoch_2_batch_2999.pt | 0.8413333333333334 | 0.00588888888888889 | +| Epoch_1_batch_5999.pt | 0.8358333333333334 | 0.0034716666222151106 | +| Epoch_1.pt | 0.8283333333333334 | 0.004013864859597433 | +| Epoch_1_batch_2999.pt | 0.8185 | 0.004447568346583426 | +| Epoch_0.pt | 0.784 | 0.003929942040850532 | +| Epoch_0_batch_5999.pt | 0.7765 | 0.00459098687580646 | +| Epoch_0_batch_2999.pt | 0.7211666666666667 | 0.0054379212622399165 | ++------------------------+--------------------+-----------------------+ diff --git a/bob/bio/facexzoo/models/heads/NPCFace/log.log b/bob/bio/facexzoo/models/heads/NPCFace/log.log new file mode 100644 index 0000000000000000000000000000000000000000..0d06d0a7bbd2445d935e0cddb97ddcd252c69844 --- /dev/null +++ b/bob/bio/facexzoo/models/heads/NPCFace/log.log @@ -0,0 +1,657 @@ +INFO 2020-11-25 15:09:54 driver.py: 124] Generating grammar tables from /usr/lib/python3.6/lib2to3/Grammar.txt +INFO 2020-11-25 15:09:54 driver.py: 124] Generating grammar tables from /usr/lib/python3.6/lib2to3/PatternGrammar.txt +INFO 2020-11-25 15:09:54 train.py: 172] Start optimization. +INFO 2020-11-25 15:09:54 train.py: 173] Namespace(backbone_conf_file='../backbone_conf.yaml', backbone_type='Mobilefacenets', batch_size=512, data_root='/home/wangjun492/wj_data/facex-zoo/deepglint/msra_crop', epoches=18, head_conf_file='../head_conf.yaml', head_type='NPCFace', log_dir='log', lr=0.1, milestones=[10, 13, 16], momentum=0.9, out_dir='out_dir', pretrain_model='mv_epoch_8.pt', print_freq=200, resume=False, save_freq=3000, step='10, 13, 16', tensorboardx_logdir='npc-mobile', train_file='/home/wangjun492/wj_data/facex-zoo/deepglint/msceleb_deepglint_train_file.txt', writer=<tensorboardX.writer.SummaryWriter object at 0x7efbf375c390>) +backbone param: +{'feat_dim': 512, 'out_h': 7, 'out_w': 7} +head param: +{'feat_dim': 512, 'num_class': 72778, 'margin': 0.35, 'scale': 32} +INFO 2020-11-25 15:10:19 train.py: 74] Epoch 0, iter 0/6416, lr 0.100000, loss 24.927702 +INFO 2020-11-25 15:11:49 train.py: 74] Epoch 0, iter 200/6416, lr 0.100000, loss 25.481443 +INFO 2020-11-25 15:13:18 train.py: 74] Epoch 0, iter 400/6416, lr 0.100000, loss 26.659269 +INFO 2020-11-25 15:14:48 train.py: 74] Epoch 0, iter 600/6416, lr 0.100000, loss 27.631736 +INFO 2020-11-25 15:16:17 train.py: 74] Epoch 0, iter 800/6416, lr 0.100000, loss 28.146001 +INFO 2020-11-25 15:17:47 train.py: 74] Epoch 0, iter 1000/6416, lr 0.100000, loss 28.272338 +INFO 2020-11-25 15:19:17 train.py: 74] Epoch 0, iter 1200/6416, lr 0.100000, loss 28.236835 +INFO 2020-11-25 15:20:46 train.py: 74] Epoch 0, iter 1400/6416, lr 0.100000, loss 28.099825 +INFO 2020-11-25 15:22:16 train.py: 74] Epoch 0, iter 1600/6416, lr 0.100000, loss 27.929273 +INFO 2020-11-25 15:23:45 train.py: 74] Epoch 0, iter 1800/6416, lr 0.100000, loss 27.690363 +INFO 2020-11-25 15:25:15 train.py: 74] Epoch 0, iter 2000/6416, lr 0.100000, loss 27.420151 +INFO 2020-11-25 15:26:44 train.py: 74] Epoch 0, iter 2200/6416, lr 0.100000, loss 27.146129 +INFO 2020-11-25 15:28:14 train.py: 74] Epoch 0, iter 2400/6416, lr 0.100000, loss 26.847339 +INFO 2020-11-25 15:29:44 train.py: 74] Epoch 0, iter 2600/6416, lr 0.100000, loss 26.526757 +INFO 2020-11-25 15:31:13 train.py: 74] Epoch 0, iter 2800/6416, lr 0.100000, loss 26.193765 +INFO 2020-11-25 15:32:43 train.py: 87] Save checkpoint Epoch_0_batch_2999.pt to disk. +INFO 2020-11-25 15:32:43 train.py: 74] Epoch 0, iter 3000/6416, lr 0.100000, loss 25.847690 +INFO 2020-11-25 15:34:14 train.py: 74] Epoch 0, iter 3200/6416, lr 0.100000, loss 25.490689 +INFO 2020-11-25 15:35:44 train.py: 74] Epoch 0, iter 3400/6416, lr 0.100000, loss 25.152195 +INFO 2020-11-25 15:37:15 train.py: 74] Epoch 0, iter 3600/6416, lr 0.100000, loss 24.809073 +INFO 2020-11-25 15:38:46 train.py: 74] Epoch 0, iter 3800/6416, lr 0.100000, loss 24.446493 +INFO 2020-11-25 15:40:16 train.py: 74] Epoch 0, iter 4000/6416, lr 0.100000, loss 24.098312 +INFO 2020-11-25 15:41:47 train.py: 74] Epoch 0, iter 4200/6416, lr 0.100000, loss 23.741335 +INFO 2020-11-25 15:43:17 train.py: 74] Epoch 0, iter 4400/6416, lr 0.100000, loss 23.359606 +INFO 2020-11-25 15:44:47 train.py: 74] Epoch 0, iter 4600/6416, lr 0.100000, loss 23.006592 +INFO 2020-11-25 15:46:18 train.py: 74] Epoch 0, iter 4800/6416, lr 0.100000, loss 22.597682 +INFO 2020-11-25 15:47:49 train.py: 74] Epoch 0, iter 5000/6416, lr 0.100000, loss 22.221911 +INFO 2020-11-25 15:49:19 train.py: 74] Epoch 0, iter 5200/6416, lr 0.100000, loss 21.765906 +INFO 2020-11-25 15:50:50 train.py: 74] Epoch 0, iter 5400/6416, lr 0.100000, loss 21.355992 +INFO 2020-11-25 15:52:20 train.py: 74] Epoch 0, iter 5600/6416, lr 0.100000, loss 20.924678 +INFO 2020-11-25 15:53:50 train.py: 74] Epoch 0, iter 5800/6416, lr 0.100000, loss 20.485877 +INFO 2020-11-25 15:55:21 train.py: 87] Save checkpoint Epoch_0_batch_5999.pt to disk. +INFO 2020-11-25 15:55:21 train.py: 74] Epoch 0, iter 6000/6416, lr 0.100000, loss 20.034333 +INFO 2020-11-25 15:56:52 train.py: 74] Epoch 0, iter 6200/6416, lr 0.100000, loss 19.576644 +INFO 2020-11-25 15:58:22 train.py: 74] Epoch 0, iter 6400/6416, lr 0.100000, loss 19.127555 +INFO 2020-11-25 15:58:29 train.py: 92] Save checkpoint Epoch_0.pt to disk... +INFO 2020-11-25 15:58:31 train.py: 74] Epoch 1, iter 0/6416, lr 0.100000, loss 18.911504 +INFO 2020-11-25 16:00:01 train.py: 74] Epoch 1, iter 200/6416, lr 0.100000, loss 18.296700 +INFO 2020-11-25 16:01:31 train.py: 74] Epoch 1, iter 400/6416, lr 0.100000, loss 17.933004 +INFO 2020-11-25 16:03:01 train.py: 74] Epoch 1, iter 600/6416, lr 0.100000, loss 17.637282 +INFO 2020-11-25 16:04:31 train.py: 74] Epoch 1, iter 800/6416, lr 0.100000, loss 17.380947 +INFO 2020-11-25 16:06:01 train.py: 74] Epoch 1, iter 1000/6416, lr 0.100000, loss 17.136755 +INFO 2020-11-25 16:07:31 train.py: 74] Epoch 1, iter 1200/6416, lr 0.100000, loss 16.809908 +INFO 2020-11-25 16:09:02 train.py: 74] Epoch 1, iter 1400/6416, lr 0.100000, loss 16.530462 +INFO 2020-11-25 16:10:32 train.py: 74] Epoch 1, iter 1600/6416, lr 0.100000, loss 16.341601 +INFO 2020-11-25 16:12:01 train.py: 74] Epoch 1, iter 1800/6416, lr 0.100000, loss 16.097688 +INFO 2020-11-25 16:13:32 train.py: 74] Epoch 1, iter 2000/6416, lr 0.100000, loss 15.917136 +INFO 2020-11-25 16:15:02 train.py: 74] Epoch 1, iter 2200/6416, lr 0.100000, loss 15.705214 +INFO 2020-11-25 16:16:32 train.py: 74] Epoch 1, iter 2400/6416, lr 0.100000, loss 15.517589 +INFO 2020-11-25 16:18:02 train.py: 74] Epoch 1, iter 2600/6416, lr 0.100000, loss 15.342113 +INFO 2020-11-25 16:19:32 train.py: 74] Epoch 1, iter 2800/6416, lr 0.100000, loss 15.124372 +INFO 2020-11-25 16:21:02 train.py: 87] Save checkpoint Epoch_1_batch_2999.pt to disk. +INFO 2020-11-25 16:21:03 train.py: 74] Epoch 1, iter 3000/6416, lr 0.100000, loss 14.998705 +INFO 2020-11-25 16:22:33 train.py: 74] Epoch 1, iter 3200/6416, lr 0.100000, loss 14.836050 +INFO 2020-11-25 16:24:03 train.py: 74] Epoch 1, iter 3400/6416, lr 0.100000, loss 14.713484 +INFO 2020-11-25 16:25:33 train.py: 74] Epoch 1, iter 3600/6416, lr 0.100000, loss 14.528275 +INFO 2020-11-25 16:27:03 train.py: 74] Epoch 1, iter 3800/6416, lr 0.100000, loss 14.510679 +INFO 2020-11-25 16:28:33 train.py: 74] Epoch 1, iter 4000/6416, lr 0.100000, loss 14.391305 +INFO 2020-11-25 16:30:03 train.py: 74] Epoch 1, iter 4200/6416, lr 0.100000, loss 14.260403 +INFO 2020-11-25 16:31:33 train.py: 74] Epoch 1, iter 4400/6416, lr 0.100000, loss 14.123975 +INFO 2020-11-25 16:33:03 train.py: 74] Epoch 1, iter 4600/6416, lr 0.100000, loss 14.033432 +INFO 2020-11-25 16:34:33 train.py: 74] Epoch 1, iter 4800/6416, lr 0.100000, loss 13.982409 +INFO 2020-11-25 16:36:03 train.py: 74] Epoch 1, iter 5000/6416, lr 0.100000, loss 13.882295 +INFO 2020-11-25 16:37:33 train.py: 74] Epoch 1, iter 5200/6416, lr 0.100000, loss 13.707344 +INFO 2020-11-25 16:39:02 train.py: 74] Epoch 1, iter 5400/6416, lr 0.100000, loss 13.685294 +INFO 2020-11-25 16:40:33 train.py: 74] Epoch 1, iter 5600/6416, lr 0.100000, loss 13.617356 +INFO 2020-11-25 16:42:03 train.py: 74] Epoch 1, iter 5800/6416, lr 0.100000, loss 13.505162 +INFO 2020-11-25 16:43:32 train.py: 87] Save checkpoint Epoch_1_batch_5999.pt to disk. +INFO 2020-11-25 16:43:33 train.py: 74] Epoch 1, iter 6000/6416, lr 0.100000, loss 13.465484 +INFO 2020-11-25 16:45:03 train.py: 74] Epoch 1, iter 6200/6416, lr 0.100000, loss 13.385129 +INFO 2020-11-25 16:46:34 train.py: 74] Epoch 1, iter 6400/6416, lr 0.100000, loss 13.262779 +INFO 2020-11-25 16:46:41 train.py: 92] Save checkpoint Epoch_1.pt to disk... +INFO 2020-11-25 16:46:43 train.py: 74] Epoch 2, iter 0/6416, lr 0.100000, loss 13.185356 +INFO 2020-11-25 16:48:14 train.py: 74] Epoch 2, iter 200/6416, lr 0.100000, loss 12.468792 +INFO 2020-11-25 16:49:45 train.py: 74] Epoch 2, iter 400/6416, lr 0.100000, loss 12.518446 +INFO 2020-11-25 16:51:16 train.py: 74] Epoch 2, iter 600/6416, lr 0.100000, loss 12.622364 +INFO 2020-11-25 16:52:47 train.py: 74] Epoch 2, iter 800/6416, lr 0.100000, loss 12.651303 +INFO 2020-11-25 16:54:18 train.py: 74] Epoch 2, iter 1000/6416, lr 0.100000, loss 12.685659 +INFO 2020-11-25 16:55:49 train.py: 74] Epoch 2, iter 1200/6416, lr 0.100000, loss 12.678821 +INFO 2020-11-25 16:57:20 train.py: 74] Epoch 2, iter 1400/6416, lr 0.100000, loss 12.694099 +INFO 2020-11-25 16:58:51 train.py: 74] Epoch 2, iter 1600/6416, lr 0.100000, loss 12.685656 +INFO 2020-11-25 17:00:22 train.py: 74] Epoch 2, iter 1800/6416, lr 0.100000, loss 12.673783 +INFO 2020-11-25 17:01:53 train.py: 74] Epoch 2, iter 2000/6416, lr 0.100000, loss 12.593529 +INFO 2020-11-25 17:03:25 train.py: 74] Epoch 2, iter 2200/6416, lr 0.100000, loss 12.576401 +INFO 2020-11-25 17:04:56 train.py: 74] Epoch 2, iter 2400/6416, lr 0.100000, loss 12.516576 +INFO 2020-11-25 17:06:27 train.py: 74] Epoch 2, iter 2600/6416, lr 0.100000, loss 12.537273 +INFO 2020-11-25 17:07:59 train.py: 74] Epoch 2, iter 2800/6416, lr 0.100000, loss 12.431063 +INFO 2020-11-25 17:09:30 train.py: 87] Save checkpoint Epoch_2_batch_2999.pt to disk. +INFO 2020-11-25 17:09:30 train.py: 74] Epoch 2, iter 3000/6416, lr 0.100000, loss 12.405576 +INFO 2020-11-25 17:11:02 train.py: 74] Epoch 2, iter 3200/6416, lr 0.100000, loss 12.372717 +INFO 2020-11-25 17:12:34 train.py: 74] Epoch 2, iter 3400/6416, lr 0.100000, loss 12.407423 +INFO 2020-11-25 17:14:05 train.py: 74] Epoch 2, iter 3600/6416, lr 0.100000, loss 12.299461 +INFO 2020-11-25 17:15:37 train.py: 74] Epoch 2, iter 3800/6416, lr 0.100000, loss 12.250163 +INFO 2020-11-25 17:17:09 train.py: 74] Epoch 2, iter 4000/6416, lr 0.100000, loss 12.273306 +INFO 2020-11-25 17:18:41 train.py: 74] Epoch 2, iter 4200/6416, lr 0.100000, loss 12.175709 +INFO 2020-11-25 17:20:13 train.py: 74] Epoch 2, iter 4400/6416, lr 0.100000, loss 12.185333 +INFO 2020-11-25 17:21:44 train.py: 74] Epoch 2, iter 4600/6416, lr 0.100000, loss 12.133005 +INFO 2020-11-25 17:23:16 train.py: 74] Epoch 2, iter 4800/6416, lr 0.100000, loss 12.055537 +INFO 2020-11-25 17:24:48 train.py: 74] Epoch 2, iter 5000/6416, lr 0.100000, loss 12.051655 +INFO 2020-11-25 17:26:20 train.py: 74] Epoch 2, iter 5200/6416, lr 0.100000, loss 12.050668 +INFO 2020-11-25 17:27:51 train.py: 74] Epoch 2, iter 5400/6416, lr 0.100000, loss 12.024552 +INFO 2020-11-25 17:29:23 train.py: 74] Epoch 2, iter 5600/6416, lr 0.100000, loss 11.949274 +INFO 2020-11-25 17:30:55 train.py: 74] Epoch 2, iter 5800/6416, lr 0.100000, loss 11.900883 +INFO 2020-11-25 17:32:27 train.py: 87] Save checkpoint Epoch_2_batch_5999.pt to disk. +INFO 2020-11-25 17:32:27 train.py: 74] Epoch 2, iter 6000/6416, lr 0.100000, loss 11.891491 +INFO 2020-11-25 17:33:58 train.py: 74] Epoch 2, iter 6200/6416, lr 0.100000, loss 11.839428 +INFO 2020-11-25 17:35:29 train.py: 74] Epoch 2, iter 6400/6416, lr 0.100000, loss 11.792616 +INFO 2020-11-25 17:35:36 train.py: 92] Save checkpoint Epoch_2.pt to disk... +INFO 2020-11-25 17:35:38 train.py: 74] Epoch 3, iter 0/6416, lr 0.100000, loss 11.534243 +INFO 2020-11-25 17:37:09 train.py: 74] Epoch 3, iter 200/6416, lr 0.100000, loss 11.044183 +INFO 2020-11-25 17:38:39 train.py: 74] Epoch 3, iter 400/6416, lr 0.100000, loss 11.048038 +INFO 2020-11-25 17:40:10 train.py: 74] Epoch 3, iter 600/6416, lr 0.100000, loss 11.197148 +INFO 2020-11-25 17:41:40 train.py: 74] Epoch 3, iter 800/6416, lr 0.100000, loss 11.270086 +INFO 2020-11-25 17:43:10 train.py: 74] Epoch 3, iter 1000/6416, lr 0.100000, loss 11.389561 +INFO 2020-11-25 17:44:41 train.py: 74] Epoch 3, iter 1200/6416, lr 0.100000, loss 11.395745 +INFO 2020-11-25 17:46:11 train.py: 74] Epoch 3, iter 1400/6416, lr 0.100000, loss 11.422172 +INFO 2020-11-25 17:47:42 train.py: 74] Epoch 3, iter 1600/6416, lr 0.100000, loss 11.410723 +INFO 2020-11-25 17:49:12 train.py: 74] Epoch 3, iter 1800/6416, lr 0.100000, loss 11.483555 +INFO 2020-11-25 17:50:43 train.py: 74] Epoch 3, iter 2000/6416, lr 0.100000, loss 11.449949 +INFO 2020-11-25 17:52:13 train.py: 74] Epoch 3, iter 2200/6416, lr 0.100000, loss 11.391050 +INFO 2020-11-25 17:53:44 train.py: 74] Epoch 3, iter 2400/6416, lr 0.100000, loss 11.413115 +INFO 2020-11-25 17:55:15 train.py: 74] Epoch 3, iter 2600/6416, lr 0.100000, loss 11.387014 +INFO 2020-11-25 17:56:45 train.py: 74] Epoch 3, iter 2800/6416, lr 0.100000, loss 11.391482 +INFO 2020-11-25 17:58:16 train.py: 87] Save checkpoint Epoch_3_batch_2999.pt to disk. +INFO 2020-11-25 17:58:16 train.py: 74] Epoch 3, iter 3000/6416, lr 0.100000, loss 11.411233 +INFO 2020-11-25 17:59:48 train.py: 74] Epoch 3, iter 3200/6416, lr 0.100000, loss 11.315576 +INFO 2020-11-25 18:01:19 train.py: 74] Epoch 3, iter 3400/6416, lr 0.100000, loss 11.334390 +INFO 2020-11-25 18:02:51 train.py: 74] Epoch 3, iter 3600/6416, lr 0.100000, loss 11.312477 +INFO 2020-11-25 18:04:23 train.py: 74] Epoch 3, iter 3800/6416, lr 0.100000, loss 11.266192 +INFO 2020-11-25 18:05:54 train.py: 74] Epoch 3, iter 4000/6416, lr 0.100000, loss 11.283333 +INFO 2020-11-25 18:07:26 train.py: 74] Epoch 3, iter 4200/6416, lr 0.100000, loss 11.224462 +INFO 2020-11-25 18:08:58 train.py: 74] Epoch 3, iter 4400/6416, lr 0.100000, loss 11.209081 +INFO 2020-11-25 18:10:30 train.py: 74] Epoch 3, iter 4600/6416, lr 0.100000, loss 11.209695 +INFO 2020-11-25 18:12:02 train.py: 74] Epoch 3, iter 4800/6416, lr 0.100000, loss 11.182206 +INFO 2020-11-25 18:13:34 train.py: 74] Epoch 3, iter 5000/6416, lr 0.100000, loss 11.173278 +INFO 2020-11-25 18:15:05 train.py: 74] Epoch 3, iter 5200/6416, lr 0.100000, loss 11.109613 +INFO 2020-11-25 18:16:37 train.py: 74] Epoch 3, iter 5400/6416, lr 0.100000, loss 11.166652 +INFO 2020-11-25 18:18:09 train.py: 74] Epoch 3, iter 5600/6416, lr 0.100000, loss 11.093884 +INFO 2020-11-25 18:19:41 train.py: 74] Epoch 3, iter 5800/6416, lr 0.100000, loss 11.159175 +INFO 2020-11-25 18:21:13 train.py: 87] Save checkpoint Epoch_3_batch_5999.pt to disk. +INFO 2020-11-25 18:21:13 train.py: 74] Epoch 3, iter 6000/6416, lr 0.100000, loss 11.038569 +INFO 2020-11-25 18:22:45 train.py: 74] Epoch 3, iter 6200/6416, lr 0.100000, loss 11.029128 +INFO 2020-11-25 18:24:16 train.py: 74] Epoch 3, iter 6400/6416, lr 0.100000, loss 11.063368 +INFO 2020-11-25 18:24:23 train.py: 92] Save checkpoint Epoch_3.pt to disk... +INFO 2020-11-25 18:24:25 train.py: 74] Epoch 4, iter 0/6416, lr 0.100000, loss 11.057874 +INFO 2020-11-25 18:25:56 train.py: 74] Epoch 4, iter 200/6416, lr 0.100000, loss 10.321902 +INFO 2020-11-25 18:27:27 train.py: 74] Epoch 4, iter 400/6416, lr 0.100000, loss 10.310155 +INFO 2020-11-25 18:28:58 train.py: 74] Epoch 4, iter 600/6416, lr 0.100000, loss 10.422067 +INFO 2020-11-25 18:30:29 train.py: 74] Epoch 4, iter 800/6416, lr 0.100000, loss 10.577450 +INFO 2020-11-25 18:32:00 train.py: 74] Epoch 4, iter 1000/6416, lr 0.100000, loss 10.692825 +INFO 2020-11-25 18:33:32 train.py: 74] Epoch 4, iter 1200/6416, lr 0.100000, loss 10.633665 +INFO 2020-11-25 18:35:03 train.py: 74] Epoch 4, iter 1400/6416, lr 0.100000, loss 10.675439 +INFO 2020-11-25 18:36:34 train.py: 74] Epoch 4, iter 1600/6416, lr 0.100000, loss 10.794083 +INFO 2020-11-25 18:38:05 train.py: 74] Epoch 4, iter 1800/6416, lr 0.100000, loss 10.744724 +INFO 2020-11-25 18:39:36 train.py: 74] Epoch 4, iter 2000/6416, lr 0.100000, loss 10.746419 +INFO 2020-11-25 18:41:08 train.py: 74] Epoch 4, iter 2200/6416, lr 0.100000, loss 10.760121 +INFO 2020-11-25 18:42:39 train.py: 74] Epoch 4, iter 2400/6416, lr 0.100000, loss 10.732277 +INFO 2020-11-25 18:44:10 train.py: 74] Epoch 4, iter 2600/6416, lr 0.100000, loss 10.786279 +INFO 2020-11-25 18:45:42 train.py: 74] Epoch 4, iter 2800/6416, lr 0.100000, loss 10.683985 +INFO 2020-11-25 18:47:13 train.py: 87] Save checkpoint Epoch_4_batch_2999.pt to disk. +INFO 2020-11-25 18:47:13 train.py: 74] Epoch 4, iter 3000/6416, lr 0.100000, loss 10.722752 +INFO 2020-11-25 18:48:45 train.py: 74] Epoch 4, iter 3200/6416, lr 0.100000, loss 10.674939 +INFO 2020-11-25 18:50:17 train.py: 74] Epoch 4, iter 3400/6416, lr 0.100000, loss 10.775858 +INFO 2020-11-25 18:51:48 train.py: 74] Epoch 4, iter 3600/6416, lr 0.100000, loss 10.730112 +INFO 2020-11-25 18:53:20 train.py: 74] Epoch 4, iter 3800/6416, lr 0.100000, loss 10.684429 +INFO 2020-11-25 18:54:52 train.py: 74] Epoch 4, iter 4000/6416, lr 0.100000, loss 10.720501 +INFO 2020-11-25 18:56:24 train.py: 74] Epoch 4, iter 4200/6416, lr 0.100000, loss 10.638486 +INFO 2020-11-25 18:57:56 train.py: 74] Epoch 4, iter 4400/6416, lr 0.100000, loss 10.686998 +INFO 2020-11-25 18:59:28 train.py: 74] Epoch 4, iter 4600/6416, lr 0.100000, loss 10.717062 +INFO 2020-11-25 19:01:00 train.py: 74] Epoch 4, iter 4800/6416, lr 0.100000, loss 10.634711 +INFO 2020-11-25 19:02:31 train.py: 74] Epoch 4, iter 5000/6416, lr 0.100000, loss 10.602083 +INFO 2020-11-25 19:04:03 train.py: 74] Epoch 4, iter 5200/6416, lr 0.100000, loss 10.600415 +INFO 2020-11-25 19:05:35 train.py: 74] Epoch 4, iter 5400/6416, lr 0.100000, loss 10.600393 +INFO 2020-11-25 19:07:07 train.py: 74] Epoch 4, iter 5600/6416, lr 0.100000, loss 10.605459 +INFO 2020-11-25 19:08:39 train.py: 74] Epoch 4, iter 5800/6416, lr 0.100000, loss 10.620802 +INFO 2020-11-25 19:10:10 train.py: 87] Save checkpoint Epoch_4_batch_5999.pt to disk. +INFO 2020-11-25 19:10:11 train.py: 74] Epoch 4, iter 6000/6416, lr 0.100000, loss 10.568606 +INFO 2020-11-25 19:11:42 train.py: 74] Epoch 4, iter 6200/6416, lr 0.100000, loss 10.526867 +INFO 2020-11-25 19:13:14 train.py: 74] Epoch 4, iter 6400/6416, lr 0.100000, loss 10.546365 +INFO 2020-11-25 19:13:22 train.py: 92] Save checkpoint Epoch_4.pt to disk... +INFO 2020-11-25 19:13:23 train.py: 74] Epoch 5, iter 0/6416, lr 0.100000, loss 10.762732 +INFO 2020-11-25 19:14:54 train.py: 74] Epoch 5, iter 200/6416, lr 0.100000, loss 9.803253 +INFO 2020-11-25 19:16:25 train.py: 74] Epoch 5, iter 400/6416, lr 0.100000, loss 9.821998 +INFO 2020-11-25 19:17:57 train.py: 74] Epoch 5, iter 600/6416, lr 0.100000, loss 9.986957 +INFO 2020-11-25 19:19:28 train.py: 74] Epoch 5, iter 800/6416, lr 0.100000, loss 10.062394 +INFO 2020-11-25 19:20:59 train.py: 74] Epoch 5, iter 1000/6416, lr 0.100000, loss 10.162395 +INFO 2020-11-25 19:22:30 train.py: 74] Epoch 5, iter 1200/6416, lr 0.100000, loss 10.249884 +INFO 2020-11-25 19:24:01 train.py: 74] Epoch 5, iter 1400/6416, lr 0.100000, loss 10.294340 +INFO 2020-11-25 19:25:32 train.py: 74] Epoch 5, iter 1600/6416, lr 0.100000, loss 10.268831 +INFO 2020-11-25 19:27:04 train.py: 74] Epoch 5, iter 1800/6416, lr 0.100000, loss 10.333934 +INFO 2020-11-25 19:28:35 train.py: 74] Epoch 5, iter 2000/6416, lr 0.100000, loss 10.364582 +INFO 2020-11-25 19:30:06 train.py: 74] Epoch 5, iter 2200/6416, lr 0.100000, loss 10.292656 +INFO 2020-11-25 19:31:37 train.py: 74] Epoch 5, iter 2400/6416, lr 0.100000, loss 10.364636 +INFO 2020-11-25 19:33:09 train.py: 74] Epoch 5, iter 2600/6416, lr 0.100000, loss 10.346629 +INFO 2020-11-25 19:34:40 train.py: 74] Epoch 5, iter 2800/6416, lr 0.100000, loss 10.319169 +INFO 2020-11-25 19:36:11 train.py: 87] Save checkpoint Epoch_5_batch_2999.pt to disk. +INFO 2020-11-25 19:36:12 train.py: 74] Epoch 5, iter 3000/6416, lr 0.100000, loss 10.363147 +INFO 2020-11-25 19:37:43 train.py: 74] Epoch 5, iter 3200/6416, lr 0.100000, loss 10.326473 +INFO 2020-11-25 19:39:14 train.py: 74] Epoch 5, iter 3400/6416, lr 0.100000, loss 10.361666 +INFO 2020-11-25 19:40:46 train.py: 74] Epoch 5, iter 3600/6416, lr 0.100000, loss 10.352291 +INFO 2020-11-25 19:42:17 train.py: 74] Epoch 5, iter 3800/6416, lr 0.100000, loss 10.302245 +INFO 2020-11-25 19:43:49 train.py: 74] Epoch 5, iter 4000/6416, lr 0.100000, loss 10.206425 +INFO 2020-11-25 19:45:21 train.py: 74] Epoch 5, iter 4200/6416, lr 0.100000, loss 10.297817 +INFO 2020-11-25 19:46:52 train.py: 74] Epoch 5, iter 4400/6416, lr 0.100000, loss 10.294239 +INFO 2020-11-25 19:48:24 train.py: 74] Epoch 5, iter 4600/6416, lr 0.100000, loss 10.335441 +INFO 2020-11-25 19:49:56 train.py: 74] Epoch 5, iter 4800/6416, lr 0.100000, loss 10.272924 +INFO 2020-11-25 19:51:27 train.py: 74] Epoch 5, iter 5000/6416, lr 0.100000, loss 10.262506 +INFO 2020-11-25 19:52:59 train.py: 74] Epoch 5, iter 5200/6416, lr 0.100000, loss 10.278853 +INFO 2020-11-25 19:54:31 train.py: 74] Epoch 5, iter 5400/6416, lr 0.100000, loss 10.283840 +INFO 2020-11-25 19:56:02 train.py: 74] Epoch 5, iter 5600/6416, lr 0.100000, loss 10.228839 +INFO 2020-11-25 19:57:34 train.py: 74] Epoch 5, iter 5800/6416, lr 0.100000, loss 10.191768 +INFO 2020-11-25 19:59:05 train.py: 87] Save checkpoint Epoch_5_batch_5999.pt to disk. +INFO 2020-11-25 19:59:06 train.py: 74] Epoch 5, iter 6000/6416, lr 0.100000, loss 10.200151 +INFO 2020-11-25 20:00:37 train.py: 74] Epoch 5, iter 6200/6416, lr 0.100000, loss 10.242199 +INFO 2020-11-25 20:02:08 train.py: 74] Epoch 5, iter 6400/6416, lr 0.100000, loss 10.184401 +INFO 2020-11-25 20:02:15 train.py: 92] Save checkpoint Epoch_5.pt to disk... +INFO 2020-11-25 20:02:17 train.py: 74] Epoch 6, iter 0/6416, lr 0.100000, loss 10.106567 +INFO 2020-11-25 20:03:48 train.py: 74] Epoch 6, iter 200/6416, lr 0.100000, loss 9.496195 +INFO 2020-11-25 20:05:18 train.py: 74] Epoch 6, iter 400/6416, lr 0.100000, loss 9.510301 +INFO 2020-11-25 20:06:49 train.py: 74] Epoch 6, iter 600/6416, lr 0.100000, loss 9.583626 +INFO 2020-11-25 20:08:19 train.py: 74] Epoch 6, iter 800/6416, lr 0.100000, loss 9.736390 +INFO 2020-11-25 20:09:50 train.py: 74] Epoch 6, iter 1000/6416, lr 0.100000, loss 9.819257 +INFO 2020-11-25 20:11:20 train.py: 74] Epoch 6, iter 1200/6416, lr 0.100000, loss 9.921078 +INFO 2020-11-25 20:12:50 train.py: 74] Epoch 6, iter 1400/6416, lr 0.100000, loss 9.965668 +INFO 2020-11-25 20:14:21 train.py: 74] Epoch 6, iter 1600/6416, lr 0.100000, loss 9.946194 +INFO 2020-11-25 20:15:52 train.py: 74] Epoch 6, iter 1800/6416, lr 0.100000, loss 9.993823 +INFO 2020-11-25 20:17:22 train.py: 74] Epoch 6, iter 2000/6416, lr 0.100000, loss 10.049934 +INFO 2020-11-25 20:18:53 train.py: 74] Epoch 6, iter 2200/6416, lr 0.100000, loss 10.080067 +INFO 2020-11-25 20:20:24 train.py: 74] Epoch 6, iter 2400/6416, lr 0.100000, loss 10.078383 +INFO 2020-11-25 20:21:54 train.py: 74] Epoch 6, iter 2600/6416, lr 0.100000, loss 10.061219 +INFO 2020-11-25 20:23:25 train.py: 74] Epoch 6, iter 2800/6416, lr 0.100000, loss 10.055866 +INFO 2020-11-25 20:24:56 train.py: 87] Save checkpoint Epoch_6_batch_2999.pt to disk. +INFO 2020-11-25 20:24:56 train.py: 74] Epoch 6, iter 3000/6416, lr 0.100000, loss 10.033821 +INFO 2020-11-25 20:26:28 train.py: 74] Epoch 6, iter 3200/6416, lr 0.100000, loss 10.000279 +INFO 2020-11-25 20:28:00 train.py: 74] Epoch 6, iter 3400/6416, lr 0.100000, loss 10.007907 +INFO 2020-11-25 20:29:31 train.py: 74] Epoch 6, iter 3600/6416, lr 0.100000, loss 10.016073 +INFO 2020-11-25 20:31:03 train.py: 74] Epoch 6, iter 3800/6416, lr 0.100000, loss 10.019750 +INFO 2020-11-25 20:32:35 train.py: 74] Epoch 6, iter 4000/6416, lr 0.100000, loss 10.066343 +INFO 2020-11-25 20:34:06 train.py: 74] Epoch 6, iter 4200/6416, lr 0.100000, loss 10.063196 +INFO 2020-11-25 20:35:38 train.py: 74] Epoch 6, iter 4400/6416, lr 0.100000, loss 10.046612 +INFO 2020-11-25 20:37:10 train.py: 74] Epoch 6, iter 4600/6416, lr 0.100000, loss 9.980377 +INFO 2020-11-25 20:38:42 train.py: 74] Epoch 6, iter 4800/6416, lr 0.100000, loss 9.971444 +INFO 2020-11-25 20:40:13 train.py: 74] Epoch 6, iter 5000/6416, lr 0.100000, loss 9.951295 +INFO 2020-11-25 20:41:45 train.py: 74] Epoch 6, iter 5200/6416, lr 0.100000, loss 9.939071 +INFO 2020-11-25 20:43:17 train.py: 74] Epoch 6, iter 5400/6416, lr 0.100000, loss 10.011326 +INFO 2020-11-25 20:44:49 train.py: 74] Epoch 6, iter 5600/6416, lr 0.100000, loss 9.938532 +INFO 2020-11-25 20:46:21 train.py: 74] Epoch 6, iter 5800/6416, lr 0.100000, loss 9.879780 +INFO 2020-11-25 20:47:52 train.py: 87] Save checkpoint Epoch_6_batch_5999.pt to disk. +INFO 2020-11-25 20:47:53 train.py: 74] Epoch 6, iter 6000/6416, lr 0.100000, loss 9.991037 +INFO 2020-11-25 20:49:25 train.py: 74] Epoch 6, iter 6200/6416, lr 0.100000, loss 9.971898 +INFO 2020-11-25 20:50:56 train.py: 74] Epoch 6, iter 6400/6416, lr 0.100000, loss 9.964046 +INFO 2020-11-25 20:51:03 train.py: 92] Save checkpoint Epoch_6.pt to disk... +INFO 2020-11-25 20:51:05 train.py: 74] Epoch 7, iter 0/6416, lr 0.100000, loss 9.899056 +INFO 2020-11-25 20:52:36 train.py: 74] Epoch 7, iter 200/6416, lr 0.100000, loss 9.271046 +INFO 2020-11-25 20:54:08 train.py: 74] Epoch 7, iter 400/6416, lr 0.100000, loss 9.260704 +INFO 2020-11-25 20:55:39 train.py: 74] Epoch 7, iter 600/6416, lr 0.100000, loss 9.393151 +INFO 2020-11-25 20:57:10 train.py: 74] Epoch 7, iter 800/6416, lr 0.100000, loss 9.512562 +INFO 2020-11-25 20:58:41 train.py: 74] Epoch 7, iter 1000/6416, lr 0.100000, loss 9.601516 +INFO 2020-11-25 21:00:12 train.py: 74] Epoch 7, iter 1200/6416, lr 0.100000, loss 9.694700 +INFO 2020-11-25 21:01:43 train.py: 74] Epoch 7, iter 1400/6416, lr 0.100000, loss 9.691284 +INFO 2020-11-25 21:03:14 train.py: 74] Epoch 7, iter 1600/6416, lr 0.100000, loss 9.716006 +INFO 2020-11-25 21:04:45 train.py: 74] Epoch 7, iter 1800/6416, lr 0.100000, loss 9.743239 +INFO 2020-11-25 21:06:17 train.py: 74] Epoch 7, iter 2000/6416, lr 0.100000, loss 9.776830 +INFO 2020-11-25 21:07:48 train.py: 74] Epoch 7, iter 2200/6416, lr 0.100000, loss 9.818703 +INFO 2020-11-25 21:09:19 train.py: 74] Epoch 7, iter 2400/6416, lr 0.100000, loss 9.841673 +INFO 2020-11-25 21:10:50 train.py: 74] Epoch 7, iter 2600/6416, lr 0.100000, loss 9.735108 +INFO 2020-11-25 21:12:22 train.py: 74] Epoch 7, iter 2800/6416, lr 0.100000, loss 9.783545 +INFO 2020-11-25 21:13:53 train.py: 87] Save checkpoint Epoch_7_batch_2999.pt to disk. +INFO 2020-11-25 21:13:53 train.py: 74] Epoch 7, iter 3000/6416, lr 0.100000, loss 9.817886 +INFO 2020-11-25 21:15:24 train.py: 74] Epoch 7, iter 3200/6416, lr 0.100000, loss 9.787124 +INFO 2020-11-25 21:16:55 train.py: 74] Epoch 7, iter 3400/6416, lr 0.100000, loss 9.839368 +INFO 2020-11-25 21:18:26 train.py: 74] Epoch 7, iter 3600/6416, lr 0.100000, loss 9.797990 +INFO 2020-11-25 21:19:57 train.py: 74] Epoch 7, iter 3800/6416, lr 0.100000, loss 9.798788 +INFO 2020-11-25 21:21:28 train.py: 74] Epoch 7, iter 4000/6416, lr 0.100000, loss 9.754932 +INFO 2020-11-25 21:22:59 train.py: 74] Epoch 7, iter 4200/6416, lr 0.100000, loss 9.789546 +INFO 2020-11-25 21:24:30 train.py: 74] Epoch 7, iter 4400/6416, lr 0.100000, loss 9.799263 +INFO 2020-11-25 21:26:01 train.py: 74] Epoch 7, iter 4600/6416, lr 0.100000, loss 9.776393 +INFO 2020-11-25 21:27:32 train.py: 74] Epoch 7, iter 4800/6416, lr 0.100000, loss 9.781977 +INFO 2020-11-25 21:29:04 train.py: 74] Epoch 7, iter 5000/6416, lr 0.100000, loss 9.782919 +INFO 2020-11-25 21:30:35 train.py: 74] Epoch 7, iter 5200/6416, lr 0.100000, loss 9.738867 +INFO 2020-11-25 21:32:06 train.py: 74] Epoch 7, iter 5400/6416, lr 0.100000, loss 9.789223 +INFO 2020-11-25 21:33:37 train.py: 74] Epoch 7, iter 5600/6416, lr 0.100000, loss 9.723247 +INFO 2020-11-25 21:35:09 train.py: 74] Epoch 7, iter 5800/6416, lr 0.100000, loss 9.735522 +INFO 2020-11-25 21:36:40 train.py: 87] Save checkpoint Epoch_7_batch_5999.pt to disk. +INFO 2020-11-25 21:36:40 train.py: 74] Epoch 7, iter 6000/6416, lr 0.100000, loss 9.717222 +INFO 2020-11-25 21:38:12 train.py: 74] Epoch 7, iter 6200/6416, lr 0.100000, loss 9.714263 +INFO 2020-11-25 21:39:44 train.py: 74] Epoch 7, iter 6400/6416, lr 0.100000, loss 9.681192 +INFO 2020-11-25 21:39:51 train.py: 92] Save checkpoint Epoch_7.pt to disk... +INFO 2020-11-25 21:39:52 train.py: 74] Epoch 8, iter 0/6416, lr 0.100000, loss 9.711530 +INFO 2020-11-25 21:41:24 train.py: 74] Epoch 8, iter 200/6416, lr 0.100000, loss 8.984945 +INFO 2020-11-25 21:42:55 train.py: 74] Epoch 8, iter 400/6416, lr 0.100000, loss 9.039628 +INFO 2020-11-25 21:44:26 train.py: 74] Epoch 8, iter 600/6416, lr 0.100000, loss 9.191416 +INFO 2020-11-25 21:45:57 train.py: 74] Epoch 8, iter 800/6416, lr 0.100000, loss 9.297601 +INFO 2020-11-25 21:47:28 train.py: 74] Epoch 8, iter 1000/6416, lr 0.100000, loss 9.395964 +INFO 2020-11-25 21:48:59 train.py: 74] Epoch 8, iter 1200/6416, lr 0.100000, loss 9.485150 +INFO 2020-11-25 21:50:30 train.py: 74] Epoch 8, iter 1400/6416, lr 0.100000, loss 9.544018 +INFO 2020-11-25 21:52:01 train.py: 74] Epoch 8, iter 1600/6416, lr 0.100000, loss 9.548304 +INFO 2020-11-25 21:53:33 train.py: 74] Epoch 8, iter 1800/6416, lr 0.100000, loss 9.511209 +INFO 2020-11-25 21:55:04 train.py: 74] Epoch 8, iter 2000/6416, lr 0.100000, loss 9.597686 +INFO 2020-11-25 21:56:35 train.py: 74] Epoch 8, iter 2200/6416, lr 0.100000, loss 9.614700 +INFO 2020-11-25 21:58:06 train.py: 74] Epoch 8, iter 2400/6416, lr 0.100000, loss 9.607562 +INFO 2020-11-25 21:59:38 train.py: 74] Epoch 8, iter 2600/6416, lr 0.100000, loss 9.592671 +INFO 2020-11-25 22:01:09 train.py: 74] Epoch 8, iter 2800/6416, lr 0.100000, loss 9.603088 +INFO 2020-11-25 22:02:40 train.py: 87] Save checkpoint Epoch_8_batch_2999.pt to disk. +INFO 2020-11-25 22:02:41 train.py: 74] Epoch 8, iter 3000/6416, lr 0.100000, loss 9.601038 +INFO 2020-11-25 22:04:12 train.py: 74] Epoch 8, iter 3200/6416, lr 0.100000, loss 9.618175 +INFO 2020-11-25 22:05:43 train.py: 74] Epoch 8, iter 3400/6416, lr 0.100000, loss 9.614943 +INFO 2020-11-25 22:07:14 train.py: 74] Epoch 8, iter 3600/6416, lr 0.100000, loss 9.585135 +INFO 2020-11-25 22:08:45 train.py: 74] Epoch 8, iter 3800/6416, lr 0.100000, loss 9.630282 +INFO 2020-11-25 22:10:16 train.py: 74] Epoch 8, iter 4000/6416, lr 0.100000, loss 9.642341 +INFO 2020-11-25 22:11:47 train.py: 74] Epoch 8, iter 4200/6416, lr 0.100000, loss 9.637504 +INFO 2020-11-25 22:13:19 train.py: 74] Epoch 8, iter 4400/6416, lr 0.100000, loss 9.628689 +INFO 2020-11-25 22:14:50 train.py: 74] Epoch 8, iter 4600/6416, lr 0.100000, loss 9.571567 +INFO 2020-11-25 22:16:22 train.py: 74] Epoch 8, iter 4800/6416, lr 0.100000, loss 9.589931 +INFO 2020-11-25 22:17:53 train.py: 74] Epoch 8, iter 5000/6416, lr 0.100000, loss 9.562254 +INFO 2020-11-25 22:19:24 train.py: 74] Epoch 8, iter 5200/6416, lr 0.100000, loss 9.574488 +INFO 2020-11-25 22:20:55 train.py: 74] Epoch 8, iter 5400/6416, lr 0.100000, loss 9.592067 +INFO 2020-11-25 22:22:26 train.py: 74] Epoch 8, iter 5600/6416, lr 0.100000, loss 9.515037 +INFO 2020-11-25 22:23:58 train.py: 74] Epoch 8, iter 5800/6416, lr 0.100000, loss 9.562857 +INFO 2020-11-25 22:25:29 train.py: 87] Save checkpoint Epoch_8_batch_5999.pt to disk. +INFO 2020-11-25 22:25:29 train.py: 74] Epoch 8, iter 6000/6416, lr 0.100000, loss 9.547824 +INFO 2020-11-25 22:27:01 train.py: 74] Epoch 8, iter 6200/6416, lr 0.100000, loss 9.551801 +INFO 2020-11-25 22:28:32 train.py: 74] Epoch 8, iter 6400/6416, lr 0.100000, loss 9.552668 +INFO 2020-11-25 22:28:40 train.py: 92] Save checkpoint Epoch_8.pt to disk... +INFO 2020-11-25 22:28:41 train.py: 74] Epoch 9, iter 0/6416, lr 0.100000, loss 9.565202 +INFO 2020-11-25 22:30:13 train.py: 74] Epoch 9, iter 200/6416, lr 0.100000, loss 8.796665 +INFO 2020-11-25 22:31:44 train.py: 74] Epoch 9, iter 400/6416, lr 0.100000, loss 8.832894 +INFO 2020-11-25 22:33:15 train.py: 74] Epoch 9, iter 600/6416, lr 0.100000, loss 9.049687 +INFO 2020-11-25 22:34:46 train.py: 74] Epoch 9, iter 800/6416, lr 0.100000, loss 9.127557 +INFO 2020-11-25 22:36:17 train.py: 74] Epoch 9, iter 1000/6416, lr 0.100000, loss 9.240772 +INFO 2020-11-25 22:37:48 train.py: 74] Epoch 9, iter 1200/6416, lr 0.100000, loss 9.282510 +INFO 2020-11-25 22:39:19 train.py: 74] Epoch 9, iter 1400/6416, lr 0.100000, loss 9.333620 +INFO 2020-11-25 22:40:50 train.py: 74] Epoch 9, iter 1600/6416, lr 0.100000, loss 9.344223 +INFO 2020-11-25 22:42:21 train.py: 74] Epoch 9, iter 1800/6416, lr 0.100000, loss 9.437895 +INFO 2020-11-25 22:43:52 train.py: 74] Epoch 9, iter 2000/6416, lr 0.100000, loss 9.447560 +INFO 2020-11-25 22:45:23 train.py: 74] Epoch 9, iter 2200/6416, lr 0.100000, loss 9.441592 +INFO 2020-11-25 22:46:55 train.py: 74] Epoch 9, iter 2400/6416, lr 0.100000, loss 9.390768 +INFO 2020-11-25 22:48:26 train.py: 74] Epoch 9, iter 2600/6416, lr 0.100000, loss 9.464535 +INFO 2020-11-25 22:49:57 train.py: 74] Epoch 9, iter 2800/6416, lr 0.100000, loss 9.425357 +INFO 2020-11-25 22:51:28 train.py: 87] Save checkpoint Epoch_9_batch_2999.pt to disk. +INFO 2020-11-25 22:51:29 train.py: 74] Epoch 9, iter 3000/6416, lr 0.100000, loss 9.436382 +INFO 2020-11-25 22:53:00 train.py: 74] Epoch 9, iter 3200/6416, lr 0.100000, loss 9.466057 +INFO 2020-11-25 22:54:32 train.py: 74] Epoch 9, iter 3400/6416, lr 0.100000, loss 9.507903 +INFO 2020-11-25 22:56:04 train.py: 74] Epoch 9, iter 3600/6416, lr 0.100000, loss 9.458973 +INFO 2020-11-25 22:57:36 train.py: 74] Epoch 9, iter 3800/6416, lr 0.100000, loss 9.452028 +INFO 2020-11-25 22:59:07 train.py: 74] Epoch 9, iter 4000/6416, lr 0.100000, loss 9.442735 +INFO 2020-11-25 23:00:39 train.py: 74] Epoch 9, iter 4200/6416, lr 0.100000, loss 9.365954 +INFO 2020-11-25 23:02:11 train.py: 74] Epoch 9, iter 4400/6416, lr 0.100000, loss 9.399442 +INFO 2020-11-25 23:03:43 train.py: 74] Epoch 9, iter 4600/6416, lr 0.100000, loss 9.447410 +INFO 2020-11-25 23:05:14 train.py: 74] Epoch 9, iter 4800/6416, lr 0.100000, loss 9.446903 +INFO 2020-11-25 23:06:46 train.py: 74] Epoch 9, iter 5000/6416, lr 0.100000, loss 9.442265 +INFO 2020-11-25 23:08:18 train.py: 74] Epoch 9, iter 5200/6416, lr 0.100000, loss 9.402736 +INFO 2020-11-25 23:09:50 train.py: 74] Epoch 9, iter 5400/6416, lr 0.100000, loss 9.413441 +INFO 2020-11-25 23:11:22 train.py: 74] Epoch 9, iter 5600/6416, lr 0.100000, loss 9.411291 +INFO 2020-11-25 23:12:54 train.py: 74] Epoch 9, iter 5800/6416, lr 0.100000, loss 9.388273 +INFO 2020-11-25 23:14:25 train.py: 87] Save checkpoint Epoch_9_batch_5999.pt to disk. +INFO 2020-11-25 23:14:25 train.py: 74] Epoch 9, iter 6000/6416, lr 0.100000, loss 9.437387 +INFO 2020-11-25 23:15:56 train.py: 74] Epoch 9, iter 6200/6416, lr 0.100000, loss 9.430422 +INFO 2020-11-25 23:17:28 train.py: 74] Epoch 9, iter 6400/6416, lr 0.100000, loss 9.384275 +INFO 2020-11-25 23:17:35 train.py: 92] Save checkpoint Epoch_9.pt to disk... +INFO 2020-11-25 23:17:36 train.py: 74] Epoch 10, iter 0/6416, lr 0.010000, loss 9.310372 +INFO 2020-11-25 23:19:08 train.py: 74] Epoch 10, iter 200/6416, lr 0.010000, loss 7.696374 +INFO 2020-11-25 23:20:39 train.py: 74] Epoch 10, iter 400/6416, lr 0.010000, loss 7.366358 +INFO 2020-11-25 23:22:10 train.py: 74] Epoch 10, iter 600/6416, lr 0.010000, loss 7.185824 +INFO 2020-11-25 23:23:42 train.py: 74] Epoch 10, iter 800/6416, lr 0.010000, loss 7.078823 +INFO 2020-11-25 23:25:13 train.py: 74] Epoch 10, iter 1000/6416, lr 0.010000, loss 7.020524 +INFO 2020-11-25 23:26:44 train.py: 74] Epoch 10, iter 1200/6416, lr 0.010000, loss 6.939969 +INFO 2020-11-25 23:28:15 train.py: 74] Epoch 10, iter 1400/6416, lr 0.010000, loss 6.877689 +INFO 2020-11-25 23:29:46 train.py: 74] Epoch 10, iter 1600/6416, lr 0.010000, loss 6.806614 +INFO 2020-11-25 23:31:18 train.py: 74] Epoch 10, iter 1800/6416, lr 0.010000, loss 6.783090 +INFO 2020-11-25 23:32:49 train.py: 74] Epoch 10, iter 2000/6416, lr 0.010000, loss 6.713297 +INFO 2020-11-25 23:34:21 train.py: 74] Epoch 10, iter 2200/6416, lr 0.010000, loss 6.676922 +INFO 2020-11-25 23:35:52 train.py: 74] Epoch 10, iter 2400/6416, lr 0.010000, loss 6.684383 +INFO 2020-11-25 23:37:23 train.py: 74] Epoch 10, iter 2600/6416, lr 0.010000, loss 6.622241 +INFO 2020-11-25 23:38:55 train.py: 74] Epoch 10, iter 2800/6416, lr 0.010000, loss 6.637861 +INFO 2020-11-25 23:40:26 train.py: 87] Save checkpoint Epoch_10_batch_2999.pt to disk. +INFO 2020-11-25 23:40:26 train.py: 74] Epoch 10, iter 3000/6416, lr 0.010000, loss 6.497284 +INFO 2020-11-25 23:41:58 train.py: 74] Epoch 10, iter 3200/6416, lr 0.010000, loss 6.502413 +INFO 2020-11-25 23:43:29 train.py: 74] Epoch 10, iter 3400/6416, lr 0.010000, loss 6.496943 +INFO 2020-11-25 23:45:01 train.py: 74] Epoch 10, iter 3600/6416, lr 0.010000, loss 6.439115 +INFO 2020-11-25 23:46:32 train.py: 74] Epoch 10, iter 3800/6416, lr 0.010000, loss 6.475040 +INFO 2020-11-25 23:48:04 train.py: 74] Epoch 10, iter 4000/6416, lr 0.010000, loss 6.430689 +INFO 2020-11-25 23:49:36 train.py: 74] Epoch 10, iter 4200/6416, lr 0.010000, loss 6.405270 +INFO 2020-11-25 23:51:07 train.py: 74] Epoch 10, iter 4400/6416, lr 0.010000, loss 6.358830 +INFO 2020-11-25 23:52:39 train.py: 74] Epoch 10, iter 4600/6416, lr 0.010000, loss 6.321556 +INFO 2020-11-25 23:54:10 train.py: 74] Epoch 10, iter 4800/6416, lr 0.010000, loss 6.335605 +INFO 2020-11-25 23:55:42 train.py: 74] Epoch 10, iter 5000/6416, lr 0.010000, loss 6.270074 +INFO 2020-11-25 23:57:14 train.py: 74] Epoch 10, iter 5200/6416, lr 0.010000, loss 6.288233 +INFO 2020-11-25 23:58:45 train.py: 74] Epoch 10, iter 5400/6416, lr 0.010000, loss 6.265128 +INFO 2020-11-26 00:00:17 train.py: 74] Epoch 10, iter 5600/6416, lr 0.010000, loss 6.260416 +INFO 2020-11-26 00:01:49 train.py: 74] Epoch 10, iter 5800/6416, lr 0.010000, loss 6.222077 +INFO 2020-11-26 00:03:21 train.py: 87] Save checkpoint Epoch_10_batch_5999.pt to disk. +INFO 2020-11-26 00:03:21 train.py: 74] Epoch 10, iter 6000/6416, lr 0.010000, loss 6.218251 +INFO 2020-11-26 00:04:53 train.py: 74] Epoch 10, iter 6200/6416, lr 0.010000, loss 6.230017 +INFO 2020-11-26 00:06:24 train.py: 74] Epoch 10, iter 6400/6416, lr 0.010000, loss 6.198102 +INFO 2020-11-26 00:06:32 train.py: 92] Save checkpoint Epoch_10.pt to disk... +INFO 2020-11-26 00:06:33 train.py: 74] Epoch 11, iter 0/6416, lr 0.010000, loss 6.262739 +INFO 2020-11-26 00:08:04 train.py: 74] Epoch 11, iter 200/6416, lr 0.010000, loss 5.667192 +INFO 2020-11-26 00:09:34 train.py: 74] Epoch 11, iter 400/6416, lr 0.010000, loss 5.679188 +INFO 2020-11-26 00:11:05 train.py: 74] Epoch 11, iter 600/6416, lr 0.010000, loss 5.656450 +INFO 2020-11-26 00:12:36 train.py: 74] Epoch 11, iter 800/6416, lr 0.010000, loss 5.663527 +INFO 2020-11-26 00:14:06 train.py: 74] Epoch 11, iter 1000/6416, lr 0.010000, loss 5.653868 +INFO 2020-11-26 00:15:36 train.py: 74] Epoch 11, iter 1200/6416, lr 0.010000, loss 5.687948 +INFO 2020-11-26 00:17:07 train.py: 74] Epoch 11, iter 1400/6416, lr 0.010000, loss 5.711788 +INFO 2020-11-26 00:18:37 train.py: 74] Epoch 11, iter 1600/6416, lr 0.010000, loss 5.718742 +INFO 2020-11-26 00:20:08 train.py: 74] Epoch 11, iter 1800/6416, lr 0.010000, loss 5.676516 +INFO 2020-11-26 00:21:38 train.py: 74] Epoch 11, iter 2000/6416, lr 0.010000, loss 5.680991 +INFO 2020-11-26 00:23:09 train.py: 74] Epoch 11, iter 2200/6416, lr 0.010000, loss 5.694247 +INFO 2020-11-26 00:24:40 train.py: 74] Epoch 11, iter 2400/6416, lr 0.010000, loss 5.728337 +INFO 2020-11-26 00:26:11 train.py: 74] Epoch 11, iter 2600/6416, lr 0.010000, loss 5.665781 +INFO 2020-11-26 00:27:41 train.py: 74] Epoch 11, iter 2800/6416, lr 0.010000, loss 5.723630 +INFO 2020-11-26 00:29:12 train.py: 87] Save checkpoint Epoch_11_batch_2999.pt to disk. +INFO 2020-11-26 00:29:12 train.py: 74] Epoch 11, iter 3000/6416, lr 0.010000, loss 5.702121 +INFO 2020-11-26 00:30:44 train.py: 74] Epoch 11, iter 3200/6416, lr 0.010000, loss 5.718015 +INFO 2020-11-26 00:32:16 train.py: 74] Epoch 11, iter 3400/6416, lr 0.010000, loss 5.713120 +INFO 2020-11-26 00:33:48 train.py: 74] Epoch 11, iter 3600/6416, lr 0.010000, loss 5.737073 +INFO 2020-11-26 00:35:20 train.py: 74] Epoch 11, iter 3800/6416, lr 0.010000, loss 5.725788 +INFO 2020-11-26 00:36:52 train.py: 74] Epoch 11, iter 4000/6416, lr 0.010000, loss 5.769676 +INFO 2020-11-26 00:38:23 train.py: 74] Epoch 11, iter 4200/6416, lr 0.010000, loss 5.774718 +INFO 2020-11-26 00:39:55 train.py: 74] Epoch 11, iter 4400/6416, lr 0.010000, loss 5.744242 +INFO 2020-11-26 00:41:27 train.py: 74] Epoch 11, iter 4600/6416, lr 0.010000, loss 5.738924 +INFO 2020-11-26 00:42:59 train.py: 74] Epoch 11, iter 4800/6416, lr 0.010000, loss 5.739225 +INFO 2020-11-26 00:44:31 train.py: 74] Epoch 11, iter 5000/6416, lr 0.010000, loss 5.750110 +INFO 2020-11-26 00:46:02 train.py: 74] Epoch 11, iter 5200/6416, lr 0.010000, loss 5.784163 +INFO 2020-11-26 00:47:35 train.py: 74] Epoch 11, iter 5400/6416, lr 0.010000, loss 5.804254 +INFO 2020-11-26 00:49:06 train.py: 74] Epoch 11, iter 5600/6416, lr 0.010000, loss 5.775759 +INFO 2020-11-26 00:50:38 train.py: 74] Epoch 11, iter 5800/6416, lr 0.010000, loss 5.750277 +INFO 2020-11-26 00:52:10 train.py: 87] Save checkpoint Epoch_11_batch_5999.pt to disk. +INFO 2020-11-26 00:52:10 train.py: 74] Epoch 11, iter 6000/6416, lr 0.010000, loss 5.818751 +INFO 2020-11-26 00:53:42 train.py: 74] Epoch 11, iter 6200/6416, lr 0.010000, loss 5.786312 +INFO 2020-11-26 00:55:14 train.py: 74] Epoch 11, iter 6400/6416, lr 0.010000, loss 5.753539 +INFO 2020-11-26 00:55:21 train.py: 92] Save checkpoint Epoch_11.pt to disk... +INFO 2020-11-26 00:55:23 train.py: 74] Epoch 12, iter 0/6416, lr 0.010000, loss 5.729906 +INFO 2020-11-26 00:56:54 train.py: 74] Epoch 12, iter 200/6416, lr 0.010000, loss 5.263418 +INFO 2020-11-26 00:58:25 train.py: 74] Epoch 12, iter 400/6416, lr 0.010000, loss 5.272457 +INFO 2020-11-26 00:59:57 train.py: 74] Epoch 12, iter 600/6416, lr 0.010000, loss 5.262656 +INFO 2020-11-26 01:01:28 train.py: 74] Epoch 12, iter 800/6416, lr 0.010000, loss 5.286423 +INFO 2020-11-26 01:02:59 train.py: 74] Epoch 12, iter 1000/6416, lr 0.010000, loss 5.301856 +INFO 2020-11-26 01:04:30 train.py: 74] Epoch 12, iter 1200/6416, lr 0.010000, loss 5.297711 +INFO 2020-11-26 01:06:01 train.py: 74] Epoch 12, iter 1400/6416, lr 0.010000, loss 5.357860 +INFO 2020-11-26 01:07:32 train.py: 74] Epoch 12, iter 1600/6416, lr 0.010000, loss 5.400959 +INFO 2020-11-26 01:09:03 train.py: 74] Epoch 12, iter 1800/6416, lr 0.010000, loss 5.393822 +INFO 2020-11-26 01:10:35 train.py: 74] Epoch 12, iter 2000/6416, lr 0.010000, loss 5.396180 +INFO 2020-11-26 01:12:06 train.py: 74] Epoch 12, iter 2200/6416, lr 0.010000, loss 5.426024 +INFO 2020-11-26 01:13:37 train.py: 74] Epoch 12, iter 2400/6416, lr 0.010000, loss 5.446758 +INFO 2020-11-26 01:15:09 train.py: 74] Epoch 12, iter 2600/6416, lr 0.010000, loss 5.489548 +INFO 2020-11-26 01:16:40 train.py: 74] Epoch 12, iter 2800/6416, lr 0.010000, loss 5.476563 +INFO 2020-11-26 01:18:11 train.py: 87] Save checkpoint Epoch_12_batch_2999.pt to disk. +INFO 2020-11-26 01:18:12 train.py: 74] Epoch 12, iter 3000/6416, lr 0.010000, loss 5.500869 +INFO 2020-11-26 01:19:43 train.py: 74] Epoch 12, iter 3200/6416, lr 0.010000, loss 5.496167 +INFO 2020-11-26 01:21:13 train.py: 74] Epoch 12, iter 3400/6416, lr 0.010000, loss 5.512305 +INFO 2020-11-26 01:22:44 train.py: 74] Epoch 12, iter 3600/6416, lr 0.010000, loss 5.553058 +INFO 2020-11-26 01:24:15 train.py: 74] Epoch 12, iter 3800/6416, lr 0.010000, loss 5.511114 +INFO 2020-11-26 01:25:46 train.py: 74] Epoch 12, iter 4000/6416, lr 0.010000, loss 5.577352 +INFO 2020-11-26 01:27:18 train.py: 74] Epoch 12, iter 4200/6416, lr 0.010000, loss 5.553564 +INFO 2020-11-26 01:28:49 train.py: 74] Epoch 12, iter 4400/6416, lr 0.010000, loss 5.552995 +INFO 2020-11-26 01:30:20 train.py: 74] Epoch 12, iter 4600/6416, lr 0.010000, loss 5.593556 +INFO 2020-11-26 01:31:51 train.py: 74] Epoch 12, iter 4800/6416, lr 0.010000, loss 5.614996 +INFO 2020-11-26 01:33:22 train.py: 74] Epoch 12, iter 5000/6416, lr 0.010000, loss 5.628087 +INFO 2020-11-26 01:34:53 train.py: 74] Epoch 12, iter 5200/6416, lr 0.010000, loss 5.578542 +INFO 2020-11-26 01:36:24 train.py: 74] Epoch 12, iter 5400/6416, lr 0.010000, loss 5.590160 +INFO 2020-11-26 01:37:56 train.py: 74] Epoch 12, iter 5600/6416, lr 0.010000, loss 5.600044 +INFO 2020-11-26 01:39:27 train.py: 74] Epoch 12, iter 5800/6416, lr 0.010000, loss 5.624286 +INFO 2020-11-26 01:40:58 train.py: 87] Save checkpoint Epoch_12_batch_5999.pt to disk. +INFO 2020-11-26 01:40:58 train.py: 74] Epoch 12, iter 6000/6416, lr 0.010000, loss 5.683837 +INFO 2020-11-26 01:42:30 train.py: 74] Epoch 12, iter 6200/6416, lr 0.010000, loss 5.618696 +INFO 2020-11-26 01:44:02 train.py: 74] Epoch 12, iter 6400/6416, lr 0.010000, loss 5.659023 +INFO 2020-11-26 01:44:09 train.py: 92] Save checkpoint Epoch_12.pt to disk... +INFO 2020-11-26 01:44:10 train.py: 74] Epoch 13, iter 0/6416, lr 0.001000, loss 5.618520 +INFO 2020-11-26 01:45:42 train.py: 74] Epoch 13, iter 200/6416, lr 0.001000, loss 5.012071 +INFO 2020-11-26 01:47:13 train.py: 74] Epoch 13, iter 400/6416, lr 0.001000, loss 4.988137 +INFO 2020-11-26 01:48:44 train.py: 74] Epoch 13, iter 600/6416, lr 0.001000, loss 4.895365 +INFO 2020-11-26 01:50:15 train.py: 74] Epoch 13, iter 800/6416, lr 0.001000, loss 4.930635 +INFO 2020-11-26 01:51:46 train.py: 74] Epoch 13, iter 1000/6416, lr 0.001000, loss 4.891228 +INFO 2020-11-26 01:53:17 train.py: 74] Epoch 13, iter 1200/6416, lr 0.001000, loss 4.912731 +INFO 2020-11-26 01:54:49 train.py: 74] Epoch 13, iter 1400/6416, lr 0.001000, loss 4.867206 +INFO 2020-11-26 01:56:20 train.py: 74] Epoch 13, iter 1600/6416, lr 0.001000, loss 4.909080 +INFO 2020-11-26 01:57:51 train.py: 74] Epoch 13, iter 1800/6416, lr 0.001000, loss 4.910253 +INFO 2020-11-26 01:59:22 train.py: 74] Epoch 13, iter 2000/6416, lr 0.001000, loss 4.914638 +INFO 2020-11-26 02:00:53 train.py: 74] Epoch 13, iter 2200/6416, lr 0.001000, loss 4.908720 +INFO 2020-11-26 02:02:25 train.py: 74] Epoch 13, iter 2400/6416, lr 0.001000, loss 4.907465 +INFO 2020-11-26 02:03:57 train.py: 74] Epoch 13, iter 2600/6416, lr 0.001000, loss 4.931486 +INFO 2020-11-26 02:05:28 train.py: 74] Epoch 13, iter 2800/6416, lr 0.001000, loss 4.895203 +INFO 2020-11-26 02:06:59 train.py: 87] Save checkpoint Epoch_13_batch_2999.pt to disk. +INFO 2020-11-26 02:07:00 train.py: 74] Epoch 13, iter 3000/6416, lr 0.001000, loss 4.927824 +INFO 2020-11-26 02:08:31 train.py: 74] Epoch 13, iter 3200/6416, lr 0.001000, loss 4.893639 +INFO 2020-11-26 02:10:03 train.py: 74] Epoch 13, iter 3400/6416, lr 0.001000, loss 4.898834 +INFO 2020-11-26 02:11:35 train.py: 74] Epoch 13, iter 3600/6416, lr 0.001000, loss 4.902920 +INFO 2020-11-26 02:13:06 train.py: 74] Epoch 13, iter 3800/6416, lr 0.001000, loss 4.898564 +INFO 2020-11-26 02:14:38 train.py: 74] Epoch 13, iter 4000/6416, lr 0.001000, loss 4.884068 +INFO 2020-11-26 02:16:10 train.py: 74] Epoch 13, iter 4200/6416, lr 0.001000, loss 4.923888 +INFO 2020-11-26 02:17:42 train.py: 74] Epoch 13, iter 4400/6416, lr 0.001000, loss 4.896753 +INFO 2020-11-26 02:19:14 train.py: 74] Epoch 13, iter 4600/6416, lr 0.001000, loss 4.901687 +INFO 2020-11-26 02:20:46 train.py: 74] Epoch 13, iter 4800/6416, lr 0.001000, loss 4.914706 +INFO 2020-11-26 02:22:18 train.py: 74] Epoch 13, iter 5000/6416, lr 0.001000, loss 4.938848 +INFO 2020-11-26 02:23:50 train.py: 74] Epoch 13, iter 5200/6416, lr 0.001000, loss 4.907446 +INFO 2020-11-26 02:25:22 train.py: 74] Epoch 13, iter 5400/6416, lr 0.001000, loss 4.953235 +INFO 2020-11-26 02:26:54 train.py: 74] Epoch 13, iter 5600/6416, lr 0.001000, loss 4.876094 +INFO 2020-11-26 02:28:26 train.py: 74] Epoch 13, iter 5800/6416, lr 0.001000, loss 4.937435 +INFO 2020-11-26 02:29:57 train.py: 87] Save checkpoint Epoch_13_batch_5999.pt to disk. +INFO 2020-11-26 02:29:58 train.py: 74] Epoch 13, iter 6000/6416, lr 0.001000, loss 4.932445 +INFO 2020-11-26 02:31:29 train.py: 74] Epoch 13, iter 6200/6416, lr 0.001000, loss 4.922741 +INFO 2020-11-26 02:33:00 train.py: 74] Epoch 13, iter 6400/6416, lr 0.001000, loss 4.929702 +INFO 2020-11-26 02:33:07 train.py: 92] Save checkpoint Epoch_13.pt to disk... +INFO 2020-11-26 02:33:09 train.py: 74] Epoch 14, iter 0/6416, lr 0.001000, loss 4.960059 +INFO 2020-11-26 02:34:40 train.py: 74] Epoch 14, iter 200/6416, lr 0.001000, loss 4.811613 +INFO 2020-11-26 02:36:11 train.py: 74] Epoch 14, iter 400/6416, lr 0.001000, loss 4.833166 +INFO 2020-11-26 02:37:42 train.py: 74] Epoch 14, iter 600/6416, lr 0.001000, loss 4.833502 +INFO 2020-11-26 02:39:14 train.py: 74] Epoch 14, iter 800/6416, lr 0.001000, loss 4.820003 +INFO 2020-11-26 02:40:45 train.py: 74] Epoch 14, iter 1000/6416, lr 0.001000, loss 4.843599 +INFO 2020-11-26 02:42:16 train.py: 74] Epoch 14, iter 1200/6416, lr 0.001000, loss 4.782953 +INFO 2020-11-26 02:43:47 train.py: 74] Epoch 14, iter 1400/6416, lr 0.001000, loss 4.838921 +INFO 2020-11-26 02:45:18 train.py: 74] Epoch 14, iter 1600/6416, lr 0.001000, loss 4.815551 +INFO 2020-11-26 02:46:49 train.py: 74] Epoch 14, iter 1800/6416, lr 0.001000, loss 4.845832 +INFO 2020-11-26 02:48:21 train.py: 74] Epoch 14, iter 2000/6416, lr 0.001000, loss 4.849728 +INFO 2020-11-26 02:49:52 train.py: 74] Epoch 14, iter 2200/6416, lr 0.001000, loss 4.817868 +INFO 2020-11-26 02:51:23 train.py: 74] Epoch 14, iter 2400/6416, lr 0.001000, loss 4.877688 +INFO 2020-11-26 02:52:55 train.py: 74] Epoch 14, iter 2600/6416, lr 0.001000, loss 4.875107 +INFO 2020-11-26 02:54:26 train.py: 74] Epoch 14, iter 2800/6416, lr 0.001000, loss 4.841876 +INFO 2020-11-26 02:55:58 train.py: 87] Save checkpoint Epoch_14_batch_2999.pt to disk. +INFO 2020-11-26 02:55:58 train.py: 74] Epoch 14, iter 3000/6416, lr 0.001000, loss 4.905459 +INFO 2020-11-26 02:57:30 train.py: 74] Epoch 14, iter 3200/6416, lr 0.001000, loss 4.877974 +INFO 2020-11-26 02:59:02 train.py: 74] Epoch 14, iter 3400/6416, lr 0.001000, loss 4.868736 +INFO 2020-11-26 03:00:34 train.py: 74] Epoch 14, iter 3600/6416, lr 0.001000, loss 4.853268 +INFO 2020-11-26 03:02:05 train.py: 74] Epoch 14, iter 3800/6416, lr 0.001000, loss 4.889563 +INFO 2020-11-26 03:03:37 train.py: 74] Epoch 14, iter 4000/6416, lr 0.001000, loss 4.812276 +INFO 2020-11-26 03:05:09 train.py: 74] Epoch 14, iter 4200/6416, lr 0.001000, loss 4.878132 +INFO 2020-11-26 03:06:40 train.py: 74] Epoch 14, iter 4400/6416, lr 0.001000, loss 4.882167 +INFO 2020-11-26 03:08:12 train.py: 74] Epoch 14, iter 4600/6416, lr 0.001000, loss 4.912398 +INFO 2020-11-26 03:09:44 train.py: 74] Epoch 14, iter 4800/6416, lr 0.001000, loss 4.898185 +INFO 2020-11-26 03:11:15 train.py: 74] Epoch 14, iter 5000/6416, lr 0.001000, loss 4.898757 +INFO 2020-11-26 03:12:47 train.py: 74] Epoch 14, iter 5200/6416, lr 0.001000, loss 4.893168 +INFO 2020-11-26 03:14:19 train.py: 74] Epoch 14, iter 5400/6416, lr 0.001000, loss 4.873687 +INFO 2020-11-26 03:15:51 train.py: 74] Epoch 14, iter 5600/6416, lr 0.001000, loss 4.900874 +INFO 2020-11-26 03:17:23 train.py: 74] Epoch 14, iter 5800/6416, lr 0.001000, loss 4.869009 +INFO 2020-11-26 03:18:55 train.py: 87] Save checkpoint Epoch_14_batch_5999.pt to disk. +INFO 2020-11-26 03:18:55 train.py: 74] Epoch 14, iter 6000/6416, lr 0.001000, loss 4.878964 +INFO 2020-11-26 03:20:26 train.py: 74] Epoch 14, iter 6200/6416, lr 0.001000, loss 4.910442 +INFO 2020-11-26 03:21:58 train.py: 74] Epoch 14, iter 6400/6416, lr 0.001000, loss 4.951179 +INFO 2020-11-26 03:22:05 train.py: 92] Save checkpoint Epoch_14.pt to disk... +INFO 2020-11-26 03:22:07 train.py: 74] Epoch 15, iter 0/6416, lr 0.001000, loss 4.787207 +INFO 2020-11-26 03:23:38 train.py: 74] Epoch 15, iter 200/6416, lr 0.001000, loss 4.822606 +INFO 2020-11-26 03:25:08 train.py: 74] Epoch 15, iter 400/6416, lr 0.001000, loss 4.815923 +INFO 2020-11-26 03:26:39 train.py: 74] Epoch 15, iter 600/6416, lr 0.001000, loss 4.775978 +INFO 2020-11-26 03:28:10 train.py: 74] Epoch 15, iter 800/6416, lr 0.001000, loss 4.816824 +INFO 2020-11-26 03:29:40 train.py: 74] Epoch 15, iter 1000/6416, lr 0.001000, loss 4.787887 +INFO 2020-11-26 03:31:11 train.py: 74] Epoch 15, iter 1200/6416, lr 0.001000, loss 4.853176 +INFO 2020-11-26 03:32:41 train.py: 74] Epoch 15, iter 1400/6416, lr 0.001000, loss 4.808012 +INFO 2020-11-26 03:34:12 train.py: 74] Epoch 15, iter 1600/6416, lr 0.001000, loss 4.829766 +INFO 2020-11-26 03:35:42 train.py: 74] Epoch 15, iter 1800/6416, lr 0.001000, loss 4.828946 +INFO 2020-11-26 03:37:13 train.py: 74] Epoch 15, iter 2000/6416, lr 0.001000, loss 4.802634 +INFO 2020-11-26 03:38:44 train.py: 74] Epoch 15, iter 2200/6416, lr 0.001000, loss 4.822742 +INFO 2020-11-26 03:40:14 train.py: 74] Epoch 15, iter 2400/6416, lr 0.001000, loss 4.829261 +INFO 2020-11-26 03:41:45 train.py: 74] Epoch 15, iter 2600/6416, lr 0.001000, loss 4.871683 +INFO 2020-11-26 03:43:16 train.py: 74] Epoch 15, iter 2800/6416, lr 0.001000, loss 4.848487 +INFO 2020-11-26 03:44:46 train.py: 87] Save checkpoint Epoch_15_batch_2999.pt to disk. +INFO 2020-11-26 03:44:47 train.py: 74] Epoch 15, iter 3000/6416, lr 0.001000, loss 4.800260 +INFO 2020-11-26 03:46:18 train.py: 74] Epoch 15, iter 3200/6416, lr 0.001000, loss 4.793696 +INFO 2020-11-26 03:47:50 train.py: 74] Epoch 15, iter 3400/6416, lr 0.001000, loss 4.843006 +INFO 2020-11-26 03:49:22 train.py: 74] Epoch 15, iter 3600/6416, lr 0.001000, loss 4.820165 +INFO 2020-11-26 03:50:54 train.py: 74] Epoch 15, iter 3800/6416, lr 0.001000, loss 4.817658 +INFO 2020-11-26 03:52:25 train.py: 74] Epoch 15, iter 4000/6416, lr 0.001000, loss 4.854495 +INFO 2020-11-26 03:53:57 train.py: 74] Epoch 15, iter 4200/6416, lr 0.001000, loss 4.886664 +INFO 2020-11-26 03:55:29 train.py: 74] Epoch 15, iter 4400/6416, lr 0.001000, loss 4.833145 +INFO 2020-11-26 03:57:01 train.py: 74] Epoch 15, iter 4600/6416, lr 0.001000, loss 4.812392 +INFO 2020-11-26 03:58:33 train.py: 74] Epoch 15, iter 4800/6416, lr 0.001000, loss 4.821527 +INFO 2020-11-26 04:00:05 train.py: 74] Epoch 15, iter 5000/6416, lr 0.001000, loss 4.860501 +INFO 2020-11-26 04:01:37 train.py: 74] Epoch 15, iter 5200/6416, lr 0.001000, loss 4.891657 +INFO 2020-11-26 04:03:09 train.py: 74] Epoch 15, iter 5400/6416, lr 0.001000, loss 4.856526 +INFO 2020-11-26 04:04:40 train.py: 74] Epoch 15, iter 5600/6416, lr 0.001000, loss 4.841456 +INFO 2020-11-26 04:06:12 train.py: 74] Epoch 15, iter 5800/6416, lr 0.001000, loss 4.833061 +INFO 2020-11-26 04:07:44 train.py: 87] Save checkpoint Epoch_15_batch_5999.pt to disk. +INFO 2020-11-26 04:07:44 train.py: 74] Epoch 15, iter 6000/6416, lr 0.001000, loss 4.862416 +INFO 2020-11-26 04:09:16 train.py: 74] Epoch 15, iter 6200/6416, lr 0.001000, loss 4.901599 +INFO 2020-11-26 04:10:48 train.py: 74] Epoch 15, iter 6400/6416, lr 0.001000, loss 4.867302 +INFO 2020-11-26 04:10:55 train.py: 92] Save checkpoint Epoch_15.pt to disk... +INFO 2020-11-26 04:10:56 train.py: 74] Epoch 16, iter 0/6416, lr 0.000100, loss 4.768134 +INFO 2020-11-26 04:12:28 train.py: 74] Epoch 16, iter 200/6416, lr 0.000100, loss 4.826395 +INFO 2020-11-26 04:13:59 train.py: 74] Epoch 16, iter 400/6416, lr 0.000100, loss 4.771744 +INFO 2020-11-26 04:15:30 train.py: 74] Epoch 16, iter 600/6416, lr 0.000100, loss 4.783202 +INFO 2020-11-26 04:17:01 train.py: 74] Epoch 16, iter 800/6416, lr 0.000100, loss 4.756491 +INFO 2020-11-26 04:18:33 train.py: 74] Epoch 16, iter 1000/6416, lr 0.000100, loss 4.764306 +INFO 2020-11-26 04:20:04 train.py: 74] Epoch 16, iter 1200/6416, lr 0.000100, loss 4.745123 +INFO 2020-11-26 04:21:35 train.py: 74] Epoch 16, iter 1400/6416, lr 0.000100, loss 4.782097 +INFO 2020-11-26 04:23:06 train.py: 74] Epoch 16, iter 1600/6416, lr 0.000100, loss 4.756188 +INFO 2020-11-26 04:24:38 train.py: 74] Epoch 16, iter 1800/6416, lr 0.000100, loss 4.779078 +INFO 2020-11-26 04:26:09 train.py: 74] Epoch 16, iter 2000/6416, lr 0.000100, loss 4.722829 +INFO 2020-11-26 04:27:40 train.py: 74] Epoch 16, iter 2200/6416, lr 0.000100, loss 4.744510 +INFO 2020-11-26 04:29:11 train.py: 74] Epoch 16, iter 2400/6416, lr 0.000100, loss 4.742054 +INFO 2020-11-26 04:30:43 train.py: 74] Epoch 16, iter 2600/6416, lr 0.000100, loss 4.757106 +INFO 2020-11-26 04:32:14 train.py: 74] Epoch 16, iter 2800/6416, lr 0.000100, loss 4.760223 +INFO 2020-11-26 04:33:46 train.py: 87] Save checkpoint Epoch_16_batch_2999.pt to disk. +INFO 2020-11-26 04:33:46 train.py: 74] Epoch 16, iter 3000/6416, lr 0.000100, loss 4.736575 +INFO 2020-11-26 04:35:18 train.py: 74] Epoch 16, iter 3200/6416, lr 0.000100, loss 4.758691 +INFO 2020-11-26 04:36:49 train.py: 74] Epoch 16, iter 3400/6416, lr 0.000100, loss 4.744581 +INFO 2020-11-26 04:38:21 train.py: 74] Epoch 16, iter 3600/6416, lr 0.000100, loss 4.749971 +INFO 2020-11-26 04:39:53 train.py: 74] Epoch 16, iter 3800/6416, lr 0.000100, loss 4.747253 +INFO 2020-11-26 04:41:24 train.py: 74] Epoch 16, iter 4000/6416, lr 0.000100, loss 4.776212 +INFO 2020-11-26 04:42:56 train.py: 74] Epoch 16, iter 4200/6416, lr 0.000100, loss 4.804538 +INFO 2020-11-26 04:44:28 train.py: 74] Epoch 16, iter 4400/6416, lr 0.000100, loss 4.757755 +INFO 2020-11-26 04:45:59 train.py: 74] Epoch 16, iter 4600/6416, lr 0.000100, loss 4.765916 +INFO 2020-11-26 04:47:31 train.py: 74] Epoch 16, iter 4800/6416, lr 0.000100, loss 4.778348 +INFO 2020-11-26 04:49:03 train.py: 74] Epoch 16, iter 5000/6416, lr 0.000100, loss 4.752482 +INFO 2020-11-26 04:50:34 train.py: 74] Epoch 16, iter 5200/6416, lr 0.000100, loss 4.748292 +INFO 2020-11-26 04:52:06 train.py: 74] Epoch 16, iter 5400/6416, lr 0.000100, loss 4.722651 +INFO 2020-11-26 04:53:38 train.py: 74] Epoch 16, iter 5600/6416, lr 0.000100, loss 4.734725 +INFO 2020-11-26 04:55:10 train.py: 74] Epoch 16, iter 5800/6416, lr 0.000100, loss 4.737980 +INFO 2020-11-26 04:56:41 train.py: 87] Save checkpoint Epoch_16_batch_5999.pt to disk. +INFO 2020-11-26 04:56:42 train.py: 74] Epoch 16, iter 6000/6416, lr 0.000100, loss 4.798186 +INFO 2020-11-26 04:58:14 train.py: 74] Epoch 16, iter 6200/6416, lr 0.000100, loss 4.723335 +INFO 2020-11-26 04:59:46 train.py: 74] Epoch 16, iter 6400/6416, lr 0.000100, loss 4.773817 +INFO 2020-11-26 04:59:53 train.py: 92] Save checkpoint Epoch_16.pt to disk... +INFO 2020-11-26 04:59:54 train.py: 74] Epoch 17, iter 0/6416, lr 0.000100, loss 4.723282 +INFO 2020-11-26 05:01:26 train.py: 74] Epoch 17, iter 200/6416, lr 0.000100, loss 4.732407 +INFO 2020-11-26 05:02:57 train.py: 74] Epoch 17, iter 400/6416, lr 0.000100, loss 4.744728 +INFO 2020-11-26 05:04:28 train.py: 74] Epoch 17, iter 600/6416, lr 0.000100, loss 4.758975 +INFO 2020-11-26 05:06:00 train.py: 74] Epoch 17, iter 800/6416, lr 0.000100, loss 4.766218 +INFO 2020-11-26 05:07:31 train.py: 74] Epoch 17, iter 1000/6416, lr 0.000100, loss 4.787281 +INFO 2020-11-26 05:09:02 train.py: 74] Epoch 17, iter 1200/6416, lr 0.000100, loss 4.777162 +INFO 2020-11-26 05:10:33 train.py: 74] Epoch 17, iter 1400/6416, lr 0.000100, loss 4.758057 +INFO 2020-11-26 05:12:05 train.py: 74] Epoch 17, iter 1600/6416, lr 0.000100, loss 4.710682 +INFO 2020-11-26 05:13:36 train.py: 74] Epoch 17, iter 1800/6416, lr 0.000100, loss 4.720905 +INFO 2020-11-26 05:15:07 train.py: 74] Epoch 17, iter 2000/6416, lr 0.000100, loss 4.766242 +INFO 2020-11-26 05:16:39 train.py: 74] Epoch 17, iter 2200/6416, lr 0.000100, loss 4.755566 +INFO 2020-11-26 05:18:10 train.py: 74] Epoch 17, iter 2400/6416, lr 0.000100, loss 4.757743 +INFO 2020-11-26 05:19:42 train.py: 74] Epoch 17, iter 2600/6416, lr 0.000100, loss 4.750778 +INFO 2020-11-26 05:21:13 train.py: 74] Epoch 17, iter 2800/6416, lr 0.000100, loss 4.754477 +INFO 2020-11-26 05:22:44 train.py: 87] Save checkpoint Epoch_17_batch_2999.pt to disk. +INFO 2020-11-26 05:22:45 train.py: 74] Epoch 17, iter 3000/6416, lr 0.000100, loss 4.729516 +INFO 2020-11-26 05:24:16 train.py: 74] Epoch 17, iter 3200/6416, lr 0.000100, loss 4.749175 +INFO 2020-11-26 05:25:48 train.py: 74] Epoch 17, iter 3400/6416, lr 0.000100, loss 4.752513 +INFO 2020-11-26 05:27:19 train.py: 74] Epoch 17, iter 3600/6416, lr 0.000100, loss 4.744433 +INFO 2020-11-26 05:28:51 train.py: 74] Epoch 17, iter 3800/6416, lr 0.000100, loss 4.760126 +INFO 2020-11-26 05:30:22 train.py: 74] Epoch 17, iter 4000/6416, lr 0.000100, loss 4.775823 +INFO 2020-11-26 05:31:54 train.py: 74] Epoch 17, iter 4200/6416, lr 0.000100, loss 4.786304 +INFO 2020-11-26 05:33:26 train.py: 74] Epoch 17, iter 4400/6416, lr 0.000100, loss 4.764655 +INFO 2020-11-26 05:34:57 train.py: 74] Epoch 17, iter 4600/6416, lr 0.000100, loss 4.771241 +INFO 2020-11-26 05:36:29 train.py: 74] Epoch 17, iter 4800/6416, lr 0.000100, loss 4.738297 +INFO 2020-11-26 05:38:01 train.py: 74] Epoch 17, iter 5000/6416, lr 0.000100, loss 4.785628 +INFO 2020-11-26 05:39:32 train.py: 74] Epoch 17, iter 5200/6416, lr 0.000100, loss 4.737215 +INFO 2020-11-26 05:41:04 train.py: 74] Epoch 17, iter 5400/6416, lr 0.000100, loss 4.759377 +INFO 2020-11-26 05:42:35 train.py: 74] Epoch 17, iter 5600/6416, lr 0.000100, loss 4.791402 +INFO 2020-11-26 05:44:07 train.py: 74] Epoch 17, iter 5800/6416, lr 0.000100, loss 4.769801 +INFO 2020-11-26 05:45:39 train.py: 87] Save checkpoint Epoch_17_batch_5999.pt to disk. +INFO 2020-11-26 05:45:39 train.py: 74] Epoch 17, iter 6000/6416, lr 0.000100, loss 4.763365 +INFO 2020-11-26 05:47:10 train.py: 74] Epoch 17, iter 6200/6416, lr 0.000100, loss 4.753882 +INFO 2020-11-26 05:48:42 train.py: 74] Epoch 17, iter 6400/6416, lr 0.000100, loss 4.780777 +INFO 2020-11-26 05:48:49 train.py: 92] Save checkpoint Epoch_17.pt to disk... +INFO 2020-11-26 05:48:50 train.py: 175] Optimization done! diff --git a/bob/bio/facexzoo/transformers/pytorch.py b/bob/bio/facexzoo/transformers/pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..d2b8ee1c1d34639424ac290d2e0618606f96c823 --- /dev/null +++ b/bob/bio/facexzoo/transformers/pytorch.py @@ -0,0 +1,1085 @@ +#!/usr/bin/env python +# vim: set fileencoding=utf-8 : +# Hatef Otroshi <hatef.otroshi@idiap.ch> + +import imp +import os +import torch +import numpy as np +from bob.bio.base.algorithm import Distance +# from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometricsPipeline +from bob.bio.base.pipelines import PipelineSimple +from bob.bio.face.utils import dnn_default_cropping +from bob.bio.face.utils import embedding_transformer +# from bob.bio.face.utils import cropped_positions_arcface +from bob.bio.facexzoo.utils import cropped_positions_arcface +from bob.extension.download import get_file +from sklearn.base import BaseEstimator +from sklearn.base import TransformerMixin +from sklearn.utils import check_array +# from bob.bio.face.annotator import BobIpMTCNN +from bob.bio.face.annotator import MTCNN + +# from bob.learn.pytorch.architectures.facexzoo import FaceXZooModelFactory +from bob.bio.facexzoo.backbones import FaceXZooModelFactory + +# from bob.bio.face.embeddings.pytorch import PyTorchModel +################# PyTorchModel from bob.bio.face.embeddings.pytorch +from sklearn.base import BaseEstimator +from sklearn.base import TransformerMixin +class PyTorchModel(TransformerMixin, BaseEstimator): + """ + Base Transformer using pytorch models + + + Parameters + ---------- + + checkpoint_path: str + Path containing the checkpoint + + config: + Path containing some configuration file (e.g. .json, .prototxt) + + preprocessor: + A function that will transform the data right before forward. The default transformation is `X/255` + + """ + + def __init__( + self, + checkpoint_path=None, + config=None, + preprocessor=lambda x: x / 255, + memory_demanding=False, + device=None, + **kwargs, + ): + + super().__init__(**kwargs) + self.checkpoint_path = checkpoint_path + self.config = config + self.model = None + self.preprocessor = preprocessor + self.memory_demanding = memory_demanding + self.device = device + + def transform(self, X): + """__call__(image) -> feature + + Extracts the features from the given image. + + **Parameters:** + + image : 2D :py:class:`numpy.ndarray` (floats) + The image to extract the features from. + + **Returns:** + + feature : 2D or 3D :py:class:`numpy.ndarray` (floats) + The list of features extracted from the image. + """ + import torch + + if self.model is None: + self._load_model() + X = check_array(X, allow_nd=True) + X = torch.Tensor(X) + with torch.no_grad(): + X = self.preprocessor(X) + + def _transform(X): + with torch.no_grad(): + return self.model(X.to(self.device)).cpu().detach().numpy() + + if self.memory_demanding: + features = np.array([_transform(x[None, ...]) for x in X]) + + # If we ndim is > than 3. We should stack them all + # The enroll_features can come from a source where there are `N` samples containing + # nxd samples + if features.ndim >= 3: + features = np.vstack(features) + + return features + + else: + return _transform(X) + + def __getstate__(self): + # Handling unpicklable objects + + d = self.__dict__.copy() + d["model"] = None + return d + + def _more_tags(self): + return {"stateless": True, "requires_fit": False} + + def place_model_on_device(self, device=None): + import torch + + if device is None: + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + + self.device = device + + if self.model is not None: + self.model.to(device) +################# PyTorchModel + + +# from bob.bio.face.embeddings.pytorch import FaceXZooModel +class FaceXZooModel(PyTorchModel): + """ + FaceXZoo models + """ + + def __init__( + self, + preprocessor=lambda x: (x - 127.5) / 128.0, + memory_demanding=False, + device=None, + arch="MobileFaceNet", + head='MV-Softmax', + **kwargs, + ): + + self.arch = arch + self.head = head + _model = FaceXZooModelFactory(self.arch, self.head) + filename = _model.get_facexzoo_file() + checkpoint_name = _model.get_checkpoint_name() + config = None + path = os.path.dirname(filename) + checkpoint_path = filename#os.path.join(path, self.arch + ".pt") + + super(FaceXZooModel, self).__init__( + checkpoint_path, + config, + memory_demanding=memory_demanding, + preprocessor=preprocessor, + device=device, + **kwargs, + ) + + def _load_model(self): + + _model = FaceXZooModelFactory(self.arch, self.head) + self.model = _model.get_model() + + model_dict = self.model.state_dict() + + pretrained_dict = torch.load( + self.checkpoint_path, map_location=torch.device("cpu") + )["state_dict"] + + pretrained_dict_keys = pretrained_dict.keys() + model_dict_keys = model_dict.keys() + + new_pretrained_dict = {} + for k in model_dict: + new_pretrained_dict[k] = pretrained_dict["backbone." + k] + model_dict.update(new_pretrained_dict) + self.model.load_state_dict(model_dict) + + self.model.eval() + self.place_model_on_device() + + def _more_tags(self): + return {"stateless": True, "requires_fit": False} + + def fit(self, X, y=None): + return self + + + +# from bob.bio.face.embeddings.pytorch import iresnet_template +# iresnet_template is replaced with pipeline_template +def pipeline_template(embedding, annotation_type, fixed_positions=None): + # DEFINE CROPPING + cropped_image_size = (112, 112) + if annotation_type == "eyes-center" or annotation_type == "bounding-box": + # Hard coding eye positions for backward consistency + # cropped_positions = { + cropped_positions = cropped_positions_arcface() + if annotation_type == "bounding-box": + # This will allow us to use `BoundingBoxAnnotatorCrop` + cropped_positions.update( + {"topleft": (0, 0), "bottomright": cropped_image_size} + ) + + else: + cropped_positions = dnn_default_cropping(cropped_image_size, annotation_type) + + annotator = MTCNN(min_size=40, factor=0.709, thresholds=(0.1, 0.2, 0.2)) + transformer = embedding_transformer( + cropped_image_size=cropped_image_size, + embedding=embedding, + cropped_positions=cropped_positions, + fixed_positions=fixed_positions, + color_channel="rgb", + annotator=annotator, + ) + + algorithm = Distance() + + return PipelineSimple(transformer, algorithm) + + + +def MobileFaceNet(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the MobileFaceNet pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`MobileFaceNet` to extract the features + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel( + arch="MobileFaceNet", memory_demanding=memory_demanding + ), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + +def ResNet50_ir(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the ResNet50_ir pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`ResNet50_ir` to extract the features + + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(arch="ResNet50_ir", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + +def ResNet152_irse(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the ResNet152_irse pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`ResNet152_irse` to extract the features + + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(arch="ResNet152_irse", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + +def HRNet(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the HRNet pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`HRNet` to extract the features + + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(arch="HRNet", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + +def EfficientNet_B0(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the EfficientNet_B0 pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`EfficientNet_B0` to extract the features + + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(arch="EfficientNet_B0", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + +def TF_NAS_A(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the TF_NAS_A pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`TF_NAS_A` to extract the features + + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(arch="TF_NAS_A", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + + +def LightCNN29(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the LightCNN29 pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`LightCNN29` to extract the features + + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(arch="LightCNN29", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + + +def GhostNet(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the GhostNet pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`GhostNet` to extract the features + + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(arch="GhostNet", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + +def AttentionNet56(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the AttentionNet pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`AttentionNet` to extract the features + + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + return pipeline_template( + embedding=FaceXZooModel(arch="AttentionNet56", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + +def AttentionNet92(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the AttentionNet pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`AttentionNet` to extract the features + + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + return pipeline_template( + embedding=FaceXZooModel(arch="AttentionNet92", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + +def ResNeSt50(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the ResNeSt50 pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`ResNeSt50` to extract the features + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(arch="ResNeSt50", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + + +def ReXNet_1(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the ReXNet_1 pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`ReXNet_1` to extract the features + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(arch="ReXNet_1", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + +def RepVGG_A0(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the RepVGG_A0 pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`RepVGG_A0` to extract the features + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(arch="RepVGG_A0", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + +def RepVGG_B0(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the RepVGG_B0 pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`RepVGG_B0` to extract the features + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(arch="RepVGG_B0", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + +def RepVGG_B1(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the RepVGG_B1 pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`RepVGG_B1` to extract the features + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(arch="RepVGG_B1", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + +def SwinTransformer_preprocessor(X): + preprocessor_=lambda x: (x - 127.5) / 128.0 + + X = preprocessor_(X) + if X.size(2) != 224: + X = torch.nn.functional.interpolate(X, mode='bilinear', size=(224, 224), align_corners=False) + + return X + +def SwinTransformer_S(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the SwinTransformer_S pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`RepVGG_B1` to extract the features + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(preprocessor=SwinTransformer_preprocessor, + arch="SwinTransformer_S", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + +def SwinTransformer_T(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the SwinTransformer_T pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`RepVGG_B1` to extract the features + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(preprocessor=SwinTransformer_preprocessor, + arch="SwinTransformer_T", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + +############# Heads + + +def AM_Softmax(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the AM_Softmax pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`AM_Softmax` to extract the features + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(head="AM-Softmax", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + +def AdaM_Softmax(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the AdaM_Softmax pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`AdaM_Softmax` to extract the features + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(head="AdaM-Softmax", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + + +def AdaCos(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the AdaCos pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`AdaCos` to extract the features + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(head="AdaCos", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + + + +def ArcFace(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the ArcFace pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`ArcFace` to extract the features + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(head="ArcFace", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + + + +def MV_Softmax(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the MV_Softmax pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`MV_Softmax` to extract the features + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(head="MV-Softmax", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + + + +def CurricularFace(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the CurricularFace pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`CurricularFace` to extract the features + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(head="CurricularFace", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + + + +def CircleLoss(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the CircleLoss pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`CircleLoss` to extract the features + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(head="CircleLoss", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + +def NPCFace(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the NPCFace pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`NPCFace` to extract the features + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(head="NPCFace", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) + + + + +def MagFace(annotation_type, fixed_positions=None, memory_demanding=False): + """ + Get the MagFace pipeline which will crop the face :math:`112 \\times 112` and + use the :py:class:`MagFace` to extract the features + + .. warning:: + + If you are at Idiap, please use the option `-l sge-gpu` while running the `vanilla-biometrics` pipeline. + + + + Parameters + ---------- + + annotation_type: str + Type of the annotations (e.g. `eyes-center') + + fixed_positions: dict + Set it if in your face images are registered to a fixed position in the image + + memory_demanding: bool + + """ + + return pipeline_template( + embedding=FaceXZooModel(head="MagFace", memory_demanding=memory_demanding), + annotation_type=annotation_type, + fixed_positions=fixed_positions, + ) \ No newline at end of file diff --git a/bob/bio/facexzoo/utils.py b/bob/bio/facexzoo/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..535ec98fb079a9a8520a5eef41f148d6d8be875e --- /dev/null +++ b/bob/bio/facexzoo/utils.py @@ -0,0 +1,42 @@ +# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> +# SPDX-FileContributor: Hatef OTROSHI <hatef.otroshi@idiap.ch> +# SPDX-License-Identifier: MIT +def cropped_positions_arcface(annotation_type="eyes-center"): + """ + Returns the 112 x 112 crop used in iResnet based models + The crop follows the following rule: + + - In X --> (112/2)-1 + - In Y, leye --> 16+(112/2) --> 72 + - In Y, reye --> (112/2)-16 --> 40 + + This will leave 16 pixels between left eye and left border and right eye and right border + + For reference, https://github.com/deepinsight/insightface/blob/master/recognition/arcface_mxnet/common/face_align.py + contains the cropping code for training the original ArcFace-InsightFace model. Due to this code not being very explicit, + we choose to pick our own default cropped positions. They have been tested to provide good evaluation performance + on the Mobio dataset. + + For sensitive applications, you can use custom cropped position that you optimize for your specific dataset, + such as is done in https://gitlab.idiap.ch/bob/bob.bio.face/-/blob/master/notebooks/50-shades-of-face.ipynb + + """ + + if isinstance(annotation_type, list): + return [cropped_positions_arcface(item) for item in annotation_type] + + + if annotation_type == "eyes-center": + cropped_positions = { + "leye": (51.5014, 73.5318), #"leye": (55, 72), + "reye": (51.6963, 38.2946) #"reye": (55, 40), + } + elif annotation_type == "left-profile": + + cropped_positions = {"leye": (40, 30), "mouth": (85, 30)} + elif annotation_type == "right-profile": + return {"reye": (40, 82), "mouth": (85, 82)} + else: + raise ValueError(f"Annotations of the type `{annotation_type}` not supported") + + return cropped_positions \ No newline at end of file diff --git a/bob/bio/invert/__init__.py b/bob/bio/invert/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/bob/bio/invert/invertibility_pipeline.py b/bob/bio/invert/invertibility_pipeline.py new file mode 100644 index 0000000000000000000000000000000000000000..39cba4e38dec0770b4179045f05284e17f69b2af --- /dev/null +++ b/bob/bio/invert/invertibility_pipeline.py @@ -0,0 +1,179 @@ +# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> +# SPDX-FileContributor: Hatef OTROSHI <hatef.otroshi@idiap.ch> +# SPDX-License-Identifier: MIT + +""" +Implementation of the Vanilla Biometrics pipeline using Dask :ref:`bob.bio.base.struct_bio_rec_sys`_ + +This file contains simple processing blocks meant to be used +for bob.bio experiments +""" + +import logging +import tempfile + +from sklearn.base import BaseEstimator +from sklearn.pipeline import Pipeline + +from bob.bio.base.pipelines import BioAlgorithm +from bob.bio.base.pipelines.pipelines import PipelineSimple +from bob.bio.base.pipelines.pipelines import check_valid_pipeline +from bob.bio.base.pipelines.score_writers import FourColumnsScoreWriter + +logger = logging.getLogger(__name__) + + +class InvertBiometricsPipeline(PipelineSimple): + """ + Invert Biometrics Pipeline + + This is the backbone of most biometric recognition systems. + It implements three subpipelines and they are the following: + + - :py:class:`PipelineSimple.train_background_model`: Initializes or trains your transformer. + It will run :py:meth:`sklearn.base.BaseEstimator.fit` + + - :py:class:`PipelineSimple.enroll_templates`: Creates enrollment templates + It will run :py:meth:`sklearn.base.BaseEstimator.transform` followed by a sequence of + :py:meth:`bob.bio.base.pipelines.abstract_classes.BioAlgorithm.create_templates` + + - :py:class:`PipelineSimple.probe_templates`: Creates probe templates + It will run :py:meth:`sklearn.base.BaseEstimator.transform` followed by a sequence of + :py:meth:`bob.bio.base.pipelines.abstract_classes.BioAlgorithm.create_templates` + + - :py:class:`PipelineSimple.compute_scores`: Computes scores + It will run :py:meth:`bob.bio.base.pipelines.abstract_classes.BioAlgorithm.compare` + + + Example + ------- + >>> from sklearn.preprocessing import FunctionTransformer + >>> from sklearn.pipeline import make_pipeline + >>> from bob.bio.base.algorithm import Distance + >>> from bob.bio.base.pipelines import PipelineSimple + >>> from bob.pipelines import wrap + >>> import numpy + >>> linearize = lambda samples: [numpy.reshape(x, (-1,)) for x in samples] + >>> transformer = wrap(["sample"], FunctionTransformer(linearize)) + >>> transformer_pipeline = make_pipeline(transformer) + >>> biometric_algorithm = Distance() + >>> pipeline = PipelineSimple(transformer_pipeline, biometric_algorithm) + >>> pipeline(samples_for_training_back_ground_model, samplesets_for_enroll, samplesets_for_scoring) # doctest: +SKIP + + + To run this pipeline using Dask, used the function + :py:func:`dask_bio_pipeline`. + + Example + ------- + >>> from base.pipelines import dask_bio_pipeline + >>> pipeline = InvertBiometricsPipeline(transformer, biometric_algoritm) + >>> pipeline = dask_bio_pipeline(pipeline) + >>> pipeline(samples_for_training_back_ground_model, samplesets_for_enroll, samplesets_for_scoring).compute() # doctest: +SKIP + + + Parameters + ---------- + + transformer: :py:class`sklearn.pipeline.Pipeline` or a `sklearn.base.BaseEstimator` + Transformer that will preprocess your data + + biometric_algorithm: :py:class:`bob.bio.base.pipelines.vanilla_biometrics.abstract_classes.BioAlgorithm` + Biometrics algorithm object that implements the methods `enroll` and `score` methods + + score_writer: :any:`bob.bio.base.pipelines.vanilla_biometrics.ScoreWriter` + Format to write scores. Default to :any:`bob.bio.base.pipelines.vanilla_biometrics.FourColumnsScoreWriter` + + """ + + def __init__( + self, + transformer, + inversionAttack_transformer, + biometric_algorithm, + score_writer=None, + ): + self.transformer = transformer + self.inversionAttack_transformer = inversionAttack_transformer + self.biometric_algorithm = biometric_algorithm + self.score_writer = score_writer + if self.score_writer is None: + tempdir = tempfile.TemporaryDirectory() + self.score_writer = FourColumnsScoreWriter(tempdir.name) + + check_valid_pipeline(self) + + def __call__( + self, + background_model_samples, + biometric_reference_samples, + probe_samples, + invert_references_samples, + allow_scoring_with_all_biometric_references=True, + return_templates=False, + ): + logger.info( + f" >> Vanilla Biometrics: Training background model with pipeline {self.transformer}" + ) + + # Training background model (fit will return even if samples is ``None``, + # in which case we suppose the algorithm is not trainable in any way) + self.transformer = self.train_background_model(background_model_samples) + + logger.info( + f" >> Creating biometric references with the biometric algorithm {self.biometric_algorithm}" + ) + + # Create biometric samples + biometric_references = self.enroll_templates( + biometric_reference_samples + ) + + logger.info(" >> PipelineSimple: Creating probe templates") + probe_templates = self.probe_templates(probe_samples) + + logger.info( + f" >> Computing scores with the biometric algorithm {self.biometric_algorithm}" + ) + + # Scores all probes + scores_probes = self.compute_scores( + probe_templates, + biometric_references, + allow_scoring_with_all_biometric_references, + ) + + # Scores all inverted references + scores_inversionAttack = self.compute_scores_invertedReferences( + invert_references_samples, + biometric_references, + allow_scoring_with_all_biometric_references, + ) + + return scores_probes, scores_inversionAttack + + def compute_scores_invertedReferences( + self, + invert_references_samples, + biometric_references, + allow_scoring_with_all_biometric_references=True, + ): + # probes is a list of SampleSets + invert_reference_features = self.inversionAttack_transformer.transform( + invert_references_samples + ) + + invert_reference_templates = ( + self.biometric_algorithm.create_templates_from_samplesets( + invert_reference_features, enroll=False + ) + ) + + scores = self.biometric_algorithm.score_sample_templates( + invert_reference_templates, + biometric_references, + allow_scoring_with_all_biometric_references, + ) + + # scores is a list of Samples + return scores diff --git a/bob/bio/invert/pipeline.py b/bob/bio/invert/pipeline.py new file mode 100644 index 0000000000000000000000000000000000000000..08be78dc1e8b7ae490240f860fc1d9c22966131c --- /dev/null +++ b/bob/bio/invert/pipeline.py @@ -0,0 +1,259 @@ +# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> +# SPDX-FileContributor: Hatef OTROSHI <hatef.otroshi@idiap.ch> +# SPDX-License-Identifier: MIT +import copy +import logging +import os + +import dask.bag + +from dask.delayed import Delayed + +import bob.pipelines + +from bob.bio.base.pipelines import BioAlgDaskWrapper as BioAlgorithmDaskWrapper +from bob.bio.base.pipelines import CSVScoreWriter +from bob.bio.base.pipelines import FourColumnsScoreWriter +from bob.bio.base.pipelines import PipelineScoreNorm +from bob.bio.base.pipelines import TNormScores +from bob.bio.base.pipelines import ZNormScores +from bob.bio.base.pipelines import checkpoint_pipeline_simple +from bob.bio.base.pipelines import dask_bio_pipeline +from bob.bio.base.pipelines import is_biopipeline_checkpointed +from bob.pipelines import estimator_requires_fit +from bob.pipelines import is_instance_nested +from bob.pipelines.distributed import dask_get_partition_size +from bob.pipelines.utils import flatten_samplesets + +logger = logging.getLogger(__name__) + + +def compute_scores(result, dask_client): + if isinstance(result, Delayed) or isinstance(result, dask.bag.Bag): + if dask_client is not None: + result = result.compute(scheduler=dask_client) + else: + logger.warning( + "`dask_client` not set. Your pipeline will run locally" + ) + result = result.compute(scheduler="single-threaded") + return result + + +def post_process_scores(pipeline, scores, path): + written_scores = pipeline.write_scores(scores) + return pipeline.post_process(written_scores, path) + + +def get_inverted_references(biometric_references): + inverted_references = copy.deepcopy(biometric_references) + references = [r.reference_id for r in inverted_references] + + # breakdown sampleset + inverted_references = flatten_samplesets(inverted_references) + + for sampleset in inverted_references: + # sampleset.references = [sampleset.reference_id] + sampleset.references = copy.deepcopy(references) + for sample in sampleset: + sample.key = sample.key + "-inverted" + + sampleset.key = sampleset.key + "-inverted" + + return inverted_references + + +def execute_inverted_simple_biometrics( + pipeline, + database, + dask_client, + groups, + output, + write_metadata_scores, + checkpoint, + dask_partition_size, + dask_n_workers, + **kwargs, +): + """ + Function that executes the PipelineSimple. + + This is called when using the ``bob bio pipeline simple`` + command. + + This is also callable from a script without fear of interrupting the running + Dask instance, allowing chaining multiple experiments while keeping the + workers alive. + + When using Dask, something to keep in mind is that we want to split our data and + processing time on multiple workers. There is no recipe to make everything work on + any system. So if you encounter some balancing error (a few of all the available + workers actually working while the rest waits, or the scheduler being overloaded + trying to organise millions of tiny tasks), you can specify ``dask_n_partitions`` + or ``dask_partition_size``. + The first will try to split any set of data into a number of chunks (ideally, we + would want one per worker), and the second creates similar-sized partitions in each + set. + If the memory on the workers is not sufficient, try reducing the size of the + partitions (or increasing the number of partitions). + + Parameters + ---------- + + pipeline: Instance of :py:class:`bob.bio.base.pipelines.PipelineSimple` + A constructed PipelineSimple object. + + database: Instance of :py:class:`bob.bio.base.pipelines.abstract_class.Database` + A database interface instance + + dask_client: instance of :py:class:`dask.distributed.Client` or ``None`` + A Dask client instance used to run the experiment in parallel on multiple + machines, or locally. + Basic configs can be found in ``bob.pipelines.config.distributed``. + + dask_n_partitions: int or None + Specifies a number of partitions to split the data into. + + dask_partition_size: int or None + Specifies a data partition size when using dask. Ignored when dask_n_partitions + is set. + + dask_n_workers: int or None + Sets the starting number of Dask workers. Does not prevent Dask from requesting + more or releasing workers depending on load. + + groups: list of str + Groups of the dataset that will be requested from the database interface. + + output: str + Path where the scores will be saved. + + write_metadata_scores: bool + Use the CSVScoreWriter instead of the FourColumnScoreWriter when True. + + checkpoint: bool + Whether checkpoint files will be created for every step of the pipelines. + + checkpoint_dir: str + If `checkpoint` is set, this path will be used to save the checkpoints. + If `None`, the content of `output` will be used. + + force: bool + If set, it will force generate all the checkpoints of an experiment. This option doesn't work if `--memory` is set + """ + + if not os.path.exists(output): + os.makedirs(output, exist_ok=True) + + if write_metadata_scores: + pipeline.score_writer = CSVScoreWriter(os.path.join(output, "./tmp")) + else: + pipeline.score_writer = FourColumnsScoreWriter( + os.path.join(output, "./tmp") + ) + + # Check if it's already checkpointed + if checkpoint and not is_biopipeline_checkpointed(pipeline): + hash_fn = database.hash_fn if hasattr(database, "hash_fn") else None + pipeline = checkpoint_pipeline_simple(pipeline, output, hash_fn=hash_fn) + + # Here we have to checkpoint the `inversionAttack_transformer` + # inversionAttack_transformer + + pipeline.inversionAttack_transformer = bob.pipelines.wrap( + ["checkpoint"], + pipeline.inversionAttack_transformer, + features_dir=output, + hash_fn=hash_fn, + ) + + pass + + # Load the background model samples only if the transformer requires fitting + if estimator_requires_fit(pipeline.transformer): + background_model_samples = database.background_model_samples() + else: + background_model_samples = [] + + for group in groups: + + score_probes_file_name = os.path.join( + output, + f"scores-{group}" + (".csv" if write_metadata_scores else ""), + ) + score_inversionAttack_file_name = os.path.join( + output, + f"scores_inversion-{group}" + + (".csv" if write_metadata_scores else ""), + ) + + biometric_references = database.references(group=group) + probes = database.probes(group=group) + inverted_references = get_inverted_references(biometric_references) + + # If there's no data to be processed, continue + if len(biometric_references) == 0 or len(probes) == 0: + logger.warning( + f"Current dataset ({database}) does not have `{group}` set. The experiment will not be executed." + ) + continue + + if dask_client is not None and not is_instance_nested( + pipeline.biometric_algorithm, + "biometric_algorithm", + BioAlgorithmDaskWrapper, + ): + # Scaling up + if dask_n_workers is not None and not isinstance(dask_client, str): + dask_client.cluster.scale(dask_n_workers) + + n_objects = max( + len(background_model_samples), + len(biometric_references), + len(probes), + ) + partition_size = None + if not isinstance(dask_client, str): + partition_size = dask_get_partition_size( + dask_client.cluster, n_objects + ) + if dask_partition_size is not None: + partition_size = dask_partition_size + + pipeline = dask_bio_pipeline( + pipeline, + partition_size=partition_size, + ) + + # Here we have to dask the `inversionAttack_transformer` + # inversionAttack_transformer + + pipeline.inversionAttack_transformer = bob.pipelines.wrap( + ["dask"], + pipeline.inversionAttack_transformer, + partition_size=partition_size, + ) + + logger.info(f"Running vanilla biometrics for group {group}") + allow_scoring_with_all_biometric_references = ( + database.allow_scoring_with_all_biometric_references + if hasattr(database, "allow_scoring_with_all_biometric_references") + else False + ) + scores_probes, scores_inversionAttack = pipeline( + background_model_samples, + biometric_references, + probes, + inverted_references, + allow_scoring_with_all_biometric_references=allow_scoring_with_all_biometric_references, + ) + + post_processed_scores = post_process_scores( + pipeline, scores_probes, score_probes_file_name + ) + _ = compute_scores(post_processed_scores, dask_client) + + post_processed_scores = post_process_scores( + pipeline, scores_inversionAttack, score_inversionAttack_file_name + ) + _ = compute_scores(post_processed_scores, dask_client) diff --git a/bob/bio/invert/transformers.py b/bob/bio/invert/transformers.py new file mode 100644 index 0000000000000000000000000000000000000000..b472c22f420bf72374b60410dba210bf5e552aa9 --- /dev/null +++ b/bob/bio/invert/transformers.py @@ -0,0 +1,80 @@ +# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> +# SPDX-FileContributor: Hatef OTROSHI <hatef.otroshi@idiap.ch> +# SPDX-License-Identifier: MIT +import numpy as np +import torch + +from sklearn.base import BaseEstimator +from sklearn.base import TransformerMixin + +from bob.pipelines import Sample +from bob.pipelines import SampleBatch +from bob.pipelines import SampleSet + +from .networks import Generator + + +class InversionTransformer(TransformerMixin, BaseEstimator): + """ + Transforms any :math:`\mathbb{R}^n` into an image :math:`\mathbb{R}^{h \\times w \\times c}`. + + Parameters + ---------- + + checkpoint: str + Checkpoint of the image generator + + generator: + instance of the generator network + + """ + + def __init__(self, checkpoint, generator=None): + + self.device = torch.device( + "cuda" if torch.cuda.is_available() else "cpu" + ) + + self.generator = Generator() if generator is None else generator + + # TODO: use the checkpoint variable here + self.generator.load_state_dict( + torch.load( + checkpoint, + map_location=self.device, + ) + ) + self.generator.eval() + self.generator.to(self.device) + self.checkpoint = checkpoint + + def _more_tags(self): + return {"stateless": True, "requires_fit": False} + + def fit(self, X, y=None): + return self + + def transform(self, samples): + def _transform(data): + data = data.flatten() + data = np.reshape(data, (1, data.shape[0], 1, 1)) + embedding = torch.Tensor(data).to(self.device) + reconstructed_img = self.generator(embedding)[0] + return reconstructed_img.cpu().detach().numpy() * 255.0 + + if isinstance(samples[0], SampleSet): + return [ + SampleSet( + self.transform(sset.samples), + parent=sset, + ) + for sset in samples + ] + else: + return [ + Sample( + _transform(sample.data), + parent=sample, + ) + for sample in samples + ] diff --git a/bob/bio/invert/wrappers.py b/bob/bio/invert/wrappers.py new file mode 100644 index 0000000000000000000000000000000000000000..0f712bb0ba47858d5805744494b69525b6270af7 --- /dev/null +++ b/bob/bio/invert/wrappers.py @@ -0,0 +1,17 @@ +# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> +# SPDX-FileContributor: Hatef OTROSHI <hatef.otroshi@idiap.ch> +# SPDX-License-Identifier: MIT +from sklearn.pipeline import Pipeline + + +def get_invert_pipeline(FR_transformer, inv_transformer, feature_extractor): + + pipeline = Pipeline( + FR_transformer.steps + + [ + ("inverted-samples", inv_transformer), + ("inverted-features", feature_extractor), + ] + ) + + return pipeline diff --git a/buildout.cfg b/buildout.cfg new file mode 100644 index 0000000000000000000000000000000000000000..db012640b714db1aafc5c2c5cdb19d0a440cf7a1 --- /dev/null +++ b/buildout.cfg @@ -0,0 +1,47 @@ +; -*- coding: utf-8 -*- +; Wed Feb 12 13:37:08 2020 + +[buildout] +parts = scripts + +develop = src/bob.bio.base + src/bob.bio.face + src/bob.bio.invert + src/bob.learn.tensorflow + src/bob.pipelines + src/timm + . + + + + +eggs = bob.bio.facexzoo + bob.bio.invert + bob.bio.base + bob.bio.face + bob.bio.invert + bob.learn.tensorflow + bob.pipelines + timm + + +extensions = bob.buildout + mr.developer + +newest = false +verbose = true +auto-checkout = * + + +[sources] + +bob.bio.base = git git@gitlab.idiap.ch:bob/bob.bio.base rev=8d70e55c15e3d2cdcafcfd92b11f138e2f30f5bb +bob.bio.face = git git@gitlab.idiap.ch:bob/bob.bio.face rev=3567e990d0e523ceb5d3f9598054d8a27d7f7000 +bob.learn.tensorflow = git git@gitlab.idiap.ch:bob/bob.learn.tensorflow rev=f420d1b322762c81b79f59fa103c4ad07713fd79 +bob.pipelines = git git@gitlab.idiap.ch:bob/bob.pipelines rev=d8162ffc4fa072a14a8a4d7ac3b558de464a56ef +timm = git git@github.com:rwightman/pytorch-image-models rev=1d01c2b68c90619b173d4675d9a283be2bd44a33 ;v0.3.3 + + +[scripts] +recipe = bob.buildout:scripts +dependent-scripts = true \ No newline at end of file diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000000000000000000000000000000000000..77711a8aa25547d56404e668e69d3fb09278f6e7 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,17 @@ +[build-system] + requires = ["setuptools", "wheel", "bob.extension"] + build-backend = "setuptools.build_meta" + +[tool.isort] + profile = "black" + line_length = 80 + order_by_type = true + lines_between_types = 1 + +[tool.black] + line-length = 80 + +[tool.pytest.ini_options] +markers = [ + "slow: marks tests as slow (deselect with '-m \"not slow\"')", +] diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..089f1abe678a25e3bdd9f06da16152d3b03da86f --- /dev/null +++ b/requirements.txt @@ -0,0 +1,3 @@ +setuptools +numpy +bob.extension \ No newline at end of file diff --git a/setup.py b/setup.py new file mode 100644 index 0000000000000000000000000000000000000000..294a5a334fa539e08c34d22bf70716d94776df94 --- /dev/null +++ b/setup.py @@ -0,0 +1,57 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- + +from setuptools import setup, dist +dist.Distribution(dict(setup_requires=['bob.extension'])) + +from bob.extension.utils import find_packages +from bob.extension.utils import load_requirements + +install_requires = load_requirements() + + +setup( + + name='bob.paper.neurips2023_face_ti', + version=open("version.txt").read().rstrip(), + description='New package', + + url='https://gitlab.idiap.ch/bob/bob.paper.neurips2023_face_ti', + license='BSD-3', + + # there may be multiple authors (separate entries by comma) + author='Hatef OTROSHI', + author_email='hatef.otroshi@idiap.ch', + + # you may add more keywords separating those by commas (a, b, c, ...) + keywords = "bob", + + long_description=open('README.md').read(), + + # leave this here, it is pretty standard + packages=find_packages(), + include_package_data=True, + zip_safe = False, + + install_requires=install_requires, + + entry_points={ + # add entry points (scripts, bob resources here, if any) + }, + + # check classifiers, add and remove as you see fit + # full list here: https://pypi.org/classifiers/ + # don't remove the Bob framework unless it's not a bob package + classifiers = [ + 'Framework :: Bob', + 'Development Status :: 4 - Beta', + 'Intended Audience :: Science/Research', + 'License :: OSI Approved :: BSD-3', + 'Natural Language :: English', + 'Programming Language :: Python', + 'Programming Language :: Python :: 3', + 'Topic :: Scientific/Engineering :: Artificial Intelligence', + 'Topic :: Software Development :: Libraries :: Python Modules', + ], + +) \ No newline at end of file diff --git a/version.txt b/version.txt new file mode 100644 index 0000000000000000000000000000000000000000..79d48fc4015cc8015db8c42188f074088e94ee37 --- /dev/null +++ b/version.txt @@ -0,0 +1 @@ +0.0.1b0 \ No newline at end of file