diff --git a/bob/pad/face/preprocessor/FaceCropAlign.py b/bob/pad/face/preprocessor/FaceCropAlign.py index deed493601b6a581ef60a947ed36d980622628f3..7efeb31ea6afd60e6d638881fde4df65ef895aca 100644 --- a/bob/pad/face/preprocessor/FaceCropAlign.py +++ b/bob/pad/face/preprocessor/FaceCropAlign.py @@ -19,6 +19,9 @@ import bob.ip.base import importlib +import bob.bio.face + + # ============================================================================== def auto_norm_image(data, annotations, n_sigma=3.0, norm_method='MAD'): @@ -76,6 +79,31 @@ def auto_norm_image(data, annotations, n_sigma=3.0, norm_method='MAD'): return data_n +def get_mouth_center(lm): + """ + This function returns the location of mouth center + + **Parameters:** + + ``lm`` : :py:class:`numpy.ndarray` + A numpy array containing the coordinates of facial landmarks, (68X2) + + **Returns:** + + + ``mouth_center`` + A tuple containing the location of mouth center + + """ + + # Mean position of eye corners as eye centers , casted to int() + + mouth_center_t = (lm[48, :] + lm[54, :]) / 2.0 + + mouth_center = (int(mouth_center_t[1]), int(mouth_center_t[0])) + + return mouth_center + # ============================================================================== def get_eye_pos(lm): @@ -108,6 +136,32 @@ def get_eye_pos(lm): return right_eye, left_eye +def get_eye_center(lm): + """ + This function returns the location of eye_center, midpoint of left and right eye + + **Parameters:** + + ``lm`` : :py:class:`numpy.ndarray` + A numpy array containing the coordinates of facial landmarks, (68X2) + + **Returns:** + + ``eye_center`` + A tuple containing the location of eye_center + + """ + + # Mean position of eye corners as eye centers , casted to int() + + left_eye_t = (lm[36, :] + lm[39, :]) / 2.0 + right_eye_t = (lm[42, :] + lm[45, :]) / 2.0 + + eye_center = (int((left_eye_t[1]+right_eye_t[1])/2.0), int((left_eye_t[0]+right_eye_t[0])/2.0)) + + return eye_center + + # ============================================================================== def detect_face_landmarks_in_image(image, method="dlib"): """ @@ -213,7 +267,7 @@ def detect_face_landmarks_in_image(image, method="dlib"): # ========================================================================== def normalize_image_size_in_grayscale(image, annotations, - face_size, use_face_alignment): + face_size, use_face_alignment,alignment_type='default'): """ This function crops the face in the input Gray-scale image given annotations defining the face bounding box, and eye positions. @@ -250,16 +304,56 @@ def normalize_image_size_in_grayscale(image, annotations, if use_face_alignment: - face_eyes_norm = bob.ip.base.FaceEyesNorm( - eyes_distance=((face_size + 1) / 2.), - crop_size=(face_size, face_size), - eyes_center=(face_size / 4., (face_size - 0.5) / 2.)) - right_eye, left_eye = annotations['reye'], annotations['leye'] + if alignment_type=='default': + + face_eyes_norm = bob.ip.base.FaceEyesNorm( + eyes_distance=((face_size + 1) / 2.), + crop_size=(face_size, face_size), + eyes_center=(face_size / 4., (face_size - 0.5) / 2.)) + + right_eye, left_eye = annotations['reye'], annotations['leye'] + + normalized_image = face_eyes_norm( image, right_eye = right_eye, left_eye = left_eye ) + + normbbx=normalized_image.astype('uint8') + + elif alignment_type=='lightcnn': # This option overrides the facesize argument + + # This is the size of the image that this model expects + + CROPPED_IMAGE_HEIGHT = 128 + CROPPED_IMAGE_WIDTH = 128 + + # eye positions for frontal images + RIGHT_EYE_POS = (32, 44) + LEFT_EYE_POS = (32, 84) + + EYE_CENTER_POS = (40, 64) + MOUTH_CENTER_POS = (88, 64) + - normalized_image = face_eyes_norm( image, right_eye = right_eye, left_eye = left_eye ) + lm=np.array(annotations['landmarks']) - normbbx=normalized_image.astype('uint8') + mouth_center=get_mouth_center(lm) + + eye_center=get_eye_center(lm) + + annotations['eye_center'] =eye_center + + annotations['mouth_center']=mouth_center + + light_cnn_face_cropper=bob.bio.face.preprocessor.FaceCrop( + cropped_image_size=(CROPPED_IMAGE_HEIGHT, CROPPED_IMAGE_WIDTH), + cropped_positions={'eye_center': EYE_CENTER_POS, 'mouth_center': MOUTH_CENTER_POS}) + + + normalized_image = light_cnn_face_cropper( image, annotations=annotations) + + normbbx=normalized_image.astype('uint8') + + else: + print('The specified alignment method {} is not implemented!'.format(alignment_type)) else: @@ -278,7 +372,7 @@ def normalize_image_size_in_grayscale(image, annotations, # ========================================================================== def normalize_image_size(image, annotations, face_size, - rgb_output_flag, use_face_alignment): + rgb_output_flag, use_face_alignment,alignment_type='default'): """ This function crops the face in the input image given annotations defining the face bounding box. The size of the face is also normalized to the @@ -334,7 +428,7 @@ def normalize_image_size(image, annotations, face_size, for image_channel in image: # for all color channels in the input image cropped_face = normalize_image_size_in_grayscale( - image_channel, annotations, face_size, use_face_alignment) + image_channel, annotations, face_size, use_face_alignment,alignment_type=alignment_type) result.append(cropped_face) @@ -388,6 +482,15 @@ class FaceCropAlign(Preprocessor): using the facial landmarks detected locally. Works only when ``face_detection_method is not None``. + ``alignment_type`` : :py:class:`str` + Specifies the alignment type to use if ``use_face_alignment`` is set to ``True`` + Two methods are currently implemented: + ``default`` which would do alignment by making eyes + horizontally + ``lightcnn`` which aligns the face such that eye center are mouth centers are aligned to + predefined positions. This option overrides the face size option as the output required + is always 128x128. This is suitable for use with LightCNN model. + ``max_image_size`` : :py:class:`int` The maximum size of the image to be processed. ``max_image_size`` is only supported when @@ -420,6 +523,7 @@ class FaceCropAlign(Preprocessor): def __init__(self, face_size, rgb_output_flag, use_face_alignment, + alignment_type='default', max_image_size=None, face_detection_method=None, min_face_size=None, @@ -429,6 +533,7 @@ class FaceCropAlign(Preprocessor): Preprocessor.__init__(self, face_size=face_size, rgb_output_flag=rgb_output_flag, use_face_alignment=use_face_alignment, + alignment_type=alignment_type, max_image_size=max_image_size, face_detection_method=face_detection_method, min_face_size=min_face_size, @@ -438,6 +543,7 @@ class FaceCropAlign(Preprocessor): self.face_size = face_size self.rgb_output_flag = rgb_output_flag self.use_face_alignment = use_face_alignment + self.alignment_type=alignment_type self.max_image_size = max_image_size self.face_detection_method = face_detection_method @@ -447,6 +553,17 @@ class FaceCropAlign(Preprocessor): self.supported_face_detection_method = ["dlib", "mtcnn"] + + self.supported_alignment_method = ["default", "lightcnn"] + + if use_face_alignment: + + if self.alignment_type not in self.supported_alignment_method: + + raise ValueError('The alignment type {} is not supported'.format(self.alignment_type)) + + + if self.face_detection_method is not None: if self.face_detection_method not in self.supported_face_detection_method: @@ -546,6 +663,7 @@ class FaceCropAlign(Preprocessor): annotations=annotations, face_size=self.face_size, rgb_output_flag=self.rgb_output_flag, - use_face_alignment=self.use_face_alignment) + use_face_alignment=self.use_face_alignment, + alignment_type=self.alignment_type) return norm_face_image