diff --git a/bob/pad/face/extractor/VideoHistOfSparseCodes.py b/bob/pad/face/extractor/VideoHistOfSparseCodes.py index 61747358cf625ba3043c521c46bcd78d800f0d3d..5ef9c47abfa02e42165562e8b5cafb10005b7c01 100644 --- a/bob/pad/face/extractor/VideoHistOfSparseCodes.py +++ b/bob/pad/face/extractor/VideoHistOfSparseCodes.py @@ -102,6 +102,21 @@ class VideoHistOfSparseCodes(Extractor, object): return frame_container + #========================================================================== + def reduce_features_number(self, list_of_arrays): + """ + Reduce the number of features. + """ + + return_list = [] + + for item in list_of_arrays: + + return_list.append( item[1][32:] ) + + return return_list + + #========================================================================== def __call__(self, frames): """ @@ -119,7 +134,9 @@ class VideoHistOfSparseCodes(Extractor, object): Histograms of sparse codes stored in the FrameContainer. """ - histograms = self.comp_hist_of_sparse_codes(frames, self.method) +# histograms = self.comp_hist_of_sparse_codes(frames, self.method) + + histograms = self.reduce_features_number(frames) frame_container = self.convert_sparse_codes_to_frame_container(histograms) diff --git a/bob/pad/face/preprocessor/VideoSparseCoding.py b/bob/pad/face/preprocessor/VideoSparseCoding.py index 944ca82e30ae792dd269d8ae927b61bbbaa01ce5..016ada30f992c02dd035079a45d394209a4eface 100644 --- a/bob/pad/face/preprocessor/VideoSparseCoding.py +++ b/bob/pad/face/preprocessor/VideoSparseCoding.py @@ -77,6 +77,11 @@ class VideoSparseCoding(Preprocessor, object): "mean" and "hist". This argument is valid only if ``extract_histograms_flag`` is set to ``True``. Default: "hist". + + ``comp_reconstruct_err_flag`` : :py:class:`bool` + If this flag is set to ``True`` resulting feature vector will be a + reconstruction error, not a histogram. + Default: ``False``. """ #========================================================================== @@ -89,6 +94,7 @@ class VideoSparseCoding(Preprocessor, object): frame_step = 1, extract_histograms_flag = False, method = "hist", + comp_reconstruct_err_flag = False, **kwargs): super(VideoSparseCoding, self).__init__(block_size = block_size, @@ -98,6 +104,7 @@ class VideoSparseCoding(Preprocessor, object): dictionary_file_names = dictionary_file_names, frame_step = frame_step, extract_histograms_flag = extract_histograms_flag, + comp_reconstruct_err_flag = comp_reconstruct_err_flag, method = method) self.block_size = block_size @@ -108,6 +115,7 @@ class VideoSparseCoding(Preprocessor, object): self.frame_step = frame_step self.extract_histograms_flag = extract_histograms_flag self.method = method + self.comp_reconstruct_err_flag = comp_reconstruct_err_flag self.video_preprocessor = bob.bio.video.preprocessor.Wrapper() @@ -799,6 +807,164 @@ class VideoSparseCoding(Preprocessor, object): return frame_container + #========================================================================== + def compute_patches_mean_squared_errors(self, sparse_codes, original_data, dictionary): + """ + This function computes mean squared errors (MSE) for each feature (column) + in the reconstructed array of vectorized patches. The patches are reconstructed + given array of sparse codes and a dictionary. + + **Parameters:** + + ``sparse_codes`` : 2D :py:class:`numpy.ndarray` + An array of sparse codes. Each row contains a sparse code encoding a + vectorized patch. The dimensionality of the array: + (``n_samples`` x ``n_words_in_dictionary``). + + ``original_data`` : 2D :py:class:`numpy.ndarray` + An array with original vectorized patches. + The dimensionality of the array: + (``n_samples`` x ``n_features_in_patch``). + + ``dictionary`` : 2D :py:class:`numpy.ndarray` + A dictionary with vectorized visual words. + The dimensionality of the array: + (``n_words_in_dictionary`` x ``n_features_in_patch``). + + **Returns:** + + ``squared_errors`` : 1D :py:class:`numpy.ndarray` + MSE for each feature across all patches/samples. + The dimensionality of the array: + (``n_features_in_patch``, ). + """ + + recovered_data = np.dot(sparse_codes, dictionary) + + n_samples = recovered_data.shape[0] + + squared_error = 1.0 / n_samples * np.sum((recovered_data - original_data) ** 2, axis=0) + + return squared_error + + + #========================================================================== + def compute_mse_for_all_patches_types(self, sparse_codes_list, original_data_list, dictionary_list): + """ + This function computes mean squared errors (MSE) for all types of patches: + frontal, horizontal, and vertical. In this case the function + ``compute_patches_mean_squared_errors`` is called in a loop for all + values in the input lists. + + **Parameters:** + + ``sparse_codes_list`` : [2D :py:class:`numpy.ndarray`] + A list with arrays of sparse codes. Each row in the arrays contains a + sparse code encoding a vectorized patch of particular type. + The dimensionality of the each array: + (``n_samples`` x ``n_words_in_dictionary``). + + ``original_data_list`` : [2D :py:class:`numpy.ndarray`] + A list of arrays with original vectorized patches of various types. + The dimensionality of the arrays might be different for various types + of the patches: + (``n_samples`` x ``n_features_in_patch_of_particular_type``). + + ``dictionary_list`` : [2D :py:class:`numpy.ndarray`] + A list of dictionaries with vectorized visual words of various types. + The dimensionality of the arrays might be different for various types + of the patches: + (``n_words_in_dictionary`` x ``n_features_in_patch_of_particular_type``). + + **Returns:** + + ``squared_errors`` : 2D :py:class:`numpy.ndarray` + First row: + MSE of features for various types of patches concatenated into a single + vector. + Second row: + The same as above but MSE are sorted for each type of patches. + The dimensionality of the array: + (2 x ``n_features_in_patch_of_all_types``). + """ + + squared_errors = [] + + squared_errors_sorted = [] + + for sparse_codes, original_data, dictionary in zip(sparse_codes_list, original_data_list, dictionary_list): + + squared_error = self.compute_patches_mean_squared_errors(sparse_codes, original_data, dictionary) + + squared_error_sorted = np.sort(squared_error) + + squared_errors.append(squared_error) + + squared_errors_sorted.append(squared_error_sorted) + + squared_errors = np.hstack(squared_errors) + + squared_errors_sorted = np.hstack(squared_errors_sorted) + + squared_errors = np.vstack([squared_errors, squared_errors_sorted]) + + return squared_errors + + + #========================================================================== + def compute_mse_for_all_stacks(self, video_codes_list, patches_list, dictionary_list): + """ + Call ``compute_mse_for_all_patches_types`` for data coming from all stacks + of facial images. + + **Parameters:** + + ``video_codes_list`` : [ [2D :py:class:`numpy.ndarray`] ] + A list with ``frontal_video_codes``, ``horizontal_video_codes``, and + ``vertical_video_codes`` as returned by ``get_sparse_codes_for_list_of_patches`` + method of this class. + + ``patches_list`` : [ [2D :py:class:`numpy.ndarray`] ] + A list with ``frontal_patches``, ``horizontal_patches``, and + ``vertical_patches`` as returned by ``extract_patches_from_blocks`` + method of this class. + + ``dictionary_list`` : [2D :py:class:`numpy.ndarray`] + A list of dictionaries with vectorized visual words of various types. + The dimensionality of the arrays might be different for various types + of the patches: + (``n_words_in_dictionary`` x ``n_features_in_patch_of_particular_type``). + + **Returns:** + + ``squared_errors_list`` : [2D :py:class:`numpy.ndarray`] + A list of ``squared_errors`` as returned by ``compute_mse_for_all_patches_types`` + method of this class. + """ + + fcs = video_codes_list[0] + hcs = video_codes_list[1] + vcs = video_codes_list[2] + + fps = patches_list[0] + hps = patches_list[1] + vps = patches_list[2] + + squared_errors_list = [] + + for fc, hc, vc, fp, hp, vp in zip(fcs, hcs, vcs, fps, hps, vps): + + sparse_codes_list = [fc, hc, vc] + + original_data_list = [fp, hp, vp] + + squared_errors = self.compute_mse_for_all_patches_types(sparse_codes_list, original_data_list, dictionary_list) + + squared_errors_list.append(squared_errors) + + return squared_errors_list + + #========================================================================== def __call__(self, frames, annotations): """ @@ -859,18 +1025,37 @@ class VideoSparseCoding(Preprocessor, object): # Download the dictionaries: dictionary_frontal, dictionary_horizontal, dictionary_vertical = self.load_the_dictionaries(self.dictionary_file_names) + # Select subset of patches if ``frame_step`` > 1: + frontal_patches_subset = frontal_patches[::self.frame_step] + horizontal_patches_subset = horizontal_patches[::self.frame_step] + vertical_patches_subset = vertical_patches[::self.frame_step] + # Compute sparse codes for all patches of all types: - frontal_video_codes = self.get_sparse_codes_for_list_of_patches(frontal_patches[::self.frame_step], dictionary_frontal) - horizontal_video_codes = self.get_sparse_codes_for_list_of_patches(horizontal_patches[::self.frame_step], dictionary_horizontal) - vertical_video_codes = self.get_sparse_codes_for_list_of_patches(vertical_patches[::self.frame_step], dictionary_vertical) + frontal_video_codes = self.get_sparse_codes_for_list_of_patches(frontal_patches_subset, dictionary_frontal) + horizontal_video_codes = self.get_sparse_codes_for_list_of_patches(horizontal_patches_subset, dictionary_horizontal) + vertical_video_codes = self.get_sparse_codes_for_list_of_patches(vertical_patches_subset, dictionary_vertical) + + if self.comp_reconstruct_err_flag: + + video_codes_list = [frontal_video_codes, horizontal_video_codes, vertical_video_codes] + + patches_list = [frontal_patches_subset, horizontal_patches_subset, vertical_patches_subset] + + dictionary_list = [dictionary_frontal, dictionary_horizontal, dictionary_vertical] + + squared_errors_list = self.compute_mse_for_all_stacks(video_codes_list, patches_list, dictionary_list) + + frame_container = self.convert_arrays_to_frame_container(squared_errors_list) + + else: - frame_container = self.convert_sparse_codes_to_frame_container([frontal_video_codes, horizontal_video_codes, vertical_video_codes]) + frame_container = self.convert_sparse_codes_to_frame_container([frontal_video_codes, horizontal_video_codes, vertical_video_codes]) - if self.extract_histograms_flag: # in this case histograms will be extracted in the preprocessor , no feature extraction is needed then + if self.extract_histograms_flag: # in this case histograms will be extracted in the preprocessor , no feature extraction is needed then - histograms = self.comp_hist_of_sparse_codes(frame_container, self.method) + histograms = self.comp_hist_of_sparse_codes(frame_container, self.method) - frame_container = self.convert_arrays_to_frame_container(histograms) + frame_container = self.convert_arrays_to_frame_container(histograms) return frame_container