diff --git a/bob/pad/face/database/replay.py b/bob/pad/face/database/replay.py index 0e8c2cff71df566a8e5ae1f59976f84b4e846a7c..7e4e0ccfca3fe1b1edfc8e2633b6d23967fcb85a 100644 --- a/bob/pad/face/database/replay.py +++ b/bob/pad/face/database/replay.py @@ -1,38 +1,99 @@ -#!/usr/bin/env python -# vim: set fileencoding=utf-8 : -# Amir Mohammadi <amir.mohammadi@idiap.ch> -# Fri 10 Jun 2016 16:48:44 CEST +#!/usr/bin/env python2 +# -*- coding: utf-8 -*- +""" +Created on Thu May 4 12:03:36 2017 -"""Replay attack database implementation as bob.bio.db.Database""" +High level implementation for the REPLAY-ATTACK database + +@author: Olegs Nikisins <olegs.nikisins@idiap.ch> +""" + +#============================================================================== -from bob.pad.voice.database import PadVoiceFile from bob.pad.base.database import PadDatabase +import bob.bio.video # Used in ReplayPadFile class -class ReplayPadFile(PadVoiceFile): +from bob.pad.base.database import PadFile # Used in ReplayPadFile class - def __init__(self, f): +#============================================================================== + +class ReplayPadFile(PadFile): """ - Initializes this File object with our own File equivalent + A high level implementation of the File class for the REPLAY-ATTACK database. """ - self.__f = f - # this f is actually an instance of the File class that is defined in - # bob.db.replay.models and the PadFile class here needs - # client_id, path, attack_type, file_id for initialization. We have to - # convert information here and provide them to PadFile. attack_type is a - # little tricky to get here. Based on the documentation of PadFile: - # In cased of a spoofed data, this parameter should indicate what kind of spoofed attack it is. - # The default None value is interpreted that the PadFile is a genuine or real sample. - if f.is_real(): - attack_type = None - else: - attack_type = 'attack' - # attack_type is a string and I decided to make it like this for this - # particular database. You can do whatever you want for your own database. - - super(ReplayPadFile, self).__init__(client_id=f.client, path=f.path, - attack_type=attack_type, file_id=f.id) + def __init__(self, f): + """ + + **Parameters:** + + ``f`` : :py:class:`object` + An instance of the File class defined in the low level implementation + of the Replay database, in the bob.db.replay.models.py file. + """ + + self.f = f + # this f is actually an instance of the File class that is defined in + # bob.db.replay.models and the PadFile class here needs + # client_id, path, attack_type, file_id for initialization. We have to + # convert information here and provide them to PadFile. attack_type is a + # little tricky to get here. Based on the documentation of PadFile: + # In cased of a spoofed data, this parameter should indicate what kind of spoofed attack it is. + # The default None value is interpreted that the PadFile is a genuine or real sample. + if f.is_real(): + attack_type = None + else: + attack_type = 'attack' + # attack_type is a string and I decided to make it like this for this + # particular database. You can do whatever you want for your own database. + + super(ReplayPadFile, self).__init__(client_id=f.client, path=f.path, + attack_type=attack_type, file_id=f.id) + + + def load(self, directory=None, extension='.mov'): + """ + Overridden version of the load method defined in the ``bob.db.base.File``. + + **Parameters:** + + ``directory`` : :py:class:`str` + String containing the path to the Replay database. + + ``extension`` : :py:class:`str` + Extension of the video files in the Replay database. + + **Returns:** + + ``filtered_image`` : :py:class:`dict` + A dictionary containing the key-value pairs: "video" key containing the frames data, + and "bbx" containing the coordinates of the face bounding boxes for each frame. + """ + + path = self.f.make_path(directory=directory, extension=extension) # path to the video file + + frame_selector = bob.bio.video.FrameSelector(selection_style = 'all') # this frame_selector will select all frames from the video file + + video_data = frame_selector(path) # video data + + bbx_data = self.f.bbx(directory=directory) # numpy array containing the face bounding box data for each video frame, returned data format described in the f.bbx() method of the low level interface + + return_dictionary = {} + return_dictionary["video"] = video_data + return_dictionary["bbx"] = bbx_data + + return return_dictionary # dictionary containing the face bounding box annotations and video data + +#============================================================================== + + + + + + + + class ReplayPadDatabase(PadDatabase):