From 0887a83b47f41b299a1c55ee98c669b9325a5024 Mon Sep 17 00:00:00 2001 From: Olegs NIKISINS <onikisins@italix03.idiap.ch> Date: Mon, 9 Oct 2017 11:11:22 +0200 Subject: [PATCH] Optimized the VideoSparseCoding for memory useage --- .../preprocessor/video_sparse_coding.py | 21 ++++- .../face/extractor/VideoHistOfSparseCodes.py | 37 +++++++- .../face/preprocessor/VideoSparseCoding.py | 94 ++++++++++++++----- setup.py | 1 + 4 files changed, 129 insertions(+), 24 deletions(-) diff --git a/bob/pad/face/config/preprocessor/video_sparse_coding.py b/bob/pad/face/config/preprocessor/video_sparse_coding.py index 905dd7b0..032e89bd 100644 --- a/bob/pad/face/config/preprocessor/video_sparse_coding.py +++ b/bob/pad/face/config/preprocessor/video_sparse_coding.py @@ -99,8 +99,27 @@ preprocessor_10_5_128 = VideoSparseCoding(gblock_size = BLOCK_SIZE, frame_step = FRAME_STEP, extract_histograms_flag = EXTRACT_HISTOGRAMS_FLAG) +#======================================================================================= +BLOCK_SIZE = 5 +BLOCK_LENGTH = 10 +MIN_FACE_SIZE = 50 +NORM_FACE_SIZE = 64 +DICTIONARY_FILE_NAMES = ["/idiap/user/onikisins/Projects/ODIN/Python/scripts/test_scripts/data/dictionary_front_10_5_64.hdf5", + "/idiap/user/onikisins/Projects/ODIN/Python/scripts/test_scripts/data/dictionary_hor_10_5_64.hdf5", + "/idiap/user/onikisins/Projects/ODIN/Python/scripts/test_scripts/data/dictionary_vert_10_5_64.hdf5"] - +FRAME_STEP = 50 # (!) a small number of feature vectors will be computed +EXTRACT_HISTOGRAMS_FLAG = True +COMP_RECONSTRUCT_ERR_FLAG = True + +preprocessor_10_5_64_rec_err = VideoSparseCoding(gblock_size = BLOCK_SIZE, + block_length = BLOCK_LENGTH, + min_face_size = MIN_FACE_SIZE, + norm_face_size = NORM_FACE_SIZE, + dictionary_file_names = DICTIONARY_FILE_NAMES, + frame_step = FRAME_STEP, + extract_histograms_flag = EXTRACT_HISTOGRAMS_FLAG, + comp_reconstruct_err_flag = COMP_RECONSTRUCT_ERR_FLAG) diff --git a/bob/pad/face/extractor/VideoHistOfSparseCodes.py b/bob/pad/face/extractor/VideoHistOfSparseCodes.py index 5ef9c47a..9ef07094 100644 --- a/bob/pad/face/extractor/VideoHistOfSparseCodes.py +++ b/bob/pad/face/extractor/VideoHistOfSparseCodes.py @@ -117,6 +117,35 @@ class VideoHistOfSparseCodes(Extractor, object): return return_list + #========================================================================== + def select_reconstruction_vector(self, frames, sorted_flag): + """ + Select either sorted or non-sorted reconstruction errors. + """ + + return_list = [] + + if sorted_flag: + + for item in frames: + + return_list.append( item[1][1,:] ) + + else: + + for item in frames: + + return_list.append( item[1][0,:] ) + +# return_list = [] +# +# for item in frames: +# +# return_list.append( np.max(item[1], axis=1) ) + + return return_list + + #========================================================================== def __call__(self, frames): """ @@ -136,9 +165,13 @@ class VideoHistOfSparseCodes(Extractor, object): # histograms = self.comp_hist_of_sparse_codes(frames, self.method) - histograms = self.reduce_features_number(frames) +# histograms = self.reduce_features_number(frames) + + sorted_flag = False + + list_of_error_vecs = self.select_reconstruction_vector(frames, sorted_flag) - frame_container = self.convert_sparse_codes_to_frame_container(histograms) + frame_container = self.convert_sparse_codes_to_frame_container(list_of_error_vecs) return frame_container diff --git a/bob/pad/face/preprocessor/VideoSparseCoding.py b/bob/pad/face/preprocessor/VideoSparseCoding.py index 016ada30..40dc41ed 100644 --- a/bob/pad/face/preprocessor/VideoSparseCoding.py +++ b/bob/pad/face/preprocessor/VideoSparseCoding.py @@ -723,20 +723,18 @@ class VideoSparseCoding(Preprocessor, object): #========================================================================== - def comp_hist_of_sparse_codes(self, frames, method): + def comp_hist_of_sparse_codes(self, sparse_codes, method): """ Compute the histograms of sparse codes. **Parameters:** - ``frame_container`` : FrameContainer - FrameContainer containing the frames with sparse codes for the - frontal, horizontal and vertical patches. Each frame is a 3D array. - The dimensionality of array is: - (``3`` x ``n_samples`` x ``n_words_in_the_dictionary``). - First array [0,:,:] contains frontal sparse codes. - Second array [1,:,:] contains horizontal sparse codes. - Third array [2,:,:] contains vertical sparse codes. + ``sparse_codes`` : [[2D :py:class:`numpy.ndarray`]] + A list of lists of 2D arrays. Each 2D array contains sparse codes + of a particular stack of facial images. The length of internal lists + is equal to the number of processed frames. The outer list contains + the codes for frontal, horizontal and vertical patches, thus the + length of an outer list in the context of this class is 3. ``method`` : :py:class:`str` Name of the method to be used for combining the sparse codes into @@ -759,9 +757,9 @@ class VideoSparseCoding(Preprocessor, object): histograms = [] - for frame_data in frames: + for frontal_codes, horizontal_codes, vertical_codes in zip(sparse_codes[0], sparse_codes[1], sparse_codes[2]): - frame = frame_data[1] + frame = np.stack([frontal_codes, horizontal_codes, vertical_codes]) if method == "mean": @@ -807,12 +805,66 @@ class VideoSparseCoding(Preprocessor, object): return frame_container + #========================================================================== + def mean_std_normalize(self, features, features_mean= None, features_std = None): + """ + The features in the input 2D array are mean-std normalized. + The rows are samples, the columns are features. If ``features_mean`` + and ``features_std`` are provided, then these vectors will be used for + normalization. Otherwise, the mean and std of the features is + computed on the fly. + + **Parameters:** + + ``features`` : 2D :py:class:`numpy.ndarray` + Array of features to be normalized. + + ``features_mean`` : 1D :py:class:`numpy.ndarray` + Mean of the features. Default: None. + + ``features_std`` : 2D :py:class:`numpy.ndarray` + Standart deviation of the features. Default: None. + + **Returns:** + + ``features_norm`` : 2D :py:class:`numpy.ndarray` + Normalized array of features. + + ``features_mean`` : 1D :py:class:`numpy.ndarray` + Mean of the features. + + ``features_std`` : 1D :py:class:`numpy.ndarray` + Standart deviation of the features. + """ + + features = np.copy(features) + + # Compute mean and std if not given: + if features_mean is None: + + features_mean = np.mean(features, axis=0) + + features_std = np.std(features, axis=0) + + row_norm_list = [] + + for row in features: # row is a sample + + row_norm = (row - features_mean) / features_std + + row_norm_list.append(row_norm) + + features_norm = np.vstack(row_norm_list) + + return features_norm, features_mean, features_std + + #========================================================================== def compute_patches_mean_squared_errors(self, sparse_codes, original_data, dictionary): """ - This function computes mean squared errors (MSE) for each feature (column) - in the reconstructed array of vectorized patches. The patches are reconstructed - given array of sparse codes and a dictionary. + This function computes normalized mean squared errors (MSE) for each + feature (column) in the reconstructed array of vectorized patches. + The patches are reconstructed given array of sparse codes and a dictionary. **Parameters:** @@ -834,16 +886,14 @@ class VideoSparseCoding(Preprocessor, object): **Returns:** ``squared_errors`` : 1D :py:class:`numpy.ndarray` - MSE for each feature across all patches/samples. + Normalzied MSE for each feature across all patches/samples. The dimensionality of the array: (``n_features_in_patch``, ). """ recovered_data = np.dot(sparse_codes, dictionary) - n_samples = recovered_data.shape[0] - - squared_error = 1.0 / n_samples * np.sum((recovered_data - original_data) ** 2, axis=0) + squared_error = 1.*np.sum((original_data - recovered_data) ** 2, axis=0) / np.sum(original_data**2, axis=0) return squared_error @@ -1049,14 +1099,16 @@ class VideoSparseCoding(Preprocessor, object): else: - frame_container = self.convert_sparse_codes_to_frame_container([frontal_video_codes, horizontal_video_codes, vertical_video_codes]) - if self.extract_histograms_flag: # in this case histograms will be extracted in the preprocessor , no feature extraction is needed then - histograms = self.comp_hist_of_sparse_codes(frame_container, self.method) + histograms = self.comp_hist_of_sparse_codes([frontal_video_codes, horizontal_video_codes, vertical_video_codes], self.method) frame_container = self.convert_arrays_to_frame_container(histograms) + else: + + frame_container = self.convert_sparse_codes_to_frame_container([frontal_video_codes, horizontal_video_codes, vertical_video_codes]) + return frame_container diff --git a/setup.py b/setup.py index 474dcb05..2dff88ee 100644 --- a/setup.py +++ b/setup.py @@ -110,6 +110,7 @@ setup( 'sparse-coding-preprocessor-10-5-32 = bob.pad.face.config.preprocessor.video_sparse_coding:preprocessor_10_5_32', 'sparse-coding-preprocessor-10-5-64 = bob.pad.face.config.preprocessor.video_sparse_coding:preprocessor_10_5_64', 'sparse-coding-preprocessor-10-5-128 = bob.pad.face.config.preprocessor.video_sparse_coding:preprocessor_10_5_128', + 'sparse-coding-preprocessor-10-5-64-rec-err = bob.pad.face.config.preprocessor.video_sparse_coding:preprocessor_10_5_64_rec_err', ], # registered extractors: -- GitLab