diff --git a/bob/pad/face/config/lbp_svm_aggregated_db.py b/bob/pad/face/config/lbp_svm_aggregated_db.py new file mode 100644 index 0000000000000000000000000000000000000000..5d249a7c83ed3169319e06130096f89a1e725ca7 --- /dev/null +++ b/bob/pad/face/config/lbp_svm_aggregated_db.py @@ -0,0 +1,116 @@ +#!/usr/bin/env python2 +# -*- coding: utf-8 -*- + +""" +This file contains configurations to run LBP and SVM based face PAD baseline. +The settings of the preprocessor and extractor are tuned for the Replay-attack database. +In the SVM algorithm the amount of training data is reduced speeding-up the training for +large data sets, such as Aggregated PAD database. +The idea of the algorithm is introduced in the following paper: [CAM12]_. +However some settings are different from the ones introduced in the paper. +""" + + +#======================================================================================= +sub_directory = 'lbp_svm_aggregated_db' +""" +Sub-directory where results will be placed. + +You may change this setting using the ``--sub-directory`` command-line option +or the attribute ``sub_directory`` in a configuration file loaded **after** +this resource. +""" + + +#======================================================================================= +# define preprocessor: + +from ..preprocessor import VideoFaceCrop + +CROPPED_IMAGE_SIZE = (64, 64) # The size of the resulting face +CROPPED_POSITIONS = {'topleft' : (0,0) , 'bottomright' : CROPPED_IMAGE_SIZE} +FIXED_POSITIONS = None +MASK_SIGMA = None # The sigma for random values areas outside image +MASK_NEIGHBORS = 5 # The number of neighbors to consider while extrapolating +MASK_SEED = None # The seed for generating random values during extrapolation +CHECK_FACE_SIZE_FLAG = True # Check the size of the face +MIN_FACE_SIZE = 50 # Minimal possible size of the face +USE_LOCAL_CROPPER_FLAG = True # Use the local face cropping class (identical to Ivana's paper) +COLOR_CHANNEL = 'gray' # Convert image to gray-scale format + +preprocessor = VideoFaceCrop(cropped_image_size = CROPPED_IMAGE_SIZE, + cropped_positions = CROPPED_POSITIONS, + fixed_positions = FIXED_POSITIONS, + mask_sigma = MASK_SIGMA, + mask_neighbors = MASK_NEIGHBORS, + mask_seed = None, + check_face_size_flag = CHECK_FACE_SIZE_FLAG, + min_face_size = MIN_FACE_SIZE, + use_local_cropper_flag = USE_LOCAL_CROPPER_FLAG, + color_channel = COLOR_CHANNEL) +""" +In the preprocessing stage the face is cropped in each frame of the input video given facial annotations. +The size of the face is normalized to ``cropped_image_size`` dimensions. The faces with the size +below ``min_face_size`` threshold are discarded. The preprocessor is similar to the one introduced in +[CAM12]_, which is defined by ``use_local_cropper_flag = True``. +""" + + +#======================================================================================= +# define extractor: + +from ..extractor import VideoLBPHistogram + +LBPTYPE='uniform' +ELBPTYPE='regular' +RAD=1 +NEIGHBORS=8 +CIRC=False +DTYPE=None + +extractor = VideoLBPHistogram(lbptype=LBPTYPE, + elbptype=ELBPTYPE, + rad=RAD, + neighbors=NEIGHBORS, + circ=CIRC, + dtype=DTYPE) +""" +In the feature extraction stage the LBP histograms are extracted from each frame of the preprocessed video. +The parameters are similar to the ones introduced in [CAM12]_. +""" + + +#======================================================================================= +# define algorithm: + +from ..algorithm import VideoSvmPadAlgorithm + +MACHINE_TYPE = 'C_SVC' +KERNEL_TYPE = 'RBF' +N_SAMPLES = 10000 +TRAINER_GRID_SEARCH_PARAMS = {'cost': [2**P for P in range(-3, 14, 2)], 'gamma': [2**P for P in range(-15, 0, 2)]} +MEAN_STD_NORM_FLAG = True # enable mean-std normalization +FRAME_LEVEL_SCORES_FLAG = True # one score per frame(!) in this case +SAVE_DEBUG_DATA_FLAG = True # save the data, which might be useful for debugging +REDUCED_TRAIN_DATA_FLAG = True # reduce the amount of training data in the final training stage +N_TRAIN_SAMPLES = 50000 # number of training samples per class in the final SVM training stage + +algorithm = VideoSvmPadAlgorithm(machine_type = MACHINE_TYPE, + kernel_type = KERNEL_TYPE, + n_samples = N_SAMPLES, + trainer_grid_search_params = TRAINER_GRID_SEARCH_PARAMS, + mean_std_norm_flag = MEAN_STD_NORM_FLAG, + frame_level_scores_flag = FRAME_LEVEL_SCORES_FLAG, + save_debug_data_flag = SAVE_DEBUG_DATA_FLAG, + reduced_train_data_flag = REDUCED_TRAIN_DATA_FLAG, + n_train_samples = N_TRAIN_SAMPLES) +""" +The SVM algorithm with RBF kernel is used to classify the data into *real* and *attack* classes. +One score is produced for each frame of the input video, ``frame_level_scores_flag = True``. +The grid search of SVM parameters is used to select the successful settings. +The grid search is done on the subset of training data. +The size of this subset is defined by ``n_samples`` parameter. +The final training of the SVM is done on the subset of training data ``reduced_train_data_flag = True``. +The size of the subset for the final training stage is defined by the ``n_train_samples`` argument. +The data is also mean-std normalized, ``mean_std_norm_flag = True``. +""" \ No newline at end of file diff --git a/doc/resources.rst b/doc/resources.rst index 460737e0646d04fc6aaea59254e28843934651d4..2407852e7ffe3777d74e71c60e146f8fef74736d 100644 --- a/doc/resources.rst +++ b/doc/resources.rst @@ -100,6 +100,15 @@ Frame differences based features (motion analysis) + SVM for REPLAY-ATTACK :members: +.. _bob.pad.face.resources.face_pad.lbp_svm_aggregated_db: + +LBP features of facial region + SVM for Aggregated Database +=================================================================================== + +.. automodule:: bob.pad.face.config.lbp_svm_aggregated_db + :members: + + .. _bob.pad.face.resources.face_pad.qm_svm_aggregated_db: Image Quality Measures as features of facial region + SVM for Aggregated Database @@ -109,8 +118,13 @@ Image Quality Measures as features of facial region + SVM for Aggregated Databas :members: +.. _bob.pad.face.resources.face_pad.frame_diff_svm_aggregated_db: +Frame differences based features (motion analysis) + SVM for Aggregated Database +=================================================================================== +.. automodule:: bob.pad.face.config.frame_diff_svm_aggregated_db + :members: diff --git a/setup.py b/setup.py index ce17ee729f1523d524b25f7d57695b1d65fc5f12..e0ac7ee6cbf6fbe56e0b6a9754bded38486ae3db 100644 --- a/setup.py +++ b/setup.py @@ -74,6 +74,7 @@ setup( # baselines: 'lbp-svm = bob.pad.face.config.lbp_svm', + 'lbp-svm-aggregated-db = bob.pad.face.config.lbp_svm_aggregated_db', 'qm-svm = bob.pad.face.config.qm_svm', 'qm-svm-aggregated-db = bob.pad.face.config.qm_svm_aggregated_db', 'frame-diff-svm = bob.pad.face.config.frame_diff_svm',