Commit a772a3d5 authored by Amir MOHAMMADI's avatar Amir MOHAMMADI

Compute APCER correctly

parent 9f28f82a
Pipeline #29681 passed with stage
in 14 minutes and 32 seconds
This diff is collapsed.
......@@ -7,93 +7,235 @@ import bob.bio.base.script.gen as bio_gen
import bob.measure.script.figure as measure_figure
from bob.bio.base.score import load
from . import pad_figure as figure
from .error_utils import negatives_per_pai_and_positives
from functools import partial
SCORE_FORMAT = (
"Files must be 4-col format, see "
":py:func:`bob.bio.base.score.load.four_column`.")
CRITERIA = ('eer', 'min-hter', 'bpcer20')
"Files must be 4-col format, see " ":py:func:`bob.bio.base.score.load.four_column`."
)
CRITERIA = (
"eer",
"min-hter",
"far",
"bpcer5000",
"bpcer2000",
"bpcer1000",
"bpcer500",
"bpcer200",
"bpcer100",
"bpcer50",
"bpcer20",
"bpcer10",
"bpcer5",
"bpcer2",
"bpcer1",
)
def metrics_option(
sname="-m",
lname="--metrics",
name="metrics",
help="List of metrics to print. Provide a string with comma separated metric "
"names. For possible values see the default value.",
default="apcer_pais,apcer,bpcer,acer,fta,fpr,fnr,hter,far,frr,precision,recall,f1_score",
**kwargs
):
"""The metrics option"""
def custom_metrics_option(func):
def callback(ctx, param, value):
if value is not None:
value = value.split(",")
ctx.meta[name] = value
return value
return click.option(
sname,
lname,
default=default,
help=help,
show_default=True,
callback=callback,
**kwargs
)(func)
return custom_metrics_option
def regexps_option(
help="A list of regular expressions (by repeating this option) to be used to "
"categorize PAIs. Each regexp must match one type of PAI.",
**kwargs
):
def custom_regexps_option(func):
def callback(ctx, param, value):
ctx.meta["regexps"] = value
return value
return click.option(
"-r",
"--regexps",
default=None,
multiple=True,
help=help,
callback=callback,
**kwargs
)(func)
return custom_regexps_option
def regexp_column_option(
help="The column in the score files to match the regular expressions against.",
**kwargs
):
def custom_regexp_column_option(func):
def callback(ctx, param, value):
ctx.meta["regexp_column"] = value
return value
return click.option(
"-rc",
"--regexp-column",
default="real_id",
type=click.Choice(("claimed_id", "real_id", "test_label")),
help=help,
show_default=True,
callback=callback,
**kwargs
)(func)
return custom_regexp_column_option
@click.command()
@click.argument('outdir')
@click.option('-mm', '--mean-match', default=10, type=click.FLOAT,
show_default=True)
@click.option('-mnm', '--mean-non-match', default=-10,
type=click.FLOAT, show_default=True)
@click.option('-n', '--n-sys', default=1, type=click.INT, show_default=True)
@click.argument("outdir")
@click.option("-mm", "--mean-match", default=10, type=click.FLOAT, show_default=True)
@click.option(
"-mnm", "--mean-non-match", default=-10, type=click.FLOAT, show_default=True
)
@click.option("-n", "--n-sys", default=1, type=click.INT, show_default=True)
@verbosity_option()
@click.pass_context
def gen(ctx, outdir, mean_match, mean_non_match, n_sys, **kwargs):
"""Generate random scores.
Generates random scores in 4col or 5col format. The scores are generated
using Gaussian distribution whose mean is an input
parameter. The generated scores can be used as hypothetical datasets.
Invokes :py:func:`bob.bio.base.script.commands.gen`.
"""
ctx.meta['five_col'] = False
ctx.forward(bio_gen.gen)
@common_options.metrics_command(common_options.METRICS_HELP.format(
names='FtA, APCER, BPCER, FAR, FRR, ACER',
criteria=CRITERIA, score_format=SCORE_FORMAT,
hter_note='Note that FAR = APCER * (1 - FtA), '
'FRR = FtA + BPCER * (1 - FtA) and ACER = (APCER + BPCER) / 2.',
command='bob pad metrics'), criteria=CRITERIA)
def metrics(ctx, scores, evaluation, **kwargs):
process = figure.Metrics(ctx, scores, evaluation, load.split)
process.run()
"""Generate random scores.
Generates random scores in 4col or 5col format. The scores are generated
using Gaussian distribution whose mean is an input
parameter. The generated scores can be used as hypothetical datasets.
Invokes :py:func:`bob.bio.base.script.commands.gen`.
"""
ctx.meta["five_col"] = False
ctx.forward(bio_gen.gen)
@common_options.metrics_command(
common_options.METRICS_HELP.format(
names="FtA, APCER, BPCER, FPR, FNR, FAR, FRR, ACER, HTER, precision, recall, f1_score",
criteria=CRITERIA,
score_format=SCORE_FORMAT,
hter_note="Note that APCER = max(APCER_pais), BPCER=FNR, "
"FAR = FPR * (1 - FtA), "
"FRR = FtA + FNR * (1 - FtA), "
"ACER = (APCER + BPCER) / 2, "
"and HTER = (FPR + FNR) / 2. "
"You can control which metrics are printed using the --metrics option. "
"You can use --regexps and --regexp_column options to change the behavior "
"of finding Presentation Attack Instrument (PAI) types",
command="bob pad metrics",
),
criteria=CRITERIA,
epilog="""\b
More Examples:
\b
bob pad metrics -vvv -e -lg IQM,LBP -r print -r video -m fta,apcer_pais,apcer,bpcer,acer,hter \
/scores/oulunpu/{qm-svm,lbp-svm}/Protocol_1/scores/scores-{dev,eval}
See also ``bob pad multi-metrics``.
""",
)
@regexps_option()
@regexp_column_option()
@metrics_option()
def metrics(ctx, scores, evaluation, regexps, regexp_column, metrics, **kwargs):
load_fn = partial(
negatives_per_pai_and_positives, regexps=regexps, regexp_column=regexp_column
)
process = figure.Metrics(ctx, scores, evaluation, load_fn, metrics)
process.run()
@common_options.roc_command(
common_options.ROC_HELP.format(
score_format=SCORE_FORMAT, command='bob pad roc'))
common_options.ROC_HELP.format(score_format=SCORE_FORMAT, command="bob pad roc")
)
def roc(ctx, scores, evaluation, **kwargs):
process = figure.Roc(ctx, scores, evaluation, load.split)
process.run()
process = figure.Roc(ctx, scores, evaluation, load.split)
process.run()
@common_options.det_command(
common_options.DET_HELP.format(
score_format=SCORE_FORMAT, command='bob pad det'))
common_options.DET_HELP.format(score_format=SCORE_FORMAT, command="bob pad det")
)
def det(ctx, scores, evaluation, **kwargs):
process = figure.Det(ctx, scores, evaluation, load.split)
process.run()
process = figure.Det(ctx, scores, evaluation, load.split)
process.run()
@common_options.epc_command(
common_options.EPC_HELP.format(
score_format=SCORE_FORMAT, command='bob pad epc'))
common_options.EPC_HELP.format(score_format=SCORE_FORMAT, command="bob pad epc")
)
def epc(ctx, scores, **kwargs):
process = measure_figure.Epc(ctx, scores, True, load.split, hter='ACER')
process.run()
process = measure_figure.Epc(ctx, scores, True, load.split, hter="ACER")
process.run()
@common_options.hist_command(
common_options.HIST_HELP.format(
score_format=SCORE_FORMAT, command='bob pad hist'))
common_options.HIST_HELP.format(score_format=SCORE_FORMAT, command="bob pad hist")
)
def hist(ctx, scores, evaluation, **kwargs):
process = figure.Hist(ctx, scores, evaluation, load.split)
process.run()
process = figure.Hist(ctx, scores, evaluation, load.split)
process.run()
@common_options.evaluate_command(
common_options.EVALUATE_HELP.format(
score_format=SCORE_FORMAT, command='bob pad evaluate'),
criteria=CRITERIA)
score_format=SCORE_FORMAT, command="bob pad evaluate"
),
criteria=CRITERIA,
)
def evaluate(ctx, scores, evaluation, **kwargs):
common_options.evaluate_flow(
ctx, scores, evaluation, metrics, roc, det, epc, hist, **kwargs)
common_options.evaluate_flow(
ctx, scores, evaluation, metrics, roc, det, epc, hist, **kwargs
)
@common_options.multi_metrics_command(
common_options.MULTI_METRICS_HELP.format(
names='FtA, APCER, BPCER, FAR, FRR, ACER',
criteria=CRITERIA, score_format=SCORE_FORMAT,
command='bob pad multi-metrics'),
criteria=CRITERIA)
def multi_metrics(ctx, scores, evaluation, protocols_number, **kwargs):
ctx.meta['min_arg'] = protocols_number * (2 if evaluation else 1)
process = figure.MultiMetrics(
ctx, scores, evaluation, load.split)
process.run()
names="FtA, APCER, BPCER, FAR, FRR, ACER, HTER, precision, recall, f1_score",
criteria=CRITERIA,
score_format=SCORE_FORMAT,
command="bob pad multi-metrics",
),
criteria=CRITERIA,
epilog="""\b
More examples:
\b
bob pad multi-metrics -vvv -e -pn 6 -lg IQM,LBP -r print -r video \
/scores/oulunpu/{qm-svm,lbp-svm}/Protocol_3_{1,2,3,4,5,6}/scores/scores-{dev,eval}
See also ``bob pad metrics``.
""",
)
@regexps_option()
@regexp_column_option()
@metrics_option(default="fta,apcer_pais,apcer,bpcer,acer,hter")
def multi_metrics(
ctx, scores, evaluation, protocols_number, regexps, regexp_column, metrics, **kwargs
):
ctx.meta["min_arg"] = protocols_number * (2 if evaluation else 1)
load_fn = partial(
negatives_per_pai_and_positives, regexps=regexps, regexp_column=regexp_column
)
process = figure.MultiMetrics(ctx, scores, evaluation, load_fn, metrics)
process.run()
This diff is collapsed.
This diff is collapsed.
from bob.io.base.test_utils import datafile
from bob.io.base import HDF5File
from bob.pad.base.script.error_utils import (
negatives_per_pai_and_positives,
apcer_bpcer,
calc_threshold,
)
import nose
import numpy as np
GENERATE_REFERENCES = False
scores_dev = datafile("per_pai_scores/scores-dev", module=__name__)
scores_dev_reference_mask = datafile(
"per_pai_scores/scores-dev-{i}.hdf5", module=__name__
)
def _dump_dict(f, d, name):
f[f"{name}_len"] = len(d)
for i, (k, v) in enumerate(d.items()):
f[f"{name}_key_{i}"] = k
f[f"{name}_value_{i}"] = v
def _read_dict(f, name):
ret = dict()
for i in range(f[f"{name}_len"]):
k = f[f"{name}_key_{i}"]
v = f[f"{name}_value_{i}"]
if isinstance(v, np.ndarray):
v = v.tolist()
ret[k] = v
return ret
def test_per_pai_apcer():
for i, regexps in enumerate((None, ["x[0-2]", "x[3-4]"], ["x[1-2]", "x[3-4]"])):
try:
pos, negs = negatives_per_pai_and_positives(scores_dev, regexps)
except ValueError:
if i == 2:
continue
raise
all_negs = [s for scores in negs.values() for s in scores]
thresholds = dict()
for method in ("bpcer20", "far", "eer", "min-hter"):
thresholds[method] = calc_threshold(
method, pos, negs.values(), all_negs, far_value=0.1
)
metrics = dict()
for method, threshold in thresholds.items():
apcers, apcer, bpcer = apcer_bpcer(threshold, pos, *negs.values())
metrics[method] = apcers + [apcer, bpcer]
scores_dev_reference = scores_dev_reference_mask.format(i=i)
if GENERATE_REFERENCES:
with HDF5File(scores_dev_reference, "w") as f:
f["pos"] = pos
_dump_dict(f, negs, "negs")
_dump_dict(f, thresholds, "thresholds")
_dump_dict(f, metrics, "metrics")
with HDF5File(scores_dev_reference, "r") as f:
ref_pos = f["pos"].tolist()
ref_negs = _read_dict(f, "negs")
ref_thresholds = _read_dict(f, "thresholds")
ref_metrics = _read_dict(f, "metrics")
nose.tools.assert_list_equal(pos, ref_pos)
nose.tools.assert_dict_equal(negs, ref_negs)
nose.tools.assert_dict_equal(thresholds, ref_thresholds)
nose.tools.assert_dict_equal(metrics, ref_metrics)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment