Commit 28bdfd74 authored by Anjith GEORGE's avatar Anjith GEORGE
Browse files

Removed the old oneclassGMM

parent 4478742b
Pipeline #36737 failed with stage
in 4 minutes and 13 seconds
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 28 16:47:47 2017
@author: Olegs Nikisins
@author: Anjith George
"""
# ==============================================================================
# Import what is needed here:
from bob.bio.video.utils import FrameContainer
from bob.pad.base.algorithm import Algorithm
from bob.pad.base.utils import convert_frame_cont_to_array, mean_std_normalize, convert_and_prepare_features
from sklearn import mixture
import bob.io.base
import logging
import numpy as np
from .ScikitClassifier import ScikitClassifier
logger = logging.getLogger(__name__)
from sklearn.mixture import GaussianMixture
# ==============================================================================
# Main body :
from sklearn.preprocessing import StandardScaler
class OneClassGMM(Algorithm):
class OneClassGMM(ScikitClassifier):
"""
This class is designed to train a OneClassGMM based PAD system. The OneClassGMM is trained
using data of one class (real class) only. The procedure is the following:
......@@ -56,310 +48,12 @@ class OneClassGMM(Algorithm):
reg_covar=1e-06,
):
Algorithm.__init__(
self,
n_components=n_components,
random_state=random_state,
frame_level_scores_flag=frame_level_scores_flag,
performs_projection=True,
requires_projector_training=True)
self.n_components = n_components
self.random_state = random_state
self.frame_level_scores_flag = frame_level_scores_flag
self.covariance_type = covariance_type
self.reg_covar = reg_covar
self.machine = None # this argument will be updated with pretrained OneClassGMM machine
self.features_mean = None # this argument will be updated with features mean
self.features_std = None # this argument will be updated with features std
# names of the arguments of the pretrained OneClassGMM machine to be saved/loaded to/from HDF5 file:
self.gmm_param_keys = [
"covariance_type", "covariances_", "lower_bound_", "means_",
"n_components", "weights_", "converged_", "precisions_",
"precisions_cholesky_"
]
# ==========================================================================
def train_gmm(self, real):
"""
Train OneClassGMM classifier given real class. Prior to the training the data is
mean-std normalized.
**Parameters:**
``real`` : 2D :py:class:`numpy.ndarray`
Training features for the real class.
**Returns:**
``machine`` : object
A trained OneClassGMM machine.
``features_mean`` : 1D :py:class:`numpy.ndarray`
Mean of the features.
``features_std`` : 1D :py:class:`numpy.ndarray`
Standart deviation of the features.
"""
# real is now mean-std normalized
features_norm, features_mean, features_std = mean_std_normalize(real, copy=False)
if isinstance(self.n_components, (tuple, list)) or isinstance(self.covariance_type, (tuple, list)):
# perform grid search on covariance_type and n_components
n_components = self.n_components if isinstance(self.n_components, (tuple, list)) else [self.n_components]
covariance_type = self.covariance_type if isinstance(self.covariance_type, (tuple, list)) else [self.covariance_type]
logger.info("Performing grid search for GMM on covariance_type: %s and n_components: %s", self.covariance_type, self.n_components)
bic = []
lowest_bic = np.infty
for cv_type in covariance_type:
for nc in n_components:
logger.info("Testing for n_components: %s, covariance_type: %s", nc, cv_type)
gmm = mixture.GaussianMixture(
n_components=nc, covariance_type=cv_type,
reg_covar=self.reg_covar)
try:
gmm.fit(features_norm)
except Exception:
logger.warn("Failed to train current GMM", exc_info=True)
continue
bic.append(gmm.bic(features_norm))
if bic[-1] < lowest_bic:
lowest_bic = bic[-1]
logger.info("Best parameters so far: nc %s, cv_type: %s", nc, cv_type)
machine = gmm
else:
machine = mixture.GaussianMixture(
n_components=self.n_components,
random_state=self.random_state,
covariance_type=self.covariance_type,
reg_covar=self.reg_covar)
machine.fit(features_norm)
return machine, features_mean, features_std
# ==========================================================================
def save_gmm_machine_and_mean_std(self, projector_file, machine,
features_mean, features_std):
"""
Saves the OneClassGMM machine, features mean and std to the hdf5 file.
The absolute name of the file is specified in ``projector_file`` string.
**Parameters:**
``projector_file`` : :py:class:`str`
Absolute name of the file to save the data to, as returned by
``bob.pad.base`` framework.
``machine`` : object
The OneClassGMM machine to be saved. As returned by sklearn.linear_model
module.
``features_mean`` : 1D :py:class:`numpy.ndarray`
Mean of the features.
``features_std`` : 1D :py:class:`numpy.ndarray`
Standart deviation of the features.
"""
# open hdf5 file to save to
with bob.io.base.HDF5File(projector_file, 'w') as f:
for key in self.gmm_param_keys:
data = getattr(machine, key)
f.set(key, data)
f.set("features_mean", features_mean)
f.set("features_std", features_std)
# ==========================================================================
def train_projector(self, training_features, projector_file):
"""
Train OneClassGMM for feature projection and save it to file.
The ``requires_projector_training = True`` flag must be set to True
to enable this function.
**Parameters:**
``training_features`` : [[FrameContainer], [FrameContainer]]
A list containing two elements: [0] - a list of Frame Containers with
feature vectors for the real class; [1] - a list of Frame Containers with
feature vectors for the attack class.
``projector_file`` : :py:class:`str`
The file to save the trained projector to, as returned by the
``bob.pad.base`` framework.
"""
del training_features[1]
# training_features[0] - training features for the REAL class.
real = convert_and_prepare_features(training_features[0], dtype=None)
del training_features[0]
# training_features[1] - training features for the ATTACK class.
# attack = self.convert_and_prepare_features(training_features[1]) # output is array
# Train the OneClassGMM machine and get normalizers:
machine, features_mean, features_std = self.train_gmm(real=real)
# Save the GNN machine and normalizers:
self.save_gmm_machine_and_mean_std(projector_file, machine,
features_mean, features_std)
# ==========================================================================
def load_gmm_machine_and_mean_std(self, projector_file):
"""
Loads the machine, features mean and std from the hdf5 file.
The absolute name of the file is specified in ``projector_file`` string.
**Parameters:**
``projector_file`` : :py:class:`str`
Absolute name of the file to load the trained projector from, as
returned by ``bob.pad.base`` framework.
**Returns:**
``machine`` : object
The loaded OneClassGMM machine. As returned by sklearn.mixture module.
``features_mean`` : 1D :py:class:`numpy.ndarray`
Mean of the features.
``features_std`` : 1D :py:class:`numpy.ndarray`
Standart deviation of the features.
"""
# file to read the machine from
with bob.io.base.HDF5File(projector_file, 'r') as f:
# initialize the machine:
machine = mixture.GaussianMixture()
# set the params of the machine:
for key in self.gmm_param_keys:
data = f.read(key)
setattr(machine, key, data)
features_mean = f.read("features_mean")
features_std = f.read("features_std")
return machine, features_mean, features_std
# ==========================================================================
def load_projector(self, projector_file):
"""
Loads the machine, features mean and std from the hdf5 file.
The absolute name of the file is specified in ``projector_file`` string.
This function sets the arguments ``self.machine``, ``self.features_mean``
and ``self.features_std`` of this class with loaded machines.
The function must be capable of reading the data saved with the
:py:meth:`train_projector` method of this class.
Please register `performs_projection = True` in the constructor to
enable this function.
**Parameters:**
``projector_file`` : :py:class:`str`
The file to read the projector from, as returned by the
``bob.pad.base`` framework. In this class the names of the files to
read the projectors from are modified, see ``load_machine`` and
``load_cascade_of_machines`` methods of this class for more details.
"""
machine, features_mean, features_std = self.load_gmm_machine_and_mean_std(
projector_file)
self.machine = machine
self.features_mean = features_mean
self.features_std = features_std
# ==========================================================================
def project(self, feature):
"""
This function computes a vector of scores for each sample in the input
array of features. The following steps are applied:
1. First, the input data is mean-std normalized using mean and std of the
real class only.
2. The input features are next classified using pre-trained OneClassGMM machine.
Set ``performs_projection = True`` in the constructor to enable this function.
It is assured that the :py:meth:`load_projector` was **called before** the
``project`` function is executed.
**Parameters:**
``feature`` : FrameContainer or 2D :py:class:`numpy.ndarray`
Two types of inputs are accepted.
A Frame Container conteining the features of an individual,
see ``bob.bio.video.utils.FrameContainer``.
Or a 2D feature array of the size (N_samples x N_features).
**Returns:**
``scores`` : 1D :py:class:`numpy.ndarray`
Vector of scores. Scores for the real class are expected to be
higher, than the scores of the negative / attack class.
In this case scores are the weighted log probabilities.
"""
# 1. Convert input array to numpy array if necessary.
if isinstance(
feature,
FrameContainer): # if FrameContainer convert to 2D numpy array
features_array = convert_frame_cont_to_array(feature)
else:
features_array = feature
features_array_norm, _, _ = mean_std_normalize(
features_array, self.features_mean, self.features_std, copy=False)
scores = self.machine.score_samples(features_array_norm)
return scores
# ==========================================================================
def score(self, toscore):
"""
Returns a probability of a sample being a real class.
**Parameters:**
``toscore`` : 1D :py:class:`numpy.ndarray`
Vector with scores for each frame/sample defining the probability
of the frame being a sample of the real class.
**Returns:**
``score`` : [:py:class:`float`]
If ``frame_level_scores_flag = False`` a single score is returned.
One score per video. This score is placed into a list, because
the ``score`` must be an iterable.
Score is a probability of a sample being a real class.
If ``frame_level_scores_flag = True`` a list of scores is returned.
One score per frame/sample.
"""
if self.frame_level_scores_flag:
score = list(toscore)
else:
score = [np.mean(toscore)] # compute a single score per video
return score
ScikitClassifier.__init__(self,
clf=GaussianMixture(n_components=n_components,
random_state=random_state,
covariance_type=covariance_type,
reg_covar=reg_covar),
scaler=StandardScaler(),
frame_level_scores_flag=frame_level_scores_flag,
norm_on_bonafide=True,
one_class=True)
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
@author: Anjith George
"""
#==============================================================================
from .ScikitClassifier import ScikitClassifier
from sklearn.mixture import GaussianMixture
from sklearn.preprocessing import StandardScaler
class OneClassGMM3(ScikitClassifier):
"""
This class is designed to train a OneClassGMM based PAD system. The OneClassGMM is trained
using data of one class (real class) only. The procedure is the following:
1. First, the training data is mean-std normalized using mean and std of the
real class only.
2. Second, the OneClassGMM with ``n_components`` Gaussians is trained using samples
of the real class.
3. The input features are next classified using pre-trained OneClassGMM machine.
**Parameters:**
``n_components`` : :py:class:`int`
Number of Gaussians in the OneClassGMM. Default: 1 .
``random_state`` : :py:class:`int`
A seed for the random number generator used in the initialization of
the OneClassGMM. Default: 3 .
``frame_level_scores_flag`` : :py:class:`bool`
Return scores for each frame individually if True. Otherwise, return a
single score per video. Default: False.
"""
def __init__(self,
n_components=1,
random_state=3,
frame_level_scores_flag=False,
covariance_type='full',
reg_covar=1e-06,
):
ScikitClassifier.__init__(self,
clf=GaussianMixture(n_components=n_components, random_state=random_state, covariance_type=covariance_type,reg_covar=reg_covar),
scaler=StandardScaler(),
frame_level_scores_flag=frame_level_scores_flag,
norm_on_bonafide=True,
one_class=True)
\ No newline at end of file
......@@ -2,7 +2,6 @@ from .Algorithm import Algorithm
from .SVM import SVM
from .OneClassGMM import OneClassGMM
from .OneClassGMM2 import OneClassGMM2
from .OneClassGMM3 import OneClassGMM3
from .LogRegr import LogRegr
from .SVMCascadePCA import SVMCascadePCA
......@@ -35,7 +34,6 @@ __appropriate__(
SVM,
OneClassGMM,
OneClassGMM2,
OneClassGMM3,
LogRegr,
SVMCascadePCA,
Predictions,
......
......@@ -123,67 +123,13 @@ def test_video_gmm_pad_algorithm():
real = convert_array_to_list_of_frame_cont(real_array)
N_COMPONENTS = 1
RANDOM_STATE = 3
FRAME_LEVEL_SCORES_FLAG = True
algorithm = OneClassGMM(
n_components=N_COMPONENTS,
random_state=RANDOM_STATE,
frame_level_scores_flag=FRAME_LEVEL_SCORES_FLAG)
# training_features[0] - training features for the REAL class.
real_array_converted = convert_list_of_frame_cont_to_array(real) # output is array
assert (real_array == real_array_converted).all()
# Train the OneClassGMM machine and get normalizers:
machine, features_mean, features_std = algorithm.train_gmm(
real=real_array_converted)
algorithm.machine = machine
algorithm.features_mean = features_mean
algorithm.features_std = features_std
scores_real = algorithm.project(real_array_converted)
scores_attack = algorithm.project(attack_array)
assert (np.min(scores_real) + 7.9423798970985917) < 0.000001
assert (np.max(scores_real) + 1.8380480068281055) < 0.000001
assert (np.min(scores_attack) + 38.831260843070098) < 0.000001
assert (np.max(scores_attack) + 5.3633030621521272) < 0.000001
def test_video_gmm_pad_algorithm_3():
random.seed(7)
N = 1000
mu = 1
sigma = 1
real_array = np.transpose(
np.vstack([[random.gauss(mu, sigma) for _ in range(N)],
[random.gauss(mu, sigma) for _ in range(N)]]))
mu = 5
sigma = 1
attack_array = np.transpose(
np.vstack([[random.gauss(mu, sigma) for _ in range(N)],
[random.gauss(mu, sigma) for _ in range(N)]]))
real = convert_array_to_list_of_frame_cont(real_array)
attack = convert_array_to_list_of_frame_cont(attack_array)
N_COMPONENTS = 1
RANDOM_STATE = 3
FRAME_LEVEL_SCORES_FLAG = True
algorithm = OneClassGMM3(
algorithm = OneClassGMM(
n_components=N_COMPONENTS,
random_state=RANDOM_STATE,
frame_level_scores_flag=FRAME_LEVEL_SCORES_FLAG)
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment