figure.py 25.6 KB
Newer Older
1 2
'''Runs error analysis on score sets, outputs metrics and plots'''

3 4
import pkg_resources  # to make sure bob gets imported properly
import logging
5 6
import click
import numpy as np
7
import matplotlib.pyplot as mpl
8 9 10
import  bob.measure.script.figure as measure_figure
from tabulate import tabulate
from bob.extension.scripts.click_helper import verbosity_option
11
from  bob.measure.utils import (get_fta, get_fta_list, get_thres)
12
from bob.measure import (
13
    far_threshold, eer_threshold, min_hter_threshold, farfrr, epc, ppndf
14
)
15
from bob.measure.plot import (det, det_axis)
16 17 18 19
from . import error_utils

ALL_CRITERIA = ('bpcer20', 'eer', 'min-hter')

20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
def calc_threshold(method, neg, pos):
    """Calculates the threshold based on the given method.
    The scores should be sorted!

    Parameters
    ----------
    method : str
        One of ``bpcer201``, ``eer``, ``min-hter``.
    neg : array_like
        The negative scores. They should be sorted!
    pos : array_like
        The positive scores. They should be sorted!

    Returns
    -------
    float
        The calculated threshold.

    Raises
    ------
    ValueError
        If method is unknown.
    """
    method = method.lower()
    if method == 'bpcer20':
        threshold = far_threshold(neg, pos, 0.05, True)
    elif method == 'eer':
        threshold = eer_threshold(neg, pos, True)
    elif method == 'min-hter':
        threshold = min_hter_threshold(neg, pos, True)
    else:
        raise ValueError("Unknown threshold criteria: {}".format(method))

    return threshold

56

57 58 59 60 61
class Metrics(measure_figure.Metrics):
    def __init__(self, ctx, scores, evaluation, func_load):
        super(Metrics, self).__init__(ctx, scores, evaluation, func_load)

    ''' Compute metrics from score files'''
62
    def compute(self, idx, input_scores, input_names):
63
        ''' Compute metrics for the given criteria'''
64 65 66 67 68 69
        neg_list, pos_list, _ = get_fta_list(input_scores)
        dev_neg, dev_pos = neg_list[0], pos_list[0]
        dev_file = input_names[0]
        if self._eval:
            eval_neg, eval_pos = neg_list[1], pos_list[1]
            eval_file = input_names[1]
70

71
        title = self._legends[idx] if self._legends is not None else None
72
        headers = ['' or title, 'Development %s' % dev_file]
73
        if self._eval:
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
            headers.append('Eval. % s' % eval_file)
        for m in ALL_CRITERIA:
            raws = []
            threshold = calc_threshold(m, dev_neg, dev_pos)
            click.echo("\nThreshold of %f selected with the %s criteria" % (
                threshold, m))
            apcer, bpcer = farfrr(dev_neg, dev_pos, threshold)
            raws.append(['BPCER20', '{:>5.1f}%'.format(apcer * 100)])
            raws.append(['EER', '{:>5.1f}%'.format(bpcer * 100)])
            raws.append(['min-HTER', '{:>5.1f}%'.format((apcer + bpcer) * 50)])
            if self._eval and eval_neg is not None:
                apcer, bpcer = farfrr(eval_neg, eval_pos, threshold)
                raws[0].append('{:>5.1f}%'.format(apcer * 100))
                raws[1].append('{:>5.1f}%'.format(bpcer * 100))
                raws[2].append('{:>5.1f}%'.format((apcer + bpcer) * 50))

            click.echo(
                tabulate(raws, headers, self._tablefmt),
                file=self.log_file
            )

95

96 97 98 99 100 101
class HistPad(measure_figure.Hist):
    ''' Histograms for PAD '''

    def _setup_hist(self, neg, pos):
        self._title_base = 'PAD'
        self._density_hist(
102
            pos[0], n=0, label='Bona Fide', color='C1'
103 104
        )
        self._density_hist(
105
            neg[0], n=1, label='Presentation attack', alpha=0.4, color='C7',
106
            hatch='\\\\'
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        )


def _iapmr_dot(threshold, iapmr, real_data, **kwargs):
    # plot a dot on threshold versus IAPMR line and show IAPMR as a number
    axlim = mpl.axis()
    mpl.plot(threshold, 100. * iapmr, 'o', color='C3', **kwargs)
    if not real_data:
        mpl.annotate(
            'IAPMR at\noperating point',
            xy=(threshold, 100. * iapmr),
            xycoords='data',
            xytext=(0.85, 0.6),
            textcoords='axes fraction',
            color='black',
            size='large',
            arrowprops=dict(facecolor='black', shrink=0.05, width=2),
            horizontalalignment='center',
            verticalalignment='top',
        )
    else:
        mpl.text(threshold + (threshold - axlim[0]) / 12, 100. * iapmr,
                 '%.1f%%' % (100. * iapmr,), color='C3')

131

132 133 134 135 136 137
def _iapmr_line_plot(scores, n_points=100, **kwargs):
    axlim = mpl.axis()
    step = (axlim[1] - axlim[0]) / float(n_points)
    thres = [(k * step) + axlim[0] for k in range(2, n_points - 1)]
    mix_prob_y = []
    for k in thres:
138
        mix_prob_y.append(100. * error_utils.calc_pass_rate(k, scores))
139 140 141

    mpl.plot(thres, mix_prob_y, label='IAPMR', color='C3', **kwargs)

142

143 144 145 146
def _iapmr_plot(scores, threshold, iapmr, real_data, **kwargs):
    _iapmr_dot(threshold, iapmr, real_data, **kwargs)
    _iapmr_line_plot(scores, n_points=100, **kwargs)

147

148 149 150 151 152 153
class HistVuln(measure_figure.Hist):
    ''' Histograms for vulnerability '''

    def _setup_hist(self, neg, pos):
        self._title_base = 'Vulnerability'
        self._density_hist(
154
            pos[0], n=0, label='Genuine', color='C1'
155 156
        )
        self._density_hist(
157
            neg[0], n=1, label='Zero-effort impostors', alpha=0.8, color='C0'
158 159
        )
        self._density_hist(
160
            neg[1], n=2, label='Presentation attack', alpha=0.4, color='C7',
161
            hatch='\\\\'
162 163
        )

164
    def _lines(self, threshold, label, neg, pos, idx, **kwargs):
165 166
        if 'iapmr_line' not in self._ctx.meta or self._ctx.meta['iapmr_line']:
            #plot vertical line
167
            super(HistVuln, self)._lines(threshold, label, neg, pos, idx)
168 169 170 171 172 173 174 175 176

            #plot iapmr_line
            iapmr, _ = farfrr(neg[1], pos[0], threshold)
            ax2 = mpl.twinx()
            # we never want grid lines on axis 2
            ax2.grid(False)
            real_data = True if 'real_data' not in self._ctx.meta else \
                    self._ctx.meta['real_data']
            _iapmr_plot(neg[1], threshold, iapmr, real_data=real_data)
177 178 179 180 181
            n = idx % self._step_print
            col = n % self._ncols
            rest_print = self.n_systems - int(idx / self._step_print) * self._step_print
            if col == self._ncols - 1 or n == rest_print - 1:
                ax2.set_ylabel("IAPMR (%)", color='C3')
182 183 184 185
            ax2.tick_params(axis='y', colors='red')
            ax2.yaxis.label.set_color('red')
            ax2.spines['right'].set_color('red')

186

187 188 189 190
class PadPlot(measure_figure.PlotBase):
    '''Base class for PAD plots'''
    def __init__(self, ctx, scores, evaluation, func_load):
        super(PadPlot, self).__init__(ctx, scores, evaluation, func_load)
191
        mpl.rcParams['figure.constrained_layout.use'] = self._clayout
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

    def end_process(self):
        '''Close pdf '''
        #do not want to close PDF when running evaluate
        if 'PdfPages' in self._ctx.meta and \
           ('closef' not in self._ctx.meta or self._ctx.meta['closef']):
            self._pdf_page.close()

    def _plot_legends(self):
        #legends for all axes
        lines = []
        labels = []
        for ax in mpl.gcf().get_axes():
            li, la = ax.get_legend_handles_labels()
            lines += li
            labels += la
208 209 210 211
        if self._disp_legend:
            mpl.gca().legend(lines, labels, loc=self._legend_loc,
                             fancybox=True, framealpha=0.5)

212 213 214 215 216 217 218

class Epc(PadPlot):
    ''' Handles the plotting of EPC '''
    def __init__(self, ctx, scores, evaluation, func_load):
        super(Epc, self).__init__(ctx, scores, evaluation, func_load)
        self._iapmr = True if 'iapmr' not in self._ctx.meta else \
                self._ctx.meta['iapmr']
219 220 221 222
        self._title = self._title or ('EPC and IAPMR' if self._iapmr else
                                      'EPC')
        self._x_label = self._x_label or r"Weight $\beta$"
        self._y_label = self._y_label or "WER (%)"
223 224 225 226
        self._eval = True #always eval data with EPC
        self._split = False
        self._nb_figs = 1

227 228 229 230 231
        if self._min_arg != 4:
            raise click.BadParameter("You must provide 4 scores files:{licit,"
                                     "spoof}/{dev,eval}")

    def compute(self, idx, input_scores, input_names):
232
        ''' Plot EPC for PAD'''
233 234 235 236 237
        licit_dev_neg = input_scores[0][0]
        licit_dev_pos = input_scores[0][1]
        licit_eval_neg = input_scores[1][0]
        licit_eval_pos = input_scores[1][1]
        spoof_eval_neg = input_scores[3][0]
238
        mpl.gcf().clear()
239
        epc_baseline = epc(
240 241 242 243 244 245 246
            licit_dev_neg, licit_dev_pos, licit_eval_neg,
            licit_eval_pos, 100
        )
        mpl.plot(
            epc_baseline[:, 0], [100. * k for k in epc_baseline[:, 1]],
            color='C0',
            label=self._label(
247
                'WER', '%s-%s' % (input_names[0], input_names[1]), idx
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
            ),
            linestyle='-'
        )
        mpl.xlabel(self._x_label)
        mpl.ylabel(self._y_label)
        if self._iapmr:
            mix_prob_y = []
            for k in epc_baseline[:, 2]:
                prob_attack = sum(
                    1 for i in spoof_eval_neg if i >= k
                ) / float(spoof_eval_neg.size)
                mix_prob_y.append(100. * prob_attack)

            mpl.gca().set_axisbelow(True)
            prob_ax = mpl.gca().twinx()
            mpl.plot(
                epc_baseline[:, 0],
                mix_prob_y,
                color='C3',
                linestyle='-',
                label=self._label(
269
                    'IAPMR', '%s-%s' % (input_names[0], input_names[1]), idx
270 271 272 273 274 275 276 277 278
                )
            )
            prob_ax.set_yticklabels(prob_ax.get_yticks())
            prob_ax.tick_params(axis='y', colors='red')
            prob_ax.yaxis.label.set_color('red')
            prob_ax.spines['right'].set_color('red')
            ylabels = prob_ax.get_yticks()
            prob_ax.yaxis.set_ticklabels(["%.0f" % val for val in ylabels])
            prob_ax.set_axisbelow(True)
279
        title = self._legends[idx] if self._legends is not None else self._title
280 281
        if title.replace(' ', ''):
            mpl.title(title)
282 283 284 285 286
        #legends for all axes
        self._plot_legends()
        mpl.xticks(rotation=self._x_rotation)
        self._pdf_page.savefig(mpl.gcf())

287

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
class Epsc(PadPlot):
    ''' Handles the plotting of EPSC '''
    def __init__(self, ctx, scores, evaluation, func_load,
                 criteria, var_param, fixed_param):
        super(Epsc, self).__init__(ctx, scores, evaluation, func_load)
        self._iapmr = False if 'iapmr' not in self._ctx.meta else \
                self._ctx.meta['iapmr']
        self._wer = True if 'wer' not in self._ctx.meta else \
                self._ctx.meta['wer']
        self._criteria = 'eer' if criteria is None else criteria
        self._var_param = "omega" if var_param is None else var_param
        self._fixed_param = 0.5 if fixed_param is None else fixed_param
        self._eval = True #always eval data with EPC
        self._split = False
        self._nb_figs = 1
303 304 305 306 307
        self._title = ''

        if self._min_arg != 4:
            raise click.BadParameter("You must provide 4 scores files:{licit,"
                                     "spoof}/{dev,eval}")
308

309
    def compute(self, idx, input_scores, input_names):
310
        ''' Plot EPSC for PAD'''
311 312 313 314 315 316 317 318
        licit_dev_neg = input_scores[0][0]
        licit_dev_pos = input_scores[0][1]
        licit_eval_neg = input_scores[1][0]
        licit_eval_pos = input_scores[1][1]
        spoof_dev_neg = input_scores[2][0]
        spoof_dev_pos = input_scores[2][1]
        spoof_eval_neg = input_scores[3][0]
        spoof_eval_pos = input_scores[3][1]
319
        title = self._legends[idx] if self._legends is not None else None
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

        mpl.gcf().clear()
        points = 10

        if self._var_param == 'omega':
            omega, beta, thrs = error_utils.epsc_thresholds(
                licit_dev_neg,
                licit_dev_pos,
                spoof_dev_neg,
                spoof_dev_pos,
                points=points,
                criteria=self._criteria,
                beta=self._fixed_param)
        else:
            omega, beta, thrs = error_utils.epsc_thresholds(
                licit_dev_neg,
                licit_dev_pos,
                spoof_dev_neg,
                spoof_dev_pos,
                points=points,
                criteria= self._criteria,
                omega=self._fixed_param
            )

        errors = error_utils.all_error_rates(
            licit_eval_neg, licit_eval_pos, spoof_eval_neg,
            spoof_eval_pos, thrs, omega, beta
        )  # error rates are returned in a list in the
           # following order: frr, far, IAPMR, far_w, wer_w

        ax1 = mpl.subplot(
            111
        )  # EPC like curves for FVAS fused scores for weighted error rates
           # between the negatives (impostors and Presentation attacks)
        if self._wer:
            if self._var_param == 'omega':
                mpl.plot(
                    omega,
                    100. * errors[4].flatten(),
                    color='C0',
                    linestyle='-',
                    label=r"WER$_{\omega,\beta}$")
362
                mpl.xlabel(self._x_label or r"Weight $\omega$")
363 364 365 366 367 368 369
            else:
                mpl.plot(
                    beta,
                    100. * errors[4].flatten(),
                    color='C0',
                    linestyle='-',
                    label=r"WER$_{\omega,\beta}$")
370 371
                mpl.xlabel(self._x_label or r"Weight $\beta$")
            mpl.ylabel(self._y_label or r"WER$_{\omega,\beta}$ (%)")
372 373 374 375 376 377 378 379 380 381 382 383 384

        if self._iapmr:
            axis = mpl.gca()
            if self._wer:
                axis = mpl.twinx()
                axis.grid(False)
            if self._var_param == 'omega':
                mpl.plot(
                    omega,
                    100. * errors[2].flatten(),
                    color='C3',
                    linestyle='-',
                    label='IAPMR')
385
                mpl.xlabel(self._x_label or r"Weight $\omega$")
386 387 388 389 390 391 392
            else:
                mpl.plot(
                    beta,
                    100. * errors[2].flatten(),
                    color='C3',
                    linestyle='-',
                    label='IAPMR')
393 394
                mpl.xlabel(self._x_label or r"Weight $\beta$")
            mpl.ylabel(self._y_label or r"IAPMR  (%)")
395 396 397 398 399 400 401
            if self._wer:
                axis.set_yticklabels(axis.get_yticks())
                axis.tick_params(axis='y', colors='red')
                axis.yaxis.label.set_color('red')
                axis.spines['right'].set_color('red')

        if self._var_param == 'omega':
402 403 404
            if title.replace(' ', ''):
                mpl.title(title or (r"EPSC with $\beta$ = %.2f" %\
                                    self._fixed_param))
405
        else:
406 407 408
            if title.replace(' ', ''):
                mpl.title(title or (r"EPSC with $\omega$ = %.2f" %\
                                    self._fixed_param))
409 410 411 412 413 414

        mpl.grid()
        self._plot_legends()
        ax1.set_xticklabels(ax1.get_xticks())
        ax1.set_yticklabels(ax1.get_yticks())
        mpl.xticks(rotation=self._x_rotation)
415
        self._pdf_page.savefig()
416

417

418 419
class Epsc3D(Epsc):
    ''' 3D EPSC plots for PAD'''
420
    def compute(self, idx, input_scores, input_names):
421
        ''' Implements plots'''
422 423 424 425 426 427 428 429
        licit_dev_neg = input_scores[0][0]
        licit_dev_pos = input_scores[0][1]
        licit_eval_neg = input_scores[1][0]
        licit_eval_pos = input_scores[1][1]
        spoof_dev_neg = input_scores[2][0]
        spoof_dev_pos = input_scores[2][1]
        spoof_eval_neg = input_scores[3][0]
        spoof_eval_pos = input_scores[3][1]
430

431
        title = self._legends[idx] if self._legends is not None else None
432

433 434
        mpl.rcParams.pop('key', None)

435
        mpl.gcf().clear()
436
        mpl.gcf().set_constrained_layout(self._clayout)
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458

        from mpl_toolkits.mplot3d import Axes3D
        from matplotlib import cm

        points = 10

        omega, beta, thrs = error_utils.epsc_thresholds(
            licit_dev_neg,
            licit_dev_pos,
            spoof_dev_neg,
            spoof_dev_pos,
            points=points,
            criteria=self._criteria)

        errors = error_utils.all_error_rates(
            licit_eval_neg, licit_eval_pos, spoof_eval_neg, spoof_eval_pos,
            thrs, omega, beta
        )
        # error rates are returned in a list as 2D numpy.ndarrays in
        # the following order: frr, far, IAPMR, far_w, wer_wb, hter_wb
        wer_errors = 100 * errors[2 if self._iapmr else 4]

459
        ax1 = mpl.gcf().add_subplot(111, projection='3d')
460 461 462 463 464 465 466 467 468 469 470

        W, B = np.meshgrid(omega, beta)

        ax1.plot_wireframe(
            W, B, wer_errors, cmap=cm.coolwarm, antialiased=False
        )  # surface

        if self._iapmr:
            ax1.azim = -30
            ax1.elev = 50

471 472
        ax1.set_xlabel(self._x_label or r"Weight $\omega$")
        ax1.set_ylabel(self._y_label or r"Weight $\beta$")
473 474 475 476
        ax1.set_zlabel(
            r"WER$_{\omega,\beta}$ (%)" if self._wer else "IAPMR (%)"
        )

477 478
        if title.replace(' ', ''):
            mpl.title(title or "3D EPSC")
479 480 481 482 483

        ax1.set_xticklabels(ax1.get_xticks())
        ax1.set_yticklabels(ax1.get_yticks())
        ax1.set_zticklabels(ax1.get_zticks())

484 485
        self._pdf_page.savefig()

486

487 488 489 490 491 492 493 494 495
class Det(PadPlot):
    '''DET for PAD'''
    def __init__(self, ctx, scores, evaluation, func_load, criteria, real_data):
        super(Det, self).__init__(ctx, scores, evaluation, func_load)
        self._no_spoof = False if 'no_spoof' not in ctx.meta else\
        ctx.meta['no_spoof']
        self._criteria = criteria
        self._real_data = True if real_data is None else real_data

496
    def compute(self, idx, input_scores, input_names):
497
        ''' Implements plots'''
498 499 500 501 502 503
        licit_dev_neg = input_scores[0][0]
        licit_dev_pos = input_scores[0][1]
        licit_eval_neg = input_scores[1][0]
        licit_eval_pos = input_scores[1][1]
        spoof_eval_neg = input_scores[3][0] if len(input_scores) > 2 else None
        spoof_eval_pos = input_scores[3][1] if len(input_scores) > 2 else None
504 505 506 507 508 509 510

        det(
            licit_eval_neg,
            licit_eval_pos,
            self._points,
            color=self._colors[idx],
            linestyle='-',
511
            label=self._label("licit", input_names[0], idx)
512 513 514 515 516 517 518 519
        )
        if not self._no_spoof and spoof_eval_neg is not None:
            det(
                spoof_eval_neg,
                spoof_eval_pos,
                self._points,
                color=self._colors[idx],
                linestyle='--',
520
                label=self._label("spoof", input_names[3], idx)
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
            )

        if self._criteria is None:
            return

        thres_baseline = calc_threshold(
            self._criteria, licit_dev_neg, licit_dev_pos
        )

        axlim = mpl.axis()

        farfrr_licit = farfrr(
            licit_eval_neg, licit_eval_pos,
            thres_baseline)  # calculate test frr @ EER (licit scenario)
        farfrr_spoof = farfrr(
            spoof_eval_neg, spoof_eval_pos,
            thres_baseline)  # calculate test frr @ EER (spoof scenario)
        farfrr_licit_det = [
            ppndf(i) for i in farfrr_licit
        ]
        # find the FAR and FRR values that need to be plotted on normal deviate
        # scale
        farfrr_spoof_det = [
            ppndf(i) for i in farfrr_spoof
        ]
        # find the FAR and FRR values that need to be plotted on normal deviate
        # scale
        if not self._real_data:
            mpl.axhline(
                y=farfrr_licit_det[1],
                xmin=axlim[2],
                xmax=axlim[3],
                color='k',
                linestyle='--',
                label="FRR @ EER")  # vertical FRR threshold
        else:
            mpl.axhline(
                y=farfrr_licit_det[1],
                xmin=axlim[0],
                xmax=axlim[1],
                color='k',
                linestyle='--',
                label="FRR = %.2f%%" %
                (farfrr_licit[1] * 100))  # vertical FRR threshold

        mpl.plot(
            farfrr_licit_det[0],
            farfrr_licit_det[1],
            'o',
            color=self._colors[idx],
            markersize=9)  # FAR point, licit scenario
        mpl.plot(
            farfrr_spoof_det[0],
            farfrr_spoof_det[1],
            'o',
            color=self._colors[idx],
            markersize=9)  # FAR point, spoof scenario

        # annotate the FAR points
        xyannotate_licit = [
            ppndf(0.7 * farfrr_licit[0]),
            ppndf(1.8 * farfrr_licit[1])
        ]
        xyannotate_spoof = [
            ppndf(0.95 * farfrr_spoof[0]),
            ppndf(1.8 * farfrr_licit[1])
        ]

        if not self._real_data:
            mpl.annotate(
                'FMR @\noperating point',
                xy=(farfrr_licit_det[0], farfrr_licit_det[1]),
                xycoords='data',
                xytext=(xyannotate_licit[0], xyannotate_licit[1]),
                color=self._colors[idx])
            mpl.annotate(
                'IAPMR @\noperating point',
                xy=(farfrr_spoof_det[0], farfrr_spoof_det[1]),
                xycoords='data',
                xytext=(xyannotate_spoof[0], xyannotate_spoof[1]),
                color=self._colors[idx])
        else:
            mpl.annotate(
                'FAR=%.2f%%' % (farfrr_licit[0] * 100),
                xy=(farfrr_licit_det[0], farfrr_licit_det[1]),
                xycoords='data',
                xytext=(xyannotate_licit[0], xyannotate_licit[1]),
                color=self._colors[idx],
                size='large')
            mpl.annotate(
                'IAPMR=\n%.2f%%' % (farfrr_spoof[0] * 100),
                xy=(farfrr_spoof_det[0], farfrr_spoof_det[1]),
                xycoords='data',
                xytext=(xyannotate_spoof[0], xyannotate_spoof[1]),
                color=self._colors[idx],
                size='large')

    def end_process(self):
        ''' Set title, legend, axis labels, grid colors, save figures and
        close pdf is needed '''
        #only for plots
        add = ''
        if not self._no_spoof:
            add = " and overlaid SPOOF scenario"
        title = self._title if self._title is not None else \
                ('DET: LICIT' + add)
627 628
        if title.replace(' ', ''):
            mpl.title(title)
629 630 631
        mpl.xlabel(self._x_label or "False Acceptance Rate (%)")
        mpl.ylabel(self._y_label or "False Rejection Rate (%)")
        mpl.grid(True, color=self._grid_color)
632 633
        if self._disp_legend:
            mpl.legend(loc=self._legend_loc)
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
        self._set_axis()
        fig = mpl.gcf()
        mpl.xticks(rotation=self._x_rotation)
        mpl.tick_params(axis='both', which='major', labelsize=4)
        for tick in mpl.gca().xaxis.get_major_ticks():
            tick.label.set_fontsize(6)
        for tick in mpl.gca().yaxis.get_major_ticks():
            tick.label.set_fontsize(6)

        self._pdf_page.savefig(fig)

        #do not want to close PDF when running evaluate
        if 'PdfPages' in self._ctx.meta and \
            ('closef' not in self._ctx.meta or self._ctx.meta['closef']):
            self._pdf_page.close()

    def _set_axis(self):
        if self._axlim is not None and None not in self._axlim:
            det_axis(self._axlim)
        else:
            det_axis([0.01, 99, 0.01, 99])
655

656

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
class FmrIapmr(PadPlot):
    '''FMR vs IAPMR'''
    def __init__(self, ctx, scores, evaluation, func_load):
        super(FmrIapmr, self).__init__(ctx, scores, evaluation, func_load)
        self._eval = True #always eval data with EPC
        self._split = False
        self._nb_figs = 1
        self._semilogx = False if 'semilogx' not in ctx.meta else\
        ctx.meta['semilogx']
        if self._min_arg != 4:
            raise click.BadParameter("You must provide 4 scores files:{licit,"
                                     "spoof}/{dev,eval}")

    def compute(self, idx, input_scores, input_names):
        ''' Implements plots'''
        licit_eval_neg = input_scores[1][0]
        licit_eval_pos = input_scores[1][1]
        spoof_eval_neg = input_scores[3][0]
        fmr_list = np.linspace(0, 1, 100)
        iapmr_list = []
        for i, fmr in enumerate(fmr_list):
            thr = far_threshold(licit_eval_neg, licit_eval_pos, fmr, True)
            iapmr_list.append(farfrr(spoof_eval_neg, licit_eval_pos, thr)[0])
            # re-calculate fmr since threshold might give a different result
            # for fmr.
            fmr_list[i] = farfrr(licit_eval_neg, licit_eval_pos, thr)[0]
683
        label = self._legends[idx] if self._legends is not None else \
684 685 686 687 688 689 690 691 692 693 694
                '(%s/%s)' % (input_names[1], input_names[3])
        if self._semilogx:
            mpl.semilogx(fmr_list, iapmr_list, label=label)
        else:
            mpl.plot(fmr_list, iapmr_list, label=label)

    def end_process(self):
        ''' Set title, legend, axis labels, grid colors, save figures and
        close pdf is needed '''
        #only for plots
        title = self._title if self._title is not None else "FMR vs IAPMR"
695 696
        if title.replace(' ', ''):
            mpl.title(title)
697 698 699
        mpl.xlabel(self._x_label or "False Match Rate (%)")
        mpl.ylabel(self._y_label or "IAPMR (%)")
        mpl.grid(True, color=self._grid_color)
700 701
        if self._disp_legend:
            mpl.legend(loc=self._legend_loc)
702 703 704 705 706 707 708 709 710 711 712
        self._set_axis()
        fig = mpl.gcf()
        mpl.xticks(rotation=self._x_rotation)
        mpl.tick_params(axis='both', which='major', labelsize=4)

        self._pdf_page.savefig(fig)

        #do not want to close PDF when running evaluate
        if 'PdfPages' in self._ctx.meta and \
            ('closef' not in self._ctx.meta or self._ctx.meta['closef']):
            self._pdf_page.close()