figure.py 22.8 KB
Newer Older
1 2
'''Runs error analysis on score sets, outputs metrics and plots'''

3 4
import pkg_resources  # to make sure bob gets imported properly
import logging
5 6
import click
import numpy as np
7
import matplotlib.pyplot as mpl
8 9 10
import  bob.measure.script.figure as measure_figure
from tabulate import tabulate
from bob.extension.scripts.click_helper import verbosity_option
11
from  bob.measure.utils import (get_fta, get_fta_list, get_thres)
12
from bob.measure import (
13
    far_threshold, eer_threshold, min_hter_threshold, farfrr, epc, ppndf
14
)
15
from bob.measure.plot import (det, det_axis)
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
from . import error_utils

ALL_CRITERIA = ('bpcer20', 'eer', 'min-hter')

def calc_threshold(method, neg, pos):
    """Calculates the threshold based on the given method.
    The scores should be sorted!

    Parameters
    ----------
    method : str
        One of ``bpcer201``, ``eer``, ``min-hter``.
    neg : array_like
        The negative scores. They should be sorted!
    pos : array_like
        The positive scores. They should be sorted!

    Returns
    -------
    float
        The calculated threshold.

    Raises
    ------
    ValueError
        If method is unknown.
    """
    method = method.lower()
    if method == 'bpcer20':
        threshold = far_threshold(neg, pos, 0.05, True)
    elif method == 'eer':
        threshold = eer_threshold(neg, pos, True)
    elif method == 'min-hter':
        threshold = min_hter_threshold(neg, pos, True)
    else:
        raise ValueError("Unknown threshold criteria: {}".format(method))

    return threshold

class Metrics(measure_figure.Metrics):
    def __init__(self, ctx, scores, evaluation, func_load):
        super(Metrics, self).__init__(ctx, scores, evaluation, func_load)

    ''' Compute metrics from score files'''
60
    def compute(self, idx, input_scores, input_names):
61
        ''' Compute metrics for the given criteria'''
62 63 64 65 66 67
        neg_list, pos_list, _ = get_fta_list(input_scores)
        dev_neg, dev_pos = neg_list[0], pos_list[0]
        dev_file = input_names[0]
        if self._eval:
            eval_neg, eval_pos = neg_list[1], pos_list[1]
            eval_file = input_names[1]
68 69 70

        title = self._titles[idx] if self._titles is not None else None
        headers = ['' or title, 'Development %s' % dev_file]
71
        if self._eval:
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
            headers.append('Eval. % s' % eval_file)
        for m in ALL_CRITERIA:
            raws = []
            threshold = calc_threshold(m, dev_neg, dev_pos)
            click.echo("\nThreshold of %f selected with the %s criteria" % (
                threshold, m))
            apcer, bpcer = farfrr(dev_neg, dev_pos, threshold)
            raws.append(['BPCER20', '{:>5.1f}%'.format(apcer * 100)])
            raws.append(['EER', '{:>5.1f}%'.format(bpcer * 100)])
            raws.append(['min-HTER', '{:>5.1f}%'.format((apcer + bpcer) * 50)])
            if self._eval and eval_neg is not None:
                apcer, bpcer = farfrr(eval_neg, eval_pos, threshold)
                raws[0].append('{:>5.1f}%'.format(apcer * 100))
                raws[1].append('{:>5.1f}%'.format(bpcer * 100))
                raws[2].append('{:>5.1f}%'.format((apcer + bpcer) * 50))

            click.echo(
                tabulate(raws, headers, self._tablefmt),
                file=self.log_file
            )

class HistPad(measure_figure.Hist):
    ''' Histograms for PAD '''

    def _setup_hist(self, neg, pos):
        self._title_base = 'PAD'
        self._density_hist(
99
            pos[0], label='Bona Fide', color='C1'
100 101
        )
        self._density_hist(
102 103
            neg[0], label='Presentation attack', alpha=0.4, color='C7',
            hatch='\\\\'
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
        )

def _calc_pass_rate(threshold, scores):
    return (scores >= threshold).mean()

def _iapmr_dot(threshold, iapmr, real_data, **kwargs):
    # plot a dot on threshold versus IAPMR line and show IAPMR as a number
    axlim = mpl.axis()
    mpl.plot(threshold, 100. * iapmr, 'o', color='C3', **kwargs)
    if not real_data:
        mpl.annotate(
            'IAPMR at\noperating point',
            xy=(threshold, 100. * iapmr),
            xycoords='data',
            xytext=(0.85, 0.6),
            textcoords='axes fraction',
            color='black',
            size='large',
            arrowprops=dict(facecolor='black', shrink=0.05, width=2),
            horizontalalignment='center',
            verticalalignment='top',
        )
    else:
        mpl.text(threshold + (threshold - axlim[0]) / 12, 100. * iapmr,
                 '%.1f%%' % (100. * iapmr,), color='C3')

def _iapmr_line_plot(scores, n_points=100, **kwargs):
    axlim = mpl.axis()
    step = (axlim[1] - axlim[0]) / float(n_points)
    thres = [(k * step) + axlim[0] for k in range(2, n_points - 1)]
    mix_prob_y = []
    for k in thres:
        mix_prob_y.append(100. * _calc_pass_rate(k, scores))

    mpl.plot(thres, mix_prob_y, label='IAPMR', color='C3', **kwargs)

def _iapmr_plot(scores, threshold, iapmr, real_data, **kwargs):
    _iapmr_dot(threshold, iapmr, real_data, **kwargs)
    _iapmr_line_plot(scores, n_points=100, **kwargs)

class HistVuln(measure_figure.Hist):
    ''' Histograms for vulnerability '''

    def _setup_hist(self, neg, pos):
        self._title_base = 'Vulnerability'
        self._density_hist(
150
            pos[0], label='Bona Fide', color='C1'
151 152
        )
        self._density_hist(
153
            neg[0], label='Zero-effort impostors', alpha=0.8, color='C0'
154 155 156
        )
        self._density_hist(
            neg[1], label='Presentation attack', alpha=0.4, color='C7',
157
            hatch='\\\\'
158 159 160 161 162 163 164 165 166 167 168 169 170 171
        )

    def _lines(self, threshold, neg, pos, **kwargs):
        if 'iapmr_line' not in self._ctx.meta or self._ctx.meta['iapmr_line']:
            #plot vertical line
            super(HistVuln, self)._lines(threshold, neg, pos)

            #plot iapmr_line
            iapmr, _ = farfrr(neg[1], pos[0], threshold)
            ax2 = mpl.twinx()
            # we never want grid lines on axis 2
            ax2.grid(False)
            real_data = True if 'real_data' not in self._ctx.meta else \
                    self._ctx.meta['real_data']
172
            far, frr = farfrr(neg[0], pos[0], threshold)
173
            _iapmr_plot(neg[1], threshold, iapmr, real_data=real_data)
174 175 176 177 178 179
            click.echo(
                'HTER (t=%.2g) = %.2f%%; IAPMR = %.2f%%' % (
                    threshold,
                    50*(far+frr), 100*iapmr
                )
            )
180 181 182 183 184 185 186 187 188 189

            ax2.set_ylabel("IAPMR (%)", color='C3')
            ax2.tick_params(axis='y', colors='red')
            ax2.yaxis.label.set_color('red')
            ax2.spines['right'].set_color('red')

class PadPlot(measure_figure.PlotBase):
    '''Base class for PAD plots'''
    def __init__(self, ctx, scores, evaluation, func_load):
        super(PadPlot, self).__init__(ctx, scores, evaluation, func_load)
190
        mpl.rcParams['figure.constrained_layout.use'] = self._clayout
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207


    def end_process(self):
        '''Close pdf '''
        #do not want to close PDF when running evaluate
        if 'PdfPages' in self._ctx.meta and \
           ('closef' not in self._ctx.meta or self._ctx.meta['closef']):
            self._pdf_page.close()

    def _plot_legends(self):
        #legends for all axes
        lines = []
        labels = []
        for ax in mpl.gcf().get_axes():
            li, la = ax.get_legend_handles_labels()
            lines += li
            labels += la
208
        mpl.gca().legend(lines, labels, loc=0, fancybox=True, framealpha=0.5)
209 210 211 212 213 214 215 216 217 218 219 220 221

class Epc(PadPlot):
    ''' Handles the plotting of EPC '''
    def __init__(self, ctx, scores, evaluation, func_load):
        super(Epc, self).__init__(ctx, scores, evaluation, func_load)
        self._iapmr = True if 'iapmr' not in self._ctx.meta else \
                self._ctx.meta['iapmr']
        self._title = 'EPC and IAPMR' if self._iapmr else 'EPC'
        self._x_label = r"Weight $\beta$"
        self._y_label = "WER (%)"
        self._eval = True #always eval data with EPC
        self._split = False
        self._nb_figs = 1
222
        self._title = ''
223

224 225 226 227 228
        if self._min_arg != 4:
            raise click.BadParameter("You must provide 4 scores files:{licit,"
                                     "spoof}/{dev,eval}")

    def compute(self, idx, input_scores, input_names):
229
        ''' Plot EPC for PAD'''
230 231 232 233 234
        licit_dev_neg = input_scores[0][0]
        licit_dev_pos = input_scores[0][1]
        licit_eval_neg = input_scores[1][0]
        licit_eval_pos = input_scores[1][1]
        spoof_eval_neg = input_scores[3][0]
235
        mpl.gcf().clear()
236
        epc_baseline = epc(
237 238 239 240 241 242 243
            licit_dev_neg, licit_dev_pos, licit_eval_neg,
            licit_eval_pos, 100
        )
        mpl.plot(
            epc_baseline[:, 0], [100. * k for k in epc_baseline[:, 1]],
            color='C0',
            label=self._label(
244
                'WER', '%s-%s' % (input_names[0], input_names[1]), idx
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
            ),
            linestyle='-'
        )
        mpl.xlabel(self._x_label)
        mpl.ylabel(self._y_label)
        if self._iapmr:
            mix_prob_y = []
            for k in epc_baseline[:, 2]:
                prob_attack = sum(
                    1 for i in spoof_eval_neg if i >= k
                ) / float(spoof_eval_neg.size)
                mix_prob_y.append(100. * prob_attack)

            mpl.gca().set_axisbelow(True)
            prob_ax = mpl.gca().twinx()
            mpl.plot(
                epc_baseline[:, 0],
                mix_prob_y,
                color='C3',
                linestyle='-',
                label=self._label(
266
                    'IAPMR', '%s-%s' % (input_names[0], input_names[1]), idx
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
                )
            )
            prob_ax.set_yticklabels(prob_ax.get_yticks())
            prob_ax.tick_params(axis='y', colors='red')
            prob_ax.yaxis.label.set_color('red')
            prob_ax.spines['right'].set_color('red')
            ylabels = prob_ax.get_yticks()
            prob_ax.yaxis.set_ticklabels(["%.0f" % val for val in ylabels])
            prob_ax.set_axisbelow(True)
        title = self._titles[idx] if self._titles is not None else self._title
        mpl.title(title)
        #legends for all axes
        self._plot_legends()
        mpl.xticks(rotation=self._x_rotation)
        self._pdf_page.savefig(mpl.gcf())

class Epsc(PadPlot):
    ''' Handles the plotting of EPSC '''
    def __init__(self, ctx, scores, evaluation, func_load,
                 criteria, var_param, fixed_param):
        super(Epsc, self).__init__(ctx, scores, evaluation, func_load)
        self._iapmr = False if 'iapmr' not in self._ctx.meta else \
                self._ctx.meta['iapmr']
        self._wer = True if 'wer' not in self._ctx.meta else \
                self._ctx.meta['wer']
        self._criteria = 'eer' if criteria is None else criteria
        self._var_param = "omega" if var_param is None else var_param
        self._fixed_param = 0.5 if fixed_param is None else fixed_param
        self._eval = True #always eval data with EPC
        self._split = False
        self._nb_figs = 1
298 299 300 301 302
        self._title = ''

        if self._min_arg != 4:
            raise click.BadParameter("You must provide 4 scores files:{licit,"
                                     "spoof}/{dev,eval}")
303

304
    def compute(self, idx, input_scores, input_names):
305
        ''' Plot EPSC for PAD'''
306 307 308 309 310 311 312 313
        licit_dev_neg = input_scores[0][0]
        licit_dev_pos = input_scores[0][1]
        licit_eval_neg = input_scores[1][0]
        licit_eval_pos = input_scores[1][1]
        spoof_dev_neg = input_scores[2][0]
        spoof_dev_pos = input_scores[2][1]
        spoof_eval_neg = input_scores[3][0]
        spoof_eval_pos = input_scores[3][1]
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        title = self._titles[idx] if self._titles is not None else None

        mpl.gcf().clear()
        points = 10

        if self._var_param == 'omega':
            omega, beta, thrs = error_utils.epsc_thresholds(
                licit_dev_neg,
                licit_dev_pos,
                spoof_dev_neg,
                spoof_dev_pos,
                points=points,
                criteria=self._criteria,
                beta=self._fixed_param)
        else:
            omega, beta, thrs = error_utils.epsc_thresholds(
                licit_dev_neg,
                licit_dev_pos,
                spoof_dev_neg,
                spoof_dev_pos,
                points=points,
                criteria= self._criteria,
                omega=self._fixed_param
            )

        errors = error_utils.all_error_rates(
            licit_eval_neg, licit_eval_pos, spoof_eval_neg,
            spoof_eval_pos, thrs, omega, beta
        )  # error rates are returned in a list in the
           # following order: frr, far, IAPMR, far_w, wer_w

        ax1 = mpl.subplot(
            111
        )  # EPC like curves for FVAS fused scores for weighted error rates
           # between the negatives (impostors and Presentation attacks)
        if self._wer:
            if self._var_param == 'omega':
                mpl.plot(
                    omega,
                    100. * errors[4].flatten(),
                    color='C0',
                    linestyle='-',
                    label=r"WER$_{\omega,\beta}$")
                mpl.xlabel(r"Weight $\omega$")
            else:
                mpl.plot(
                    beta,
                    100. * errors[4].flatten(),
                    color='C0',
                    linestyle='-',
                    label=r"WER$_{\omega,\beta}$")
                mpl.xlabel(r"Weight $\beta$")
            mpl.ylabel(r"WER$_{\omega,\beta}$ (%)")

        if self._iapmr:
            axis = mpl.gca()
            if self._wer:
                axis = mpl.twinx()
                axis.grid(False)
            if self._var_param == 'omega':
                mpl.plot(
                    omega,
                    100. * errors[2].flatten(),
                    color='C3',
                    linestyle='-',
                    label='IAPMR')
                mpl.xlabel(r"Weight $\omega$")
            else:
                mpl.plot(
                    beta,
                    100. * errors[2].flatten(),
                    color='C3',
                    linestyle='-',
                    label='IAPMR')
                mpl.xlabel(r"Weight $\beta$")
            mpl.ylabel(r"IAPMR  (%)")
            if self._wer:
                axis.set_yticklabels(axis.get_yticks())
                axis.tick_params(axis='y', colors='red')
                axis.yaxis.label.set_color('red')
                axis.spines['right'].set_color('red')

        if self._var_param == 'omega':
            mpl.title(r"EPSC with $\beta$ = %.2f" % (
                self._fixed_param,) if title is None else title)
        else:
            mpl.title(r"EPSC with $\omega$ = %.2f" % (
                self._fixed_param,) if title is None else title)

        mpl.grid()
        self._plot_legends()
        ax1.set_xticklabels(ax1.get_xticks())
        ax1.set_yticklabels(ax1.get_yticks())
        mpl.xticks(rotation=self._x_rotation)
408
        self._pdf_page.savefig()
409 410 411

class Epsc3D(Epsc):
    ''' 3D EPSC plots for PAD'''
412
    def compute(self, idx, input_scores, input_names):
413
        ''' Implements plots'''
414 415 416 417 418 419 420 421
        licit_dev_neg = input_scores[0][0]
        licit_dev_pos = input_scores[0][1]
        licit_eval_neg = input_scores[1][0]
        licit_eval_pos = input_scores[1][1]
        spoof_dev_neg = input_scores[2][0]
        spoof_dev_pos = input_scores[2][1]
        spoof_eval_neg = input_scores[3][0]
        spoof_eval_pos = input_scores[3][1]
422 423 424

        title = self._titles[idx] if self._titles is not None else None

425 426
        mpl.rcParams.pop('key', None)

427
        mpl.gcf().clear()
428
        mpl.gcf().set_constrained_layout(self._clayout)
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450

        from mpl_toolkits.mplot3d import Axes3D
        from matplotlib import cm

        points = 10

        omega, beta, thrs = error_utils.epsc_thresholds(
            licit_dev_neg,
            licit_dev_pos,
            spoof_dev_neg,
            spoof_dev_pos,
            points=points,
            criteria=self._criteria)

        errors = error_utils.all_error_rates(
            licit_eval_neg, licit_eval_pos, spoof_eval_neg, spoof_eval_pos,
            thrs, omega, beta
        )
        # error rates are returned in a list as 2D numpy.ndarrays in
        # the following order: frr, far, IAPMR, far_w, wer_wb, hter_wb
        wer_errors = 100 * errors[2 if self._iapmr else 4]

451
        ax1 = mpl.gcf().add_subplot(111, projection='3d')
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474

        W, B = np.meshgrid(omega, beta)

        ax1.plot_wireframe(
            W, B, wer_errors, cmap=cm.coolwarm, antialiased=False
        )  # surface

        if self._iapmr:
            ax1.azim = -30
            ax1.elev = 50

        ax1.set_xlabel(r"Weight $\omega$")
        ax1.set_ylabel(r"Weight $\beta$")
        ax1.set_zlabel(
            r"WER$_{\omega,\beta}$ (%)" if self._wer else "IAPMR (%)"
        )

        mpl.title("3D EPSC" if title is None else title)

        ax1.set_xticklabels(ax1.get_xticks())
        ax1.set_yticklabels(ax1.get_yticks())
        ax1.set_zticklabels(ax1.get_zticks())

475 476 477 478 479 480 481 482 483 484 485
        self._pdf_page.savefig()

class Det(PadPlot):
    '''DET for PAD'''
    def __init__(self, ctx, scores, evaluation, func_load, criteria, real_data):
        super(Det, self).__init__(ctx, scores, evaluation, func_load)
        self._no_spoof = False if 'no_spoof' not in ctx.meta else\
        ctx.meta['no_spoof']
        self._criteria = criteria
        self._real_data = True if real_data is None else real_data

486
    def compute(self, idx, input_scores, input_names):
487
        ''' Implements plots'''
488 489 490 491 492 493
        licit_dev_neg = input_scores[0][0]
        licit_dev_pos = input_scores[0][1]
        licit_eval_neg = input_scores[1][0]
        licit_eval_pos = input_scores[1][1]
        spoof_eval_neg = input_scores[3][0] if len(input_scores) > 2 else None
        spoof_eval_pos = input_scores[3][1] if len(input_scores) > 2 else None
494 495 496 497 498 499 500

        det(
            licit_eval_neg,
            licit_eval_pos,
            self._points,
            color=self._colors[idx],
            linestyle='-',
501
            label=self._label("licit", input_names[0], idx)
502 503 504 505 506 507 508 509
        )
        if not self._no_spoof and spoof_eval_neg is not None:
            det(
                spoof_eval_neg,
                spoof_eval_pos,
                self._points,
                color=self._colors[idx],
                linestyle='--',
510
                label=self._label("spoof", input_names[3], idx)
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
            )

        if self._criteria is None:
            return

        thres_baseline = calc_threshold(
            self._criteria, licit_dev_neg, licit_dev_pos
        )

        axlim = mpl.axis()

        farfrr_licit = farfrr(
            licit_eval_neg, licit_eval_pos,
            thres_baseline)  # calculate test frr @ EER (licit scenario)
        farfrr_spoof = farfrr(
            spoof_eval_neg, spoof_eval_pos,
            thres_baseline)  # calculate test frr @ EER (spoof scenario)
        farfrr_licit_det = [
            ppndf(i) for i in farfrr_licit
        ]
        # find the FAR and FRR values that need to be plotted on normal deviate
        # scale
        farfrr_spoof_det = [
            ppndf(i) for i in farfrr_spoof
        ]
        # find the FAR and FRR values that need to be plotted on normal deviate
        # scale
        if not self._real_data:
            mpl.axhline(
                y=farfrr_licit_det[1],
                xmin=axlim[2],
                xmax=axlim[3],
                color='k',
                linestyle='--',
                label="FRR @ EER")  # vertical FRR threshold
        else:
            mpl.axhline(
                y=farfrr_licit_det[1],
                xmin=axlim[0],
                xmax=axlim[1],
                color='k',
                linestyle='--',
                label="FRR = %.2f%%" %
                (farfrr_licit[1] * 100))  # vertical FRR threshold

        mpl.plot(
            farfrr_licit_det[0],
            farfrr_licit_det[1],
            'o',
            color=self._colors[idx],
            markersize=9)  # FAR point, licit scenario
        mpl.plot(
            farfrr_spoof_det[0],
            farfrr_spoof_det[1],
            'o',
            color=self._colors[idx],
            markersize=9)  # FAR point, spoof scenario

        # annotate the FAR points
        xyannotate_licit = [
            ppndf(0.7 * farfrr_licit[0]),
            ppndf(1.8 * farfrr_licit[1])
        ]
        xyannotate_spoof = [
            ppndf(0.95 * farfrr_spoof[0]),
            ppndf(1.8 * farfrr_licit[1])
        ]

        if not self._real_data:
            mpl.annotate(
                'FMR @\noperating point',
                xy=(farfrr_licit_det[0], farfrr_licit_det[1]),
                xycoords='data',
                xytext=(xyannotate_licit[0], xyannotate_licit[1]),
                color=self._colors[idx])
            mpl.annotate(
                'IAPMR @\noperating point',
                xy=(farfrr_spoof_det[0], farfrr_spoof_det[1]),
                xycoords='data',
                xytext=(xyannotate_spoof[0], xyannotate_spoof[1]),
                color=self._colors[idx])
        else:
            mpl.annotate(
                'FAR=%.2f%%' % (farfrr_licit[0] * 100),
                xy=(farfrr_licit_det[0], farfrr_licit_det[1]),
                xycoords='data',
                xytext=(xyannotate_licit[0], xyannotate_licit[1]),
                color=self._colors[idx],
                size='large')
            mpl.annotate(
                'IAPMR=\n%.2f%%' % (farfrr_spoof[0] * 100),
                xy=(farfrr_spoof_det[0], farfrr_spoof_det[1]),
                xycoords='data',
                xytext=(xyannotate_spoof[0], xyannotate_spoof[1]),
                color=self._colors[idx],
                size='large')

    def end_process(self):
        ''' Set title, legend, axis labels, grid colors, save figures and
        close pdf is needed '''
        #only for plots
        add = ''
        if not self._no_spoof:
            add = " and overlaid SPOOF scenario"
        title = self._title if self._title is not None else \
                ('DET: LICIT' + add)
        mpl.title(title)
        mpl.xlabel(self._x_label or "False Acceptance Rate (%)")
        mpl.ylabel(self._y_label or "False Rejection Rate (%)")
        mpl.grid(True, color=self._grid_color)
        mpl.legend(loc='best')
        self._set_axis()
        #gives warning when applied with mpl
        fig = mpl.gcf()
        mpl.xticks(rotation=self._x_rotation)
        mpl.tick_params(axis='both', which='major', labelsize=4)
        for tick in mpl.gca().xaxis.get_major_ticks():
            tick.label.set_fontsize(6)
        for tick in mpl.gca().yaxis.get_major_ticks():
            tick.label.set_fontsize(6)

        self._pdf_page.savefig(fig)

        #do not want to close PDF when running evaluate
        if 'PdfPages' in self._ctx.meta and \
            ('closef' not in self._ctx.meta or self._ctx.meta['closef']):
            self._pdf_page.close()

    def _set_axis(self):
        if self._axlim is not None and None not in self._axlim:
            det_axis(self._axlim)
        else:
            det_axis([0.01, 99, 0.01, 99])