vuln_commands.py 15.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
"""The main entry for bob.pad and its(click-based) scripts.
"""

import os
import logging
import numpy
import click
import pkg_resources
from click_plugins import with_plugins
from click.types import FLOAT
from bob.measure.script import common_options
from bob.extension.scripts.click_helper import (verbosity_option,
                                                open_file_mode_option,
14
                                               bool_option,
15
                                               AliasedGroup, list_float_option)
16
17
18
from bob.core import random
from bob.io.base import create_directories_safe
from bob.bio.base.score import load
19
from . import vuln_figure as figure
20
21
22
23
24
25

NUM_GENUINE_ACCESS = 5000
NUM_ZEIMPOSTORS = 5000
NUM_PA = 5000


26
27
28
29
30
31
32
33
34
def hlines_at_option(dflt=' ', **kwargs):
    '''Get option to draw const FNMRlines'''
    return list_float_option(
        name='hlines-at', short_name='hla',
        desc='If given, draw horizontal lines at the given axis positions. '
        'Your values must be separated with a comma (,) without space. '
        'This option works in ROC and DET curves.',
        nitems=None, dflt=dflt, **kwargs
    )
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79


def gen_score_distr(mean_gen, mean_zei, mean_pa, sigma_gen=1, sigma_zei=1,
                    sigma_pa=1):
  mt = random.mt19937()  # initialise the random number generator

  genuine_generator = random.normal(numpy.float32, mean_gen, sigma_gen)
  zei_generator = random.normal(numpy.float32, mean_zei, sigma_zei)
  pa_generator = random.normal(numpy.float32, mean_pa, sigma_pa)

  genuine_scores = [genuine_generator(mt) for i in range(NUM_GENUINE_ACCESS)]
  zei_scores = [zei_generator(mt) for i in range(NUM_ZEIMPOSTORS)]
  pa_scores = [pa_generator(mt) for i in range(NUM_PA)]

  return genuine_scores, zei_scores, pa_scores



def write_scores_to_file(neg, pos, filename, attack=False):
  """Writes score distributions into 4-column score files. For the format of
    the 4-column score files, please refer to Bob's documentation.

  Parameters
  ----------
  neg : array_like
      Scores for negative samples.
  pos : array_like
      Scores for positive samples.
  filename : str
      The path to write the score to.
  """
  create_directories_safe(os.path.dirname(filename))
  with open(filename, 'wt') as f:
      for i in pos:
          f.write('x x foo %f\n' % i)
      for i in neg:
          if attack:
              f.write('x attack foo %f\n' % i)
          else:
              f.write('x y foo %f\n' % i)



@click.command()
@click.argument('outdir')
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
80
81
@click.option('--mean-gen', default=7, type=FLOAT, show_default=True)
@click.option('--mean-zei', default=3, type=FLOAT, show_default=True)
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
@click.option('--mean-pa', default=5, type=FLOAT, show_default=True)
@verbosity_option()
def gen(outdir, mean_gen, mean_zei, mean_pa):
  """Generate random scores.
  Generates random scores for three types of verification attempts:
  genuine users, zero-effort impostors and spoofing attacks and writes them
  into 4-column score files for so called licit and spoof scenario. The
  scores are generated using Gaussian distribution whose mean is an input
  parameter. The generated scores can be used as hypothetical datasets.
  """
  # Generate the data
  genuine_dev, zei_dev, pa_dev = gen_score_distr(
      mean_gen, mean_zei, mean_pa)
  genuine_eval, zei_eval, pa_eval = gen_score_distr(
      mean_gen, mean_zei, mean_pa)

  # Write the data into files
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
99
  write_scores_to_file(zei_dev, genuine_dev,
100
                       os.path.join(outdir, 'licit', 'scores-dev'))
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
101
  write_scores_to_file(zei_eval, genuine_eval,
102
                       os.path.join(outdir, 'licit', 'scores-eval'))
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
103
  write_scores_to_file(pa_dev, genuine_dev,
104
105
                       os.path.join(outdir, 'spoof', 'scores-dev'),
                       attack=True)
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
106
  write_scores_to_file(pa_eval, genuine_eval,
107
108
109
110
111
                       os.path.join(outdir, 'spoof', 'scores-eval'),
                       attack=True)



112
@click.command()
113
@common_options.scores_argument(min_arg=2, nargs=-1)
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
@common_options.output_plot_file_option(default_out='vuln_roc.pdf')
@common_options.legends_option()
@common_options.no_legend_option()
@common_options.legend_loc_option(dflt='upper-right')
@common_options.title_option()
@common_options.const_layout_option()
@common_options.style_option()
@common_options.figsize_option(dflt=None)
@common_options.min_far_option()
@common_options.axes_val_option()
@verbosity_option()
@common_options.x_rotation_option(dflt=45)
@common_options.x_label_option()
@common_options.y_label_option()
@click.option('--real-data/--no-real-data', default=True, show_default=True,
              help='If False, will annotate the plots hypothetically, instead '
              'of with real data values of the calculated error rates.')
131
@hlines_at_option()
132
@click.pass_context
133
def roc(ctx, scores, real_data, **kwargs):
134
135
  """Plot ROC

136
  You need to provide 2 scores
137
  files for each vulnerability system in this order:
138
139

  \b
140
141
  * licit scores
  * spoof scores
142
143

  Examples:
144
      $ bob vuln roc -v licit-scores spoof-scores
145

146
      $ bob vuln roc -v scores-{licit,spoof}
147
  """
148
  process = figure.RocVuln(ctx, scores, True, load.split, real_data, False)
149
150
151
  process.run()


152
@click.command()
153
@common_options.scores_argument(min_arg=2, nargs=-1)
154
155
156
157
158
159
160
@common_options.output_plot_file_option(default_out='vuln_det.pdf')
@common_options.legends_option()
@common_options.no_legend_option()
@common_options.legend_loc_option(dflt='upper-right')
@common_options.title_option()
@common_options.const_layout_option()
@common_options.style_option()
161
@common_options.figsize_option(dflt=None)
162
163
164
165
166
167
168
169
@verbosity_option()
@common_options.axes_val_option(dflt='0.01,95,0.01,95')
@common_options.x_rotation_option(dflt=45)
@common_options.x_label_option()
@common_options.y_label_option()
@click.option('--real-data/--no-real-data', default=True, show_default=True,
              help='If False, will annotate the plots hypothetically, instead '
              'of with real data values of the calculated error rates.')
170
@hlines_at_option()
171
@click.pass_context
172
def det(ctx, scores, real_data, **kwargs):
173
174
  """Plot DET

175
176
177

  You need to provide 2 scores
  files for each vulnerability system in this order:
178
179

  \b
180
181
  * licit scores
  * spoof scores
182
183

  Examples:
184
      $ bob vuln det -v licit-scores spoof-scores
185

186
      $ bob vuln det -v scores-{licit,spoof}
187
  """
188
  process = figure.Det(ctx, scores, True, load.split, real_data, False)
189
190
191
192
193
194
195
196
197
198
199
200
201
202
  process.run()



@click.command()
@common_options.scores_argument(min_arg=2, force_eval=True, nargs=-1)
@common_options.output_plot_file_option(default_out='vuln_epc.pdf')
@common_options.legends_option()
@common_options.no_legend_option()
@common_options.legend_loc_option()
@common_options.title_option()
@common_options.const_layout_option()
@common_options.x_label_option()
@common_options.y_label_option()
203
@common_options.figsize_option(dflt=None)
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
@common_options.style_option()
@common_options.bool_option(
    'iapmr', 'I', 'Whether to plot the IAPMR related lines or not.', True
)
@common_options.style_option()
@verbosity_option()
@click.pass_context
def epc(ctx, scores, **kwargs):
  """Plot EPC (expected performance curve):

  You need to provide 4 score
  files for each biometric system in this order:

  \b
  * licit development scores
  * licit evaluation scores
  * spoof development scores
  * spoof evaluation scores

  See :ref:`bob.pad.base.vulnerability` in the documentation for a guide on
  vulnerability analysis.

  Examples:
227
      $ bob vuln epc -v dev-scores eval-scores
228

229
      $ bob vuln epc -v -o my_epc.pdf dev-scores1 eval-scores1
230

231
      $ bob vuln epc -v {licit,spoof}/scores-{dev,eval}
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
  """
  process = figure.Epc(ctx, scores, True, load.split)
  process.run()



@click.command()
@common_options.scores_argument(min_arg=2, force_eval=True, nargs=-1)
@common_options.output_plot_file_option(default_out='vuln_epsc.pdf')
@common_options.legends_option()
@common_options.no_legend_option()
@common_options.legend_loc_option()
@common_options.const_layout_option()
@common_options.x_label_option()
@common_options.y_label_option()
247
@common_options.figsize_option(dflt=None)
248
249
250
251
252
253
254
255
256
257
258
259
@common_options.style_option()
@common_options.bool_option(
    'wer', 'w', 'Whether to plot the WER related lines or not.', True
)
@common_options.bool_option(
    'three-d', 'D', 'If true, generate 3D plots', False
)
@common_options.bool_option(
    'iapmr', 'I', 'Whether to plot the IAPMR related lines or not.', False
)
@click.option('-c', '--criteria', default="eer", show_default=True,
              help='Criteria for threshold selection',
260
              type=click.Choice(('eer', 'min-hter')))
261
262
263
264
265
266
@click.option('-vp', '--var-param', default="omega", show_default=True,
              help='Name of the varying parameter',
              type=click.Choice(('omega', 'beta')))
@click.option('-fp', '--fixed-param', default=0.5, show_default=True,
              help='Value of the fixed parameter',
              type=click.FLOAT)
267
268
@click.option('-s', '--sampling', default=5, show_default=True,
              help='Sampling of the EPSC 3D surface', type=click.INT)
269
270
@verbosity_option()
@click.pass_context
271
272
def epsc(ctx, scores, criteria, var_param, fixed_param, three_d, sampling,
         **kwargs):
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    """Plot EPSC (expected performance spoofing curve):

    You need to provide 4 score
    files for each biometric system in this order:

    \b
    * licit development scores
    * licit evaluation scores
    * spoof development scores
    * spoof evaluation scores

    See :ref:`bob.pad.base.vulnerability` in the documentation for a guide on
    vulnerability analysis.

    Note that when using 3D plots with option ``--three-d``, you cannot plot
    both WER and IAPMR on the same figure (which is possible in 2D).

    Examples:
291
        $ bob vuln epsc -v -o my_epsc.pdf dev-scores1 eval-scores1
292

293
        $ bob vuln epsc -v -D {licit,spoof}/scores-{dev,eval}
294
295
296
297
    """
    if three_d:
        if (ctx.meta['wer'] and ctx.meta['iapmr']):
            raise click.BadParameter('Cannot plot both WER and IAPMR in 3D')
298
        ctx.meta['sampling'] = sampling
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        process = figure.Epsc3D(
            ctx, scores, True, load.split,
            criteria, var_param, fixed_param
        )
    else:
        process = figure.Epsc(
            ctx, scores, True, load.split,
            criteria, var_param, fixed_param
        )
    process.run()



@click.command()
313
@common_options.scores_argument(nargs=-1, min_arg=2, force_eval=True)
314
315
316
317
318
319
320
321
322
323
324
325
326
327
@common_options.output_plot_file_option(default_out='vuln_hist.pdf')
@common_options.n_bins_option()
@common_options.criterion_option()
@common_options.thresholds_option()
@common_options.print_filenames_option(dflt=False)
@bool_option(
    'iapmr-line', 'I', 'Whether to plot the IAPMR related lines or not.', True
)
@bool_option(
    'real-data', 'R',
    'If False, will annotate the plots hypothetically, instead '
    'of with real data values of the calculated error rates.', True
)
@common_options.legends_option()
328
@common_options.const_layout_option()
329
330
331
332
333
334
@common_options.figsize_option(dflt=None)
@common_options.subplot_option()
@common_options.legend_ncols_option()
@common_options.style_option()
@verbosity_option()
@click.pass_context
335
def hist(ctx, scores, **kwargs):
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
  '''Vulnerability analysis distributions.

  Plots the histogram of score distributions. You need to provide 4 score
  files for each biometric system in this order:

  \b
  * licit development scores
  * licit evaluation scores
  * spoof development scores
  * spoof evaluation scores

  See :ref:`bob.pad.base.vulnerability` in the documentation for a guide on
  vulnerability analysis.


  By default, when eval-scores are given, only eval-scores histograms are
  displayed with threshold line
353
  computed from dev-scores.
354
355
356

  Examples:

357
      $ bob vuln vuln_hist -v licit/scores-dev licit/scores-eval \
358
359
                          spoof/scores-dev spoof/scores-eval

360
      $ bob vuln vuln_hist -v {licit,spoof}/scores-{dev,eval}
361
  '''
362
  process = figure.HistVuln(ctx, scores, True, load.split)
363
364
365
366
367
368
369
  process.run()



@click.command(context_settings=dict(token_normalize_func=lambda x: x.lower()))
@common_options.scores_argument(min_arg=2, force_eval=True, nargs=-1)
@common_options.table_option()
370
@common_options.criterion_option(lcriteria=['eer', 'min-hter'])
371
372
373
374
375
376
377
378
379
@common_options.thresholds_option()
@open_file_mode_option()
@common_options.output_log_metric_option()
@common_options.legends_option()
@verbosity_option()
@click.pass_context
def metrics(ctx, scores, **kwargs):
  """Generate table of metrics for vulnerability PAD

380
381
  You need to provide 4 scores
  files for each vuln system in this order:
382
383
384
385
386
387
388
389
390

  \b
  * licit development scores
  * licit evaluation scores
  * spoof development scores
  * spoof evaluation scores


  Examples:
391
      $ bob vuln vuln_metrics -v {licit,spoof}/scores-{dev,eval}
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
  """
  process = figure.MetricsVuln(ctx, scores, True, load.split)
  process.run()



@click.command()
@common_options.scores_argument(min_arg=2, force_eval=True, nargs=-1)
@common_options.output_plot_file_option(default_out='fmr_iapmr.pdf')
@common_options.legends_option()
@common_options.no_legend_option()
@common_options.legend_loc_option()
@common_options.title_option()
@common_options.const_layout_option()
@common_options.style_option()
407
@common_options.figsize_option(dflt=None)
408
409
410
411
412
413
414
415
416
417
@verbosity_option()
@common_options.axes_val_option()
@common_options.x_rotation_option()
@common_options.x_label_option()
@common_options.y_label_option()
@common_options.semilogx_option()
@click.pass_context
def fmr_iapmr(ctx, scores, **kwargs):
    """Plot FMR vs IAPMR

418
419
    You need to provide 4 scores
    files for each vuln system in this order:
420
421
422
423

    \b
    * licit development scores
    * licit evaluation scores
424
425
    * spoof development scores
    * spoof evaluation scores
426
427

    Examples:
428
        $ bob vuln fmr_iapmr -v dev-scores eval-scores
429

430
        $ bob vuln fmr_iapmr -v {licit,spoof}/scores-{dev,eval}
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
    """
    process = figure.FmrIapmr(ctx, scores, True, load.split)
    process.run()



@click.command()
@common_options.scores_argument(min_arg=2, force_eval=True, nargs=-1)
@common_options.legends_option()
@common_options.sep_dev_eval_option()
@common_options.table_option()
@common_options.output_log_metric_option()
@common_options.output_plot_file_option(default_out='vuln_eval.pdf')
@common_options.points_curve_option()
@common_options.lines_at_option()
@common_options.const_layout_option()
447
@common_options.figsize_option(dflt=None)
448
449
450
451
452
453
454
455
@common_options.style_option()
@common_options.linestyles_option()
@verbosity_option()
@click.pass_context
def evaluate(ctx, scores, **kwargs):
  '''Runs error analysis on score sets for vulnerability studies

  \b
456
  1. Computes bob vuln vuln_metrics
457
458
459
460
461
462
463
464
465
466
467
468
469
  2. Plots EPC, EPSC, vulnerability histograms, fmr vs IAPMR to a multi-page
     PDF file


  You need to provide 4 score files for each biometric system in this order:

  \b
  * licit development scores
  * licit evaluation scores
  * spoof development scores
  * spoof evaluation scores

  Examples:
470
      $ bob vuln evaluate -o my_epsc.pdf dev-scores1 eval-scores1
471

472
      $ bob vuln evaluate -D {licit,spoof}/scores-{dev,eval}
473
474
475
476
477
478
479
480
481
482
483
484
485
486
  '''
  # first time erase if existing file
  click.echo("Computing vuln metrics...")
  ctx.invoke(metrics, scores=scores, evaluation=True)
  if 'log' in ctx.meta and ctx.meta['log'] is not None:
      click.echo("[metrics] => %s" % ctx.meta['log'])

  # avoid closing pdf file before all figures are plotted
  ctx.meta['closef'] = False
  click.echo("Computing histograms...")
  ctx.meta['criterion'] = 'eer'  # no criterion passed in evaluate
  ctx.forward(hist)  # use class defaults plot settings
  click.echo("Computing DET...")
  ctx.forward(det)  # use class defaults plot settings
487
488
  click.echo("Computing ROC...")
  ctx.forward(roc)  # use class defaults plot settings
489
490
491
492
493
494
495
496
497
  click.echo("Computing EPC...")
  ctx.forward(epc)  # use class defaults plot settings
  click.echo("Computing EPSC...")
  ctx.forward(epsc)  # use class defaults plot settings
  click.echo("Computing FMR vs IAPMR...")
  ctx.meta['closef'] = True
  ctx.forward(fmr_iapmr)  # use class defaults plot settings
  click.echo("Vuln successfully completed!")
  click.echo("[plots] => %s" % (ctx.meta['output']))