test_algorithms.py 4.67 KB
Newer Older
1
2
3
4
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
#

Pavel KORSHUNOV's avatar
Pavel KORSHUNOV committed
5
6
from __future__ import print_function

7
import numpy as np
Pavel KORSHUNOV's avatar
Pavel KORSHUNOV committed
8

9
10
11
12
13
from bob.io.base.test_utils import datafile
from bob.io.base import load

import bob.io.image  # for image loading functionality
import bob.bio.video
Pavel KORSHUNOV's avatar
Pavel KORSHUNOV committed
14
15
import bob.pad.base

16
from bob.pad.base.algorithm import SVM
17
from bob.pad.base.algorithm import OneClassGMM
18
19
20

import random

21
22
23
from bob.pad.base.utils import convert_array_to_list_of_frame_cont, convert_list_of_frame_cont_to_array, \
    convert_frame_cont_to_array

24
25
26

def test_video_svm_pad_algorithm():
    """
27
    Test the SVM PAD algorithm.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    """

    random.seed(7)

    N = 20000
    mu = 1
    sigma = 1
    real_array = np.transpose(
        np.vstack([[random.gauss(mu, sigma) for _ in range(N)],
                   [random.gauss(mu, sigma) for _ in range(N)]]))

    mu = 5
    sigma = 1
    attack_array = np.transpose(
        np.vstack([[random.gauss(mu, sigma) for _ in range(N)],
                   [random.gauss(mu, sigma) for _ in range(N)]]))

    real = convert_array_to_list_of_frame_cont(real_array)
    attack = convert_array_to_list_of_frame_cont(attack_array)

    training_features = [real, attack]

    MACHINE_TYPE = 'C_SVC'
    KERNEL_TYPE = 'RBF'
    N_SAMPLES = 1000
    TRAINER_GRID_SEARCH_PARAMS = {'cost': [1], 'gamma': [0.5, 1]}
    MEAN_STD_NORM_FLAG = True  # enable mean-std normalization
    FRAME_LEVEL_SCORES_FLAG = True  # one score per frame(!) in this case

    algorithm = SVM(
        machine_type=MACHINE_TYPE,
        kernel_type=KERNEL_TYPE,
        n_samples=N_SAMPLES,
        trainer_grid_search_params=TRAINER_GRID_SEARCH_PARAMS,
        mean_std_norm_flag=MEAN_STD_NORM_FLAG,
        frame_level_scores_flag=FRAME_LEVEL_SCORES_FLAG)

    machine = algorithm.train_svm(
        training_features=training_features,
        n_samples=algorithm.n_samples,
        machine_type=algorithm.machine_type,
        kernel_type=algorithm.kernel_type,
        trainer_grid_search_params=algorithm.trainer_grid_search_params,
        mean_std_norm_flag=algorithm.mean_std_norm_flag,
        projector_file="",
        save_debug_data_flag=False)

    assert machine.n_support_vectors == [148, 150]
    assert machine.gamma == 0.5

    real_sample = convert_frame_cont_to_array(real[0])

    prob = machine.predict_class_and_probabilities(real_sample)[1]

    assert prob[0, 0] > prob[0, 1]

    precision = algorithm.comp_prediction_precision(machine, real_array,
                                                    attack_array)

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    assert precision > 0.99


def test_video_gmm_pad_algorithm():
    """
    Test the OneClassGMM PAD algorithm.
    """

    random.seed(7)

    N = 1000
    mu = 1
    sigma = 1
    real_array = np.transpose(
        np.vstack([[random.gauss(mu, sigma) for _ in range(N)],
                   [random.gauss(mu, sigma) for _ in range(N)]]))

    mu = 5
    sigma = 1
    attack_array = np.transpose(
        np.vstack([[random.gauss(mu, sigma) for _ in range(N)],
                   [random.gauss(mu, sigma) for _ in range(N)]]))

    real = convert_array_to_list_of_frame_cont(real_array)

    N_COMPONENTS = 1
    RANDOM_STATE = 3
    FRAME_LEVEL_SCORES_FLAG = True

    algorithm = OneClassGMM(
        n_components=N_COMPONENTS,
        random_state=RANDOM_STATE,
        frame_level_scores_flag=FRAME_LEVEL_SCORES_FLAG)

    # training_features[0] - training features for the REAL class.
    real_array_converted = convert_list_of_frame_cont_to_array(real)  # output is array

    assert (real_array == real_array_converted).all()

    # Train the OneClassGMM machine and get normalizers:
    machine, features_mean, features_std = algorithm.train_gmm(
        real=real_array_converted,
        n_components=algorithm.n_components,
        random_state=algorithm.random_state)

    algorithm.machine = machine

    algorithm.features_mean = features_mean

    algorithm.features_std = features_std

    scores_real = algorithm.project(real_array_converted)

    scores_attack = algorithm.project(attack_array)

    assert (np.min(scores_real) + 7.9423798970985917) < 0.000001
    assert (np.max(scores_real) + 1.8380480068281055) < 0.000001
    assert (np.min(scores_attack) + 38.831260843070098) < 0.000001
    assert (np.max(scores_attack) + 5.3633030621521272) < 0.000001
146
147
148
149
150
151
152
153
154

def test_convert_list_of_frame_cont_to_array():
  
  N = 1000
  mu = 1
  sigma = 1
  real_array = np.transpose(np.vstack([[random.gauss(mu, sigma) for _ in range(N)], [random.gauss(mu, sigma) for _ in range(N)]]))

  features_array = convert_list_of_frame_cont_to_array(real_array)
155
  assert isinstance(features_array[0], np.array)
156
157
158
  features_fm = convert_array_to_list_of_frame_cont(real_array)
  assert isinstance(features_fm[0], bob.bio.video.FrameContainer)