figure.py 26.8 KB
Newer Older
1 2
'''Runs error analysis on score sets, outputs metrics and plots'''

3
import logging
4 5
import click
import numpy as np
6
import matplotlib.pyplot as mpl
7 8 9
import  bob.measure.script.figure as measure_figure
from tabulate import tabulate
from bob.extension.scripts.click_helper import verbosity_option
10
from  bob.measure.utils import (get_fta, get_fta_list, get_thres)
11
from bob.measure import (
12
    far_threshold, eer_threshold, min_hter_threshold, farfrr, epc, ppndf
13
)
14
from bob.measure.plot import (det, det_axis)
15 16 17 18
from . import error_utils

ALL_CRITERIA = ('bpcer20', 'eer', 'min-hter')

19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
def calc_threshold(method, neg, pos):
    """Calculates the threshold based on the given method.
    The scores should be sorted!

    Parameters
    ----------
    method : str
        One of ``bpcer201``, ``eer``, ``min-hter``.
    neg : array_like
        The negative scores. They should be sorted!
    pos : array_like
        The positive scores. They should be sorted!

    Returns
    -------
    float
        The calculated threshold.

    Raises
    ------
    ValueError
        If method is unknown.
    """
    method = method.lower()
    if method == 'bpcer20':
        threshold = far_threshold(neg, pos, 0.05, True)
    elif method == 'eer':
        threshold = eer_threshold(neg, pos, True)
    elif method == 'min-hter':
        threshold = min_hter_threshold(neg, pos, True)
    else:
        raise ValueError("Unknown threshold criteria: {}".format(method))

    return threshold

55

56 57 58 59 60
class Metrics(measure_figure.Metrics):
    def __init__(self, ctx, scores, evaluation, func_load):
        super(Metrics, self).__init__(ctx, scores, evaluation, func_load)

    ''' Compute metrics from score files'''
61
    def compute(self, idx, input_scores, input_names):
62
        ''' Compute metrics for the given criteria'''
63 64 65 66 67 68
        neg_list, pos_list, _ = get_fta_list(input_scores)
        dev_neg, dev_pos = neg_list[0], pos_list[0]
        dev_file = input_names[0]
        if self._eval:
            eval_neg, eval_pos = neg_list[1], pos_list[1]
            eval_file = input_names[1]
69

70
        title = self._legends[idx] if self._legends is not None else None
71
        headers = ['' or title, 'Development %s' % dev_file]
72
        if self._eval:
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
            headers.append('Eval. % s' % eval_file)
        for m in ALL_CRITERIA:
            raws = []
            threshold = calc_threshold(m, dev_neg, dev_pos)
            click.echo("\nThreshold of %f selected with the %s criteria" % (
                threshold, m))
            apcer, bpcer = farfrr(dev_neg, dev_pos, threshold)
            raws.append(['BPCER20', '{:>5.1f}%'.format(apcer * 100)])
            raws.append(['EER', '{:>5.1f}%'.format(bpcer * 100)])
            raws.append(['min-HTER', '{:>5.1f}%'.format((apcer + bpcer) * 50)])
            if self._eval and eval_neg is not None:
                apcer, bpcer = farfrr(eval_neg, eval_pos, threshold)
                raws[0].append('{:>5.1f}%'.format(apcer * 100))
                raws[1].append('{:>5.1f}%'.format(bpcer * 100))
                raws[2].append('{:>5.1f}%'.format((apcer + bpcer) * 50))

            click.echo(
                tabulate(raws, headers, self._tablefmt),
                file=self.log_file
            )

94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
class MetricsVuln(measure_figure.Metrics):
    def __init__(self, ctx, scores, evaluation, func_load):
        super(MetricsVuln, self).__init__(ctx, scores, evaluation, func_load)

    ''' Compute metrics from score files'''
    def compute(self, idx, input_scores, input_names):
        ''' Compute metrics for the given criteria'''
        neg_list, pos_list, _ = get_fta_list(input_scores)
        dev_neg, dev_pos = neg_list[0], pos_list[0]
        criter = self._criterion or 'eer'
        threshold = calc_threshold(criter, dev_neg, dev_pos) \
                if self._thres is None else self._thres[idx]
        far, frr = farfrr(neg_list[1], pos_list[1], threshold)
        iapmr, _ = farfrr(neg_list[3], pos_list[1], threshold)
        title = self._legends[idx] if self._legends is not None else None
        headers = ['' or title, '%s (threshold=%.2g)' %
                   (criter.upper(), threshold)]
        rows = []
        rows.append(['FMR (%)', '{:>5.1f}%'.format(100*far)])
        rows.append(['FMNR (%)', '{:>5.1f}%'.format(frr*100)])
        rows.append(['HTER (%)', '{:>5.1f}%'.format(50*(far+frr))])
        rows.append(['IAPMR (%)', '{:>5.1f}%'.format(100*iapmr)])
        click.echo(
            tabulate(rows, headers, self._tablefmt),
            file=self.log_file
        )


123 124 125 126 127 128
class HistPad(measure_figure.Hist):
    ''' Histograms for PAD '''

    def _setup_hist(self, neg, pos):
        self._title_base = 'PAD'
        self._density_hist(
129
            pos[0], n=0, label='Bona Fide', color='C1'
130 131
        )
        self._density_hist(
132
            neg[0], n=1, label='Presentation attack', alpha=0.4, color='C7',
133
            hatch='\\\\'
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        )


def _iapmr_dot(threshold, iapmr, real_data, **kwargs):
    # plot a dot on threshold versus IAPMR line and show IAPMR as a number
    axlim = mpl.axis()
    mpl.plot(threshold, 100. * iapmr, 'o', color='C3', **kwargs)
    if not real_data:
        mpl.annotate(
            'IAPMR at\noperating point',
            xy=(threshold, 100. * iapmr),
            xycoords='data',
            xytext=(0.85, 0.6),
            textcoords='axes fraction',
            color='black',
            size='large',
            arrowprops=dict(facecolor='black', shrink=0.05, width=2),
            horizontalalignment='center',
            verticalalignment='top',
        )
    else:
        mpl.text(threshold + (threshold - axlim[0]) / 12, 100. * iapmr,
                 '%.1f%%' % (100. * iapmr,), color='C3')

158

159 160 161 162 163 164
def _iapmr_line_plot(scores, n_points=100, **kwargs):
    axlim = mpl.axis()
    step = (axlim[1] - axlim[0]) / float(n_points)
    thres = [(k * step) + axlim[0] for k in range(2, n_points - 1)]
    mix_prob_y = []
    for k in thres:
165
        mix_prob_y.append(100. * error_utils.calc_pass_rate(k, scores))
166 167 168

    mpl.plot(thres, mix_prob_y, label='IAPMR', color='C3', **kwargs)

169

170 171 172 173
def _iapmr_plot(scores, threshold, iapmr, real_data, **kwargs):
    _iapmr_dot(threshold, iapmr, real_data, **kwargs)
    _iapmr_line_plot(scores, n_points=100, **kwargs)

174

175 176 177 178 179 180
class HistVuln(measure_figure.Hist):
    ''' Histograms for vulnerability '''

    def _setup_hist(self, neg, pos):
        self._title_base = 'Vulnerability'
        self._density_hist(
181
            pos[0], n=0, label='Genuine', color='C2'
182 183
        )
        self._density_hist(
184
            neg[0], n=1, label='Zero-effort impostors', alpha=0.8, color='C0'
185 186
        )
        self._density_hist(
187
            neg[1], n=2, label='Presentation attack', alpha=0.4, color='C7',
188
            hatch='\\\\'
189 190
        )

191
    def _lines(self, threshold, label, neg, pos, idx, **kwargs):
192 193
        if 'iapmr_line' not in self._ctx.meta or self._ctx.meta['iapmr_line']:
            #plot vertical line
194
            super(HistVuln, self)._lines(threshold, label, neg, pos, idx)
195 196 197 198 199 200 201 202 203

            #plot iapmr_line
            iapmr, _ = farfrr(neg[1], pos[0], threshold)
            ax2 = mpl.twinx()
            # we never want grid lines on axis 2
            ax2.grid(False)
            real_data = True if 'real_data' not in self._ctx.meta else \
                    self._ctx.meta['real_data']
            _iapmr_plot(neg[1], threshold, iapmr, real_data=real_data)
204 205 206 207 208
            n = idx % self._step_print
            col = n % self._ncols
            rest_print = self.n_systems - int(idx / self._step_print) * self._step_print
            if col == self._ncols - 1 or n == rest_print - 1:
                ax2.set_ylabel("IAPMR (%)", color='C3')
209 210 211 212
            ax2.tick_params(axis='y', colors='red')
            ax2.yaxis.label.set_color('red')
            ax2.spines['right'].set_color('red')

213

214 215 216 217
class PadPlot(measure_figure.PlotBase):
    '''Base class for PAD plots'''
    def __init__(self, ctx, scores, evaluation, func_load):
        super(PadPlot, self).__init__(ctx, scores, evaluation, func_load)
218
        mpl.rcParams['figure.constrained_layout.use'] = self._clayout
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

    def end_process(self):
        '''Close pdf '''
        #do not want to close PDF when running evaluate
        if 'PdfPages' in self._ctx.meta and \
           ('closef' not in self._ctx.meta or self._ctx.meta['closef']):
            self._pdf_page.close()

    def _plot_legends(self):
        #legends for all axes
        lines = []
        labels = []
        for ax in mpl.gcf().get_axes():
            li, la = ax.get_legend_handles_labels()
            lines += li
            labels += la
235 236 237 238
        if self._disp_legend:
            mpl.gca().legend(lines, labels, loc=self._legend_loc,
                             fancybox=True, framealpha=0.5)

239 240 241 242 243 244 245

class Epc(PadPlot):
    ''' Handles the plotting of EPC '''
    def __init__(self, ctx, scores, evaluation, func_load):
        super(Epc, self).__init__(ctx, scores, evaluation, func_load)
        self._iapmr = True if 'iapmr' not in self._ctx.meta else \
                self._ctx.meta['iapmr']
246 247 248 249
        self._title = self._title or ('EPC and IAPMR' if self._iapmr else
                                      'EPC')
        self._x_label = self._x_label or r"Weight $\beta$"
        self._y_label = self._y_label or "WER (%)"
250 251 252 253
        self._eval = True #always eval data with EPC
        self._split = False
        self._nb_figs = 1

254 255 256 257 258
        if self._min_arg != 4:
            raise click.BadParameter("You must provide 4 scores files:{licit,"
                                     "spoof}/{dev,eval}")

    def compute(self, idx, input_scores, input_names):
259
        ''' Plot EPC for PAD'''
260 261 262 263 264
        licit_dev_neg = input_scores[0][0]
        licit_dev_pos = input_scores[0][1]
        licit_eval_neg = input_scores[1][0]
        licit_eval_pos = input_scores[1][1]
        spoof_eval_neg = input_scores[3][0]
265
        mpl.gcf().clear()
266
        epc_baseline = epc(
267 268 269 270 271 272 273
            licit_dev_neg, licit_dev_pos, licit_eval_neg,
            licit_eval_pos, 100
        )
        mpl.plot(
            epc_baseline[:, 0], [100. * k for k in epc_baseline[:, 1]],
            color='C0',
            label=self._label(
274
                'WER', '%s-%s' % (input_names[0], input_names[1]), idx
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
            ),
            linestyle='-'
        )
        mpl.xlabel(self._x_label)
        mpl.ylabel(self._y_label)
        if self._iapmr:
            mix_prob_y = []
            for k in epc_baseline[:, 2]:
                prob_attack = sum(
                    1 for i in spoof_eval_neg if i >= k
                ) / float(spoof_eval_neg.size)
                mix_prob_y.append(100. * prob_attack)

            mpl.gca().set_axisbelow(True)
            prob_ax = mpl.gca().twinx()
            mpl.plot(
                epc_baseline[:, 0],
                mix_prob_y,
                color='C3',
                linestyle='-',
                label=self._label(
296
                    'IAPMR', '%s-%s' % (input_names[0], input_names[1]), idx
297 298 299 300 301 302 303 304 305
                )
            )
            prob_ax.set_yticklabels(prob_ax.get_yticks())
            prob_ax.tick_params(axis='y', colors='red')
            prob_ax.yaxis.label.set_color('red')
            prob_ax.spines['right'].set_color('red')
            ylabels = prob_ax.get_yticks()
            prob_ax.yaxis.set_ticklabels(["%.0f" % val for val in ylabels])
            prob_ax.set_axisbelow(True)
306
        title = self._legends[idx] if self._legends is not None else self._title
307 308
        if title.replace(' ', ''):
            mpl.title(title)
309 310 311 312 313
        #legends for all axes
        self._plot_legends()
        mpl.xticks(rotation=self._x_rotation)
        self._pdf_page.savefig(mpl.gcf())

314

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
class Epsc(PadPlot):
    ''' Handles the plotting of EPSC '''
    def __init__(self, ctx, scores, evaluation, func_load,
                 criteria, var_param, fixed_param):
        super(Epsc, self).__init__(ctx, scores, evaluation, func_load)
        self._iapmr = False if 'iapmr' not in self._ctx.meta else \
                self._ctx.meta['iapmr']
        self._wer = True if 'wer' not in self._ctx.meta else \
                self._ctx.meta['wer']
        self._criteria = 'eer' if criteria is None else criteria
        self._var_param = "omega" if var_param is None else var_param
        self._fixed_param = 0.5 if fixed_param is None else fixed_param
        self._eval = True #always eval data with EPC
        self._split = False
        self._nb_figs = 1
330 331 332 333 334
        self._title = ''

        if self._min_arg != 4:
            raise click.BadParameter("You must provide 4 scores files:{licit,"
                                     "spoof}/{dev,eval}")
335

336
    def compute(self, idx, input_scores, input_names):
337
        ''' Plot EPSC for PAD'''
338 339 340 341 342 343 344 345
        licit_dev_neg = input_scores[0][0]
        licit_dev_pos = input_scores[0][1]
        licit_eval_neg = input_scores[1][0]
        licit_eval_pos = input_scores[1][1]
        spoof_dev_neg = input_scores[2][0]
        spoof_dev_pos = input_scores[2][1]
        spoof_eval_neg = input_scores[3][0]
        spoof_eval_pos = input_scores[3][1]
346
        title = self._legends[idx] if self._legends is not None else None
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

        mpl.gcf().clear()
        points = 10

        if self._var_param == 'omega':
            omega, beta, thrs = error_utils.epsc_thresholds(
                licit_dev_neg,
                licit_dev_pos,
                spoof_dev_neg,
                spoof_dev_pos,
                points=points,
                criteria=self._criteria,
                beta=self._fixed_param)
        else:
            omega, beta, thrs = error_utils.epsc_thresholds(
                licit_dev_neg,
                licit_dev_pos,
                spoof_dev_neg,
                spoof_dev_pos,
                points=points,
                criteria= self._criteria,
                omega=self._fixed_param
            )

        errors = error_utils.all_error_rates(
            licit_eval_neg, licit_eval_pos, spoof_eval_neg,
            spoof_eval_pos, thrs, omega, beta
        )  # error rates are returned in a list in the
           # following order: frr, far, IAPMR, far_w, wer_w

        ax1 = mpl.subplot(
            111
        )  # EPC like curves for FVAS fused scores for weighted error rates
           # between the negatives (impostors and Presentation attacks)
        if self._wer:
            if self._var_param == 'omega':
                mpl.plot(
                    omega,
                    100. * errors[4].flatten(),
                    color='C0',
                    linestyle='-',
                    label=r"WER$_{\omega,\beta}$")
389
                mpl.xlabel(self._x_label or r"Weight $\omega$")
390 391 392 393 394 395 396
            else:
                mpl.plot(
                    beta,
                    100. * errors[4].flatten(),
                    color='C0',
                    linestyle='-',
                    label=r"WER$_{\omega,\beta}$")
397 398
                mpl.xlabel(self._x_label or r"Weight $\beta$")
            mpl.ylabel(self._y_label or r"WER$_{\omega,\beta}$ (%)")
399 400 401 402 403 404 405 406 407 408 409 410 411

        if self._iapmr:
            axis = mpl.gca()
            if self._wer:
                axis = mpl.twinx()
                axis.grid(False)
            if self._var_param == 'omega':
                mpl.plot(
                    omega,
                    100. * errors[2].flatten(),
                    color='C3',
                    linestyle='-',
                    label='IAPMR')
412
                mpl.xlabel(self._x_label or r"Weight $\omega$")
413 414 415 416 417 418 419
            else:
                mpl.plot(
                    beta,
                    100. * errors[2].flatten(),
                    color='C3',
                    linestyle='-',
                    label='IAPMR')
420 421
                mpl.xlabel(self._x_label or r"Weight $\beta$")
            mpl.ylabel(self._y_label or r"IAPMR  (%)")
422 423 424 425 426 427 428
            if self._wer:
                axis.set_yticklabels(axis.get_yticks())
                axis.tick_params(axis='y', colors='red')
                axis.yaxis.label.set_color('red')
                axis.spines['right'].set_color('red')

        if self._var_param == 'omega':
Theophile GENTILHOMME's avatar
Theophile GENTILHOMME committed
429
            if title is not None and title.replace(' ', ''):
430 431
                mpl.title(title or (r"EPSC with $\beta$ = %.2f" %\
                                    self._fixed_param))
432
        else:
Theophile GENTILHOMME's avatar
Theophile GENTILHOMME committed
433
            if title is not None and title.replace(' ', ''):
434 435
                mpl.title(title or (r"EPSC with $\omega$ = %.2f" %\
                                    self._fixed_param))
436 437 438 439 440 441

        mpl.grid()
        self._plot_legends()
        ax1.set_xticklabels(ax1.get_xticks())
        ax1.set_yticklabels(ax1.get_yticks())
        mpl.xticks(rotation=self._x_rotation)
442
        self._pdf_page.savefig()
443

444

445 446
class Epsc3D(Epsc):
    ''' 3D EPSC plots for PAD'''
447
    def compute(self, idx, input_scores, input_names):
448
        ''' Implements plots'''
449 450 451 452 453 454 455 456
        licit_dev_neg = input_scores[0][0]
        licit_dev_pos = input_scores[0][1]
        licit_eval_neg = input_scores[1][0]
        licit_eval_pos = input_scores[1][1]
        spoof_dev_neg = input_scores[2][0]
        spoof_dev_pos = input_scores[2][1]
        spoof_eval_neg = input_scores[3][0]
        spoof_eval_pos = input_scores[3][1]
457

Theophile GENTILHOMME's avatar
Theophile GENTILHOMME committed
458
        title = self._legends[idx] if self._legends is not None else "3D EPSC"
459

460 461
        mpl.rcParams.pop('key', None)

462
        mpl.gcf().clear()
463
        mpl.gcf().set_constrained_layout(self._clayout)
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

        from mpl_toolkits.mplot3d import Axes3D
        from matplotlib import cm

        points = 10

        omega, beta, thrs = error_utils.epsc_thresholds(
            licit_dev_neg,
            licit_dev_pos,
            spoof_dev_neg,
            spoof_dev_pos,
            points=points,
            criteria=self._criteria)

        errors = error_utils.all_error_rates(
            licit_eval_neg, licit_eval_pos, spoof_eval_neg, spoof_eval_pos,
            thrs, omega, beta
        )
        # error rates are returned in a list as 2D numpy.ndarrays in
        # the following order: frr, far, IAPMR, far_w, wer_wb, hter_wb
        wer_errors = 100 * errors[2 if self._iapmr else 4]

486
        ax1 = mpl.gcf().add_subplot(111, projection='3d')
487 488 489 490 491 492 493 494 495 496 497

        W, B = np.meshgrid(omega, beta)

        ax1.plot_wireframe(
            W, B, wer_errors, cmap=cm.coolwarm, antialiased=False
        )  # surface

        if self._iapmr:
            ax1.azim = -30
            ax1.elev = 50

498 499
        ax1.set_xlabel(self._x_label or r"Weight $\omega$")
        ax1.set_ylabel(self._y_label or r"Weight $\beta$")
500 501 502 503
        ax1.set_zlabel(
            r"WER$_{\omega,\beta}$ (%)" if self._wer else "IAPMR (%)"
        )

504
        if title.replace(' ', ''):
Theophile GENTILHOMME's avatar
Theophile GENTILHOMME committed
505
            mpl.title(title)
506 507 508 509 510

        ax1.set_xticklabels(ax1.get_xticks())
        ax1.set_yticklabels(ax1.get_yticks())
        ax1.set_zticklabels(ax1.get_zticks())

511 512
        self._pdf_page.savefig()

513

514 515 516 517 518 519 520 521 522
class Det(PadPlot):
    '''DET for PAD'''
    def __init__(self, ctx, scores, evaluation, func_load, criteria, real_data):
        super(Det, self).__init__(ctx, scores, evaluation, func_load)
        self._no_spoof = False if 'no_spoof' not in ctx.meta else\
        ctx.meta['no_spoof']
        self._criteria = criteria
        self._real_data = True if real_data is None else real_data

523
    def compute(self, idx, input_scores, input_names):
524
        ''' Implements plots'''
525 526 527 528 529 530
        licit_dev_neg = input_scores[0][0]
        licit_dev_pos = input_scores[0][1]
        licit_eval_neg = input_scores[1][0]
        licit_eval_pos = input_scores[1][1]
        spoof_eval_neg = input_scores[3][0] if len(input_scores) > 2 else None
        spoof_eval_pos = input_scores[3][1] if len(input_scores) > 2 else None
531 532 533 534 535 536 537

        det(
            licit_eval_neg,
            licit_eval_pos,
            self._points,
            color=self._colors[idx],
            linestyle='-',
538
            label=self._label("licit", input_names[0], idx)
539 540 541 542 543 544 545 546
        )
        if not self._no_spoof and spoof_eval_neg is not None:
            det(
                spoof_eval_neg,
                spoof_eval_pos,
                self._points,
                color=self._colors[idx],
                linestyle='--',
547
                label=self._label("spoof", input_names[3], idx)
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
            )

        if self._criteria is None:
            return

        thres_baseline = calc_threshold(
            self._criteria, licit_dev_neg, licit_dev_pos
        )

        axlim = mpl.axis()

        farfrr_licit = farfrr(
            licit_eval_neg, licit_eval_pos,
            thres_baseline)  # calculate test frr @ EER (licit scenario)
        farfrr_spoof = farfrr(
            spoof_eval_neg, spoof_eval_pos,
            thres_baseline)  # calculate test frr @ EER (spoof scenario)
        farfrr_licit_det = [
            ppndf(i) for i in farfrr_licit
        ]
        # find the FAR and FRR values that need to be plotted on normal deviate
        # scale
        farfrr_spoof_det = [
            ppndf(i) for i in farfrr_spoof
        ]
        # find the FAR and FRR values that need to be plotted on normal deviate
        # scale
        if not self._real_data:
            mpl.axhline(
                y=farfrr_licit_det[1],
                xmin=axlim[2],
                xmax=axlim[3],
                color='k',
                linestyle='--',
                label="FRR @ EER")  # vertical FRR threshold
        else:
            mpl.axhline(
                y=farfrr_licit_det[1],
                xmin=axlim[0],
                xmax=axlim[1],
                color='k',
                linestyle='--',
                label="FRR = %.2f%%" %
                (farfrr_licit[1] * 100))  # vertical FRR threshold

        mpl.plot(
            farfrr_licit_det[0],
            farfrr_licit_det[1],
            'o',
            color=self._colors[idx],
            markersize=9)  # FAR point, licit scenario
        mpl.plot(
            farfrr_spoof_det[0],
            farfrr_spoof_det[1],
            'o',
            color=self._colors[idx],
            markersize=9)  # FAR point, spoof scenario

        # annotate the FAR points
        xyannotate_licit = [
            ppndf(0.7 * farfrr_licit[0]),
            ppndf(1.8 * farfrr_licit[1])
        ]
        xyannotate_spoof = [
            ppndf(0.95 * farfrr_spoof[0]),
            ppndf(1.8 * farfrr_licit[1])
        ]

        if not self._real_data:
            mpl.annotate(
                'FMR @\noperating point',
                xy=(farfrr_licit_det[0], farfrr_licit_det[1]),
                xycoords='data',
                xytext=(xyannotate_licit[0], xyannotate_licit[1]),
                color=self._colors[idx])
            mpl.annotate(
                'IAPMR @\noperating point',
                xy=(farfrr_spoof_det[0], farfrr_spoof_det[1]),
                xycoords='data',
                xytext=(xyannotate_spoof[0], xyannotate_spoof[1]),
                color=self._colors[idx])
        else:
            mpl.annotate(
                'FAR=%.2f%%' % (farfrr_licit[0] * 100),
                xy=(farfrr_licit_det[0], farfrr_licit_det[1]),
                xycoords='data',
                xytext=(xyannotate_licit[0], xyannotate_licit[1]),
                color=self._colors[idx],
                size='large')
            mpl.annotate(
                'IAPMR=\n%.2f%%' % (farfrr_spoof[0] * 100),
                xy=(farfrr_spoof_det[0], farfrr_spoof_det[1]),
                xycoords='data',
                xytext=(xyannotate_spoof[0], xyannotate_spoof[1]),
                color=self._colors[idx],
                size='large')

    def end_process(self):
        ''' Set title, legend, axis labels, grid colors, save figures and
        close pdf is needed '''
        #only for plots
        add = ''
        if not self._no_spoof:
            add = " and overlaid SPOOF scenario"
        title = self._title if self._title is not None else \
                ('DET: LICIT' + add)
654 655
        if title.replace(' ', ''):
            mpl.title(title)
656 657 658
        mpl.xlabel(self._x_label or "False Acceptance Rate (%)")
        mpl.ylabel(self._y_label or "False Rejection Rate (%)")
        mpl.grid(True, color=self._grid_color)
659 660
        if self._disp_legend:
            mpl.legend(loc=self._legend_loc)
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
        self._set_axis()
        fig = mpl.gcf()
        mpl.xticks(rotation=self._x_rotation)
        mpl.tick_params(axis='both', which='major', labelsize=4)
        for tick in mpl.gca().xaxis.get_major_ticks():
            tick.label.set_fontsize(6)
        for tick in mpl.gca().yaxis.get_major_ticks():
            tick.label.set_fontsize(6)

        self._pdf_page.savefig(fig)

        #do not want to close PDF when running evaluate
        if 'PdfPages' in self._ctx.meta and \
            ('closef' not in self._ctx.meta or self._ctx.meta['closef']):
            self._pdf_page.close()

    def _set_axis(self):
        if self._axlim is not None and None not in self._axlim:
            det_axis(self._axlim)
        else:
            det_axis([0.01, 99, 0.01, 99])
682

683

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
class FmrIapmr(PadPlot):
    '''FMR vs IAPMR'''
    def __init__(self, ctx, scores, evaluation, func_load):
        super(FmrIapmr, self).__init__(ctx, scores, evaluation, func_load)
        self._eval = True #always eval data with EPC
        self._split = False
        self._nb_figs = 1
        self._semilogx = False if 'semilogx' not in ctx.meta else\
        ctx.meta['semilogx']
        if self._min_arg != 4:
            raise click.BadParameter("You must provide 4 scores files:{licit,"
                                     "spoof}/{dev,eval}")

    def compute(self, idx, input_scores, input_names):
        ''' Implements plots'''
        licit_eval_neg = input_scores[1][0]
        licit_eval_pos = input_scores[1][1]
        spoof_eval_neg = input_scores[3][0]
        fmr_list = np.linspace(0, 1, 100)
        iapmr_list = []
        for i, fmr in enumerate(fmr_list):
            thr = far_threshold(licit_eval_neg, licit_eval_pos, fmr, True)
            iapmr_list.append(farfrr(spoof_eval_neg, licit_eval_pos, thr)[0])
            # re-calculate fmr since threshold might give a different result
            # for fmr.
            fmr_list[i] = farfrr(licit_eval_neg, licit_eval_pos, thr)[0]
710
        label = self._legends[idx] if self._legends is not None else \
711 712 713 714 715 716 717 718 719 720 721
                '(%s/%s)' % (input_names[1], input_names[3])
        if self._semilogx:
            mpl.semilogx(fmr_list, iapmr_list, label=label)
        else:
            mpl.plot(fmr_list, iapmr_list, label=label)

    def end_process(self):
        ''' Set title, legend, axis labels, grid colors, save figures and
        close pdf is needed '''
        #only for plots
        title = self._title if self._title is not None else "FMR vs IAPMR"
722 723
        if title.replace(' ', ''):
            mpl.title(title)
724 725 726
        mpl.xlabel(self._x_label or "False Match Rate (%)")
        mpl.ylabel(self._y_label or "IAPMR (%)")
        mpl.grid(True, color=self._grid_color)
727 728
        if self._disp_legend:
            mpl.legend(loc=self._legend_loc)
729 730 731 732 733 734 735 736 737 738 739
        self._set_axis()
        fig = mpl.gcf()
        mpl.xticks(rotation=self._x_rotation)
        mpl.tick_params(axis='both', which='major', labelsize=4)

        self._pdf_page.savefig(fig)

        #do not want to close PDF when running evaluate
        if 'PdfPages' in self._ctx.meta and \
            ('closef' not in self._ctx.meta or self._ctx.meta['closef']):
            self._pdf_page.close()