error_utils.py 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#!/usr/bin/env python
#Ivana Chingovska <ivana.chingovska@idiap.ch>
#Fri Dec  7 12:33:37 CET 2012
"""Utility functions for computation of EPSC curve and related measurement"""

import os
import sys
import bob.measure
import numpy
import argparse


def calc_pass_rate(threshold, attacks):
    """Calculates the rate of successful spoofing attacks

16 17 18 19 20 21 22 23 24 25 26 27 28
    Parameters
    ----------
    threshold :
      the threshold used for classification
    scores :
      numpy with the scores of the spoofing attacks

    Returns
    -------
    float
      rate of successful spoofing attacks
    """
    return (attacks >= threshold).mean()
29 30 31 32 33 34 35


def weighted_neg_error_rate_criteria(data,
                                     weight,
                                     thres,
                                     beta=0.5,
                                     criteria='eer'):
36 37 38
    """Given the single value for the weight parameter balancing between
    impostors and spoofing attacks and a threshold, calculates the error rates
    and their relationship depending on the criteria (difference in case of
39
    'eer', hter in case of 'min-hter' criteria)
40 41
    Keyword parameters:

42 43 44 45 46
      - data - the development data used to determine the threshold. List on 4
      numpy.arrays containing: negatives (licit), positives (licit),
      negatives (spoof), positivies (spoof)
      - weight - the weight parameter balancing between impostors and spoofing
      attacks
47
      - thres - the given threshold
48 49 50
      - beta - the weight parameter balancing between real accesses and all the
      negative samples (impostors and spoofing attacks). Note that this
      parameter will be overriden and not considered if the selected criteria
51 52
      is 'min-hter'.
      - criteria - 'eer', 'wer' or 'min-hter' criteria for decision threshold
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  """

    licit_neg = data[0]
    licit_pos = data[1]
    spoof_neg = data[2]
    spoof_pos = data[3]  # unpacking the data
    farfrr_licit = bob.measure.farfrr(licit_neg, licit_pos, thres)
    farfrr_spoof = bob.measure.farfrr(spoof_neg, spoof_pos, thres)

    frr = farfrr_licit[1]  # farfrr_spoof[1] should have the same value
    far_i = farfrr_licit[0]
    far_s = farfrr_spoof[0]

    far_w = (1 - weight) * far_i + weight * far_s

    if criteria == 'eer':
        if beta == 0.5:
            return abs(far_w - frr)
        else:
            #return abs(far_w - frr)
            return abs((1 - beta) * frr - beta * far_w)

75
    elif criteria == 'min-hter':
76 77 78 79 80 81 82 83 84 85 86 87
        return (far_w + frr) / 2

    else:
        return (1 - beta) * frr + beta * far_w


def recursive_thr_search(data,
                         span_min,
                         span_max,
                         weight,
                         beta=0.5,
                         criteria='eer'):
88 89 90 91 92
    """Recursive search for the optimal threshold given a criteria. It
    evaluates the full range of thresholds at 100 points, and computes the one
    which optimizes the threshold. In the next search iteration, it examines
    the region around the point that optimizes the threshold. The procedure
    stops when the search range is smaller then 1e-10.
93 94

  Keyword arguments:
95 96 97
    - data - the development data used to determine the threshold. List on 4
    numpy.arrays containing: negatives (licit), positives (licit), negatives
    (spoof), positivies (spoof)
98 99
    - span_min - the minimum of the search range
    - span_max - the maximum of the search range
100 101 102 103 104
    - weight - the weight parameter balancing between impostors and spoofing
    attacks
    - beta - the weight parameter balancing between real accesses and all the
    negative samples (impostors and spoofing attacks). Note that methods called
    within this function will override this parameter and not considered if the
105
    selected criteria is 'min-hter'.
106
    - criteria - the decision threshold criteria ('eer' for EER, 'wer' for
107
    Minimum WER or 'min-hter' for Minimum HTER criteria).
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  """

    quit_thr = 1e-10
    steps = 100
    if abs((span_max - span_min) / span_max) < quit_thr:
        return span_max  # or span_min, it doesn't matter
    else:
        step_size = (span_max - span_min) / steps
        thresholds = numpy.array(
            [(i * step_size) + span_min for i in range(steps + 1)])
        weighted_error_rates = numpy.array([
            weighted_neg_error_rate_criteria(data, weight, thr, beta, criteria)
            for thr in thresholds
        ])
        selected_thres = thresholds[numpy.where(
            weighted_error_rates == min(weighted_error_rates)
        )]  # all the thresholds which have minimum weighted error rate
        thr = selected_thres[int(
            selected_thres.size / 2
        )]  # choose the centrally positioned threshold
        return recursive_thr_search(data, thr - step_size, thr + step_size,
                                    weight, beta, criteria)


def weighted_negatives_threshold(licit_neg,
                                 licit_pos,
                                 spoof_neg,
                                 spoof_pos,
                                 weight,
                                 beta=0.5,
                                 criteria='eer'):
139 140 141 142 143
    """Calculates the threshold for achieving the given criteria between the
    FAR_w and the FRR, given the single value for the weight parameter 
    balancing between impostors and spoofing attacks and a single value for the
    parameter beta balancing between the real accesses and the negatives
    (impostors and spoofing attacks)
144 145 146 147 148 149

  Keyword parameters:
    - licit_neg - numpy.array of scores for the negatives (licit scenario)
    - licit_pos - numpy.array of scores for the positives (licit scenario)
    - spoof_neg - numpy.array of scores for the negatives (spoof scenario)
    - spoof_pos - numpy.array of scores for the positives (spoof scenario)
150 151 152 153 154
    - weight - the weight parameter balancing between impostors and spoofing
    attacks
    - beta - the weight parameter balancing between real accesses and all the
    negative samples (impostors and spoofing attacks). Note that methods called
    within this function will override this parameter and not considered if the
155
    selected criteria is 'min-hter'.
156
    - criteria - the decision threshold criteria ('eer' for EER, 'wer' for
157
    Minimum WER or 'min-hter' for Minimum HTER criteria).
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  """
    span_min = min(
        numpy.append(licit_neg, spoof_neg)
    )  # the min of the span where we will search for the threshold
    span_max = max(
        numpy.append(licit_pos, spoof_pos)
    )  # the max of the span where we will search for the threshold
    data = (licit_neg, licit_pos, spoof_neg,
            spoof_pos)  # pack the data into a single list
    return recursive_thr_search(data, span_min, span_max, weight, beta,
                                criteria)


def epsc_weights(licit_neg, licit_pos, spoof_neg, spoof_pos, points=100):
    """Returns the weights for EPSC

  Keyword arguments:

    - points - number of points to calculate EPSC
  """
    step_size = 1 / float(points)
    weights = numpy.array([(i * step_size) for i in range(points + 1)])
    return weights


def epsc_thresholds(licit_neg,
                    licit_pos,
                    spoof_neg,
                    spoof_pos,
                    points=100,
                    criteria='eer',
                    omega=None,
                    beta=None):
191 192 193 194
    """Calculates the optimal thresholds for EPSC, for a range of the weight
    parameter balancing between impostors and spoofing attacks, and for a range
    of the beta parameter balancing between real accesses and all the negatives
    (impostors and spoofing attacks)
195 196 197 198 199 200 201 202

  Keyword arguments:

    - licit_neg - numpy.array of scores for the negatives (licit scenario)
    - licit_pos - numpy.array of scores for the positives (licit scenario)
    - spoof_neg - numpy.array of scores for the negatives (spoof scenario)
    - spoof_pos - numpy.array of scores for the positives (spoof scenario)
    - points - number of points to calculate EPSC
203
    - criteria - the decision threshold criteria ('eer', 'wer' or 'min-hter')
204 205 206 207 208 209 210
    - omega - the value of the parameter omega, balancing between impostors and
    spoofing attacks. If None, it is going to span the full range [0,1].
    Otherwise, can be set to a fixed value or a list of values.
    - beta - the value of the parameter beta, balancing between real accesses
    and all the negatives (zero-effort impostors and spoofing attacks). If 
    None, it is going to span the full range [0,1]. Otherwise, can be set to a
    fixed value or a list of values.
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

  """
    step_size = 1 / float(points)

    if omega == None:
        omega = numpy.array([(i * step_size) for i in range(points + 1)])
    elif not isinstance(omega, list) and not isinstance(
            omega, tuple) and not isinstance(omega, numpy.ndarray):
        omega = numpy.array([omega])
    else:
        omega = numpy.array(omega)

    if beta == None:
        beta = numpy.array([(i * step_size) for i in range(points + 1)])
    elif not isinstance(beta, list) and not isinstance(
            beta, tuple) and not isinstance(beta, numpy.ndarray):
        beta = numpy.array([beta])
    else:
        beta = numpy.array(beta)

    thresholds = numpy.ndarray([beta.size, omega.size], 'float64')
    for bindex, b in enumerate(beta):
        thresholds[bindex, :] = numpy.array([
            weighted_negatives_threshold(
                licit_neg,
                licit_pos,
                spoof_neg,
                spoof_pos,
                w,
                b,
                criteria=criteria) for w in omega
        ], 'float64')

    return omega, beta, thresholds


def weighted_err(error_1, error_2, weight):
    """Calculates the weighted error rate between the two input parameters

  Keyword arguments:
251 252
    - error_1 - the first input error rate (FAR for zero effort impostors
    usually)
253 254 255 256 257 258 259 260 261 262 263 264 265
    - error_2 - the second input error rate (SFAR)
    - weight - the given weight
  """
    return (1 - weight) * error_1 + weight * error_2


def error_rates_at_weight(licit_neg,
                          licit_pos,
                          spoof_neg,
                          spoof_pos,
                          omega,
                          threshold,
                          beta=0.5):
266 267 268
    """Calculates several error rates: FRR, FAR (zero-effort impostors), SFAR,
    FAR_w, HTER_w for a given value of w. It returns the calculated threshold
    as a last argument
269 270 271 272 273 274 275 276

  Keyword arguments:

    - licit_neg - numpy.array of scores for the negatives (licit scenario)
    - licit_pos - numpy.array of scores for the positives (licit scenario)
    - spoof_neg - numpy.array of scores for the negatives (spoof scenario)
    - spoof_pos - numpy.array of scores for the positives (spoof scenario)
    - threshold - the given threshold
277 278 279 280 281
    - omega - the omega parameter balancing between impostors and spoofing
    attacks
    - beta - the weight parameter balancing between real accesses and all the

negative samples (impostors and spoofing attacks).
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
  """

    farfrr_licit = bob.measure.farfrr(
        licit_neg, licit_pos,
        threshold)  # calculate test frr @ threshold (licit scenario)
    farfrr_spoof = bob.measure.farfrr(
        spoof_neg, spoof_pos,
        threshold)  # calculate test frr @ threshold (spoof scenario)

    frr = farfrr_licit[
        1]  # we can take this value from farfrr_spoof as well, it doesn't matter
    far = farfrr_licit[0]
    sfar = farfrr_spoof[0]

    far_w = weighted_err(far, sfar, omega)
    hter_w = (far_w + frr) / 2
    wer_wb = weighted_err(frr, far_w, beta)

    return (frr, far, sfar, far_w, wer_wb, hter_w, threshold)


def epsc_error_rates(licit_neg, licit_pos, spoof_neg, spoof_pos, thresholds,
                     omega, beta):
305 306 307
    """Calculates several error rates: FAR_w and WER_wb for the given weights 
    (omega and beta) and thresholds (the thresholds need to be computed first 
    using the method: epsc_thresholds() before passing to this method)
308

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    Parameters
    ----------
    licit_neg : array_like
        array of scores for the negatives (licit scenario)
    licit_pos : array_like
        array of scores for the positives (licit scenario)
    spoof_neg : array_like
        array of scores for the negatives (spoof scenario)
    spoof_pos : array_like
        array of scores for the positives (spoof scenario)
    thresholds : array_like
        ndarray with threshold values
    omega : array_like
        array of the omega parameter balancing between impostors
        and spoofing attacks
    beta : array_like
        array of the beta parameter balancing between real accesses
        and all negatives (impostors and spoofing attacks)

    Returns
    -------
    far_w_errors: array_like
        FAR_w
    wer_wb_errors: array_like
        WER_wb
    """
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

    far_w_errors = numpy.ndarray((beta.size, omega.size), 'float64')
    wer_wb_errors = numpy.ndarray((beta.size, omega.size), 'float64')

    for bindex, b in enumerate(beta):
        errors = [
            error_rates_at_weight(licit_neg, licit_pos, spoof_neg, spoof_pos,
                                  w, thresholds[bindex, windex], b)
            for windex, w in enumerate(omega)
        ]
        far_w_errors[bindex, :] = [errors[i][3] for i in range(len(errors))]
        wer_wb_errors[bindex, :] = [errors[i][4] for i in range(len(errors))]

    return far_w_errors, wer_wb_errors


def all_error_rates(licit_neg, licit_pos, spoof_neg, spoof_pos, thresholds,
                    omega, beta):
353 354
    """Calculates several error rates: FAR_w and WER_wb for the given weights 
    (omega and beta) and thresholds (the thresholds need to be computed first 
355
    using the method: epsc_thresholds() before passing to this method)
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    Parameters
    ----------
    licit_neg : array_like
        array of scores for the negatives (licit scenario)
    licit_pos : array_like
        array of scores for the positives (licit scenario)
    spoof_neg : array_like
        array of scores for the negatives (spoof scenario)
    spoof_pos : array_like
        array of scores for the positives (spoof scenario)
    thresholds : array_like
        ndarray with threshold values
    omega : array_like
        array of the omega parameter balancing between impostors
        and spoofing attacks
    beta : array_like
        array of the beta parameter balancing between real accesses
        and all negatives (impostors and spoofing attacks)

    Returns
    -------
    far_w_errors: array_like
        FAR_w
    wer_wb_errors: array_like
        WER_wb
    """
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

    frr_errors = numpy.ndarray((beta.size, omega.size), 'float64')
    far_errors = numpy.ndarray((beta.size, omega.size), 'float64')
    sfar_errors = numpy.ndarray((beta.size, omega.size), 'float64')
    far_w_errors = numpy.ndarray((beta.size, omega.size), 'float64')
    wer_wb_errors = numpy.ndarray((beta.size, omega.size), 'float64')
    hter_wb_errors = numpy.ndarray((beta.size, omega.size), 'float64')

    for bindex, b in enumerate(beta):
        errors = [
            error_rates_at_weight(licit_neg, licit_pos, spoof_neg, spoof_pos,
                                  w, thresholds[bindex, windex], b)
            for windex, w in enumerate(omega)
        ]
        frr_errors[bindex, :] = [errors[i][0] for i in range(len(errors))]
        far_errors[bindex, :] = [errors[i][1] for i in range(len(errors))]
        sfar_errors[bindex, :] = [errors[i][2] for i in range(len(errors))]
        far_w_errors[bindex, :] = [errors[i][3] for i in range(len(errors))]
        wer_wb_errors[bindex, :] = [errors[i][4] for i in range(len(errors))]
        hter_wb_errors[bindex, :] = [errors[i][5] for i in range(len(errors))]

404 405
    return (frr_errors, far_errors, sfar_errors, far_w_errors, wer_wb_errors,
            hter_wb_errors)
406 407 408 409 410 411 412 413 414 415 416 417 418 419


def calc_aue(licit_neg,
             licit_pos,
             spoof_neg,
             spoof_pos,
             thresholds,
             omega,
             beta,
             l_bound=0,
             h_bound=1,
             var_param='omega'):
    """Calculates AUE of EPSC for the given thresholds and weights

420
    Keyword arguments:
421 422 423 424 425 426 427 428

    - licit_neg - numpy.array of scores for the negatives (licit scenario)
    - licit_pos - numpy.array of scores for the positives (licit scenario)
    - spoof_neg - numpy.array of scores for the negatives (spoof scenario)
    - spoof_pos - numpy.array of scores for the positives (spoof scenario)
    - l_bound - lower bound of integration
    - h_bound - higher bound of integration
    - points - number of points to calculate EPSC
429
    - criteria - the decision threshold criteria ('eer', 'wer' or 'min-hter')
430 431
    - var_param - name of the parameter which is varied on the abscissa 
    ('omega' or 'beta')
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
  """

    from scipy import integrate

    if var_param == 'omega':
        errors = all_error_rates(licit_neg, licit_pos, spoof_neg, spoof_pos,
                                 thresholds, omega, beta)
        weights = omega  # setting the weights to the varying parameter
    else:
        errors = all_error_rates(licit_neg, licit_pos, spoof_neg, spoof_pos,
                                 thresholds, omega, beta)
        weights = beta  # setting the weights to the varying parameter

    wer_errors = errors[4].reshape(1, errors[4].size)

    l_ind = numpy.where(weights >= l_bound)[0][0]
    h_ind = numpy.where(weights <= h_bound)[0][-1]
    aue = integrate.cumtrapz(wer_errors, weights)
    aue = numpy.append(
        [0], aue)  # for indexing purposes, aue is cumulative integration
    aue = aue[h_ind] - aue[l_ind]

    return aue