pad_figure.py 12.6 KB
Newer Older
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
1
"""Runs error analysis on score sets, outputs metrics and plots"""
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
2
3

import bob.measure.script.figure as measure_figure
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
4
5
from bob.measure.utils import get_fta_list
from bob.measure import farfrr, precision_recall, f_score
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
6
import bob.bio.base.script.figure as bio_figure
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
7
8
9
10
11
from .error_utils import calc_threshold, apcer_bpcer
import click
from tabulate import tabulate
import numpy as np

Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
12

Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
13
14
15
def _normalize_input_scores(input_score, input_name):
    pos, negs = input_score
    # convert scores to sorted numpy arrays and keep a copy of all negatives
16
17
18
19
    pos = np.ascontiguousarray(pos)
    pos.sort()
    all_negs = np.ascontiguousarray([s for neg in negs.values() for s in neg])
    all_negs.sort()
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
20
21
    # FTA is calculated on pos and all_negs so we remove nans from negs
    for k, v in negs.items():
22
23
        v = np.ascontiguousarray(v)
        v.sort()
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
24
25
26
27
        negs[k] = v[~np.isnan(v)]
    neg_list, pos_list, fta_list = get_fta_list([(all_negs, pos)])
    all_negs, pos, fta = neg_list[0], pos_list[0], fta_list[0]
    return input_name, pos, negs, all_negs, fta
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
28
29


30
class Metrics(bio_figure.Metrics):
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
31
32
33
34
35
36
37
38
39
    """Compute metrics from score files"""

    def __init__(self, ctx, scores, evaluation, func_load, names):
        if isinstance(names, str):
            names = names.split(",")
        super(Metrics, self).__init__(ctx, scores, evaluation, func_load, names)

    def get_thres(self, criterion, pos, negs, all_negs, far_value):
        return calc_threshold(
40
41
42
43
44
45
            criterion,
            pos=pos,
            negs=negs.values(),
            all_negs=all_negs,
            far_value=far_value,
            is_sorted=True,
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
46
47
48
49
        )

    def _numbers(self, threshold, pos, negs, all_negs, fta):
        pais = list(negs.keys())
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
50
        apcer_pais, apcer_ap, bpcer = apcer_bpcer(threshold, pos, *[negs[k] for k in pais])
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
51
        apcer_pais = {k: apcer_pais[i] for i, k in enumerate(pais)}
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
52
        acer = (apcer_ap + bpcer) / 2.0
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
        fpr, fnr = farfrr(all_negs, pos, threshold)
        hter = (fpr + fnr) / 2.0
        far = fpr * (1 - fta)
        frr = fta + fnr * (1 - fta)

        nn = all_negs.shape[0]  # number of attack
        fp = int(round(fpr * nn))  # number of false positives
        np = pos.shape[0]  # number of bonafide
        fn = int(round(fnr * np))  # number of false negatives

        # precision and recall
        precision, recall = precision_recall(all_negs, pos, threshold)

        # f_score
        f1_score = f_score(all_negs, pos, threshold, 1)
        metrics = dict(
            apcer_pais=apcer_pais,
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
70
            apcer_ap=apcer_ap,
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
            bpcer=bpcer,
            acer=acer,
            fta=fta,
            fpr=fpr,
            fnr=fnr,
            hter=hter,
            far=far,
            frr=frr,
            fp=fp,
            nn=nn,
            fn=fn,
            np=np,
            precision=precision,
            recall=recall,
            f1_score=f1_score,
        )
        return metrics
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
88

Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
89
90
91
    def _strings(self, metrics):
        n_dec = ".%df" % self._decimal
        for k, v in metrics.items():
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
92
            if k in ("precision", "recall", "f1_score"):
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
93
94
95
96
                metrics[k] = "%s" % format(v, n_dec)
            elif k in ("np", "nn", "fp", "fn"):
                continue
            elif k in ("fpr", "fnr"):
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
97
98
99
100
                if "fp" in metrics:
                    metrics[k] = "%s%% (%d/%d)" % (
                        format(100 * v, n_dec),
                        metrics["fp" if k == "fpr" else "fn"],
101
                        metrics["nn" if k == "fpr" else "np"],
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
102
103
104
                    )
                else:
                    metrics[k] = "%s%%" % format(100 * v, n_dec)
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
            elif k == "apcer_pais":
                metrics[k] = {
                    k1: "%s%%" % format(100 * v1, n_dec) for k1, v1 in v.items()
                }
            else:
                metrics[k] = "%s%%" % format(100 * v, n_dec)

        return metrics

    def _get_all_metrics(self, idx, input_scores, input_names):
        """ Compute all metrics for dev and eval scores"""
        for i, (score, name) in enumerate(zip(input_scores, input_names)):
            input_scores[i] = _normalize_input_scores(score, name)

        dev_file, dev_pos, dev_negs, dev_all_negs, dev_fta = input_scores[0]
        if self._eval:
            eval_file, eval_pos, eval_negs, eval_all_negs, eval_fta = input_scores[1]

        threshold = (
            self.get_thres(self._criterion, dev_pos, dev_negs, dev_all_negs, self._far)
            if self._thres is None
            else self._thres[idx]
        )

        title = self._legends[idx] if self._legends is not None else None
        if self._thres is None:
            far_str = ""
            if self._criterion == "far" and self._far is not None:
                far_str = str(self._far)
            click.echo(
                "[Min. criterion: %s %s] Threshold on Development set `%s`: %e"
                % (self._criterion.upper(), far_str, title or dev_file, threshold),
                file=self.log_file,
            )
        else:
            click.echo(
                "[Min. criterion: user provided] Threshold on "
                "Development set `%s`: %e" % (dev_file or title, threshold),
                file=self.log_file,
            )

        res = []
        res.append(
            self._strings(
                self._numbers(threshold, dev_pos, dev_negs, dev_all_negs, dev_fta)
            )
151
        )
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
152

Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
153
154
155
156
157
158
159
160
161
        if self._eval:
            # computes statistics for the eval set based on the threshold a priori
            res.append(
                self._strings(
                    self._numbers(
                        threshold, eval_pos, eval_negs, eval_all_negs, eval_fta
                    )
                )
            )
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
162
        else:
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
163
            res.append(None)
164

Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
165
        return res
166

Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
167
168
169
170
171
172
173
174
    def compute(self, idx, input_scores, input_names):
        """ Compute metrics for the given criteria"""
        title = self._legends[idx] if self._legends is not None else None
        all_metrics = self._get_all_metrics(idx, input_scores, input_names)
        headers = [" " or title, "Development"]
        if self._eval:
            headers.append("Evaluation")
        rows = []
175

Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        for name in self.names:
            if name == "apcer_pais":
                for k, v in all_metrics[0][name].items():
                    print_name = f"APCER ({k})"
                    rows += [[print_name, v]]
                    if self._eval:
                        rows[-1].append(all_metrics[1][name][k])
                continue
            print_name = name.upper()
            rows += [[print_name, all_metrics[0][name]]]
            if self._eval:
                rows[-1].append(all_metrics[1][name])

        click.echo(tabulate(rows, headers, self._tablefmt), file=self.log_file)


class MultiMetrics(Metrics):
    """Compute metrics from score files"""

    def __init__(self, ctx, scores, evaluation, func_load, names):
196
        super(MultiMetrics, self).__init__(
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
197
198
199
200
201
202
203
204
            ctx, scores, evaluation, func_load, names=names
        )
        self.rows = []
        self.headers = None
        self.pais = None

    def _compute_headers(self, pais):
        names = list(self.names)
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
205
206
        if "apcer_pais" in names:
            idx = names.index("apcer_pais")
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
207
208
209
210
211
212
            names = (
                [n.upper() for n in names[:idx]]
                + self.pais
                + [n.upper() for n in names[idx + 1 :]]
            )
        self.headers = ["Methods"] + names
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
213
        if self._eval and "hter" in self.names:
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
            self.headers.insert(1, "HTER (dev)")

    def _strings(self, metrics):
        formatted_metrics = dict()
        for name in self.names:
            if name == "apcer_pais":
                for pai in self.pais:
                    mean = metrics[pai].mean()
                    std = metrics[pai].std()
                    mean = super()._strings({pai: mean})[pai]
                    std = super()._strings({pai: std})[pai]
                    formatted_metrics[pai] = f"{mean} ({std})"
            else:
                mean = metrics[name].mean()
                std = metrics[name].std()
                mean = super()._strings({name: mean})[name]
                std = super()._strings({name: std})[name]
                formatted_metrics[name] = f"{mean} ({std})"

        return formatted_metrics

    def _structured_array(self, metrics):
        names = list(metrics[0].keys())
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
237
238
        if "apcer_pais" in names:
            idx = names.index("apcer_pais")
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
            pais = list(f"APCER ({pai})" for pai in metrics[0]["apcer_pais"].keys())
            names = names[:idx] + pais + names[idx + 1 :]
            self.pais = self.pais or pais
        formats = [float] * len(names)
        dtype = dict(names=names, formats=formats)
        array = []
        for each in metrics:
            array.append([])
            for k, v in each.items():
                if k == "apcer_pais":
                    array[-1].extend(list(v.values()))
                else:
                    array[-1].append(v)
        array = [tuple(a) for a in array]
        return np.array(array, dtype=dtype)

    def compute(self, idx, input_scores, input_names):
        """Computes the average of metrics over several protocols."""
        for i, (score, name) in enumerate(zip(input_scores, input_names)):
            input_scores[i] = _normalize_input_scores(score, name)

        step = 2 if self._eval else 1
        self._dev_metrics = []
        self._thresholds = []
        for scores in input_scores[::step]:
            name, pos, negs, all_negs, fta = scores
            threshold = (
                self.get_thres(self._criterion, pos, negs, all_negs, self._far)
                if self._thres is None
                else self._thres[idx]
            )
            self._thresholds.append(threshold)
            self._dev_metrics.append(self._numbers(threshold, pos, negs, all_negs, fta))
        self._dev_metrics = self._structured_array(self._dev_metrics)
273

Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        if self._eval:
            self._eval_metrics = []
            for i, scores in enumerate(input_scores[1::step]):
                name, pos, negs, all_negs, fta = scores
                threshold = self._thresholds[i]
                self._eval_metrics.append(
                    self._numbers(threshold, pos, negs, all_negs, fta)
                )
            self._eval_metrics = self._structured_array(self._eval_metrics)

        title = self._legends[idx] if self._legends is not None else name

        dev_metrics = self._strings(self._dev_metrics)

Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
288
        if self._eval and "hter" in dev_metrics:
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
289
            self.rows.append([title, dev_metrics["hter"]])
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
290
        elif not self._eval:
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
291
292
293
294
295
296
297
298
            row = [title]
            for name in self.names:
                if name == "apcer_pais":
                    for pai in self.pais:
                        row += [dev_metrics[pai]]
                else:
                    row += [dev_metrics[name]]
            self.rows.append(row)
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
299
300
        else:
            self.rows.append([title])
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

        if self._eval:
            eval_metrics = self._strings(self._eval_metrics)
            row = []
            for name in self.names:
                if name == "apcer_pais":
                    for pai in self.pais:
                        row += [eval_metrics[pai]]
                else:
                    row += [eval_metrics[name]]

            self.rows[-1].extend(row)

        # compute header based on found PAI names
        if self.headers is None:
            self._compute_headers(self.pais)

    def end_process(self):
        click.echo(
            tabulate(self.rows, self.headers, self._tablefmt), file=self.log_file
        )
        super(MultiMetrics, self).end_process()
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
323
324
325


class Roc(bio_figure.Roc):
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
326
    """ROC for PAD"""
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
327
328
329

    def __init__(self, ctx, scores, evaluation, func_load):
        super(Roc, self).__init__(ctx, scores, evaluation, func_load)
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
330
        self._x_label = ctx.meta.get("x_label") or "APCER"
331
        default_y_label = "1-BPCER" if self._tpr else "BPCER"
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
332
        self._y_label = ctx.meta.get("y_label") or default_y_label
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
333
334
335
336
337


class Det(bio_figure.Det):
    def __init__(self, ctx, scores, evaluation, func_load):
        super(Det, self).__init__(ctx, scores, evaluation, func_load)
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
338
339
        self._x_label = ctx.meta.get("x_label") or "APCER (%)"
        self._y_label = ctx.meta.get("y_label") or "BPCER (%)"
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
340
341
342


class Hist(measure_figure.Hist):
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
343
    """ Histograms for PAD """
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
344
345

    def _setup_hist(self, neg, pos):
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
346
347
        self._title_base = "PAD"
        self._density_hist(pos[0], n=0, label="Bona-fide", color="C1")
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
348
        self._density_hist(
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
349
350
351
352
353
354
            neg[0],
            n=1,
            label="Presentation attack",
            alpha=0.4,
            color="C7",
            hatch="\\\\",
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
355
        )