vuln_commands.py 14.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
"""The main entry for bob.pad and its(click-based) scripts.
"""

import os
import logging
import numpy
import click
import pkg_resources
from click_plugins import with_plugins
from click.types import FLOAT
from bob.measure.script import common_options
from bob.extension.scripts.click_helper import (verbosity_option,
                                                open_file_mode_option,
                                               bool_option)
from bob.core import random
from bob.io.base import create_directories_safe
from bob.bio.base.score import load
from . import figure

NUM_GENUINE_ACCESS = 5000
NUM_ZEIMPOSTORS = 5000
NUM_PA = 5000



@with_plugins(pkg_resources.iter_entry_points('bob.vuln.cli'))
@click.group()
def vuln():
  """Presentation Vulnerability related commands."""
  pass



def gen_score_distr(mean_gen, mean_zei, mean_pa, sigma_gen=1, sigma_zei=1,
                    sigma_pa=1):
  mt = random.mt19937()  # initialise the random number generator

  genuine_generator = random.normal(numpy.float32, mean_gen, sigma_gen)
  zei_generator = random.normal(numpy.float32, mean_zei, sigma_zei)
  pa_generator = random.normal(numpy.float32, mean_pa, sigma_pa)

  genuine_scores = [genuine_generator(mt) for i in range(NUM_GENUINE_ACCESS)]
  zei_scores = [zei_generator(mt) for i in range(NUM_ZEIMPOSTORS)]
  pa_scores = [pa_generator(mt) for i in range(NUM_PA)]

  return genuine_scores, zei_scores, pa_scores



def write_scores_to_file(neg, pos, filename, attack=False):
  """Writes score distributions into 4-column score files. For the format of
    the 4-column score files, please refer to Bob's documentation.

  Parameters
  ----------
  neg : array_like
      Scores for negative samples.
  pos : array_like
      Scores for positive samples.
  filename : str
      The path to write the score to.
  """
  create_directories_safe(os.path.dirname(filename))
  with open(filename, 'wt') as f:
      for i in pos:
          f.write('x x foo %f\n' % i)
      for i in neg:
          if attack:
              f.write('x attack foo %f\n' % i)
          else:
              f.write('x y foo %f\n' % i)



@click.command()
@click.argument('outdir')
@click.option('--mean-gen', default=10, type=FLOAT, show_default=True)
@click.option('--mean-zei', default=0, type=FLOAT, show_default=True)
@click.option('--mean-pa', default=5, type=FLOAT, show_default=True)
@verbosity_option()
def gen(outdir, mean_gen, mean_zei, mean_pa):
  """Generate random scores.
  Generates random scores for three types of verification attempts:
  genuine users, zero-effort impostors and spoofing attacks and writes them
  into 4-column score files for so called licit and spoof scenario. The
  scores are generated using Gaussian distribution whose mean is an input
  parameter. The generated scores can be used as hypothetical datasets.
  """
  # Generate the data
  genuine_dev, zei_dev, pa_dev = gen_score_distr(
      mean_gen, mean_zei, mean_pa)
  genuine_eval, zei_eval, pa_eval = gen_score_distr(
      mean_gen, mean_zei, mean_pa)

  # Write the data into files
  write_scores_to_file(genuine_dev, zei_dev,
                       os.path.join(outdir, 'licit', 'scores-dev'))
  write_scores_to_file(genuine_eval, zei_eval,
                       os.path.join(outdir, 'licit', 'scores-eval'))
  write_scores_to_file(genuine_dev, pa_dev,
                       os.path.join(outdir, 'spoof', 'scores-dev'),
                       attack=True)
  write_scores_to_file(genuine_eval, pa_eval,
                       os.path.join(outdir, 'spoof', 'scores-eval'),
                       attack=True)



@click.command()
@common_options.scores_argument(min_arg=2, force_eval=True, nargs=-1)
@common_options.output_plot_file_option(default_out='vuln_det.pdf')
@common_options.legends_option()
@common_options.no_legend_option()
@common_options.legend_loc_option(dflt='upper-right')
@common_options.title_option()
@common_options.const_layout_option()
@common_options.style_option()
@common_options.figsize_option()
@verbosity_option()
@common_options.axes_val_option(dflt='0.01,95,0.01,95')
@common_options.x_rotation_option(dflt=45)
@common_options.x_label_option()
@common_options.y_label_option()
@click.option('-c', '--criteria', default=None, show_default=True,
              help='Criteria for threshold selection',
              type=click.Choice(('eer', 'min-hter', 'bpcer20')))
@click.option('--real-data/--no-real-data', default=True, show_default=True,
              help='If False, will annotate the plots hypothetically, instead '
              'of with real data values of the calculated error rates.')
@click.pass_context
def det(ctx, scores, criteria, real_data, **kwargs):
  """Plot DET

  You need to provide 4 scores
  files for each PAD system in this order:

  \b
  * licit development scores
  * licit evaluation scores
  * spoof development scores
  * spoof evaluation scores

  Examples:
      $ bob pad det --no-spoof dev-scores eval-scores

      $ bob pad det {licit,spoof}/scores-{dev,eval}
  """
  process = figure.Det(ctx, scores, True, load.split, criteria, real_data,
                       False)
  process.run()



@click.command()
@common_options.scores_argument(min_arg=2, force_eval=True, nargs=-1)
@common_options.output_plot_file_option(default_out='vuln_epc.pdf')
@common_options.legends_option()
@common_options.no_legend_option()
@common_options.legend_loc_option()
@common_options.title_option()
@common_options.const_layout_option()
@common_options.x_label_option()
@common_options.y_label_option()
@common_options.figsize_option()
@common_options.style_option()
@common_options.bool_option(
    'iapmr', 'I', 'Whether to plot the IAPMR related lines or not.', True
)
@common_options.style_option()
@verbosity_option()
@click.pass_context
def epc(ctx, scores, **kwargs):
  """Plot EPC (expected performance curve):

  You need to provide 4 score
  files for each biometric system in this order:

  \b
  * licit development scores
  * licit evaluation scores
  * spoof development scores
  * spoof evaluation scores

  See :ref:`bob.pad.base.vulnerability` in the documentation for a guide on
  vulnerability analysis.

  Examples:
      $ bob pad epc dev-scores eval-scores

      $ bob pad epc -o my_epc.pdf dev-scores1 eval-scores1

      $ bob pad epc {licit,spoof}/scores-{dev,eval}
  """
  process = figure.Epc(ctx, scores, True, load.split)
  process.run()



@click.command()
@common_options.scores_argument(min_arg=2, force_eval=True, nargs=-1)
@common_options.output_plot_file_option(default_out='vuln_epsc.pdf')
@common_options.legends_option()
@common_options.no_legend_option()
@common_options.legend_loc_option()
@common_options.const_layout_option()
@common_options.x_label_option()
@common_options.y_label_option()
208
@common_options.figsize_option(dflt=None)
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
@common_options.style_option()
@common_options.bool_option(
    'wer', 'w', 'Whether to plot the WER related lines or not.', True
)
@common_options.bool_option(
    'three-d', 'D', 'If true, generate 3D plots', False
)
@common_options.bool_option(
    'iapmr', 'I', 'Whether to plot the IAPMR related lines or not.', False
)
@click.option('-c', '--criteria', default="eer", show_default=True,
              help='Criteria for threshold selection',
              type=click.Choice(('eer', 'min-hter', 'bpcer20')))
@click.option('-vp', '--var-param', default="omega", show_default=True,
              help='Name of the varying parameter',
              type=click.Choice(('omega', 'beta')))
@click.option('-fp', '--fixed-param', default=0.5, show_default=True,
              help='Value of the fixed parameter',
              type=click.FLOAT)
@verbosity_option()
@click.pass_context
def epsc(ctx, scores, criteria, var_param, fixed_param, three_d, **kwargs):
    """Plot EPSC (expected performance spoofing curve):

    You need to provide 4 score
    files for each biometric system in this order:

    \b
    * licit development scores
    * licit evaluation scores
    * spoof development scores
    * spoof evaluation scores

    See :ref:`bob.pad.base.vulnerability` in the documentation for a guide on
    vulnerability analysis.

    Note that when using 3D plots with option ``--three-d``, you cannot plot
    both WER and IAPMR on the same figure (which is possible in 2D).

    Examples:
        $ bob pad epsc -o my_epsc.pdf dev-scores1 eval-scores1

        $ bob pad epsc -D {licit,spoof}/scores-{dev,eval}
    """
    if three_d:
        if (ctx.meta['wer'] and ctx.meta['iapmr']):
            raise click.BadParameter('Cannot plot both WER and IAPMR in 3D')
        process = figure.Epsc3D(
            ctx, scores, True, load.split,
            criteria, var_param, fixed_param
        )
    else:
        process = figure.Epsc(
            ctx, scores, True, load.split,
            criteria, var_param, fixed_param
        )
    process.run()



@click.command()
@common_options.scores_argument(nargs=-1, min_arg=2)
@common_options.title_option()
@common_options.output_plot_file_option(default_out='vuln_hist.pdf')
@common_options.eval_option()
@common_options.n_bins_option()
@common_options.criterion_option()
@common_options.thresholds_option()
@common_options.print_filenames_option(dflt=False)
@bool_option(
    'iapmr-line', 'I', 'Whether to plot the IAPMR related lines or not.', True
)
@bool_option(
    'real-data', 'R',
    'If False, will annotate the plots hypothetically, instead '
    'of with real data values of the calculated error rates.', True
)
@common_options.legends_option()
287
@common_options.const_layout_option()
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
@common_options.figsize_option(dflt=None)
@common_options.subplot_option()
@common_options.legend_ncols_option()
@common_options.style_option()
@verbosity_option()
@click.pass_context
def hist(ctx, scores, evaluation, **kwargs):
  '''Vulnerability analysis distributions.

  Plots the histogram of score distributions. You need to provide 4 score
  files for each biometric system in this order:

  \b
  * licit development scores
  * licit evaluation scores
  * spoof development scores
  * spoof evaluation scores

  See :ref:`bob.pad.base.vulnerability` in the documentation for a guide on
  vulnerability analysis.

  You need to provide one or more development score file(s) for each
  experiment. You can also provide eval files along with dev files. If only
  dev-scores are used set the flag `--no-evaluation` is required in that
  case.

  By default, when eval-scores are given, only eval-scores histograms are
  displayed with threshold line
  computed from dev-scores. If you want to display dev-scores distributions
  as well, use ``--show-dev`` option.

  Examples:

      $ bob pad vuln_hist licit/scores-dev licit/scores-eval \
                          spoof/scores-dev spoof/scores-eval

      $ bob pad vuln_hist {licit,spoof}/scores-{dev,eval}
  '''
  process = figure.HistVuln(ctx, scores, evaluation, load.split)
  process.run()



@click.command(context_settings=dict(token_normalize_func=lambda x: x.lower()))
@common_options.scores_argument(min_arg=2, force_eval=True, nargs=-1)
@common_options.eval_option()
@common_options.table_option()
335
@common_options.criterion_option(lcriteria=['bpcer201', 'eer', 'min-hter'])
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
@common_options.thresholds_option()
@open_file_mode_option()
@common_options.output_log_metric_option()
@common_options.legends_option()
@verbosity_option()
@click.pass_context
def metrics(ctx, scores, **kwargs):
  """Generate table of metrics for vulnerability PAD

  You need to provide 2 or 4 scores
  files for each PAD system in this order:

  \b
  * licit development scores
  * licit evaluation scores
  * spoof development scores
  * spoof evaluation scores


  Examples:
      $ bob pad vuln_metrics {licit,spoof}/scores-{dev,eval}
  """
  process = figure.MetricsVuln(ctx, scores, True, load.split)
  process.run()



@click.command()
@common_options.scores_argument(min_arg=2, force_eval=True, nargs=-1)
@common_options.output_plot_file_option(default_out='fmr_iapmr.pdf')
@common_options.legends_option()
@common_options.no_legend_option()
@common_options.legend_loc_option()
@common_options.title_option()
@common_options.const_layout_option()
@common_options.style_option()
@common_options.figsize_option()
@verbosity_option()
@common_options.axes_val_option()
@common_options.x_rotation_option()
@common_options.x_label_option()
@common_options.y_label_option()
@common_options.semilogx_option()
@click.pass_context
def fmr_iapmr(ctx, scores, **kwargs):
    """Plot FMR vs IAPMR

    You need to provide 2 or 4 scores
    files for each PAD system in this order:

    \b
    * licit development scores
    * licit evaluation scores
    * spoof development scores (when ``--no-spoof`` is False (default))
    * spoof evaluation scores (when ``--no-spoof`` is False (default))


    Examples:
        $ bob pad fmr_iapmr --no-spoof dev-scores eval-scores

        $ bob pad fmr_iapmr {licit,spoof}/scores-{dev,eval}
    """
    process = figure.FmrIapmr(ctx, scores, True, load.split)
    process.run()



@click.command()
@common_options.scores_argument(min_arg=2, force_eval=True, nargs=-1)
@common_options.legends_option()
@common_options.sep_dev_eval_option()
@common_options.table_option()
@common_options.output_log_metric_option()
@common_options.output_plot_file_option(default_out='vuln_eval.pdf')
@common_options.points_curve_option()
@common_options.lines_at_option()
@common_options.const_layout_option()
413
@common_options.figsize_option(dflt=None)
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
@common_options.style_option()
@common_options.linestyles_option()
@verbosity_option()
@click.pass_context
def evaluate(ctx, scores, **kwargs):
  '''Runs error analysis on score sets for vulnerability studies

  \b
  1. Computes bob pad vuln_metrics
  2. Plots EPC, EPSC, vulnerability histograms, fmr vs IAPMR to a multi-page
     PDF file


  You need to provide 4 score files for each biometric system in this order:

  \b
  * licit development scores
  * licit evaluation scores
  * spoof development scores
  * spoof evaluation scores

  Examples:
      $ bob pad vuln -o my_epsc.pdf dev-scores1 eval-scores1

      $ bob pad vuln -D {licit,spoof}/scores-{dev,eval}
  '''
  # first time erase if existing file
  click.echo("Computing vuln metrics...")
  ctx.invoke(metrics, scores=scores, evaluation=True)
  if 'log' in ctx.meta and ctx.meta['log'] is not None:
      click.echo("[metrics] => %s" % ctx.meta['log'])

  # avoid closing pdf file before all figures are plotted
  ctx.meta['closef'] = False
  click.echo("Computing histograms...")
  ctx.meta['criterion'] = 'eer'  # no criterion passed in evaluate
  ctx.forward(hist)  # use class defaults plot settings
  click.echo("Computing DET...")
  ctx.forward(det)  # use class defaults plot settings
  click.echo("Computing EPC...")
  ctx.forward(epc)  # use class defaults plot settings
  click.echo("Computing EPSC...")
  ctx.forward(epsc)  # use class defaults plot settings
  click.echo("Computing FMR vs IAPMR...")
  ctx.meta['closef'] = True
  ctx.forward(fmr_iapmr)  # use class defaults plot settings
  click.echo("Vuln successfully completed!")
  click.echo("[plots] => %s" % (ctx.meta['output']))