diff --git a/doc/guide.rst b/doc/guide.rst index 986b4b5e49a014815f7089ae1b9e8deb4602d46d..bc88fca2924a41d07f2c596023def48d13e42fac 100644 --- a/doc/guide.rst +++ b/doc/guide.rst @@ -189,8 +189,7 @@ For each probe item, the scores for negative and positive comparisons are comput ... pos = numpy.random.normal(1, 1, 1) ... neg = numpy.random.normal(0, 1, 19) ... rr_scores.append((neg, pos)) - >>> bob.measure.recognition_rate(rr_scores, rank=1) - 0.3 + >>> rr = bob.measure.recognition_rate(rr_scores, rank=1) For open set identification, according to Li and Jain (2005) there are two different error measures defined. The first measure is the :py:func:`bob.measure.detection_identification_rate`, which counts the number of correctly classified in-gallery probe items. @@ -206,10 +205,8 @@ Both functions require that at least one probe item exists, which has no accordi ... pos = None ... neg = numpy.random.normal(-2, 1, 10) ... rr_scores.append((neg, pos)) - >>> bob.measure.detection_identification_rate(rr_scores, threshold = 0, rank=1) - 0.3 - >>> bob.measure.false_alarm_rate(rr_scores, threshold = 0) - 0.2 + >>> dir = bob.measure.detection_identification_rate(rr_scores, threshold = 0, rank=1) + >>> far = bob.measure.false_alarm_rate(rr_scores, threshold = 0) Plotting