load.py 8.72 KB
Newer Older
André Anjos's avatar
André Anjos committed
1
2
3
4
5
6
7
8
9
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# Andre Anjos <andre.anjos@idiap.ch>
# Mon 23 May 2011 16:23:05 CEST

"""A set of utilities to load score files with different formats.
"""

import numpy
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import tarfile
import os

def open_file(filename):
  """Opens the given score file for reading.
  Score files might be raw text files, or a tar-file including a single score file inside.

  Parameters:
    filename  The name of the score file to open. This file might be a raw text file or a (compressed) tar file containing a raw text file.

  Returns:
    A read-only file-like object as it would be returned by open().
  """
  if not os.path.isfile(filename):
    raise IOError("Score file '%s' does not exist." % filename)
  if not tarfile.is_tarfile(filename):
    return open(filename, 'rt')

  # open the tar file for reading
  tar = tarfile.open(filename, 'r')
  # get the first file in the tar file
  tar_info = tar.next()
  while tar_info is not None and not tar_info.isfile():
    tar_info = tar.next()
  # check that one file was found in the archive
  if tar_info is None:
    raise IOError("The given file is a .tar file, but it does not contain any file.")

  # open the file for reading
  return tar.extractfile(tar_info)

André Anjos's avatar
André Anjos committed
41
42
43
44
45
46

def four_column(filename):
  """Loads a score set from a single file to memory.

  Verifies that all fields are correctly placed and contain valid fields.

47
  Returns a python list of tuples containing the following fields:
André Anjos's avatar
André Anjos committed
48
49
50
51
52
53
54
55
56
57
58
59

    [0]
      claimed identity (string)
    [1]
      real identity (string)
    [2]
      test label (string)
    [3]
      score (float)
  """

  retval = []
60
61
  for i, l in enumerate(open_file(filename)):
    if isinstance(l, bytes): l = l.decode('utf-8')
André Anjos's avatar
André Anjos committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    s = l.strip()
    if len(s) == 0 or s[0] == '#': continue #empty or comment
    field = [k.strip() for k in s.split()]
    if len(field) < 4:
      raise SyntaxError('Line %d of file "%s" is invalid: %s' % (i, filename, l))
    try:
      score = float(field[3])
      t = (field[0], field[1], field[2], score)
      retval.append(t)
    except:
      raise SyntaxError('Cannot convert score to float at line %d of file "%s": %s' % (i, filename, l))

  return retval

def split_four_column(filename):
  """Loads a score set from a single file to memory and splits the scores
  between positives and negatives. The score file has to respect the 4 column
  format as defined in the method four_column().

  This method avoids loading and allocating memory for the strings present in
  the file. We only keep the scores.

  Returns a python tuple (negatives, positives). The values are 1-D blitz
  arrays of float64.
  """

  # read four column list
  scores_list = four_column(filename)

  # split in positives and negatives
  neg = []
  pos = []
  for (client_id, probe_id, _, score_str) in scores_list:
    try:
      score = float(score_str)
      if client_id == probe_id:
        pos.append(score)
      else:
        neg.append(score)
    except:
      raise SyntaxError('Cannot convert score "%s" to float' % score_str)

  return (numpy.array(neg, numpy.float64), numpy.array(pos, numpy.float64))

def cmc_four_column(filename):
  """Loads scores to compute CMC curves from a file in four column format.
108
109
110
111
112
113
  The four column file needs to be in the same format as described in the four_column function,
  and the "test label" (column 3) has to contain the test/probe file name.

  This function returns a list of tuples.
  For each probe file, the tuple consists of a list of negative scores and a list of positive scores.
  Usually, the list of positive scores should contain only one element, but more are allowed.
114

115
116
  The result of this function can directly be passed to, e.g., the bob.measure.cmc function.
  """
André Anjos's avatar
André Anjos committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
  # read four column list
  all_list = four_column(filename)
  # extract positives and negatives
  pos_dict = {}
  neg_dict = {}
  for (client_id, probe_id, probe_name, score_str) in all_list:
    try:
      score = float(score_str)
      # check in which dict we have to put the score
      if client_id == probe_id:
        correct_dict = pos_dict
      else:
        correct_dict = neg_dict
      # append score
      if probe_name in correct_dict:
        correct_dict[probe_name].append(score)
      else:
        correct_dict[probe_name] = [score]
    except:
      raise SyntaxError("Cannot convert score '%s' to float" % score_str)

  # convert to lists of tuples of ndarrays
  retval = []
  import logging
  logger = logging.getLogger('bob')
  for probe_name in sorted(pos_dict.keys()):
    if probe_name in neg_dict:
      retval.append((numpy.array(neg_dict[probe_name], numpy.float64), numpy.array(pos_dict[probe_name], numpy.float64)))
    else:
      logger.warn('For probe name "%s" there are only positive scores. This probe name is ignored.' % probe_name)
  # test if there are probes for which only negatives exist
  for probe_name in sorted(neg_dict.keys()):
    if not probe_name in pos_dict.keys():
       logger.warn('For probe name "%s" there are only negative scores. This probe name is ignored.' % probe_name)

  return retval

def five_column(filename):
  """Loads a score set from a single file to memory.

  Verifies that all fields are correctly placed and contain valid fields.

159
  Returns a python list of tuples containing the following fields:
André Anjos's avatar
André Anjos committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173

    [0]
      claimed identity (string)
    [1]
      model label (string)
    [2]
      real identity (string)
    [3]
      test label (string)
    [4]
      score (float)
  """

  retval = []
174
  for i, l in enumerate(open_file(filename)):
André Anjos's avatar
André Anjos committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    s = l.strip()
    if len(s) == 0 or s[0] == '#': continue #empty or comment
    field = [k.strip() for k in s.split()]
    if len(field) < 5:
      raise SyntaxError('Line %d of file "%s" is invalid: %s' % (i, filename, l))
    try:
      score = float(field[4])
      t = (field[0], field[1], field[2], field[3], score)
      retval.append(t)
    except:
      raise SyntaxError('Cannot convert score to float at line %d of file "%s": %s' % (i, filename, l))

  return retval

def split_five_column(filename):
  """Loads a score set from a single file to memory and splits the scores
  between positives and negatives. The score file has to respect the 5 column
  format as defined in the method five_column().

  This method avoids loading and allocating memory for the strings present in
  the file. We only keep the scores.

  Returns a python tuple (negatives, positives). The values are 1-D blitz
  arrays of float64.
  """

  # read five column list
  scores_list = five_column(filename)

  # split in positives and negatives
  neg = []
  pos = []
  for (client_id, _, probe_id, _, score_str) in scores_list:
    try:
      score = float(score_str)
      if client_id == probe_id:
        pos.append(score)
      else:
        neg.append(score)
    except:
      raise SyntaxError('Cannot convert score "%s" to float' % score_str)

  return (numpy.array(neg, numpy.float64), numpy.array(pos, numpy.float64))

def cmc_five_column(filename):
  """Loads scores to compute CMC curves from a file in five column format.
221
222
  The four column file needs to be in the same format as described in the five_column function,
  and the "test label" (column 4) has to contain the test/probe file name.
André Anjos's avatar
André Anjos committed
223

224
225
226
  This function returns a list of tuples.
  For each probe file, the tuple consists of a list of negative scores and a list of positive scores.
  Usually, the list of positive scores should contain only one element, but more are allowed.
227

228
  The result of this function can directly be passed to, e.g., the bob.measure.cmc function.
André Anjos's avatar
André Anjos committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
  """
  # read four column list
  all_list = five_column(filename)

  pos_dict = {}
  neg_dict = {}
  for (client_id, _, probe_id, probe_name, score_str) in all_list:
    try:
      score = float(score_str)
      # check in which dict we have to put the score
      if client_id == probe_id:
        correct_dict = pos_dict
      else:
        correct_dict = neg_dict
      # append score
      if probe_name in correct_dict:
        correct_dict[probe_name].append(score)
      else:
        correct_dict[probe_name] = [score]
    except:
      raise SyntaxError('Cannot convert score "%s" to float' % score_str)

  # convert to lists of tuples of ndarrays
  retval = []
  import logging
  logger = logging.getLogger('bob')
  for probe_name in sorted(pos_dict.keys()):
    if probe_name in neg_dict:
      retval.append((numpy.array(neg_dict[probe_name], numpy.float64), numpy.array(pos_dict[probe_name], numpy.float64)))
    else:
      logger.warn('For probe name "%s" there are only positive scores. This probe name is ignored.' % probe_name)
  # test if there are probes for which only negatives exist
  for probe_name in sorted(neg_dict.keys()):
    if not probe_name in pos_dict.keys():
       logger.warn('For probe name "%s" there are only negative scores. This probe name is ignored.' % probe_name)
  return retval