figure.py 23.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
'''Runs error analysis on score sets, outputs metrics and plots'''

from __future__ import division, print_function
from abc import ABCMeta, abstractmethod
import sys
import ntpath
import numpy
import click
import matplotlib
import matplotlib.pyplot as mpl
from matplotlib.backends.backend_pdf import PdfPages
from tabulate import tabulate
from .. import plot
from .. import utils

LINESTYLES = [
    (0, ()),                    #solid
    (0, (4, 4)),                #dashed
    (0, (1, 5)),                #dotted
    (0, (3, 5, 1, 5)),          #dashdotted
    (0, (3, 5, 1, 5, 1, 5)),    #dashdotdotted
    (0, (5, 1)),                #densely dashed
    (0, (1, 1)),                #densely dotted
    (0, (3, 1, 1, 1)),          #densely dashdotted
    (0, (3, 1, 1, 1, 1, 1)),    #densely dashdotdotted
    (0, (5, 10)),               #loosely dashed
    (0, (3, 10, 1, 10)),        #loosely dashdotted
    (0, (3, 10, 1, 10, 1, 10)), #loosely dashdotdotted
    (0, (1, 10))                #loosely dotted
]

class MeasureBase(object):
    """Base class for metrics and plots.
    This abstract class define the framework to plot or compute metrics from a
    list of (positive, negative) scores tuples.

    Attributes
    ----------

    _scores: :any:`list`:
        List of input files (e.g. dev-{1, 2, 3}, {dev,test}-scores1

    _ctx : :py:class:`dict`
        Click context dictionary.

    _test : :py:class:`bool`
        True if test data are used

    func_load:
        Function that is used to load the input files

    """
    __metaclass__ = ABCMeta #for python 2.7 compatibility
    def __init__(self, ctx, scores, test, func_load):
        """
        Parameters
        ----------

        ctx : :py:class:`dict`
            Click context dictionary.

        scores : :any:`list`:
            List of input files (e.g. dev-{1, 2, 3}, {dev,test}-scores1
            {dev,test}-scores2)
        test : :py:class:`bool`
            True if test data are used
        func_load : Function that is used to load the input files
        """
        self._scores = scores
        self._ctx = ctx
        self.func_load = func_load
        self.dev_names, self.test_names, self.dev_scores, self.test_scores = \
                self._load_files()
        self._test = test

    def run(self):
        """ Generate outputs (e.g. metrics, files, pdf plots).
        This function calls abstract methods
        :func:`~bob.measure.script.figure.MeasureBase.init_process` (before
        loop), :py:func:`~bob.measure.script.figure.MeasureBase.compute`
        (in the loop iterating through the different
        systems) and :py:func:`~bob.measure.script.figure.MeasureBase.end_process`
        (after the loop).
        """
        #init matplotlib, log files, ...
        self.init_process()
        #iterates through the different systems and feed `compute`
        #with the dev (and test) scores of each system
        for idx, (dev_score, dev_file) in enumerate(
                zip(self.dev_scores, self.dev_names)
        ):
            test_score = self.test_scores[idx] if self.test_scores is not None\
            else None
            test_file = None if self.test_names is None else self.test_names[idx]
            dev_neg, dev_pos, dev_fta, test_neg, test_pos, test_fta =\
                self._process_scores(dev_score, test_score)
            #does the main computations/plottings here
            self.compute(idx, dev_neg, dev_pos, dev_fta, dev_file,
                          test_neg, test_pos, test_fta, test_file)
        #setup final configuration, plotting properties, ...
        self.end_process()

    #protected functions that need to be overwritten
    def init_process(self):
        """ Called in :py:func:`~bob.measure.script.figure.MeasureBase`.run
        before iterating through the different sytems.
        Should reimplemented in derived classes"""
        pass

    #Main computations are done here in the subclasses
    @abstractmethod
    def compute(self, idx, dev_neg, dev_pos, dev_fta=None, dev_file=None,
                test_neg=None, test_pos=None, test_fta=None, test_file=None):
        """Compute metrics or plots from the inputs given by
        :py:func:`~bob.measure.script.figure.MeasureBase.run`.
        Should reimplemented in derived classes

        Parameters
        ----------

        idx : :obj:`int`
            index of the system

        dev_neg : :py:class:`numpy.ndarray`
            negative dev scores
        dev_pos : :py:class:`numpy.ndarray`
            positive dev scores
        dev_fta : :obj:`float`
            failure to acquire rate
        dev_file : str
            name of the dev file without extension
        test_neg : :py:class:`numpy.ndarray`
            negative test scores
        test_pos : :py:class:`numpy.ndarray`
            positive test scores
        test_fta : :obj:`float`
            failure to acquire rate for test scores
        test_file : str
            name of the test file without extension
        """
        pass

    #Things to do after the main iterative computations are done
    @abstractmethod
    def end_process(self):
        pass

    #common protected functions

    def _load_files(self):
        ''' Load the input files and returns

        Returns
        -------

            :any:`list`: A list of tuples, where each tuple contains the
            ``negative`` and ``positive`` scores for one probe of the database. Both
            ``negatives`` and ``positives`` can be either an 1D'''

        dev_paths = self._scores if 'dev-scores' not in self._ctx.meta else \
                self._ctx.meta['dev-scores']
        test_paths = None if 'test-scores' not in self._ctx.meta else \
                self._ctx.meta['test-scores']
        def _extract_file_names(filenames):
            if filenames is None:
                return None
            res = []
            for file_path in filenames:
                _, name = ntpath.split(file_path)
                res.append(name.split(".")[0])
            return res
        return (_extract_file_names(dev_paths), _extract_file_names(test_paths),
                self.func_load(dev_paths), self.func_load(test_paths))

    def _process_scores(self, dev_score, test_score):
        '''Process score files and return neg/pos/fta for test and dev'''
        dev_neg = dev_pos = dev_fta = test_neg = test_pos = test_fta = None
        if dev_score[0] is not None:
            dev_score, dev_fta = utils.get_fta(dev_score)
            dev_neg, dev_pos = dev_score
            if dev_neg is None:
                raise click.UsageError("While loading dev-score file")

        if self._test and test_score is not None and test_score[0] is not None:
            test_score, test_fta = utils.get_fta(test_score)
            test_neg, test_pos = test_score
            if test_neg is None:
                raise click.UsageError("While loading test-score file")

        return (dev_neg, dev_pos, dev_fta, test_neg, test_pos, test_fta)


class Metrics(MeasureBase):
    ''' Compute metrics from score files

    Attributes
    ----------

    _tablefmt: str
        Table format

    _criter: str
        Criterion to compute threshold, see :py:func:`bob.measure.utils.get_thres`

    _open_mode: str
        Open mode of the output file (e.g. `w`, `a+`)

    _thres: :obj:`float`
        If given, uses this threshold instead of computing it

    _log: str
        Path to output log file

    log_file: str
        output stream

    '''
    def __init__(self, ctx, scores, test, func_load):
        super(Metrics, self).__init__(ctx, scores, test, func_load)
        self._tablefmt = None if 'tablefmt' not in ctx.meta else\
                ctx.meta['tablefmt']
        self._criter = None if 'criter' not in ctx.meta else ctx.meta['criter']
        self._open_mode = None if 'open_mode' not in ctx.meta else\
                ctx.meta['open_mode']
        self._thres = None if 'thres' not in ctx.meta else ctx.meta['thres']
        self._log = None if 'log' not in ctx.meta else ctx.meta['log']
        self.log_file = sys.stdout
        if self._log is not None:
            self.log_file = open(self._log, self._open_mode)

    def compute(self, idx, dev_neg, dev_pos, dev_fta=None, dev_file=None,
232
                test_neg=None, test_pos=None, test_fta=None, test_file=None):
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
        ''' Compute metrics thresholds and tables (FAR, FMR, FMNR, HTER) for
        given system inputs'''
        threshold = utils.get_thres(self._criter, dev_neg, dev_pos) \
                if self._thres is None else self._thres
        if self._thres is None:
            click.echo("[Min. criterion: %s] Threshold on Development set `%s`: %e"\
                       % (self._criter.upper(), dev_file, threshold),
                       file=self.log_file)
        else:
            click.echo("[Min. criterion: user provider] Threshold on "
                       "Development set `%s`: %e"\
                       % (dev_file, threshold), file=self.log_file)


        from .. import farfrr
        dev_fmr, dev_fnmr = farfrr(dev_neg, dev_pos, threshold)
        dev_far = dev_fmr * (1 - dev_fta)
        dev_frr = dev_fta + dev_fnmr * (1 - dev_fta)
        dev_hter = (dev_far + dev_frr) / 2.0

        dev_ni = dev_neg.shape[0]  # number of impostors
        dev_fm = int(round(dev_fmr * dev_ni))  # number of false accepts
        dev_nc = dev_pos.shape[0]  # number of clients
        dev_fnm = int(round(dev_fnmr * dev_nc))  # number of false rejects

        dev_fmr_str = "%.3f%% (%d/%d)" % (100 * dev_fmr, dev_fm, dev_ni)
        dev_fnmr_str = "%.3f%% (%d/%d)" % (100 * dev_fnmr, dev_fnm, dev_nc)
        dev_far_str = "%.3f%%" % (100 * dev_far)
        dev_frr_str = "%.3f%%" % (100 * dev_frr)
        dev_hter_str = "%.3f%%" % (100 * dev_hter)
        headers = ['', 'Development %s' % dev_file]
        raws = [['FMR', dev_fmr_str],
                ['FNMR', dev_fnmr_str],
                ['FAR', dev_far_str],
                ['FRR', dev_frr_str],
                ['HTER', dev_hter_str]]

        if self._test and test_neg is not None:
            # computes statistics for the test set based on the threshold a priori
            test_fmr, test_fnmr = farfrr(test_neg, test_pos, threshold)
            test_far = test_fmr * (1 - test_fta)
            test_frr = test_fta + test_fnmr * (1 - test_fta)
            test_hter = (test_far + test_frr) / 2.0

            test_ni = test_neg.shape[0]  # number of impostors
            test_fm = int(round(test_fmr * test_ni))  # number of false accepts
            test_nc = test_pos.shape[0]  # number of clients
            test_fnm = int(round(test_fnmr * test_nc))  # number of false rejects

            test_fmr_str = "%.3f%% (%d/%d)" % (100 * test_fmr, test_fm, test_ni)
            test_fnmr_str = "%.3f%% (%d/%d)" % (100 * test_fnmr, test_fnm, test_nc)

            test_far_str = "%.3f%%" % (100 * test_far)
            test_frr_str = "%.3f%%" % (100 * test_frr)
            test_hter_str = "%.3f%%" % (100 * test_hter)

            headers.append('Test % s' % self.test_names[idx])
            raws[0].append(test_fmr_str)
            raws[1].append(test_fnmr_str)
            raws[2].append(test_far_str)
            raws[3].append(test_frr_str)
            raws[4].append(test_hter_str)

        click.echo(tabulate(raws, headers, self._tablefmt), file=self.log_file)

    def end_process(self):
        ''' Close log file if needed'''
        if self._log is not None:
            self.log_file.close()

class PlotBase(MeasureBase):
    ''' Base class for plots. Regroup several options and code
    shared by the different plots

    Attributes
    ----------

    _output: str
        Path to the output pdf file

    _points: :obj:`int`
        Number of points used to draw curves

    _titles: :any:`list`
        List of titles for each system (dev + (test) scores)

    _split: :obj:`bool`
        If False, dev and test curves will be printed on the some figure

    _min_x: :obj:`float`
        Minimum value for the X-axis

    _max_x: :obj:`float`
        Maximum value for the X-axis

    _min_y: :obj:`float`
        Minimum value for the Y-axis

    _max_y: :obj:`float`
        Maximum value for the Y-axis

    _x_rotation: :obj:`int`
        Rotation of the X axis labels

    _axisfontsize: :obj:`int`
        Axis font size
    '''
    def __init__(self, ctx, scores, test, func_load):
        super(PlotBase, self).__init__(ctx, scores, test, func_load)
        self._output = None if 'output' not in ctx.meta else ctx.meta['output']
        self._points = None if 'points' not in ctx.meta else ctx.meta['points']
        self._titles = None if 'titles' not in ctx.meta else ctx.meta['titles']
        self._split = None if 'split' not in ctx.meta else ctx.meta['split']
        self._min_x = None if 'min_x' not in ctx.meta else ctx.meta['min_x']
        self._min_y = None if 'min_y' not in ctx.meta else ctx.meta['min_y']
        self._max_x = None if 'max_x' not in ctx.meta else ctx.meta['max_x']
        self._max_y = None if 'max_y' not in ctx.meta else ctx.meta['max_y']
        self._x_rotation = None if 'x_rotation' not in ctx.meta else \
                ctx.meta['x_rotation']
        self._axisfontsize = None if 'fontsize' not in ctx.meta else \
                ctx.meta['fontsize']

        self._nb_figs = 2 if self._test and self._split else 1
        self._multi_plots = len(self.dev_scores) > 1
        self._colors = utils.get_colors(len(self.dev_scores))
        self._states = ['Development', 'Evaluation']
        self._title = ''
        self._x_label = 'FMR (%)'
        self._y_label = 'FNMR (%)'
        self._grid_color = 'silver'
        self._pdf_page = None
        self._end_setup_plot = True

    def init_process(self):
        ''' Open pdf and set axis font size if provided '''
        if not hasattr(matplotlib, 'backends'):
            matplotlib.use('pdf')

        self._pdf_page = self._ctx.meta['PdfPages'] if 'PdfPages'in \
        self._ctx.meta else PdfPages(self._output)

        mpl.figure(1)

        if self._axisfontsize is not None:
            mpl.rc('xtick', labelsize=self._axisfontsize)
            mpl.rc('ytick', labelsize=self._axisfontsize)

    def end_process(self):
381
        ''' Set title, legend, axis labels, grid colors, save figures and
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
        close pdf is needed '''
        #only for plots
        if self._end_setup_plot:
            for i in range(self._nb_figs):
                fig = mpl.figure(i + 1)
                title = self._title
                if not self._test:
                    title += (" (%s)" % self._states[0])
                if self._split:
                    title += (" (%s)" % self._states[i])
                mpl.title(title)
                mpl.xlabel(self._x_label)
                mpl.ylabel(self._y_label)
                mpl.grid(True, color=self._grid_color)
                mpl.legend()
397
                self._set_axis()
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
                #gives warning when applied with mpl
                fig.set_tight_layout(True)
                mpl.xticks(rotation=self._x_rotation)
                self._pdf_page.savefig(fig)

        #do not want to close PDF when running evaluate
        if 'PdfPages' in self._ctx.meta and \
           ('closef' not in self._ctx.meta or self._ctx.meta['closef']):
            self._pdf_page.close()


    #common protected functions

    def _label(self, base, name, idx):
        if self._titles is not None and len(self._titles) > idx:
            return self._titles[idx]
        if self._multi_plots:
            return base + (" %d (%s)" % (idx + 1, name))
        return base + (" (%s)" % name)

418
419
420
421
422
    def _set_axis(self):
        axis = [self._min_x, self._max_x, self._min_y, self._max_y]
        if None not in axis:
            mpl.axis(axis)

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
class Roc(PlotBase):
    ''' Handles the plotting of ROC

    Attributes
    ----------

    _semilogx: :obj:`bool`
        If true, X-axis will be semilog10
    '''
    def __init__(self, ctx, scores, test, func_load):
        super(Roc, self).__init__(ctx, scores, test, func_load)
        self._semilogx = None if 'semilogx' not in ctx.meta else\
        ctx.meta['semilogx']
        self._fmr_at = None if 'fmr_at' not in ctx.meta else\
        ctx.meta['fmr_at']
        self._title = 'ROC'
        self._x_label = 'FMR'
        self._y_label = ("1 - FNMR" if self._semilogx else "FNMR")

    def compute(self, idx, dev_neg, dev_pos, dev_fta=None, dev_file=None,
443
                test_neg=None, test_pos=None, test_fta=None, test_file=None):
444
445
        ''' Plot ROC for dev and eval data using
        :py:func:`bob.measure.plot.roc`'''
446
        mpl.figure(1)
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
        if self._test:
            linestyle = '-' if not self._split else LINESTYLES[idx % 14]
            plot.roc(
                dev_neg, dev_pos, self._points, self._semilogx,
                color=self._colors[idx], linestyle=linestyle,
                label=self._label('development', dev_file, idx)
            )
            linestyle = '--'
            if self._split:
                mpl.figure(2)
                linestyle = LINESTYLES[idx % 14]

            plot.roc(
                test_neg, test_pos, self._points, self._semilogx,
                color=self._colors[idx], linestyle=linestyle,
                label=self._label('test', test_file, idx)
            )
            if self._fmr_at is not None:
                from .. import farfrr
                test_fmr, test_fnmr = farfrr(test_neg, test_pos, self._fmr_at)
                if self._semilogx:
                    test_fnmr = 1 - test_fnmr
                mpl.scatter(test_fmr, test_fnmr, c=self._colors[idx], s=30)
        else:
            plot.roc(
                dev_neg, dev_pos, self._points, self._semilogx,
                color=self._colors[idx], linestyle=LINESTYLES[idx % 14],
                label=self._label('development', dev_file, idx)
            )

    def end_process(self):
        ''' Draw vertical line on the dev plot at the given fmr and print the
        corresponding points on the test plot for all the systems '''
        #draw vertical lines
        if self._fmr_at is not None:
            mpl.figure(1)
            mpl.plot([self._fmr_at, self._fmr_at], [0., 1.], "--", color='black')
        super(Roc, self).end_process()

class Det(PlotBase):
    ''' Handles the plotting of DET '''
    def __init__(self, ctx, scores, test, func_load):
        super(Det, self).__init__(ctx, scores, test, func_load)
        self._title = 'DET'

    def compute(self, idx, dev_neg, dev_pos, dev_fta=None, dev_file=None,
493
                test_neg=None, test_pos=None, test_fta=None, test_file=None):
494
495
        ''' Plot DET for dev and eval data using
        :py:func:`bob.measure.plot.det`'''
496
        mpl.figure(1)
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
        if self._test and test_neg is not None:
            linestyle = '-' if not self._split else LINESTYLES[idx % 14]
            plot.det(
                dev_neg, dev_pos, self._points, color=self._colors[idx],
                linestyle=linestyle, axisfontsize=self._axisfontsize,
                label=self._label('development', dev_file, idx,)
            )
            if self._split:
                mpl.figure(2)
            linestyle = '--' if not self._split else LINESTYLES[idx % 14]
            plot.det(
                test_neg, test_pos, self._points, color=self._colors[idx],
                linestyle=linestyle, axisfontsize=self._axisfontsize,
                label=self._label('test', test_file, idx)
            )
        else:
            plot.det(
                dev_neg, dev_pos, self._points, color=self._colors[idx],
                linestyle=LINESTYLES[idx % 14], axisfontsize=self._axisfontsize,
                label=self._label('development', dev_file, idx)
            )

519
520
521
522
    def _set_axis(self):
        axis = [self._min_x, self._max_x, self._min_y, self._max_y]
        if None not in axis:
            plot.det_axis(axis)
523
524
525
526
527
528
529
530
531
532
533
534
535

class Epc(PlotBase):
    ''' Handles the plotting of EPC '''
    def __init__(self, ctx, scores, test, func_load):
        super(Epc, self).__init__(ctx, scores, test, func_load)
        if 'dev-scores' not in self._ctx.meta or 'test-scores' not in self._ctx.meta:
            raise click.UsageError("EPC requires dev and test score files")
        self._title = 'EPC'
        self._x_label = 'Cost'
        self._y_label = 'Min. HTER (%)'
        self._test = True #always test data with EPC

    def compute(self, idx, dev_neg, dev_pos, dev_fta=None, dev_file=None,
536
                test_neg=None, test_pos=None, test_fta=None, test_file=None):
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
        ''' Plot EPC using
        :py:func:`bob.measure.plot.epc`'''
        plot.epc(
            dev_neg, dev_pos, test_neg, test_pos, self._points,
            color=self._colors[idx], linestyle=LINESTYLES[idx % 14],
            label=self._label('curve', dev_file + "_" + test_file, idx)
        )

class Hist(PlotBase):
    ''' Handles the plotting of score histograms 

    Attributes
    ----------

    _nbins: :obj:`int`, str
    Number of bins. Default: `auto`

    _thres: :obj:`float`
        If given, this threshold will be used in the plots

    _criter: str
        Criterion to compute threshold (eer or hter)
    '''
    def __init__(self, ctx, scores, test, func_load):
        super(Hist, self).__init__(ctx, scores, test, func_load)
        self._nbins = None if 'nbins' not in ctx.meta else ctx.meta['nbins']
        self._thres = None if 'thres' not in ctx.meta else ctx.meta['thres']
        self._criter = None if 'criter' not in ctx.meta else ctx.meta['criter']
        self._y_label = 'Dev. Scores \n (normalized)' if self._test else \
                'Normalized Count'
        self._x_label = 'Score values' if not self._test else ''
        self._end_setup_plot = False

    def compute(self, idx, dev_neg, dev_pos, dev_fta=None, dev_file=None,
571
                test_neg=None, test_pos=None, test_fta=None, test_file=None):
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
        ''' Draw histograms of negative and positive scores.'''
        threshold = utils.get_thres(self._criter, dev_neg, dev_pos) \
                if self._thres is None else self._thres

        fig = mpl.figure()
        if test_neg is not None:
            mpl.subplot(2, 1, 1)
            all_scores = numpy.hstack((dev_neg, test_neg, dev_pos, test_pos))
        else:
            all_scores = numpy.hstack((dev_neg, dev_pos))

        score_range = all_scores.min(), all_scores.max()

        def _setup_hist(neg, pos, xlim, thres, y_label=None):
            mpl.hist(neg, label='Positives', normed=True, color='red',
                     alpha=0.5, bins=self._nbins)
            mpl.hist(pos, label='Negatives', normed=True, color='blue',
                     alpha=0.5, bins=self._nbins)
            mpl.xlim(*xlim)
            _, _, ymax, ymin = mpl.axis()
            mpl.vlines(
                thres, ymin, ymax, color='black',
                label=('' if self._criter is None else self._criter.upper()),
                linestyle='dashed'
            )
            mpl.grid(True, alpha=0.5)
            mpl.ylabel(self._y_label if y_label is None else y_label)
            mpl.xlabel(self._x_label)

        title = dev_file + (" / %s" % test_file if self._test else "")
        mpl.title('Scores  (%s)' % title)
        _setup_hist(dev_neg, dev_pos, score_range, threshold)
        if test_neg is not None:
            ax = mpl.gca()
            ax.axes.get_xaxis().set_ticklabels([])
            mpl.legend(loc='upper center', ncol=3, bbox_to_anchor=(0.5, -0.01),
                       fontsize=10)
        else:
            mpl.legend(loc='best', fancybox=True, framealpha=0.5)

        if test_neg is not None:
            mpl.subplot(2, 1, 2)
            _setup_hist(
                test_neg, test_pos, score_range, threshold,
                y_label='Test Scores \n (normalized)'
            )
        fig.set_tight_layout(True)
        self._pdf_page.savefig(fig)