figure.py 23.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
'''Runs error analysis on score sets, outputs metrics and plots'''

from __future__ import division, print_function
from abc import ABCMeta, abstractmethod
import sys
import ntpath
import numpy
import click
import matplotlib
import matplotlib.pyplot as mpl
from matplotlib.backends.backend_pdf import PdfPages
from tabulate import tabulate
from .. import plot
from .. import utils

LINESTYLES = [
    (0, ()),                    #solid
    (0, (4, 4)),                #dashed
    (0, (1, 5)),                #dotted
    (0, (3, 5, 1, 5)),          #dashdotted
    (0, (3, 5, 1, 5, 1, 5)),    #dashdotdotted
    (0, (5, 1)),                #densely dashed
    (0, (1, 1)),                #densely dotted
    (0, (3, 1, 1, 1)),          #densely dashdotted
    (0, (3, 1, 1, 1, 1, 1)),    #densely dashdotdotted
    (0, (5, 10)),               #loosely dashed
    (0, (3, 10, 1, 10)),        #loosely dashdotted
    (0, (3, 10, 1, 10, 1, 10)), #loosely dashdotdotted
    (0, (1, 10))                #loosely dotted
]

class MeasureBase(object):
    """Base class for metrics and plots.
    This abstract class define the framework to plot or compute metrics from a
    list of (positive, negative) scores tuples.

    Attributes
    ----------

    _scores: :any:`list`:
        List of input files (e.g. dev-{1, 2, 3}, {dev,test}-scores1

    _ctx : :py:class:`dict`
        Click context dictionary.

    _test : :py:class:`bool`
        True if test data are used

    func_load:
        Function that is used to load the input files

    """
    __metaclass__ = ABCMeta #for python 2.7 compatibility
    def __init__(self, ctx, scores, test, func_load):
        """
        Parameters
        ----------

        ctx : :py:class:`dict`
            Click context dictionary.

        scores : :any:`list`:
            List of input files (e.g. dev-{1, 2, 3}, {dev,test}-scores1
            {dev,test}-scores2)
        test : :py:class:`bool`
            True if test data are used
        func_load : Function that is used to load the input files
        """
        self._scores = scores
        self._ctx = ctx
        self.func_load = func_load
        self.dev_names, self.test_names, self.dev_scores, self.test_scores = \
                self._load_files()
        self._test = test

    def run(self):
        """ Generate outputs (e.g. metrics, files, pdf plots).
        This function calls abstract methods
        :func:`~bob.measure.script.figure.MeasureBase.init_process` (before
        loop), :py:func:`~bob.measure.script.figure.MeasureBase.compute`
        (in the loop iterating through the different
        systems) and :py:func:`~bob.measure.script.figure.MeasureBase.end_process`
        (after the loop).
        """
        #init matplotlib, log files, ...
        self.init_process()
        #iterates through the different systems and feed `compute`
        #with the dev (and test) scores of each system
        for idx, (dev_score, dev_file) in enumerate(
                zip(self.dev_scores, self.dev_names)
        ):
            test_score = self.test_scores[idx] if self.test_scores is not None\
            else None
            test_file = None if self.test_names is None else self.test_names[idx]
            dev_neg, dev_pos, dev_fta, test_neg, test_pos, test_fta =\
                self._process_scores(dev_score, test_score)
            #does the main computations/plottings here
            self.compute(idx, dev_neg, dev_pos, dev_fta, dev_file,
                          test_neg, test_pos, test_fta, test_file)
        #setup final configuration, plotting properties, ...
        self.end_process()

    #protected functions that need to be overwritten
    def init_process(self):
        """ Called in :py:func:`~bob.measure.script.figure.MeasureBase`.run
        before iterating through the different sytems.
        Should reimplemented in derived classes"""
        pass

    #Main computations are done here in the subclasses
    @abstractmethod
    def compute(self, idx, dev_neg, dev_pos, dev_fta=None, dev_file=None,
                test_neg=None, test_pos=None, test_fta=None, test_file=None):
        """Compute metrics or plots from the inputs given by
        :py:func:`~bob.measure.script.figure.MeasureBase.run`.
        Should reimplemented in derived classes

        Parameters
        ----------

        idx : :obj:`int`
            index of the system

        dev_neg : :py:class:`numpy.ndarray`
            negative dev scores
        dev_pos : :py:class:`numpy.ndarray`
            positive dev scores
        dev_fta : :obj:`float`
            failure to acquire rate
        dev_file : str
            name of the dev file without extension
        test_neg : :py:class:`numpy.ndarray`
            negative test scores
        test_pos : :py:class:`numpy.ndarray`
            positive test scores
        test_fta : :obj:`float`
            failure to acquire rate for test scores
        test_file : str
            name of the test file without extension
        """
        pass

    #Things to do after the main iterative computations are done
    @abstractmethod
    def end_process(self):
        pass

    #common protected functions

    def _load_files(self):
        ''' Load the input files and returns

        Returns
        -------

            :any:`list`: A list of tuples, where each tuple contains the
            ``negative`` and ``positive`` scores for one probe of the database. Both
            ``negatives`` and ``positives`` can be either an 1D'''

        dev_paths = self._scores if 'dev-scores' not in self._ctx.meta else \
                self._ctx.meta['dev-scores']
        test_paths = None if 'test-scores' not in self._ctx.meta else \
                self._ctx.meta['test-scores']
        def _extract_file_names(filenames):
            if filenames is None:
                return None
            res = []
            for file_path in filenames:
                _, name = ntpath.split(file_path)
                res.append(name.split(".")[0])
            return res
        return (_extract_file_names(dev_paths), _extract_file_names(test_paths),
                self.func_load(dev_paths), self.func_load(test_paths))

    def _process_scores(self, dev_score, test_score):
        '''Process score files and return neg/pos/fta for test and dev'''
        dev_neg = dev_pos = dev_fta = test_neg = test_pos = test_fta = None
        if dev_score[0] is not None:
            dev_score, dev_fta = utils.get_fta(dev_score)
            dev_neg, dev_pos = dev_score
            if dev_neg is None:
                raise click.UsageError("While loading dev-score file")

        if self._test and test_score is not None and test_score[0] is not None:
            test_score, test_fta = utils.get_fta(test_score)
            test_neg, test_pos = test_score
            if test_neg is None:
                raise click.UsageError("While loading test-score file")

        return (dev_neg, dev_pos, dev_fta, test_neg, test_pos, test_fta)


class Metrics(MeasureBase):
    ''' Compute metrics from score files

    Attributes
    ----------

    _tablefmt: str
        Table format

    _criter: str
        Criterion to compute threshold, see :py:func:`bob.measure.utils.get_thres`

    _open_mode: str
        Open mode of the output file (e.g. `w`, `a+`)

    _thres: :obj:`float`
        If given, uses this threshold instead of computing it

    _log: str
        Path to output log file

    log_file: str
        output stream

    '''
    def __init__(self, ctx, scores, test, func_load):
        super(Metrics, self).__init__(ctx, scores, test, func_load)
        self._tablefmt = None if 'tablefmt' not in ctx.meta else\
                ctx.meta['tablefmt']
        self._criter = None if 'criter' not in ctx.meta else ctx.meta['criter']
        self._open_mode = None if 'open_mode' not in ctx.meta else\
                ctx.meta['open_mode']
        self._thres = None if 'thres' not in ctx.meta else ctx.meta['thres']
        self._log = None if 'log' not in ctx.meta else ctx.meta['log']
        self.log_file = sys.stdout
        if self._log is not None:
            self.log_file = open(self._log, self._open_mode)

    def compute(self, idx, dev_neg, dev_pos, dev_fta=None, dev_file=None,
                 test_neg=None, test_pos=None, test_fta=None, test_file=None):
        ''' Compute metrics thresholds and tables (FAR, FMR, FMNR, HTER) for
        given system inputs'''
        threshold = utils.get_thres(self._criter, dev_neg, dev_pos) \
                if self._thres is None else self._thres
        if self._thres is None:
            click.echo("[Min. criterion: %s] Threshold on Development set `%s`: %e"\
                       % (self._criter.upper(), dev_file, threshold),
                       file=self.log_file)
        else:
            click.echo("[Min. criterion: user provider] Threshold on "
                       "Development set `%s`: %e"\
                       % (dev_file, threshold), file=self.log_file)


        from .. import farfrr
        dev_fmr, dev_fnmr = farfrr(dev_neg, dev_pos, threshold)
        dev_far = dev_fmr * (1 - dev_fta)
        dev_frr = dev_fta + dev_fnmr * (1 - dev_fta)
        dev_hter = (dev_far + dev_frr) / 2.0

        dev_ni = dev_neg.shape[0]  # number of impostors
        dev_fm = int(round(dev_fmr * dev_ni))  # number of false accepts
        dev_nc = dev_pos.shape[0]  # number of clients
        dev_fnm = int(round(dev_fnmr * dev_nc))  # number of false rejects

        dev_fmr_str = "%.3f%% (%d/%d)" % (100 * dev_fmr, dev_fm, dev_ni)
        dev_fnmr_str = "%.3f%% (%d/%d)" % (100 * dev_fnmr, dev_fnm, dev_nc)
        dev_far_str = "%.3f%%" % (100 * dev_far)
        dev_frr_str = "%.3f%%" % (100 * dev_frr)
        dev_hter_str = "%.3f%%" % (100 * dev_hter)
        headers = ['', 'Development %s' % dev_file]
        raws = [['FMR', dev_fmr_str],
                ['FNMR', dev_fnmr_str],
                ['FAR', dev_far_str],
                ['FRR', dev_frr_str],
                ['HTER', dev_hter_str]]

        if self._test and test_neg is not None:
            # computes statistics for the test set based on the threshold a priori
            test_fmr, test_fnmr = farfrr(test_neg, test_pos, threshold)
            test_far = test_fmr * (1 - test_fta)
            test_frr = test_fta + test_fnmr * (1 - test_fta)
            test_hter = (test_far + test_frr) / 2.0

            test_ni = test_neg.shape[0]  # number of impostors
            test_fm = int(round(test_fmr * test_ni))  # number of false accepts
            test_nc = test_pos.shape[0]  # number of clients
            test_fnm = int(round(test_fnmr * test_nc))  # number of false rejects

            test_fmr_str = "%.3f%% (%d/%d)" % (100 * test_fmr, test_fm, test_ni)
            test_fnmr_str = "%.3f%% (%d/%d)" % (100 * test_fnmr, test_fnm, test_nc)

            test_far_str = "%.3f%%" % (100 * test_far)
            test_frr_str = "%.3f%%" % (100 * test_frr)
            test_hter_str = "%.3f%%" % (100 * test_hter)

            headers.append('Test % s' % self.test_names[idx])
            raws[0].append(test_fmr_str)
            raws[1].append(test_fnmr_str)
            raws[2].append(test_far_str)
            raws[3].append(test_frr_str)
            raws[4].append(test_hter_str)

        click.echo(tabulate(raws, headers, self._tablefmt), file=self.log_file)

    def end_process(self):
        ''' Close log file if needed'''
        if self._log is not None:
            self.log_file.close()

class PlotBase(MeasureBase):
    ''' Base class for plots. Regroup several options and code
    shared by the different plots

    Attributes
    ----------

    _output: str
        Path to the output pdf file

    _points: :obj:`int`
        Number of points used to draw curves

    _titles: :any:`list`
        List of titles for each system (dev + (test) scores)

    _split: :obj:`bool`
        If False, dev and test curves will be printed on the some figure

    _min_x: :obj:`float`
        Minimum value for the X-axis

    _max_x: :obj:`float`
        Maximum value for the X-axis

    _min_y: :obj:`float`
        Minimum value for the Y-axis

    _max_y: :obj:`float`
        Maximum value for the Y-axis

    _x_rotation: :obj:`int`
        Rotation of the X axis labels

    _axisfontsize: :obj:`int`
        Axis font size
    '''
    def __init__(self, ctx, scores, test, func_load):
        super(PlotBase, self).__init__(ctx, scores, test, func_load)
        self._output = None if 'output' not in ctx.meta else ctx.meta['output']
        self._points = None if 'points' not in ctx.meta else ctx.meta['points']
        self._titles = None if 'titles' not in ctx.meta else ctx.meta['titles']
        self._split = None if 'split' not in ctx.meta else ctx.meta['split']
        self._min_x = None if 'min_x' not in ctx.meta else ctx.meta['min_x']
        self._min_y = None if 'min_y' not in ctx.meta else ctx.meta['min_y']
        self._max_x = None if 'max_x' not in ctx.meta else ctx.meta['max_x']
        self._max_y = None if 'max_y' not in ctx.meta else ctx.meta['max_y']
        self._x_rotation = None if 'x_rotation' not in ctx.meta else \
                ctx.meta['x_rotation']
        self._axisfontsize = None if 'fontsize' not in ctx.meta else \
                ctx.meta['fontsize']

        self._nb_figs = 2 if self._test and self._split else 1
        self._multi_plots = len(self.dev_scores) > 1
        self._colors = utils.get_colors(len(self.dev_scores))
        self._states = ['Development', 'Evaluation']
        self._title = ''
        self._x_label = 'FMR (%)'
        self._y_label = 'FNMR (%)'
        self._grid_color = 'silver'
        self._pdf_page = None
        self._end_setup_plot = True

    def init_process(self):
        ''' Open pdf and set axis font size if provided '''
        if not hasattr(matplotlib, 'backends'):
            matplotlib.use('pdf')

        self._pdf_page = self._ctx.meta['PdfPages'] if 'PdfPages'in \
        self._ctx.meta else PdfPages(self._output)

        mpl.figure(1)

        if self._axisfontsize is not None:
            mpl.rc('xtick', labelsize=self._axisfontsize)
            mpl.rc('ytick', labelsize=self._axisfontsize)

    def end_process(self):
        ''' Set title, legend, axiss labels, grid colors, save figures and
        close pdf is needed '''
        #only for plots
        if self._end_setup_plot:
            for i in range(self._nb_figs):
                fig = mpl.figure(i + 1)
                title = self._title
                if not self._test:
                    title += (" (%s)" % self._states[0])
                if self._split:
                    title += (" (%s)" % self._states[i])
                mpl.title(title)
                mpl.xlabel(self._x_label)
                mpl.ylabel(self._y_label)
                mpl.grid(True, color=self._grid_color)
                mpl.legend()
                #gives warning when applied with mpl
                fig.set_tight_layout(True)
                mpl.xticks(rotation=self._x_rotation)
                self._pdf_page.savefig(fig)

        #do not want to close PDF when running evaluate
        if 'PdfPages' in self._ctx.meta and \
           ('closef' not in self._ctx.meta or self._ctx.meta['closef']):
            self._pdf_page.close()


    #common protected functions

    def _label(self, base, name, idx):
        if self._titles is not None and len(self._titles) > idx:
            return self._titles[idx]
        if self._multi_plots:
            return base + (" %d (%s)" % (idx + 1, name))
        return base + (" (%s)" % name)

class Roc(PlotBase):
    ''' Handles the plotting of ROC

    Attributes
    ----------

    _semilogx: :obj:`bool`
        If true, X-axis will be semilog10
    '''
    def __init__(self, ctx, scores, test, func_load):
        super(Roc, self).__init__(ctx, scores, test, func_load)
        self._semilogx = None if 'semilogx' not in ctx.meta else\
        ctx.meta['semilogx']
        self._fmr_at = None if 'fmr_at' not in ctx.meta else\
        ctx.meta['fmr_at']
        self._title = 'ROC'
        self._x_label = 'FMR'
        self._y_label = ("1 - FNMR" if self._semilogx else "FNMR")

    def compute(self, idx, dev_neg, dev_pos, dev_fta=None, dev_file=None,
                 test_neg=None, test_pos=None, test_fta=None, test_file=None):
        ''' Plot ROC for dev and eval data using
        :py:func:`bob.measure.plot.roc`'''
        if self._test:
            linestyle = '-' if not self._split else LINESTYLES[idx % 14]
            plot.roc(
                dev_neg, dev_pos, self._points, self._semilogx,
                color=self._colors[idx], linestyle=linestyle,
                label=self._label('development', dev_file, idx)
            )
            linestyle = '--'
            if self._split:
                mpl.figure(2)
                linestyle = LINESTYLES[idx % 14]

            plot.roc(
                test_neg, test_pos, self._points, self._semilogx,
                color=self._colors[idx], linestyle=linestyle,
                label=self._label('test', test_file, idx)
            )
            if self._fmr_at is not None:
                from .. import farfrr
                test_fmr, test_fnmr = farfrr(test_neg, test_pos, self._fmr_at)
                if self._semilogx:
                    test_fnmr = 1 - test_fnmr
                mpl.scatter(test_fmr, test_fnmr, c=self._colors[idx], s=30)
        else:
            plot.roc(
                dev_neg, dev_pos, self._points, self._semilogx,
                color=self._colors[idx], linestyle=LINESTYLES[idx % 14],
                label=self._label('development', dev_file, idx)
            )

    def end_process(self):
        ''' Draw vertical line on the dev plot at the given fmr and print the
        corresponding points on the test plot for all the systems '''
        #draw vertical lines
        if self._fmr_at is not None:
            mpl.figure(1)
            mpl.plot([self._fmr_at, self._fmr_at], [0., 1.], "--", color='black')
            mpl.axis([self._min_x, self._max_x, self._min_y, self._max_y])
        super(Roc, self).end_process()

class Det(PlotBase):
    ''' Handles the plotting of DET '''
    def __init__(self, ctx, scores, test, func_load):
        super(Det, self).__init__(ctx, scores, test, func_load)
        self._title = 'DET'

    def compute(self, idx, dev_neg, dev_pos, dev_fta=None, dev_file=None,
                 test_neg=None, test_pos=None, test_fta=None, test_file=None):
        ''' Plot DET for dev and eval data using
        :py:func:`bob.measure.plot.det`'''
        if self._test and test_neg is not None:
            linestyle = '-' if not self._split else LINESTYLES[idx % 14]
            plot.det(
                dev_neg, dev_pos, self._points, color=self._colors[idx],
                linestyle=linestyle, axisfontsize=self._axisfontsize,
                label=self._label('development', dev_file, idx,)
            )
            if self._split:
                mpl.figure(2)
            linestyle = '--' if not self._split else LINESTYLES[idx % 14]
            plot.det(
                test_neg, test_pos, self._points, color=self._colors[idx],
                linestyle=linestyle, axisfontsize=self._axisfontsize,
                label=self._label('test', test_file, idx)
            )
        else:
            plot.det(
                dev_neg, dev_pos, self._points, color=self._colors[idx],
                linestyle=LINESTYLES[idx % 14], axisfontsize=self._axisfontsize,
                label=self._label('development', dev_file, idx)
            )

    def end_process(self):
        ''' Set specific axis for det '''
        axlim = [self._min_x, self._max_x, self._min_y, self._max_y]
        mpl.figure(1)
        plot.det_axis(axlim)
        if self._test and self._split:
            mpl.figure(2)
            plot.det_axis(axlim)
        super(Det, self).end_process()

class Epc(PlotBase):
    ''' Handles the plotting of EPC '''
    def __init__(self, ctx, scores, test, func_load):
        super(Epc, self).__init__(ctx, scores, test, func_load)
        if 'dev-scores' not in self._ctx.meta or 'test-scores' not in self._ctx.meta:
            raise click.UsageError("EPC requires dev and test score files")
        self._title = 'EPC'
        self._x_label = 'Cost'
        self._y_label = 'Min. HTER (%)'
        self._test = True #always test data with EPC

    def compute(self, idx, dev_neg, dev_pos, dev_fta=None, dev_file=None,
                 test_neg=None, test_pos=None, test_fta=None, test_file=None):
        ''' Plot EPC using
        :py:func:`bob.measure.plot.epc`'''
        plot.epc(
            dev_neg, dev_pos, test_neg, test_pos, self._points,
            color=self._colors[idx], linestyle=LINESTYLES[idx % 14],
            label=self._label('curve', dev_file + "_" + test_file, idx)
        )

class Hist(PlotBase):
    ''' Handles the plotting of score histograms 

    Attributes
    ----------

    _nbins: :obj:`int`, str
    Number of bins. Default: `auto`

    _thres: :obj:`float`
        If given, this threshold will be used in the plots

    _criter: str
        Criterion to compute threshold (eer or hter)
    '''
    def __init__(self, ctx, scores, test, func_load):
        super(Hist, self).__init__(ctx, scores, test, func_load)
        self._nbins = None if 'nbins' not in ctx.meta else ctx.meta['nbins']
        self._thres = None if 'thres' not in ctx.meta else ctx.meta['thres']
        self._criter = None if 'criter' not in ctx.meta else ctx.meta['criter']
        self._y_label = 'Dev. Scores \n (normalized)' if self._test else \
                'Normalized Count'
        self._x_label = 'Score values' if not self._test else ''
        self._end_setup_plot = False

    def compute(self, idx, dev_neg, dev_pos, dev_fta=None, dev_file=None,
                 test_neg=None, test_pos=None, test_fta=None, test_file=None):
        ''' Draw histograms of negative and positive scores.'''
        threshold = utils.get_thres(self._criter, dev_neg, dev_pos) \
                if self._thres is None else self._thres

        fig = mpl.figure()
        if test_neg is not None:
            mpl.subplot(2, 1, 1)
            all_scores = numpy.hstack((dev_neg, test_neg, dev_pos, test_pos))
        else:
            all_scores = numpy.hstack((dev_neg, dev_pos))

        score_range = all_scores.min(), all_scores.max()

        def _setup_hist(neg, pos, xlim, thres, y_label=None):
            mpl.hist(neg, label='Positives', normed=True, color='red',
                     alpha=0.5, bins=self._nbins)
            mpl.hist(pos, label='Negatives', normed=True, color='blue',
                     alpha=0.5, bins=self._nbins)
            mpl.xlim(*xlim)
            _, _, ymax, ymin = mpl.axis()
            mpl.vlines(
                thres, ymin, ymax, color='black',
                label=('' if self._criter is None else self._criter.upper()),
                linestyle='dashed'
            )
            mpl.grid(True, alpha=0.5)
            mpl.ylabel(self._y_label if y_label is None else y_label)
            mpl.xlabel(self._x_label)

        title = dev_file + (" / %s" % test_file if self._test else "")
        mpl.title('Scores  (%s)' % title)
        _setup_hist(dev_neg, dev_pos, score_range, threshold)
        if test_neg is not None:
            ax = mpl.gca()
            ax.axes.get_xaxis().set_ticklabels([])
            mpl.legend(loc='upper center', ncol=3, bbox_to_anchor=(0.5, -0.01),
                       fontsize=10)
        else:
            mpl.legend(loc='best', fancybox=True, framealpha=0.5)

        if test_neg is not None:
            mpl.subplot(2, 1, 2)
            _setup_hist(
                test_neg, test_pos, score_range, threshold,
                y_label='Test Scores \n (normalized)'
            )
        fig.set_tight_layout(True)
        self._pdf_page.savefig(fig)