load.py 11.4 KB
Newer Older
André Anjos's avatar
André Anjos committed
1
2
3
4
5
6
7
8
9
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# Andre Anjos <andre.anjos@idiap.ch>
# Mon 23 May 2011 16:23:05 CEST

"""A set of utilities to load score files with different formats.
"""

import numpy
10
11
12
13
import tarfile
import os

def open_file(filename):
14
15
16
  """open_file(filename) -> file_like

  Opens the given score file for reading.
17
18
  Score files might be raw text files, or a tar-file including a single score file inside.

19
  **Parameters:**
20

21
  ``filename`` : str or file-like
22
23
    The name of the score file to open, or a file-like object open for reading.
    If a file name is given, the according file might be a raw text file or a (compressed) tar file containing a raw text file.
24

25
26
27
  **Returns:**

  ``file_like`` : file-like
28
29
    A read-only file-like object as it would be returned by open().
  """
30
31
32
33
  if not isinstance(filename, str) and hasattr(filename, 'read'):
    # It seems that this is an open file
    return filename

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
  if not os.path.isfile(filename):
    raise IOError("Score file '%s' does not exist." % filename)
  if not tarfile.is_tarfile(filename):
    return open(filename, 'rt')

  # open the tar file for reading
  tar = tarfile.open(filename, 'r')
  # get the first file in the tar file
  tar_info = tar.next()
  while tar_info is not None and not tar_info.isfile():
    tar_info = tar.next()
  # check that one file was found in the archive
  if tar_info is None:
    raise IOError("The given file is a .tar file, but it does not contain any file.")

  # open the file for reading
  return tar.extractfile(tar_info)

André Anjos's avatar
André Anjos committed
52
53

def four_column(filename):
54
55
56
57
58
59
60
61
62
63
64
65
  """four_column(filename) -> claimed_id, real_id, test_label, score

  Loads a score set from a single file and yield its lines (to avoid loading the score file at once into memory).
  This function verifies that all fields are correctly placed and contain valid fields.
  The score file must contain the following information in each line:

    claimed_id real_id test_label score

  **Parametes:**

  ``filename`` : str or file-like
    The file object that will be opened with :py:func:`open_file` containing the scores.
André Anjos's avatar
André Anjos committed
66

67
  **Yields:**
André Anjos's avatar
André Anjos committed
68

69
70
  ``claimed_id`` : str
    The claimed identity -- the client name of the model that was used in the comparison
André Anjos's avatar
André Anjos committed
71

72
73
74
75
76
77
78
79
  ``real_id`` : str
    The real identity -- the client name of the probe that was used in the comparison

  ``test_label`` : str
    A label of the probe -- usually the probe file name, or the probe id

  ``score`` : float
    The result of the comparison of the model and the probe
André Anjos's avatar
André Anjos committed
80
81
  """

82
83
  for i, l in enumerate(open_file(filename)):
    if isinstance(l, bytes): l = l.decode('utf-8')
André Anjos's avatar
André Anjos committed
84
85
86
87
88
89
90
91
92
    s = l.strip()
    if len(s) == 0 or s[0] == '#': continue #empty or comment
    field = [k.strip() for k in s.split()]
    if len(field) < 4:
      raise SyntaxError('Line %d of file "%s" is invalid: %s' % (i, filename, l))
    try:
      score = float(field[3])
    except:
      raise SyntaxError('Cannot convert score to float at line %d of file "%s": %s' % (i, filename, l))
93
    yield (field[0], field[1], field[2], score)
André Anjos's avatar
André Anjos committed
94
95
96


def split_four_column(filename):
97
98
99
100
101
  """split_four_column(filename) -> negatives, positives

  Loads a score set from a single file and splits the scores
  between negatives and positives. The score file has to respect the 4 column
  format as defined in the method :py:func:`four_column`.
André Anjos's avatar
André Anjos committed
102
103
104
105

  This method avoids loading and allocating memory for the strings present in
  the file. We only keep the scores.

106
107
108
109
  **Parameters:**

  ``filename`` : str or file-like
    The file that will be opened with :py:func:`open_file` containing the scores.
André Anjos's avatar
André Anjos committed
110

111
112
113
114
115
116
117
118
  **Returns:**

  ``negatives`` : array_like(1D, float)
    The list of ``score``'s, for which the ``claimed_id`` and the ``real_id`` differed (see :py:func:`four_column`).

  ``positives`` : array_like(1D, float)
    The list of ``score``'s, for which the ``claimed_id`` and the ``real_id`` are identical (see :py:func:`four_column`).
  """
André Anjos's avatar
André Anjos committed
119
120
121
  # split in positives and negatives
  neg = []
  pos = []
122
123
124
125
126
127
  # read four column list line by line
  for (client_id, probe_id, _, score) in four_column(filename):
    if client_id == probe_id:
      pos.append(score)
    else:
      neg.append(score)
André Anjos's avatar
André Anjos committed
128
129
130

  return (numpy.array(neg, numpy.float64), numpy.array(pos, numpy.float64))

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
131
def cmc_four_column(filename):
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
132
  """cmc_four_column(filename) -> cmc_scores
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
133
  
134
135
136
137

  Loads scores to compute CMC curves from a file in four column format.
  The four column file needs to be in the same format as described in :py:func:`four_column`,
  and the ``test_label`` (column 3) has to contain the test/probe file name or a probe id.
138
139
140
141

  This function returns a list of tuples.
  For each probe file, the tuple consists of a list of negative scores and a list of positive scores.
  Usually, the list of positive scores should contain only one element, but more are allowed.
142
  The result of this function can directly be passed to, e.g., the :py:func:`bob.measure.cmc` function.
143

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
144
  
145
146
147
148
149
  **Parameters:**

  ``filename`` : str or file-like
    The file that will be opened with :py:func:`open_file` containing the scores.

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
150

151
152
153
154
  **Returns:**

  ``cmc_scores`` : [(array_like(1D, float), array_like(1D, float))]
    A list of tuples, where each tuple contains the ``negative`` and ``positive`` scores for one probe of the database
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
155

156
  """
André Anjos's avatar
André Anjos committed
157
158
159
  # extract positives and negatives
  pos_dict = {}
  neg_dict = {}
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
160
  # read four column list  
161
  for (client_id, probe_id, probe_name, score_str) in four_column(filename):
André Anjos's avatar
André Anjos committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    try:
      score = float(score_str)
      # check in which dict we have to put the score
      if client_id == probe_id:
        correct_dict = pos_dict
      else:
        correct_dict = neg_dict
      # append score
      if probe_name in correct_dict:
        correct_dict[probe_name].append(score)
      else:
        correct_dict[probe_name] = [score]
    except:
      raise SyntaxError("Cannot convert score '%s' to float" % score_str)

  # convert to lists of tuples of ndarrays
  retval = []
  import logging
  logger = logging.getLogger('bob')
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
181
182
  for probe_name in sorted(pos_dict.keys()):
    if probe_name in neg_dict:
André Anjos's avatar
André Anjos committed
183
      retval.append((numpy.array(neg_dict[probe_name], numpy.float64), numpy.array(pos_dict[probe_name], numpy.float64)))
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
184
185
186
187
188
189
190
    else:
      logger.warn('For probe name "%s" there are only positive scores. This probe name is ignored.' % probe_name)

  #test if there are probes for which only negatives exist
  for probe_name in sorted(neg_dict.keys()):
    if not probe_name in pos_dict.keys():
      logger.warn('For probe name "%s" there are only negative scores. This probe name is ignored.' % probe_name)
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
191

André Anjos's avatar
André Anjos committed
192
193

  return retval
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
194
  
André Anjos's avatar
André Anjos committed
195
196

def five_column(filename):
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
  """five_column(filename) -> claimed_id, model_label, real_id, test_label, score

  Loads a score set from a single file and yield its lines (to avoid loading the score file at once into memory).
  This function verifies that all fields are correctly placed and contain valid fields.
  The score file must contain the following information in each line:

    claimed_id model_label real_id test_label score

  **Parametes:**

  ``filename`` : str or file-like
    The file object that will be opened with :py:func:`open_file` containing the scores.

  **Yields:**

  ``claimed_id`` : str
    The claimed identity -- the client name of the model that was used in the comparison

  ``model_label`` : str
    A label for the model -- usually the model file name, or the model id

  ``real_id`` : str
    The real identity -- the client name of the probe that was used in the comparison

  ``test_label`` : str
    A label of the probe -- usually the probe file name, or the probe id

  ``score`` : float
    The result of the comparison of the model and the probe.
André Anjos's avatar
André Anjos committed
226
227
  """

228
  for i, l in enumerate(open_file(filename)):
229
    if isinstance(l, bytes): l = l.decode('utf-8')
André Anjos's avatar
André Anjos committed
230
231
232
233
234
235
236
237
238
    s = l.strip()
    if len(s) == 0 or s[0] == '#': continue #empty or comment
    field = [k.strip() for k in s.split()]
    if len(field) < 5:
      raise SyntaxError('Line %d of file "%s" is invalid: %s' % (i, filename, l))
    try:
      score = float(field[4])
    except:
      raise SyntaxError('Cannot convert score to float at line %d of file "%s": %s' % (i, filename, l))
239
    yield (field[0], field[1], field[2], field[3], score)
André Anjos's avatar
André Anjos committed
240

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
241

André Anjos's avatar
André Anjos committed
242
def split_five_column(filename):
243
244
245
246
247
  """split_five_column(filename) -> negatives, positives

  Loads a score set from a single file in five column format and splits the scores
  between negatives and positives. The score file has to respect the 4 column
  format as defined in the method :py:func:`five_column`.
André Anjos's avatar
André Anjos committed
248
249
250
251

  This method avoids loading and allocating memory for the strings present in
  the file. We only keep the scores.

252
253
254
255
256
257
258
259
260
261
262
263
  **Parameters:**

  ``filename`` : str or file-like
    The file that will be opened with :py:func:`open_file` containing the scores.

  **Returns:**

  ``negatives`` : array_like(1D, float)
    The list of ``score``'s, for which the ``claimed_id`` and the ``real_id`` differed (see :py:func:`five_column`).

  ``positives`` : array_like(1D, float)
    The list of ``score``'s, for which the ``claimed_id`` and the ``real_id`` are identical (see :py:func:`five_column`).
André Anjos's avatar
André Anjos committed
264
265
266
267
268
  """

  # split in positives and negatives
  neg = []
  pos = []
269
270
271
272
273
274
  # read five column list
  for (client_id, _, probe_id, _, score) in five_column(filename):
    if client_id == probe_id:
      pos.append(score)
    else:
      neg.append(score)
André Anjos's avatar
André Anjos committed
275
276
277

  return (numpy.array(neg, numpy.float64), numpy.array(pos, numpy.float64))

278

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
279
def cmc_five_column(filename):
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
280
  """cmc_four_column(filename) -> cmc_scores
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
281
  
282
283
284
  Loads scores to compute CMC curves from a file in five column format.
  The four column file needs to be in the same format as described in :py:func:`five_column`,
  and the ``test_label`` (column 4) has to contain the test/probe file name or a probe id.
André Anjos's avatar
André Anjos committed
285

286
287
288
  This function returns a list of tuples.
  For each probe file, the tuple consists of a list of negative scores and a list of positive scores.
  Usually, the list of positive scores should contain only one element, but more are allowed.
289
  The result of this function can directly be passed to, e.g., the :py:func:`bob.measure.cmc` function.
290
291
292
293
294
295
296
297
298
299

  **Parameters:**

  ``filename`` : str or file-like
    The file that will be opened with :py:func:`open_file` containing the scores.

  **Returns:**

  ``cmc_scores`` : [(array_like(1D, float), array_like(1D, float))]
    A list of tuples, where each tuple contains the ``negative`` and ``positive`` scores for one probe of the database
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
300

André Anjos's avatar
André Anjos committed
301
  """
302
  # extract positives and negatives
André Anjos's avatar
André Anjos committed
303
304
  pos_dict = {}
  neg_dict = {}
305
306
307
308
309
310
311
312
313
314
315
316
  # read four column list
  for (client_id, _, probe_id, probe_name, score) in five_column(filename):
    # check in which dict we have to put the score
    if client_id == probe_id:
      correct_dict = pos_dict
    else:
      correct_dict = neg_dict
    # append score
    if probe_name in correct_dict:
      correct_dict[probe_name].append(score)
    else:
      correct_dict[probe_name] = [score]
André Anjos's avatar
André Anjos committed
317
318
319
320
321

  # convert to lists of tuples of ndarrays
  retval = []
  import logging
  logger = logging.getLogger('bob')
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
322

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
323
324
  for probe_name in sorted(pos_dict.keys()):
    if probe_name in neg_dict:
André Anjos's avatar
André Anjos committed
325
      retval.append((numpy.array(neg_dict[probe_name], numpy.float64), numpy.array(pos_dict[probe_name], numpy.float64)))
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
326
327
328
329
330
331
    else:
      logger.warn('For probe name "%s" there are only positive scores. This probe name is ignored.' % probe_name)
  # test if there are probes for which only negatives exist
  for probe_name in sorted(neg_dict.keys()):
    if not probe_name in pos_dict.keys():
       logger.warn('For probe name "%s" there are only negative scores. This probe name is ignored.' % probe_name)
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
332

André Anjos's avatar
André Anjos committed
333
  return retval