figure.py 28.5 KB
Newer Older
1
2
3
4
5
'''Runs error analysis on score sets, outputs metrics and plots'''

from __future__ import division, print_function
from abc import ABCMeta, abstractmethod
import sys
6
import os.path
7
8
9
10
11
import click
import matplotlib
import matplotlib.pyplot as mpl
from matplotlib.backends.backend_pdf import PdfPages
from tabulate import tabulate
12
from .. import (far_threshold, plot, utils, ppndf)
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

LINESTYLES = [
    (0, ()),                    #solid
    (0, (4, 4)),                #dashed
    (0, (1, 5)),                #dotted
    (0, (3, 5, 1, 5)),          #dashdotted
    (0, (3, 5, 1, 5, 1, 5)),    #dashdotdotted
    (0, (5, 1)),                #densely dashed
    (0, (1, 1)),                #densely dotted
    (0, (3, 1, 1, 1)),          #densely dashdotted
    (0, (3, 1, 1, 1, 1, 1)),    #densely dashdotdotted
    (0, (5, 10)),               #loosely dashed
    (0, (3, 10, 1, 10)),        #loosely dashdotted
    (0, (3, 10, 1, 10, 1, 10)), #loosely dashdotdotted
    (0, (1, 10))                #loosely dotted
]

class MeasureBase(object):
    """Base class for metrics and plots.
    This abstract class define the framework to plot or compute metrics from a
    list of (positive, negative) scores tuples.

    Attributes
    ----------
    func_load:
        Function that is used to load the input files
    """
    __metaclass__ = ABCMeta #for python 2.7 compatibility
41
    def __init__(self, ctx, scores, evaluation, func_load):
42
43
44
45
46
47
48
        """
        Parameters
        ----------
        ctx : :py:class:`dict`
            Click context dictionary.

        scores : :any:`list`:
49
50
51
52
            List of input files (e.g. dev-{1, 2, 3}, {dev,eval}-scores1
            {dev,eval}-scores2)
        eval : :py:class:`bool`
            True if eval data are used
53
54
55
        func_load : Function that is used to load the input files
        """
        self._scores = scores
56
        self._min_arg = 1 if 'min_arg' not in ctx.meta else ctx.meta['min_arg']
57
58
        self._ctx = ctx
        self.func_load = func_load
59
        self.dev_names, self.eval_names, self.dev_scores, self.eval_scores = \
60
                self._load_files()
61
62
63
64
65
        self.n_sytem = len(self.dev_names[0]) # at least one set of dev scores
        self._titles = None if 'titles' not in ctx.meta else ctx.meta['titles']
        if self._titles is not None and len(self._titles) != self.n_sytem:
            raise click.BadParameter("Number of titles must be equal to the "
                                     "number of systems")
66
        self._eval = evaluation
67
68
69
70
71
72
73
74
75
76
77
78
79

    def run(self):
        """ Generate outputs (e.g. metrics, files, pdf plots).
        This function calls abstract methods
        :func:`~bob.measure.script.figure.MeasureBase.init_process` (before
        loop), :py:func:`~bob.measure.script.figure.MeasureBase.compute`
        (in the loop iterating through the different
        systems) and :py:func:`~bob.measure.script.figure.MeasureBase.end_process`
        (after the loop).
        """
        #init matplotlib, log files, ...
        self.init_process()
        #iterates through the different systems and feed `compute`
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        #with the dev (and eval) scores of each system
        # Note that more than one dev or eval scores score can be passed to
        # each system
        for idx in range(self.n_sytem):
            dev_score = []
            eval_score = []
            dev_file = []
            eval_file = []
            for arg in range(self._min_arg):
                dev_score.append(self.dev_scores[arg][idx])
                dev_file.append(self.dev_names[arg][idx])
                eval_score.append(self.eval_scores[arg][idx] \
                        if self.eval_scores[arg] is not None else None)
                eval_file.append(self.eval_names[arg][idx] \
                        if self.eval_names[arg] is not None else None)
            if self._min_arg == 1: # most of measure only take one arg
                                   # so do not pass a list of one arg
                #does the main computations/plottings here
                self.compute(idx, dev_score[0], dev_file[0], eval_score[0],
                             eval_file[0])
            else:
                #does the main computations/plottings here
                self.compute(idx, dev_score, dev_file, eval_score, eval_file)
103
104
105
106
107
108
109
110
111
112
113
114
        #setup final configuration, plotting properties, ...
        self.end_process()

    #protected functions that need to be overwritten
    def init_process(self):
        """ Called in :py:func:`~bob.measure.script.figure.MeasureBase`.run
        before iterating through the different sytems.
        Should reimplemented in derived classes"""
        pass

    #Main computations are done here in the subclasses
    @abstractmethod
115
    def compute(self, idx, dev_score, dev_file=None,
116
                eval_score=None, eval_file=None):
117
        """Compute metrics or plots from the given scores provided by
118
119
120
121
122
123
124
        :py:func:`~bob.measure.script.figure.MeasureBase.run`.
        Should reimplemented in derived classes

        Parameters
        ----------
        idx : :obj:`int`
            index of the system
125
126
127
        dev_score:
            Development scores. Can be a tuple (neg, pos) of
            :py:class:`numpy.ndarray` (e.g.
128
            :py:func:`~bob.measure.script.figure.Roc.compute`) or
129
            a :any:`list` of tuples of :py:class:`numpy.ndarray` (e.g. cmc)
130
131
        dev_file : str
            name of the dev file without extension
132
133
        eval_score:
            eval scores. Can be a tuple (neg, pos) of
134
            :py:class:`numpy.ndarray` (e.g.
135
            :py:func:`~bob.measure.script.figure.Roc.compute`) or
136
            a :any:`list` of tuples of :py:class:`numpy.ndarray` (e.g. cmc)
137
138
        eval_file : str
            name of the eval file without extension
139
140
141
142
143
144
        """
        pass

    #Things to do after the main iterative computations are done
    @abstractmethod
    def end_process(self):
145
146
147
        """ Called in :py:func:`~bob.measure.script.figure.MeasureBase`.run
        after iterating through the different sytems.
        Should reimplemented in derived classes"""
148
149
150
151
152
153
154
155
156
        pass

    #common protected functions

    def _load_files(self):
        ''' Load the input files and returns

        Returns
        -------
157
158
159
160
161
            dev_scores: :any:`list`: A list that contains, for each required
            dev score file, the output of ``func_load``
            eval_scores: :any:`list`: A list that contains, for each required
            eval score file, the output of ``func_load``
        '''
162
163
164
165
166
167

        def _extract_file_names(filenames):
            if filenames is None:
                return None
            res = []
            for file_path in filenames:
168
                name = os.path.basename(file_path)
169
170
171
                res.append(name.split(".")[0])
            return res

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        dev_scores = []
        eval_scores = []
        dev_files = []
        eval_files = []
        for arg in range(self._min_arg):
            key = 'dev_scores_%d' % arg
            dev_paths = self._scores if key not in self._ctx.meta else \
                    self._ctx.meta[key]
            key = 'eval_scores_%d' % arg
            eval_paths = None if key not in self._ctx.meta else \
                    self._ctx.meta[key]
            dev_files.append(_extract_file_names(dev_paths))
            eval_files.append(_extract_file_names(eval_paths))
            dev_scores.append(self.func_load(dev_paths))
            eval_scores.append(self.func_load(eval_paths))
        return (dev_files, eval_files, dev_scores, eval_scores)

    def _process_scores(self, dev_score, eval_score):
        '''Process score files and return neg/pos/fta for eval and dev'''
        dev_neg = dev_pos = dev_fta = eval_neg = eval_pos = eval_fta = None
192
        if dev_score[0] is not None:
193
            (dev_neg, dev_pos), dev_fta = utils.get_fta(dev_score)
194
195
196
            if dev_neg is None:
                raise click.UsageError("While loading dev-score file")

197
198
199
200
201
        if self._eval and eval_score is not None and eval_score[0] is not None:
            eval_score, eval_fta = utils.get_fta(eval_score)
            eval_neg, eval_pos = eval_score
            if eval_neg is None:
                raise click.UsageError("While loading eval-score file")
202

203
        return (dev_neg, dev_pos, dev_fta, eval_neg, eval_pos, eval_fta)
204
205
206
207
208
209
210
211
212
213


class Metrics(MeasureBase):
    ''' Compute metrics from score files

    Attributes
    ----------
    log_file: str
        output stream
    '''
214
215
    def __init__(self, ctx, scores, evaluation, func_load):
        super(Metrics, self).__init__(ctx, scores, evaluation, func_load)
216
217
218
219
220
221
        self._tablefmt = None if 'tablefmt' not in ctx.meta else\
                ctx.meta['tablefmt']
        self._criter = None if 'criter' not in ctx.meta else ctx.meta['criter']
        self._open_mode = None if 'open_mode' not in ctx.meta else\
                ctx.meta['open_mode']
        self._thres = None if 'thres' not in ctx.meta else ctx.meta['thres']
222
223
224
225
226
227
228
229
230
231
        if self._thres is not None :
            if len(self._thres) == 1:
                self._thres = self._thres * len(self.dev_names)
            elif len(self._thres) != len(self.dev_names):
                raise click.BadParameter(
                    '#thresholds must be the same as #systems (%d)' \
                    % len(self.dev_names)
                )
        self._far = None if 'far_value' not in ctx.meta else \
        ctx.meta['far_value']
232
233
234
235
236
        self._log = None if 'log' not in ctx.meta else ctx.meta['log']
        self.log_file = sys.stdout
        if self._log is not None:
            self.log_file = open(self._log, self._open_mode)

237
    def compute(self, idx, dev_score, dev_file=None,
238
                eval_score=None, eval_file=None):
239
        ''' Compute metrics thresholds and tables (FAR, FMR, FNMR, HTER) for
240
        given system inputs'''
241
242
        dev_neg, dev_pos, dev_fta, eval_neg, eval_pos, eval_fta =\
                self._process_scores(dev_score, eval_score)
243
244
        threshold = utils.get_thres(self._criter, dev_neg, dev_pos, self._far) \
                if self._thres is None else self._thres[idx]
245
        title = self._titles[idx] if self._titles is not None else None
246
        if self._thres is None:
247
248
249
250
            far_str = ''
            if self._criter == 'far' and self._far is not None:
                far_str = str(self._far)
            click.echo("[Min. criterion: %s %s] Threshold on Development set `%s`: %e"\
251
                       % (self._criter.upper(), far_str, title or dev_file, threshold),
252
253
254
255
                       file=self.log_file)
        else:
            click.echo("[Min. criterion: user provider] Threshold on "
                       "Development set `%s`: %e"\
256
                       % (dev_file or title, threshold), file=self.log_file)
257
258
259
260
261
262
263
264
265
266
267
268
269


        from .. import farfrr
        dev_fmr, dev_fnmr = farfrr(dev_neg, dev_pos, threshold)
        dev_far = dev_fmr * (1 - dev_fta)
        dev_frr = dev_fta + dev_fnmr * (1 - dev_fta)
        dev_hter = (dev_far + dev_frr) / 2.0

        dev_ni = dev_neg.shape[0]  # number of impostors
        dev_fm = int(round(dev_fmr * dev_ni))  # number of false accepts
        dev_nc = dev_pos.shape[0]  # number of clients
        dev_fnm = int(round(dev_fnmr * dev_nc))  # number of false rejects

270
271
272
273
274
275
276
277
278
        dev_fta_str = "%.1f%%" % (100 * dev_fta)
        dev_fmr_str = "%.1f%% (%d/%d)" % (100 * dev_fmr, dev_fm, dev_ni)
        dev_fnmr_str = "%.1f%% (%d/%d)" % (100 * dev_fnmr, dev_fnm, dev_nc)
        dev_far_str = "%.1f%%" % (100 * dev_far)
        dev_frr_str = "%.1f%%" % (100 * dev_frr)
        dev_hter_str = "%.1f%%" % (100 * dev_hter)
        headers = ['' or title, 'Development %s' % dev_file]
        raws = [['FtA', dev_fta_str],
                ['FMR', dev_fmr_str],
279
280
281
282
283
                ['FNMR', dev_fnmr_str],
                ['FAR', dev_far_str],
                ['FRR', dev_frr_str],
                ['HTER', dev_hter_str]]

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
        if self._eval and eval_neg is not None:
            # computes statistics for the eval set based on the threshold a priori
            eval_fmr, eval_fnmr = farfrr(eval_neg, eval_pos, threshold)
            eval_far = eval_fmr * (1 - eval_fta)
            eval_frr = eval_fta + eval_fnmr * (1 - eval_fta)
            eval_hter = (eval_far + eval_frr) / 2.0

            eval_ni = eval_neg.shape[0]  # number of impostors
            eval_fm = int(round(eval_fmr * eval_ni))  # number of false accepts
            eval_nc = eval_pos.shape[0]  # number of clients
            eval_fnm = int(round(eval_fnmr * eval_nc))  # number of false rejects

            eval_fta_str = "%.1f%%" % (100 * eval_fta)
            eval_fmr_str = "%.1f%% (%d/%d)" % (100 * eval_fmr, eval_fm, eval_ni)
            eval_fnmr_str = "%.1f%% (%d/%d)" % (100 * eval_fnmr, eval_fnm, eval_nc)

            eval_far_str = "%.1f%%" % (100 * eval_far)
            eval_frr_str = "%.1f%%" % (100 * eval_frr)
            eval_hter_str = "%.1f%%" % (100 * eval_hter)

            headers.append('Eval. % s' % eval_file)
            raws[0].append(eval_fta_str)
            raws[1].append(eval_fmr_str)
            raws[2].append(eval_fnmr_str)
            raws[3].append(eval_far_str)
            raws[4].append(eval_frr_str)
            raws[5].append(eval_hter_str)
311
312
313
314
315
316
317
318
319
320
321
322

        click.echo(tabulate(raws, headers, self._tablefmt), file=self.log_file)

    def end_process(self):
        ''' Close log file if needed'''
        if self._log is not None:
            self.log_file.close()

class PlotBase(MeasureBase):
    ''' Base class for plots. Regroup several options and code
    shared by the different plots
    '''
323
324
    def __init__(self, ctx, scores, evaluation, func_load):
        super(PlotBase, self).__init__(ctx, scores, evaluation, func_load)
325
        self._output = None if 'output' not in ctx.meta else ctx.meta['output']
326
        self._points = 100 if 'points' not in ctx.meta else ctx.meta['points']
327
        self._split = None if 'split' not in ctx.meta else ctx.meta['split']
328
        self._axlim = None if 'axlim' not in ctx.meta else ctx.meta['axlim']
329
330
        self._clayout = None if 'clayout' not in ctx.meta else\
        ctx.meta['clayout']
331
332
333
334
335
336
        self._far_at = None if 'lines_at' not in ctx.meta else\
        ctx.meta['lines_at']
        self._trans_far_val = self._far_at
        if self._far_at is not None:
            self._eval_points = {line: [] for line in self._far_at}
            self._lines_val = []
337
        self._print_fn = True if 'show_fn' not in ctx.meta else\
338
        ctx.meta['show_fn']
339
340
        self._x_rotation = None if 'x_rotation' not in ctx.meta else \
                ctx.meta['x_rotation']
341
342
        if 'style' in ctx.meta:
            mpl.style.use(ctx.meta['style'])
343
        self._nb_figs = 2 if self._eval and self._split else 1
344
345
346
        self._multi_plots = len(self.dev_scores) > 1
        self._colors = utils.get_colors(len(self.dev_scores))
        self._states = ['Development', 'Evaluation']
347
348
349
350
351
        self._title = None if 'title' not in ctx.meta else ctx.meta['title']
        self._x_label = None if 'x_label' not in ctx.meta else\
        ctx.meta['x_label']
        self._y_label = None if 'y_label' not in ctx.meta else\
        ctx.meta['y_label']
352
353
354
        self._grid_color = 'silver'
        self._pdf_page = None
        self._end_setup_plot = True
355
        self._kwargs = {}
356
357
358
359
360
361
362
363
364

    def init_process(self):
        ''' Open pdf and set axis font size if provided '''
        if not hasattr(matplotlib, 'backends'):
            matplotlib.use('pdf')

        self._pdf_page = self._ctx.meta['PdfPages'] if 'PdfPages'in \
        self._ctx.meta else PdfPages(self._output)

365
        for i in range(self._nb_figs):
366
367
368
369
            fs = None if 'figsize' not in self._ctx.meta else\
                    self._ctx.meta['figsize']
            fig = mpl.figure(i + 1, figsize=fs)
            fig.set_constrained_layout(self._clayout)
370
            fig.clear()
371
372

    def end_process(self):
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
        ''' Set title, legend, axis labels, grid colors, save figures, drow
        lines and close pdf if needed '''
        #draw vertical lines
        if self._far_at is not None:
            for (line, line_trans) in zip(self._far_at, self._trans_far_val):
                mpl.figure(1)
                mpl.plot(
                    [line_trans, line_trans], [-100.0, 100.], "--",
                    color='black'
                )
                if self._eval and self._split:
                    mpl.figure(2)
                    x_values = [i for i, _ in self._eval_points[line]]
                    y_values = [j for _, j in self._eval_points[line]]
                    sort_indice = sorted(
                        range(len(x_values)), key=x_values.__getitem__
                    )
                    x_values = [x_values[i] for i in sort_indice]
                    y_values = [y_values[i] for i in sort_indice]
                    mpl.plot(x_values,
                             y_values, '--',
                             color='black')
395
396
397
398
399
        #only for plots
        if self._end_setup_plot:
            for i in range(self._nb_figs):
                fig = mpl.figure(i + 1)
                title = self._title
400
                if not self._eval:
401
                    title += (" (%s)" % self._states[0])
402
                elif self._split:
403
404
405
406
407
                    title += (" (%s)" % self._states[i])
                mpl.title(title)
                mpl.xlabel(self._x_label)
                mpl.ylabel(self._y_label)
                mpl.grid(True, color=self._grid_color)
408
                mpl.legend(loc='best')
409
                self._set_axis()
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
                mpl.xticks(rotation=self._x_rotation)
                self._pdf_page.savefig(fig)

        #do not want to close PDF when running evaluate
        if 'PdfPages' in self._ctx.meta and \
           ('closef' not in self._ctx.meta or self._ctx.meta['closef']):
            self._pdf_page.close()

    #common protected functions

    def _label(self, base, name, idx):
        if self._titles is not None and len(self._titles) > idx:
            return self._titles[idx]
        if self._multi_plots:
            return base + (" %d (%s)" % (idx + 1, name))
        return base + (" (%s)" % name)

427
    def _set_axis(self):
428
429
        if self._axlim is not None and None not in self._axlim:
            mpl.axis(self._axlim)
430

431
class Roc(PlotBase):
432
    ''' Handles the plotting of ROC'''
433
434
    def __init__(self, ctx, scores, evaluation, func_load):
        super(Roc, self).__init__(ctx, scores, evaluation, func_load)
435
436
        self._title = self._title or 'ROC'
        self._x_label = self._x_label or 'False Positive Rate'
437
        self._y_label = self._y_label or "1 - False Negative Rate"
438
439
440
        #custom defaults
        if self._axlim is None:
            self._axlim = [1e-4, 1.0, 1e-4, 1.0]
441

442
    def compute(self, idx, dev_score, dev_file=None,
443
                eval_score=None, eval_file=None):
444
445
        ''' Plot ROC for dev and eval data using
        :py:func:`bob.measure.plot.roc`'''
446
447
        dev_neg, dev_pos, _, eval_neg, eval_pos, _ =\
                self._process_scores(dev_score, eval_score)
448
        mpl.figure(1)
449
        if self._eval:
450
            linestyle = '-' if not self._split else LINESTYLES[idx % 14]
451
452
            plot.roc_for_far(
                dev_neg, dev_pos,
453
                color=self._colors[idx], linestyle=linestyle,
454
                label=self._label('development', dev_file, idx, **self._kwargs)
455
456
457
458
459
460
            )
            linestyle = '--'
            if self._split:
                mpl.figure(2)
                linestyle = LINESTYLES[idx % 14]

461
462
            plot.roc_for_far(
                eval_neg, eval_pos,
463
                color=self._colors[idx], linestyle=linestyle,
464
                label=self._label('eval', eval_file, idx, **self._kwargs)
465
            )
466
            if self._far_at is not None:
467
                from .. import farfrr
468
                for line in self._far_at:
469
470
471
                    thres_line = far_threshold(dev_neg, dev_pos, line)
                    eval_fmr, eval_fnmr = farfrr(eval_neg, eval_pos, thres_line)
                    eval_fnmr = 1 - eval_fnmr
472
473
                    mpl.scatter(eval_fmr, eval_fnmr, c=self._colors[idx], s=30)
                    self._eval_points[line].append((eval_fmr, eval_fnmr))
474
        else:
475
476
            plot.roc_for_far(
                dev_neg, dev_pos,
477
                color=self._colors[idx], linestyle=LINESTYLES[idx % 14],
478
                label=self._label('development', dev_file, idx, **self._kwargs)
479
480
481
482
            )

class Det(PlotBase):
    ''' Handles the plotting of DET '''
483
484
    def __init__(self, ctx, scores, evaluation, func_load):
        super(Det, self).__init__(ctx, scores, evaluation, func_load)
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
485
        self._title = self._title or 'DET'
486
487
        self._x_label = self._x_label or 'False Positive Rate'
        self._y_label = self._y_label or 'False Negative Rate'
488
489
        if self._far_at is not None:
            self._trans_far_val = [ppndf(float(k)) for k in self._far_at]
490
491
492
        #custom defaults here
        if self._x_rotation is None:
            self._x_rotation = 50
493

494
    def compute(self, idx, dev_score, dev_file=None,
495
                eval_score=None, eval_file=None):
496
497
        ''' Plot DET for dev and eval data using
        :py:func:`bob.measure.plot.det`'''
498
499
        dev_neg, dev_pos, _, eval_neg, eval_pos, _ =\
                self._process_scores(dev_score, eval_score)
500
        mpl.figure(1)
501
        if self._eval and eval_neg is not None:
502
503
504
            linestyle = '-' if not self._split else LINESTYLES[idx % 14]
            plot.det(
                dev_neg, dev_pos, self._points, color=self._colors[idx],
505
                linestyle=linestyle,
506
                label=self._label('development', dev_file, idx, **self._kwargs)
507
508
509
510
511
            )
            if self._split:
                mpl.figure(2)
            linestyle = '--' if not self._split else LINESTYLES[idx % 14]
            plot.det(
512
                eval_neg, eval_pos, self._points, color=self._colors[idx],
513
                linestyle=linestyle,
514
                label=self._label('eval', eval_file, idx, **self._kwargs)
515
            )
516
517
518
519
520
521
522
523
            if self._far_at is not None:
                from .. import farfrr
                for line in self._far_at:
                    thres_line = far_threshold(dev_neg, dev_pos, line)
                    eval_fmr, eval_fnmr = farfrr(eval_neg, eval_pos, thres_line)
                    eval_fmr, eval_fnmr = ppndf(eval_fmr), ppndf(eval_fnmr)
                    mpl.scatter(eval_fmr, eval_fnmr, c=self._colors[idx], s=30)
                    self._eval_points[line].append((eval_fmr, eval_fnmr))
524
525
526
        else:
            plot.det(
                dev_neg, dev_pos, self._points, color=self._colors[idx],
527
                linestyle=LINESTYLES[idx % 14],
528
                label=self._label('development', dev_file, idx, **self._kwargs)
529
530
            )

531
    def _set_axis(self):
532
533
534
535
        if self._axlim is not None and None not in self._axlim:
            plot.det_axis(self._axlim)
        else:
            plot.det_axis([0.01, 99, 0.01, 99])
536
537
538

class Epc(PlotBase):
    ''' Handles the plotting of EPC '''
539
540
541
542
    def __init__(self, ctx, scores, evaluation, func_load):
        super(Epc, self).__init__(ctx, scores, evaluation, func_load)
        if 'eval_scores_0' not in self._ctx.meta:
            raise click.UsageError("EPC requires dev and eval score files")
543
        self._title = self._title or 'EPC'
544
545
        self._x_label = self._x_label or r'$\alpha$'
        self._y_label = self._y_label or 'HTER (%)'
546
        self._eval = True #always eval data with EPC
547
        self._split = False
548
        self._nb_figs = 1
549
        self._far_at = None
550

551
    def compute(self, idx, dev_score, dev_file, eval_score, eval_file=None):
552
        ''' Plot EPC using :py:func:`bob.measure.plot.epc` '''
553
554
        dev_neg, dev_pos, _, eval_neg, eval_pos, _ =\
                self._process_scores(dev_score, eval_score)
555
        plot.epc(
556
            dev_neg, dev_pos, eval_neg, eval_pos, self._points,
557
            color=self._colors[idx], linestyle=LINESTYLES[idx % 14],
558
559
560
            label=self._label(
                'curve', dev_file + "_" + eval_file, idx, **self._kwargs
            )
561
562
563
        )

class Hist(PlotBase):
564
    ''' Functional base class for histograms'''
565
566
    def __init__(self, ctx, scores, evaluation, func_load):
        super(Hist, self).__init__(ctx, scores, evaluation, func_load)
567
568
        self._nbins = None if 'nbins' not in ctx.meta else ctx.meta['nbins']
        self._thres = None if 'thres' not in ctx.meta else ctx.meta['thres']
569
570
        self._show_dev = ((not self._eval) if 'show_dev' not in ctx.meta else\
                ctx.meta['show_dev']) or not self._eval
571
572
573
574
575
576
577
578
        if self._thres is not None and len(self._thres) != len(self.dev_names):
            if len(self._thres) == 1:
                self._thres = self._thres * len(self.dev_names)
            else:
                raise click.BadParameter(
                    '#thresholds must be the same as #systems (%d)' \
                    % len(self.dev_names)
                )
579
        self._criter = None if 'criter' not in ctx.meta else ctx.meta['criter']
580
        self._y_label = 'Dev. probability density' if self._eval else \
581
                'density' or self._y_label
582
        self._x_label = 'Scores' if not self._eval else ''
583
        self._title_base = self._title or 'Scores'
584
585
        self._end_setup_plot = False

586
    def compute(self, idx, dev_score, dev_file=None,
587
                eval_score=None, eval_file=None):
588
        ''' Draw histograms of negative and positive scores.'''
589
590
        dev_neg, dev_pos, eval_neg, eval_pos, threshold = \
        self._get_neg_pos_thres(idx, dev_score, eval_score)
591
592

        fig = mpl.figure()
593
        if eval_neg is not None and self._show_dev:
594
            mpl.subplot(2, 1, 1)
595
596
        if self._show_dev:
            self._setup_hist(dev_neg, dev_pos)
597
            mpl.title(self._get_title(idx, dev_file, eval_file))
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
            mpl.ylabel(self._y_label)
            mpl.xlabel(self._x_label)
            if eval_neg is not None and self._show_dev:
                ax = mpl.gca()
                ax.axes.get_xaxis().set_ticklabels([])
            #Setup lines, corresponding axis and legends
            self._lines(threshold, dev_neg, dev_pos)
            if self._eval:
                self._plot_legends()

        if eval_neg is not None:
            if self._show_dev:
                mpl.subplot(2, 1, 2)
            self._setup_hist(
                eval_neg, eval_pos
613
            )
614
615
            if not self._show_dev:
                mpl.title(self._get_title(idx, dev_file, eval_file))
616
            mpl.ylabel('Eval. probability density')
617
            mpl.xlabel(self._x_label)
618
619
620
621
            #Setup lines, corresponding axis and legends
            self._lines(threshold, eval_neg, eval_pos)
            if not self._show_dev:
                self._plot_legends()
622
623

        self._pdf_page.savefig(fig)
624

625
626
627
628
    def _get_title(self, idx, dev_file, eval_file):
        title = self._titles[idx] if self._titles is not None else None
        if title is None:
            title = self._title_base if not self._print_fn else \
629
                    ('%s \n (%s)' % (
630
                        self._title_base,
631
                        str(dev_file) + (" / %s" % str(eval_file) if self._eval else "")
632
                    ))
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
        return title

    def _plot_legends(self):
        lines = []
        labels = []
        for ax in mpl.gcf().get_axes():
            li, la = ax.get_legend_handles_labels()
            lines += li
            labels += la
        if self._show_dev and self._eval:
            mpl.legend(
                lines, labels, loc='upper center', ncol=6,
                bbox_to_anchor=(0.5, -0.01), fontsize=6
            )
        else:
            mpl.legend(lines, labels,
                       loc='best', fancybox=True, framealpha=0.5)

    def _get_neg_pos_thres(self, idx, dev_score, eval_score):
        dev_neg, dev_pos, _, eval_neg, eval_pos, _ = self._process_scores(
            dev_score, eval_score
        )
        threshold = utils.get_thres(
            self._criter, dev_neg,
            dev_pos
        ) if self._thres is None else self._thres[idx]
        return (dev_neg, dev_pos, eval_neg, eval_pos, threshold)

    def _density_hist(self, scores, **kwargs):
        n, bins, patches = mpl.hist(
663
            scores, density=True, bins=self._nbins, **kwargs
664
665
666
667
668
669
670
671
672
        )
        return (n, bins, patches)

    def _lines(self, threshold, neg=None, pos=None, **kwargs):
        label = 'Threshold' if self._criter is None else self._criter.upper()
        kwargs.setdefault('color', 'C3')
        kwargs.setdefault('linestyle', '--')
        kwargs.setdefault('label', label)
        # plot a vertical threshold line
673
        mpl.axvline(x=threshold, ymin=0, ymax=1, **kwargs)
674
675
676
677

    def _setup_hist(self, neg, pos):
        ''' This function can be overwritten in derived classes'''
        self._density_hist(
678
            pos, label='Positives', alpha=0.5, color='C0', **self._kwargs
679
680
        )
        self._density_hist(
681
            neg, label='Negatives', alpha=0.5, color='C3', **self._kwargs
682
        )