load.py 11.4 KB
Newer Older
André Anjos's avatar
André Anjos committed
1
2
3
4
5
6
7
8
9
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# Andre Anjos <andre.anjos@idiap.ch>
# Mon 23 May 2011 16:23:05 CEST

"""A set of utilities to load score files with different formats.
"""

import numpy
10
11
12
13
import tarfile
import os

def open_file(filename):
14
15
16
  """open_file(filename) -> file_like

  Opens the given score file for reading.
17
18
  Score files might be raw text files, or a tar-file including a single score file inside.

19
  **Parameters:**
20

21
  ``filename`` : str or file-like
22
23
    The name of the score file to open, or a file-like object open for reading.
    If a file name is given, the according file might be a raw text file or a (compressed) tar file containing a raw text file.
24

25
26
27
  **Returns:**

  ``file_like`` : file-like
28
29
    A read-only file-like object as it would be returned by open().
  """
30
31
32
33
  if not isinstance(filename, str) and hasattr(filename, 'read'):
    # It seems that this is an open file
    return filename

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
  if not os.path.isfile(filename):
    raise IOError("Score file '%s' does not exist." % filename)
  if not tarfile.is_tarfile(filename):
    return open(filename, 'rt')

  # open the tar file for reading
  tar = tarfile.open(filename, 'r')
  # get the first file in the tar file
  tar_info = tar.next()
  while tar_info is not None and not tar_info.isfile():
    tar_info = tar.next()
  # check that one file was found in the archive
  if tar_info is None:
    raise IOError("The given file is a .tar file, but it does not contain any file.")

  # open the file for reading
  return tar.extractfile(tar_info)

André Anjos's avatar
André Anjos committed
52
53

def four_column(filename):
54
55
56
57
58
59
60
61
62
63
64
65
  """four_column(filename) -> claimed_id, real_id, test_label, score

  Loads a score set from a single file and yield its lines (to avoid loading the score file at once into memory).
  This function verifies that all fields are correctly placed and contain valid fields.
  The score file must contain the following information in each line:

    claimed_id real_id test_label score

  **Parametes:**

  ``filename`` : str or file-like
    The file object that will be opened with :py:func:`open_file` containing the scores.
André Anjos's avatar
André Anjos committed
66

67
  **Yields:**
André Anjos's avatar
André Anjos committed
68

69
70
  ``claimed_id`` : str
    The claimed identity -- the client name of the model that was used in the comparison
André Anjos's avatar
André Anjos committed
71

72
73
74
75
76
77
78
79
  ``real_id`` : str
    The real identity -- the client name of the probe that was used in the comparison

  ``test_label`` : str
    A label of the probe -- usually the probe file name, or the probe id

  ``score`` : float
    The result of the comparison of the model and the probe
André Anjos's avatar
André Anjos committed
80
81
  """

82
83
  for i, l in enumerate(open_file(filename)):
    if isinstance(l, bytes): l = l.decode('utf-8')
André Anjos's avatar
André Anjos committed
84
85
86
87
88
89
90
91
92
    s = l.strip()
    if len(s) == 0 or s[0] == '#': continue #empty or comment
    field = [k.strip() for k in s.split()]
    if len(field) < 4:
      raise SyntaxError('Line %d of file "%s" is invalid: %s' % (i, filename, l))
    try:
      score = float(field[3])
    except:
      raise SyntaxError('Cannot convert score to float at line %d of file "%s": %s' % (i, filename, l))
93
    yield (field[0], field[1], field[2], score)
André Anjos's avatar
André Anjos committed
94
95
96


def split_four_column(filename):
97
98
99
100
101
  """split_four_column(filename) -> negatives, positives

  Loads a score set from a single file and splits the scores
  between negatives and positives. The score file has to respect the 4 column
  format as defined in the method :py:func:`four_column`.
André Anjos's avatar
André Anjos committed
102
103
104
105

  This method avoids loading and allocating memory for the strings present in
  the file. We only keep the scores.

106
107
108
109
  **Parameters:**

  ``filename`` : str or file-like
    The file that will be opened with :py:func:`open_file` containing the scores.
André Anjos's avatar
André Anjos committed
110

111
112
113
114
115
116
117
118
  **Returns:**

  ``negatives`` : array_like(1D, float)
    The list of ``score``'s, for which the ``claimed_id`` and the ``real_id`` differed (see :py:func:`four_column`).

  ``positives`` : array_like(1D, float)
    The list of ``score``'s, for which the ``claimed_id`` and the ``real_id`` are identical (see :py:func:`four_column`).
  """
André Anjos's avatar
André Anjos committed
119
120
121
  # split in positives and negatives
  neg = []
  pos = []
122
123
124
125
126
127
  # read four column list line by line
  for (client_id, probe_id, _, score) in four_column(filename):
    if client_id == probe_id:
      pos.append(score)
    else:
      neg.append(score)
André Anjos's avatar
André Anjos committed
128
129
130
131

  return (numpy.array(neg, numpy.float64), numpy.array(pos, numpy.float64))

def cmc_four_column(filename):
132
133
134
135
136
  """cmc_four_column(filename) -> cmc_scores

  Loads scores to compute CMC curves from a file in four column format.
  The four column file needs to be in the same format as described in :py:func:`four_column`,
  and the ``test_label`` (column 3) has to contain the test/probe file name or a probe id.
137
138
139
140

  This function returns a list of tuples.
  For each probe file, the tuple consists of a list of negative scores and a list of positive scores.
  Usually, the list of positive scores should contain only one element, but more are allowed.
141
  The result of this function can directly be passed to, e.g., the :py:func:`bob.measure.cmc` function.
142
143
144
145
146
147
148
149
150
151

  **Parameters:**

  ``filename`` : str or file-like
    The file that will be opened with :py:func:`open_file` containing the scores.

  **Returns:**

  ``cmc_scores`` : [(array_like(1D, float), array_like(1D, float))]
    A list of tuples, where each tuple contains the ``negative`` and ``positive`` scores for one probe of the database
152
  """
André Anjos's avatar
André Anjos committed
153
154
155
  # extract positives and negatives
  pos_dict = {}
  neg_dict = {}
156
157
  # read four column list
  for (client_id, probe_id, probe_name, score_str) in four_column(filename):
André Anjos's avatar
André Anjos committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    try:
      score = float(score_str)
      # check in which dict we have to put the score
      if client_id == probe_id:
        correct_dict = pos_dict
      else:
        correct_dict = neg_dict
      # append score
      if probe_name in correct_dict:
        correct_dict[probe_name].append(score)
      else:
        correct_dict[probe_name] = [score]
    except:
      raise SyntaxError("Cannot convert score '%s' to float" % score_str)

  # convert to lists of tuples of ndarrays
  retval = []
  import logging
  logger = logging.getLogger('bob')
  for probe_name in sorted(pos_dict.keys()):
    if probe_name in neg_dict:
      retval.append((numpy.array(neg_dict[probe_name], numpy.float64), numpy.array(pos_dict[probe_name], numpy.float64)))
    else:
      logger.warn('For probe name "%s" there are only positive scores. This probe name is ignored.' % probe_name)
  # test if there are probes for which only negatives exist
  for probe_name in sorted(neg_dict.keys()):
    if not probe_name in pos_dict.keys():
       logger.warn('For probe name "%s" there are only negative scores. This probe name is ignored.' % probe_name)

  return retval

def five_column(filename):
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
  """five_column(filename) -> claimed_id, model_label, real_id, test_label, score

  Loads a score set from a single file and yield its lines (to avoid loading the score file at once into memory).
  This function verifies that all fields are correctly placed and contain valid fields.
  The score file must contain the following information in each line:

    claimed_id model_label real_id test_label score

  **Parametes:**

  ``filename`` : str or file-like
    The file object that will be opened with :py:func:`open_file` containing the scores.

  **Yields:**

  ``claimed_id`` : str
    The claimed identity -- the client name of the model that was used in the comparison

  ``model_label`` : str
    A label for the model -- usually the model file name, or the model id

  ``real_id`` : str
    The real identity -- the client name of the probe that was used in the comparison

  ``test_label`` : str
    A label of the probe -- usually the probe file name, or the probe id

  ``score`` : float
    The result of the comparison of the model and the probe.
André Anjos's avatar
André Anjos committed
219
220
  """

221
  for i, l in enumerate(open_file(filename)):
222
    if isinstance(l, bytes): l = l.decode('utf-8')
André Anjos's avatar
André Anjos committed
223
224
225
226
227
228
229
230
231
    s = l.strip()
    if len(s) == 0 or s[0] == '#': continue #empty or comment
    field = [k.strip() for k in s.split()]
    if len(field) < 5:
      raise SyntaxError('Line %d of file "%s" is invalid: %s' % (i, filename, l))
    try:
      score = float(field[4])
    except:
      raise SyntaxError('Cannot convert score to float at line %d of file "%s": %s' % (i, filename, l))
232
    yield (field[0], field[1], field[2], field[3], score)
André Anjos's avatar
André Anjos committed
233
234

def split_five_column(filename):
235
236
237
238
239
  """split_five_column(filename) -> negatives, positives

  Loads a score set from a single file in five column format and splits the scores
  between negatives and positives. The score file has to respect the 4 column
  format as defined in the method :py:func:`five_column`.
André Anjos's avatar
André Anjos committed
240
241
242
243

  This method avoids loading and allocating memory for the strings present in
  the file. We only keep the scores.

244
245
246
247
248
249
250
251
252
253
254
255
  **Parameters:**

  ``filename`` : str or file-like
    The file that will be opened with :py:func:`open_file` containing the scores.

  **Returns:**

  ``negatives`` : array_like(1D, float)
    The list of ``score``'s, for which the ``claimed_id`` and the ``real_id`` differed (see :py:func:`five_column`).

  ``positives`` : array_like(1D, float)
    The list of ``score``'s, for which the ``claimed_id`` and the ``real_id`` are identical (see :py:func:`five_column`).
André Anjos's avatar
André Anjos committed
256
257
258
259
260
  """

  # split in positives and negatives
  neg = []
  pos = []
261
262
263
264
265
266
  # read five column list
  for (client_id, _, probe_id, _, score) in five_column(filename):
    if client_id == probe_id:
      pos.append(score)
    else:
      neg.append(score)
André Anjos's avatar
André Anjos committed
267
268
269
270

  return (numpy.array(neg, numpy.float64), numpy.array(pos, numpy.float64))

def cmc_five_column(filename):
271
272
273
274
275
  """cmc_four_column(filename) -> cmc_scores

  Loads scores to compute CMC curves from a file in five column format.
  The four column file needs to be in the same format as described in :py:func:`five_column`,
  and the ``test_label`` (column 4) has to contain the test/probe file name or a probe id.
André Anjos's avatar
André Anjos committed
276

277
278
279
  This function returns a list of tuples.
  For each probe file, the tuple consists of a list of negative scores and a list of positive scores.
  Usually, the list of positive scores should contain only one element, but more are allowed.
280
  The result of this function can directly be passed to, e.g., the :py:func:`bob.measure.cmc` function.
281
282
283
284
285
286
287
288
289
290

  **Parameters:**

  ``filename`` : str or file-like
    The file that will be opened with :py:func:`open_file` containing the scores.

  **Returns:**

  ``cmc_scores`` : [(array_like(1D, float), array_like(1D, float))]
    A list of tuples, where each tuple contains the ``negative`` and ``positive`` scores for one probe of the database
André Anjos's avatar
André Anjos committed
291
  """
292
  # extract positives and negatives
André Anjos's avatar
André Anjos committed
293
294
  pos_dict = {}
  neg_dict = {}
295
296
297
298
299
300
301
302
303
304
305
306
  # read four column list
  for (client_id, _, probe_id, probe_name, score) in five_column(filename):
    # check in which dict we have to put the score
    if client_id == probe_id:
      correct_dict = pos_dict
    else:
      correct_dict = neg_dict
    # append score
    if probe_name in correct_dict:
      correct_dict[probe_name].append(score)
    else:
      correct_dict[probe_name] = [score]
André Anjos's avatar
André Anjos committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

  # convert to lists of tuples of ndarrays
  retval = []
  import logging
  logger = logging.getLogger('bob')
  for probe_name in sorted(pos_dict.keys()):
    if probe_name in neg_dict:
      retval.append((numpy.array(neg_dict[probe_name], numpy.float64), numpy.array(pos_dict[probe_name], numpy.float64)))
    else:
      logger.warn('For probe name "%s" there are only positive scores. This probe name is ignored.' % probe_name)
  # test if there are probes for which only negatives exist
  for probe_name in sorted(neg_dict.keys()):
    if not probe_name in pos_dict.keys():
       logger.warn('For probe name "%s" there are only negative scores. This probe name is ignored.' % probe_name)
  return retval