Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
bob
bob.learn.tensorflow
Commits
d255f06e
Commit
d255f06e
authored
Jun 09, 2021
by
Tiago de Freitas Pereira
Browse files
Updated ARCFACE
parent
324a941d
Pipeline
#51355
passed with stage
in 4 minutes and 58 seconds
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
bob/learn/tensorflow/models/arcface.py
View file @
d255f06e
...
@@ -17,9 +17,18 @@ class ArcFaceModel(EmbeddingValidation):
...
@@ -17,9 +17,18 @@ class ArcFaceModel(EmbeddingValidation):
loss
=
self
.
compiled_loss
(
loss
=
self
.
compiled_loss
(
y
,
logits
,
sample_weight
=
None
,
regularization_losses
=
self
.
losses
y
,
logits
,
sample_weight
=
None
,
regularization_losses
=
self
.
losses
)
)
self
.
optimizer
.
minimize
(
loss
,
self
.
trainable_variables
,
tape
=
tape
)
reg_loss
=
tf
.
reduce_sum
(
self
.
losses
)
total_loss
=
loss
+
reg_loss
trainable_vars
=
self
.
trainable_variables
self
.
optimizer
.
minimize
(
total_loss
,
trainable_vars
,
tape
=
tape
)
self
.
compiled_metrics
.
update_state
(
y
,
logits
,
sample_weight
=
None
)
self
.
compiled_metrics
.
update_state
(
y
,
logits
,
sample_weight
=
None
)
tf
.
summary
.
scalar
(
"arc_face_loss"
,
data
=
loss
,
step
=
self
.
_train_counter
)
tf
.
summary
.
scalar
(
"total_loss"
,
data
=
total_loss
,
step
=
self
.
_train_counter
)
self
.
train_loss
(
loss
)
self
.
train_loss
(
loss
)
return
{
m
.
name
:
m
.
result
()
for
m
in
self
.
metrics
+
[
self
.
train_loss
]}
return
{
m
.
name
:
m
.
result
()
for
m
in
self
.
metrics
+
[
self
.
train_loss
]}
...
@@ -55,12 +64,16 @@ class ArcFaceLayer(tf.keras.layers.Layer):
...
@@ -55,12 +64,16 @@ class ArcFaceLayer(tf.keras.layers.Layer):
s: int
s: int
Scale
Scale
arc: bool
If `True`, uses arcface loss. If `False`, it's a regular dense layer
"""
"""
def
__init__
(
self
,
n_classes
=
10
,
s
=
30
,
m
=
0.5
):
def
__init__
(
self
,
n_classes
=
10
,
s
=
30
,
m
=
0.5
,
arc
=
True
):
super
(
ArcFaceLayer
,
self
).
__init__
(
name
=
"arc_face_logits"
)
super
(
ArcFaceLayer
,
self
).
__init__
(
name
=
"arc_face_logits"
)
self
.
n_classes
=
n_classes
self
.
n_classes
=
n_classes
self
.
s
=
s
self
.
s
=
s
self
.
arc
=
arc
self
.
m
=
m
self
.
m
=
m
def
build
(
self
,
input_shape
):
def
build
(
self
,
input_shape
):
...
@@ -75,7 +88,7 @@ class ArcFaceLayer(tf.keras.layers.Layer):
...
@@ -75,7 +88,7 @@ class ArcFaceLayer(tf.keras.layers.Layer):
self
.
mm
=
tf
.
identity
(
math
.
sin
(
math
.
pi
-
self
.
m
)
*
self
.
m
)
self
.
mm
=
tf
.
identity
(
math
.
sin
(
math
.
pi
-
self
.
m
)
*
self
.
m
)
def
call
(
self
,
X
,
y
,
training
=
None
):
def
call
(
self
,
X
,
y
,
training
=
None
):
if
self
.
arc
:
# normalize feature
# normalize feature
X
=
tf
.
nn
.
l2_normalize
(
X
,
axis
=
1
)
X
=
tf
.
nn
.
l2_normalize
(
X
,
axis
=
1
)
W
=
tf
.
nn
.
l2_normalize
(
self
.
W
,
axis
=
0
)
W
=
tf
.
nn
.
l2_normalize
(
self
.
W
,
axis
=
0
)
...
@@ -98,6 +111,8 @@ class ArcFaceLayer(tf.keras.layers.Layer):
...
@@ -98,6 +111,8 @@ class ArcFaceLayer(tf.keras.layers.Layer):
logits
=
(
one_hot
*
cos_yi_m
)
+
((
1.0
-
one_hot
)
*
cos_yi
)
logits
=
(
one_hot
*
cos_yi_m
)
+
((
1.0
-
one_hot
)
*
cos_yi
)
logits
=
self
.
s
*
logits
logits
=
self
.
s
*
logits
else
:
logits
=
tf
.
matmul
(
X
,
self
.
W
)
return
logits
return
logits
...
@@ -136,6 +151,9 @@ class ArcFaceLayer3Penalties(tf.keras.layers.Layer):
...
@@ -136,6 +151,9 @@ class ArcFaceLayer3Penalties(tf.keras.layers.Layer):
# Getting the angle
# Getting the angle
theta
=
tf
.
math
.
acos
(
cos_yi
)
theta
=
tf
.
math
.
acos
(
cos_yi
)
theta
=
tf
.
clip_by_value
(
theta
,
-
1.0
+
tf
.
keras
.
backend
.
epsilon
(),
1
-
tf
.
keras
.
backend
.
epsilon
()
)
cos_yi_m
=
tf
.
math
.
cos
(
self
.
m1
*
theta
+
self
.
m2
)
-
self
.
m3
cos_yi_m
=
tf
.
math
.
cos
(
self
.
m1
*
theta
+
self
.
m2
)
-
self
.
m3
...
@@ -146,8 +164,9 @@ class ArcFaceLayer3Penalties(tf.keras.layers.Layer):
...
@@ -146,8 +164,9 @@ class ArcFaceLayer3Penalties(tf.keras.layers.Layer):
tf
.
cast
(
y
,
tf
.
int32
),
depth
=
self
.
n_classes
,
name
=
"one_hot_mask"
tf
.
cast
(
y
,
tf
.
int32
),
depth
=
self
.
n_classes
,
name
=
"one_hot_mask"
)
)
one_hot
=
tf
.
cast
(
one_hot
,
cos_yi_m
.
dtype
)
logits
=
(
one_hot
*
cos_yi_m
)
+
((
1.0
-
one_hot
)
*
cos_yi
)
logits
=
(
one_hot
*
cos_yi_m
)
+
((
1.0
-
one_hot
)
*
cos_yi
)
logits
=
self
.
s
*
logits
logits
=
self
.
s
*
logits
return
logits
return
logits
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment