Trainer.py 13.1 KB
Newer Older
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
1
2
3
4
5
6
7
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# @author: Tiago de Freitas Pereira <tiago.pereira@idiap.ch>
# @date: Tue 09 Aug 2016 15:25:22 CEST

import tensorflow as tf
from ..network import SequenceNetwork
8
9
10
import threading
import os
import bob.io.base
11
import bob.core
12
from ..analyzers import SoftmaxAnalizer
13
from tensorflow.core.framework import summary_pb2
14
import time
15
from bob.learn.tensorflow.datashuffler.OnlineSampling import OnLineSampling
16
from .learning_rate import constant
17

18
logger = bob.core.log.setup("bob.learn.tensorflow")
19

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class Trainer(object):
    """
    One graph trainer.
    Use this trainer when your CNN is composed by one graph

    **Parameters**
      architecture: The architecture that you want to run. Should be a :py:class`bob.learn.tensorflow.network.SequenceNetwork`
      optimizer: One of the tensorflow optimizers https://www.tensorflow.org/versions/r0.10/api_docs/python/train.html
      use_gpu: Use GPUs in the training
      loss: Loss
      temp_dir: The output directory

      base_learning_rate: Initial learning rate
      weight_decay:
      convergence_threshold:

      iterations: Maximum number of iterations
      snapshot: Will take a snapshot of the network at every `n` iterations
      prefetch: Use extra Threads to deal with the I/O
      analizer: Neural network analizer :py:mod:`bob.learn.tensorflow.analyzers`
      verbosity_level:

    """
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
44
    def __init__(self,
45
46
                 architecture,
                 optimizer=tf.train.AdamOptimizer(),
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
47
48
                 use_gpu=False,
                 loss=None,
49
                 temp_dir="cnn",
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
50

51
                 # Learning rate
52
                 learning_rate=constant(),
53

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
54
                 ###### training options ##########
55
                 convergence_threshold=0.01,
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
56
                 iterations=5000,
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
57
58
                 snapshot=500,
                 validation_snapshot=100,
59
                 prefetch=False,
60
61

                 ## Analizer
62
                 analizer=SoftmaxAnalizer(),
63

64
65
66
                 ### Pretrained model
                 model_from_file="",

67
                 verbosity_level=2):
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
68

69
70
        if not isinstance(architecture, SequenceNetwork):
            raise ValueError("`architecture` should be instance of `SequenceNetwork`")
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
71
72

        self.architecture = architecture
73
        self.optimizer_class = optimizer
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
74
        self.use_gpu = use_gpu
75
76
77
        self.loss = loss
        self.temp_dir = temp_dir

78
79
80
81
        #self.base_learning_rate = base_learning_rate
        self.learning_rate = learning_rate
        #self.weight_decay = weight_decay
        #self.decay_steps = decay_steps
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
82
83
84

        self.iterations = iterations
        self.snapshot = snapshot
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
85
        self.validation_snapshot = validation_snapshot
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
86
        self.convergence_threshold = convergence_threshold
87
        self.prefetch = prefetch
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
88

89
90
91
92
93
94
95
        # Training variables used in the fit
        self.optimizer = None
        self.training_graph = None
        self.training_graph = None
        self.train_data_shuffler = None
        self.summaries_train = None
        self.train_summary_writter = None
96
        self.thread_pool = None
97
98
99
100
101

        # Validation data
        self.validation_graph = None
        self.validation_summary_writter = None

102
103
104
105
106
        # Analizer
        self.analizer = analizer

        self.thread_pool = None
        self.enqueue_op = None
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
107
        self.global_step = None
108

109
110
        self.model_from_file = model_from_file

111
112
        bob.core.log.set_verbosity_level(logger, verbosity_level)

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
113
114
115
    def __del__(self):
        tf.reset_default_graph()

116
    def compute_graph(self, data_shuffler, prefetch=False, name=""):
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
117
        """
118
119
        Computes the graph for the trainer.

120

121
122
123
        ** Parameters **

            data_shuffler: Data shuffler
124
            prefetch:
125
126
127
128
            name: Name of the graph
        """

        # Defining place holders
129
        if prefetch:
130
            [placeholder_data, placeholder_labels] = data_shuffler.get_placeholders_forprefetch(name=name)
131
132
133
134
135
136
137

            # Defining a placeholder queue for prefetching
            queue = tf.FIFOQueue(capacity=10,
                                 dtypes=[tf.float32, tf.int64],
                                 shapes=[placeholder_data.get_shape().as_list()[1:], []])

            # Fetching the place holders from the queue
138
            self.enqueue_op = queue.enqueue_many([placeholder_data, placeholder_labels])
139
140
141
142
143
144
145
            feature_batch, label_batch = queue.dequeue_many(data_shuffler.batch_size)

            # Creating the architecture for train and validation
            if not isinstance(self.architecture, SequenceNetwork):
                raise ValueError("The variable `architecture` must be an instance of "
                                 "`bob.learn.tensorflow.network.SequenceNetwork`")
        else:
146
            [feature_batch, label_batch] = data_shuffler.get_placeholders(name=name)
147
148
149
150
151
152
153
154
155

        # Creating graphs and defining the loss
        network_graph = self.architecture.compute_graph(feature_batch)
        graph = self.loss(network_graph, label_batch)

        return graph

    def get_feed_dict(self, data_shuffler):
        """
156
        Given a data shuffler prepared the dictionary to be injected in the graph
157
158
159
160

        ** Parameters **
            data_shuffler:

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
161
        """
162
163
        [data, labels] = data_shuffler.get_batch()
        [data_placeholder, label_placeholder] = data_shuffler.get_placeholders()
164
165
166
167
168

        feed_dict = {data_placeholder: data,
                     label_placeholder: labels}
        return feed_dict

169
170
171
172
173
174
175
176
177
178
    def fit(self, session, step):
        """
        Run one iteration (`forward` and `backward`)

        ** Parameters **
            session: Tensorflow session
            step: Iteration number

        """

179
        if self.prefetch:
180
181
            _, l, lr, summary = session.run([self.optimizer, self.training_graph,
                                             self.learning_rate, self.summaries_train])
182
183
184
185
186
        else:
            feed_dict = self.get_feed_dict(self.train_data_shuffler)
            _, l, lr, summary = session.run([self.optimizer, self.training_graph,
                                             self.learning_rate, self.summaries_train], feed_dict=feed_dict)

187
188
        logger.info("Loss training set step={0} = {1}".format(step, l))
        self.train_summary_writter.add_summary(summary, step)
189

190
    def compute_validation(self,  session, data_shuffler, step):
191
192
193
194
195
196
197
198
199
        """
        Computes the loss in the validation set

        ** Parameters **
            session: Tensorflow session
            data_shuffler: The data shuffler to be used
            step: Iteration number

        """
200
        # Opening a new session for validation
201
202
203
204
        self.validation_graph = self.compute_graph(data_shuffler, name="validation")
        feed_dict = self.get_feed_dict(data_shuffler)
        l = session.run(self.validation_graph, feed_dict=feed_dict)

205
206
207
        if self.validation_summary_writter is None:
            self.validation_summary_writter = tf.train.SummaryWriter(os.path.join(self.temp_dir, 'validation'), session.graph)

208
209
210
211
212
        summaries = []
        summaries.append(summary_pb2.Summary.Value(tag="loss", simple_value=float(l)))
        self.validation_summary_writter.add_summary(summary_pb2.Summary(value=summaries), step)
        logger.info("Loss VALIDATION set step={0} = {1}".format(step, l))

213
214
215
216
217
    def create_general_summary(self):
        """
        Creates a simple tensorboard summary with the value of the loss and learning rate
        """

218
219
220
221
222
        # Train summary
        tf.scalar_summary('loss', self.training_graph, name="train")
        tf.scalar_summary('lr', self.learning_rate, name="train")
        return tf.merge_all_summaries()

223
    def start_thread(self, session):
224
225
226
227
228
229
230
        """
        Start pool of threads for pre-fetching

        **Parameters**
          session: Tensorflow session
        """

231
        threads = []
232
233
        for n in range(3):
            t = threading.Thread(target=self.load_and_enqueue, args=(session,))
234
235
236
237
            t.daemon = True  # thread will close when parent quits
            t.start()
            threads.append(t)
        return threads
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
238

239
240
    def load_and_enqueue(self, session):
        """
241
        Injecting data in the place holder queue
242
243
244

        **Parameters**
          session: Tensorflow session
245
        """
246

247
        while not self.thread_pool.should_stop():
248
249
            [train_data, train_labels] = self.train_data_shuffler.get_batch()
            [train_placeholder_data, train_placeholder_labels] = self.train_data_shuffler.get_placeholders()
250

251
252
253
            feed_dict = {train_placeholder_data: train_data,
                         train_placeholder_labels: train_labels}

254
            session.run(self.enqueue_op, feed_dict=feed_dict)
255
256
257

    def train(self, train_data_shuffler, validation_data_shuffler=None):
        """
258
        Train the network
259
260
261
262
263
        """

        # Creating directory
        bob.io.base.create_directories_safe(self.temp_dir)
        self.train_data_shuffler = train_data_shuffler
264

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
265
266
267
        # Pickle the architecture to save
        self.architecture.pickle_net(train_data_shuffler.deployment_shape)

268
        # TODO: find an elegant way to provide this as a parameter of the trainer
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
269
        self.global_step = tf.Variable(0, trainable=False)
270
271
272
273
274
275
276
277
        #self.learning_rate = tf.Variable(self.base_learning_rate)
        #self.learning_rate = tf.train.exponential_decay(
        #    learning_rate=self.base_learning_rate,  # Learning rate
        #    global_step=self.global_step,
        #    decay_steps=self.decay_steps,
        #    decay_rate=self.weight_decay,  # Decay step
        #    staircase=False
        #)
278
        self.training_graph = self.compute_graph(train_data_shuffler, prefetch=self.prefetch, name="train")
279

280
        # Preparing the optimizer
281
        self.optimizer_class._learning_rate = self.learning_rate
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
282
283
        self.optimizer = self.optimizer_class.minimize(self.training_graph, global_step=self.global_step)

284
        # Train summary
285
        self.summaries_train = self.create_general_summary()
286
287

        logger.info("Initializing !!")
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
288

289
290
        config = tf.ConfigProto(log_device_placement=True)
        config.gpu_options.allow_growth = True
291

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
292
        with tf.Session(config=config) as session:
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
293
            tf.initialize_all_variables().run()
294

295
296
297
            # Original tensorflow saver object
            saver = tf.train.Saver(var_list=tf.trainable_variables())

298
299
300
301
302
303
            # Loading a pretrained model
            if self.model_from_file != "":
                logger.info("Loading pretrained model from {0}".format(self.model_from_file))
                hdf5 = bob.io.base.HDF5File(self.model_from_file)
                self.architecture.load_variables_only(hdf5, session)

304
305
306
            if isinstance(train_data_shuffler, OnLineSampling):
                train_data_shuffler.set_feature_extractor(self.architecture, session=session)

307
            # Start a thread to enqueue data asynchronously, and hide I/O latency.
308
309
310
311
            if self.prefetch:
                self.thread_pool = tf.train.Coordinator()
                tf.train.start_queue_runners(coord=self.thread_pool)
                threads = self.start_thread(session)
312

313
            # TENSOR BOARD SUMMARY
314
            self.train_summary_writter = tf.train.SummaryWriter(os.path.join(self.temp_dir, 'train'), session.graph)
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
315
            for step in range(self.iterations):
316
317
318
319
320
321
322

                start = time.time()
                self.fit(session, step)
                end = time.time()
                summary = summary_pb2.Summary.Value(tag="elapsed_time", simple_value=float(end-start))
                self.train_summary_writter.add_summary(summary_pb2.Summary(value=[summary]), step)

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
323
324
                # Running validation
                if validation_data_shuffler is not None and step % self.validation_snapshot == 0:
325
                    self.compute_validation(session, validation_data_shuffler, step)
326

327
328
                    if self.analizer is not None:
                        self.validation_summary_writter.add_summary(self.analizer(
329
                             validation_data_shuffler, self.architecture, session), step)
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
330

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
331
332
333
                # Taking snapshot
                if step % self.snapshot == 0:
                    logger.info("Taking snapshot")
334
335
336
337
                    path = os.path.join(self.temp_dir, 'model_snapshot{0}.hdf5'.format(step))
                    #path_original = os.path.join(self.temp_dir, 'model_snapshot{0}.ckp'.format(step))
                    #self.architecture.save_original(session, saver, path_original)
                    hdf5 = bob.io.base.HDF5File(path, 'w')
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
338
339
340
                    self.architecture.save(hdf5)
                    del hdf5

341
342
343
344
345
            logger.info("Training finally finished")

            self.train_summary_writter.close()
            if validation_data_shuffler is not None:
                self.validation_summary_writter.close()
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
346

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
347
            # Saving the final network
348
349
350
351
            path = os.path.join(self.temp_dir, 'model.hdf5')
            #path_original = os.path.join(self.temp_dir, 'model.ckp')
            #self.architecture.save_original(session, saver, path_original)
            hdf5 = bob.io.base.HDF5File(path, 'w')
352
353
354
            self.architecture.save(hdf5)
            del hdf5

355
356
357
358
            if self.prefetch:
                # now they should definetely stop
                self.thread_pool.request_stop()
                self.thread_pool.join(threads)