Trainer.py 19.7 KB
Newer Older
1 2 3 4 5 6
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# @author: Tiago de Freitas Pereira <tiago.pereira@idiap.ch>
# @date: Tue 09 Aug 2016 15:25:22 CEST

import tensorflow as tf
7 8 9
import threading
import os
import bob.io.base
10
import bob.core
11
from ..analyzers import SoftmaxAnalizer
12
from tensorflow.core.framework import summary_pb2
13
import time
14
from bob.learn.tensorflow.datashuffler import OnlineSampling, TFRecord
15
from bob.learn.tensorflow.utils.session import Session
16
from bob.learn.tensorflow.utils import compute_embedding_accuracy
17
from .learning_rate import constant
18
import time
19

20 21 22 23 24
#logger = bob.core.log.setup("bob.learn.tensorflow")

import logging
logger = logging.getLogger("bob.learn")

25

26 27 28 29 30 31
class Trainer(object):
    """
    One graph trainer.
    Use this trainer when your CNN is composed by one graph

    **Parameters**
32

Tiago Pereira's avatar
Tiago Pereira committed
33 34
    train_data_shuffler:
      The data shuffler used for batching data for training
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
35

Tiago Pereira's avatar
Tiago Pereira committed
36
    iterations:
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
37
      Maximum number of iterations
38

Tiago Pereira's avatar
Tiago Pereira committed
39
    snapshot:
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
40
      Will take a snapshot of the network at every `n` iterations
41

Tiago Pereira's avatar
Tiago Pereira committed
42 43
    validation_snapshot:
      Test with validation each `n` iterations
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
44 45 46 47

    analizer:
      Neural network analizer :py:mod:`bob.learn.tensorflow.analyzers`

Tiago Pereira's avatar
Tiago Pereira committed
48 49 50
    temp_dir: str
      The output directory

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
51
    verbosity_level:
52 53

    """
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
54

55
    def __init__(self,
Tiago Pereira's avatar
Tiago Pereira committed
56
                 train_data_shuffler,
57
                 validation_data_shuffler=None,
58
                 validate_with_embeddings=False,
59

60 61
                 ###### training options ##########
                 iterations=5000,
62
                 snapshot=1000,
63
                 validation_snapshot=2000,#2000,
64
                 keep_checkpoint_every_n_hours=2,
65 66

                 ## Analizer
67
                 analizer=SoftmaxAnalizer(),
68

Tiago Pereira's avatar
Tiago Pereira committed
69 70
                 # Temporatu dir
                 temp_dir="cnn",
71

72
                 verbosity_level=2):
73

Tiago Pereira's avatar
Tiago Pereira committed
74
        self.train_data_shuffler = train_data_shuffler
75

76 77
        self.temp_dir = temp_dir

78 79
        self.iterations = iterations
        self.snapshot = snapshot
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
80
        self.validation_snapshot = validation_snapshot
81
        self.keep_checkpoint_every_n_hours = keep_checkpoint_every_n_hours
82

83 84 85
        # Training variables used in the fit
        self.summaries_train = None
        self.train_summary_writter = None
86
        self.thread_pool = None
87
        self.centers = None
88 89 90

        # Validation data
        self.validation_summary_writter = None
91
        self.summaries_validation = None
92
        self.validation_data_shuffler = validation_data_shuffler
93

94 95
        # Analizer
        self.analizer = analizer
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
96
        self.global_step = None
97

98
        self.session = None
99

Tiago Pereira's avatar
Tiago Pereira committed
100
        self.graph = None
101
        self.validation_graph = None
102
        self.prelogits = None
103
                
Tiago Pereira's avatar
Tiago Pereira committed
104
        self.loss = None
105
        
Tiago Pereira's avatar
Tiago Pereira committed
106
        self.predictor = None
107 108
        self.validation_predictor = None  
        self.validate_with_embeddings = validate_with_embeddings      
109
        
Tiago Pereira's avatar
Tiago Pereira committed
110 111
        self.optimizer_class = None
        self.learning_rate = None
112

Tiago Pereira's avatar
Tiago Pereira committed
113 114
        # Training variables used in the fit
        self.optimizer = None
115
        
Tiago Pereira's avatar
Tiago Pereira committed
116 117
        self.data_ph = None
        self.label_ph = None
118 119 120 121
        
        self.validation_data_ph = None
        self.validation_label_ph = None
        
Tiago Pereira's avatar
Tiago Pereira committed
122 123
        self.saver = None

124 125
        bob.core.log.set_verbosity_level(logger, verbosity_level)

Tiago Pereira's avatar
Tiago Pereira committed
126 127 128
        # Creating the session
        self.session = Session.instance(new=True).session
        self.from_scratch = True
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        
    def train(self):
        """
        Train the network        
        Here we basically have the loop for that takes your graph and do a sequence of session.run
        """

        # Creating directories
        bob.io.base.create_directories_safe(self.temp_dir)
        logger.info("Initializing !!")

        # Loading a pretrained model
        if self.from_scratch:
            start_step = 0
        else:
            start_step = self.global_step.eval(session=self.session)

        # TODO: Put this back as soon as possible
        #if isinstance(train_data_shuffler, OnlineSampling):
        #    train_data_shuffler.set_feature_extractor(self.architecture, session=self.session)

        # Start a thread to enqueue data asynchronously, and hide I/O latency.        
        if self.train_data_shuffler.prefetch:
            self.thread_pool = tf.train.Coordinator()
            tf.train.start_queue_runners(coord=self.thread_pool, sess=self.session)
            # In case you have your own queue
            if not isinstance(self.train_data_shuffler, TFRecord):
                threads = self.start_thread()

        # Bootstrapping the summary writters
        self.train_summary_writter = tf.summary.FileWriter(os.path.join(self.temp_dir, 'train'), self.session.graph)
        if self.validation_data_shuffler is not None:
            self.validation_summary_writter = tf.summary.FileWriter(os.path.join(self.temp_dir, 'validation'),
                                                                    self.session.graph)

        ######################### Loop for #################
        for step in range(start_step, start_step+self.iterations):
            # Run fit in the graph
            start = time.time()
            self.fit(step)
            end = time.time()

            summary = summary_pb2.Summary.Value(tag="elapsed_time", simple_value=float(end-start))
            self.train_summary_writter.add_summary(summary_pb2.Summary(value=[summary]), step)

            # Running validation
            if self.validation_data_shuffler is not None and step % self.validation_snapshot == 0:
176 177 178 179
                if self.validate_with_embeddings:
                    self.compute_validation_embeddings(step)
                else:
                    self.compute_validation(step)
180 181

            # Taking snapshot
182
            if step % self.snapshot == 0:            
183 184 185 186 187 188
                logger.info("Taking snapshot")
                path = os.path.join(self.temp_dir, 'model_snapshot{0}.ckp'.format(step))
                self.saver.save(self.session, path, global_step=step)

        # Running validation for the last time
        if self.validation_data_shuffler is not None:
189 190 191 192 193
            if self.validate_with_embeddings:
                self.compute_validation_embeddings(step)
            else:
                self.compute_validation(step)
            
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
            
        logger.info("Training finally finished")

        self.train_summary_writter.close()
        if self.validation_data_shuffler is not None:
            self.validation_summary_writter.close()

        # Saving the final network
        path = os.path.join(self.temp_dir, 'model.ckp')
        self.saver.save(self.session, path)

        if self.train_data_shuffler.prefetch or isinstance(self.train_data_shuffler, TFRecord):
            # now they should definetely stop
            self.thread_pool.request_stop()
            #if not isinstance(self.train_data_shuffler, TFRecord):
            #    self.thread_pool.join(threads)        

Tiago Pereira's avatar
Tiago Pereira committed
211 212
    def create_network_from_scratch(self,
                                    graph,
213
                                    validation_graph=None,
Tiago Pereira's avatar
Tiago Pereira committed
214 215
                                    optimizer=tf.train.AdamOptimizer(),
                                    loss=None,
216

Tiago Pereira's avatar
Tiago Pereira committed
217 218
                                    # Learning rate
                                    learning_rate=None,
219
                                    prelogits=None
Tiago Pereira's avatar
Tiago Pereira committed
220 221
                                    ):

Tiago Pereira's avatar
Tiago Pereira committed
222 223
        """
        Prepare all the tensorflow variables before training.
224
        
Tiago Pereira's avatar
Tiago Pereira committed
225
        **Parameters**
226

Tiago Pereira's avatar
Tiago Pereira committed
227
            graph: Input graph for training
228

Tiago Pereira's avatar
Tiago Pereira committed
229
            optimizer: Solver
230

Tiago Pereira's avatar
Tiago Pereira committed
231
            loss: Loss function
232

Tiago Pereira's avatar
Tiago Pereira committed
233 234
            learning_rate: Learning rate
        """
235
        # Getting the pointer to the placeholders
236 237
        self.data_ph = self.train_data_shuffler("data", from_queue=True)
        self.label_ph = self.train_data_shuffler("label", from_queue=True)
238
                
Tiago Pereira's avatar
Tiago Pereira committed
239
        self.graph = graph
240
        self.loss = loss        
241

242 243 244 245
        # TODO: SPECIFIC HACK FOR THE CENTER LOSS. I NEED TO FIND A CLEAN SOLUTION FOR THAT
        self.centers = None
        if prelogits is not None:
            self.predictor, self.centers = self.loss(self.graph, prelogits, self.label_ph)
246 247 248
            tf.add_to_collection("centers", self.centers)
            tf.add_to_collection("prelogits", prelogits)
            self.prelogits = prelogits
249 250
        else:
            self.predictor = self.loss(self.graph, self.label_ph)
251
        
Tiago Pereira's avatar
Tiago Pereira committed
252 253
        self.optimizer_class = optimizer
        self.learning_rate = learning_rate
254
        self.global_step = tf.contrib.framework.get_or_create_global_step()
Tiago Pereira's avatar
Tiago Pereira committed
255

256 257 258 259
        # Preparing the optimizer
        self.optimizer_class._learning_rate = self.learning_rate
        self.optimizer = self.optimizer_class.minimize(self.predictor, global_step=self.global_step)

Tiago Pereira's avatar
Tiago Pereira committed
260
        # Saving all the variables
261 262
        self.saver = tf.train.Saver(var_list=tf.global_variables() + tf.local_variables(), 
                                    keep_checkpoint_every_n_hours=self.keep_checkpoint_every_n_hours)
Tiago Pereira's avatar
Tiago Pereira committed
263

264
        self.summaries_train = self.create_general_summary(self.predictor, self.graph, self.label_ph)
265

266 267
        # SAving some variables
        tf.add_to_collection("global_step", self.global_step)
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
268

269 270
            
        tf.add_to_collection("graph", self.graph)
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
271
        
Tiago Pereira's avatar
Tiago Pereira committed
272
        tf.add_to_collection("predictor", self.predictor)
273

Tiago Pereira's avatar
Tiago Pereira committed
274 275
        tf.add_to_collection("data_ph", self.data_ph)
        tf.add_to_collection("label_ph", self.label_ph)
276

Tiago Pereira's avatar
Tiago Pereira committed
277 278
        tf.add_to_collection("optimizer", self.optimizer)
        tf.add_to_collection("learning_rate", self.learning_rate)
279

Tiago Pereira's avatar
Tiago Pereira committed
280
        tf.add_to_collection("summaries_train", self.summaries_train)
281

282
        # Same business with the validation
283
        if self.validation_data_shuffler is not None:
284 285 286 287 288
            self.validation_data_ph = self.validation_data_shuffler("data", from_queue=True)
            self.validation_label_ph = self.validation_data_shuffler("label", from_queue=True)

            self.validation_graph = validation_graph

289
            if self.validate_with_embeddings:            
290
                self.validation_predictor = self.validation_graph
291
            else:            
292
                self.validation_predictor = self.loss(self.validation_graph, self.validation_label_ph)
293 294 295 296 297 298 299 300 301 302

            self.summaries_validation = self.create_general_summary(self.validation_predictor, self.validation_graph, self.validation_label_ph)
            tf.add_to_collection("summaries_validation", self.summaries_validation)
            
            tf.add_to_collection("validation_graph", self.validation_graph)
            tf.add_to_collection("validation_data_ph", self.validation_data_ph)
            tf.add_to_collection("validation_label_ph", self.validation_label_ph)

            tf.add_to_collection("validation_predictor", self.validation_predictor)
            tf.add_to_collection("summaries_validation", self.summaries_validation)
Tiago Pereira's avatar
Tiago Pereira committed
303

Tiago Pereira's avatar
Tiago Pereira committed
304
        # Creating the variables
305
        tf.local_variables_initializer().run(session=self.session)
Tiago Pereira's avatar
Tiago Pereira committed
306 307
        tf.global_variables_initializer().run(session=self.session)

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    def load_checkpoint(self, file_name, clear_devices=True):
        """
        Load a checkpoint

        ** Parameters **

           file_name:
                Name of the metafile to be loaded.
                If a directory is passed, the last checkpoint will be loaded

        """
        if os.path.isdir(file_name):
            checkpoint_path = tf.train.get_checkpoint_state(file_name).model_checkpoint_path
            self.saver = tf.train.import_meta_graph(checkpoint_path + ".meta", clear_devices=clear_devices)
            self.saver.restore(self.session, tf.train.latest_checkpoint(file_name))
        else:
            self.saver = tf.train.import_meta_graph(file_name, clear_devices=clear_devices)
            self.saver.restore(self.session, tf.train.latest_checkpoint(os.path.dirname(file_name)))
326
            
327
    def load_variables_from_external_model(self, checkpoint_path, var_list):
328 329 330 331 332
        """
        Load a set of variables from a given model and update them in the current one
        
        ** Parameters **
        
333
          checkpoint_path:
334 335 336 337 338 339 340 341 342 343 344 345 346
            Name of the tensorflow model to be loaded
          var_list:
            List of variables to be loaded. A tensorflow exception will be raised in case the variable does not exists
        
        """
        
        assert len(var_list)>0
        
        tf_varlist = []
        for v in var_list:
            tf_varlist += tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=v)

        saver = tf.train.Saver(tf_varlist)
347
        saver.restore(self.session, tf.train.latest_checkpoint(checkpoint_path))
348

349
    def create_network_from_file(self, file_name, clear_devices=True):
Tiago Pereira's avatar
Tiago Pereira committed
350
        """
Tiago Pereira's avatar
Tiago Pereira committed
351
        Bootstrap a graph from a checkpoint
Tiago Pereira's avatar
Tiago Pereira committed
352 353 354

         ** Parameters **

Tiago Pereira's avatar
Tiago Pereira committed
355
           file_name: Name of of the checkpoing
Tiago Pereira's avatar
Tiago Pereira committed
356
        """
357 358 359

        logger.info("Loading last checkpoint !!")
        self.load_checkpoint(file_name, clear_devices=True)
Tiago Pereira's avatar
Tiago Pereira committed
360 361

        # Loading training graph
Tiago Pereira's avatar
Tiago Pereira committed
362 363
        self.data_ph = tf.get_collection("data_ph")[0]
        self.label_ph = tf.get_collection("label_ph")[0]
Tiago Pereira's avatar
Tiago Pereira committed
364 365 366 367 368 369 370

        self.graph = tf.get_collection("graph")[0]
        self.predictor = tf.get_collection("predictor")[0]

        # Loding other elements
        self.optimizer = tf.get_collection("optimizer")[0]
        self.learning_rate = tf.get_collection("learning_rate")[0]
371
        self.summaries_train = tf.get_collection("summaries_train")[0]        
Tiago Pereira's avatar
Tiago Pereira committed
372 373
        self.global_step = tf.get_collection("global_step")[0]
        self.from_scratch = False
374 375 376 377

        if len(tf.get_collection("centers")) > 0:
            self.centers = tf.get_collection("centers")[0]
            self.prelogits = tf.get_collection("prelogits")[0]
378 379
        
        # Loading the validation bits
380
        if self.validation_data_shuffler is not None:
381 382 383 384
            self.summaries_validation = tf.get_collection("summaries_validation")[0]

            self.validation_graph = tf.get_collection("validation_graph")[0]
            self.validation_data_ph = tf.get_collection("validation_data_ph")[0]
385
            self.validation_label_ph = tf.get_collection("validation_label_ph")[0]
386 387 388 389

            self.validation_predictor = tf.get_collection("validation_predictor")[0]
            self.summaries_validation = tf.get_collection("summaries_validation")[0]

Tiago Pereira's avatar
Tiago Pereira committed
390 391
    def __del__(self):
        tf.reset_default_graph()
392 393 394

    def get_feed_dict(self, data_shuffler):
        """
395
        Given a data shuffler prepared the dictionary to be injected in the graph
396 397

        ** Parameters **
398 399

            data_shuffler: Data shuffler :py:class:`bob.learn.tensorflow.datashuffler.Base`
400

401
        """
402
        [data, labels] = data_shuffler.get_batch()
403

Tiago Pereira's avatar
Tiago Pereira committed
404 405
        feed_dict = {self.data_ph: data,
                     self.label_ph: labels}
406 407
        return feed_dict

408
    def fit(self, step):
409 410 411 412 413 414 415 416 417
        """
        Run one iteration (`forward` and `backward`)

        ** Parameters **
            session: Tensorflow session
            step: Iteration number

        """

418
        if self.train_data_shuffler.prefetch:
419 420 421 422 423 424 425 426
            # TODO: SPECIFIC HACK FOR THE CENTER LOSS. I NEED TO FIND A CLEAN SOLUTION FOR THAT        
            if self.centers is None:            
                _, l, lr, summary = self.session.run([self.optimizer, self.predictor,
                                                      self.learning_rate, self.summaries_train])
            else:
                _, l, lr, summary, _ = self.session.run([self.optimizer, self.predictor,
                                                      self.learning_rate, self.summaries_train, self.centers])
            
427 428
        else:
            feed_dict = self.get_feed_dict(self.train_data_shuffler)
429
            _, l, lr, summary = self.session.run([self.optimizer, self.predictor,
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
430
                                                  self.learning_rate, self.summaries_train], feed_dict=feed_dict)
431

432 433
        logger.info("Loss training set step={0} = {1}".format(step, l))
        self.train_summary_writter.add_summary(summary, step)
434

435
    def compute_validation(self, step):
Tiago Pereira's avatar
Tiago Pereira committed
436 437 438 439 440 441 442 443 444 445
        """
        Computes the loss in the validation set

        ** Parameters **
            session: Tensorflow session
            data_shuffler: The data shuffler to be used
            step: Iteration number

        """

446 447 448 449 450 451 452 453
        if self.validation_data_shuffler.prefetch:
            l, lr, summary = self.session.run([self.validation_predictor,
                                               self.learning_rate, self.summaries_validation])
        else:
            feed_dict = self.get_feed_dict(self.validation_data_shuffler)
            l, lr, summary = self.session.run([self.validation_predictor,
                                               self.learning_rate, self.summaries_validation],
                                               feed_dict=feed_dict)
Tiago Pereira's avatar
Tiago Pereira committed
454

455 456
        logger.info("Loss VALIDATION set step={0} = {1}".format(step, l))
        self.validation_summary_writter.add_summary(summary, step)               
Tiago Pereira's avatar
Tiago Pereira committed
457

458 459 460 461 462 463 464 465 466 467
    def compute_validation_embeddings(self, step):
        """
        Computes the loss in the validation set with embeddings

        ** Parameters **
            session: Tensorflow session
            data_shuffler: The data shuffler to be used
            step: Iteration number

        """
468
        
469 470 471 472 473 474 475 476 477 478 479 480 481 482
        if self.validation_data_shuffler.prefetch:
            embedding, labels = self.session.run([self.validation_predictor, self.validation_label_ph])
        else:
            feed_dict = self.get_feed_dict(self.validation_data_shuffler)
            embedding, labels = self.session.run([self.validation_predictor, self.validation_label_ph],
                                               feed_dict=feed_dict)
                                               
        accuracy = compute_embedding_accuracy(embedding, labels)
        
        summary = summary_pb2.Summary.Value(tag="accuracy", simple_value=accuracy)
        logger.info("VALIDATION Accuracy set step={0} = {1}".format(step, accuracy))
        self.validation_summary_writter.add_summary(summary_pb2.Summary(value=[summary]), step)               


483
    def create_general_summary(self, average_loss, output, label):
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
484
        """
485
        Creates a simple tensorboard summary with the value of the loss and learning rate
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
486
        """
487 488 489 490 491 492

        # Appending histograms for each trainable variables
        #for var in tf.trainable_variables():
        for var in tf.global_variables():
            tf.summary.histogram(var.op.name, var)
        
493
        # Train summary
494
        tf.summary.scalar('loss', average_loss)
495
        tf.summary.scalar('lr', self.learning_rate)        
496 497

        # Computing accuracy
498
        correct_prediction = tf.equal(tf.argmax(output, 1), label)
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
499
        
500 501
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        tf.summary.scalar('accuracy', accuracy)        
502
        return tf.summary.merge_all()
503

504
    def start_thread(self):
Tiago Pereira's avatar
Tiago Pereira committed
505
        """
506 507 508 509
        Start pool of threads for pre-fetching

        **Parameters**
          session: Tensorflow session
Tiago Pereira's avatar
Tiago Pereira committed
510
        """
511

512
        threads = []
513
        for n in range(self.train_data_shuffler.prefetch_threads):
514
            t = threading.Thread(target=self.load_and_enqueue, args=())
515 516 517 518
            t.daemon = True  # thread will close when parent quits
            t.start()
            threads.append(t)
        return threads
519

520
    def load_and_enqueue(self):
Tiago Pereira's avatar
Tiago Pereira committed
521
        """
522
        Injecting data in the place holder queue
523 524 525

        **Parameters**
          session: Tensorflow session
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
526

Tiago Pereira's avatar
Tiago Pereira committed
527
        """
528
        while not self.thread_pool.should_stop():
529
            [train_data, train_labels] = self.train_data_shuffler.get_batch()
530

531 532
            data_ph = self.train_data_shuffler("data", from_queue=False)
            label_ph = self.train_data_shuffler("label", from_queue=False)
533

534 535 536 537
            feed_dict = {data_ph: train_data,
                         label_ph: train_labels}

            self.session.run(self.train_data_shuffler.enqueue_op, feed_dict=feed_dict)
538

539