Trainer.py 11.6 KB
Newer Older
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
1
2
3
4
5
6
7
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# @author: Tiago de Freitas Pereira <tiago.pereira@idiap.ch>
# @date: Tue 09 Aug 2016 15:25:22 CEST

import tensorflow as tf
from ..network import SequenceNetwork
8
9
10
import threading
import os
import bob.io.base
11
import bob.core
12
from ..analyzers import SoftmaxAnalizer
13
from tensorflow.core.framework import summary_pb2
14
import time
15
16
from bob.learn.tensorflow.datashuffler.OnlineSampling import OnLineSampling

17
18
#os.environ["CUDA_VISIBLE_DEVICES"] = "1,2,3,0"
os.environ["CUDA_VISIBLE_DEVICES"] = ""
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
19

20
logger = bob.core.log.setup("bob.learn.tensorflow")
21

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
class Trainer(object):
    """
    One graph trainer.
    Use this trainer when your CNN is composed by one graph

    **Parameters**
      architecture: The architecture that you want to run. Should be a :py:class`bob.learn.tensorflow.network.SequenceNetwork`
      optimizer: One of the tensorflow optimizers https://www.tensorflow.org/versions/r0.10/api_docs/python/train.html
      use_gpu: Use GPUs in the training
      loss: Loss
      temp_dir: The output directory

      base_learning_rate: Initial learning rate
      weight_decay:
      convergence_threshold:

      iterations: Maximum number of iterations
      snapshot: Will take a snapshot of the network at every `n` iterations
      prefetch: Use extra Threads to deal with the I/O
      analizer: Neural network analizer :py:mod:`bob.learn.tensorflow.analyzers`
      verbosity_level:

    """
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
46
    def __init__(self,
47
48
                 architecture,
                 optimizer=tf.train.AdamOptimizer(),
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
49
50
                 use_gpu=False,
                 loss=None,
51
                 temp_dir="cnn",
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
52

53
54
55
56
                 # Learning rate
                 base_learning_rate=0.001,
                 weight_decay=0.9,

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
57
                 ###### training options ##########
58
                 convergence_threshold=0.01,
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
59
                 iterations=5000,
60
61
                 snapshot=100,
                 prefetch=False,
62
63

                 ## Analizer
64
                 analizer=SoftmaxAnalizer(),
65

66
                 verbosity_level=2):
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
67

68
69
        if not isinstance(architecture, SequenceNetwork):
            raise ValueError("`architecture` should be instance of `SequenceNetwork`")
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
70
71

        self.architecture = architecture
72
        self.optimizer_class = optimizer
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
73
        self.use_gpu = use_gpu
74
75
76
77
78
        self.loss = loss
        self.temp_dir = temp_dir

        self.base_learning_rate = base_learning_rate
        self.weight_decay = weight_decay
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
79
80
81
82

        self.iterations = iterations
        self.snapshot = snapshot
        self.convergence_threshold = convergence_threshold
83
        self.prefetch = prefetch
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
84

85
86
87
88
89
90
91
92
        # Training variables used in the fit
        self.optimizer = None
        self.training_graph = None
        self.learning_rate = None
        self.training_graph = None
        self.train_data_shuffler = None
        self.summaries_train = None
        self.train_summary_writter = None
93
        self.thread_pool = None
94
95
96
97
98

        # Validation data
        self.validation_graph = None
        self.validation_summary_writter = None

99
100
101
102
103
104
        # Analizer
        self.analizer = analizer

        self.thread_pool = None
        self.enqueue_op = None

105
106
        bob.core.log.set_verbosity_level(logger, verbosity_level)

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
107
108
109
    def __del__(self):
        tf.reset_default_graph()

110
    def compute_graph(self, data_shuffler, prefetch=False, name=""):
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
111
        """
112
113
        Computes the graph for the trainer.

114

115
116
117
        ** Parameters **

            data_shuffler: Data shuffler
118
            prefetch:
119
120
121
122
            name: Name of the graph
        """

        # Defining place holders
123
        if prefetch:
124
            [placeholder_data, placeholder_labels] = data_shuffler.get_placeholders_forprefetch(name=name)
125
126
127
128
129
130
131

            # Defining a placeholder queue for prefetching
            queue = tf.FIFOQueue(capacity=10,
                                 dtypes=[tf.float32, tf.int64],
                                 shapes=[placeholder_data.get_shape().as_list()[1:], []])

            # Fetching the place holders from the queue
132
            self.enqueue_op = queue.enqueue_many([placeholder_data, placeholder_labels])
133
134
135
136
137
138
139
            feature_batch, label_batch = queue.dequeue_many(data_shuffler.batch_size)

            # Creating the architecture for train and validation
            if not isinstance(self.architecture, SequenceNetwork):
                raise ValueError("The variable `architecture` must be an instance of "
                                 "`bob.learn.tensorflow.network.SequenceNetwork`")
        else:
140
            [feature_batch, label_batch] = data_shuffler.get_placeholders(name=name)
141
142
143
144
145
146
147
148
149

        # Creating graphs and defining the loss
        network_graph = self.architecture.compute_graph(feature_batch)
        graph = self.loss(network_graph, label_batch)

        return graph

    def get_feed_dict(self, data_shuffler):
        """
150
        Given a data shuffler prepared the dictionary to be injected in the graph
151
152
153
154

        ** Parameters **
            data_shuffler:

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
155
        """
156
157
        [data, labels] = data_shuffler.get_batch()
        [data_placeholder, label_placeholder] = data_shuffler.get_placeholders()
158
159
160
161
162

        feed_dict = {data_placeholder: data,
                     label_placeholder: labels}
        return feed_dict

163
164
165
166
167
168
169
170
171
172
    def fit(self, session, step):
        """
        Run one iteration (`forward` and `backward`)

        ** Parameters **
            session: Tensorflow session
            step: Iteration number

        """

173
        if self.prefetch:
174
175
            _, l, lr, summary = session.run([self.optimizer, self.training_graph,
                                             self.learning_rate, self.summaries_train])
176
177
178
179
180
        else:
            feed_dict = self.get_feed_dict(self.train_data_shuffler)
            _, l, lr, summary = session.run([self.optimizer, self.training_graph,
                                             self.learning_rate, self.summaries_train], feed_dict=feed_dict)

181
182
        logger.info("Loss training set step={0} = {1}".format(step, l))
        self.train_summary_writter.add_summary(summary, step)
183

184
    def compute_validation(self,  session, data_shuffler, step):
185
186
187
188
189
190
191
192
193
        """
        Computes the loss in the validation set

        ** Parameters **
            session: Tensorflow session
            data_shuffler: The data shuffler to be used
            step: Iteration number

        """
194
        # Opening a new session for validation
195
196
197
198
        self.validation_graph = self.compute_graph(data_shuffler, name="validation")
        feed_dict = self.get_feed_dict(data_shuffler)
        l = session.run(self.validation_graph, feed_dict=feed_dict)

199
200
201
        if self.validation_summary_writter is None:
            self.validation_summary_writter = tf.train.SummaryWriter(os.path.join(self.temp_dir, 'validation'), session.graph)

202
203
204
205
206
        summaries = []
        summaries.append(summary_pb2.Summary.Value(tag="loss", simple_value=float(l)))
        self.validation_summary_writter.add_summary(summary_pb2.Summary(value=summaries), step)
        logger.info("Loss VALIDATION set step={0} = {1}".format(step, l))

207
208
209
210
211
    def create_general_summary(self):
        """
        Creates a simple tensorboard summary with the value of the loss and learning rate
        """

212
213
214
215
216
        # Train summary
        tf.scalar_summary('loss', self.training_graph, name="train")
        tf.scalar_summary('lr', self.learning_rate, name="train")
        return tf.merge_all_summaries()

217
    def start_thread(self, session):
218
219
220
221
222
223
224
        """
        Start pool of threads for pre-fetching

        **Parameters**
          session: Tensorflow session
        """

225
        threads = []
226
227
        for n in range(3):
            t = threading.Thread(target=self.load_and_enqueue, args=(session,))
228
229
230
231
            t.daemon = True  # thread will close when parent quits
            t.start()
            threads.append(t)
        return threads
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
232

233
234
    def load_and_enqueue(self, session):
        """
235
        Injecting data in the place holder queue
236
237
238

        **Parameters**
          session: Tensorflow session
239
        """
240

241
        while not self.thread_pool.should_stop():
242
243
            [train_data, train_labels] = self.train_data_shuffler.get_batch()
            [train_placeholder_data, train_placeholder_labels] = self.train_data_shuffler.get_placeholders()
244

245
246
247
            feed_dict = {train_placeholder_data: train_data,
                         train_placeholder_labels: train_labels}

248
            session.run(self.enqueue_op, feed_dict=feed_dict)
249
250
251

    def train(self, train_data_shuffler, validation_data_shuffler=None):
        """
252
        Train the network
253
254
255
256
257
        """

        # Creating directory
        bob.io.base.create_directories_safe(self.temp_dir)
        self.train_data_shuffler = train_data_shuffler
258

259
        # TODO: find an elegant way to provide this as a parameter of the trainer
260
        self.learning_rate = tf.train.exponential_decay(
261
262
263
264
265
266
            self.base_learning_rate,  # Learning rate
            train_data_shuffler.batch_size,
            train_data_shuffler.n_samples,
            self.weight_decay  # Decay step
        )

267
        self.training_graph = self.compute_graph(train_data_shuffler, prefetch=self.prefetch, name="train")
268

269
        # Preparing the optimizer
270
        self.optimizer_class._learning_rate = self.learning_rate
271
272
        #self.optimizer = self.optimizer_class.minimize(self.training_graph, global_step=tf.Variable(0))
        self.optimizer = self.optimizer_class.minimize(self.training_graph)
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
273

274
        # Train summary
275
        self.summaries_train = self.create_general_summary()
276
277

        logger.info("Initializing !!")
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
278
        # Training
279
        hdf5 = bob.io.base.HDF5File(os.path.join(self.temp_dir, 'model.hdf5'), 'w')
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
280

281
282
        config = tf.ConfigProto(log_device_placement=True)
        config.gpu_options.allow_growth = True
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
283
        with tf.Session(config=config) as session:
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
284

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
285
            tf.initialize_all_variables().run()
286

287
288
289
            if isinstance(train_data_shuffler, OnLineSampling):
                train_data_shuffler.set_feature_extractor(self.architecture, session=session)

290
            # Start a thread to enqueue data asynchronously, and hide I/O latency.
291
292
293
294
            if self.prefetch:
                self.thread_pool = tf.train.Coordinator()
                tf.train.start_queue_runners(coord=self.thread_pool)
                threads = self.start_thread(session)
295

296
            # TENSOR BOARD SUMMARY
297
            self.train_summary_writter = tf.train.SummaryWriter(os.path.join(self.temp_dir, 'train'), session.graph)
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
298
            for step in range(self.iterations):
299
300
301
302
303
304
305

                start = time.time()
                self.fit(session, step)
                end = time.time()
                summary = summary_pb2.Summary.Value(tag="elapsed_time", simple_value=float(end-start))
                self.train_summary_writter.add_summary(summary_pb2.Summary(value=[summary]), step)

306
                if validation_data_shuffler is not None and step % self.snapshot == 0:
307
                    self.compute_validation(session, validation_data_shuffler, step)
308

309
310
                    if self.analizer is not None:
                        self.validation_summary_writter.add_summary(self.analizer(
311
                             validation_data_shuffler, self.architecture, session), step)
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
312

313
314
315
316
317
            logger.info("Training finally finished")

            self.train_summary_writter.close()
            if validation_data_shuffler is not None:
                self.validation_summary_writter.close()
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
318

319
320
321
            self.architecture.save(hdf5)
            del hdf5

322
323
324
325
            if self.prefetch:
                # now they should definetely stop
                self.thread_pool.request_stop()
                self.thread_pool.join(threads)
326

327
            session.close() # For some reason the session is not closed after the context manager finishes