Trainer.py 12.8 KB
Newer Older
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
1
2
3
4
5
6
7
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# @author: Tiago de Freitas Pereira <tiago.pereira@idiap.ch>
# @date: Tue 09 Aug 2016 15:25:22 CEST

import tensorflow as tf
from ..network import SequenceNetwork
8
9
10
import threading
import os
import bob.io.base
11
import bob.core
12
from ..analyzers import SoftmaxAnalizer
13
from tensorflow.core.framework import summary_pb2
14
import time
15
16
from bob.learn.tensorflow.datashuffler.OnlineSampling import OnLineSampling

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
17
18
#os.environ["CUDA_VISIBLE_DEVICES"] = "1,3,0,2"
os.environ["CUDA_VISIBLE_DEVICES"] = ""
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
19

20
logger = bob.core.log.setup("bob.learn.tensorflow")
21

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
class Trainer(object):
    """
    One graph trainer.
    Use this trainer when your CNN is composed by one graph

    **Parameters**
      architecture: The architecture that you want to run. Should be a :py:class`bob.learn.tensorflow.network.SequenceNetwork`
      optimizer: One of the tensorflow optimizers https://www.tensorflow.org/versions/r0.10/api_docs/python/train.html
      use_gpu: Use GPUs in the training
      loss: Loss
      temp_dir: The output directory

      base_learning_rate: Initial learning rate
      weight_decay:
      convergence_threshold:

      iterations: Maximum number of iterations
      snapshot: Will take a snapshot of the network at every `n` iterations
      prefetch: Use extra Threads to deal with the I/O
      analizer: Neural network analizer :py:mod:`bob.learn.tensorflow.analyzers`
      verbosity_level:

    """
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
46
    def __init__(self,
47
48
                 architecture,
                 optimizer=tf.train.AdamOptimizer(),
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
49
50
                 use_gpu=False,
                 loss=None,
51
                 temp_dir="cnn",
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
52

53
                 # Learning rate
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
54
                 base_learning_rate=0.1,
55
                 weight_decay=0.9,
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
56
                 decay_steps=1000,
57

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
58
                 ###### training options ##########
59
                 convergence_threshold=0.01,
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
60
                 iterations=5000,
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
61
62
                 snapshot=500,
                 validation_snapshot=100,
63
                 prefetch=False,
64
65

                 ## Analizer
66
                 analizer=SoftmaxAnalizer(),
67

68
69
70
                 ### Pretrained model
                 model_from_file="",

71
                 verbosity_level=2):
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
72

73
74
        if not isinstance(architecture, SequenceNetwork):
            raise ValueError("`architecture` should be instance of `SequenceNetwork`")
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
75
76

        self.architecture = architecture
77
        self.optimizer_class = optimizer
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
78
        self.use_gpu = use_gpu
79
80
81
82
83
        self.loss = loss
        self.temp_dir = temp_dir

        self.base_learning_rate = base_learning_rate
        self.weight_decay = weight_decay
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
84
        self.decay_steps = decay_steps
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
85
86
87

        self.iterations = iterations
        self.snapshot = snapshot
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
88
        self.validation_snapshot = validation_snapshot
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
89
        self.convergence_threshold = convergence_threshold
90
        self.prefetch = prefetch
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
91

92
93
94
95
96
97
98
99
        # Training variables used in the fit
        self.optimizer = None
        self.training_graph = None
        self.learning_rate = None
        self.training_graph = None
        self.train_data_shuffler = None
        self.summaries_train = None
        self.train_summary_writter = None
100
        self.thread_pool = None
101
102
103
104
105

        # Validation data
        self.validation_graph = None
        self.validation_summary_writter = None

106
107
108
109
110
        # Analizer
        self.analizer = analizer

        self.thread_pool = None
        self.enqueue_op = None
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
111
        self.global_step = None
112

113
114
        self.model_from_file = model_from_file

115
116
        bob.core.log.set_verbosity_level(logger, verbosity_level)

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
117
118
119
    def __del__(self):
        tf.reset_default_graph()

120
    def compute_graph(self, data_shuffler, prefetch=False, name=""):
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
121
        """
122
123
        Computes the graph for the trainer.

124

125
126
127
        ** Parameters **

            data_shuffler: Data shuffler
128
            prefetch:
129
130
131
132
            name: Name of the graph
        """

        # Defining place holders
133
        if prefetch:
134
            [placeholder_data, placeholder_labels] = data_shuffler.get_placeholders_forprefetch(name=name)
135
136
137
138
139
140
141

            # Defining a placeholder queue for prefetching
            queue = tf.FIFOQueue(capacity=10,
                                 dtypes=[tf.float32, tf.int64],
                                 shapes=[placeholder_data.get_shape().as_list()[1:], []])

            # Fetching the place holders from the queue
142
            self.enqueue_op = queue.enqueue_many([placeholder_data, placeholder_labels])
143
144
145
146
147
148
149
            feature_batch, label_batch = queue.dequeue_many(data_shuffler.batch_size)

            # Creating the architecture for train and validation
            if not isinstance(self.architecture, SequenceNetwork):
                raise ValueError("The variable `architecture` must be an instance of "
                                 "`bob.learn.tensorflow.network.SequenceNetwork`")
        else:
150
            [feature_batch, label_batch] = data_shuffler.get_placeholders(name=name)
151
152
153
154
155
156
157
158
159

        # Creating graphs and defining the loss
        network_graph = self.architecture.compute_graph(feature_batch)
        graph = self.loss(network_graph, label_batch)

        return graph

    def get_feed_dict(self, data_shuffler):
        """
160
        Given a data shuffler prepared the dictionary to be injected in the graph
161
162
163
164

        ** Parameters **
            data_shuffler:

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
165
        """
166
167
        [data, labels] = data_shuffler.get_batch()
        [data_placeholder, label_placeholder] = data_shuffler.get_placeholders()
168
169
170
171
172

        feed_dict = {data_placeholder: data,
                     label_placeholder: labels}
        return feed_dict

173
174
175
176
177
178
179
180
181
182
    def fit(self, session, step):
        """
        Run one iteration (`forward` and `backward`)

        ** Parameters **
            session: Tensorflow session
            step: Iteration number

        """

183
        if self.prefetch:
184
185
            _, l, lr, summary = session.run([self.optimizer, self.training_graph,
                                             self.learning_rate, self.summaries_train])
186
187
188
189
190
        else:
            feed_dict = self.get_feed_dict(self.train_data_shuffler)
            _, l, lr, summary = session.run([self.optimizer, self.training_graph,
                                             self.learning_rate, self.summaries_train], feed_dict=feed_dict)

191
192
        logger.info("Loss training set step={0} = {1}".format(step, l))
        self.train_summary_writter.add_summary(summary, step)
193

194
    def compute_validation(self,  session, data_shuffler, step):
195
196
197
198
199
200
201
202
203
        """
        Computes the loss in the validation set

        ** Parameters **
            session: Tensorflow session
            data_shuffler: The data shuffler to be used
            step: Iteration number

        """
204
        # Opening a new session for validation
205
206
207
208
        self.validation_graph = self.compute_graph(data_shuffler, name="validation")
        feed_dict = self.get_feed_dict(data_shuffler)
        l = session.run(self.validation_graph, feed_dict=feed_dict)

209
210
211
        if self.validation_summary_writter is None:
            self.validation_summary_writter = tf.train.SummaryWriter(os.path.join(self.temp_dir, 'validation'), session.graph)

212
213
214
215
216
        summaries = []
        summaries.append(summary_pb2.Summary.Value(tag="loss", simple_value=float(l)))
        self.validation_summary_writter.add_summary(summary_pb2.Summary(value=summaries), step)
        logger.info("Loss VALIDATION set step={0} = {1}".format(step, l))

217
218
219
220
221
    def create_general_summary(self):
        """
        Creates a simple tensorboard summary with the value of the loss and learning rate
        """

222
223
224
225
226
        # Train summary
        tf.scalar_summary('loss', self.training_graph, name="train")
        tf.scalar_summary('lr', self.learning_rate, name="train")
        return tf.merge_all_summaries()

227
    def start_thread(self, session):
228
229
230
231
232
233
234
        """
        Start pool of threads for pre-fetching

        **Parameters**
          session: Tensorflow session
        """

235
        threads = []
236
237
        for n in range(3):
            t = threading.Thread(target=self.load_and_enqueue, args=(session,))
238
239
240
241
            t.daemon = True  # thread will close when parent quits
            t.start()
            threads.append(t)
        return threads
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
242

243
244
    def load_and_enqueue(self, session):
        """
245
        Injecting data in the place holder queue
246
247
248

        **Parameters**
          session: Tensorflow session
249
        """
250

251
        while not self.thread_pool.should_stop():
252
253
            [train_data, train_labels] = self.train_data_shuffler.get_batch()
            [train_placeholder_data, train_placeholder_labels] = self.train_data_shuffler.get_placeholders()
254

255
256
257
            feed_dict = {train_placeholder_data: train_data,
                         train_placeholder_labels: train_labels}

258
            session.run(self.enqueue_op, feed_dict=feed_dict)
259
260
261

    def train(self, train_data_shuffler, validation_data_shuffler=None):
        """
262
        Train the network
263
264
265
266
267
        """

        # Creating directory
        bob.io.base.create_directories_safe(self.temp_dir)
        self.train_data_shuffler = train_data_shuffler
268

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
269
270
271
        # Pickle the architecture to save
        self.architecture.pickle_net(train_data_shuffler.deployment_shape)

272
        # TODO: find an elegant way to provide this as a parameter of the trainer
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
273
        self.global_step = tf.Variable(0, trainable=False)
274
        self.learning_rate = tf.train.exponential_decay(
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
275
276
277
278
279
            learning_rate=self.base_learning_rate,  # Learning rate
            global_step=self.global_step,
            decay_steps=self.decay_steps,
            decay_rate=self.weight_decay,  # Decay step
            staircase=False
280
        )
281
        self.training_graph = self.compute_graph(train_data_shuffler, prefetch=self.prefetch, name="train")
282

283
        # Preparing the optimizer
284
        self.optimizer_class._learning_rate = self.learning_rate
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
285
286
        self.optimizer = self.optimizer_class.minimize(self.training_graph, global_step=self.global_step)

287
        # Train summary
288
        self.summaries_train = self.create_general_summary()
289
290

        logger.info("Initializing !!")
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
291

292
293
        config = tf.ConfigProto(log_device_placement=True)
        config.gpu_options.allow_growth = True
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
294
        with tf.Session(config=config) as session:
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
295
            tf.initialize_all_variables().run()
296

297
298
299
300
301
302
            # Loading a pretrained model
            if self.model_from_file != "":
                logger.info("Loading pretrained model from {0}".format(self.model_from_file))
                hdf5 = bob.io.base.HDF5File(self.model_from_file)
                self.architecture.load_variables_only(hdf5, session)

303
304
305
            if isinstance(train_data_shuffler, OnLineSampling):
                train_data_shuffler.set_feature_extractor(self.architecture, session=session)

306
            # Start a thread to enqueue data asynchronously, and hide I/O latency.
307
308
309
310
            if self.prefetch:
                self.thread_pool = tf.train.Coordinator()
                tf.train.start_queue_runners(coord=self.thread_pool)
                threads = self.start_thread(session)
311

312
            # TENSOR BOARD SUMMARY
313
            self.train_summary_writter = tf.train.SummaryWriter(os.path.join(self.temp_dir, 'train'), session.graph)
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
314
            for step in range(self.iterations):
315
316
317
318
319
320
321

                start = time.time()
                self.fit(session, step)
                end = time.time()
                summary = summary_pb2.Summary.Value(tag="elapsed_time", simple_value=float(end-start))
                self.train_summary_writter.add_summary(summary_pb2.Summary(value=[summary]), step)

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
322
323
                # Running validation
                if validation_data_shuffler is not None and step % self.validation_snapshot == 0:
324
                    self.compute_validation(session, validation_data_shuffler, step)
325

326
327
                    if self.analizer is not None:
                        self.validation_summary_writter.add_summary(self.analizer(
328
                             validation_data_shuffler, self.architecture, session), step)
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
329

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
330
331
332
333
334
335
336
                # Taking snapshot
                if step % self.snapshot == 0:
                    logger.info("Taking snapshot")
                    hdf5 = bob.io.base.HDF5File(os.path.join(self.temp_dir, 'model_snapshot{0}.hdf5'.format(step)), 'w')
                    self.architecture.save(hdf5)
                    del hdf5

337
338
339
340
341
            logger.info("Training finally finished")

            self.train_summary_writter.close()
            if validation_data_shuffler is not None:
                self.validation_summary_writter.close()
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
342

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
343
344
            # Saving the final network
            hdf5 = bob.io.base.HDF5File(os.path.join(self.temp_dir, 'model.hdf5'), 'w')
345
346
347
            self.architecture.save(hdf5)
            del hdf5

348
349
350
351
            if self.prefetch:
                # now they should definetely stop
                self.thread_pool.request_stop()
                self.thread_pool.join(threads)
352

353
            session.close() # For some reason the session is not closed after the context manager finishes