Trainer.py 17.9 KB
Newer Older
1 2 3 4 5 6
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# @author: Tiago de Freitas Pereira <tiago.pereira@idiap.ch>
# @date: Tue 09 Aug 2016 15:25:22 CEST

import tensorflow as tf
7 8 9
import threading
import os
import bob.io.base
10
import bob.core
11
from ..analyzers import SoftmaxAnalizer
12
from tensorflow.core.framework import summary_pb2
13
import time
14
from bob.learn.tensorflow.datashuffler import OnlineSampling, TFRecord
15
from bob.learn.tensorflow.utils.session import Session
16
from bob.learn.tensorflow.utils import compute_embedding_accuracy
17
from .learning_rate import constant
18
import time
19

20 21 22 23 24
#logger = bob.core.log.setup("bob.learn.tensorflow")

import logging
logger = logging.getLogger("bob.learn")

25

26 27 28 29 30 31
class Trainer(object):
    """
    One graph trainer.
    Use this trainer when your CNN is composed by one graph

    **Parameters**
32

Tiago Pereira's avatar
Tiago Pereira committed
33 34
    train_data_shuffler:
      The data shuffler used for batching data for training
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
35

Tiago Pereira's avatar
Tiago Pereira committed
36
    iterations:
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
37
      Maximum number of iterations
38

Tiago Pereira's avatar
Tiago Pereira committed
39
    snapshot:
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
40
      Will take a snapshot of the network at every `n` iterations
41

Tiago Pereira's avatar
Tiago Pereira committed
42 43
    validation_snapshot:
      Test with validation each `n` iterations
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
44 45 46 47

    analizer:
      Neural network analizer :py:mod:`bob.learn.tensorflow.analyzers`

Tiago Pereira's avatar
Tiago Pereira committed
48 49 50
    temp_dir: str
      The output directory

Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
51
    verbosity_level:
52 53

    """
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
54

55
    def __init__(self,
Tiago Pereira's avatar
Tiago Pereira committed
56
                 train_data_shuffler,
57
                 validation_data_shuffler=None,
58
                 validate_with_embeddings=False,
59

60 61
                 ###### training options ##########
                 iterations=5000,
62
                 snapshot=1000,
63
                 validation_snapshot=2000,#2000,
64
                 keep_checkpoint_every_n_hours=2,
65 66

                 ## Analizer
67
                 analizer=SoftmaxAnalizer(),
68

Tiago Pereira's avatar
Tiago Pereira committed
69 70
                 # Temporatu dir
                 temp_dir="cnn",
71

72
                 verbosity_level=2):
73

Tiago Pereira's avatar
Tiago Pereira committed
74
        self.train_data_shuffler = train_data_shuffler
75

76 77
        self.temp_dir = temp_dir

78 79
        self.iterations = iterations
        self.snapshot = snapshot
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
80
        self.validation_snapshot = validation_snapshot
81
        self.keep_checkpoint_every_n_hours = keep_checkpoint_every_n_hours
82

83 84 85
        # Training variables used in the fit
        self.summaries_train = None
        self.train_summary_writter = None
86
        self.thread_pool = None
87 88 89

        # Validation data
        self.validation_summary_writter = None
90
        self.summaries_validation = None
91
        self.validation_data_shuffler = validation_data_shuffler
92

93 94
        # Analizer
        self.analizer = analizer
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
95
        self.global_step = None
96

97
        self.session = None
98

Tiago Pereira's avatar
Tiago Pereira committed
99
        self.graph = None
100 101
        self.validation_graph = None
                
Tiago Pereira's avatar
Tiago Pereira committed
102
        self.loss = None
103
        
Tiago Pereira's avatar
Tiago Pereira committed
104
        self.predictor = None
105 106
        self.validation_predictor = None  
        self.validate_with_embeddings = validate_with_embeddings      
107
        
Tiago Pereira's avatar
Tiago Pereira committed
108 109
        self.optimizer_class = None
        self.learning_rate = None
110

Tiago Pereira's avatar
Tiago Pereira committed
111 112
        # Training variables used in the fit
        self.optimizer = None
113
        
Tiago Pereira's avatar
Tiago Pereira committed
114 115
        self.data_ph = None
        self.label_ph = None
116 117 118 119
        
        self.validation_data_ph = None
        self.validation_label_ph = None
        
Tiago Pereira's avatar
Tiago Pereira committed
120 121
        self.saver = None

122 123
        bob.core.log.set_verbosity_level(logger, verbosity_level)

Tiago Pereira's avatar
Tiago Pereira committed
124 125 126
        # Creating the session
        self.session = Session.instance(new=True).session
        self.from_scratch = True
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
        
    def train(self):
        """
        Train the network        
        Here we basically have the loop for that takes your graph and do a sequence of session.run
        """

        # Creating directories
        bob.io.base.create_directories_safe(self.temp_dir)
        logger.info("Initializing !!")

        # Loading a pretrained model
        if self.from_scratch:
            start_step = 0
        else:
            start_step = self.global_step.eval(session=self.session)

        # TODO: Put this back as soon as possible
        #if isinstance(train_data_shuffler, OnlineSampling):
        #    train_data_shuffler.set_feature_extractor(self.architecture, session=self.session)

        # Start a thread to enqueue data asynchronously, and hide I/O latency.        
        if self.train_data_shuffler.prefetch:
            self.thread_pool = tf.train.Coordinator()
            tf.train.start_queue_runners(coord=self.thread_pool, sess=self.session)
            # In case you have your own queue
            if not isinstance(self.train_data_shuffler, TFRecord):
                threads = self.start_thread()

        # Bootstrapping the summary writters
        self.train_summary_writter = tf.summary.FileWriter(os.path.join(self.temp_dir, 'train'), self.session.graph)
        if self.validation_data_shuffler is not None:
            self.validation_summary_writter = tf.summary.FileWriter(os.path.join(self.temp_dir, 'validation'),
                                                                    self.session.graph)

        ######################### Loop for #################
        for step in range(start_step, start_step+self.iterations):
            # Run fit in the graph
            start = time.time()
            self.fit(step)
            end = time.time()

            summary = summary_pb2.Summary.Value(tag="elapsed_time", simple_value=float(end-start))
            self.train_summary_writter.add_summary(summary_pb2.Summary(value=[summary]), step)

            # Running validation
            if self.validation_data_shuffler is not None and step % self.validation_snapshot == 0:
174 175 176 177
                if self.validate_with_embeddings:
                    self.compute_validation_embeddings(step)
                else:
                    self.compute_validation(step)
178 179 180 181 182 183 184 185 186

            # Taking snapshot
            if step % self.snapshot == 0:
                logger.info("Taking snapshot")
                path = os.path.join(self.temp_dir, 'model_snapshot{0}.ckp'.format(step))
                self.saver.save(self.session, path, global_step=step)

        # Running validation for the last time
        if self.validation_data_shuffler is not None:
187 188 189 190 191
            if self.validate_with_embeddings:
                self.compute_validation_embeddings(step)
            else:
                self.compute_validation(step)
            
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
            
        logger.info("Training finally finished")

        self.train_summary_writter.close()
        if self.validation_data_shuffler is not None:
            self.validation_summary_writter.close()

        # Saving the final network
        path = os.path.join(self.temp_dir, 'model.ckp')
        self.saver.save(self.session, path)

        if self.train_data_shuffler.prefetch or isinstance(self.train_data_shuffler, TFRecord):
            # now they should definetely stop
            self.thread_pool.request_stop()
            #if not isinstance(self.train_data_shuffler, TFRecord):
            #    self.thread_pool.join(threads)        

Tiago Pereira's avatar
Tiago Pereira committed
209 210
    def create_network_from_scratch(self,
                                    graph,
211
                                    validation_graph=None,
Tiago Pereira's avatar
Tiago Pereira committed
212 213
                                    optimizer=tf.train.AdamOptimizer(),
                                    loss=None,
214

Tiago Pereira's avatar
Tiago Pereira committed
215 216 217 218
                                    # Learning rate
                                    learning_rate=None,
                                    ):

Tiago Pereira's avatar
Tiago Pereira committed
219 220
        """
        Prepare all the tensorflow variables before training.
221
        
Tiago Pereira's avatar
Tiago Pereira committed
222
        **Parameters**
223

Tiago Pereira's avatar
Tiago Pereira committed
224
            graph: Input graph for training
225

Tiago Pereira's avatar
Tiago Pereira committed
226
            optimizer: Solver
227

Tiago Pereira's avatar
Tiago Pereira committed
228
            loss: Loss function
229

Tiago Pereira's avatar
Tiago Pereira committed
230 231 232
            learning_rate: Learning rate
        """

233
        # Getting the pointer to the placeholders
234 235
        self.data_ph = self.train_data_shuffler("data", from_queue=True)
        self.label_ph = self.train_data_shuffler("label", from_queue=True)
236
                
Tiago Pereira's avatar
Tiago Pereira committed
237
        self.graph = graph
238
        self.loss = loss        
239

240 241 242
        # Attaching the loss in the graph
        self.predictor = self.loss(self.graph, self.label_ph)
        
Tiago Pereira's avatar
Tiago Pereira committed
243 244
        self.optimizer_class = optimizer
        self.learning_rate = learning_rate
245
        self.global_step = tf.contrib.framework.get_or_create_global_step()
Tiago Pereira's avatar
Tiago Pereira committed
246

247 248 249 250
        # Preparing the optimizer
        self.optimizer_class._learning_rate = self.learning_rate
        self.optimizer = self.optimizer_class.minimize(self.predictor, global_step=self.global_step)

Tiago Pereira's avatar
Tiago Pereira committed
251
        # Saving all the variables
252 253
        self.saver = tf.train.Saver(var_list=tf.global_variables() + tf.local_variables(), 
                                    keep_checkpoint_every_n_hours=self.keep_checkpoint_every_n_hours)
Tiago Pereira's avatar
Tiago Pereira committed
254

255
        self.summaries_train = self.create_general_summary(self.predictor, self.graph, self.label_ph)
256

257 258
        # SAving some variables
        tf.add_to_collection("global_step", self.global_step)
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
259 260 261 262 263 264 265

        if isinstance(self.graph, dict):
            tf.add_to_collection("graph", self.graph['logits'])
            tf.add_to_collection("prelogits", self.graph['prelogits'])
        else:
            tf.add_to_collection("graph", self.graph)
        
Tiago Pereira's avatar
Tiago Pereira committed
266
        tf.add_to_collection("predictor", self.predictor)
267

Tiago Pereira's avatar
Tiago Pereira committed
268 269
        tf.add_to_collection("data_ph", self.data_ph)
        tf.add_to_collection("label_ph", self.label_ph)
270

Tiago Pereira's avatar
Tiago Pereira committed
271 272
        tf.add_to_collection("optimizer", self.optimizer)
        tf.add_to_collection("learning_rate", self.learning_rate)
273

Tiago Pereira's avatar
Tiago Pereira committed
274
        tf.add_to_collection("summaries_train", self.summaries_train)
275

276
        # Same business with the validation
277
        if self.validation_data_shuffler is not None:
278 279 280 281 282
            self.validation_data_ph = self.validation_data_shuffler("data", from_queue=True)
            self.validation_label_ph = self.validation_data_shuffler("label", from_queue=True)

            self.validation_graph = validation_graph

283 284 285 286
            if self.validate_with_embeddings:
                self.validation_predictor = self.validation_graph
            else:
                self.validation_predictor = self.loss(self.validation_graph, self.validation_label_ph)
287 288 289 290 291 292 293 294 295 296

            self.summaries_validation = self.create_general_summary(self.validation_predictor, self.validation_graph, self.validation_label_ph)
            tf.add_to_collection("summaries_validation", self.summaries_validation)
            
            tf.add_to_collection("validation_graph", self.validation_graph)
            tf.add_to_collection("validation_data_ph", self.validation_data_ph)
            tf.add_to_collection("validation_label_ph", self.validation_label_ph)

            tf.add_to_collection("validation_predictor", self.validation_predictor)
            tf.add_to_collection("summaries_validation", self.summaries_validation)
Tiago Pereira's avatar
Tiago Pereira committed
297

Tiago Pereira's avatar
Tiago Pereira committed
298
        # Creating the variables
299
        tf.local_variables_initializer().run(session=self.session)
Tiago Pereira's avatar
Tiago Pereira committed
300 301
        tf.global_variables_initializer().run(session=self.session)

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    def load_checkpoint(self, file_name, clear_devices=True):
        """
        Load a checkpoint

        ** Parameters **

           file_name:
                Name of the metafile to be loaded.
                If a directory is passed, the last checkpoint will be loaded

        """
        if os.path.isdir(file_name):
            checkpoint_path = tf.train.get_checkpoint_state(file_name).model_checkpoint_path
            self.saver = tf.train.import_meta_graph(checkpoint_path + ".meta", clear_devices=clear_devices)
            self.saver.restore(self.session, tf.train.latest_checkpoint(file_name))
        else:
            self.saver = tf.train.import_meta_graph(file_name, clear_devices=clear_devices)
            self.saver.restore(self.session, tf.train.latest_checkpoint(os.path.dirname(file_name)))
320

321
    def create_network_from_file(self, file_name, clear_devices=True):
Tiago Pereira's avatar
Tiago Pereira committed
322
        """
Tiago Pereira's avatar
Tiago Pereira committed
323
        Bootstrap a graph from a checkpoint
Tiago Pereira's avatar
Tiago Pereira committed
324 325 326

         ** Parameters **

Tiago Pereira's avatar
Tiago Pereira committed
327
           file_name: Name of of the checkpoing
Tiago Pereira's avatar
Tiago Pereira committed
328
        """
329 330 331

        logger.info("Loading last checkpoint !!")
        self.load_checkpoint(file_name, clear_devices=True)
Tiago Pereira's avatar
Tiago Pereira committed
332 333

        # Loading training graph
Tiago Pereira's avatar
Tiago Pereira committed
334 335
        self.data_ph = tf.get_collection("data_ph")[0]
        self.label_ph = tf.get_collection("label_ph")[0]
Tiago Pereira's avatar
Tiago Pereira committed
336 337 338 339 340 341 342

        self.graph = tf.get_collection("graph")[0]
        self.predictor = tf.get_collection("predictor")[0]

        # Loding other elements
        self.optimizer = tf.get_collection("optimizer")[0]
        self.learning_rate = tf.get_collection("learning_rate")[0]
343
        self.summaries_train = tf.get_collection("summaries_train")[0]        
Tiago Pereira's avatar
Tiago Pereira committed
344 345
        self.global_step = tf.get_collection("global_step")[0]
        self.from_scratch = False
346 347
        
        # Loading the validation bits
348
        if self.validation_data_shuffler is not None:
349 350 351 352 353 354 355 356 357
            self.summaries_validation = tf.get_collection("summaries_validation")[0]

            self.validation_graph = tf.get_collection("validation_graph")[0]
            self.validation_data_ph = tf.get_collection("validation_data_ph")[0]
            self.validation_label = tf.get_collection("validation_label_ph")[0]

            self.validation_predictor = tf.get_collection("validation_predictor")[0]
            self.summaries_validation = tf.get_collection("summaries_validation")[0]

Tiago Pereira's avatar
Tiago Pereira committed
358 359
    def __del__(self):
        tf.reset_default_graph()
360 361 362

    def get_feed_dict(self, data_shuffler):
        """
363
        Given a data shuffler prepared the dictionary to be injected in the graph
364 365

        ** Parameters **
366 367

            data_shuffler: Data shuffler :py:class:`bob.learn.tensorflow.datashuffler.Base`
368

369
        """
370
        [data, labels] = data_shuffler.get_batch()
371

Tiago Pereira's avatar
Tiago Pereira committed
372 373
        feed_dict = {self.data_ph: data,
                     self.label_ph: labels}
374 375
        return feed_dict

376
    def fit(self, step):
377 378 379 380 381 382 383 384 385
        """
        Run one iteration (`forward` and `backward`)

        ** Parameters **
            session: Tensorflow session
            step: Iteration number

        """

386 387
        if self.train_data_shuffler.prefetch:
            _, l, lr, summary = self.session.run([self.optimizer, self.predictor,
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
388
                                                  self.learning_rate, self.summaries_train])
389 390
        else:
            feed_dict = self.get_feed_dict(self.train_data_shuffler)
391
            _, l, lr, summary = self.session.run([self.optimizer, self.predictor,
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
392
                                                  self.learning_rate, self.summaries_train], feed_dict=feed_dict)
393

394 395
        logger.info("Loss training set step={0} = {1}".format(step, l))
        self.train_summary_writter.add_summary(summary, step)
396

397
    def compute_validation(self, step):
Tiago Pereira's avatar
Tiago Pereira committed
398 399 400 401 402 403 404 405 406 407
        """
        Computes the loss in the validation set

        ** Parameters **
            session: Tensorflow session
            data_shuffler: The data shuffler to be used
            step: Iteration number

        """

408 409 410 411 412 413 414 415
        if self.validation_data_shuffler.prefetch:
            l, lr, summary = self.session.run([self.validation_predictor,
                                               self.learning_rate, self.summaries_validation])
        else:
            feed_dict = self.get_feed_dict(self.validation_data_shuffler)
            l, lr, summary = self.session.run([self.validation_predictor,
                                               self.learning_rate, self.summaries_validation],
                                               feed_dict=feed_dict)
Tiago Pereira's avatar
Tiago Pereira committed
416

417 418
        logger.info("Loss VALIDATION set step={0} = {1}".format(step, l))
        self.validation_summary_writter.add_summary(summary, step)               
Tiago Pereira's avatar
Tiago Pereira committed
419

420 421 422 423 424 425 426 427 428 429
    def compute_validation_embeddings(self, step):
        """
        Computes the loss in the validation set with embeddings

        ** Parameters **
            session: Tensorflow session
            data_shuffler: The data shuffler to be used
            step: Iteration number

        """
430
        
431 432 433 434 435 436 437 438 439 440 441 442 443 444
        if self.validation_data_shuffler.prefetch:
            embedding, labels = self.session.run([self.validation_predictor, self.validation_label_ph])
        else:
            feed_dict = self.get_feed_dict(self.validation_data_shuffler)
            embedding, labels = self.session.run([self.validation_predictor, self.validation_label_ph],
                                               feed_dict=feed_dict)
                                               
        accuracy = compute_embedding_accuracy(embedding, labels)
        
        summary = summary_pb2.Summary.Value(tag="accuracy", simple_value=accuracy)
        logger.info("VALIDATION Accuracy set step={0} = {1}".format(step, accuracy))
        self.validation_summary_writter.add_summary(summary_pb2.Summary(value=[summary]), step)               


445
    def create_general_summary(self, average_loss, output, label):
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
446
        """
447
        Creates a simple tensorboard summary with the value of the loss and learning rate
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
448
        """
449
        # Train summary
450
        tf.summary.scalar('loss', average_loss)
451
        tf.summary.scalar('lr', self.learning_rate)        
452 453

        # Computing accuracy
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
454 455 456 457 458
        if isinstance(output, dict):
            correct_prediction = tf.equal(tf.argmax(output['logits'], 1), label)
        else:
            correct_prediction = tf.equal(tf.argmax(output, 1), label)
        
459 460
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        tf.summary.scalar('accuracy', accuracy)        
461
        return tf.summary.merge_all()
462

463
    def start_thread(self):
Tiago Pereira's avatar
Tiago Pereira committed
464
        """
465 466 467 468
        Start pool of threads for pre-fetching

        **Parameters**
          session: Tensorflow session
Tiago Pereira's avatar
Tiago Pereira committed
469
        """
470

471
        threads = []
472
        for n in range(self.train_data_shuffler.prefetch_threads):
473
            t = threading.Thread(target=self.load_and_enqueue, args=())
474 475 476 477
            t.daemon = True  # thread will close when parent quits
            t.start()
            threads.append(t)
        return threads
478

479
    def load_and_enqueue(self):
Tiago Pereira's avatar
Tiago Pereira committed
480
        """
481
        Injecting data in the place holder queue
482 483 484

        **Parameters**
          session: Tensorflow session
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
485

Tiago Pereira's avatar
Tiago Pereira committed
486
        """
487
        while not self.thread_pool.should_stop():
488
            [train_data, train_labels] = self.train_data_shuffler.get_batch()
489

490 491
            data_ph = self.train_data_shuffler("data", from_queue=False)
            label_ph = self.train_data_shuffler("label", from_queue=False)
492

493 494 495 496
            feed_dict = {data_ph: train_data,
                         label_ph: train_labels}

            self.session.run(self.train_data_shuffler.enqueue_op, feed_dict=feed_dict)
497

498