InceptionResnetV2.py 13.1 KB
Newer Older
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Contains the definition of the Inception Resnet V2 architecture.
As described in http://arxiv.org/abs/1602.07261.
  Inception-v4, Inception-ResNet and the Impact of Residual Connections
    on Learning
  Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
import tensorflow.contrib.slim as slim

# Inception-Renset-A
def block35(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
    """Builds the 35x35 resnet block."""
    with tf.variable_scope(scope, 'Block35', [net], reuse=reuse):
        with tf.variable_scope('Branch_0'):
            tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1')
        with tf.variable_scope('Branch_1'):
            tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
            tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
            tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
            tower_conv2_1 = slim.conv2d(tower_conv2_0, 48, 3, scope='Conv2d_0b_3x3')
            tower_conv2_2 = slim.conv2d(tower_conv2_1, 64, 3, scope='Conv2d_0c_3x3')
        mixed = tf.concat([tower_conv, tower_conv1_1, tower_conv2_2], 3)
        up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
                         activation_fn=None, scope='Conv2d_1x1')
        net += scale * up
        if activation_fn:
            net = activation_fn(net)
    return net

# Inception-Renset-B
def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
    """Builds the 17x17 resnet block."""
    with tf.variable_scope(scope, 'Block17', [net], reuse=reuse):
        with tf.variable_scope('Branch_0'):
            tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
        with tf.variable_scope('Branch_1'):
            tower_conv1_0 = slim.conv2d(net, 128, 1, scope='Conv2d_0a_1x1')
            tower_conv1_1 = slim.conv2d(tower_conv1_0, 160, [1, 7],
                                        scope='Conv2d_0b_1x7')
            tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [7, 1],
                                        scope='Conv2d_0c_7x1')
        mixed = tf.concat([tower_conv, tower_conv1_2], 3)
        up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
                         activation_fn=None, scope='Conv2d_1x1')
        net += scale * up
        if activation_fn:
            net = activation_fn(net)
    return net


# Inception-Resnet-C
def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
    """Builds the 8x8 resnet block."""
    with tf.variable_scope(scope, 'Block8', [net], reuse=reuse):
        with tf.variable_scope('Branch_0'):
            tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
        with tf.variable_scope('Branch_1'):
            tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1')
            tower_conv1_1 = slim.conv2d(tower_conv1_0, 224, [1, 3],
                                        scope='Conv2d_0b_1x3')
            tower_conv1_2 = slim.conv2d(tower_conv1_1, 256, [3, 1],
                                        scope='Conv2d_0c_3x1')
        mixed = tf.concat([tower_conv, tower_conv1_2], 3)
        up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
                         activation_fn=None, scope='Conv2d_1x1')
        net += scale * up
        if activation_fn:
            net = activation_fn(net)
    return net
  
def inference(images, keep_probability, phase_train=True, 
              bottleneck_layer_size=128, weight_decay=0.0, reuse=None):
    batch_norm_params = {
        # Decay for the moving averages.
        'decay': 0.995,
        # epsilon to prevent 0s in variance.
        'epsilon': 0.001,
        # force in-place updates of mean and variance estimates
        'updates_collections': None,
        # Moving averages ends up in the trainable variables collection
        'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
}
    with slim.arg_scope([slim.conv2d, slim.fully_connected],
                        weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
                        weights_regularizer=slim.l2_regularizer(weight_decay),
                        normalizer_fn=slim.batch_norm,
                        normalizer_params=batch_norm_params):
        return inception_resnet_v2(images, is_training=phase_train,
              dropout_keep_prob=keep_probability, bottleneck_layer_size=bottleneck_layer_size, reuse=reuse)


def inception_resnet_v2(inputs, is_training=True,
                        dropout_keep_prob=0.8,
                        bottleneck_layer_size=128,
                        reuse=None,
                        scope='InceptionResnetV2'):
    """Creates the Inception Resnet V2 model.
    Args:
      inputs: a 4-D tensor of size [batch_size, height, width, 3].
      num_classes: number of predicted classes.
      is_training: whether is training or not.
      dropout_keep_prob: float, the fraction to keep before final layer.
      reuse: whether or not the network and its variables should be reused. To be
        able to reuse 'scope' must be given.
      scope: Optional variable_scope.
    Returns:
      logits: the logits outputs of the model.
      end_points: the set of end_points from the inception model.
    """
    end_points = {}
  
    with tf.variable_scope(scope, 'InceptionResnetV2', [inputs], reuse=reuse):
        with slim.arg_scope([slim.batch_norm, slim.dropout],
                            is_training=is_training):
            with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                                stride=1, padding='SAME'):
      
                # 149 x 149 x 32
                net = slim.conv2d(inputs, 32, 3, stride=2, padding='VALID',
                                  scope='Conv2d_1a_3x3')
                end_points['Conv2d_1a_3x3'] = net
                # 147 x 147 x 32
                net = slim.conv2d(net, 32, 3, padding='VALID',
                                  scope='Conv2d_2a_3x3')
                end_points['Conv2d_2a_3x3'] = net
                # 147 x 147 x 64
                net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3')
                end_points['Conv2d_2b_3x3'] = net
                # 73 x 73 x 64
                net = slim.max_pool2d(net, 3, stride=2, padding='VALID',
                                      scope='MaxPool_3a_3x3')
                end_points['MaxPool_3a_3x3'] = net
                # 73 x 73 x 80
                net = slim.conv2d(net, 80, 1, padding='VALID',
                                  scope='Conv2d_3b_1x1')
                end_points['Conv2d_3b_1x1'] = net
                # 71 x 71 x 192
                net = slim.conv2d(net, 192, 3, padding='VALID',
                                  scope='Conv2d_4a_3x3')
                end_points['Conv2d_4a_3x3'] = net
                # 35 x 35 x 192
                net = slim.max_pool2d(net, 3, stride=2, padding='VALID',
                                      scope='MaxPool_5a_3x3')
                end_points['MaxPool_5a_3x3'] = net
        
                # 35 x 35 x 320
                with tf.variable_scope('Mixed_5b'):
                    with tf.variable_scope('Branch_0'):
                        tower_conv = slim.conv2d(net, 96, 1, scope='Conv2d_1x1')
                    with tf.variable_scope('Branch_1'):
                        tower_conv1_0 = slim.conv2d(net, 48, 1, scope='Conv2d_0a_1x1')
                        tower_conv1_1 = slim.conv2d(tower_conv1_0, 64, 5,
                                                    scope='Conv2d_0b_5x5')
                    with tf.variable_scope('Branch_2'):
                        tower_conv2_0 = slim.conv2d(net, 64, 1, scope='Conv2d_0a_1x1')
                        tower_conv2_1 = slim.conv2d(tower_conv2_0, 96, 3,
                                                    scope='Conv2d_0b_3x3')
                        tower_conv2_2 = slim.conv2d(tower_conv2_1, 96, 3,
                                                    scope='Conv2d_0c_3x3')
                    with tf.variable_scope('Branch_3'):
                        tower_pool = slim.avg_pool2d(net, 3, stride=1, padding='SAME',
                                                     scope='AvgPool_0a_3x3')
                        tower_pool_1 = slim.conv2d(tower_pool, 64, 1,
                                                   scope='Conv2d_0b_1x1')
                    net = tf.concat([tower_conv, tower_conv1_1,
                                        tower_conv2_2, tower_pool_1], 3)
        
                end_points['Mixed_5b'] = net
                net = slim.repeat(net, 10, block35, scale=0.17)
        
                # 17 x 17 x 1024
                with tf.variable_scope('Mixed_6a'):
                    with tf.variable_scope('Branch_0'):
                        tower_conv = slim.conv2d(net, 384, 3, stride=2, padding='VALID',
                                                 scope='Conv2d_1a_3x3')
                    with tf.variable_scope('Branch_1'):
                        tower_conv1_0 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
                        tower_conv1_1 = slim.conv2d(tower_conv1_0, 256, 3,
                                                    scope='Conv2d_0b_3x3')
                        tower_conv1_2 = slim.conv2d(tower_conv1_1, 384, 3,
                                                    stride=2, padding='VALID',
                                                    scope='Conv2d_1a_3x3')
                    with tf.variable_scope('Branch_2'):
                        tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID',
                                                     scope='MaxPool_1a_3x3')
                    net = tf.concat([tower_conv, tower_conv1_2, tower_pool], 3)
        
                end_points['Mixed_6a'] = net
                net = slim.repeat(net, 20, block17, scale=0.10)
        
                with tf.variable_scope('Mixed_7a'):
                    with tf.variable_scope('Branch_0'):
                        tower_conv = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
                        tower_conv_1 = slim.conv2d(tower_conv, 384, 3, stride=2,
                                                   padding='VALID', scope='Conv2d_1a_3x3')
                    with tf.variable_scope('Branch_1'):
                        tower_conv1 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
                        tower_conv1_1 = slim.conv2d(tower_conv1, 288, 3, stride=2,
                                                    padding='VALID', scope='Conv2d_1a_3x3')
                    with tf.variable_scope('Branch_2'):
                        tower_conv2 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
                        tower_conv2_1 = slim.conv2d(tower_conv2, 288, 3,
                                                    scope='Conv2d_0b_3x3')
                        tower_conv2_2 = slim.conv2d(tower_conv2_1, 320, 3, stride=2,
                                                    padding='VALID', scope='Conv2d_1a_3x3')
                    with tf.variable_scope('Branch_3'):
                        tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID',
                                                     scope='MaxPool_1a_3x3')
                    net = tf.concat([tower_conv_1, tower_conv1_1,
                                        tower_conv2_2, tower_pool], 3)
        
                end_points['Mixed_7a'] = net
        
                net = slim.repeat(net, 9, block8, scale=0.20)
                net = block8(net, activation_fn=None)
        
                net = slim.conv2d(net, 1536, 1, scope='Conv2d_7b_1x1')
                end_points['Conv2d_7b_1x1'] = net
        
                with tf.variable_scope('Logits'):
                    end_points['PrePool'] = net
                    #pylint: disable=no-member
                    net = slim.avg_pool2d(net, net.get_shape()[1:3], padding='VALID',
                                          scope='AvgPool_1a_8x8')
                    net = slim.flatten(net)
          
                    net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
                                       scope='Dropout')
          
                    end_points['PreLogitsFlatten'] = net
                
                net = slim.fully_connected(net, bottleneck_layer_size, activation_fn=None, 
                        scope='Bottleneck', reuse=False)
  
    return net, end_points