Trainer.py 6.52 KB
Newer Older
1 2 3 4 5 6 7 8 9
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# @author: Tiago de Freitas Pereira <tiago.pereira@idiap.ch>
# @date: Tue 09 Aug 2016 15:25:22 CEST

import logging
logger = logging.getLogger("bob.learn.tensorflow")
import tensorflow as tf
from ..network import SequenceNetwork
10
import threading
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
11
import numpy
12 13
import os
import bob.io.base
14

15

16 17 18
class Trainer(object):

    def __init__(self,
19 20
                 architecture,
                 optimizer=tf.train.AdamOptimizer(),
21 22
                 use_gpu=False,
                 loss=None,
23
                 temp_dir="",
24

25 26 27 28
                 # Learning rate
                 base_learning_rate=0.001,
                 weight_decay=0.9,

29
                 ###### training options ##########
30
                 convergence_threshold=0.01,
31 32
                 iterations=5000,
                 snapshot=100):
33
        """
34

35 36 37 38 39 40 41 42 43 44 45 46
        **Parameters**
          architecture: The architecture that you want to run. Should be a :py:class`bob.learn.tensorflow.network.SequenceNetwork`
          optimizer: One of the tensorflow optimizers https://www.tensorflow.org/versions/r0.10/api_docs/python/train.html
          use_gpu: Use GPUs in the training
          loss: Loss
          temp_dir:
          iterations:
          snapshot:
          convergence_threshold:
        """
        if not isinstance(architecture, SequenceNetwork):
            raise ValueError("`architecture` should be instance of `SequenceNetwork`")
47 48

        self.architecture = architecture
49
        self.optimizer = optimizer
50
        self.use_gpu = use_gpu
51 52 53 54 55
        self.loss = loss
        self.temp_dir = temp_dir

        self.base_learning_rate = base_learning_rate
        self.weight_decay = weight_decay
56 57 58 59 60

        self.iterations = iterations
        self.snapshot = snapshot
        self.convergence_threshold = convergence_threshold

61
    def train(self, train_data_shuffler, validation_data_shuffler=None):
62 63 64 65 66
        """
        Do the loop forward --> backward --|
                      ^--------------------|
        """

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
        def start_thread():
            threads = []
            for n in range(1):
                t = threading.Thread(target=load_and_enqueue)
                t.daemon = True  # thread will close when parent quits
                t.start()
                threads.append(t)
            return threads

        def load_and_enqueue():
            """
            Injecting data in the place holder queue
            """

            #while not thread_pool.should_stop():
82 83
            #for i in range(self.iterations):
            while not thread_pool.should_stop():
84
                train_data, train_labels = train_data_shuffler.get_batch()
85 86 87 88 89 90

                feed_dict = {train_placeholder_data: train_data,
                             train_placeholder_labels: train_labels}

                session.run(enqueue_op, feed_dict=feed_dict)

91 92 93 94 95 96 97 98
        # TODO: find an elegant way to provide this as a parameter of the trainer
        learning_rate = tf.train.exponential_decay(
            self.base_learning_rate,  # Learning rate
            train_data_shuffler.batch_size,
            train_data_shuffler.n_samples,
            self.weight_decay  # Decay step
        )

99
        # Defining place holders
100 101 102 103
        train_placeholder_data, train_placeholder_labels = train_data_shuffler.get_placeholders_forprefetch(name="train")
        if validation_data_shuffler is not None:
            validation_placeholder_data, validation_placeholder_labels = \
                validation_data_shuffler.get_placeholders(name="validation")
104 105 106 107 108 109 110
        # Defining a placeholder queue for prefetching
        queue = tf.FIFOQueue(capacity=10,
                             dtypes=[tf.float32, tf.int64],
                             shapes=[train_placeholder_data.get_shape().as_list()[1:], []])

        # Fetching the place holders from the queue
        enqueue_op = queue.enqueue_many([train_placeholder_data, train_placeholder_labels])
111
        train_feature_batch, train_label_batch = queue.dequeue_many(train_data_shuffler.batch_size)
112 113 114 115 116 117

        # Creating the architecture for train and validation
        if not isinstance(self.architecture, SequenceNetwork):
            raise ValueError("The variable `architecture` must be an instance of "
                             "`bob.learn.tensorflow.network.SequenceNetwork`")

118
        # Creating graphs and defining the loss
119 120
        train_graph = self.architecture.compute_graph(train_feature_batch)
        loss_train = self.loss(train_graph, train_label_batch)
121 122 123 124 125
        train_prediction = tf.nn.softmax(train_graph)
        if validation_data_shuffler is not None:
            validation_graph = self.architecture.compute_graph(validation_placeholder_data)
            loss_validation = self.loss(validation_graph, validation_placeholder_labels)
            validation_prediction = tf.nn.softmax(validation_graph)
126

127 128 129
        # Preparing the optimizer
        self.optimizer._learning_rate = learning_rate
        optimizer = self.optimizer.minimize(loss_train, global_step=tf.Variable(0))
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
130

131 132
        print("Initializing !!")
        # Training
133
        hdf5 = bob.io.base.HDF5File(os.path.join(self.temp_dir, 'model.hdf5'), 'w')
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
134

135
        with tf.Session() as session:
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
136

137
            tf.initialize_all_variables().run()
138 139 140 141 142 143 144

            # Start a thread to enqueue data asynchronously, and hide I/O latency.
            thread_pool = tf.train.Coordinator()
            tf.train.start_queue_runners(coord=thread_pool)

            threads = start_thread()

145
            train_writer = tf.train.SummaryWriter('./LOGS/train', session.graph)
146

147 148
            for step in range(self.iterations):

149 150 151 152 153
                _, l, lr, _ = session.run([optimizer, loss_train,
                                           learning_rate, train_prediction])

                if validation_data_shuffler is not None and step % self.snapshot == 0:
                    validation_data, validation_labels = validation_data_shuffler.get_batch()
154

155 156
                    feed_dict = {validation_placeholder_data: validation_data,
                                 validation_placeholder_labels: validation_labels}
157

158 159
                    l, predictions = session.run([loss_validation, validation_prediction], feed_dict=feed_dict)
                    accuracy = 100. * numpy.sum(numpy.argmax(predictions, 1) == validation_labels) / predictions.shape[0]
160

161
                    print "Step {0}. Loss = {1}, Acc Validation={2}".format(step, l, accuracy)
162

163
            train_writer.close()
Tiago de Freitas Pereira's avatar
Tiago de Freitas Pereira committed
164

165 166 167 168 169
            # now they should definetely stop
            thread_pool.request_stop()
            thread_pool.join(threads)
            self.architecture.save(hdf5)
            del hdf5
170