Expectation Maximization Machine Learning Tools
This package is a part of Bob_. It implements a general EM algorithm and includes implementations of the following algorithms:
- K-Means
- Maximum Likelihood (ML)
- Maximum a Posteriori (MAP)
- Inter Session Variability Modelling (ISV)
- Joint Factor Analysis (JFA)
- Total Variability Modeling (iVectors)
- Probabilistic Linear Discriminant Analysis (PLDA)
- EM Principal Component Analysis (EM-PCA)
- Whitening
- Within-Class Covariance Normalization (WCCN)
Documentation
References
[Reynolds2000] | Reynolds, Douglas A., Thomas F. Quatieri, and Robert B. Dunn. Speaker Verification Using Adapted Gaussian Mixture Models, Digital signal processing 10.1 (2000): 19-41. |
[McCool2013] | C. McCool, R. Wallace, M. McLaren, L. El Shafey, S. Marcel. 'Session Variability Modelling for Face Authentication', IET Biometrics, 2013 |
Indices and tables
- :ref:`genindex`
- :ref:`modindex`
- :ref:`search`