From d41ca91adba99bb5a7b57ef9cd4fe5f54f94a783 Mon Sep 17 00:00:00 2001 From: Amir MOHAMMADI <amir.mohammadi@idiap.ch> Date: Mon, 11 Apr 2022 14:38:26 +0200 Subject: [PATCH] remove duplicate tests --- bob/learn/em/test/test_factor_analysis.py | 146 ---------------------- 1 file changed, 146 deletions(-) diff --git a/bob/learn/em/test/test_factor_analysis.py b/bob/learn/em/test/test_factor_analysis.py index 21d3741..fc2ed15 100644 --- a/bob/learn/em/test/test_factor_analysis.py +++ b/bob/learn/em/test/test_factor_analysis.py @@ -210,82 +210,6 @@ def test_JFATrainAndEnrol(): np.testing.assert_allclose(latent_z, z_ref, rtol=eps, atol=1e-8) -def test_JFATrainAndEnrolWithNumpy(): - # Train and enroll a JFAMachine - - # Calls the train function - ubm = GMMMachine(2, 3) - ubm.means = UBM_MEAN.reshape((2, 3)) - ubm.variances = UBM_VAR.reshape((2, 3)) - it = JFAMachine(ubm, 2, 2, em_iterations=10) - - it.U = copy.deepcopy(M_u) - it.V = copy.deepcopy(M_v) - it.D = copy.deepcopy(M_d) - it.fit_using_stats(TRAINING_STATS_X, TRAINING_STATS_y) - - v_ref = np.array( - [ - [0.245364911936476, 0.978133261775424], - [0.769646805052223, 0.940070736856596], - [0.310779202800089, 1.456332053893072], - [0.184760934399551, 2.265139705602147], - [0.701987784039800, 0.081632150899400], - [0.074344030229297, 1.090248340917255], - ], - "float64", - ) - u_ref = np.array( - [ - [0.049424652628448, 0.060480486336896], - [0.178104127464007, 1.884873813495153], - [1.204011484266777, 2.281351307871720], - [7.278512126426286, -0.390966087173334], - [-0.084424326581145, -0.081725474934414], - [4.042143689831097, -0.262576386580701], - ], - "float64", - ) - d_ref = np.array( - [ - 9.648467e-18, - 2.63720683155e-12, - 2.11822157653706e-10, - 9.1047243e-17, - 1.41163442535567e-10, - 3.30581e-19, - ], - "float64", - ) - - eps = 1e-10 - np.testing.assert_allclose(it.V, v_ref, rtol=eps, atol=1e-8) - np.testing.assert_allclose(it.U, u_ref, rtol=eps, atol=1e-8) - np.testing.assert_allclose(it.D, d_ref, rtol=eps, atol=1e-8) - - """ - Calls the enroll function with arrays as input - """ - - np.random.seed(0) - X = np.random.normal(ubm.means[0], scale=0.5, size=(50, 3)) - latent_y_ref = np.array([-0.13922039, 0.10686916]) - latent_z_ref = np.array( - [ - -1.37073043e-17, - 1.15641870e-12, - -8.29922598e-10, - -4.17108194e-16, - -2.27107305e-09, - 2.94293314e-18, - ] - ) - - latent_y, latent_z = it.enroll_with_array(X) - np.testing.assert_allclose(latent_z, latent_z_ref, rtol=eps, atol=1e-8) - np.testing.assert_allclose(latent_y, latent_y_ref, rtol=eps, atol=1e-8) - - def test_ISVTrainAndEnrol(): # Train and enroll an 'ISVMachine' @@ -379,76 +303,6 @@ def test_ISVTrainAndEnrol(): np.testing.assert_allclose(latent_z, z_ref, rtol=eps, atol=1e-8) -def test_ISVTrainAndEnrolWithNumpy(): - # Train and enroll an 'ISVMachine' - - eps = 1e-10 - d_ref = np.array( - [ - 0.39601136, - 0.07348469, - 0.47712682, - 0.44738127, - 0.43179856, - 0.45086029, - ], - "float64", - ) - u_ref = np.array( - [ - [0.855125642430777, 0.563104284748032], - [-0.325497865404680, 1.923598985291687], - [0.511575659503837, 1.964288663083095], - [9.330165761678115, 1.073623827995043], - [0.511099245664012, 0.278551249248978], - [5.065578541930268, 0.509565618051587], - ], - "float64", - ) - - """ - Calls the train function - """ - ubm = GMMMachine(n_gaussians=2) - ubm.means = UBM_MEAN.reshape((2, 3)) - ubm.variances = UBM_VAR.reshape((2, 3)) - - it = ISVMachine( - ubm=ubm, - r_U=2, - relevance_factor=4.0, - em_iterations=10, - ) - - it.U = copy.deepcopy(M_u) - it = it.fit_using_stats(TRAINING_STATS_X, TRAINING_STATS_y) - - np.testing.assert_allclose(it.D, d_ref, rtol=eps, atol=1e-8) - np.testing.assert_allclose(it.U, u_ref, rtol=eps, atol=1e-8) - - """ - Calls the enroll function with arrays as input - """ - - np.random.seed(0) - X = np.random.normal(ubm.means[0], scale=0.5, size=(50, 3)) - latent_z_ref = np.array( - [ - [ - 0.01084525, - 0.06039035, - -0.16920933, - -0.17321376, - -0.9648409, - 0.44581105, - ] - ] - ) - - latent_z = it.enroll_with_array(X) - np.testing.assert_allclose(latent_z, latent_z_ref, rtol=eps, atol=1e-8) - - def test_JFATrainInitialize(): # Check that the initialization is consistent and using the rng (cf. issue #118) -- GitLab