diff --git a/MANIFEST.in b/MANIFEST.in index e008f08fcfa5e5a464cd5d770e78987a4d3a6c46..12eef6d570fff423675c4c6e4b63ce5f8f262713 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,3 +1,3 @@ -include LICENSE README.rst +include LICENSE README.md recursive-include doc conf.py *.rst recursive-include src/bob/learn/em/data *.* diff --git a/README.md b/README.md new file mode 100644 index 0000000000000000000000000000000000000000..2231428d28aae1958898e3679387d24bb0c04d54 --- /dev/null +++ b/README.md @@ -0,0 +1,48 @@ + +[](https://www.idiap.ch/software/bob/docs/bob/bob.learn.em/master/sphinx/index.html) +[](https://gitlab.idiap.ch/bob/bob.learn.em/commits/master) +[](https://www.idiap.ch/software/bob/docs/bob/bob.learn.em/master/coverage) +[](https://gitlab.idiap.ch/bob/bob.learn.em) + +# Expectation Maximization Machine Learning Tools + +This package is part of the signal-processing and machine learning toolbox +[Bob](https://www.idiap.ch/software/bob). It contains routines for learning +probabilistic models via Expectation Maximization (EM). + +The EM algorithm is an iterative method that estimates parameters for +statistical models, where the model depends on unobserved latent variables. The +EM iteration alternates between performing an expectation (E) step, which +creates a function for the expectation of the log-likelihood evaluated using +the current estimate for the parameters, and a maximization (M) step, which +computes parameters maximizing the expected log-likelihood found on the E step. +These parameter-estimates are then used to determine the distribution of the +latent variables in the next E step. + +The package includes the machine definition per se and a selection of different +trainers for specialized purposes: + + - Maximum Likelihood (ML) + - Maximum a Posteriori (MAP) + - K-Means + - Inter Session Variability Modelling (ISV) + - Joint Factor Analysis (JFA) + - Total Variability Modeling (iVectors) + - Probabilistic Linear Discriminant Analysis (PLDA) + - EM Principal Component Analysis (EM-PCA) + + +## Installation + +Complete Bob's [installation](https://www.idiap.ch/software/bob/install) +instructions. Then, to install this package, run: + +``` sh +conda install bob.learn.em +``` + + +## Contact + +For questions or reporting issues to this software package, contact our +development [mailing list](https://www.idiap.ch/software/bob/discuss). diff --git a/README.rst b/README.rst deleted file mode 100644 index d64f771e2ad7ab1d8fee4a9a006de285a510bc64..0000000000000000000000000000000000000000 --- a/README.rst +++ /dev/null @@ -1,62 +0,0 @@ -.. vim: set fileencoding=utf-8 : -.. Mon 15 Aug 2016 09:48:28 CEST - -.. image:: https://img.shields.io/badge/docs-latest-orange.svg - :target: https://www.idiap.ch/software/bob/docs/bob/bob.learn.em/master/sphinx/index.html -.. image:: https://gitlab.idiap.ch/bob/bob.learn.em/badges/master/pipeline.svg - :target: https://gitlab.idiap.ch/bob/bob.learn.em/commits/master -.. image:: https://gitlab.idiap.ch/bob/bob.learn.em/badges/master/coverage.svg - :target: https://www.idiap.ch/software/bob/docs/bob/bob.learn.em/master/coverage -.. image:: https://img.shields.io/badge/gitlab-project-0000c0.svg - :target: https://gitlab.idiap.ch/bob/bob.learn.em - - -================================================= - Expectation Maximization Machine Learning Tools -================================================= - -This package is part of the signal-processing and machine learning toolbox -Bob_. It contains routines for learning probabilistic models via Expectation -Maximization (EM). - -The EM algorithm is an iterative method that estimates parameters for -statistical models, where the model depends on unobserved latent variables. The -EM iteration alternates between performing an expectation (E) step, which -creates a function for the expectation of the log-likelihood evaluated using -the current estimate for the parameters, and a maximization (M) step, which -computes parameters maximizing the expected log-likelihood found on the E step. -These parameter-estimates are then used to determine the distribution of the -latent variables in the next E step. - -The package includes the machine definition per se and a selection of different trainers for specialized purposes: - - - Maximum Likelihood (ML) - - Maximum a Posteriori (MAP) - - K-Means - - Inter Session Variability Modelling (ISV) - - Joint Factor Analysis (JFA) - - Total Variability Modeling (iVectors) - - Probabilistic Linear Discriminant Analysis (PLDA) - - EM Principal Component Analysis (EM-PCA) - - -Installation ------------- - -Complete Bob's `installation`_ instructions. Then, to install this package, -run:: - - $ conda install bob.learn.em - - -Contact -------- - -For questions or reporting issues to this software package, contact our -development `mailing list`_. - - -.. Place your references here: -.. _bob: https://www.idiap.ch/software/bob -.. _installation: https://www.idiap.ch/software/bob/install -.. _mailing list: https://www.idiap.ch/software/bob/discuss diff --git a/pyproject.toml b/pyproject.toml index a9a956d5d74fe5decd9dbfad345bc36760ff3a0f..5172740323c574fd2cee9f24e6237dfe9a547326 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -58,8 +58,7 @@ package-dir = {"" = "src"} [tool.setuptools.dynamic] - readme = {file = "README.rst"} - + readme = {file = "README.md", content-type = "text/markdown"} [tool.distutils.bdist_wheel] universal = true