diff --git a/bob/learn/misc/old/ivector_trainer.cc b/bob/learn/misc/old/ivector_trainer.cc index e910af9b7b97987165a5ecb14358bb015e3c3856..d98ed5076e02928c92491369f76624c0b2822ea6 100644 --- a/bob/learn/misc/old/ivector_trainer.cc +++ b/bob/learn/misc/old/ivector_trainer.cc @@ -80,13 +80,32 @@ static void py_set_AccSnormij(bob::learn::misc::IVectorTrainer& trainer, trainer.setAccSnormij(acc.bz<double,2>()); } + + +// include the random API of bob.core +#include <bob.core/random.h> +static boost::python::object ITB_getRng(EMTrainerIVectorBase& self){ + // create new object + PyObject* o = PyBoostMt19937_Type.tp_alloc(&PyBoostMt19937_Type,0); + reinterpret_cast<PyBoostMt19937Object*>(o)->rng = self.getRng().get(); + return boost::python::object(boost::python::handle<>(o)); +} + +#include <boost/make_shared.hpp> +static void ITB_setRng(EMTrainerIVectorBase& self, boost::python::object rng){ + if (!PyBoostMt19937_Check(rng.ptr())) PYTHON_ERROR(TypeError, "Would have expected a bob.core.random.mt19937 object"); + PyBoostMt19937Object* o = reinterpret_cast<PyBoostMt19937Object*>(rng.ptr()); + self.setRng(boost::make_shared<boost::mt19937>(*o->rng)); +} + + void bind_trainer_ivector() { class_<EMTrainerIVectorBase, boost::noncopyable>("EMTrainerIVector", "The base python class for all EM-based trainers.", no_init) .add_property("convergence_threshold", &EMTrainerIVectorBase::getConvergenceThreshold, &EMTrainerIVectorBase::setConvergenceThreshold, "Convergence threshold") .add_property("max_iterations", &EMTrainerIVectorBase::getMaxIterations, &EMTrainerIVectorBase::setMaxIterations, "Max iterations") .add_property("compute_likelihood_variable", &EMTrainerIVectorBase::getComputeLikelihood, &EMTrainerIVectorBase::setComputeLikelihood, "Indicates whether the log likelihood should be computed during EM or not") - .add_property("rng", &EMTrainerIVectorBase::getRng, &EMTrainerIVectorBase::setRng, "The Mersenne Twister mt19937 random generator used for the initialization of subspaces/arrays before the EM loop.") + .add_property("rng", &ITB_getRng, &ITB_setRng, "The Mersenne Twister mt19937 random generator used for the initialization of subspaces/arrays before the EM loop.") .def("train", &py_train, (arg("machine"), arg("data")), "Trains a machine using data") .def("initialize", &py_initialize, (arg("machine"), arg("data")), "This method is called before the EM algorithm") .def("finalize", &py_finalize, (arg("machine"), arg("data")), "This method is called at the end of the EM algorithm") diff --git a/bob/learn/misc/old/jfa_trainer.cc b/bob/learn/misc/old/jfa_trainer.cc index b530082b79e438b4cc10a0abe00924d43b9b513e..18d0299371a8d3d9635e2978818307aa658d97da 100644 --- a/bob/learn/misc/old/jfa_trainer.cc +++ b/bob/learn/misc/old/jfa_trainer.cc @@ -309,12 +309,41 @@ static void jfa_set_accDA2(bob::learn::misc::JFATrainer& trainer, } + +// include the random API of bob.core +#include <bob.core/random.h> +static boost::python::object isv_getRng(bob::learn::misc::ISVTrainer& self){ + // create new object + PyObject* o = PyBoostMt19937_Type.tp_alloc(&PyBoostMt19937_Type,0); + reinterpret_cast<PyBoostMt19937Object*>(o)->rng = self.getRng().get(); + return boost::python::object(boost::python::handle<>(o)); +} +static boost::python::object jfa_getRng(bob::learn::misc::JFATrainer& self){ + // create new object + PyObject* o = PyBoostMt19937_Type.tp_alloc(&PyBoostMt19937_Type,0); + reinterpret_cast<PyBoostMt19937Object*>(o)->rng = self.getRng().get(); + return boost::python::object(boost::python::handle<>(o)); +} + +#include <boost/make_shared.hpp> +static void isv_setRng(bob::learn::misc::ISVTrainer& self, boost::python::object rng){ + if (!PyBoostMt19937_Check(rng.ptr())) PYTHON_ERROR(TypeError, "Would have expected a bob.core.random.mt19937 object"); + PyBoostMt19937Object* o = reinterpret_cast<PyBoostMt19937Object*>(rng.ptr()); + self.setRng(boost::make_shared<boost::mt19937>(*o->rng)); +} +static void jfa_setRng(bob::learn::misc::JFATrainer& self, boost::python::object rng){ + if (!PyBoostMt19937_Check(rng.ptr())) PYTHON_ERROR(TypeError, "Would have expected a bob.core.random.mt19937 object"); + PyBoostMt19937Object* o = reinterpret_cast<PyBoostMt19937Object*>(rng.ptr()); + self.setRng(boost::make_shared<boost::mt19937>(*o->rng)); +} + + void bind_trainer_jfa() { class_<bob::learn::misc::ISVTrainer, boost::noncopyable >("ISVTrainer", "A trainer for Inter-session Variability Modelling (ISV). \n\nReferences:\n[1] 'Explicit Modelling of Session Variability for Speaker Verification', R. Vogt, S. Sridharan, Computer Speech & Language, 2008, vol. 22, no. 1, pp. 17-38\n[2] 'Session Variability Modelling for Face Authentication', C. McCool, R. Wallace, M. McLaren, L. El Shafey, S. Marcel, IET Biometrics, 2013", init<optional<const size_t, const double> >((arg("self"), arg("max_iterations")=10, arg("relevance_factor")=4.),"Initializes a new ISVTrainer.")) .def(init<const bob::learn::misc::ISVTrainer&>((arg("self"), arg("other")), "Copy constructs an ISVTrainer")) .add_property("max_iterations", &bob::learn::misc::ISVTrainer::getMaxIterations, &bob::learn::misc::ISVTrainer::setMaxIterations, "Max iterations") - .add_property("rng", &bob::learn::misc::ISVTrainer::getRng, &bob::learn::misc::ISVTrainer::setRng, "The Mersenne Twister mt19937 random generator used for the initialization of subspaces/arrays before the EM loop.") + .add_property("rng", &isv_getRng, &isv_setRng, "The Mersenne Twister mt19937 random generator used for the initialization of subspaces/arrays before the EM loop.") .add_property("__X__", &isv_get_x, &isv_set_x) .add_property("__Z__", &isv_get_z, &isv_set_z) .def(self == self) @@ -333,7 +362,7 @@ void bind_trainer_jfa() class_<bob::learn::misc::JFATrainer, boost::noncopyable >("JFATrainer", "A trainer for Joint Factor Analysis (JFA).\n\nReferences:\n[1] 'Explicit Modelling of Session Variability for Speaker Verification', R. Vogt, S. Sridharan, Computer Speech & Language, 2008, vol. 22, no. 1, pp. 17-38\n[2] 'Session Variability Modelling for Face Authentication', C. McCool, R. Wallace, M. McLaren, L. El Shafey, S. Marcel, IET Biometrics, 2013", init<optional<const size_t> >((arg("self"), arg("max_iterations")=10),"Initializes a new JFATrainer.")) .def(init<const bob::learn::misc::JFATrainer&>((arg("self"), arg("other")), "Copy constructs an JFATrainer")) .add_property("max_iterations", &bob::learn::misc::JFATrainer::getMaxIterations, &bob::learn::misc::JFATrainer::setMaxIterations, "Max iterations") - .add_property("rng", &bob::learn::misc::JFATrainer::getRng, &bob::learn::misc::JFATrainer::setRng, "The Mersenne Twister mt19937 random generator used for the initialization of subspaces/arrays before the EM loop.") + .add_property("rng", &jfa_getRng, &jfa_setRng, "The Mersenne Twister mt19937 random generator used for the initialization of subspaces/arrays before the EM loop.") .add_property("__X__", &jfa_get_x, &jfa_set_x) .add_property("__Y__", &jfa_get_y, &jfa_set_y) .add_property("__Z__", &jfa_get_z, &jfa_set_z) diff --git a/bob/learn/misc/old/kmeans_trainer.cc b/bob/learn/misc/old/kmeans_trainer.cc index 57129fe4d01f4d210f3271aadf936dcb45031969..3a5838afb121dd15cac78ce5016e89a88344a921 100644 --- a/bob/learn/misc/old/kmeans_trainer.cc +++ b/bob/learn/misc/old/kmeans_trainer.cc @@ -56,13 +56,41 @@ static void py_mStep(EMTrainerKMeansBase& trainer, trainer.mStep(machine, sample.bz<double,2>()); } +// include the random API of bob.core +#include <bob.core/random.h> +static boost::python::object KMTB_getRng(EMTrainerKMeansBase& self){ + // create new object + PyObject* o = PyBoostMt19937_Type.tp_alloc(&PyBoostMt19937_Type,0); + reinterpret_cast<PyBoostMt19937Object*>(o)->rng = self.getRng().get(); + return boost::python::object(boost::python::handle<>(o)); +} +static boost::python::object KMT_getRng(bob::learn::misc::KMeansTrainer& self){ + // create new object + PyObject* o = PyBoostMt19937_Type.tp_alloc(&PyBoostMt19937_Type,0); + reinterpret_cast<PyBoostMt19937Object*>(o)->rng = self.getRng().get(); + return boost::python::object(boost::python::handle<>(o)); +} + +#include <boost/make_shared.hpp> +static void KMTB_setRng(EMTrainerKMeansBase& self, boost::python::object rng){ + if (!PyBoostMt19937_Check(rng.ptr())) PYTHON_ERROR(TypeError, "Would have expected a bob.core.random.mt19937 object"); + PyBoostMt19937Object* o = reinterpret_cast<PyBoostMt19937Object*>(rng.ptr()); + self.setRng(boost::make_shared<boost::mt19937>(*o->rng)); +} +static void KMT_setRng(bob::learn::misc::KMeansTrainer& self, boost::python::object rng){ + if (!PyBoostMt19937_Check(rng.ptr())) PYTHON_ERROR(TypeError, "Would have expected a bob.core.random.mt19937 object"); + PyBoostMt19937Object* o = reinterpret_cast<PyBoostMt19937Object*>(rng.ptr()); + self.setRng(boost::make_shared<boost::mt19937>(*o->rng)); +} + + void bind_trainer_kmeans() { class_<EMTrainerKMeansBase, boost::noncopyable>("EMTrainerKMeans", "The base python class for all EM-based trainers.", no_init) .add_property("convergence_threshold", &EMTrainerKMeansBase::getConvergenceThreshold, &EMTrainerKMeansBase::setConvergenceThreshold, "Convergence threshold") .add_property("max_iterations", &EMTrainerKMeansBase::getMaxIterations, &EMTrainerKMeansBase::setMaxIterations, "Max iterations") .add_property("compute_likelihood", &EMTrainerKMeansBase::getComputeLikelihood, &EMTrainerKMeansBase::setComputeLikelihood, "Tells whether we compute the average min (square Euclidean) distance or not.") - .add_property("rng", &EMTrainerKMeansBase::getRng, &EMTrainerKMeansBase::setRng, "The Mersenne Twister mt19937 random generator used for the initialization of subspaces/arrays before the EM loop.") + .add_property("rng", &KMTB_getRng, &KMTB_setRng, "The Mersenne Twister mt19937 random generator used for the initialization of subspaces/arrays before the EM loop.") .def(self == self) .def(self != self) .def("train", &py_train, (arg("self"), arg("machine"), arg("data")), "Train a machine using data") @@ -91,7 +119,7 @@ void bind_trainer_kmeans() KMT.def(self == self) .def(self != self) .add_property("initialization_method", &bob::learn::misc::KMeansTrainer::getInitializationMethod, &bob::learn::misc::KMeansTrainer::setInitializationMethod, "The initialization method to generate the initial means.") - .add_property("rng", &bob::learn::misc::KMeansTrainer::getRng, &bob::learn::misc::KMeansTrainer::setRng, "The Mersenne Twister mt19937 random generator used for the initialization of the means.") + .add_property("rng", &KMT_getRng, &KMT_setRng, "The Mersenne Twister mt19937 random generator used for the initialization of the means.") .add_property("average_min_distance", &bob::learn::misc::KMeansTrainer::getAverageMinDistance, &bob::learn::misc::KMeansTrainer::setAverageMinDistance, "Average min (square Euclidean) distance. Useful to parallelize the E-step.") .add_property("zeroeth_order_statistics", make_function(&bob::learn::misc::KMeansTrainer::getZeroethOrderStats, return_value_policy<copy_const_reference>()), &py_setZeroethOrderStats, "The zeroeth order statistics. Useful to parallelize the E-step.") .add_property("first_order_statistics", make_function(&bob::learn::misc::KMeansTrainer::getFirstOrderStats, return_value_policy<copy_const_reference>()), &py_setFirstOrderStats, "The first order statistics. Useful to parallelize the E-step.") diff --git a/bob/learn/misc/old/main.cc b/bob/learn/misc/old/main.cc index 119d403f14cc274140857c91030511e416338da6..593957ecf7272c385a217e1d59b98dde2b5f6a12 100644 --- a/bob/learn/misc/old/main.cc +++ b/bob/learn/misc/old/main.cc @@ -14,6 +14,7 @@ #include <bob.blitz/capi.h> #include <bob.blitz/cleanup.h> #include <bob.io.base/api.h> +#include <bob.core/random.h> #include "ndarray.h" @@ -54,6 +55,12 @@ BOOST_PYTHON_MODULE(_old_library) { return; } + if (import_bob_core_random() < 0) { + PyErr_Print(); + PyErr_Format(PyExc_ImportError, "cannot import `bob.core.random'"); + return; + } + if (import_bob_io_base() < 0) { PyErr_Print(); PyErr_Format(PyExc_ImportError, "cannot import `bob.io.base'"); diff --git a/bob/learn/misc/old/plda_trainer.cc b/bob/learn/misc/old/plda_trainer.cc index 62c39d9e81626b2fb79c5157c9141dd55141575b..1c31059c9b2fe64664b845d0a4baa26fcd29b6e2 100644 --- a/bob/learn/misc/old/plda_trainer.cc +++ b/bob/learn/misc/old/plda_trainer.cc @@ -92,11 +92,28 @@ static object get_z_second_order(bob::learn::misc::PLDATrainer& m) { } +// include the random API of bob.core +#include <bob.core/random.h> +static boost::python::object TB_getRng(EMTrainerPLDA& self){ + // create new object + PyObject* o = PyBoostMt19937_Type.tp_alloc(&PyBoostMt19937_Type,0); + reinterpret_cast<PyBoostMt19937Object*>(o)->rng = self.getRng().get(); + return boost::python::object(boost::python::handle<>(o)); +} + +#include <boost/make_shared.hpp> +static void TB_setRng(EMTrainerPLDA& self, boost::python::object rng){ + if (!PyBoostMt19937_Check(rng.ptr())) PYTHON_ERROR(TypeError, "Would have expected a bob.core.random.mt19937 object"); + PyBoostMt19937Object* o = reinterpret_cast<PyBoostMt19937Object*>(rng.ptr()); + self.setRng(boost::make_shared<boost::mt19937>(*o->rng)); +} + + void bind_trainer_plda() { class_<EMTrainerPLDA, boost::noncopyable>("EMTrainerPLDA", "The base python class for all EM/PLDA-based trainers.", no_init) .add_property("max_iterations", &EMTrainerPLDA::getMaxIterations, &EMTrainerPLDA::setMaxIterations, "Max iterations") - .add_property("rng", &EMTrainerPLDA::getRng, &EMTrainerPLDA::setRng, "The Mersenne Twister mt19937 random generator used for the initialization of subspaces/arrays before the EM loop.") + .add_property("rng", &TB_getRng, &TB_setRng, "The Mersenne Twister mt19937 random generator used for the initialization of subspaces/arrays before the EM loop.") .def("train", &plda_train, (arg("self"), arg("machine"), arg("data")), "Trains a PLDABase using data (mu, F, G and sigma are learnt).") .def("initialize", &plda_initialize, (arg("self"), arg("machine"), arg("data")), "This method is called before the EM algorithm") .def("finalize", &plda_finalize, (arg("self"), arg("machine"), arg("data")), "This method is called at the end of the EM algorithm")