diff --git a/bob/learn/misc/__init__.py b/bob/learn/misc/__init__.py
index 2c3dd9d94c29e36af8fe91c53e8e4f3151813366..4692c864bd6c1eb1c8a8a167f5d434a47868c6c1 100644
--- a/bob/learn/misc/__init__.py
+++ b/bob/learn/misc/__init__.py
@@ -16,6 +16,7 @@ from .__ML_gmm_trainer__ import *
 from .__MAP_gmm_trainer__ import *
 from .__jfa_trainer__ import *
 from .__isv_trainer__ import *
+from .__ivector_trainer__ import *
 
 
 def ztnorm_same_value(vect_a, vect_b):
diff --git a/bob/learn/misc/__isv_trainer__.py b/bob/learn/misc/__isv_trainer__.py
index b77e06d63ee3ec8d47b6a6b761cfe10671a142fe..98a5457e3c4a24338881369e7e215d61515b1a01 100644
--- a/bob/learn/misc/__isv_trainer__.py
+++ b/bob/learn/misc/__isv_trainer__.py
@@ -11,7 +11,7 @@ import numpy
 # define the class
 class ISVTrainer (_ISVTrainer):
 
-  def __init__(self, max_iterations=10, relevance_factor=4., convergence_threshold = 0.001):
+  def __init__(self, max_iterations=10, relevance_factor=4.):
     """
     :py:class:`bob.learn.misc.ISVTrainer` constructor
 
@@ -19,7 +19,7 @@ class ISVTrainer (_ISVTrainer):
       max_iterations
         Number of maximum iterations
     """
-    _ISVTrainer.__init__(self, relevance_factor, convergence_threshold)
+    _ISVTrainer.__init__(self, relevance_factor)
     self._max_iterations         = max_iterations
 
 
diff --git a/bob/learn/misc/__ivector_trainer__.py b/bob/learn/misc/__ivector_trainer__.py
new file mode 100644
index 0000000000000000000000000000000000000000..a53a2d452eab0772390fdc4063ba3055690cdca1
--- /dev/null
+++ b/bob/learn/misc/__ivector_trainer__.py
@@ -0,0 +1,51 @@
+#!/usr/bin/env python
+# vim: set fileencoding=utf-8 :
+# Tiago de Freitas Pereira <tiago.pereira@idiap.ch>
+# Tue Fev 03 13:20:10 2015 +0200
+#
+# Copyright (C) 2011-2015 Idiap Research Institute, Martigny, Switzerland
+
+from ._library import _IVectorTrainer
+import numpy
+
+# define the class
+class IVectorTrainer (_IVectorTrainer):
+
+  def __init__(self, max_iterations=10, update_sigma=False):
+    """
+    :py:class:`bob.learn.misc.IVectorTrainer` constructor
+
+    Keyword Parameters:
+      max_iterations
+        Number of maximum iterations
+      update_sigma
+        
+    """
+    _IVectorTrainer.__init__(self, update_sigma)
+    self._max_iterations         = max_iterations
+
+
+  def train(self, ivector_machine, data):
+    """
+    Train the :py:class:`bob.learn.misc.IVectorMachine` using data
+
+    Keyword Parameters:
+      ivector_machine
+        The `:py:class:bob.learn.misc.IVectorMachine` class
+      data
+        The data to be trained
+    """
+
+    #Initialization
+    self.initialize(ivector_machine, data);
+      
+    for i in range(self._max_iterations):
+      #eStep
+      self.eStep(ivector_machine, data);
+      #mStep
+      self.mStep(ivector_machine);
+
+
+
+# copy the documentation from the base class
+__doc__ = _IVectorTrainer.__doc__
diff --git a/bob/learn/misc/cpp/ISVTrainer.cpp b/bob/learn/misc/cpp/ISVTrainer.cpp
index c7891b9f15dd8fd8ae4ef86e59283e6050849a5e..5ccedb078255554f33e45004323589dfffdbbff0 100644
--- a/bob/learn/misc/cpp/ISVTrainer.cpp
+++ b/bob/learn/misc/cpp/ISVTrainer.cpp
@@ -19,17 +19,16 @@
 
 
 //////////////////////////// ISVTrainer ///////////////////////////
-bob::learn::misc::ISVTrainer::ISVTrainer(const double relevance_factor, const double convergence_threshold):
+bob::learn::misc::ISVTrainer::ISVTrainer(const double relevance_factor):
   m_relevance_factor(relevance_factor),
-  m_convergence_threshold(convergence_threshold),
   m_rng(new boost::mt19937())
 {}
 
 bob::learn::misc::ISVTrainer::ISVTrainer(const bob::learn::misc::ISVTrainer& other):
-  m_convergence_threshold(other.m_convergence_threshold),
-  m_relevance_factor(other.m_relevance_factor),
   m_rng(other.m_rng)
-{}
+{
+  m_relevance_factor      = other.m_relevance_factor;
+}
 
 bob::learn::misc::ISVTrainer::~ISVTrainer()
 {}
@@ -39,7 +38,6 @@ bob::learn::misc::ISVTrainer& bob::learn::misc::ISVTrainer::operator=
 {
   if (this != &other)
   {
-    m_convergence_threshold = other.m_convergence_threshold;
     m_rng                   = other.m_rng;
     m_relevance_factor      = other.m_relevance_factor;
   }
@@ -48,8 +46,7 @@ bob::learn::misc::ISVTrainer& bob::learn::misc::ISVTrainer::operator=
 
 bool bob::learn::misc::ISVTrainer::operator==(const bob::learn::misc::ISVTrainer& b) const
 {
-  return m_convergence_threshold == b.m_convergence_threshold && 
-         m_rng == b.m_rng && 
+  return m_rng == b.m_rng && 
          m_relevance_factor == b.m_relevance_factor;
 }
 
@@ -61,9 +58,8 @@ bool bob::learn::misc::ISVTrainer::operator!=(const bob::learn::misc::ISVTrainer
 bool bob::learn::misc::ISVTrainer::is_similar_to(const bob::learn::misc::ISVTrainer& b,
   const double r_epsilon, const double a_epsilon) const
 {
-  return m_convergence_threshold == b.m_convergence_threshold && 
-         m_rng == b.m_rng && 
-         m_relevance_factor == b.m_relevance_factor;
+  return  m_rng == b.m_rng && 
+          m_relevance_factor == b.m_relevance_factor;
 }
 
 void bob::learn::misc::ISVTrainer::initialize(bob::learn::misc::ISVBase& machine,
diff --git a/bob/learn/misc/cpp/IVectorTrainer.cpp b/bob/learn/misc/cpp/IVectorTrainer.cpp
index 4f929af95a62fa232f73f6d529e9ca8e8d849c43..32bff8f6b9e9642b9e38fede8f5c3da469595d97 100644
--- a/bob/learn/misc/cpp/IVectorTrainer.cpp
+++ b/bob/learn/misc/cpp/IVectorTrainer.cpp
@@ -7,30 +7,26 @@
 
 
 #include <bob.learn.misc/IVectorTrainer.h>
-#include <bob.learn.misc/IVectorMachine.h>
+#include <bob.core/check.h>
 #include <bob.core/array_copy.h>
 #include <bob.core/array_random.h>
-#include <bob.core/check.h>
 #include <bob.math/inv.h>
+#include <bob.core/check.h>
+#include <bob.core/array_repmat.h>
+#include <algorithm>
+
 #include <bob.math/linear.h>
 #include <bob.math/linsolve.h>
-#include <boost/shared_ptr.hpp>
-
-bob::learn::misc::IVectorTrainer::IVectorTrainer(const bool update_sigma,
-    const double convergence_threshold,
-    const size_t max_iterations, bool compute_likelihood):
-  bob::learn::misc::EMTrainer<bob::learn::misc::IVectorMachine,
-    std::vector<bob::learn::misc::GMMStats> >(convergence_threshold,
-      max_iterations, compute_likelihood),
-  m_update_sigma(update_sigma)
-{
-}
+
+bob::learn::misc::IVectorTrainer::IVectorTrainer(const bool update_sigma):
+  m_update_sigma(update_sigma),
+  m_rng(new boost::mt19937())
+{}
 
 bob::learn::misc::IVectorTrainer::IVectorTrainer(const bob::learn::misc::IVectorTrainer& other):
-  bob::learn::misc::EMTrainer<bob::learn::misc::IVectorMachine,
-    std::vector<bob::learn::misc::GMMStats> >(other),
   m_update_sigma(other.m_update_sigma)
 {
+  m_rng                   = other.m_rng;
   m_acc_Nij_wij2.reference(bob::core::array::ccopy(other.m_acc_Nij_wij2));
   m_acc_Fnormij_wij.reference(bob::core::array::ccopy(other.m_acc_Fnormij_wij));
   m_acc_Nij.reference(bob::core::array::ccopy(other.m_acc_Nij));
@@ -51,11 +47,10 @@ bob::learn::misc::IVectorTrainer::~IVectorTrainer()
 }
 
 void bob::learn::misc::IVectorTrainer::initialize(
-  bob::learn::misc::IVectorMachine& machine,
-  const std::vector<bob::learn::misc::GMMStats>& data)
+  bob::learn::misc::IVectorMachine& machine)
 {
-  const int C = machine.getDimC();
-  const int D = machine.getDimD();
+  const int C = machine.getNGaussians();
+  const int D = machine.getNInputs();
   const int Rt = machine.getDimRt();
 
   // Cache
@@ -91,7 +86,7 @@ void bob::learn::misc::IVectorTrainer::eStep(
   const std::vector<bob::learn::misc::GMMStats>& data)
 {
   blitz::Range rall = blitz::Range::all();
-  const int C = machine.getDimC();
+  const int C = machine.getNGaussians();
 
   // Reinitializes accumulators to 0
   m_acc_Nij_wij2 = 0.;
@@ -144,14 +139,13 @@ void bob::learn::misc::IVectorTrainer::eStep(
 }
 
 void bob::learn::misc::IVectorTrainer::mStep(
-  bob::learn::misc::IVectorMachine& machine,
-  const std::vector<bob::learn::misc::GMMStats>& data)
+  bob::learn::misc::IVectorMachine& machine)
 {
   blitz::Range rall = blitz::Range::all();
   blitz::Array<double,2>& T = machine.updateT();
   blitz::Array<double,1>& sigma = machine.updateSigma();
-  const int C = (int)machine.getDimC();
-  const int D = (int)machine.getDimD();
+  const int C = (int)machine.getNGaussians();
+  const int D = (int)machine.getNInputs();
   for (int c=0; c<C; ++c)
   {
     // Solves linear system A.T = B to update T, based on accumulators of
@@ -178,26 +172,11 @@ void bob::learn::misc::IVectorTrainer::mStep(
 }
 
 
-double bob::learn::misc::IVectorTrainer::computeLikelihood(
-  bob::learn::misc::IVectorMachine& machine)
-{
-  // TODO: implementation
-  return 0;
-}
-
-void bob::learn::misc::IVectorTrainer::finalize(
-  bob::learn::misc::IVectorMachine& machine,
-  const std::vector<bob::learn::misc::GMMStats>& data)
-{
-}
-
 bob::learn::misc::IVectorTrainer& bob::learn::misc::IVectorTrainer::operator=
   (const bob::learn::misc::IVectorTrainer &other)
 {
   if (this != &other)
-  {
-    bob::learn::misc::EMTrainer<bob::learn::misc::IVectorMachine,
-      std::vector<bob::learn::misc::GMMStats> >::operator=(other);
+  {    
     m_update_sigma = other.m_update_sigma;
 
     m_acc_Nij_wij2.reference(bob::core::array::ccopy(other.m_acc_Nij_wij2));
@@ -220,13 +199,11 @@ bob::learn::misc::IVectorTrainer& bob::learn::misc::IVectorTrainer::operator=
 bool bob::learn::misc::IVectorTrainer::operator==
   (const bob::learn::misc::IVectorTrainer &other) const
 {
-  return bob::learn::misc::EMTrainer<bob::learn::misc::IVectorMachine,
-           std::vector<bob::learn::misc::GMMStats> >::operator==(other) &&
-        m_update_sigma == other.m_update_sigma &&
-        bob::core::array::isEqual(m_acc_Nij_wij2, other.m_acc_Nij_wij2) &&
-        bob::core::array::isEqual(m_acc_Fnormij_wij, other.m_acc_Fnormij_wij) &&
-        bob::core::array::isEqual(m_acc_Nij, other.m_acc_Nij) &&
-        bob::core::array::isEqual(m_acc_Snormij, other.m_acc_Snormij);
+  return m_update_sigma == other.m_update_sigma &&
+         bob::core::array::isEqual(m_acc_Nij_wij2, other.m_acc_Nij_wij2) &&
+         bob::core::array::isEqual(m_acc_Fnormij_wij, other.m_acc_Fnormij_wij) &&
+         bob::core::array::isEqual(m_acc_Nij, other.m_acc_Nij) &&
+         bob::core::array::isEqual(m_acc_Snormij, other.m_acc_Snormij);
 }
 
 bool bob::learn::misc::IVectorTrainer::operator!=
@@ -239,12 +216,10 @@ bool bob::learn::misc::IVectorTrainer::is_similar_to
   (const bob::learn::misc::IVectorTrainer &other, const double r_epsilon,
    const double a_epsilon) const
 {
-  return bob::learn::misc::EMTrainer<bob::learn::misc::IVectorMachine,
-           std::vector<bob::learn::misc::GMMStats> >::is_similar_to(other, r_epsilon, a_epsilon) &&
-        m_update_sigma == other.m_update_sigma &&
-        bob::core::array::isClose(m_acc_Nij_wij2, other.m_acc_Nij_wij2, r_epsilon, a_epsilon) &&
-        bob::core::array::isClose(m_acc_Fnormij_wij, other.m_acc_Fnormij_wij, r_epsilon, a_epsilon) &&
-        bob::core::array::isClose(m_acc_Nij, other.m_acc_Nij, r_epsilon, a_epsilon) &&
-        bob::core::array::isClose(m_acc_Snormij, other.m_acc_Snormij, r_epsilon, a_epsilon);
+  return m_update_sigma == other.m_update_sigma &&
+         bob::core::array::isClose(m_acc_Nij_wij2, other.m_acc_Nij_wij2, r_epsilon, a_epsilon) &&
+         bob::core::array::isClose(m_acc_Fnormij_wij, other.m_acc_Fnormij_wij, r_epsilon, a_epsilon) &&
+         bob::core::array::isClose(m_acc_Nij, other.m_acc_Nij, r_epsilon, a_epsilon) &&
+         bob::core::array::isClose(m_acc_Snormij, other.m_acc_Snormij, r_epsilon, a_epsilon);
 }
 
diff --git a/bob/learn/misc/include/bob.learn.misc/ISVTrainer.h b/bob/learn/misc/include/bob.learn.misc/ISVTrainer.h
index 1f98e7477960e799979e41982c4651c2b0d17c98..1f041419f40190fab36f614e012bb25be9904cd4 100644
--- a/bob/learn/misc/include/bob.learn.misc/ISVTrainer.h
+++ b/bob/learn/misc/include/bob.learn.misc/ISVTrainer.h
@@ -31,7 +31,7 @@ class ISVTrainer
     /**
      * @brief Constructor
      */
-    ISVTrainer(const double relevance_factor=4., const double convergence_threshold = 0.001);
+    ISVTrainer(const double relevance_factor=4.);
 
     /**
      * @brief Copy onstructor
@@ -146,8 +146,6 @@ class ISVTrainer
 
     double m_relevance_factor;
 
-    double m_convergence_threshold; ///< convergence threshold
-
     boost::shared_ptr<boost::mt19937> m_rng; ///< The random number generator for the inialization};
 };
 
diff --git a/bob/learn/misc/include/bob.learn.misc/IVectorTrainer.h b/bob/learn/misc/include/bob.learn.misc/IVectorTrainer.h
index f3e82254d01e24c67d472280fabd2130752bff3e..4f496d659859f00ff1012b56f8094b4005fbafbb 100644
--- a/bob/learn/misc/include/bob.learn.misc/IVectorTrainer.h
+++ b/bob/learn/misc/include/bob.learn.misc/IVectorTrainer.h
@@ -9,11 +9,14 @@
 #define BOB_LEARN_MISC_IVECTOR_TRAINER_H
 
 #include <blitz/array.h>
-#include <bob.learn.misc/EMTrainer.h>
 #include <bob.learn.misc/IVectorMachine.h>
 #include <bob.learn.misc/GMMStats.h>
 #include <boost/shared_ptr.hpp>
 #include <vector>
+#include <bob.core/array_copy.h>
+#include <boost/random.hpp>
+
+#include <boost/random/mersenne_twister.hpp>
 
 namespace bob { namespace learn { namespace misc {
 
@@ -25,15 +28,13 @@ namespace bob { namespace learn { namespace misc {
  *    N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, P. Ouellet,
  *   IEEE Trans. on Audio, Speech and Language Processing
  */
-class IVectorTrainer: public bob::learn::misc::EMTrainer<bob::learn::misc::IVectorMachine, std::vector<bob::learn::misc::GMMStats> >
+class IVectorTrainer
 {
   public:
     /**
      * @brief Default constructor. Builds an IVectorTrainer
      */
-    IVectorTrainer(const bool update_sigma=false,
-      const double convergence_threshold=0.001,
-      const size_t max_iterations=10, const bool compute_likelihood=false);
+    IVectorTrainer(const bool update_sigma=false);
 
     /**
      * @brief Copy constructor
@@ -48,8 +49,7 @@ class IVectorTrainer: public bob::learn::misc::EMTrainer<bob::learn::misc::IVect
     /**
      * @brief Initialization before the EM loop
      */
-    virtual void initialize(bob::learn::misc::IVectorMachine& ivector,
-      const std::vector<bob::learn::misc::GMMStats>& data);
+    virtual void initialize(bob::learn::misc::IVectorMachine& ivector);
 
     /**
      * @brief Calculates statistics across the dataset,
@@ -68,20 +68,8 @@ class IVectorTrainer: public bob::learn::misc::EMTrainer<bob::learn::misc::IVect
      * @brief Maximisation step: Update the Total Variability matrix \f$T\f$
      * and \f$\Sigma\f$ if update_sigma is enabled.
      */
-    virtual void mStep(bob::learn::misc::IVectorMachine& ivector,
-      const std::vector<bob::learn::misc::GMMStats>& data);
+    virtual void mStep(bob::learn::misc::IVectorMachine& ivector);
 
-    /**
-     * @brief Computes the likelihood using current estimates
-     * @warning (currently unsupported)
-     */
-    virtual double computeLikelihood(bob::learn::misc::IVectorMachine& ivector);
-
-    /**
-     * @brief Finalization after the EM loop
-     */
-    virtual void finalize(bob::learn::misc::IVectorMachine& ivector,
-      const std::vector<bob::learn::misc::GMMStats>& data);
 
     /**
      * @brief Assigns from a different IVectorTrainer
@@ -152,6 +140,11 @@ class IVectorTrainer: public bob::learn::misc::EMTrainer<bob::learn::misc::IVect
     mutable blitz::Array<double,2> m_tmp_dt1;
     mutable blitz::Array<double,2> m_tmp_tt1;
     mutable blitz::Array<double,2> m_tmp_tt2;
+    
+    /**
+     * @brief The random number generator for the inialization
+     */
+    boost::shared_ptr<boost::mt19937> m_rng;    
 };
 
 } } } // namespaces
diff --git a/bob/learn/misc/isv_trainer.cpp b/bob/learn/misc/isv_trainer.cpp
index f288fbb557c8c3729f502299ce92631fe9607735..0e91e8b9c06a1be0f5ca5d1ac4648c70f44fbe75 100644
--- a/bob/learn/misc/isv_trainer.cpp
+++ b/bob/learn/misc/isv_trainer.cpp
@@ -94,7 +94,7 @@ static auto ISVTrainer_doc = bob::extension::ClassDoc(
     "",
     true
   )
-  .add_prototype("relevance_factor,convergence_threshold","")
+  .add_prototype("relevance_factor","")
   .add_prototype("other","")
   .add_prototype("","")
   .add_parameter("other", ":py:class:`bob.learn.misc.ISVTrainer`", "A ISVTrainer object to be copied.")
@@ -121,9 +121,9 @@ static int PyBobLearnMiscISVTrainer_init_number(PyBobLearnMiscISVTrainerObject*
 
   char** kwlist = ISVTrainer_doc.kwlist(0);
   double relevance_factor      = 4.;
-  double convergence_threshold = 0.001;
+
   //Parsing the input argments
-  if (!PyArg_ParseTupleAndKeywords(args, kwargs, "dd", kwlist, &relevance_factor, &convergence_threshold))
+  if (!PyArg_ParseTupleAndKeywords(args, kwargs, "d", kwlist, &relevance_factor))
     return -1;
 
   if(relevance_factor < 0){
@@ -131,12 +131,7 @@ static int PyBobLearnMiscISVTrainer_init_number(PyBobLearnMiscISVTrainerObject*
     return -1;
   }
 
-  if(convergence_threshold < 0){
-    PyErr_Format(PyExc_TypeError, "convergence_threshold argument must be greater than zero");
-    return -1;
-   }
-
-  self->cxx.reset(new bob::learn::misc::ISVTrainer(relevance_factor, convergence_threshold));
+  self->cxx.reset(new bob::learn::misc::ISVTrainer(relevance_factor));
   return 0;
 }
 
@@ -153,15 +148,25 @@ static int PyBobLearnMiscISVTrainer_init(PyBobLearnMiscISVTrainerObject* self, P
       return 0;
     }
     case 1:{
-      // If the constructor input is ISVTrainer object
-      return PyBobLearnMiscISVTrainer_init_copy(self, args, kwargs);
-    }
-    case 2:{
-      // If the constructor input is ISVTrainer object
-      return PyBobLearnMiscISVTrainer_init_number(self, args, kwargs);
+      //Reading the input argument
+      PyObject* arg = 0;
+      if (PyTuple_Size(args))
+        arg = PyTuple_GET_ITEM(args, 0);
+      else {
+        PyObject* tmp = PyDict_Values(kwargs);
+        auto tmp_ = make_safe(tmp);
+        arg = PyList_GET_ITEM(tmp, 0);
+      }
+      
+      if(PyBobLearnMiscISVTrainer_Check(arg))
+        // If the constructor input is ISVTrainer object
+        return PyBobLearnMiscISVTrainer_init_copy(self, args, kwargs);
+      else
+        return PyBobLearnMiscISVTrainer_init_number(self, args, kwargs);
+
     }
     default:{
-      PyErr_Format(PyExc_RuntimeError, "number of arguments mismatch - %s requires only 0, 1 or 2 arguments, but you provided %d (see help)", Py_TYPE(self)->tp_name, nargs);
+      PyErr_Format(PyExc_RuntimeError, "number of arguments mismatch - %s requires only 0 or 1 arguments, but you provided %d (see help)", Py_TYPE(self)->tp_name, nargs);
       ISVTrainer_doc.print_usage();
       return -1;
     }
@@ -330,14 +335,14 @@ static PyGetSetDef PyBobLearnMiscISVTrainer_getseters[] = {
   {
    acc_u_a1.name(),
    (getter)PyBobLearnMiscISVTrainer_get_acc_u_a1,
-   (setter)PyBobLearnMiscISVTrainer_get_acc_u_a1,
+   (setter)PyBobLearnMiscISVTrainer_set_acc_u_a1,
    acc_u_a1.doc(),
    0
   },
   {
    acc_u_a2.name(),
    (getter)PyBobLearnMiscISVTrainer_get_acc_u_a2,
-   (setter)PyBobLearnMiscISVTrainer_get_acc_u_a2,
+   (setter)PyBobLearnMiscISVTrainer_set_acc_u_a2,
    acc_u_a2.doc(),
    0
   },
diff --git a/bob/learn/misc/ivector_machine.cpp b/bob/learn/misc/ivector_machine.cpp
index 1f058a3ec9c3aceede4bd82793c5a6571802e062..5251905af23293d566b9ed9efb24d9838f90120a 100644
--- a/bob/learn/misc/ivector_machine.cpp
+++ b/bob/learn/misc/ivector_machine.cpp
@@ -285,6 +285,43 @@ int PyBobLearnMiscIVectorMachine_setVarianceThreshold(PyBobLearnMiscIVectorMachi
 }
 
 
+/***** ubm *****/
+static auto ubm = bob::extension::VariableDoc(
+  "ubm",
+  ":py:class:`bob.learn.misc.GMMMachine`",
+  "Returns the UBM (Universal Background Model",
+  ""
+);
+PyObject* PyBobLearnMiscIVectorMachine_getUBM(PyBobLearnMiscIVectorMachineObject* self, void*){
+  BOB_TRY
+
+  boost::shared_ptr<bob::learn::misc::GMMMachine> ubm_gmmMachine = self->cxx->getUbm();
+
+  //Allocating the correspondent python object
+  PyBobLearnMiscGMMMachineObject* retval =
+    (PyBobLearnMiscGMMMachineObject*)PyBobLearnMiscGMMMachine_Type.tp_alloc(&PyBobLearnMiscGMMMachine_Type, 0);
+  retval->cxx = ubm_gmmMachine;
+
+  return Py_BuildValue("O",retval);
+  BOB_CATCH_MEMBER("ubm could not be read", 0)
+}
+int PyBobLearnMiscIVectorMachine_setUBM(PyBobLearnMiscIVectorMachineObject* self, PyObject* value, void*){
+  BOB_TRY
+
+  if (!PyBobLearnMiscGMMMachine_Check(value)){
+    PyErr_Format(PyExc_RuntimeError, "%s %s expects a :py:class:`bob.learn.misc.GMMMachine`", Py_TYPE(self)->tp_name, ubm.name());
+    return -1;
+  }
+
+  PyBobLearnMiscGMMMachineObject* ubm_gmmMachine = 0;
+  PyArg_Parse(value, "O!", &PyBobLearnMiscGMMMachine_Type,&ubm_gmmMachine);
+
+  self->cxx->setUbm(ubm_gmmMachine->cxx);
+
+  return 0;
+  BOB_CATCH_MEMBER("ubm could not be set", -1)  
+}
+
 
 static PyGetSetDef PyBobLearnMiscIVectorMachine_getseters[] = { 
   {
@@ -327,6 +364,14 @@ static PyGetSetDef PyBobLearnMiscIVectorMachine_getseters[] = {
    0
   },
 
+  {
+   ubm.name(),
+   (getter)PyBobLearnMiscIVectorMachine_getUBM,
+   (setter)PyBobLearnMiscIVectorMachine_setUBM,
+   ubm.doc(),
+   0
+  },
+
 
   {0}  // Sentinel
 };
@@ -483,6 +528,64 @@ static PyObject* PyBobLearnMiscIVectorMachine_resize(PyBobLearnMiscIVectorMachin
 }
 
 
+/*** __compute_Id_TtSigmaInvT__ ***/
+static auto __compute_Id_TtSigmaInvT__ = bob::extension::FunctionDoc(
+  "__compute_Id_TtSigmaInvT__",
+  "",
+  "", 
+  true
+)
+.add_prototype("stats")
+.add_parameter("stats", ":py:class:`bob.learn.misc.GMMStats`", "Statistics as input");
+static PyObject* PyBobLearnMiscIVectorMachine_compute_Id_TtSigmaInvT__(PyBobLearnMiscIVectorMachineObject* self, PyObject* args, PyObject* kwargs) {
+  BOB_TRY
+
+  char** kwlist = __compute_Id_TtSigmaInvT__.kwlist(0);
+
+  PyBobLearnMiscGMMStatsObject* stats = 0;
+  
+  if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O!", kwlist, &PyBobLearnMiscGMMStats_Type, &stats))
+    Py_RETURN_NONE;
+
+
+  blitz::Array<double,2> output(self->cxx->getDimRt(), self->cxx->getDimRt());
+  self->cxx->computeIdTtSigmaInvT(*stats->cxx, output);
+  return PyBlitzArrayCxx_AsConstNumpy(output);
+  
+  BOB_CATCH_MEMBER("cannot __compute_Id_TtSigmaInvT__", 0)
+}
+
+
+
+/*** __compute_TtSigmaInvFnorm__ ***/
+static auto __compute_TtSigmaInvFnorm__ = bob::extension::FunctionDoc(
+  "__compute_TtSigmaInvFnorm__",
+  "",
+  "", 
+  true
+)
+.add_prototype("stats")
+.add_parameter("stats", ":py:class:`bob.learn.misc.GMMStats`", "Statistics as input");
+static PyObject* PyBobLearnMiscIVectorMachine_compute_TtSigmaInvFnorm__(PyBobLearnMiscIVectorMachineObject* self, PyObject* args, PyObject* kwargs) {
+  BOB_TRY
+
+  char** kwlist = __compute_TtSigmaInvFnorm__.kwlist(0);
+
+  PyBobLearnMiscGMMStatsObject* stats = 0;
+  
+  if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O!", kwlist, &PyBobLearnMiscGMMStats_Type, &stats))
+    Py_RETURN_NONE;
+
+
+  blitz::Array<double,1> output(self->cxx->getDimRt());
+  self->cxx->computeTtSigmaInvFnorm(*stats->cxx, output);
+  return PyBlitzArrayCxx_AsConstNumpy(output);
+  
+  BOB_CATCH_MEMBER("cannot __compute_TtSigmaInvFnorm__", 0)
+}
+
+
+
 
 static PyMethodDef PyBobLearnMiscIVectorMachine_methods[] = {
   {
@@ -509,6 +612,18 @@ static PyMethodDef PyBobLearnMiscIVectorMachine_methods[] = {
     METH_VARARGS|METH_KEYWORDS,
     resize.doc()
   },
+  {
+    __compute_Id_TtSigmaInvT__.name(),
+    (PyCFunction)PyBobLearnMiscIVectorMachine_compute_Id_TtSigmaInvT__,
+    METH_VARARGS|METH_KEYWORDS,
+    __compute_Id_TtSigmaInvT__.doc()
+  },
+  {
+    __compute_TtSigmaInvFnorm__.name(),
+    (PyCFunction)PyBobLearnMiscIVectorMachine_compute_TtSigmaInvFnorm__,
+    METH_VARARGS|METH_KEYWORDS,
+    __compute_TtSigmaInvFnorm__.doc()
+  },
 
 /*
   {
diff --git a/bob/learn/misc/ivector_trainer.cpp b/bob/learn/misc/ivector_trainer.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..ebd506737157e8f2f7e041bca09ac00e36020884
--- /dev/null
+++ b/bob/learn/misc/ivector_trainer.cpp
@@ -0,0 +1,455 @@
+/**
+ * @author Tiago de Freitas Pereira <tiago.pereira@idiap.ch>
+ * @date Tue 03 Fev 10:29:00 2015
+ *
+ * @brief Python API for bob::learn::em
+ *
+ * Copyright (C) 2011-2014 Idiap Research Institute, Martigny, Switzerland
+ */
+
+#include "main.h"
+#include <boost/make_shared.hpp>
+
+/******************************************************************/
+/************ Constructor Section *********************************/
+/******************************************************************/
+
+static inline bool f(PyObject* o){return o != 0 && PyObject_IsTrue(o) > 0;}  /* converts PyObject to bool and returns false if object is NULL */
+
+static int extract_GMMStats_1d(PyObject *list,
+                             std::vector<bob::learn::misc::GMMStats>& training_data)
+{
+  for (int i=0; i<PyList_GET_SIZE(list); i++){
+  
+    PyBobLearnMiscGMMStatsObject* stats;
+    if (!PyArg_Parse(PyList_GetItem(list, i), "O!", &PyBobLearnMiscGMMStats_Type, &stats)){
+      PyErr_Format(PyExc_RuntimeError, "Expected GMMStats objects");
+      return -1;
+    }
+    bob::learn::misc::GMMStats *stats_pointer = stats->cxx.get();
+    std::cout << " #### " << std::endl;
+    training_data.push_back(*(stats_pointer));
+  }
+  return 0;
+}
+
+
+static auto IVectorTrainer_doc = bob::extension::ClassDoc(
+  BOB_EXT_MODULE_PREFIX ".IVectorTrainer",
+  "IVectorTrainer"
+  "An IVectorTrainer to learn a Total Variability subspace :math:`$T$`"
+  " (and eventually a covariance matrix :math:`$\\Sigma$`).",
+  " References: [Dehak2010]"
+).add_constructor(
+  bob::extension::FunctionDoc(
+    "__init__",
+    "Constructor. Builds a new IVectorTrainer",
+    "",
+    true
+  )
+  .add_prototype("update_sigma","")
+  .add_prototype("other","")
+  .add_prototype("","")
+  .add_parameter("other", ":py:class:`bob.learn.misc.IVectorTrainer`", "A IVectorTrainer object to be copied.")
+  .add_parameter("update_sigma", "bool", "")
+);
+
+
+static int PyBobLearnMiscIVectorTrainer_init_copy(PyBobLearnMiscIVectorTrainerObject* self, PyObject* args, PyObject* kwargs) {
+
+  char** kwlist = IVectorTrainer_doc.kwlist(1);
+  PyBobLearnMiscIVectorTrainerObject* o;
+  if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O!", kwlist, &PyBobLearnMiscIVectorTrainer_Type, &o)){
+    IVectorTrainer_doc.print_usage();
+    return -1;
+  }
+
+  self->cxx.reset(new bob::learn::misc::IVectorTrainer(*o->cxx));
+  return 0;
+}
+
+
+static int PyBobLearnMiscIVectorTrainer_init_bool(PyBobLearnMiscIVectorTrainerObject* self, PyObject* args, PyObject* kwargs) {
+
+  char** kwlist = IVectorTrainer_doc.kwlist(0);
+  PyObject* update_sigma   = 0;
+
+  //Parsing the input argments
+  if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O!", kwlist, &PyBool_Type, &update_sigma))
+    return -1;
+  
+  self->cxx.reset(new bob::learn::misc::IVectorTrainer(f(update_sigma)));
+  return 0;
+}
+
+
+static int PyBobLearnMiscIVectorTrainer_init(PyBobLearnMiscIVectorTrainerObject* self, PyObject* args, PyObject* kwargs) {
+  BOB_TRY
+
+  // get the number of command line arguments
+  int nargs = (args?PyTuple_Size(args):0) + (kwargs?PyDict_Size(kwargs):0);
+
+  switch(nargs){
+    case 0:{
+      self->cxx.reset(new bob::learn::misc::IVectorTrainer());
+      return 0;
+    }
+    case 1:{
+      //Reading the input argument
+      PyObject* arg = 0;
+      if (PyTuple_Size(args))
+        arg = PyTuple_GET_ITEM(args, 0);
+      else {
+        PyObject* tmp = PyDict_Values(kwargs);
+        auto tmp_ = make_safe(tmp);
+        arg = PyList_GET_ITEM(tmp, 0);
+      }
+
+      // If the constructor input is IVectorTrainer object
+      if(PyBobLearnMiscIVectorTrainer_Check(arg))            
+        return  PyBobLearnMiscIVectorTrainer_init_copy(self, args, kwargs);
+      else
+        return PyBobLearnMiscIVectorTrainer_init_bool(self, args, kwargs);      
+      
+    }
+    default:{
+      PyErr_Format(PyExc_RuntimeError, "number of arguments mismatch - %s requires only 0 or 1 arguments, but you provided %d (see help)", Py_TYPE(self)->tp_name, nargs);
+      IVectorTrainer_doc.print_usage();
+      return -1;
+    }
+  }
+  BOB_CATCH_MEMBER("cannot create IVectorTrainer", 0)
+  return 0;
+}
+
+
+static void PyBobLearnMiscIVectorTrainer_delete(PyBobLearnMiscIVectorTrainerObject* self) {
+  self->cxx.reset();
+  Py_TYPE(self)->tp_free((PyObject*)self);
+}
+
+
+int PyBobLearnMiscIVectorTrainer_Check(PyObject* o) {
+  return PyObject_IsInstance(o, reinterpret_cast<PyObject*>(&PyBobLearnMiscIVectorTrainer_Type));
+}
+
+
+static PyObject* PyBobLearnMiscIVectorTrainer_RichCompare(PyBobLearnMiscIVectorTrainerObject* self, PyObject* other, int op) {
+  BOB_TRY
+
+  if (!PyBobLearnMiscIVectorTrainer_Check(other)) {
+    PyErr_Format(PyExc_TypeError, "cannot compare `%s' with `%s'", Py_TYPE(self)->tp_name, Py_TYPE(other)->tp_name);
+    return 0;
+  }
+  auto other_ = reinterpret_cast<PyBobLearnMiscIVectorTrainerObject*>(other);
+  switch (op) {
+    case Py_EQ:
+      if (*self->cxx==*other_->cxx) Py_RETURN_TRUE; else Py_RETURN_FALSE;
+    case Py_NE:
+      if (*self->cxx==*other_->cxx) Py_RETURN_FALSE; else Py_RETURN_TRUE;
+    default:
+      Py_INCREF(Py_NotImplemented);
+      return Py_NotImplemented;
+  }
+  BOB_CATCH_MEMBER("cannot compare IVectorTrainer objects", 0)
+}
+
+
+/******************************************************************/
+/************ Variables Section ***********************************/
+/******************************************************************/
+
+static auto acc_nij_wij2 = bob::extension::VariableDoc(
+  "acc_nij_wij2",
+  "array_like <float, 3D>",
+  "Accumulator updated during the E-step",
+  ""
+);
+PyObject* PyBobLearnMiscIVectorTrainer_get_acc_nij_wij2(PyBobLearnMiscIVectorTrainerObject* self, void*){
+  BOB_TRY
+  return PyBlitzArrayCxx_AsConstNumpy(self->cxx->getAccNijWij2());
+  BOB_CATCH_MEMBER("acc_nij_wij2 could not be read", 0)
+}
+int PyBobLearnMiscIVectorTrainer_set_acc_nij_wij2(PyBobLearnMiscIVectorTrainerObject* self, PyObject* value, void*){
+  BOB_TRY
+  PyBlitzArrayObject* o;
+  if (!PyBlitzArray_Converter(value, &o)){
+    PyErr_Format(PyExc_RuntimeError, "%s %s expects a 3D array of floats", Py_TYPE(self)->tp_name, acc_nij_wij2.name());
+    return -1;
+  }
+  auto o_ = make_safe(o);
+  auto b = PyBlitzArrayCxx_AsBlitz<double,3>(o, "acc_nij_wij2");
+  if (!b) return -1;
+  self->cxx->setAccNijWij2(*b);
+  return 0;
+  BOB_CATCH_MEMBER("acc_nij_wij2 could not be set", -1)
+}
+
+
+static auto acc_fnormij_wij = bob::extension::VariableDoc(
+  "acc_fnormij_wij",
+  "array_like <float, 3D>",
+  "Accumulator updated during the E-step",
+  ""
+);
+PyObject* PyBobLearnMiscIVectorTrainer_get_acc_fnormij_wij(PyBobLearnMiscIVectorTrainerObject* self, void*){
+  BOB_TRY
+  return PyBlitzArrayCxx_AsConstNumpy(self->cxx->getAccFnormijWij());
+  BOB_CATCH_MEMBER("acc_fnormij_wij could not be read", 0)
+}
+int PyBobLearnMiscIVectorTrainer_set_acc_fnormij_wij(PyBobLearnMiscIVectorTrainerObject* self, PyObject* value, void*){
+  BOB_TRY
+  PyBlitzArrayObject* o;
+  if (!PyBlitzArray_Converter(value, &o)){
+    PyErr_Format(PyExc_RuntimeError, "%s %s expects a 3D array of floats", Py_TYPE(self)->tp_name, acc_fnormij_wij.name());
+    return -1;
+  }
+  auto o_ = make_safe(o);
+  auto b = PyBlitzArrayCxx_AsBlitz<double,3>(o, "acc_fnormij_wij");
+  if (!b) return -1;
+  self->cxx->setAccFnormijWij(*b);
+  return 0;
+  BOB_CATCH_MEMBER("acc_fnormij_wij could not be set", -1)
+}
+
+
+static auto acc_nij = bob::extension::VariableDoc(
+  "acc_nij",
+  "array_like <float, 1D>",
+  "Accumulator updated during the E-step",
+  ""
+);
+PyObject* PyBobLearnMiscIVectorTrainer_get_acc_nij(PyBobLearnMiscIVectorTrainerObject* self, void*){
+  BOB_TRY
+  return PyBlitzArrayCxx_AsConstNumpy(self->cxx->getAccNij());
+  BOB_CATCH_MEMBER("acc_nij could not be read", 0)
+}
+int PyBobLearnMiscIVectorTrainer_set_acc_nij(PyBobLearnMiscIVectorTrainerObject* self, PyObject* value, void*){
+  BOB_TRY
+  PyBlitzArrayObject* o;
+  if (!PyBlitzArray_Converter(value, &o)){
+    PyErr_Format(PyExc_RuntimeError, "%s %s expects a 1D array of floats", Py_TYPE(self)->tp_name, acc_nij.name());
+    return -1;
+  }
+  auto o_ = make_safe(o);
+  auto b = PyBlitzArrayCxx_AsBlitz<double,1>(o, "acc_nij");
+  if (!b) return -1;
+  self->cxx->setAccNij(*b);
+  return 0;
+  BOB_CATCH_MEMBER("acc_nij could not be set", -1)
+}
+
+
+static auto acc_snormij = bob::extension::VariableDoc(
+  "acc_snormij",
+  "array_like <float, 2D>",
+  "Accumulator updated during the E-step",
+  ""
+);
+PyObject* PyBobLearnMiscIVectorTrainer_get_acc_snormij(PyBobLearnMiscIVectorTrainerObject* self, void*){
+  BOB_TRY
+  return PyBlitzArrayCxx_AsConstNumpy(self->cxx->getAccSnormij());
+  BOB_CATCH_MEMBER("acc_snormij could not be read", 0)
+}
+int PyBobLearnMiscIVectorTrainer_set_acc_snormij(PyBobLearnMiscIVectorTrainerObject* self, PyObject* value, void*){
+  BOB_TRY
+  PyBlitzArrayObject* o;
+  if (!PyBlitzArray_Converter(value, &o)){
+    PyErr_Format(PyExc_RuntimeError, "%s %s expects a 2D array of floats", Py_TYPE(self)->tp_name, acc_snormij.name());
+    return -1;
+  }
+  auto o_ = make_safe(o);
+  auto b = PyBlitzArrayCxx_AsBlitz<double,2>(o, "acc_snormij");
+  if (!b) return -1;
+  self->cxx->setAccSnormij(*b);
+  return 0;
+  BOB_CATCH_MEMBER("acc_snormij could not be set", -1)
+}
+
+
+
+
+static PyGetSetDef PyBobLearnMiscIVectorTrainer_getseters[] = { 
+  {
+   acc_nij_wij2.name(),
+   (getter)PyBobLearnMiscIVectorTrainer_get_acc_nij_wij2,
+   (setter)PyBobLearnMiscIVectorTrainer_set_acc_nij_wij2,
+   acc_nij_wij2.doc(),
+   0
+  },  
+  {
+   acc_fnormij_wij.name(),
+   (getter)PyBobLearnMiscIVectorTrainer_get_acc_fnormij_wij,
+   (setter)PyBobLearnMiscIVectorTrainer_set_acc_fnormij_wij,
+   acc_fnormij_wij.doc(),
+   0
+  },
+  {
+   acc_nij.name(),
+   (getter)PyBobLearnMiscIVectorTrainer_get_acc_nij,
+   (setter)PyBobLearnMiscIVectorTrainer_set_acc_nij,
+   acc_nij.doc(),
+   0
+  },
+  {
+   acc_snormij.name(),
+   (getter)PyBobLearnMiscIVectorTrainer_get_acc_snormij,
+   (setter)PyBobLearnMiscIVectorTrainer_set_acc_snormij,
+   acc_snormij.doc(),
+   0
+  },
+
+  {0}  // Sentinel
+};
+
+
+/******************************************************************/
+/************ Functions Section ***********************************/
+/******************************************************************/
+
+/*** initialize ***/
+static auto initialize = bob::extension::FunctionDoc(
+  "initialize",
+  "Initialization before the EM steps",
+  "",
+  true
+)
+.add_prototype("ivector_machine")
+.add_parameter("ivector_machine", ":py:class:`bob.learn.misc.ISVBase`", "IVectorMachine Object");
+static PyObject* PyBobLearnMiscIVectorTrainer_initialize(PyBobLearnMiscIVectorTrainerObject* self, PyObject* args, PyObject* kwargs) {
+  BOB_TRY
+
+  /* Parses input arguments in a single shot */
+  char** kwlist = initialize.kwlist(0);
+
+  PyBobLearnMiscIVectorMachineObject* ivector_machine = 0;
+
+  if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O!", kwlist, &PyBobLearnMiscIVectorMachine_Type, &ivector_machine)) Py_RETURN_NONE;
+
+  self->cxx->initialize(*ivector_machine->cxx);
+
+  BOB_CATCH_MEMBER("cannot perform the initialize method", 0)
+
+  Py_RETURN_NONE;
+}
+
+
+/*** e_step ***/
+static auto e_step = bob::extension::FunctionDoc(
+  "e_step",
+  "Call the e-step procedure (for the U subspace).",
+  "",
+  true
+)
+.add_prototype("ivector_machine,stats")
+.add_parameter("ivector_machine", ":py:class:`bob.learn.misc.ISVBase`", "IVectorMachine Object")
+.add_parameter("stats", ":py:class:`bob.learn.misc.GMMStats`", "GMMStats Object");
+static PyObject* PyBobLearnMiscIVectorTrainer_e_step(PyBobLearnMiscIVectorTrainerObject* self, PyObject* args, PyObject* kwargs) {
+  BOB_TRY
+
+  // Parses input arguments in a single shot
+  char** kwlist = e_step.kwlist(0);
+
+  PyBobLearnMiscIVectorMachineObject* ivector_machine = 0;
+  PyObject* stats = 0;
+
+  if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O!O!", kwlist, &PyBobLearnMiscIVectorMachine_Type, &ivector_machine,
+                                                                 &PyList_Type, &stats)) Py_RETURN_NONE;
+
+  std::vector<bob::learn::misc::GMMStats> training_data;
+  if(extract_GMMStats_1d(stats ,training_data)==0)
+    self->cxx->eStep(*ivector_machine->cxx, training_data);
+
+  BOB_CATCH_MEMBER("cannot perform the e_step method", 0)
+
+  Py_RETURN_NONE;
+}
+
+
+/*** m_step ***/
+static auto m_step = bob::extension::FunctionDoc(
+  "m_step",
+  "Call the m-step procedure (for the U subspace).",
+  "",
+  true
+)
+.add_prototype("ivector_machine")
+.add_parameter("ivector_machine", ":py:class:`bob.learn.misc.ISVBase`", "IVectorMachine Object");
+static PyObject* PyBobLearnMiscIVectorTrainer_m_step(PyBobLearnMiscIVectorTrainerObject* self, PyObject* args, PyObject* kwargs) {
+  BOB_TRY
+
+  // Parses input arguments in a single shot 
+  char** kwlist = m_step.kwlist(0);
+
+  PyBobLearnMiscIVectorMachineObject* ivector_machine = 0;
+
+  if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O!", kwlist, &PyBobLearnMiscIVectorMachine_Type, &ivector_machine)) Py_RETURN_NONE;
+
+  self->cxx->mStep(*ivector_machine->cxx);
+
+  BOB_CATCH_MEMBER("cannot perform the m_step method", 0)
+
+  Py_RETURN_NONE;
+}
+
+
+
+static PyMethodDef PyBobLearnMiscIVectorTrainer_methods[] = {
+  {
+    initialize.name(),
+    (PyCFunction)PyBobLearnMiscIVectorTrainer_initialize,
+    METH_VARARGS|METH_KEYWORDS,
+    initialize.doc()
+  },
+  {
+    e_step.name(),
+    (PyCFunction)PyBobLearnMiscIVectorTrainer_e_step,
+    METH_VARARGS|METH_KEYWORDS,
+    e_step.doc()
+  },
+  {
+    m_step.name(),
+    (PyCFunction)PyBobLearnMiscIVectorTrainer_m_step,
+    METH_VARARGS|METH_KEYWORDS,
+    m_step.doc()
+  },
+  {0} /* Sentinel */
+};
+
+
+/******************************************************************/
+/************ Module Section **************************************/
+/******************************************************************/
+
+// Define the Gaussian type struct; will be initialized later
+PyTypeObject PyBobLearnMiscIVectorTrainer_Type = {
+  PyVarObject_HEAD_INIT(0,0)
+  0
+};
+
+bool init_BobLearnMiscIVectorTrainer(PyObject* module)
+{
+  // initialize the type struct
+  PyBobLearnMiscIVectorTrainer_Type.tp_name      = IVectorTrainer_doc.name();
+  PyBobLearnMiscIVectorTrainer_Type.tp_basicsize = sizeof(PyBobLearnMiscIVectorTrainerObject);
+  PyBobLearnMiscIVectorTrainer_Type.tp_flags     = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE;//Enable the class inheritance;
+  PyBobLearnMiscIVectorTrainer_Type.tp_doc       = IVectorTrainer_doc.doc();
+
+  // set the functions
+  PyBobLearnMiscIVectorTrainer_Type.tp_new          = PyType_GenericNew;
+  PyBobLearnMiscIVectorTrainer_Type.tp_init         = reinterpret_cast<initproc>(PyBobLearnMiscIVectorTrainer_init);
+  PyBobLearnMiscIVectorTrainer_Type.tp_dealloc      = reinterpret_cast<destructor>(PyBobLearnMiscIVectorTrainer_delete);
+  PyBobLearnMiscIVectorTrainer_Type.tp_richcompare = reinterpret_cast<richcmpfunc>(PyBobLearnMiscIVectorTrainer_RichCompare);
+  PyBobLearnMiscIVectorTrainer_Type.tp_methods      = PyBobLearnMiscIVectorTrainer_methods;
+  PyBobLearnMiscIVectorTrainer_Type.tp_getset       = PyBobLearnMiscIVectorTrainer_getseters;
+  //PyBobLearnMiscIVectorTrainer_Type.tp_call         = reinterpret_cast<ternaryfunc>(PyBobLearnMiscIVectorTrainer_compute_likelihood);
+
+
+  // check that everything is fine
+  if (PyType_Ready(&PyBobLearnMiscIVectorTrainer_Type) < 0) return false;
+
+  // add the type to the module
+  Py_INCREF(&PyBobLearnMiscIVectorTrainer_Type);
+  return PyModule_AddObject(module, "_IVectorTrainer", (PyObject*)&PyBobLearnMiscIVectorTrainer_Type) >= 0;
+}
+
diff --git a/bob/learn/misc/main.cpp b/bob/learn/misc/main.cpp
index 54a5d486de04af187877354d6e3a958f3d596a79..c4875f85832d609974bf2cfc2117116379b7baf0 100644
--- a/bob/learn/misc/main.cpp
+++ b/bob/learn/misc/main.cpp
@@ -78,6 +78,8 @@ static PyObject* create_module (void) {
   if (!init_BobLearnMiscISVTrainer(module)) return 0;
 
   if (!init_BobLearnMiscIVectorMachine(module)) return 0;
+  if (!init_BobLearnMiscIVectorTrainer(module)) return 0;
+    
   if (!init_BobLearnMiscPLDABase(module)) return 0;
   if (!init_BobLearnMiscPLDAMachine(module)) return 0;  
 
diff --git a/bob/learn/misc/main.h b/bob/learn/misc/main.h
index b3a4fb50531de118a146c14769e6157b153936e8..830cd3e70054a7ef0b0a54a95a3fce3a95517f5d 100644
--- a/bob/learn/misc/main.h
+++ b/bob/learn/misc/main.h
@@ -37,6 +37,8 @@
 
 
 #include <bob.learn.misc/IVectorMachine.h>
+#include <bob.learn.misc/IVectorTrainer.h>
+
 #include <bob.learn.misc/PLDAMachine.h>
 #include <bob.learn.misc/ZTNorm.h>
 
@@ -244,6 +246,17 @@ bool init_BobLearnMiscIVectorMachine(PyObject* module);
 int PyBobLearnMiscIVectorMachine_Check(PyObject* o);
 
 
+// IVectorTrainer
+typedef struct {
+  PyObject_HEAD
+  boost::shared_ptr<bob::learn::misc::IVectorTrainer> cxx;
+} PyBobLearnMiscIVectorTrainerObject;
+
+extern PyTypeObject PyBobLearnMiscIVectorTrainer_Type;
+bool init_BobLearnMiscIVectorTrainer(PyObject* module);
+int PyBobLearnMiscIVectorTrainer_Check(PyObject* o);
+
+
 // PLDABase
 typedef struct {
   PyObject_HEAD
diff --git a/bob/learn/misc/test_ivector_trainer.py b/bob/learn/misc/test_ivector_trainer.py
index 2e047e320a76e81cc31b7ae09c0ef2aa06a5721f..8f87ead34a28e9f918d08e2743e8606a8d8c463d 100644
--- a/bob/learn/misc/test_ivector_trainer.py
+++ b/bob/learn/misc/test_ivector_trainer.py
@@ -28,8 +28,8 @@ class IVectorTrainerPy():
 
   def initialize(self, machine, data):
     ubm = machine.ubm
-    self.m_dim_c = ubm.dim_c
-    self.m_dim_d = ubm.dim_d
+    self.m_dim_c = ubm.shape[0]
+    self.m_dim_d = ubm.shape[1]
     self.m_dim_t = machine.t.shape[1]
     self.m_meansupervector = ubm.mean_supervector
     t = numpy.random.randn(self.m_dim_c*self.m_dim_d, self.m_dim_t)
diff --git a/setup.py b/setup.py
index 088252fe4b66182f8c24adbed78cb0cee10f3308..209045070d4f56f4ae27545f737c068ddb5a7ccd 100644
--- a/setup.py
+++ b/setup.py
@@ -75,7 +75,7 @@ setup(
 
           #"bob/learn/misc/cpp/EMPCATrainer.cpp",
           "bob/learn/misc/cpp/GMMBaseTrainer.cpp",
-          #"bob/learn/misc/cpp/IVectorTrainer.cpp",
+          "bob/learn/misc/cpp/IVectorTrainer.cpp",
           "bob/learn/misc/cpp/KMeansTrainer.cpp",
           "bob/learn/misc/cpp/MAP_GMMTrainer.cpp",
           "bob/learn/misc/cpp/ML_GMMTrainer.cpp",
@@ -126,6 +126,8 @@ setup(
           "bob/learn/misc/isv_trainer.cpp",
           
           "bob/learn/misc/ivector_machine.cpp",
+          "bob/learn/misc/ivector_trainer.cpp",
+          
           "bob/learn/misc/plda_base.cpp",
           "bob/learn/misc/plda_machine.cpp",
           "bob/learn/misc/ztnorm.cpp",