diff --git a/bob/learn/em/cpp/GMMBaseTrainer.cpp b/bob/learn/em/cpp/GMMBaseTrainer.cpp index fac247b8ac8cc00dbddb8490a7d06882056d6528..a48a52015055db38703e7fb3486ebee4dbbed927 100644 --- a/bob/learn/em/cpp/GMMBaseTrainer.cpp +++ b/bob/learn/em/cpp/GMMBaseTrainer.cpp @@ -31,7 +31,6 @@ void bob::learn::em::GMMBaseTrainer::initialize(bob::learn::em::GMMMachine& gmm) { // Allocate memory for the sufficient statistics and initialise m_ss->resize(gmm.getNGaussians(),gmm.getNInputs()); - gmm.setVarianceThresholds(this->m_mean_var_update_responsibilities_threshold); } void bob::learn::em::GMMBaseTrainer::eStep(bob::learn::em::GMMMachine& gmm, diff --git a/bob/learn/em/cpp/Gaussian.cpp b/bob/learn/em/cpp/Gaussian.cpp index b8bdbbf888966836b47b5c58d43876bc474002d7..cd45f60f4248605bc48a934fbb7e7df5bf12b766 100644 --- a/bob/learn/em/cpp/Gaussian.cpp +++ b/bob/learn/em/cpp/Gaussian.cpp @@ -84,7 +84,7 @@ void bob::learn::em::Gaussian::resize(const size_t n_inputs) { m_variance.resize(m_n_inputs); m_variance = 1; m_variance_thresholds.resize(m_n_inputs); - m_variance_thresholds = 0; + m_variance_thresholds = std::numeric_limits<double>::epsilon(); // Re-compute g_norm, because m_n_inputs and m_variance // have changed