diff --git a/tests/test_gmm.py b/tests/test_gmm.py index af77842f8f144296c275be5063b4b74d0f7df383..a7e67c257f50dfaa7421b03657eee7e08b929c34 100644 --- a/tests/test_gmm.py +++ b/tests/test_gmm.py @@ -15,6 +15,7 @@ import tempfile from copy import deepcopy import numpy as np +import pytest from dask.distributed import Client from h5py import File as HDF5File @@ -484,6 +485,9 @@ def test_machine_parameters(): np.testing.assert_equal(machine.variances, new_variances) +@pytest.mark.skip( + reason="dask-ml=2024.4.4 not compatible with sklearn>=1.3 ('_kmeans_plusplus' requires the 'sample_weight' argument)" +) def test_gmm_kmeans_plusplus_init(): n_gaussians = 3 machine = GMMMachine( diff --git a/tests/test_kmeans.py b/tests/test_kmeans.py index 15ccfe10fd8525805bf8c0ca2295420d848dfa08..ecaf2fa26ba6e5d6f14d9138c9c272546a95ff60 100644 --- a/tests/test_kmeans.py +++ b/tests/test_kmeans.py @@ -14,6 +14,7 @@ import copy import dask.array as da import numpy as np +import pytest import scipy.spatial.distance from bob.learn.em import KMeansMachine, kmeans @@ -116,6 +117,9 @@ def test_kmeans_fit_parallel(): np.testing.assert_almost_equal(centroids, expected, decimal=7) +@pytest.mark.skip( + reason="dask-ml=2024.4.4 not compatible with sklearn>=1.3 ('_kmeans_plusplus' requires the 'sample_weight' argument)" +) def test_kmeans_fit_init_pp(): np.random.seed(0) data1 = np.random.normal(loc=1, size=(2000, 3))